WO2005012920A1 - 力学量センサ - Google Patents

力学量センサ Download PDF

Info

Publication number
WO2005012920A1
WO2005012920A1 PCT/JP2004/007248 JP2004007248W WO2005012920A1 WO 2005012920 A1 WO2005012920 A1 WO 2005012920A1 JP 2004007248 W JP2004007248 W JP 2004007248W WO 2005012920 A1 WO2005012920 A1 WO 2005012920A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
signal
voltage
phase
physical quantity
Prior art date
Application number
PCT/JP2004/007248
Other languages
English (en)
French (fr)
Inventor
Muneharu Yamashita
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to DE112004000934T priority Critical patent/DE112004000934B4/de
Priority to US10/562,363 priority patent/US7355321B2/en
Priority to JP2005512450A priority patent/JP4654913B2/ja
Publication of WO2005012920A1 publication Critical patent/WO2005012920A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/09Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements

Definitions

  • the present invention relates to a physical quantity sensor for detecting physical quantities such as acceleration, angular acceleration, angular velocity, and load.
  • a bridge circuit is formed by two piezoelectric vibrators whose stresses generated by acceleration are opposite to each other, and a load impedance including two capacitors, and a voltage division impedance is formed between the average outputs. Circuit, and the signal at the voltage dividing point of the voltage dividing impedance circuit is fed back to the connection point of the two piezoelectric vibrators by the feedback signal processing circuit to form an oscillation circuit, and the oscillation output phase difference between the average outputs of the bridge circuit And outputs this as a caro speed detection signal.
  • a bridge circuit is formed by two piezoelectric vibrators and a load impedance including two capacitors, so that the bridge is in a balanced state. Otherwise, the oscillation output phase difference does not become 0. That is, even if the stress applied to the two piezoelectric vibrators is both zero, the output of the acceleration sensor does not become zero. Also, there is a problem that it is difficult to control the sensitivity to acceleration to the best point by the phase shift circuit.
  • the mechanical quantity sensor includes two piezoelectric vibrators in which the stress applied by the mechanical quantity is opposite to each other, a voltage signal application circuit for applying a voltage signal to the two piezoelectric vibrators in common, and the two piezoelectric vibrators.
  • Each current signal flowing to the element is converted to a voltage signal
  • a phase difference signal processing circuit that detects a phase difference between output signals of the current / voltage conversion circuit and outputs a physical quantity detection signal.
  • the acceleration detecting element 10 is composed of two piezoelectric vibrators Sa and Sb in which the directions of stress applied by acceleration are opposite to each other. Resistors RLa and RLb are connected in series to these piezoelectric vibrators Sa and Sb.
  • the current-voltage conversion-signal addition circuit 11 converts a current signal flowing through the two piezoelectric vibrators Sa and Sb of the acceleration detection element 10 into a voltage signal, and outputs a Sa signal and an Sb signal. Further, it outputs an addition signal of both signals.
  • the voltage amplification / amplitude limiting circuit 12 amplifies the voltage of the added signal, limits the amplitude thereof, and outputs a voltage signal Vosc to the acceleration detection element 10.
  • This voltage signal Vosc is applied to a common connection point between the two piezoelectric vibrators Sa and Sb.
  • the phase difference voltage conversion circuit 13 generates a voltage signal proportional to the phase difference between the Sa signal and the Sb signal converted as a voltage signal.
  • the amplification-and-filter circuit 14 amplifies the voltage signal converted by the phase difference voltage conversion circuit 13 with a predetermined gain, removes unnecessary frequency band components, and outputs the signal as an acceleration detection signal.
  • the resonance frequencies of the piezoelectric vibrators Sa and Sb are aligned, the frequency of Vosc is set to the resonance frequency fr (0) of Sa and Sb, and the piezoelectric vibrators Sa and Sb are respectively
  • a reverse-phase stress is applied, such as compression (tension) or tension (compression)
  • an output signal can be extracted from the amplification-filter circuit 14.
  • Vosc is a feedback voltage signal of a self-excited oscillating circuit in which the circuits of the piezoelectric vibrators Sa and Sb, the current-voltage conversion one-signal adding circuit 11, and the voltage amplification-amplitude limiting circuit 12 are looped.
  • Patent document 1 Japanese Patent Application Laid-Open No. 2002-243757
  • Patent Document 2 JP 2003-254991
  • FIG. 10A shows the relationship between the magnitude of the resistance connected to the piezoelectric vibrator and the rate of change in the temperature characteristic of the acceleration detection sensitivity (G sensitivity).
  • the vertical axis is the range of change in acceleration detection sensitivity (maximum value-minimum value) over the entire operating temperature range (140 ° C to + 85 ° C).
  • S is the response at the desired oscillation frequency
  • N is the response in the unnecessary oscillation frequency band with a high gain that appears at a higher frequency.
  • the difference between the gain Gs of the response S at the desired oscillation frequency and the maximum gain Gn of the response N in the unnecessary frequency band is 10 dB or more.
  • the damping ratio is 2
  • the difference is 11.5 dB and no abnormal oscillation occurs, but when the damping ratio is 6, the difference is 6.3 dB. Abnormal oscillation.
  • the above-described problem is not limited to a sensor that detects acceleration, but a common problem that occurs in a sensor in which a current flowing through a piezoelectric vibrator changes according to a mechanical amount such as angular acceleration, angular velocity, and load. It is.
  • an object of the present invention is to provide a physical quantity sensor capable of avoiding the problem of abnormal oscillation and obtaining a stable physical quantity detection sensitivity over a wider temperature range.
  • the present invention provides two piezoelectric vibrators in which the stress applied by a mechanical quantity is opposite to each other, a voltage signal application circuit for applying a voltage signal to the two piezoelectric vibrators in common, and two A current-voltage conversion circuit for converting a current signal flowing through the piezoelectric vibrator into a voltage signal, and a phase difference signal processing circuit for detecting a phase difference between output signals of the current-voltage conversion circuit and outputting a physical quantity detection signal
  • a mechanical quantity sensor that includes a resistor, a resistor is connected to the current path of the two piezoelectric vibrators, and the voltage signal application circuit amplifies the added signal corresponding to the added value of the current flowing through the two piezoelectric vibrators.
  • Phase difference A phase control circuit that controls the phase of the feedback voltage signal so that the phase difference becomes a predetermined value; and a filter circuit that suppresses unnecessary frequency components of the feedback voltage signal.
  • the voltage amplifying circuit, the amplitude limiting circuit, the phase control circuit, and the filter circuit are oscillated.
  • the filter circuit is a low-pass filter including an oscillation frequency in a pass band
  • the phase control circuit converts a phase difference between the addition signal and the feedback voltage signal into a voltage signal.
  • a phase difference voltage conversion circuit a comparison circuit that compares an output signal of the phase difference voltage conversion circuit with a reference signal, a voltage control resistor circuit whose impedance changes according to an output voltage of the comparison circuit, And an all-pass filter whose phase changes according to the impedance of the resistance circuit.
  • the all-pass filter is provided in the phase control circuit, the phase difference between the addition signal and the feedback voltage signal is converted into a voltage signal, and the phase of the all-pass filter is determined based on the comparison result between the voltage signal and the reference signal.
  • phase control is performed while keeping the gain constant, so that stable oscillation can be maintained.
  • the phase control circuit controls the phase difference between the feedback voltage signal and the addition signal so that the detection sensitivity of the dynamic quantity is maximized.
  • the physical quantities are, for example, acceleration, angular acceleration, angular velocity, and load.
  • the acceleration detection sensitivity change rate range is reduced by connecting a resistor to each of the two piezoelectric vibrators in which the stresses applied by the dynamics are opposite to each other to increase the damping ratio. Therefore, it becomes stable against a temperature change. Moreover, the phase difference between the feedback voltage signal applied to the two piezoelectric vibrators in common and the sum signal of the current flowing through the two piezoelectric vibrators is maintained at a predetermined value, and the unnecessary frequency of the feedback voltage signal is maintained. Since the components are suppressed, the steepness of the phase gradient due to the insertion of the filter circuit is prevented, and the variation in the detection sensitivity and the rate of temperature change are suppressed to a small value.
  • phase control stabilizes the phase of the feedback voltage signal to the caro speed detection element, and the oscillation operation is stabilized, so that the noise component included in the dynamic quantity detection signal is suppressed, and for example, a low-pass for suppressing the noise component is performed.
  • the time constant of the filter can be set small, and the response can be improved accordingly.
  • the filter circuit for suppressing unnecessary frequency components of the feedback voltage signal is a low-pass filter including an oscillation frequency in a pass band, and is commonly applied to two piezoelectric vibrators. All-pass filter is provided in the phase control circuit that keeps the phase difference between the feedback voltage signal and the sum signal of the current flowing through the two piezoelectric vibrators at a predetermined value. Thus, phase control can be performed with the gain kept constant, and stable oscillation can be maintained.
  • the phase control circuit controls the phase difference between the feedback voltage signal and the addition signal so that the detection sensitivity of the dynamic quantity becomes maximum. In this state, the dynamic quantity can be detected.
  • FIG. 1 is a block diagram showing an overall configuration of an acceleration sensor according to a first embodiment.
  • FIG. 2 is a specific circuit diagram of the acceleration sensor.
  • FIG. 3 is a diagram showing a frequency characteristic of an open-no-rape gain of a self-excited oscillation circuit in the acceleration sensor.
  • FIG. 4 is a diagram showing the phase stability of a feedback voltage signal provided by providing a phase control circuit.
  • FIG. 5 is a diagram showing characteristics of a rate of change in acceleration detection sensitivity due to a temperature change.
  • FIG. 6 is a diagram showing an effect of improving output noise characteristics by a phase control circuit.
  • FIG. 7 is a circuit diagram showing a configuration of an acceleration sensor according to a second embodiment.
  • FIG. 8 is a view showing characteristics of a piezoelectric vibrator provided in the acceleration sensor.
  • FIG. 9 is a block diagram showing the overall configuration of a conventional acceleration sensor.
  • FIG. 10 is a diagram showing a frequency range of a change rate range due to a temperature change of a damping ratio and acceleration detection sensitivity and a frequency characteristic of an open loop gain of a self-excited oscillation circuit in a conventional acceleration sensor.
  • FIG. 8 shows a change in the current phase (ie, admittance phase) when the frequency of the voltage source is changed in the circuit shown in the figure.
  • the solid line indicates a state where no stress is applied, and the broken line indicates a state where stress is applied.
  • (B) of FIG. 8 is an enlarged view of the resonance frequency range in (A).
  • the frequency at which the phase becomes 0 [deg] is the resonance frequency of the piezoelectric vibrator.
  • the force S indicates that the resonance frequency changes from fr (O) to fr (x) due to stress application. If the frequency of the voltage source is fixed at fr (O), the phase will be ⁇ It can be seen that (0) changes to ⁇ (y).
  • FIG. 1 is a block diagram showing the configuration of the entire acceleration sensor.
  • the acceleration detecting element 10 includes two piezoelectric vibrators Sa and Sb whose directions of stress applied by acceleration are opposite to each other.
  • the current-voltage conversion-signal addition circuit 11 converts a current signal flowing through the two piezoelectric vibrators Sa and Sb of the acceleration detecting element 10 into a voltage signal, and outputs a Sa signal and an Sb signal. Further, it outputs an addition signal of both signals.
  • the voltage amplification / amplitude limiting circuit 12 amplifies the voltage of the added signal and limits the amplitude thereof.
  • the phase control circuit 20 controls the phase of the output signal of the voltage amplification-amplitude limiting circuit 12.
  • the filter circuit 17 attenuates a signal higher than a predetermined cutoff frequency in the output signal of the phase control circuit 20.
  • a loop formed by the piezoelectric vibrators Sa and Sb, the current-voltage conversion-signal addition circuit 11, the voltage amplification-amplitude limitation circuit 12, the phase control circuit 20 and the filter circuit 17 forms a self-excited oscillation circuit, and the feedback voltage signal Vosc is applied to a common connection point between the two piezoelectric vibrators Sa and Sb.
  • the phase control circuit 20 includes a phase difference voltage conversion circuit 15 and a phase shift circuit 16.
  • the phase difference voltage conversion circuit 15 generates a voltage signal corresponding to the phase difference between the addition signal from the current-voltage conversion-signal addition circuit 11 and the feedback voltage signal Vosc output from the filter circuit 17.
  • the phase shift circuit 16 shifts the phase of the output signal of the voltage amplification / amplitude limiting circuit 12 by the phase shift amount corresponding to the voltage signal output from the phase difference voltage conversion circuit 15 and outputs the resultant signal to the filter circuit 17.
  • the filter circuit 17 sets a cutoff frequency near a desired oscillation frequency (resonant frequency fr of the piezoelectric vibrator) so as to suppress the frequency components in the unnecessary frequency band shown in FIG. Attenuates frequencies higher than the oscillation frequency. As a result, the maximum gain Gn in the unnecessary frequency band shown in FIG. 10B is reduced, and the gains Gs and Gn at the desired oscillation frequency fr are reduced. Can be increased.
  • the phase control circuit 20 that changes the phase of the input / output signal by the filter circuit 17 generates an addition signal corresponding to the addition value of the current flowing through the two piezoelectric vibrators Sa and Sb and the two piezoelectric vibrations. Since the phase is controlled such that the phase difference between the feedback voltage signal Vosc and the feedback voltage signal Vosc commonly applied to the filter always becomes a predetermined value, the phase change by the filter circuit 17 is canceled. As a result, the self-excited oscillation circuit can stably oscillate even if the values of the resistors RLa and RLb are increased and the damping ratio is increased.
  • the phase difference voltage conversion circuit 13 is a circuit corresponding to the "phase difference signal processing circuit" according to the present invention, and includes a voltage signal proportional to the phase difference between the Sa signal and the Sb signal converted as a voltage signal. Generate a number.
  • the amplifying filter circuit 14 amplifies the voltage signal converted by the phase difference voltage converting circuit 13 with a predetermined gain, removes unnecessary frequency band components, and outputs the signal as an acceleration detection signal.
  • the resonance frequencies of the piezoelectric vibrators Sa and Sb are aligned, and the frequency of Vosc is set to the resonance frequency fr (0) of Sa and Sb.
  • a voltage signal approximately proportional to the stress can be output from the amplifying-and-filtering circuit 14.
  • the frequency of Vosc is not limited to the resonance frequency of the piezoelectric vibrators Sa and Sb. If the frequency-phase characteristic shown in Fig. 8 is set to a frequency that can be regarded as substantially a straight line, the acceleration signal can be detected. Power S can. The acceleration detection sensitivity is highest when the frequency of Vosc matches the resonance frequency of the piezoelectric vibrators Sa and Sb. In practice, any frequency where the admittance phase is within ⁇ 45 [deg] Good.
  • the admittance phase of the Vosc frequency force and the piezoelectric vibrators Sa and Sb should be within ⁇ 45 [deg] for practical use. Sensitivity. It is preferable that the frequency of Vosc be between the resonance frequency of the piezoelectric vibrator Sa and the resonance frequency of the piezoelectric vibrator Sb.
  • the phase characteristics of the piezoelectric vibrator include two regions where the admittance phase is within ⁇ 45 [deg] (resonance frequency region and anti-resonance frequency region).
  • the impedance of the piezoelectric vibrator is high, and the current flowing into the current-voltage conversion-signal addition circuit 11 decreases, so that the gain decreases and oscillation does not occur.
  • the input impedance forces of 11 are both low and matching is easy, so it is easy to improve the CZN ratio.
  • FIG. 2 shows a specific circuit of the acceleration sensor shown in FIG.
  • an operational amplifier OP1 and a feedback resistor R21 constitute a first current-voltage converter
  • an operational amplifier OP2 and a feedback resistor R22 constitute a second current-voltage converter.
  • the operational amplifier OP3 and the resistors R23, R24, R25 form a power calculating circuit.
  • the filter circuit 17 shown in Fig. 2 includes an operational amplifier OP6, resistors R51 and R52, and capacitors C3 and C4, and forms a secondary low-pass filter. That is, in the frequency band higher than the cutoff frequency, the gain is attenuated at a rate of 40 dB for every 10-fold increase in frequency.
  • FIG. 3 (A) shows the case where the damping ratio is set to 2
  • FIG. 3 (B) shows the case where the damping ratio is set to 6
  • It shows the frequency characteristics of the gain.
  • the phase shift circuit 16 includes a comparison circuit 161, a reference voltage circuit 160, and an all-pass filter 162.
  • the comparison circuit 161 includes an operational amplifier ⁇ P4, a resistor R30, and a capacitor C1, compares the reference voltage generated by the reference voltage circuit 160 with the voltage output by the phase difference voltage conversion circuit 15, and determines the voltage difference. Outputs the double amplified voltage signal.
  • the all-pass filter 162 has a characteristic that the gain is constant over the entire frequency band and changes from a phase force of about 180 degrees.
  • FIG. 4 shows the effect of the phase control circuit 20 shown in FIG. If the characteristics of the acceleration detecting element 10 are included, the overall phase characteristics appear complicated. Therefore, here, the characteristics are shown by a circuit excluding the acceleration detecting element 10.
  • the slope of the phase change with respect to the frequency change is steep as shown by B, but by providing the phase control circuit 20, compared with the conventional circuit without the filter circuit 17, However, as shown by A, the inclination of the phase change with respect to the frequency change can be kept very small in the predetermined phase control frequency band.
  • a predetermined frequency band centered on the oscillation frequency (resonance frequency fr of the piezoelectric vibrator) is defined as a phase control band. If the inclination of the phase change with respect to the frequency change is small in the phase control band, the piezoelectric vibrator Sa Therefore, even if the resonance frequency of Sb varies due to factors such as manufacturing factors, variations in the acceleration detection sensitivity can be suppressed to a small value. Further, by providing the phase control circuit 20, the phase of the feedback voltage signal Vosc for the two piezoelectric vibrators can be controlled to a predetermined phase. In this embodiment, the phase is set to 6 degrees. Since the total phase of the self-excited oscillation circuit is 0 degree, the phase of the acceleration detecting element 10 is -6 degrees.
  • phase of the current flowing through the acceleration detecting element 10 is -6 degrees with respect to the applied voltage.
  • This point is the point where the current phase gradient of the acceleration detecting element 10 used in this embodiment is the most linear and steep.
  • the effect of maximizing the acceleration detection sensitivity and improving the linearity can be obtained.
  • the above “6 degrees” is the value set in this embodiment, and the acceleration detection element What is necessary is just to set suitably according to the characteristic of 10 and the objective of a sensor.
  • FIG. 5 shows the effect of improving the rate of change in the acceleration detection sensitivity due to a temperature change.
  • A shows the rate of change of the acceleration detection sensitivity due to temperature change when the damping ratio is 2
  • B shows the rate of change of the acceleration detection sensitivity due to temperature change when the damping ratio is 6.
  • FIG. 6 shows the effect of the phase control circuit 20 on improving output noise characteristics.
  • FIG. 6A shows the case of the conventional circuit
  • FIG. 6B shows the case of the circuit of the present invention.
  • the output noise is a noise component appearing in the output of the phase difference voltage conversion circuit 13 shown in FIG.
  • the amplitude of the random output noise is large as shown in (A)
  • the acceleration sensor according to this embodiment having the phase control circuit 20 the output noise was reduced to about 1/2. This is considered to be due to the fact that the phase of the feedback voltage signal Vosc with respect to the acceleration detection element 10 was stabilized by the phase control circuit 20, and as a result, the oscillation was stabilized. Since the output noise component is reduced in this way, the time constant of the low-pass filter for suppressing the output noise component in the amplifier-filter circuit 14 can be set small. As a result, the responsiveness of the sensor can be improved.
  • the configuration different from the configuration shown in FIG. 2 is the configuration of the current-voltage conversion / one-signal addition circuit 11.
  • the operational amplifiers OP1 and OP2 each constitute a voltage follower circuit with a very high input impedance, and the operational amplifier ⁇ P3 and the resistors R25 and R26 constitute a non-inverting amplifier circuit.
  • an addition circuit is configured by the non-inverting amplifier circuit and the resistors R23 and R24, and an added signal of the output voltages of the operational amplifiers ⁇ P1 and OP2 is obtained.
  • the resistors RLa and RLb are connected in series with the kaolin speed detecting element 10,
  • the resistors RLa and RLb are connected between the inputs of the operational amplifiers OP1 and OP2 and the ground.
  • the acceleration sensor that detects the stress difference applied to the two piezoelectric vibrators Sa and Sb by acceleration has been described.
  • the piezoelectric vibrators Sa and Sb are determined by other mechanical quantities. If it is configured so that a reverse stress is applied to Sb, a sensor for detecting the physical quantity can be similarly configured.
  • the two piezoelectric vibrators Sa and Sb are configured to generate a stress difference due to angular acceleration, they can be used as an angular acceleration sensor. If the two piezoelectric vibrators Sa and Sb are configured to generate a stress difference depending on the angular velocity, they can be used as angular velocity sensors. Similarly, if the two piezoelectric vibrators Sa and Sb are configured so that a stress difference is generated by a load, the piezoelectric vibrators Sa and Sb can be used as a load sensor.
  • the present invention can be used for detecting a physical quantity such as acceleration, angular acceleration, angular velocity, and load of a moving object to detect a state of the object and a state of a device related to the object.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Gyroscopes (AREA)

Abstract

 2つの圧電振動子(Sa,Sb)は、加速度等の力学量によって加わる応力が互いに逆となるように設ける。電流電圧変換−信号加算回路(11)は、2つの圧電振動子(Sa,Sb)に流れる電流信号を電圧信号に変換する。電圧増幅−振幅制限回路(12)は、その2つの電圧信号の加算信号を増幅し、振幅を制限する。位相差電圧変換回路(15)は加算信号と加速度検出素子(10)へ与える帰還電圧信号(Vosc)との位相差を検出する。位相シフト回路(16)は、帰還電圧信号が所定の位相となるように位相制御する。フィルタ回路(17)は発振周波数より高域の不要周波数帯の周波数成分を抑圧する。  抵抗(RLa,RLb)の抵抗値を大きくしてダンピング比を大きくすることによって温度安定性を高め、フィルタ回路(17)により異常発振を防止し、位相制御回路(20)により特性のばらつきを抑える。

Description

明 細 書
力学量センサ 技術分野
[0001] この発明は、加速度、角加速度、角速度、荷重等の力学量を検出する力学量セン サに関するものである。
背景技術
[0002] 圧電振動子を備えた加速度センサとして、本願出願人は特許文献 1を出願してい る。
[0003] この加速度センサは、加速度によってカ卩わる応力が互いに逆である 2つの圧電振 動子と、 2つのコンデンサを含む負荷インピーダンスでブリッジ回路を構成し、その平 均出力間に分圧インピーダンス回路を設け、その分圧インピーダンス回路の分圧点 の信号を帰還信号処理回路によって 2つの圧電振動子の接続点に帰還させて発振 回路を構成し、ブリッジ回路の平均出力間の発振出力位相差を検出して、これをカロ 速度検出信号として出力するものである。
[0004] しかし、上記特許文献 1に記載の加速度センサにおいては、 2つの圧電振動子と 2 つのコンデンサを含む負荷インピーダンスとでブリッジ回路を構成してレ、るので、ブリ ッジが平衡状態にならないと発振出力位相差が 0にならない。すなわち 2つの圧電振 動子に加わる応力が共に 0であっても、加速度センサの出力が 0にならない。また、 位相シフト回路によって、加速度に対する感度を最良点に合わせるための制御が困 難であるという課題があった。
[0005] さらに、圧電振動子と回路との間隔は 10cm以上になる用途が想定されるため、原 理的に、圧電振動子と回路間の距離をその程度に離しても問題が生じにくい検出方 式が望まれていた。
[0006] そこで、本願出願人は、特許文献 2にて上記課題を解決した力学量センサを出願 している。その力学量センサは、力学量によって加わる応力が互いに逆である 2つの 圧電振動子と、該 2つの圧電振動子に対して共通に電圧信号を印加する電圧信号 印加回路と、前記 2つの圧電振動子に流れる電流信号をそれぞれ電圧信号に変換 する電流電圧変換回路と、該電流電圧変換回路の出力信号同士の位相差を検出し て力学量検出信号を出力する位相差信号処理回路とを備えている。
[0007] ここで特許文献 2で示した力学量センサの構成例を図 9を基に説明する。
[0008] 図 9において、加速度検出素子 10は、加速度によって加わる応力の方向が互いに 逆である 2つの圧電振動子 Sa, Sbからなる。この圧電振動子 Sa, Sbには直列に抵 抗 RLa, RLbを接続している。電流電圧変換-信号加算回路 11は、加速度検出素 子 10の 2つの圧電振動子 Sa, Sbに流れる電流信号を電圧信号に変換して、 Sa信 号および Sb信号を出力する。また、両信号の加算信号を出力する。
[0009] 電圧増幅一振幅制限回路 12は、上記加算信号を電圧増幅するとともに、その振幅 制限を行い、加速度検出素子 10に対して電圧信号 Voscを出力する。この電圧信号 Voscは、 2つの圧電振動子 Sa, Sbの共通接続点に印加する。
[0010] 位相差電圧変換回路 13は、電圧信号として変換された Sa信号と Sb信号との位相 差に比例した電圧信号を生成する。
[0011] 増幅一フィルタ回路 14は、位相差電圧変換回路 13により変換された電圧信号を所 定のゲインで増幅し、不要な周波数帯域の成分を除去して、加速度検出信号として 出力する。
[0012] 図 9の回路で、圧電振動子 Saと Sbの共振周波数を揃え、 Voscの周波数を Saと Sb の共振周波数 fr (0)とし、圧電振動子 Sa、圧電振動子 Sbには、それぞれ圧縮(引つ 張り)、引っ張り(圧縮)という具合に、逆相の応力が印加されると、増幅-フィルタ回 路 14から出力信号を取り出すことができる。
[0013] Voscは、圧電振動子 Sa, Sb、電流電圧変換一信号加算回路 11、および電圧増幅 -振幅制限回路 12の回路をループとする自励発振回路の帰還電圧信号である。 特許文献 1:特開 2002—243757公報
特許文献 2:特開 2003—254991公報
発明の開示
[0014] 図 9に示したように、圧電振動子 Sa, Sbに対して直列に抵抗 RLa, RLbを接続して いるので、ダンピング比が大きくなり、広い温度範囲に亘つて加速度検出感度の変化 率を小さくでき、環境温度に対して安定化できる。 [0015] ここで上記圧電振動子に対して接続する抵抗の大きさと加速度検出感度(G感度) の温度特性変化率の関係を図 10の (A)に示す。ここで横軸のダンピング比は、上記 RLa = RLb = RLとし、圧電振動子の共振周波数での抵抗値を共振抵抗としたとき に、「ダンピング比 = RLZ共振時の抵抗値」で求められる値である。縦軸は使用全 温度範囲 (一 40°Cから + 85°C)での加速度検出感度の変化率レンジ (最大値一最小 値)である。このようにダンピング比を大きくするに従レ、、加速度検出感度変化率レン ジが小さくなり、温度変化に対して安定になることが分かる。
[0016] ところが発明者の実験によれば、ダンピング比を 2とした時には正常動作した力 ダ ンピング比を 6にまで高めると異常発振して力学量センサとして正常に動作しないこと が分かった。またその異常発振の原因は、ダンピング比を大きくすることによって所望 発振周波数でのレスポンスが低下し、不要発振周波数でのレスポンスとの差が小さく なることであることも分かった。
[0017] ここで、図 9に示した加速度検出素子 10、電流電圧変換一信号加算回路 11および 電圧増幅一振幅制限回路 12とによる自励発振回路のオープンループゲインの周波 数特性を、ダンピング比を 2とした場合について図 10の(B)に、ダンピング比を 6とし た場合について図 10の(C)にそれぞれ示す。ここで Sは所望発振周波数でのレスポ ンス、 Nはそれより高い周波数で現れるゲインの高い不要発振周波数帯域でのレス ポンスである。一般に、異常発振を防ぐには、所望発振周波数でのレスポンス Sのゲ イン Gsと不要周波数帯域でのレスポンス Nの最大ゲイン Gnとの差が 10dB以上であ ることが必要とされている。この従来例で、ダンピング比を 2とした場合には、その差が 11. 5dBになり異常発振しなレ、が、ダンピング比を 6とした場合には、その差が 6. 3d Bとなって異常発振してしまう。
[0018] なお、上述の課題は、加速度を検出するセンサに限らず、角加速度、角速度、荷重 等の力学量に応じて圧電振動子に流れる電流が変化するようにしたセンサに生じる 共通の課題である。
[0019] 前述の不要周波数帯での信号強度を抑制するために前記自励発振回路の発振ル ープ内に周波数フィルタを設けることが考えられる。し力 周波数フィルタは位相特 性を備えているので、帰還信号の周波数変化に対する位相の変化率 (位相傾斜)が 急峻になる。し力も周波数フィルタの位相特性にはばらつきがあるので、単に周波数 フィルタを挿入しただけでは、その周波数フィルタの位相特性のばらつきの影響を大 きく受けて、検出感度のばらつきや検出感度の温度変化率が増大するといつた新た な問題が生じる。
[0020] そこで、この発明の目的は、上記異常発振の問題を回避して、より広い温度範囲に 亘つて安定した力学量検出感度を得られるようにした力学量センサを提供することに ある。
[0021] そこで、この発明は、力学量によって加わる応力が互いに逆である 2つの圧電振動 子と、該 2つの圧電振動子に対して共通に電圧信号を印加する電圧信号印加回路と 、 2つの圧電振動子に流れる電流信号をそれぞれ電圧信号に変換する電流電圧変 換回路と、該電流電圧変換回路の出力信号同士の位相差を検出して力学量検出信 号を出力する位相差信号処理回路とを設けてなる力学量センサにおいて、 2つの圧 電振動子の電流経路に抵抗を接続し、電圧信号印加回路を、 2つの圧電振動子に 流れる電流の加算値に相当する加算信号を電圧増幅する電圧増幅回路と、該電圧 増幅回路から出力される電圧信号の振幅を所定値に制限する振幅制限回路と、 2つ の圧電振動子に対して共通に印加する帰還電圧信号と前記加算信号との位相差を 検出し、該位相差が所定値となるように帰還電圧信号の位相を制御する位相制御回 路と、帰還電圧信号の不要な周波数成分を抑圧するフィルタ回路とから構成して、圧 電振動子と、電圧増幅回路と、振幅制限回路と、位相制御回路と、フィルタ回路とで 発振動作させるようにしたことを特徴としている。
[0022] この構成により、 2つの圧電振動子に対する帰還電圧信号の不要な周波数成分を フィルタ回路によって抑圧し、且つ位相制御回路によって、圧電振動子に対する帰 還電圧信号と、 2つの圧電振動子に流れる電流の加算値に相当する加算信号との 位相差が所定値となるように帰還電圧信号の位相を制御するので、フィルタ回路の 揷入によって位相傾斜が急峻になるのを防止して、検出感度のばらつきや温度変化 率を小さく抑える。
[0023] また、この発明は、前記フィルタ回路を、発振周波数を通過帯域に含むローパスフ ィルタとし、位相制御回路を、加算信号と帰還電圧信号との位相差を電圧信号に変 換する位相差電圧変換回路と、該位相差電圧変換回路の出力信号と基準信号とを 比較する比較回路と、該比較回路の出力電圧によってインピーダンスが変化する電 圧制御抵抗回路と、該電圧制御抵抗回路のインピーダンスによって位相が変化する オールパスフィルタとから構成したことを特徴としている。
[0024] このように位相制御回路にオールパスフィルタを設け、加算信号と帰還電圧信号と の位相差を電圧信号に変換し、この電圧信号と基準信号との比較結果によってォー ルパスフィルタの位相を制御することによって、ゲインを一定としたまま位相制御を行 つて安定した発振を維持できるようにする。
[0025] また、この発明は、前記位相制御回路を、前記帰還電圧信号と前記加算信号との 位相差を力学量の検出感度が最大となるように位相制御するものとする。
[0026] これにより、力学量の検出感度を最大とする。
[0027] また、この発明は、前記力学量を、たとえば加速度、角加速度、角速度、荷重とする
[0028] この発明によれば、力学量によって加わる応力が互いに逆である 2つの圧電振動 子のそれぞれに抵抗を接続してダンピング比を大きくすることにより、加速度検出感 度変化率レンジが小さくなつて、温度変化に対して安定になる。しかも、 2つの圧電振 動子に対して共通に印加する帰還電圧信号と 2つの圧電振動子に流れる電流の加 算信号との位相差が所定値に保たれ、且つ帰還電圧信号の不要な周波数成分が抑 圧されるので、フィルタ回路を挿入したことによる位相傾斜の急峻化が防止されて、 検出感度のばらつきや温度変化率が小さく抑えられる。さらに、位相制御によってカロ 速度検出素子に対する帰還電圧信号の位相が安定し、発振動作が安定するので、 力学量検出信号に含まれるノイズ成分が抑えられ、例えばそのノイズ成分を抑圧す るためのローパスフィルタの時定数を小さく設定でき、その分応答性を高めることがで きる。
[0029] また、この発明によれば、前記帰還電圧信号の不要な周波数成分を抑圧するフィ ルタ回路を、発振周波数を通過帯域に含むローパスフィルタとし、 2つの圧電振動子 に対して共通に印加する帰還電圧信号と 2つの圧電振動子に流れる電流の加算信 号との位相差を所定値に保つ位相制御回路にオールパスフィルタを設けたことにより 、ゲインを一定としたまま位相制御を行うことができ、安定した発振を維持できるように なる。
[0030] また、この発明によれば、前記位相制御回路を、帰還電圧信号と加算信号との位 相差を力学量の検出感度が最大となるように位相制御するようにしたので、常に最大 感度の状態で力学量を検出できるようになる。
図面の簡単な説明
[0031] [図 1]第 1の実施形態に係る加速度センサの全体の構成を示すブロック図である。
[図 2]同加速度センサの具体的な回路図である。
[図 3]同加速度センサにおける自励発振回路のオープンノレープゲインの周波数特性 を示す図である。
[図 4]位相制御回路を設けたことによる帰還電圧信号の位相安定性を示す図である。
[図 5]温度変化による加速度検出感度の変化率の特性を示す図である。
[図 6]位相制御回路による出力ノイズ特性の改善効果を示す図である。
[図 7]第 2の実施形態に係る加速度センサの構成を示す回路図である。
[図 8]加速度センサに備える圧電振動子の特性を示す図である。
[図 9]従来の加速度センサの全体の構成を示すブロック図である。
[図 10]従来の加速度センサにおけるダンピング比と加速度検出感度の温度変化によ る変化率レンジおよび自励発振回路のオープンループゲインの周波数特性を示す 図である。
発明を実施するための最良の形態
[0032] まず、この発明の実施形態である加速度センサに備える圧電振動子の特性を図 8 を参照して説明する。図 8において、 (A)は、その図中に示した回路で、電圧源の周 波数を変化させたときの電流の位相(すなわちアドミタンス位相)の変化を示している 。また、実線は応力を印加していない状態、破線は応力を印加した状態である。図 8 の(B)は (A)における共振周波数域の拡大図である。
[0033] 図 8において、位相が 0[deg]になる周波数は、圧電振動子の共振周波数である。
図 8から明らかなように、応力印加により、共振周波数が fr (O)から fr (x)に変化するこ と力 S分る。また、電圧源の周波数を fr (O)に固定しておくと、位相は応力印加により φ (0)から φ (y)に変化することが分る。
[0034] 次に、第 1の実施形態に係る加速度センサの構成を図 1一図 6を参照して説明する
[0035] 図 1は加速度センサ全体の構成を示すブロック図である。ここで加速度検出素子 1 0は加速度によって加わる応力の方向が互いに逆である 2つの圧電振動子 Sa, Sbか らなる。電流電圧変換 -信号加算回路 11は、加速度検出素子 10の 2つの圧電振動 子 Sa, Sbに流れる電流信号を電圧信号に変換して、 Sa信号および Sb信号を出力 する。また、両信号の加算信号を出力する。
[0036] 電圧増幅一振幅制限回路 12は、上記加算信号を電圧増幅するとともに、その振幅 制限を行う。
[0037] 位相制御回路 20は電圧増幅一振幅制限回路 12の出力信号の位相を制御する。フ ィルタ回路 17は位相制御回路 20の出力信号に対して所定の遮断周波数より高域の 信号を減衰させる。
[0038] このフィルタ回路 17の出力信号 Voscが加速度検出素子 10に対して帰還される。
すなわち、圧電振動子 Sa, Sb、電流電圧変換 -信号加算回路 11、電圧増幅 -振幅 制限回路 12、位相制御回路 20およびフィルタ回路 17によるループが自励発振回路 を構成していて、帰還電圧信号 Voscは、 2つの圧電振動子 Sa, Sbの共通接続点に 印加される。
[0039] 上記位相制御回路 20は位相差電圧変換回路 15と位相シフト回路 16とから構成し ている。位相差電圧変換回路 15は電流電圧変換 -信号加算回路 1 1からの加算信 号とフィルタ回路 17の出力信号である帰還電圧信号 Voscとの位相差に応じた電圧 信号を発生する。位相シフト回路 16は位相差電圧変換回路 15から出力された電圧 信号に応じた位相シフト量だけ電圧増幅一振幅制限回路 12の出力信号を位相シフト させてフィルタ回路 17へ出力する。
[0040] 上記フィルタ回路 17は図 10の(B)に示した不要周波数帯域の周波数成分を抑圧 するように、所望の発振周波数 (圧電振動子の共振周波数 fr)付近を遮断周波数とし てこの所望発振周波数より高域側を減衰させる。その結果、図 10の(B)に示した不 要周波数帯での最大ゲイン Gnを低下させて、所望発振周波数 frでのゲイン Gsと Gn との差を大きくすることができる。
[0041] なお、フィルタ回路 17によってその入出力信号の位相が変化する力 位相制御回 路 20が 2つの圧電振動子 Sa, Sbに流れる電流の加算値に相当する加算信号とその 2つの圧電振動子に対して共通に印加する帰還電圧信号 Voscとの位相差が常に所 定値となるように位相制御するので、フィルタ回路 17による位相変化分は打ち消され る。その結果、抵抗 RLa, RLbの値を大きくしてダンピング比を大きくしても上記自励 発振回路を安定して発振させることができる。
[0042] 位相差電圧変換回路 13は、この発明に係る「位相差信号処理回路」に相当する回 路であり、電圧信号として変換された Sa信号と Sb信号との位相差に比例した電圧信 号を生成する。
[0043] 増幅一フィルタ回路 14は、位相差電圧変換回路 13により変換された電圧信号を所 定のゲインで増幅し、不要な周波数帯域の成分を除去して、加速度検出信号として 出力する。
[0044] 図 1の回路で、圧電振動子 Saと Sbの共振周波数を揃え、 Voscの周波数を Saと Sb の共振周波数 fr (0)とすることによって、圧電振動子 Sa、圧電振動子 Sbに、それぞ れ逆相の応力が印加されたとき、その応力に略比例した電圧信号を増幅一フィルタ 回路 14から出力することができる。
[0045] Voscの周波数は、圧電振動子 Saと Sbの共振周波数に限らず、図 8に示した周波 数一位相特性が略直線と見なせる周波数に設定しておけば、加速度信号を検出する こと力 Sできる。最も加速度検出感度が高くなるのは、 Voscの周波数を圧電振動子 Sa , Sbの共振周波数に一致させたときである力 実用的には、アドミタンス位相が ±45 [deg]以内となる周波数であれば良い。
[0046] また、圧電振動子 Saと Sbの共振周波数が揃っていない場合でも、 Voscの周波数 力 圧電振動子 Saと Sbのアドミタンス位相が、 ±45[deg]以内となるようにすれば実 用的な感度となる。好ましくは、 Voscの周波数が圧電振動子 Saの共振周波数と圧電 振動子 Sbの共振周波数の中間であれば良レ、。
[0047] 圧電振動子 Sa、圧電振動子 Sbには、それぞれ圧縮(引っ張り)、引っ張り(圧縮)と レ、う具合に、逆相の応力が印加されるので、圧電振動子 Saと Sbの特性変化が常に 逆相となるため、加算すると打ち消し合い、電流電圧変換一信号加算回路 11から出 力される加算信号は、加速度印加によらず常に同じ特性となるので、加速度印加に よって圧電振動子 Saと Sbの特性が変化しても、 Voscの周波数は変動しない。
[0048] なお、図 8に示したように、圧電振動子の位相特性にはアドミタンス位相が、 ±45 [deg]以内となる領域が 2箇所 (共振周波数域と反共振周波数域)存在するが、反共 振周波数域では、圧電振動子のインピーダンスが高いので、電流電圧変換 -信号加 算回路 11に流入する電流が少なくなることにより、ゲインが小さくなり発振しない。
[0049] これに対し、共振周波数域では、圧電振動子のインピーダンスが低いために、電流 電圧変換一信号加算回路 11に電流が多く流れ、ゲインが大きくなるので、安定に発 振する。
[0050] 共振周波数域では、圧電振動子のインピーダンスと電流電圧変換 -信号加算回路
11の入力インピーダンス力 双方とも低ぐまた、整合も取りやすいため、 CZN比を 向上させることが容易である。
[0051] 次に、図 1に示した加速度センサの具体的な回路を図 2に示す。まず電流電圧変 換一信号加算回路 11において、オペアンプ OP1と帰還抵抗 R21とで第 1の電流電 圧変換回路を構成し、オペアンプ OP2と帰還抵抗 R22とで第 2の電流電圧変換回路 を構成している。さらに、オペアンプ OP3と抵抗 R23, R24, R25とによって力卩算回 路を構成している。
[0052] 図 2に示したフィルタ回路 17はオペアンプ OP6、抵抗 R51 , R52、コンデンサ C3, C4からなり、二次ローパスフィルタを構成している。すなわち遮断周波数より高い周 波数帯域で、周波数が 10倍高くなるごとに 40dBの割合で利得が減衰する。
[0053] 図 3の(A)はダンピング比を 2とした場合、また、図 3の(B)はダンピング比を 6とした 場合の、このフィルタ回路 17を含む自励発振回路のオープンノレープゲインの周波数 特性を示している。図 10の(B)と(C)に示した特性と比べれば明らかなように、不要 周波数帯での最大ゲイン Gnが大きく減衰して、所望発振周波数でのゲイン Gsとの 差が 25. 9dBと 17. 6dBになり十分に大きくなる。そのため、図 1に示した抵抗 RLa, RLbの値を大きくすることによってダンピング比を大きくしても異常発振を防止できる 。つまり、図 3の(B)に示すように、ダンピング比を 6としても、不要周波数帯でのレス ポンス Nの最大ゲイン Gnとの差が 17. 6dBになり、異常発振の目安とされている 10d Bに対して 7. 6dBだけまだ余裕がある。
[0054] 図 2において、位相シフト回路 16は比較回路 161、基準電圧回路 160およびォー ルパスフィルタ 162とで構成している。比較回路 161はオペアンプ〇P4、抵抗 R30お よびコンデンサ C1からなり、基準電圧回路 160の発生する基準電圧と位相差電圧変 換回路 15が出力する電圧との比較を行って、その電圧差を所定倍増幅した電圧信 号を出力する。
[0055] オールパスフィルタ 162は、全周波数帯域に亘つてゲインが一定で位相力 ¾度から 180度まで変化する特性を備えている。
[0056] 図 4は図 1に示した位相制御回路 20による効果を示している。加速度検出素子 10 の特性が含まれてレ、ると全体の位相特性が複雑に現れるので、ここでは加速度検出 素子 10を除いた回路でその特性を示している。位相制御回路 20を設けない従来の 回路では、 Bで示すように周波数変化に対する位相変化の傾きが急であるが、位相 制御回路 20を設けることによって、フィルタ回路 17を設けていない従来回路に比べ ても、 Aで示すように所定の位相制御周波数帯域で、周波数変化に対する位相変化 の傾きが非常に小さく抑えられる。
[0057] 発振周波数 (圧電振動子の共振周波数 fr)を中心とする所定周波数帯域を位相制 御帯域とし、このように位相制御帯域で周波数変化に対する位相変化の傾きが小さ いと、圧電振動子 Sa, Sbの共振周波数が製造要因などでばらついても、加速度検 出感度のばらつきが小さく抑えられる。また、位相制御回路 20を設けることによって、 2つの圧電振動子に対する帰還電圧信号 Voscの位相を所定の位相に制御できるよ うになる。この実施形態では、その位相を 6度に設定した。 自励発振回路のトータル の位相は 0度であるので、加速度検出素子 10の位相は- 6度となる。これは加速度検 出素子 10に流れる電流の位相がその印加電圧に対して- 6度となることを意味する。 このポイントは、この実施形態で用いた加速度検出素子 10の電流位相傾斜が最も直 線的且つ急勾配になるポイントである。このようなポイントになるように位相を制御する ことによって、加速度検出感度が最大となり且つリニアリティも良くなるという効果が得 られる。もちろん上述の「6度」はこの実施形態で設定した値であり、加速度検出素子 10の特性やセンサの目的に応じて適宜設定すればよい。
[0058] 図 5は温度変化による加速度検出感度の変化率の改善効果を示している。 (A)は ダンピング比を 2としたときの加速度検出感度の温度変化による変化率を、また(B) はダンピング比を 6とした時の加速度検出感度の温度変化による変化率を示している 。これらの例は、いずれも 3つのサンプルを用いて測定した。従来回路ではダンピン グ比を 6としたとき異常発振して加速度センサとして機能しなくなつたが、この実施形 態ではダンピング比を 6としても安定に動作するようになり、一 40°C力も _90°Cの広い 温度範囲に亘つて加速度検出感度の変化率レンジを ± 2%以内に抑えることができ た。
[0059] 図 6は位相制御回路 20による出力ノイズ特性の改善効果について示している。図 6 の (A)は従来回路の場合、(B)は本発明回路の場合である。ここで出力ノイズは図 1 に示した位相差電圧変換回路 13の出力に表れるノイズ成分である。位相制御回路 2 0を設けない従来回路では (A)に示すように、ランダムな出力ノイズの振幅が大きい のに対し、位相制御回路 20を備えたこの実施形態に係る加速度センサでは、表れる 出力ノイズが約 1/2に抑えられた。これは位相制御回路 20によって加速度検出素 子 10に対する帰還電圧信号 Voscの位相が安定し、その結果発振が安定化したこと に起因しているものと考えられる。このように出力ノイズ成分が小さくなるので、増幅一 フィルタ回路 14で出力ノイズ成分を抑圧するためのローパスフィルタの時定数を小さ く設定できる。その結果、センサとしての応答性を高めることができる。
[0060] 次に、第 2の実施形態に係る加速度センサについて図 7を基に説明する。
[0061] 図 2に示した構成と異なるのは、電流電圧変換一信号加算回路 11の構成である。こ の第 2の実施形態では、加速度検出素子 10の圧電振動子 Sa, Sbに流れる電流 la, lbが抵抗 RLa, RLbに流れた際に、その抵抗 RLa, RLbに生じる電圧を加算するも のである。オペアンプ OP1 , OP2はそれぞれ入力インピーダンスが非常に高ぐ利得 力^の電圧フォロア回路を構成していて、オペアンプ〇P3と抵抗 R25, R26は非反転 増幅回路を構成している。更にこの非反転増幅回路と抵抗 R23, R24とによって加 算回路を構成していて、オペアンプ〇P1 , OP2の出力電圧の加算信号を得る。
[0062] また、図 2では抵抗 RLa, RLbをカ卩速度検出素子 10に対して直列に接続したが、 図 7の例では抵抗 RLa, RLbをオペアンプ OP1, OP2の入力と接地との間に接続し ている。
[0063] なお、第 1 ·第 2の実施形態では、 2つの圧電振動子 Sa, Sbに加速度によって加わ る応力差を検出する加速度センサについて示したが、その他の力学量によって圧電 振動子 Sa, Sbに逆向きの応力が加わるように構成すれば、その力学量を検出する センサが同様にして構成できる。たとえば、角加速度により 2つの圧電振動子 Sa, Sb に応力差が発生するように構成すれば角加速度センサとして用いることができる。ま た、角速度により 2つの圧電振動子 Sa, Sbに応力差が発生するように構成すれば角 速度センサとして用いることができる。同様に、荷重により 2つの圧電振動子 Sa, Sb に応力差が発生するように構成すれば荷重センサとして用いることができる。
産業上の利用可能性
[0064] この発明は、運動する物体の加速度、角加速度、角速度、荷重等の力学量を検出し て、その物体の状態やその物体に関与する装置の状態を検知するために利用できる

Claims

請求の範囲
[1] 力学量によって加わる応力が互いに逆である 2つの圧電振動子と、該 2つの圧電振 動子に対して共通に電圧信号を印加する電圧信号印加回路と、前記 2つの圧電振 動子に流れる電流信号をそれぞれ電圧信号に変換する電流電圧変換回路と、該電 流電圧変換回路の出力信号同士の位相差を検出して力学量検出信号を出力する 位相差信号処理回路とを設けてなる力学量センサにおいて、
前記 2つの圧電振動子の電流経路に抵抗を接続し、
前記電圧信号印加回路を、
前記 2つの圧電振動子に流れる電流の加算値に相当する加算信号を電圧増幅す る電圧増幅回路と、
該電圧増幅回路から出力される電圧信号の振幅を所定値に制限する振幅制限回 路と、
前記 2つの圧電振動子に対して共通に印加する帰還電圧信号と前記加算信号との 位相差を検出し、該位相差が所定値となるように前記帰還電圧信号の位相を制御す る位相制御回路と、
前記帰還電圧信号の不要な周波数成分を抑圧するフィルタ回路と、
力 構成して、
前記圧電振動子と、前記電圧増幅回路と、前記振幅制限回路と、前記位相制御回 路と、前記フィルタ回路とで発振動作させるようにした力学量センサ。
[2] 前記フィルタ回路を、前記発振周波数を通過帯域に含むローパスフィルタとし、 前記位相制御回路を、前記加算信号と前記帰還電圧信号との位相差を電圧信号 に変換する位相差電圧変換回路と、
該位相差電圧変換回路の出力信号と基準信号とを比較する比較回路と、 該比較回路の出力電圧によってインピーダンスが変化する電圧制御抵抗回路と、 該電圧制御抵抗回路のインピーダンスによって位相が変化するオールパスフィルタ と、
力 構成した請求項 1に記載の力学量センサ。
[3] 前記位相制御回路は、前記帰還電圧信号と前記加算信号との位相差を力学量の 検出感度が最大となるように位相制御する請求項 1または 2に記載の力学量センサ。
[4] 前記力学量は加速度である請求項 1一 3のいずれかに記載の力学量センサ。
[5] 前記力学量は角加速度である請求項 1一 3のいずれかに記載の力学量センサ。
[6] 前記力学量は角速度である請求項 1一 3のいずれかに記載の力学量センサ。
[7] 前記力学量は荷重である請求項 1一 3のいずれかに記載の力学量センサ。
PCT/JP2004/007248 2003-07-30 2004-05-27 力学量センサ WO2005012920A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112004000934T DE112004000934B4 (de) 2003-07-30 2004-05-27 Sensor für eine mechanische Grösse
US10/562,363 US7355321B2 (en) 2003-07-30 2004-05-27 Mechanical quantity sensor
JP2005512450A JP4654913B2 (ja) 2003-07-30 2004-05-27 力学量センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-204074 2003-07-30
JP2003204074 2003-07-30

Publications (1)

Publication Number Publication Date
WO2005012920A1 true WO2005012920A1 (ja) 2005-02-10

Family

ID=34113634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007248 WO2005012920A1 (ja) 2003-07-30 2004-05-27 力学量センサ

Country Status (4)

Country Link
US (1) US7355321B2 (ja)
JP (1) JP4654913B2 (ja)
DE (1) DE112004000934B4 (ja)
WO (1) WO2005012920A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232710A (ja) * 2006-01-31 2007-09-13 Nec Tokin Corp 振動ジャイロ用振動子

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10308087A1 (de) * 2003-02-24 2004-09-09 Endress + Hauser Gmbh + Co. Kg Schutz vor den Effekten von Kondensatbrücken
GB2425160B (en) * 2005-04-12 2010-11-17 Perpetuum Ltd An Electromechanical Generator for, and method of, Converting Mechanical Vibrational Energy into Electrical Energy
JP5242151B2 (ja) * 2007-12-21 2013-07-24 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー 振動補正制御回路及びそれを備えた撮像装置
JP5237622B2 (ja) * 2007-12-21 2013-07-17 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー 振動補正制御回路及びそれを備えた撮像装置
JP2009156945A (ja) * 2007-12-25 2009-07-16 Sanyo Electric Co Ltd 撮像装置の防振制御回路
JP2010199822A (ja) * 2009-02-24 2010-09-09 Panasonic Corp 検波回路、物理量センサ装置
FI124794B (fi) * 2012-06-29 2015-01-30 Murata Manufacturing Co Parannettu resonaattori
BR112018003579A2 (pt) 2015-08-31 2018-09-25 Koninklijke Philips N.V. sistema e método de detecção
US10725202B2 (en) * 2017-07-21 2020-07-28 Baker Hughes, A Ge Company, Llc Downhole electronics package having integrated components formed by layer deposition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250630A (ja) * 1985-08-30 1987-03-05 Teraoka Seiko Co Ltd 振動式荷重測定装置
EP1324052A2 (en) * 2001-12-28 2003-07-02 Murata Manufacturing Co., Ltd. Mechanical force sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1296433B (de) 1966-08-18 1969-05-29 Gen Precision Inc Beschleunigungsmesser
JP3514240B2 (ja) 2001-02-19 2004-03-31 株式会社村田製作所 加速度センサ
JP4066916B2 (ja) * 2003-09-08 2008-03-26 株式会社村田製作所 力学量センサ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250630A (ja) * 1985-08-30 1987-03-05 Teraoka Seiko Co Ltd 振動式荷重測定装置
EP1324052A2 (en) * 2001-12-28 2003-07-02 Murata Manufacturing Co., Ltd. Mechanical force sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232710A (ja) * 2006-01-31 2007-09-13 Nec Tokin Corp 振動ジャイロ用振動子

Also Published As

Publication number Publication date
DE112004000934B4 (de) 2008-06-05
US20070103032A1 (en) 2007-05-10
JPWO2005012920A1 (ja) 2007-09-27
JP4654913B2 (ja) 2011-03-23
US7355321B2 (en) 2008-04-08
DE112004000934T5 (de) 2006-04-06

Similar Documents

Publication Publication Date Title
US9307319B2 (en) Sensor circuit and calibration method
US8127603B2 (en) Physical quantity sensor
JP5585861B2 (ja) 結合共振器のアレイ、バンドパスフィルタおよび発振器
US9170167B2 (en) Pressure sensor
WO2005012920A1 (ja) 力学量センサ
CN113252943B (zh) 一种改善硅微谐振式加速度计冲击振动性能方法
US20080126015A1 (en) Measuring Device And Measured Quantity Sensor Having Coupled Processing And Excitation Frequencies
US8063700B2 (en) Amplifier arrangement and method for amplifying a signal
US11561237B2 (en) Circuit for sensing an analog signal, corresponding electronic system and method
CN101266275B (zh) 半导体集成电路及其相位补偿用电容的电容值调整方法
EP2461139B1 (en) Coriolis mass flowmeter
RU2301970C1 (ru) Микромеханический гироскоп вибрационного типа
JP4559805B2 (ja) 物理量センサ
US10327072B2 (en) Phase correcting system and a phase correctable transducer system
CN108254147B (zh) 振动台反馈信号分频段调幅系统
JP4406863B2 (ja) 振動型角速度センサ装置
KR100691148B1 (ko) 지자기 센서의 신호 처리 회로
WO2024122308A1 (ja) センサ信号処理装置
US20160268970A1 (en) Sensitivity variable loop gain oscillator sensor system
JPH024548Y2 (ja)
JP4244892B2 (ja) 振動式センサ
JP6148894B2 (ja) 発振回路
CN117805712A (zh) 一种基于紧耦合电感臂电桥的泄露电容传感器测量电路及使用方法
JPH09205330A (ja) センサ用出力増幅回路
JP2009047447A (ja) 物理量センサ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005512450

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007103032

Country of ref document: US

Ref document number: 10562363

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112004000934

Country of ref document: DE

Date of ref document: 20060406

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112004000934

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10562363

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607