WO2005012215A1 - 新規骨格を有する金属化合物 - Google Patents

新規骨格を有する金属化合物 Download PDF

Info

Publication number
WO2005012215A1
WO2005012215A1 PCT/JP2004/007914 JP2004007914W WO2005012215A1 WO 2005012215 A1 WO2005012215 A1 WO 2005012215A1 JP 2004007914 W JP2004007914 W JP 2004007914W WO 2005012215 A1 WO2005012215 A1 WO 2005012215A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
metal compound
atom
alkoxides
compound according
Prior art date
Application number
PCT/JP2004/007914
Other languages
English (en)
French (fr)
Inventor
Kenji Yamada
Akiji Higuchi
Nobuo Kimura
Yoshitaka Fujita
Norifumi Nakamoto
Original Assignee
Nippon Soda Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co., Ltd. filed Critical Nippon Soda Co., Ltd.
Priority to JP2005512453A priority Critical patent/JP4633628B2/ja
Publication of WO2005012215A1 publication Critical patent/WO2005012215A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/28Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/003Compounds containing elements of Groups 4 or 14 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/86Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by NMR- or ESR-data

Definitions

  • the present invention relates to a metal compound and a titanium compound having a novel crystal structure, which are useful as a material for forming a metal oxide film and a chemically adsorbed film, and as an organic-inorganic composite eight-brid material.
  • Conventional technology :
  • a metal oxide precursor characterized in that water is added to one or more metal alkoxides at a temperature of 120 ° C. or lower.
  • Methods for producing sols are known. (Refer to Japanese Patent Application Laid-Open No. 10-29 8 769)
  • a high molecular weight ladder-like polyoxane that is soluble in an organic solvent is obtained by hydrolyzing titanium tetraalkoxide at a temperature of 20 to 90 with 1.0 to 1.7 times mol of water.
  • the purpose of this method is to provide a high molecular weight ladder-like polytitanoxane which dissolves in an organic solvent even in a high molecular weight substance and forms a fine thin film. (See Japanese Patent Application Laid-Open No. 11-199032) Further, 0.1 to 2.0 mol of the metal salt partially hydrolyzed by adding water and heating is added.
  • the present invention is useful as a material for forming a metal oxide film or a chemically adsorbed film, for example, capable of adjusting pH with an acid or a base or coagulating in an organic solvent without adding a dispersion stabilizer. It is an object of the present invention to provide a metal compound having a novel crystal structure without the above.
  • the present inventors dropped a predetermined amount of water at a low temperature of 120 ° C. or lower into an organic solvent solution of titanium tetraisoproxide, allowed the temperature to rise naturally, and then refluxed the reaction solution. Fine particles were obtained.
  • the fine particles were formed of titanium having a novel crystal structure including two spatially arranged two metal atoms located at the apexes of a pentagonal pyramid. It was found that it was a compound.
  • the metal compound having such a crystal structure is (i) ultra-fine particles having a particle size of about several nanometers and having a monodisperse particle size distribution, and (ii) a uniform dispersion in an organic solvent. (Iii) stable existence in an organic solvent, and (iv) useful as a material for forming a metal oxide film and a chemisorption film, and as an organic-inorganic composite hybrid material. And completed the present invention.
  • a metal compound characterized by having a crystal structure including two arrangements in which six metal atoms are located at the apexes of a five-sided pyramid in one molecule. Is done.
  • the metal compound of the present invention is preferably one in which two pentagons face each other with one surface of the pentagon being oriented, and more preferably one in which one surface of the pentagon is a base pentagon. It is more preferable that the faces of the pentagonal pyramid face each other at a certain angle.
  • the metal compound of the present invention is preferably one in which each metal atom constituting the crystal structure is cross-linked by a cross-linking oxygen atom, and more preferably contains a ⁇ 3- type cross-linking oxygen atom.
  • the metal compound of the present invention preferably contains a metal atom to which an alkoxy group is bonded.
  • the metal atom is preferably a titanium atom.
  • the metal compound of the present invention is represented by the following formula (1): M (OR) n (where M represents a metal atom, R represents an alkyl group, and n represents the valence of the metal atom).
  • Metal alkoxide a composite alkoxide obtained by reacting two or more metal alkoxides, a reaction of one or more metal alkoxides with one or two or more metal salts. The resulting composite alkoxide, or these It is preferably a hydrolysis product of a combination of two or more.
  • a dispersoid obtained by treating the metal compound with water in an amount of less than 0.25 mole of the metal compound.
  • the dispersoid of the present invention is preferably obtained in an organic solvent in the absence of an acid, a base, and a dispersion stabilizer, using water in an amount of less than 0.25 times the molar amount of the metal compound. More preferably, it is a dispersoid having a metal-oxygen bond.
  • a metal compound having a novel crystal structure which does not adjust pH with an acid or a base and does not aggregate in an organic solvent even without adding a dispersion stabilizer.
  • the metal compound of the present invention is useful as a material for forming a metal oxide film or a chemically adsorbed film, an organic-inorganic composite hybrid material, and the like.
  • the first aspect of the present invention is a metal compound having a crystal structure including two arrangements in which six metal atoms are located at the apex of a pentagonal pyramid in one molecule.
  • the metal constituting the metal compound of the present invention is not particularly limited, and examples thereof include alkali metals, alkaline earth metals, elements of Group VIII of the Periodic Table, elements of Group IVB of the Periodic Table, and elements of the Periodic Table.
  • titanium, zirconium, aluminum, silicon, germanium, germanium, indium, tin, tantalum, and the like from the viewpoint of their usefulness as materials for forming metal oxide films and chemisorption films, and as composite hybrid materials. Tungsten, zinc and lead are preferred, and titanium is particularly preferred.
  • the metal compound of the present invention has a crystal structure including two arrangements in each molecule in which six metal atoms are located at the apexes of a pentagonal pyramid, and one surface of the pentagonal pyramid faces each other. It is preferable that the pentagonal pyramids face each other at a certain angle.
  • each metal atom constituting the crystal structure is cross-linked by a bridge-type oxygen atom.
  • the crosslinked oxygen atoms only two metal atoms and bonded to H 2 type bridging oxygen atom binds to three metal atoms ⁇
  • the metal compound of the present invention preferably has at least a type 3 bridging oxygen atom.
  • the metal compound of the present invention contains a metal atom in which a metal atom is cross-linked by a cross-linkable oxygen atom and further has an alkoxy group bonded thereto.
  • the alkoxy group is not particularly limited, but from the viewpoint of availability of raw materials, production efficiency, etc., alkoxy having 1 to 4 carbon atoms such as methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, etc. Groups are preferred.
  • the number of alkoxy groups to be bonded is not particularly limited, and depends on the type and valence of the metal atom, the number of metal atoms contained in one molecule, and the like. When there are a plurality of alkoxy groups, all of the bonding alkoxy groups may be the same or different.
  • FIG. 1 shows the basic skeleton of the metal compound of the present invention.
  • 1a represents a metal atom on the front side of the paper
  • 1b represents a metal atom on the back side of the paper.
  • the basic skeleton shown in FIG. 1 has a structure in which six metal atoms face each other with one face of the pentagonal pyramid including two arrangements located at the apexes of the pentagonal pyramid. And one surface of this pentagon is the pentagon of the bases, and the surface of the pentagon keeps a constant angle. This angle is determined by the size of the metal atom and the like. For example, when the metal atom is a titanium atom, it is about 36 °. Further, in FIG. 1, metal atoms are connected to each other for simplicity, but each metal atom may actually be connected via a bridged oxygen atom.
  • the metal compound of the present invention has a basic skeleton shown in FIG. 1 as long as it has a crystal structure including two arrangements in which six metal atoms are located at the apexes of a pyramid in one molecule. It is not limited to. For example, it has a crystal structure in which one molecule has two spatially arranged two metal atoms located at the apex of a pentagonal pyramid, but the bond distances between metal atoms and metal atoms are not all the same. However, there is a crystal structure that includes two arrangements in which six metal atoms are located at the apex of a pentagonal pyramid in one molecule, but the pentagon located at the bottom of the pentagon is not a regular pentagon. Included in the invention.
  • the metal compound of the present invention is a metal alkoxide represented by the formula (1): M (OR) n (Hereinafter referred to as “metal alkoxide”), a composite alkoxide obtained by reacting two or more metal alkoxides, one or more metal alkoxides and one or more metal salts.
  • metal alkoxide a composite alkoxide obtained by the reaction of above, a combination of two or more of the above-mentioned metal alkoxides, a combination of two or more of the above-mentioned composite alkoxides, a combination of the above-mentioned metal alkoxide and a composite alkoxide (hereinafter, referred to as “metal alkoxides”). Is partially hydrolyzed with a predetermined amount of water in an organic solvent.
  • M represents a metal atom.
  • the metal atom include one or more selected from the group consisting of titanium, zirconium, aluminum, silicon, germanium, indium, tin, tantalum, zinc, tungsten and lead, with titanium being particularly preferred.
  • R represents an alkyl group. The number of carbon atoms of the alkyl group is not particularly limited, but is usually 1 to 10, preferably 1 to 4, because it is easily available and excellent in handleability.
  • N represents the valence of a metal atom.
  • the metal alkoxide represented by the formula (1) include T i (OCH 3 ) 4 , T i (OC 2 H 5 ) 4 , T i ( ⁇ C 3 H 7 -i) 4 , T i ( OC 4 H 9) 4 and the like of the titanium alkoxide; Z r (OCH3) 4, Z r (OC 2 H 5) 4, Z r (OC 3 H 7) 4, Z r (OC 4 H 9) 4 and the like of zirconium Alkoxide; A 1 (O CH 3 ) 3 , A 1
  • Aluminum alkoxides such as (OC 2 H 5 ) 3 , A 1 ( ⁇ C 3 H 7 — i) 3 and A 1 (OC 4 H 9 ) 3 ; S i (OCH 3) 4 , S i (OC 2 H 5 ) 4 , silicon alkoxides such as S i ( ⁇ C 3 H 7 — i) 4 , S i ( ⁇ C 4 H 9 — t) 4 ; germanium alkoxides such as G e ( ⁇ C 2 H 5 ) 4 ; I n (OCH3) 3, I n ( ⁇ _C 2 H 5) 3, I n (OC 3 H 7 - i) 3, I n (OC 4 H 9) 3 and the like of an indium alkoxide; S n (OCH3) 3, I n ( ⁇ _C 2 H 5) 3, I n (OC 3 H 7 - i) 3, I n (OC 4 H 9) 3 and the like of an indium alkoxide; S n (OCH
  • Tin alkoxides such as (O CH 3 ) 4 , Sn ( ⁇ C 2 H 5 ) 4 , Sn (OC 3 H 7 -i) 4 , Sn (OC 4 H 9 ) 4 ; Ta (OCH 3) 5 , Ta (OC 2 H 5 ) 5 , T a ( ⁇ C 3 H 7 -i) 5 , T a ( ⁇ C 4 H 9 ) 5, etc .; tantalum alkoxides; W (OCH 3 ) 6 , W ( ⁇ C Tandene alkoxides such as 2 H 5 ) 6 , W ( ⁇ C 3 H 7 — i) 6 , W (OC 4 H 9 ) 6 ; zinc alkoxides such as Zn (OC 2 H 5 ) 2 ; P b (OC 4 H9) Lead alkoxides such as 4 and the like.
  • Complex alkoxides obtained by the reaction between two or more metal alkoxides include complex alkoxides obtained by reacting an alkoxide of an alkali metal or an alkaline earth metal with an alkoxide of a transition metal; Complex alkoxides and the like obtained in the form of complex salts by combination can be exemplified.
  • the composite alkoxide obtained by reacting one or more metal alkoxides with one or more metal salts a compound obtained by reacting a metal salt with a metal alkoxide can be exemplified.
  • the metal salt chloride, nitrate, sulfate, acetate, formate, oxalate and the like can be used. Further, as the metal alkoxide, the same metal alkoxide as described above can be used.
  • Metal alkoxides are used by dissolving or dispersing them in a suitable organic solvent.
  • concentration of the metal alkoxide in the organic solvent is not particularly limited as long as rapid heat generation is suppressed and the fluidity allows stirring, but it is usually 5 to 30% by weight.
  • the organic solvent used is not particularly limited as long as it is inert to the hydrolysis reaction of metal alkoxides.
  • a low temperature those having a low freezing point, preferably a freezing point of below, more preferably 150 ° C. or less are suitable.
  • Specific examples include ether solvents and aromatic hydrocarbon solvents.
  • ether solvents examples include getyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, diethylene glycol dimethyl ether, diethylene glycol getyl ether, diethylene glycol dibutyl ether, tetrahydrofuran, dioxane, and the like. .
  • aromatic hydrocarbon solvents examples include benzene, toluene, xylene, ethylbenzene, benzene, dichlorobenzene, chlorotoluene, bromobenzene, cumene, tetralin, butylbenzene, cymene, getylbenzene, pentylbenzene, dipentylbenzene, Benzyl acetate and the like can be mentioned. These solvents can be used alone or in combination of two or more. Among these, toluene and tetrahydrofuran are preferably used because the metal compound of the present invention can be obtained in good yield.
  • the metal alkoxide is not uniformly mixed with the organic solvent, for example, 1,2-bis- (2-ethylhexyloxyl-propionyl) -1-sodium ethanesulfonate, polyoxyethylene (6) nonylphate
  • a surfactant such as enyl ether, or to perform a stirring treatment or an ultrasonic treatment to make the solution uniform.
  • the amount of the organic solvent to be used is generally 100 to 5,000 parts by weight, preferably 100 to 3,000 parts by weight, per 100 parts by weight of the metal alkoxide. If the amount is less than 100 parts by weight, the generated fine particles may grow in a bonded state, and it may be difficult to control the particle size. On the other hand, if the amount exceeds 50,000 parts by weight, the solution is too dilute to produce fine particles. This can be difficult.
  • Water used for hydrolysis of metal alkoxides is not particularly limited as long as it is neutral, but from the viewpoint of suppressing side reactions, pure water, distilled water or ion-exchanged water having a low impurity content is preferable.
  • the amount of water involved in the reaction is not particularly limited, but is specifically 0.5 to 1.5 times, preferably 0.5 to 1/25 times the mole of the metal alkoxide. be able to.
  • any of a method of continuously adding the entire amount of water used and a method of adding the water in a plurality of times may be used.
  • the temperature at which the water is added may be changed.
  • the first addition of water can be performed at a temperature of from 125 ° C to ⁇ 20 ° C
  • the second addition can be performed at a temperature of from 180 ° C to ⁇ 70 ° C.
  • Water can also be used after diluting it in a suitable organic solvent. Diluted in organic solvent By using the water, it is possible to prevent local heat generation at the time of dropping of water and to carry out homogeneous hydrolysis of the metal alkoxide.
  • a solvent compatible with water is preferable. For example, methanol, ethanol, isopropyl alcohol, n-propyl alcohol, n-butyl alcohol and the like can be mentioned.
  • an acid, a base or a dispersion stabilizer may be added.
  • Acids and bases are used as deflocculants to re-disperse precipitates formed by coagulation, and to produce dispersoids such as colloidal particles by hydrolyzing, dehydrating and condensing metal alkoxides and formed polymer alkoxides.
  • the catalyst is not particularly limited as long as it functions as a catalyst and as a dispersant for the generated dispersoid.
  • Examples of the acid include mineral acids such as hydrochloric acid, nitric acid, boric acid, and borofluoric acid; organic acids such as acetic acid, formic acid, oxalic acid, carbonic acid, trifluoroacetic acid, p-toluenesulfonic acid, and methanesulfonic acid; Photoacid generators that generate an acid upon irradiation with light, such as rhododium hexafluorophosphate and triphenylphosphonium hexafluorophosphate; and the like.
  • Examples of the base include triethanolamine, triethylamine, 1,8-diazabicyclo [5.4.0] -7-indene, ammonia, dimethylformamide, phosphine and the like.
  • the dispersion stabilizer is an agent having an effect of stably dispersing a dispersoid in a dispersion medium, such as a deflocculant, a protective colloid, and an anticoagulant such as a surfactant.
  • a dispersion medium such as a deflocculant, a protective colloid, and an anticoagulant such as a surfactant.
  • Specific examples include polycarboxylic acids such as glycolic acid, dalconic acid, lactic acid, tartaric acid, citric acid, malic acid, and succinic acid; hydroxycarboxylic acids; phosphoric acids such as pyrophosphoric acid and tripolyphosphoric acid; acetylacetone; Methyl, acetate acetate, acetate acetate n-propyl, acetate acetate, isopropyl acetate acetate acetate n-butyl, acetate acetate sec-butyl, acetate acetate
  • a metal ⁇ examples include a method of adding water to a solution of lucoxides in an organic solvent, and a method of adding metal alkoxides to a mixed solvent of (b) water and an organic solvent, and the like.
  • the method (a) is preferred because it can be obtained.
  • a solution prepared by dissolving or dispersing metal alkoxides in an organic solvent slowly add 0.6 to 1.25 moles of water to the metal alkoxides at a temperature of -20 ° C or lower.
  • the method of adding, allowing the temperature of the reaction solution to rise naturally (first step), and then refluxing (second step) is particularly preferable.
  • the low-temperature hydrolysis reaction of metal alkoxides mainly proceeds.
  • a dispersion of fine particles having a loose crystal-like cage type (chain) structure is obtained by the first step.
  • the obtained fine particles have a particle size of 0.5 to 0.5 nm, preferably 1 to 5 nm.
  • the dropping temperature of water depends on the stability of the metal alkoxide used. Usually, there is no problem if the temperature is below ⁇ 20 ° C., but depending on the type of the metal alkoxide, it may be more preferable to perform the reaction in a temperature range of ⁇ 50 ° C. to 110 ° C. . By dropping water at such a low temperature, a fine particle dispersion of the metal compound of the present invention can be obtained.
  • the time for dropping water depends on the reaction scale and the like, but is usually 10 minutes to 3 hours, preferably 15 minutes to 1 hour. After completion of the dropwise addition, it is preferable to raise the temperature of the reaction solution to room temperature and continue stirring for 1 to 24 hours for aging.
  • the compound of the present invention is obtained by refluxing the reaction solution obtained in the first step at the reflux temperature of the organic solvent.
  • the dropped water is completely used for hydrolysis, and the compound of the present invention is produced by a polycondensation reaction (dehydration and dealcoholation reaction).
  • the reflux time is not particularly limited, but is usually 30 minutes to 5 hours, preferably 1 to 3 hours.
  • the solution containing the metal compound of the present invention obtained in the second step is a monodisperse dispersoid having an average particle size of 1 to 10 nm and a particle size distribution of 0.1 to 50 nm, and has a storage stability. Is excellent.
  • the solution When the solution is allowed to stand at a temperature of room temperature or lower, crystals are precipitated and can be isolated as the metal compound of the present invention.
  • the isolated metal compound crystals of the present invention can be treated with less than 0.25 moles of water relative to the metal compound to obtain a new dispersoid.
  • the dispersoid obtained here is a monodisperse equivalent to the solution containing the metal compound obtained in the second step and forms a dispersoid having excellent storage stability.
  • the dispersoid becomes a dispersoid having a metal monooxygen bond adjusted in the absence of an acid, a base, and Z or a dispersion stabilizer in an organic solvent.
  • the metal compound of the present invention is stable and has excellent dispersibility in various organic solvents. As described below, the metal compound of the present invention can be dispersed in an organic solvent after isolation, or by using the reaction solution obtained by the above-described production method as it is, as described below. It is useful as a material for forming a film and as a material for an organic-inorganic composite eight hybrid.
  • a metal oxide film can be formed on the substrate.
  • a solution obtained by dispersing the metal compound of the present invention in an organic solvent is applied or sprayed on a substrate, a metal oxide film can be formed on the substrate.
  • it can be produced by applying or spraying this solution on a substrate, heating and drying at a temperature of 200 ° C. or lower, preferably 15 Ot or lower, to form a film.
  • the heating time is not particularly limited, but is usually in the range of 1 to 120 minutes.
  • the concentration of the metal compound of the present invention in the solution is not particularly limited as long as it can be applied on the substrate, and can be appropriately set depending on the application method and the set film thickness. Generally, it is in the range of 5 to 50% by weight in terms of oxide.
  • the organic solvent used is not particularly limited as long as it does not affect the dispersibility of the metal compound of the present invention.
  • the solvents exemplified as the solvent that can be used when producing the metal compound of the present invention are exemplified.
  • the surface of the metal oxide film formed using the solution containing the metal compound of the present invention has an average roughness of 1 O nm or less, preferably 5 nm or less, and has excellent flatness, wettability, Excellent water repellency and storage stability. Further, since the film can be formed by drying at a temperature of 200 ° C. or less, the film can be formed on a plastic substrate. That is, a metal oxide film having a high-density smooth film surface with a carbon content of 10% or less in element ratio can be formed on a plastic substrate.
  • any of known methods such as spin coating, dip coating, spray coating, roll coating, screen printing, and offset printing can be used.
  • screen printing, offset printing, and roll coating are preferred, which can be patterned at the time of coating, and roll coating such as roll coating using a bar or roll coating using Giza can be used for mass production at low cost. The method is more preferred.
  • the light source for irradiating the coating film with ultraviolet light or visible light is not particularly limited as long as it generates light having a wavelength of 150 nm to 700 nm.
  • the light source for irradiating the coating film with ultraviolet light or visible light is not particularly limited as long as it generates light having a wavelength of 150 nm to 700 nm.
  • they are an ultra-high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, and a xenon lamp.
  • a transparent conductive pattern can be formed.
  • a laser oscillator can also be used. When a laser beam is used, a portion other than the irradiated portion does not become a metal oxide, so that a desired pattern can be formed without using screen printing or the like at the time of application.
  • a metal hydroxide remains with the generation of the metal oxide.
  • a device that generates light including ultraviolet light of 400 nm or less it is preferable to use a device that generates light including ultraviolet light of 400 nm or less.
  • the absorption of the metal-O-metal bond is shorter than that of the metal-OH bond, but the metal-O-metal bond must be activated. Irradiation of light having a wavelength that promotes the crystallization of metal oxides.
  • the irradiation time is not particularly limited, but is usually 1 minute to 120 hours.
  • the material and size of the base are not particularly limited. Examples of the material of the base include metal, ceramics, glass, plastic, paper, fiber, and leather.
  • the shape of the substrate may be any shape such as a sheet, a plate, a film, and a three-dimensional object. In addition, a substrate that has already been coated can also be used.
  • the organic solvent dispersion of the metal compound of the present invention may be used as a material for forming a chemical adsorption film. Is also useful. For example, a predetermined amount of an organic solvent dispersion of the metal compound of the present invention is added to an organic solvent solution of a metal surfactant such as an alkyl trialkoxysilane or a fluoroalkyl trialkoxysilane to prepare a solution for forming a chemically adsorbed film. By preparing and applying this to the surface of a substrate such as a glass substrate and drying, a good and dense chemical adsorption film composed of a single molecule can be formed.
  • a metal surfactant such as an alkyl trialkoxysilane or a fluoroalkyl trialkoxysilane
  • the substrate used for forming the chemical adsorption film is not particularly limited, and examples thereof include those similar to those listed as the substrate that can be used for forming the metal oxide film.
  • the metal compound of the present invention is also useful as an organic-organic composite hybrid material.
  • FIG. 1 is a diagram showing the basic skeleton of the metal compound of the present invention.
  • FIG. 2 is a chart showing the measured particle size distribution of the sol solution obtained in Example 1.
  • FIG. 3 is a chart of 1 H-NMR measurement of the crystals obtained in Example 1.
  • FIG. 4 is a diagram showing each molecular structure constituting a unit cell in the crystal obtained in Example 1.
  • FIG. 5 is a diagram showing a molecular arrangement in the crystal obtained in Example 1.
  • FIG. 6 is a chart showing the measured Raman spectrum of the reaction solution obtained in Example 2.
  • FIG. 7 is a chart showing 17 O-NMR of the reaction solution obtained in Example 2.
  • the organic solvent used was dried with molecular sieves (4 A. 1/16, manufactured by Wako Pure Chemical Industries).
  • Titanium tetraisopropoxide (A-1 manufactured by Nippon Soda Co., Ltd .: purity: 99.9%, concentration in terms of titanium oxide: 28% by weight) 100 g (0.35mo1) of four-necked flask
  • the solution was dissolved in 70 g of toluene (manufactured by Nacalai Tesque, Inc.) and replaced with nitrogen gas, and then cooled in a methanol bath containing dry ice to reach a temperature of 120 ° C.
  • isopropyl alcohol Nacalai Tesque, Inc.
  • Distilled water diluted with 1.7 g
  • a mixed solution of (ADBANTEC GS- 2 0 0 than water sampling) 6. 3 7 g (H 2 0 / T i 1. Omo l / mo l) a, - 2 5-30 with stirring in one 20 ° C Dropped in minutes. After completion of the dropwise addition, the mixture was allowed to warm to room temperature gradually over 1.5 hours while continuing to stir the reaction solution, and further refluxed at 80 ° C for 2.5 hours to obtain a colorless and transparent titanium oxide equivalent concentration. A solution of 30% by weight sol was obtained. The transmission wavelength of light having a light transmittance of 50% of this solution was 385 nm. The particle size of the obtained sol solution was measured.
  • the particle size of the obtained sol solution was measured at 25 ° C. in a toluene solvent using a dynamic light scattering method (manufactured by Ma 1 Vern, HPPS).
  • Figure 2 shows the measured particle size distribution.
  • the sol had a sharp monodisperse particle size distribution with an average particle size of 1.22 nm as shown in Figure 2.
  • the horizontal axis indicates the particle diameter (nm)
  • the vertical axis indicates the peak intensity (abundance).
  • Fig. 3 shows the measured 1 H-NMR chart.
  • the horizontal axis shows the chemical shift ( ⁇ 5 ppm).
  • the molecular structure and the crystal structure of the obtained crystal were determined by measuring using an X-ray structure analyzer (Rigaku imaging plate single crystal automatic X-ray structure analyzer R-AXIS RAPID / LS). The final R value in the refinement of the structural analysis was 0.07.
  • the crystal of the present invention has a structure in which 18 titanium isopropoxy groups are bonded to a cage structure (cage-like titania) in which 12 titanium atoms are cross-linked by oxygen atoms. It turned out that there is a unit cell composed of two types of molecules A and B that are crystallographically different.
  • the cage-like titania two pentagons having a titanium atom as an apex face each other with one surface of the pentagon facing one face, and one surface of the pentagon is a base pentagon, and the pentagon is Have a structure facing each other at an angle of about 36 °.
  • FIG. 4 shows the structure of each molecule constituting the unit cell.
  • 1 represents a titanium atom (black circle)
  • 2 represents an oxygen atom (grey circle)
  • 3 represents a carbon atom (white circle).
  • the molecule A (mo1ecu1eA) and the molecule B (mo1ecu1eB) have the same composition formula, and have structures similar to each other.
  • the particle size of each molecule is 1.2 to 1.3 nm.
  • FIG. 4 is a view from the upper side of the paper, and does not show all 12 titanium atoms, oxygen atoms bridging between titanium atoms, and 18 isopropoxy groups.
  • FIG. 5 shows the molecular arrangement of the obtained crystals.
  • the obtained crystal has a structure in which molecule A and molecule B are alternately repeated, and between molecule A and molecule B, toluene solvent 4 as a solvent is taken in. ing. It is thought that the toluene molecule plays a role like putty.
  • Example 2 The solution of the sol obtained in Example 1 was applied on a polyethylene terephthalate substrate (10 cm ⁇ 10 cm, thickness 5 mm) whose surface was ozone-treated, using a No. 3 barco overnight. After drying at 10 ° C. for 10 minutes, a metal oxide film was formed on the substrate. The shape of the film surface was measured using an SPM device (SPA-400 (SII), manufactured by Seiko Instruments Inc.). The surface roughness was 5 nm or less. It was found that the metal oxide film formed from the dispersion was smooth.
  • SPM device SPA-400 (SII), manufactured by Seiko Instruments Inc.
  • Example 1 White crystals precipitated from the reaction solution obtained in Example 1 were collected by filtration and dried in vacuo. The crystals thus obtained were dissolved again in toluene (manufactured by Nacalai Tesque), and after purging with nitrogen gas, 0.25 times water of titanium alkoxide was added to prepare a transparent sol solution.
  • the particles of the resulting sol solution exhibited a sharp particle size distribution with an average particle size of 5.2 nm.
  • a metal compound having a novel crystal structure which does not aggregate in an organic solvent without adjusting the pH with an acid or a base or adding a dispersion stabilizer.
  • the metal compound of the present invention is useful as a material for forming a metal oxide film or a chemically adsorbed film, an organic-inorganic composite octa-brid material, and the like, and can be said to have high industrial utility value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本発明は、金属酸化膜や化学吸着膜の形成用材料などとして有用であり、酸や塩基によりpHを調整したり、分散安定化剤を添加しなくとも有機溶媒中で凝集することがない、新規な結晶構造を有する金属化合物を提供することを目的とする。1分子内に、空間的に6つの金属原子が五角錐の頂点に位置する配置を2つ含む結晶構造を有することを特徴とする金属化合物。

Description

明 細 書
新規骨格を有する金属化合物.
技術分野:
本発明は、 金属酸化膜および化学吸着膜の形成材料や、 有機一無機複合八イブ リッド材料等として有用な、 新規結晶構造を有する金属化合物およびチタン化合 物に関する。 従来技術:
従来、 透明で均質な金属酸化物ゾルの製造方法として、 1種若しくは 2種以上 の金属アルコキシドへの水の添加を一 2 0 °C以下の温度で行うことを特徵とする 金属酸化物前駆体ゾルの製造方法が知られている。 (特開平 1 0— 2 9 8 7 6 9 号公報を参照)
また、 チタンテトラアルコキシドを、 1 . 0倍モル〜 1 . 7倍モルの水を用い て 2 0〜9 0での温度で加水分解する、 有機溶剤溶解性の高分子量のラダー状ポ リチ夕ノキサンの製造方法が知られている。 この方法は、 高分子量体においても 有機溶剤に溶解し、 繊密な薄膜を形成する高分子量のラダ一状ポリチタノキサン を提供することを目的としている。 (特開平 1一 1 2 9 0 3 2号公報を参照) また、 水を加えて加熱することにより部分的に加水分解した金属塩 1モルに対 して、 0 . 1〜2 . 0モルの水を含有するアルコール溶液を加え、 加熱して金属 塩を加水分解して金属水酸化物とし、 脱水縮合した後、 濃縮する金属酸化物前駆 体溶液の製造方法が知られている。 (特開 2 0 0 1— 3 4 2 0 1 8号公報を参 照)
しかし、 上述したいずれの方法を用いて得られたゾル中の金属酸化物の構造は 明らかでなかった。 発明の開示:
本発明は、 金属酸化膜や化学吸着膜の形成用材料等として有用であり、 酸や塩 基により p Hを調整したり、 分散安定化剤を添加しなくとも有機溶媒中で凝集す ることがない、新規な結晶構造を有する金属化合物を提供することを課題とする。 本発明者らは、 チタンテトライソプロ キシドの有機溶媒溶液に、 一 2 0 °C以 下の低温で所定量の水を滴下した後、 自然昇温.させ、 次いで反応液を還流するこ とで微粒子を得た。 そして、 得られた微粒子の結晶構造を種々の分析手段により 解析したところ、 この微粒子は、 空間的に 6つの金属原子が五角錐の頂点に位置 する配置を 2つ含む新規な結晶構造を有するチタン化合物であるという知見を得 た。 さらに、 このような結晶構造を有する金属化合物は、 ( i ) 粒子径が数ナノ メートル程度の超微粒子であって、 しかも粒子径分布が単分散であること、 (ii) 有機溶媒中に均一に分散させることができること、 (iii) 有機溶媒中で安定して 存在すること、 および (iv) 金属酸化物膜および化学吸着膜の形成用材料、 並び に有機一無機複合ハイプリッド材料として有用であることを見出し、 本発明を完 成するに至った。
かくして本発明の第 1によれば、 1分子内に、 空間的に 6つの金属原子が 5角 錐の頂点に位置する配置を 2つ含む結晶構造を有することを特徴とする金属化合 物が提供される。
本発明の金属化合物は、 2つの五角錐が、 該五角錐の 1つの面を向けて対峙し ているものであるのが好ましく、 五角錐の 1つの面が底面五角形同士であるもの がより好ましく、 五角錐の面が、 一定の角度を持って対峙しているものがさらに 好ましい。
本発明の金属化合物は、 その結晶構造を構成する各金属原子が架橋型酸素原子 によって架橋されているものであるのが好ましく、 ^ 3型架橋酸素原子を含むも のがより好ましい。
本発明の金属化合物は、 アルコキシ基が結合している金属原子を含むものが好 ましい。
本発明の金属化合物は、 金属原子がチタン原子であるのが好ましい。
また、 本発明の金属化合物は、 式 (1 ) : M ( O R ) n (式中、 Mは金属原子 を表し、 Rはアルキル基を表し、 nは金属原子の原子価を表す。) で表される金 属アルコキシド、 この金属アルコキシドの 2.種以上を反応させることにより得ら れる複合アルコキシド、 1種もしくは 2種以上の金属アルコキシドと 1種もしく は 2種以上の金属塩との反応により得られる複合アルコキシド、 またはこれらの 2種以上の組み合わせの加水分解生成物であるのが好ましい。
本発明の第 2によれば、 前記金属化合物を該金属化合物に対し 0 . 2 5倍モル 未満の水で処理して得られる分散質が提供される。
本発明の分散質は、 有機溶媒中、 酸、 塩基、 及びノまたは分散安定化剤の非存 在下、 前記金属化合物に対し 0 . 2 5倍モル未満の水を用いて得られるのが好ま しく、 金属一酸素結合を有する分散質であるのがより好ましい。
本発明によれば、 酸や塩基により p Hを調整したり、 分散安定化剤を添加しな くとも有機溶媒中で凝集することがない、 新規な結晶構造を有する金属化合物が 提供される。 本発明の金属化合物は、 金属酸化物膜や化学吸着膜の形成用材料、 有機一無機複合ハイブリッド材料等として有用である。
以下、 本発明の金属化合物およびチタン化合物について詳細に説明する。 ( 1 ) 金属化合物
本発明第 1は、 1分子内に、 空間的に 6つの金属原子が五角錐の頂点に位置す る配置を 2つ含む結晶構造を有することを特徴とする金属化合物である。
本発明の金属化合物を構成する金属としては特に制限されないが、 例えば、 ァ ルカリ金属、 アルカリ土類金属、 短周期型周期律表第 ΠΙ Β族元素、 同周期律表 第 IVB族元素、 同周期律表第 V B族元素、 遷移金属元素およびランタニド元素 からなる群から選ばれる 1種または 2種以上が挙げられる。 これらの中でも、 金 属酸化物膜および化学吸着膜の形成用材料、 並びに複合ハイプリッド材料として の有用性の観点から、 チタン、 ジルコニウム、 アルミニウム、 ケィ素、 ゲルマ二 ゥム、 インジウム、 スズ、 タンタル、 タングステン、 亜鉛および鉛が好ましく、 チタンが特に好ましい。
本発明の金属化合物は、 1分子内に、 空間的に 6つの金属原子が 5角錐の頂点 に位置する配置を 2つ含む結晶構造からなり、 この五角錐の 1つの面を向けて対 峙している構造のものが好ましく、 五角錐の面が、 一定の角度を持って対峙して いるものがさらに好ましい。
また本発明の金属化合物は、 その結晶構造を構成する各金属原子が、 互いに架 橋型酸素原子によって架橋されているものが好ましい。 架橋型酸素原子には、 2 つの金属原子のみと結合する H 2型架橋酸素原子、 3つの金属原子と結合する β 3型架橋酸素原子、 及び 4つの金属原子と結合する 4型架橋酸素原子等が存在 し得るが、 本発明の金属化合物は、 少なくとも 3型架橋酸素原子を有するもの が好ましい。
本発明の金属化合物は、 金属原子が架橋型酸素原子により架橋され、 さらにァ ルコキシ基が結合している金属原子を含むものが好ましい。 アルコキシ基として は特に制限されないが、 原料の入手容易性、 生産効率等の点から、 メトキシ基、 エトキシ基、 n—プロポキシ基、 イソプロポキシ基、 n—ブトキシ基等の炭素数 1〜4のアルコキシ基が好ましい。結合するアルコキシ基の数は特に制限されず、 金属原子の種類や原子価、一分子中に含まれる金属原子の数等に依存する。また、 アルコキシ基が複数個の場合、 結合するアルコキシ基は全てが同一であっても、 種類が異なっていてもよい。
本発明の金属化合物の基本骨格を図 1に示す。 図 1において、 1 aは紙面表側 にある金属原子、 1 bは紙面奥側にある金属原子をそれぞれ表す。 図 1に示す基 本骨格では、 6つの金属原子が五角錐の頂点に位置する配置を 2つ含む該五角錐 の 1つの面を向けて対峙している構造を有する。 そして、 この五角錐の 1つの面 が底面五角形同士であって、五角錐の面が一定の角度を保っている。 この角度は、 金属原子の大きさ等 より定まるものであり、 例えば、 金属原子がチタン原子の 場合には約 3 6 ° である。 また、 図 1においては、 分かりやすくするために金属 原子同士を結んでいるが、 実際には、 各金属原子は架橋型酸素原子を介して結合 していてもよい。
本発明の金属化合物は、 1分子内に、 空間的に 6つの金属原子が五角錐の頂点 に位置する配置を 2つ含む結晶構造を有するものであれば、 図 1に示す基本骨格 を有するものに限定されない。 例えば、 1分子内に、 空間的に 6つの金属原子が 五角錐の頂点に位置する配置を 2つ含む結晶構造を有するが、 金属原子と金属原 子との結合距離がすべて同じではないものや、 1分子内に、 空間的に 6つの金属 原子が五角錐の頂点に位置する配置を 2つ含む結晶構造を有するが、 五角錐の底 面に位置する五角形が正五角形ではないもの等も本発明に含まれる。
( 2 ) 製造方法
本発明の金属化合物は、 式 (1 ) : M ( O R ) nで表される金属アルコキシド (以下、 「金属アルコキシド」 という。)、 この金属アルコキシドを 2種以上を反 応させることにより得られる複合アルコキシド、 1種もしくは 2種以上の金属ァ ルコキシドと 1種もしくは 2種以上の金属塩との反応により得られる複合アルコ キシド、 前記金属アルコキシドの 2種以上の組み合わせ、 前記複合アルコキシド の 2種以上の組み合わせ、 前記金属アルコキシドと複合アルコキシドとの組み合 わせ (以下、 「金属アルコキシド類」 という。) を、 有機溶媒中、 所定量の水によ り部分的に加水分解することにより製造することができる。
式 (1) で表される金属アルコキシドにおいて、 式 (1) 中、 Mは金属原子を 表す。 金属原子としては、 チタン、 ジルコニウム、 アルミニウム、 ケィ素、 ゲル マニウム、 インジウム、 スズ、 タンタル、 亜鉛、 タングステンおよび鉛からなる 群から選ばれる 1種以上が挙げられ、 チタンが特に好ましい。 Rはアルキル基を 表す。 アルキル基の炭素数は特に限定されないが、 入手が容易であり、 取扱い性 にも優れることから、 通常 1〜10、 好ましくは 1〜4である。 また、 nは金属 原子の原子価を表す。
式 (1) で表される金属アルコキシドの具体例としては、 T i (OCH3) 4、 T i (OC2H5) 4、 T i (〇C3H7 - i ) 4、 T i (OC4H9) 4等のチタン アルコキシド; Z r (OCH3) 4、 Z r (OC2H5) 4、 Z r (OC3H7) 4、 Z r (OC4H9) 4等のジルコニウムアルコキシド ; A 1 (O CH3) 3、 A 1
(OC2H5) 3、 A 1 (〇C3H7— i ) 3、 A 1 (OC4H9) 3等のアルミニゥ ムアルコキシド ; S i (OCH3) 4、 S i (OC2H5) 4、 S i (〇C3H7— i ) 4、 S i (〇C4H9— t) 4等のケィ素アルコキシド ; G e (〇C2H5) 4 等のゲルマニウムアルコキシド ; I n (OCH3) 3、 I n (〇C2H5) 3、 I n (OC3H7- i ) 3、 I n (OC4H9) 3等のインジウムアルコキシド; S n
(O CH3) 4、 S n (〇C2H5) 4、 S n (OC3H7- i ) 4、 S n (OC4H 9) 4等のスズアルコキシド; T a (OCH3) 5、 T a (OC2H5) 5、 T a (〇 C3H7- i) 5、 T a (〇C4H9) 5等のタンタルアルコキシド ; W (OCH3) 6、 W (〇C2H5) 6、 W (〇C3H7— i ) 6、 W (OC4H9) 6等のタンダス テンアルコキシド; Zn (OC2H5) 2等の亜鉛アルコキシド ; P b (OC4H 9) 4等の鉛アルコキシド等が挙げられる。 2種以上の金属アルコキシド間の反応により得られる複合アルコキシドとして は、 アル力リ金属またはアル力リ土類金属のアルコキシドと遷移金属のアルコキ シドとの反応により得られる複合アルコキシド、 第 ΠΙΒ族元素の組合せにより 錯塩の形で得られる複合アルコキシド等を例示することができる。
これら複合アルコキシドの具体例としては、 B aT i (OR) 6、 S r T i (O R) 6、 B a Z r (OR) 6、 S r Z r (OR) 6、 L i Nb (OR) 6、 L i T a (OR) 6、 およびこれらの組合せ、 L i VO (OR) 4、 Mg A 12 (OR) 8、 (RO) a S i OA 1 (OR') 2、 (RO) 3S i〇T i (OR') 3、 (R〇) 3 S i O Z r (OR') 3、 (RO) 3 S i OB (OR') 2、 (RO) 3 S i ONb (OR') 4、 (RO) 3 S i OT a (OR') 4等のシリコンアルコキシドと前記 金属アルコキシドとの反応物およびその縮重合物が挙げられる。 ここで、 Rは前 記と同じ意味を表し、 R' は Rと同様のアルキル基を表す。
1種もしくは 2種以上の金属アルコキシドと 1種もしくは 2種以上の金属塩と の反応により得られる複合アルコキシドとしては、 金属塩と金属アルコキシドと の反応により得られる化合物を例示することができる。金属塩としては、塩化物、 硝酸塩、 硫酸塩、 酢酸塩、 ギ酸塩、 シユウ酸塩等を使用できる。 また、 金属アル コキシドとして、 上述した金属アルコキシドと同様のものが使用できる。
金属アルコキシド類は、 適当な有機溶媒に溶解または分散させて使用する。 有 機溶媒中の金属アルコキシドの濃度は、 急激な発熱を抑制し、 撹拌が可能な流動 性を有する範囲であれば特に限定されないが、 通常 5〜30重量%である。
用いる有機溶媒としては、 金属アルコキシド類の加水分解反応に対して不活性 なものであれば特に制約されない。 金属アルコキシド類の加水分解反応を低温で 行うためには、 低い凝固点、 好ましくは 以下、 より好ましくは一 50°C以下 の凝固点を有するものが好適である。 具体的には、 エーテル系溶媒や芳香族炭化 水素系溶媒等が挙げられる。
エーテル系溶媒としては、 ジェチルエーテル、 ジプロピルエーテル、 ジイソプ 口ピルエーテル、 ジブチルエーテル、 ジへキシルエーテル、 ジエチレングリコー ルジメチルエーテル、 ジエチレングリコールジェチルエーテル、 ジエチレンダリ コールジブチルエーテル、 テトラヒドロフラン、 ジォキサン等が挙げられる。 芳 香族炭化水素系溶媒としては、 ベンゼン、 トルエン、 キシレン、 ェチルベンゼン、 クロ口ベンゼン、 ジクロロベンゼン、 クロ口トルエン、 ブロモベンゼン、 クメン、 テトラリン、 ブチルベンゼン、 シメン、 ジェチルベンゼン、 ペンチルベンゼン、 ジペンチルベンゼン、酢酸べンジル等が挙げられる。 これらの溶媒は 1種単独で、 あるいは 2種以上を混合して用いることができる。 これらの中でも、 本発明の金 属化合物が収率よく得られることから、 トルエン、 テ卜ラヒドロフランの使用が 好ましい。
また、 金属アルコキシド類が有機溶媒と均一に混合しない場合には、 例えば、 1 , 2—ビス— (2—ェチルへキシルォキシ力ルポニル) — 1一エタンスルホン 酸ナトリウム、 ポリオキシエチレン (6 ) ノニルフエニルエーテル等の界面活性 剤を添加したり、 撹拌処理、 超音波処理等を施し、 溶液を均一にするのが好まし い。
有機溶媒の使用量は、 金属アルコキシド 1 0 0重量部に対し、 通常 1 0〜 5 , 0 0 0重量部、 好ましくは 1 0 0〜3, 0 0 0重量部である。 1 0重量部未満で は生成する微粒子が結合した状態で成長し、 粒径制御が困難になる場合があり、 一方 5, 0 0 0重量部を超えると溶液が希薄すぎて、 微粒子の生成が困難となる おそれがある。
金属アルコキシド類の加水分解に用いる水は、 中性であれば特に制限されない が、 副反応を抑制する観点から、 不純物含有量の少ない純水、 蒸留水またはィォ ン交換水が好ましい。
反応に関与する水の量は特に制限されないが、 具体的には、 金属アルコキシド 類に対し 0 . 5〜1 . 5倍モル、 好ましくは 0 . 5〜 1■ 2 5倍モル等を例示す ることができる。
水の添加方法としては、 使用量の全量の水を連続的に添加する方法、 および複 数回に分割して添加する方法のいずれであってもよい。 後述するように、 水を複 数回に分割して添加する場合には、 添加するときの温度を変化させてもよい。 例 えば、第 1回目の水の添加を一 2 5 °C〜― 2 0 °Cで行い、 2回目の添加を一 8 0 °C 〜― 7 0 °Cで行うことができる。
また、 水は適当な有機溶媒に希釈して用いることもできる。 有機溶媒に希釈し た水を用いることで、 水の滴下時における局部的な発熱を防止して、 金属アルコ キシドの均質な加水分解を行うことができる。 水の希釈に用いる有機溶媒として は、 水と相溶性のあるものが好ましい。 例えば、 メタノール、 エタノール、 イソ プロピルアルコール、 n—プロピルアルコール、 n—プチルアルコール等が挙げ られる。
金属アルコキシドの水による加水分解反応においては、 酸、 塩基または分散安 定化剤を添加してもよい。
酸および塩基は、 凝結してできた沈殿を再び分散させる解膠剤として、 また、 金属アルコキシドおよび生成した金属アルコキシドの多量体等を加水分解、 脱水 縮合させてコロイド粒子等の分散質を製造するための触媒として、 並びに生成し た分散質の分散剤として機能するものであれば特に制限されない。
酸としては、 例えば、 塩酸、 硝酸、 ホウ酸、 ホウフッ化水素酸等の鉱酸;酢酸、 ギ酸、 シユウ酸、 炭酸、 トリフルォロ酢酸、 p—トルエンスルホン酸、 メタンス ルホン酸等の有機酸;ジフエ二ルョードニゥムへキサフルォロホスフェート、 ト リフエニルホスホニゥムへキサフルォロホスフエ一ト等の光照射によって酸を発 生する光酸発生剤;等が挙げられる。 塩基としては、 例えば、 トリエタノールァ ミン、 トリエチルァミン、 1 , 8—ジァザビシクロ [ 5 . 4 . 0 ] — 7—ゥンデ セン、 アンモニア、 ジメチルホルムアミド、 ホスフィン等が挙げられる。
分散安定化剤は、分散質を分散媒中に安定に分散させる効力を有する、解膠剤、 保護コロイド、 界面活性剤等の凝結防止剤等の剤をいう。 その具体例としては、 グリコール酸、 ダルコン酸、 乳酸、 酒石酸、 クェン酸、 リンゴ酸、 コハク酸等の 多価カルボン酸; ヒドロキシカルボン酸; ピロ燐酸、 トリポリ燐酸等の燐酸; ァ セチルアセトン、 ァセト酢酸メチル、 ァセト酢酸エヂル、 ァセト酢酸一 n—プロ ピル、 ァセト酢酸イソプロピル、 ァセト酢駿— n—プチル、 ァセト酢酸一 s e c —プチル、 ァセト酢酸一 t—プチル、 2, 4一へキサンジオン、 2 , 4一へプタ ンジオン、 3, 5—ヘプ夕ンジオン、 2 , 4—オクタンジオン、 2, 4—ノナン ジオン、 5—メチルーへキサンジオン等の金属原子に対して強いキレート能力を 有する多座配位子化合物;等が挙げられる。
金属アルコキシド類と水との加水分解反応を行う方法としては、 (a ) 金属ァ ルコキシド類の有機溶媒溶液に水を添加する方法、 (b ) 水と有機溶媒との混合 溶媒中に、 金属アルコキシド類を添加する方法等が挙げられるが、 収率よく本発 明の金属化合物を得ることができることから、 (a ) の方法が好ましい。 なかで も、 金属アルコキシド類を有機溶媒に溶解または分散させた溶液に、 金属アルコ キシド類に対し 0 . 6倍モル〜 1 . 2 5倍モルの水を、 — 2 0 °C以下でゆっくり と添加し、 反応液を自然昇温させた (第 1工程) 後、 還流する (第 2工程) 方法 が特に好ましい。
第 1工程においては、 金属アルコキシド類の低温加水分解反応が主に進行する ものと考えられる。 例えば、 金属アルコキシド類としてチタンテトライソプロボ キシドを使用する場合、 第 1工程により、 ゆるい結晶類似かご型 (鎖) 構造 (準 安定化構造) を有する微粒子の分散液が得られる。得られる微粒子の粒子径は 0 . 5〜; L 0 n m、 好ましくは 1〜 5 n mである。
水の滴下温度は、 用いる金属アルコキシド類の安定性に依存する。 通常、 —2 0 °C以下の温度であれば特に問題はないが、金属アルコキシドの種類によっては、 — 5 0 °C〜一 1 0 0 °Cの温度範囲で行うことがより好ましい場合がある。 このよ うに低温で水を滴下することにより、 微粒子状の本発明の金属化合物の分散液を 得ることができる。
水の滴下時間は反応規模等によるが、 通常 1 0分から 3時間、 好ましくは 1 5 分から 1時間である。 滴下終了後においては、 反応液を室温に昇温し、 熟成のた めに 1〜2 4時間撹拌を続けるのが好ましい。
第 2工程は、 第 1工程で得られた反応液を用いる有機溶媒の還流温度で還流す ることにより本発明化合物を得るものである。 この工程においては、 滴下した水 が完全に加水分解に使用され、 重縮合反応 (脱水および脱アルコール反応) によ り本発明化合物が生成する。還流時間は特に制約はないが、通常 3 0分〜 5時間、 好ましくは、 1〜 3時間である。 第 2工程により得られる本発明の金属化合物を 含む溶液は、 平均粒径が l〜 1 0 n m、 粒径分布が 0 . l〜5 0 n mの単分散の 分散質であって、 保存安定性に優れている。
該溶液を、 室温以下の温度で静置すると結晶が析出してきて、 本発明の金属化 合物として単離するこができる。 単離された本発明の金属化合物結晶を、 該金属化合物に対し 0 . 2 5倍モル未 満の水で処理して新たな分散質を得ることができる。 ここで得られる分散質は、 前記第 2工程で得られる金属化合物を含む溶液と同等の単分散で保存安定性に優 れる分散質を形成する。 該分散質は、 有機溶媒中、 酸、 塩基、 及び Zまたは分散 安定化剤の非存在下に調整した金属一酸素結合を有する分散質となる。
本発明の金属化合物は安定であり、 各種有機溶媒に対する分散性に優れる。 本 発明の金属化合物は、 単離した後に有機溶媒に分散させることにより、 あるいは 上述した製造方法により得られる反応液をそのまま用いることにより、 以下に述 ベるように、 金属酸化物膜や化学吸着膜の形成用材料、 有機一無機複合八イブリ ッドの材料として有用である。
すなわち、 本発明の金属化合物を有機溶媒に分散してなる溶液を、 基体に塗布 または吹き付けすると基体上に金属酸化物膜を形成することができる。 例えば、 この溶液を基体上に塗布または吹き付け後、 2 0 0 °C以下、 好ましくは 1 5 O t 以下の温度で加熱 ·乾燥し、 成膜することにより製造することができる。 加熱す ることで、 溶媒を乾燥し、 前記生成物の加水分解および脱水縮合を行う。 加熱時 間は、 特に限定されないが、 通常 1〜 1 2 0分の範囲である。
本発明の金属化合物の溶液中の濃度は、 基板上に塗布可能な濃度であれば特に 制限されず、 塗布方法、 設定膜厚により適宜設定することができる。一般的には、 酸化物に換算した重量で 5〜 5 0重量%の範囲である。
用いる有機溶媒としては、 本発明の金属化合物の分散性に影響を与えない溶媒 であれば特に制約はない。 具体的には、 前記本発明の金属化合物を製造する際に 用いることができる溶媒として例示した溶媒が挙げられる。
本発明の金属化合物を含む溶液を用いて成膜した金属酸化物膜の膜表面は、 平 均粗さが 1 O n m以下、 好ましくは 5 n m以下であって、 平坦性に優れ、 濡れ性、 撥水性、 保存安定性にも優れている。 また、 2 0 0 °C以下の温度で乾燥すること により成膜できるので、 プラスチック基板上にも成膜することができる。 すなわ ち、 プラスチック基板上にも、 炭素含有量が元素比で 1 0 %以下の高密度の平滑 な膜表面を有する金属酸化物膜を形成することができる。
基体に本発明の金属化合物を含む溶液を塗布する方法としては、 特に制約はな い。 例えば、 スピンコート法、 ディップコート法、 スプレーコート法、 ロールコ ート法、 スクリーン印刷法、 オフセット印刷法等の公知の方法をいずれも使用す ることができる。 なかでも、 塗布時にパターニングできる、 スクリーン印刷法や オフセット印刷法、 ロールコート法が好ましく、 大量生産を安価に行うことので きる、 バーを用いるロールコート法、 ギーザ一を用いるロールコート法等のロー ルコート法がより好ましい。
本発明の金属化合物から金属酸化物薄膜を形成する場合においては、 塗布被膜 の加熱時および Z又は加熱後に、 光照射するのが好ましい。 塗布被膜に紫外光も しくは可視光を照射する光源は、 1 5 0 n m〜 7 0 0 n mの波長の光を発生する ものであれば、 特に制約はない。 例えば、 超高圧水銀ランプ、 高圧水銀ランプ、 低圧水銀ランプ、 キセノンランプ、 ハロゲンランプ、 ナトリウムランプ等が挙げ られる。 好ましくは、 超高圧水銀ランプ、 高圧水銀ランプ、 低圧水銀ランプ、 キ セノンランプである。
また、フォトマスクを併用すれば透明導電性パターンを形成することができる。 レーザー発振装置を使用することもできる。 レーザー光を用いた場合、 照射部分 以外は金属酸化物とならないので、 塗布時にスクリーン印刷等を用いることなく 所望のパターンを形成することができる。
本発明の金属化合物を含む塗布液の反応を行った場合、 金属酸化物の生成とと もに金属水酸化物が残る。 この金属一 O H結合の吸収を考慮して、 4 0 0 n m以 下の紫外光を含む光を発生する装置を用いるのが好ましい。 更に、 脱水反応が進 行して、 メタロキサンネットワークが形成した場合、 金属一 O—金属結合の吸収 は, 金属— O H結合より短波長であるが、 金属一 0 _金属結合を活性化すること ができる波長の光照射によって、 金属酸化物の結晶化が促進する。 照射時間は、 特に限定されるものではないが、 通常 1分〜 1 2 0時間である。
基体の材質や大きさに特に制限はない。 基体の材質としては、 金属、 セラミツ クス、 ガラス、 プラスチック、 紙、 繊維、 皮革等が挙げられる。 基体の形状も、 シート状、 板状、 フィルム状、 立体物等いかなる形状であってもよい。 また、 す でに塗装した基体を用いることもできる。
また、 本発明の金属化合物の有機溶媒分散液は、 化学吸着膜形成用材料として も有用である。 例えば、 アルキルトリアルコキシシランやフルォロアルキルトリ アルコキシシラン等の金属系界面活性剤の有機溶媒溶液に、 本発明の金属化合物 の有機溶媒分散液を所定量添加して化学吸着膜形成用溶液を調製し、 このものを ガラス基板等の基体上表面に塗布、 乾燥することで、 良好で緻密な単分子からな る化学吸着膜を形成することができる。 化学吸着膜の形成に用いる基体としては 特に制約されず、 前記金属酸化物膜の形成に用いることができる基体として列記 したものと同様のものが挙げられる。 その他、 本発明の金属化合物は、 有機—無 機複合ハイプリッド材料としても有用である。 図面の簡単な説明:
図 1は、 本発明の金属化合物の基本骨格を示した図である。
図 2は、 実施例 1で得られたゾルの溶液の粒子径分布を測定したチャート図で める。
図 3は、 実施例 1で得られた結晶の 1 H— N M Rを測定したチャート図である。 図 4は、 実施例 1で得られた結晶中のュニットセルを構成する各分子構造を示 す図である。
図 5は、 実施例 1で得られた結晶中の分子配列を示す図である。
図 6は、 実施例 2で得られた反応液のラマンスぺクトルを測定したチャート図 である。
図 7は、 実施例 2で得られた反応液の 1 7 O— N M Rを測定したチヤ一ト図で ある。 発明を実施するための最良の形態:
以下、 実施例を用いて本発明をさらに詳細に説明するが、 本発明の範囲は実施 例に限定されるものではない。 なお、 有機溶媒は、 モレキュラーシーブス (4 A. 1 / 1 6 , 和光純薬工業製) で乾燥したものを使用した。
実施例 1
チタンテトライソプロボキ^ド (日本曹達 (株) 製 A— 1 :純度 9 9 . 9 %、 酸化チタン換算濃度 2 8重量%) 1 0 0 g ( 0 . 3 5 m o 1 ) を 4つ口フラスコ 中で、 トルエン (ナカライテスク社製) 3 70 gに溶解し、 窒素ガス置換した後 に、 ドライアイスを加えたメタノール浴で冷却し、 一 20°Cとした。 別に調製し たイソプロピルアルコール (ナカライテスク社製) 5 1. 7 gで希釈した蒸留水
(ADBANTEC G S— 2 0 0より採水) 6. 3 7 g (H20/T i = 1. Omo l /mo l ) の混合溶液を、 — 2 5〜一 20 °Cで撹拌しながら 30分間で 滴下した。 滴下終了後、 反応液の撹拌を継続しながら、 1. 5時間かけて徐々に 室温まで自然昇温し、 さらに、 80°Cで 2. 5時間還流して、 無色透明な酸化チ タン換算濃度 3 0重量%のゾルの溶液を得た。 この溶液の光透過率 50 %の光の 透過波長は 38 5 nmであった。 得られたゾル溶液の粒径を測定した。
(粒径)
得られたゾル溶液の粒径を、 動的光散乱法 (Ma 1 V e r n社製、 HP P S) を用いてトルエン溶媒中、 2 5°Cで測定した。 測定した粒度分布を図 2に示す。 ゾルは、 図 2に示すように、 平均粒径 1. 22 nmでシャープな単分散の粒度 分布を示した。 図 2中、 横軸は粒子径 (nm)、 縦軸はピーク強度 (存在量) を それぞれ示す。
次いで、 反応液から析出した白色結晶を濾取し、 真空乾燥した。 得られた結晶 の1 H— N M Rめ測定および X線構造解析を行った。
11一 NMR)
得られた結晶を C6D6に溶解させて、 内部標準 TMSとして測定した。 測定 した1 H— NMRチャートを図 3に示す。 図 3中、 横軸はケミカルシフト (<5 p pm) を示す。
(X線結晶解析)
得られた結晶の分子構造および結晶構造は、 X線構造解析装置 (R i g a ku イメージングプレート単結晶自動 X線構造解析装置 R— AX I S RAP I D/ L S) を用いて測定して決定した。 構造解析精密化における最終の R値は 0. 0 7であった。
組成式: C54H12633T i 12 (分子量 = 1 8 7 7. 92)
結晶系:斜方晶系
格子定数: a = 26. 6 9人、 b = 28. 3 5 A、 c = 24. 1 6 Α、 = β =ァ= 90 °
上記測定結果より、 本発明の結晶中には、 12個のチタン原子が酸素原子によ つて架橋されたかご状構造 (かご状チタニア) に、 1 8個のイソプロポキシ基が 結合した構造である結晶学的に異なる 2種類の分子 A、 Bから構成されているュ ニットセルが、 存在することが分かった。 かご状チタニアは、 チタン原子を頂点 とする 2つの五角錐が、 該五角錐の 1つの面を向けて対峙し、 この五角錐の 1つ の面が、 底面五角形同士であって、 前記五角錐の面が、 約 36 ° の角度を持って 対峙した構造を有している。
このユニットセルを構成する各分子の構造を図 4に示す。 図 4中、 1はチタン 原子 (黒い丸印)、 2は酸素原子 (灰色の丸印)、 3は炭素原子 (白い丸印) をそ れぞれ表す。 図 4中、 分子 A (mo 1 e c u 1 e A) と分子 B (mo 1 e c u 1 e B) とは組成式が同じであり、 互いに近似した構造を有する。 各分子の粒子径 は 1. 2〜1. 3 nmである。 なお、 図 4に示すものは紙面上側から見た図であ り、 12個のチタン原子、 チタン原子間を架橋する酸素原子および 1 8個のイソ プロポキシ基の全ては表されていない。
得られた結晶の分子配列を図 5に示す。 図 5に示すように、 得られた結晶は分 子 Aと分子 Bとが交互に繰り返す構造を有しており、分子 Aと分子 Bとの間には、 溶媒であるトルエン分子 4が取り込まれている。 トルエン分子は、 あたかもパテ の如き役割を担っていると考えられる。
(参考例 1 )
実施例 1で得られたゾルの溶液を、 表面がオゾン処理されたポリエチレンテレ フタレート基板 (10 cmX l 0 cm、 厚み 5 mm) 上に No. 3のバーコ一夕 一を用いて塗布し、 100°Cで 10分間乾燥して、 該基板上に金属酸化物膜を形 成した。 S PM装置(セイコーィンスツルメント社製、 S PA— 400 (S I I)) を用いて該膜表面の形状を測定したところ、その表面の粗さは 5 nm以下であり、 本発明の金属化合物の分散液から形成された金属酸化物膜は平滑であることが分 かった。
実施例 2
実施例 1で得られた反応液から析出した白色結晶を濾取し、 真空乾燥して得ら れた結晶を、 再びトルエン (ナカライテスク社製) に溶解し、 窒素ガス置換した 後、 チタンアルコキシドに対し 0. 25倍モルの水を加えて透明なゾル溶液を調 整した。
得られたゾルの溶液の粒子は、 平均粒子径 5. 2 nmでシャープな粒度分布を 示した。
次いで、得られた反応液のラマンスぺクトルを測定し、その結果を図 6に示す。 0. 25倍モルの水として 170標識水を用い、反応液の 17〇一 NMRを測定し、 その結果を図 7に示す。 産業上の利用可能性:
本発明によれば、 酸や塩基により pHを調整したり、 分散安定化剤を添加しな くとも有機溶媒中で凝集することがない、 新規な結晶構造を有する金属化合物が 提供される。 本発明の金属化合物は、 金属酸化物膜や化学吸着膜の形成用材料、 有機一無機複合八イブリツド材料等として有用であり、 産業上の利用価値は高い といえる。

Claims

請 求 の 範 囲
1 . 1分子内に、 空間的に 6つの金属原子が 5角錐の頂点に位置する配置を 2つ 含む結晶構造を有することを特徴とする金属化合物。
2 . 2つの五角錐が、 該五角錐の 1つの面を向けて対峙していることを特徴とす る請求項 1に記載の金属化合物。
3 . 前記五角錐の 1つの面が、 底面五角形同士であることを特徴とする請求項 2 に記載の金属化合物。
4 . 前記五角錐の面が、 一定の角度を持って対峙していることを特徴とする請求 項 2または 3に記載の金属化合物。
5 . 各金属原子が、 架橋型酸素原子によって架橋されていることを特徴とする請 求項 1〜4のいずれかに記載の金属化合物。
6 . n 3型架橋酸素原子を含むことを特徴とする請求項 1〜 5のいずれかに記載 の金属化合物。
7 . アルコキシ基が結合している金属原子を含むことを特徴とする請求項 1〜 6 のいずれかに記載の金属化合物。
8 . 前記金属原子が、 チタン原子であることを特徴とする請求項 1〜 7のいずれ かに記載の金属化合物。
9 . 金属化合物が、 式 (1 ) : M ( O R ) n (式中、 Mは金属原子を表し、 Rは アルキル基を表し、 nは金属原子の原子価を表す。) で表される金属アルコキシ ド、 この金属アルコキシドの 2種以上を反応させることにより得られる複合アル コキシド、 1種もしくは 2種以上の金属アルコキシドと 1種もしくは 2種以上の 金属塩との反応により得られる複合アルコキシド、 またはこれらの 2種以上の組 み合わせのいずれかの加水分解生成物であることを特徴とする請求項 1〜 8のい ずれかに記載の金属化合物。
1 0 . 請求項 1〜9のいずれかに記載の金属化合物を該金属化合物に対し 0 . 2 5倍モル未満の水で処理して得られることを特徴とする分散質。
PCT/JP2004/007914 2003-06-02 2004-06-01 新規骨格を有する金属化合物 WO2005012215A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005512453A JP4633628B2 (ja) 2003-06-02 2004-06-01 新規骨格を有する金属化合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-156437 2003-06-02
JP2003156437 2003-06-02
JP2003-158012 2003-06-03
JP2003158012 2003-06-03

Publications (1)

Publication Number Publication Date
WO2005012215A1 true WO2005012215A1 (ja) 2005-02-10

Family

ID=34117870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007914 WO2005012215A1 (ja) 2003-06-02 2004-06-01 新規骨格を有する金属化合物

Country Status (2)

Country Link
JP (1) JP4633628B2 (ja)
WO (1) WO2005012215A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069876A (ja) * 2004-09-06 2006-03-16 Nippon Soda Co Ltd 新規骨格を有する金属化合物、その製造方法、分散液及び分散体
CN103917487A (zh) * 2011-09-05 2014-07-09 东曹株式会社 制膜用材料、iv族金属氧化物膜和亚乙烯基二酰胺络合物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452786A (en) * 1987-05-21 1989-02-28 Nippon Soda Co Cyclic titanoxane, production thereof and surface-treating agent
JPH01129032A (ja) * 1987-11-12 1989-05-22 Nippon Soda Co Ltd ラダー状ポリチタノキサンおよびその製造方法
JPH01230406A (ja) * 1988-03-11 1989-09-13 Koroido Res:Kk 金属アルコキシドからの粘性ゾルの製造方法
JP2000086769A (ja) * 1998-09-14 2000-03-28 Matsumoto Seiyaku Kogyo Kk 可溶性固体ポリチタノキサンおよびその誘導体の製造方法
JP2000264893A (ja) * 1999-01-14 2000-09-26 Jsr Corp 金属錯体、金属錯体の製造方法、金属錯体水溶液および金属酸化物

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DAY V.W. ET AL.: "Dodecatitanates: a new family of stable polyoxotitanates", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 115, no. 18, 1993, pages 8469 - 8470, XP002982495 *
SCOLAN EMMANUEL ET AL.: "Surface and bulk characterization of titanium-oxo clusters and nanosized titania particles through 170 solid state NMR", JOURNAL OF MATERIALS CHEMISTRY, vol. 9, no. 10, 1999, pages 2467 - 2474, XP002982496 *
SOLER-ILLIA GALO J. DE A.A. ET AL.: "Design of meso-structured titanium oxo based hybrid organic-inorganic networks", NEW JOURNAL OF CHEMISTRY, vol. 25, no. 1, 2001, pages 156 - 165, XP002982497 *
STEUNOU NATHALIE ET AL.: "Synthesis through an in situ esterification process and characterization of oxo isoproxo titanium clusters", INORGANICA CHIMICA ACTA, vol. 279, no. 2, 1998, pages 144 - 151, XP002982494 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069876A (ja) * 2004-09-06 2006-03-16 Nippon Soda Co Ltd 新規骨格を有する金属化合物、その製造方法、分散液及び分散体
JP4585256B2 (ja) * 2004-09-06 2010-11-24 日本曹達株式会社 チタン化合物の微粒子を含む分散体の製造方法
CN103917487A (zh) * 2011-09-05 2014-07-09 东曹株式会社 制膜用材料、iv族金属氧化物膜和亚乙烯基二酰胺络合物
CN105001254A (zh) * 2011-09-05 2015-10-28 东曹株式会社 制膜用材料、iv族金属氧化物膜的制造方法
US9371452B2 (en) 2011-09-05 2016-06-21 Tosoh Corporation Film-forming material, group IV metal oxide film and vinylenediamide complex
CN105001254B (zh) * 2011-09-05 2018-09-11 东曹株式会社 制膜用材料、iv族金属氧化物膜的制造方法

Also Published As

Publication number Publication date
JP4633628B2 (ja) 2011-02-16
JPWO2005012215A1 (ja) 2006-09-14

Similar Documents

Publication Publication Date Title
Yu et al. Fabrication, patterning, and optical properties of nanocrystalline YVO4: A (A= Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol− gel soft lithography
TWI803806B (zh) 有機錫簇,有機錫簇之溶液,及於高解析度圖案化之應用
Lin et al. Multiform oxide optical materials via the versatile pechini-type sol− gel process: Synthesis and characteristics
Kim et al. Solvent‐free aerosol deposition for highly luminescent and thermally stable perovskite‐ceramic nanocomposite film
Armelao et al. Zirconium and hafnium oxoclusters as molecular building blocks for highly dispersed ZrO 2 or HfO 2 nanoparticles in silica thin films
Pang et al. Fabrication and luminescent properties of rare earths-doped Gd2 (WO4) 3 thin film phosphors by Pechini sol–gel process
Fisher et al. Synthesis of LaPO4: Eu nanostructures using the sol− gel template method
JPH11106935A (ja) 金属酸化物薄膜の製造方法及び金属酸化物薄膜
US20070248812A1 (en) Yttrium oxide composition, method of preparing the same, and method of forming yttrium oxide layer using the same
Pang et al. Luminescent properties of Gd2Ti2O7: Eu3+ phosphor films prepared by sol–gel process
JP5838643B2 (ja) チタン錯体及びそれを含む水系コーティング液
Zeng et al. Crystallization control via a molecular needle knitting strategy for the enhanced emission efficiency and stability of CsPbBr 3 films
WO2005012215A1 (ja) 新規骨格を有する金属化合物
JP4585256B2 (ja) チタン化合物の微粒子を含む分散体の製造方法
JP6366702B2 (ja) 酸化インジウム含有層を製造するための配合物、当該層の製造法及び当該層の使用
KR101737668B1 (ko) 편광 분리 소자의 제조 방법 및 편광 분리 소자
JP5234532B2 (ja) 紫外線照射により表面微構造を制御した金属酸化物薄膜の製造方法及びその金属酸化物薄膜
JP6373373B2 (ja) インジウムアルコキシド化合物を製造するための方法、当該方法に従って製造可能なインジウムアルコキシド化合物及び当該化合物の使用
JP2000016812A (ja) 金属酸化物膜の製造方法
KR101963960B1 (ko) NaYF4 박막, 적층체, 패턴 및 그 제조방법
Maia et al. Synthesis and characterization of beta barium borate thin films obtained from the BaO–B2O3–TiO2 ternary system
JPH11106934A (ja) 金属酸化物薄膜の製造方法及び金属酸化物薄膜
CN110824594B (zh) 一种全二氧化钛一维光子晶体及其制备方法
JP2005153027A (ja) 強誘電体メソ結晶担持薄膜及びその製造方法
JP5614676B2 (ja) アナターゼ型酸化チタン分散液およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005512453

Country of ref document: JP

122 Ep: pct application non-entry in european phase