WO2005008925A9 - 光信号分岐回路及び光通信ネットワーク - Google Patents

光信号分岐回路及び光通信ネットワーク

Info

Publication number
WO2005008925A9
WO2005008925A9 PCT/JP2004/010036 JP2004010036W WO2005008925A9 WO 2005008925 A9 WO2005008925 A9 WO 2005008925A9 JP 2004010036 W JP2004010036 W JP 2004010036W WO 2005008925 A9 WO2005008925 A9 WO 2005008925A9
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
optical
port
optical signal
add
Prior art date
Application number
PCT/JP2004/010036
Other languages
English (en)
French (fr)
Other versions
WO2005008925A1 (ja
Inventor
Takeshi Ota
Original Assignee
Route Lamda Kk
Takeshi Ota
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Route Lamda Kk, Takeshi Ota filed Critical Route Lamda Kk
Priority to JP2005511834A priority Critical patent/JP4429271B2/ja
Publication of WO2005008925A1 publication Critical patent/WO2005008925A1/ja
Publication of WO2005008925A9 publication Critical patent/WO2005008925A9/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0283WDM ring architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0215Architecture aspects
    • H04J14/0216Bidirectional architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0215Architecture aspects
    • H04J14/0219Modular or upgradable architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0247Sharing one wavelength for at least a group of ONUs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/0252Sharing one wavelength for at least a group of ONUs, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/2937In line lens-filtering-lens devices, i.e. elements arranged along a line and mountable in a cylindrical package for compactness, e.g. 3- port device with GRIN lenses sandwiching a single filter operating at normal incidence in a tubular package
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0009Construction using wavelength filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0052Interconnection of switches
    • H04Q2011/006Full mesh

Definitions

  • the present invention relates to a wavelength router and an optical add-drop multiplexer (OADM) used for optical fiber communication. Further, the present invention relates to an optical signal branch circuit used for optical fiber communication and an optical fiber-one communication network.
  • FIG. 44 shows a conventional optical add-drop multiplexer.
  • Fig. 44 (a) shows an optical add-drop multiplexer using an optical fiber grating (FBG) 601 and an optical circulator 602.
  • the optical signal incident from the port 603 is reflected by the optical fiber grating (FBG) 601 only at the wavelength ⁇ i, and the reflected optical signal is guided to the add drop port 605 by the optical circulator 602.
  • Light having a wavelength other than ⁇ i is guided to port 604.
  • FIG. 44 (b) shows an optical drop multiplexer using three-port devices 611 and 612 of a dielectric thin film filter type.
  • the optical signal among the optical signals incident from the port 613 is guided to the drop port 615 by the dielectric thin film filter type three port device 611.
  • the optical signal having the wavelength from the add port 616 is guided to the port 614 by the dielectric thin film filter type three port device 612.
  • FIG. 45 (a) shows the structure of a dielectric thin film filter type three-port device ⁇ ⁇ .
  • the light from the incident port (optical fiber) 621 passes through the collimator 624 and the dielectric thin film filter 625, and the light of the wavelength ⁇ i passes through the collimator 626 to the transmission port (optical fiber) 623.
  • Light other than the wavelength i is reflected by the dielectric thin film filter 625, passes through the collimator 624 again, and is guided to the reflection port (optical fiber) 622.
  • Fig. 46 shows a conventional passive optical fiber communication network (PON passive Qptical Fiber Network).
  • the optical signal from the base station 1210 was split by a passive tree-type splitter (tree power plastic) 1200 and sent to a large number of client stations 1213 via an optical fiber group 1201. Also, optical signals from the client station group 1213 to the base station 1210 were transmitted by time division multiple access (TDM).
  • TDM time division multiple access
  • the branching ratio of the tree-type splitter 1200 was often selected to be about 32.
  • a wavelength router includes, for example, a first input port, a first optical add-drop multiplexer, a first output port, and a second input port. Port, a second optical add-drop multiplexer, and a second output port, for a predetermined number of nodes N, the first add-drop multiplexer is (N-1) A second optical head dropper comprising a set of head means drop means pairs. The multiplexer is characterized by having N-1) sets of add means and drop means.
  • the number of branches is increased by applying an optical add-drop multiplexer (OADM) using a wavelength multiplexing technique to an optical signal branch circuit unit.
  • OADM optical add-drop multiplexer
  • various network topologies including a phonoremesh can be flexibly constructed on a ring-shaped optical fiber communication network by using wavelength multiplexing.
  • problems such as insufficient isolation that occur at that time can be solved.
  • it is possible to reduce the amount of optical fiber used in a passive optical fiber communication network (P ⁇ N).
  • a redundant optical communication network can be realized.
  • FIG. 1 shows the internal configuration of the wavelength router according to the first embodiment of the present invention.
  • FIG. 2 shows a configuration of a double ring optical communication network constructed using four wavelength routers 21 to 24 based on the wavelength router 20.
  • FIG. 3 shows how an optical signal of wavelength ⁇ 1 is routed between the wavelength routers 21 and 22.
  • FIG. 4 is a diagram illustrating a wavelength routing path realized by the present embodiment.
  • the wavelength router is a three-port device with a dielectric thin film filter. And 12 and has a so-called optical add-drop filter structure.
  • the wavelength router ⁇ When used on the optical communication network shown in FIG. 2, the wavelength router ⁇ has the same basic configuration for each node (station) of the optical communication network, but has the wavelength of each dielectric thin film filter type three-port device. However, different wavelength routers 21, 22, 23, 24 are used.
  • FIG. 1 shows an add-drop state of an optical signal of each wavelength in the case of the wavelength router 21.
  • the wavelength router 21 will be described.
  • the dielectric thin-film filter type three-port device 1 extracts the light of wavelength; 11 input from the optical fiber 25a and outputs it to the local port group (corresponding to 31 in FIG. 2).
  • the dielectric thin-film filter type three-port device 2 guides light having a wavelength ⁇ input from the local port group (corresponding to 31 in FIG. 2) to the optical fiber 25b.
  • the dielectric thin-film filter type three-port device 3 extracts the light of wavelength ⁇ 2 input from the optical fiber 25a and outputs the light to the local port group 2 ⁇ (corresponding to 31 in FIG. 2).
  • the dielectric thin film filter type three-port device 4 guides the light of wavelength ⁇ 2 input from the local port group (corresponding to 31 in FIG. 2) to the optical fiber 25b.
  • the dielectric thin-film filter type three-port device 5 extracts the light of wavelength 3 input from the optical fiber 25a and outputs it to the local port group ⁇ (corresponding to 31 in FIG. 2).
  • the dielectric thin-film filter type three-port device 6 guides the light of wavelength ⁇ 3 input from the mouth-portal group K (corresponding to 31 in FIG. 2) to the optical fiber 25b.
  • the dielectric thin-film filter type three-port device 8 extracts the light of wavelength ⁇ 1 input from the optical fiber 26a and outputs the light to the local port group (corresponding to 31 in FIG. 2).
  • the dielectric thin film filter type three-port device 7 guides the light of wavelength ⁇ 1 input from the local port group (corresponding to 31 in FIG. 2) to the optical fiber 26b.
  • the dielectric thin-film filter type three-port device 10 extracts the light of wavelength ⁇ 2 input from the optical fiber 26a and outputs the light to the local port group (corresponding to 31 in FIG. 2).
  • the dielectric thin-film filter type three-port device 9 guides light having a wavelength of 12 input from the local port group ⁇ (corresponding to 31 in FIG. 2) to the optical fiber 26b.
  • the dielectric thin-film filter type three-port device 12 extracts the light of wavelength ⁇ 3 input from the optical fiber 26a and outputs it to the local port group (corresponding to 31 in FIG. 2).
  • the dielectric thin-film filter type three-port device 11 guides the light of wavelength ⁇ 3 input from the local port group (corresponding to 31 in FIG. 2) to the optical fiber 26b.
  • the other wavelength routers 22 to 24 operate in the same manner as the wavelength router 21.
  • the wavelengths handled are different.
  • the wavelength router 22 operates by replacing ⁇ 2 of the wavelength router 21 with ⁇ 4 and replacing 3 with 3 and 5.
  • the wavelength router 23 operates by replacing ⁇ 1 of the wavelength router 21 with ⁇ 1, ⁇ 2 of the wavelength nolator 21 with 15; and ⁇ 3 with ⁇ 6.
  • Wavelength router 24 ⁇ ⁇ ⁇ .
  • FIG. 2 is a diagram showing a configuration of a double-ring optical communication network which is composed of the wavelength routers 21 to 24 and the outer optical fiber 25 to the inner optical fiber 26.
  • the optical signal of the wavelength ⁇ 1 to ⁇ 6 is transmitted clockwise, and on the inner optical fiber 26, the optical signal of the wavelength; 11 to ⁇ 6 is transmitted counterclockwise.
  • the wavelength router 21 the optical signals of the wavelengths 11, ⁇ 2 and ⁇ 3 are added and dropped, and the optical signals of the wavelengths ⁇ 4, ⁇ 5 and ⁇ 6 are bypassed.
  • the optical signals of the wavelengths ⁇ 1, ⁇ 4, and ⁇ 5 are added and dropped, and the optical signals of the wavelengths ⁇ 2, ⁇ 3, and 66 are bypassed.
  • the optical signals of wavelengths 2, ⁇ 4 and ⁇ 6 are added and dropped, and the optical signals of wavelengths ⁇ 1, ⁇ 3 and ⁇ 5 are bypassed.
  • the optical signals of wavelengths 3, ⁇ 5, and 6 are added and dropped, and the optical signals of wavelengths 1, 1, 2, and ⁇ 4 are bypassed.
  • the wavelength routers 21, 22, 23, and 24 are provided with local ports 31, 32, 33, and 34, respectively, and these ports are provided with switches (tree-like architectures). Or routers) 41, 42, 43, and 44 are connected correspondingly. These switches (or routers) 41, 42, 43, and 44 have detachable optical transceivers 45 mounted thereon.
  • An example of the detachable optical transceiver 45 is an optical transceiver called GBIC or SFP. These optical transceivers are designed to output optical signals with wavelengths compatible with CWDM (low density wavelength multiplexing) or DWDM (high density wavelength multiplexing).
  • the optical transceivers 45 can individually output different wavelengths, the optical transceivers 45 can be switched so that the wavelength corresponds to each of the dielectric thin film filter type three-port devices in the wavelength router. Or router) 41, 42, 43, and 44.
  • a detachable optical although a transceiver is used, a wavelength conversion mechanism may be interposed between the switches (or routers) 41, 42, 43, and 44 and the corresponding wavelength routers 21, 22, 23, and 24.
  • the specific wavelength of each optical signal is, for example, from among the CWDM wavelengths defined by the ITU, ⁇ 1: 1490, ⁇ 2: 1510, ⁇ 3: 1530, ⁇ 4: 1550. ,: 5: 1570 nm, 6: 1590 nm, and the like.
  • this wavelength could be any other combination of wavelengths, for example, six from the medium-strength C-band 100 GHz grid in the DWDM wavelength band defined by the ITU.
  • the two wavelengths from the local port 31 of the wavelength router 21; the optical signal of 11 is one of the wavelengths ( ⁇ la) propagating clockwise on the outer optical fiber 25 and The other system ( ⁇ lc) propagates counterclockwise on the inner optical fiber 26 and bypasses the wavelength routers 24 and 23 in that order, again reaching the wavelength router 22, and both to the local port 32. Is output.
  • the two wavelengths from the local port 32 of the wavelength router 22; 11 The optical signal of 1 (one lb) propagates counterclockwise on the inner peripheral optical fiber 26 to reach the wavelength router 21.
  • the other system (e) propagates on the outer optical fiber 25, bypasses the wavelength routers 23 and 24 in that order, and reaches the wavelength router 21 again, and outputs both to the local port 31. That is, two full-duplex signal paths, clockwise and counterclockwise, are formed between the wavelength router 21 and the wavelength router 22 by the optical signal of the wavelength ⁇ 1. For this reason, even if a single cut of the optical fiber occurs at some point in the double-ring optical fiber communication network shown in Fig. 3, either the clockwise or counterclockwise system survives and the communication Network reliability can be improved.
  • FIG. 4 shows a wavelength routing path formed by the double ring optical fiber communication network of the present embodiment shown in FIG.
  • the double ring optical fiber communication network of the present embodiment forms a full mesh and redundant wavelength routing path indicated by ⁇ in FIG. 4 between the switches (or routers) 41, 42, 43, and 44.
  • the wavelength routing path 51 is a full-duplex wavelength routing path composed of a set of optical signals having the wavelengths ⁇ la and ⁇ lb shown in FIG.
  • the wavelength routing path 52 is a full-duplex wavelength routing path composed of optical signals having wavelengths ⁇ lc and ⁇ Id shown in FIG.
  • the wavelength routing path 50 has a wavelength ⁇ 1 between the switches 41 and 42, and has a wavelength ⁇ 1 between the switches 41 and 43. At wavelength ⁇ 2, between switches 41 and 44 at wavelength ⁇ 3, between switches 42 and 43 at wavelength 4, between switch 42 and switch 44 at wavelength ⁇ 5, and between switch 43 and switch 44. It is shown in Fig. 4 that they are connected at wavelength ⁇ 6.
  • each path corresponds to each wavelength.
  • each route is provided with clockwise and counterclockwise redundant routes.
  • the full-mesh communication path is a path with high communication efficiency, and each path is redundant, so that one path can be secured even in the event of an accident such as physical disconnection of optical fiber.
  • each wavelength router optical signals other than the wavelength router being added / dropped are optically bypassed, so that the processing of these bypassed optical signals is performed by the switches 41 to 44. It reduces the processing power of switches that do not need to be performed.
  • each node wavelength router
  • the hardware size of the switch is half that of the case where all of these are processed electrically. Will be.
  • Embodiment 2 of the present invention will be described with reference to FIGS. 5 to 7.
  • the power S was used to construct a double ring using two optical fibers.
  • the dual ring was constructed by performing bidirectional transmission of different wavelengths on one optical fiber. are doing.
  • FIG. 5 shows the internal configuration of the wavelength router IS according to the second embodiment of the present invention.
  • FIG. 6 shows the configuration of a double-ring optical communication network constructed using three wavelength routers 71 to 73 based on the wavelength router 70.
  • FIG. 7 is a diagram illustrating a wavelength routing path realized by the present embodiment.
  • the wavelength router IS is made up of a dielectric thin film filter type three-port device 61 to 68 and has a so-called optical add-drop filter structure.
  • the wavelength router ⁇ is used on the optical communication network shown in Fig. 2, the basic configuration is the same for each node (station) of the optical communication network, but the wavelength of each dielectric thin film filter type three-port device is the same. Different wavelength routers 71, 72 and 73 are used.
  • Fig. 5 shows the state of add-drop of the optical signal of each wavelength in the case of the wavelength router 71. Has been.
  • the wavelength router 71 will be described.
  • the dielectric thin-film filter type three-port device 71 outputs an optical signal of wavelength ⁇ 1 from the local port side to the optical fiber 75a side.
  • the dielectric thin film filter type three-port device 62 extracts the light of wavelength ⁇ 2 input from the optical fiber 75a and outputs the light to the local side.
  • a set of full-duplex optical signal transmission lines is formed by optical signals of wavelengths ⁇ 1 and ⁇ 2.
  • the dielectric thin-film filter type three-port device 63 outputs light of wavelength ⁇ 1 from the local port side to the optical fiber 75b side.
  • the dielectric thin film filter type three-port device 64 outputs the light of wavelength ⁇ 2 input from the optical fiber 75b to the local port side.
  • the dielectric thin film filter type three-port device 65 outputs light of wavelength ⁇ 3 from the local port side to the optical fiber 75a.
  • the dielectric thin-film filter type three-port device 66 outputs light having a wavelength of 14 from the optical fiber 75a side to the local port side.
  • the thin-film three-port device 67 outputs the light of wavelength ⁇ 3 from the local port side to the optical fiber 75b.
  • the thin film three-port device 68 outputs light of wavelength ⁇ 4 from the optical fire 75b to the local port.
  • the other wavelength routers 72 and 73 operate similarly to the wavelength router 71.
  • the wavelengths handled are different from each other as shown in FIG.
  • FIG. 6 is a diagram showing a configuration of a ring-shaped optical communication network composed of the wavelength routers 71 to 73 and the optical fiber 75.
  • Switches (or routers) 81, 82, and 83 having a tree-like architecture are connected to the wavelength routers 71, 72, and 73, respectively.
  • Switches 81, 82, and 83 have detachable optical transceivers 85 mounted thereon.
  • An example of the detachable optical transceiver 85 is an optical transceiver called GBIC or SFP. These optical transceivers are designed to output optical signals of wavelengths compatible with CWDM (low-density wavelength division multiplexing) and DWDM (high-density wavelength division multiplexing).
  • two systems of optical signals ⁇ la and ⁇ lb having the wavelength ⁇ 1 are sent to the wavelength router 72.
  • two systems of optical signals ⁇ 2a and ⁇ 2b having a wavelength ⁇ 2 are sent to the wavelength router 71.
  • One full two at wavelength ⁇ la and wavelength ⁇ 2a A double communication path is formed, and another full-duplex communication path is formed by the wavelength ⁇ lb and the wavelength 2b.
  • two redundant communication paths (clockwise and counterclockwise) are formed.
  • FIG. 7 shows a wavelength routing path formed by the ring-shaped optical fiber communication network of the present embodiment shown in FIG.
  • a full-mesh and redundant wavelength routing path shown by in FIG. 8 is formed between the switches 81, 82, and 83.
  • FIG. 8 shows the internal configuration of the wavelength router dish according to the third embodiment of the present invention.
  • a high-density wavelength division multiplexing (DWDM) is used and an optical fiber amplifier is provided inside.
  • the wavelength router 100 of this embodiment is composed of optical add-drop multiplexers (OADMs) 101 and 102 and enormous beam doped fiber optical amplifiers (EDFAs) 103 and 104.
  • OADMs optical add-drop multiplexers
  • EDFAs beam doped fiber optical amplifiers
  • OADM optical add-drop multiplexers
  • a dielectric thin film filter type three-port device group (not shown) is incorporated, and a predetermined wavelength is added or added (added). Drop) power to do S.
  • the optical signal from the optical fiber 107a is first amplified by an erbium-doped fiber optical amplifier (EDFA) 103, and then an add-drop of a predetermined optical signal is performed by an optical add-drop multiplexer 1 (OADM) 101. Thereafter, the signal is output to the optical fiber 107b.
  • the optical signal from the optical fiber 108a is first amplified by an erbium-doped fiber optical amplifier (EDFA) 104, and then added to a predetermined optical signal by an optical add-drop multiplexer (OADM) 102. Thereafter, the light is output to the optical fiber 108b.
  • EDFA erbium-doped fiber optical amplifier
  • OADM optical add-drop multiplexer
  • the local port groups 105 and 106 are connected to a switch (not shown).
  • An optical signal connected to another wavelength router is input / output to / from the port group 105 on the left side.
  • the optical signal extracted (dropped) from the optical signals input from the optical fiber 107a is sent to the oral-side port group 105.
  • An optical signal group input to a switch port (not shown) to the local port group 105 is added (added) to the optical signal transmitted to the optical fiber 108b.
  • An optical signal group connected to another wavelength router is input / output to / from the local port group 106 in a counterclockwise direction. Extracted from the optical signal input from the optical fiber 108a (the The dropped optical signal is sent to the local port group 106.
  • the optical signal group input from the switch side, not shown in the local port group 106 is added (added) to the optical signal transmitted to the optical fiber 107b side.
  • FIG. 9 shows a configuration of a double ring optical communication network formed using the wavelength router of the present embodiment.
  • This double ring optical communication network comprises wavelength routers 111, 118, an outer optical fiber 121, and an inner optical fiber 122.
  • the optical signal is transmitted clockwise in the outer optical fiber 121, and the optical signal is transmitted counterclockwise in the inner optical fiber 122.
  • 28 types of optical signals having wavelengths of ⁇ 1 to ⁇ 28 are used, and a redundant full-duplex communication path of 28 paths is formed in a full mesh between the wavelength routers 111 and 118. ing.
  • a total of 28 types of wavelengths are used. At each node (wavelength router), only 7 wavelengths unique to each node are added and dropped, and the remaining 21 wavelengths are bypassed. In other words, the hardware size of the switches and routers connected to the wavelength router is 25% smaller than when all of this is processed electrically.
  • the ⁇ paths can be realized with ⁇ wavelengths if two optical fibers are used as shown in FIGS. 2 and 9, and one optical fiber can be realized as shown in FIG. If the communication path is formed by changing the upstream and downstream wavelengths, 20 wavelengths are required.
  • ⁇ 1 is a vector having eight elements, and its elements ⁇ 1 to ⁇ 7 indicate wavelengths forming a communication path from node 1 to another node.
  • the element ⁇ of ⁇ 1 is the “wavelength” that indicates the communication path from node 1 to node 1, but since it does not actually need to be provided, ⁇ , a concept representing an empty set, is introduced. If the communication path between node 1 and node 2 is formed with the wavelength ⁇ 1, the wavelength; 11 is always included in the vector path indicating the communication path from node 2 to other nodes. Is [ ⁇ 1, ⁇ , ⁇ 8, ⁇ 9, ⁇ 10, ⁇ 11, ⁇ 12, ⁇ 13]. That is, the matrix of the equation (2) is a transposed matrix.
  • the wavelength used as the communication path from node 2 to node 1 is the communication path from node 1 to node 2. This is because it must match the wavelength used as the path.
  • forming a communication path from node 1 to node 2 with a wavelength of 11 means that the wavelength of the optical signal transmitted from node 1 is ⁇ 1, and the optical signal of ⁇ 1 is received by node 2. Which indicates that.
  • the empty set is included.
  • the wavelength represented by the force-empty set does not need to be implemented. Therefore, the implemented wavelength is a full mesh between N nodes.
  • the wavelength router in which N is provided only needs to implement N-1 wavelengths. Also, since different wavelengths are mounted on each node, N types of optical add-drop multiplexers corresponding to ⁇ 1 to ⁇ are mounted.
  • a network may be configured without matching the wavelength of the communication path from node 1 to node 2 with the wavelength of the communication path from node 2 to node 1. In this case, the number of wavelengths used is doubled, but there is an advantage that the wavelength arrangement becomes free.
  • a wavelength arrangement as shown in Expression (3) can be adopted.
  • 56 wavelengths are required to form a full mesh between nodes.
  • a full mesh is formed by providing 2M wavelengths between N nodes.
  • M is a value represented by the equation (1).
  • the wavelength arrangement that can be washed by the equations (5) and (6) can also be used when bidirectional transmission is realized by changing the upstream and downstream wavelengths with one optical fiber.
  • wavelengths are arranged in the optical add-drop multiplexer 1 so as to realize a full mesh communication path, and some of the communication paths are not used. Since a full mesh has all possible paths between N nodes, a full mesh To realize a star topology by not using some of the routes.
  • an optical signal for clockwise and an optical signal for counterclockwise are further wavelength-multiplexed to be realized by one optical fiber.
  • an erbium-doped fiber optical amplifier 103 uses a C-band (1530_1560 nm) optical amplifier
  • an erbium-doped fiber optical amplifier 10L uses an L-band (1565_1605 nm) optical amplifier
  • clockwise and counterclockwise signals This is an embodiment in which a single optical fiber is multiplexed by a wavelength multiplexer (not shown).
  • the input port 107a of the erbium-doped fiber optical amplifier 103 and the output port 108b of the optical add-drop multiplexer 102 are multiplexed by a wavelength multiplexer (not shown), and similarly, the input port 108a of the erbium-doped fiber optical amplifier 104
  • the output port 107b of the optical add-drop multiplexer 101 may be multiplexed with a wavelength multiplexer (not shown).
  • the same C-band erbium-doped fiber optical amplifier may be used to divide the C-band into a short wavelength side and a long wavelength side.
  • the force S that realizes the optical add-drop multiplexer by the dielectric thin film filter type three-port device is S, which is another means such as a fiber Bragg grating filter (FBG) and an optical circulator. Can be combined to realize an optical add-drop multiplexer.
  • FBG fiber Bragg grating filter
  • the optical amplifier is not limited to the erbium-doped fiber optical amplifier, but may be another rare-earth doped fiber optical amplifier, a Raman optical amplifier, a semiconductor laser optical amplifier, a rare-earth-doped planar waveguide optical amplifier, or the like.
  • FIG. 10 shows the internal structure of the wavelength router according to the fourth embodiment of the present invention.
  • This embodiment is a modification of the wavelength router of FIG.
  • FIG. 10A shows the case of the third embodiment, in which an erbium-doped optical fiber amplifier 103 is arranged in front of an optical add-drop multiplexer 101 (OADM) 101 as a preamplifier.
  • OADM optical add-drop multiplexer 101
  • an erbium-doped optical fiber amplifier 105 is disposed as a boost amplifier after the optical add-drop multiplexer 1 (OADM) 101.
  • Figure 10 (c) The erbium-doped optical fiber amplifier 103 is arranged as a preamplifier, and the erbium-doped optical fiber amplifier 105 is arranged as a boost amplifier.
  • FIGS. 10 (a), (b), and (c) are all operable. Considering the isolation characteristics of the optical add-drop multiplexer (OADM) 101, FIGS. Masley. From the viewpoint of long-distance transmission characteristics, FIG. 10 (c) in which a preamplifier and a booster amplifier are arranged is most desirable. On the other hand, Fig. 10 (a) or (b) is desirable from the viewpoint of cost.
  • OADM optical add-drop multiplexer
  • An optical add-drop multiplexer (OADM) 101 is provided with a dielectric thin-film filter type three-port device 131 and 132.
  • the optical signal 133 from the port 136 side is added by the dielectric thin-film filter type three-port device 131, and the optical signal 134 is dropped by the dielectric thin-film filter type three-port device 131.
  • FIG. 1 An optical add-drop multiplexer (OADM) 101 is provided with a dielectric thin-film filter type three-port device 131 and 132.
  • the optical signal 133 from the port 136 side is added by the dielectric thin-film filter type three-port device 131, and the optical signal 134 is dropped by the dielectric thin-film filter type three-port device 131.
  • the optical signal 134 when there is no erbium-doped optical fiber amplifier in all stages of the optical add-drop multiplexer (OADM) 101, the optical signal 134 may be attenuated due to long-distance transmission.
  • the added optical signal 133 is strong.
  • the optical signal 134 is capable of attenuating up to about 25 dBm.
  • the optical signal 133 is about OdBm. Then, the amount of light 135 that the optical signal 133 leaks from the dielectric thin film filter type three-port device 132 to the port 137 may not be ignored.
  • isolation 138 The force at which the dielectric thin-film filter-type three-port device does not leak light signals of other wavelengths is referred to as isolation 138. This value is usually about 25 to 30 dB. Here, the isolation of 25 dB means that the leakage light power is attenuated to S-25 dB. In the case of “isolation”, “minus” is usually expressed as “saving”.
  • the received optical signal 134 dropped to the port 137 is _25dBm
  • the amount of leaked light 135 reaches -30dB
  • the difference is only 5dB.
  • the difference between the signal component (in this case, the received signal 134) and the noise signal (in this case, the amount of leakage 135) is required to be at least 20 dB, and preferably 25 dB. Unable to receive (see Figure 11 (b)).
  • the signal attenuated from the distant node by passing through the optical add-drop multiplexer in a number of stages When receiving a signal, strong signals from nearby nodes can cause crosstalk.
  • FIG. 10 (a) As shown in Fig. 10 (a), when the erbium-doped optical fiber amplifier 103 is arranged in all stages of the optical add-drop multiplexer ( ⁇ ADM) 101, the received optical signal dropped is also close to Od Bm. Therefore, the problem of a decrease in the signal-to-noise ratio as described above does not occur. Therefore, from this viewpoint, a configuration as shown in FIG. 10 (a) or FIG. 10 (c) is desirable. In other words, if the configuration shown in Fig. 10 (a) or 10 (c) is used, an optical add-drop multiplexer (OAD M) with an isolation value of 25 and about 30dB can be used. There is no need to use an optical add-drop multiplexer (OADM) with specially enhanced isolation.
  • OAD M optical add-drop multiplexer
  • FIG. 12 shows a case where the gain control mechanism of the erbium-doped fiber optical amplifier 103 is further attached to the present embodiment.
  • a part of an optical signal dropped from a port 141 of an optical add-drop multiplexer (OADM) 101 is taken out by an optical fiber coupler 142 and inputted to a port 143 of an erbium-doped fiber optical amplifier 103.
  • the erbium-doped fiber optical amplifier 103 changes the gain according to the input optical signal at the port 143, and operates to keep the optical signal intensity from the port 143 substantially constant.
  • OADM optical add-drop multiplexer
  • the branch ratio of the optical fiber coupler 142 is preferably selected such that the branch toward the port 143 is about 1/10 to 1/100.
  • a normal optical signal may be used, but it is particularly preferable to use an optical signal of a monitor channel (or a supervisor channel) for network monitoring.
  • a light amount detection mechanism is provided in the erbium-doped fiber optical amplifier 103.
  • a light amount detection mechanism to be connected to the optical add-drop multiplexer 1 (OADM) 101 has a light amount detection mechanism.
  • the detection result may be sent to the erbium-doped fiber optical amplifier 103 in the form of an electric signal to perform gain control.
  • This method has an advantage that the light amount loss is small, though the structure of the optical transceiver is complicated.
  • FIG. 14 shows a wavelength router (an optical add-drop multiplexer) according to a fifth embodiment of the present invention.
  • the following three-port device with a duplicate dielectric thin film filter was used. Is a major feature.
  • FIG. 13 shows such a duplicate dielectric thin film filter type three-port device! It is a figure which shows the structure of ⁇ .
  • the entrance port 151, reflection port 152, and transmission port 153 form one dielectric thin-film filter type three-port device, and the entrance port 161, reflection port 162, and transmission port 163 form another dielectric three-port device.
  • the collimator lenses 154 and 156 and the dielectric thin film filter 155 are shared. Since the dielectric thin film filter is shared, the transmission wavelengths of the two dielectric thin film filter type three-port devices formed as described above are the same.
  • the wavelength router ⁇ shown in Fig. 1 uses a large number of dielectric thin film filter type three-port devices having the same wavelength.
  • a dielectric thin film filter type three port device 1, 2, 7, and 8 has a wavelength of 11; Therefore, by using a three-port device with a duplicated dielectric thin-film filter 150 as shown in Fig. 13 for these three-port dielectric thin-film filters, the number of actually used dielectric thin-film filters and collimator lenses can be reduced. And thus reduce costs.
  • a dielectric thin film filter type three-port device may be provided in duplicate at a port for dropping an optical signal.
  • Fig. 14 shows a configuration in which such a double filter configuration is provided at the drop port of the wavelength router m in Fig. 5. If the isolation of one filter is 25 dB, the isolation will be doubled to 50 dB if two filters are stacked. Therefore, the lack of isolation can be eliminated.
  • the dielectric thin film filter type three-port device 62a and 62b by the duplicate dielectric thin film filter type three port device shown in FIG. In this way, the number of dielectric thin-film filters and collimator lenses actually used can be reduced, and the cost can be reduced.
  • the dielectric thin-film filter type three-port devices 64a and 64b, the dielectric thin-film filter type three-port devices 66a and 66b, and the dielectric thin-film filter type three-port devices 68a and 68b are each a duplicate type. It can be constituted by an electric thin film filter type three-port device.
  • the dielectric thin-film filter type three-port devices 61 and 63 and the dielectric thin-film filter type three-port devices 65 and 67 can be replaced with a duplex dielectric thin-film filter type three-port device in pairs.
  • FIG. 15 (a) shows a double-pass type dielectric thin-film filter three-port device. This is because the light from the entrance port 181 is guided to the dielectric thin film filter 185 via the collimator 184, the reflected light is guided to the reflection port 182, the transmitted light is reflected by the mirror 186, and then the dielectric thin film filter This is a method of transmitting the transmitted light through the collimator 184 to the transmission port 183 via the collimator 184. Since the transmitted light passes through the dielectric thin film filter twice (double pass), the isolation is doubled. Further, there is a feature that only one collimator lens is required, and all of the entrance port, the reflection port, and the transmission port can be provided on the same side with respect to the dielectric thin film filter 185.
  • FIG. 15 (b) further shows a three-port device of a double-pass dielectric film filter having a duplicate structure according to a sixth embodiment of the present invention! Indicates ⁇ .
  • the input port 181, the reflection port 182, and the transmission port 183 form one double-pass dielectric thin-film filter
  • the input port 191, reflection port 192, and transmission port 193 form another double-pass dielectric thin-film filter.
  • Forming a three-port device Since the two double-pass type dielectric thin film filter three-port devices share the collimator lens 184, the dielectric thin film filter 185, and the mirror 186, the number of parts is reduced, and the cost can be reduced.
  • the double-pass type dielectric thin-film filter filter three-port device can solve the problem of insufficient isolation as shown in Fig. 11 by using it as a port for dropping an optical signal of an optical add-drop multiplexer. it can.
  • the double-pass type dielectric thin-film filter three-port device having a duplicate structure can replace the dielectric thin-film filter three-port devices 62 and 64 in FIG. 5, for example.
  • An optical add-drop multiplexer uses a plurality of dielectric thin film filter three-port devices of the same wavelength to add and drop an optical signal of the same wavelength.
  • the use of a duplex dielectric thin film filter three-port device can reduce the number of components and the cost.
  • FIG. 16 shows an embodiment plate in which the wavelength router (optical add-drop multiplexer 1) US of FIG. 14 is mounted on a box. Since it is necessary to use a port using a two-stage filter as a drop port, the misuse of the drop port and the add port must be prevented. Therefore, in the present embodiment, a drawing 201 showing the wavelength routing path is provided on the upper surface of the box, and each port (receptacle) 210 to 219 on the front face 202 of the box is provided with a symbol indicating the distinction between wavelength and transmission / reception, and the distinction between clockwise and counterclockwise. Is displayed. Each symbol on the front 202 of the box represents the wavelength as ⁇ 1, e2, e3, ⁇ 4, ⁇ for transmission, Rx for reception, Right for clockwise, Left for counterclockwise, and C for common port. I have.
  • Receptacle 210 is a counterclockwise common port
  • receptacle 211 is a transmission port of counterclockwise wavelength ⁇ 1
  • receptacle 212 is a reception port of counterclockwise wavelength 2
  • receptacle 213 is a transmission port of counterclockwise wavelength 3.
  • the receptacle 214 is a counterclockwise wavelength 4 receiving port.
  • the receptacle 215 is a clockwise transmission port of the wavelength ⁇ 1
  • the receptacle 216 is a clockwise reception port of the wavelength ⁇ 2
  • the receptacle 217 is a transmission port of the clockwise wavelength ⁇ 3
  • the receptacle 218 is a clockwise wavelength;
  • the receiving port 14 and the receptacle 219 are clockwise common ports.
  • FIG. 17 shows another embodiment ⁇ in which the wavelength router (optical add-drop multiplexer 1) US of FIG. 14 is mounted on a box.
  • Another drawing 221 showing the wavelength routing path is provided on the top of the box.
  • This drawing shows how the own station (Station_l) and other stations (Station_2, Statio n-3) are routed. From the user's point of view, the logical connection form may be more important than the physical connection of each station, and the embodiment of Fig. 17 is useful in such a case. Display method.
  • the symbols on the front face 222 of the box represent wavelengths as ⁇ 1, 22, 3, 44, ⁇ for transmission, Rx for reception, Right for clockwise, Right for left, and C for common port.
  • the display of Station-2 and Station_3 indicates the destination of the communication path.
  • the connection of each receptacle provided on the box front 222 is different from that in FIG.
  • Receptacle 230 is a counterclockwise common port
  • receptacle 231 is a transmission port of wavelength ⁇ 1, which is counterclockwise directed toward Station-2
  • receptacle 232 is a counterclockwise reception port of wavelength ⁇ 2, which receives from Station-2.
  • Receptacle 233 is a transmission port having a wavelength of ⁇ 1 directed clockwise to Station-2, and receptacle 234 is a reception port of a wavelength ⁇ 2 received clockwise from Station-2.
  • Receptacle 235 turns counterclockwise to Station-3.
  • Direction toward 3 Reception port of wavelength ⁇ 3, receptacle 238 is a reception port of wavelength ⁇ 4 received from clockwise Station-3, and receptacle 239 is a clockwise common port.
  • FIG. 18 shows a case where the wavelength router (optical add-drop multiplexer 1) US of FIG. 14 is implemented as a patch code ⁇ .
  • the patch path is shown on the upper surface 241 of the main unit.
  • An optical connector 242 is provided at the end of the optical fiber cord 244 coming out of the patch cord, and a tag 243 is provided near the optical connector 242.
  • Each tag has a wavelength, a role, a communication path, etc. of each optical connector. It is shown.
  • FIG. 19 shows an optical fiber communication network in which bidirectional transmission is realized on one optical fiber 270 by changing the upstream wavelength and the downstream wavelength.
  • the wavelength multiplexer ⁇ ⁇ includes a dielectric thin film filter type three-port device 251 to 254.
  • the wavelength multiplexer ⁇ includes a dielectric thin film filter type three-port device 261 and 264.
  • An optical signal of wavelength ⁇ 1 for transmission is added to port 255 of the wavelength multiplexer ⁇ , and an optical signal of wavelength 2 for transmission is added to port 256.
  • the optical signals multiplexed by the dielectric thin film filter type three-port devices 251 and 252 are sent to the common port 259, the optical fiber 270, and the common port 269 of the wavelength multiplexer.
  • the multiplexed optical signal is applied to the dielectric thin film filter type three-port device 261 and 261 in the wavelength multiplexer ⁇ .
  • the optical signals are separated into the original wavelength 1 and 2 optical signals, respectively, and output to ports 265 and 266, respectively.
  • An optical signal of wavelength 3 for transmission is added to port 267 of the wavelength multiplexer, and an optical signal of wavelength 14 for transmission is added to port 268.
  • the optical signals multiplexed by the dielectric thin film filter type three-port devices 263 and 264 are sent to the common port 269, the optical fiber 270, and the common port 259 of the wavelength multiplexer.
  • the multiplexed optical signal is separated into the optical signals of the original wavelengths of 13 and 14 by the dielectric thin film filter type three-port devices 253 and 254 in the wavelength multiplexer, respectively. And 258 are output.
  • wavelength multiplexers 250 to 260 can be regarded as wavelength routers having the simplest functions. This is because point-to-point wavelength routing is performed.
  • the wavelength multiplexer 250 it is meaningful to arrange the dielectric thin film filter type three-port devices 251 to 252 for transmission at a position near the common port 259. This will be described with reference to FIG.
  • port 281 is an input port
  • port 282 is a reflection port
  • port 283 is a transmission port.
  • the ports, the collimator 284, the dielectric thin film filter 285, and the collimator 285 constitute a dielectric thin film filter type three-port device.
  • the dielectric thin film filter type three-port device it is known that when a transmission optical signal is incident from the transmission port 283 side, crosstalk hardly occurs on the reflection port 282 side. This is because, among the light incident from the transmission port 283 side, a component that causes crosstalk is reflected in the direction 287 side, and almost no component propagates in the direction 288 side coupled to the reflection port 282.
  • FIG. 19 also shows a case where an optical connector or the like is provided in the immediate vicinity of the entrance port 281 and large reflection (reflectance caused by Fresnel reflection at the air-glass interface, so-called _13 dB reflection) occurs. Is effective. It is known that most of the Fresnel reflected light from the vicinity of the incident port 281 is guided to the transmission port 283, and the amount of light reflected toward the direction 288 attenuates to -15 dB to 120 dB with respect to the incident light. The amount of this attenuation is It will be added to the isolation of the membrane filter type three port device 253, 254, 261 or 262. Therefore, an effective isolation of about 40 to 50 dB in total can be realized, and the problem of crosstalk can be eliminated.
  • the transmitting dielectric thin-film filter type three-port devices 251 to 252 are arranged near the common port 259.
  • bidirectional transmission using different wavelengths for upstream and downstream can be realized on one optical fiber without causing the problem of insufficient isolation as described in FIG.
  • a two-channel full-duplex communication path is realized using four wavelengths.
  • One-channel full-duplex communication path is realized using two wavelengths, and four channels are realized using eight wavelengths.
  • a full-duplex communication path for the channel can also be realized.
  • the three-port dielectric thin film filter device for transmission must be placed closer to the common port than the three-port dielectric thin film filter device for reception.
  • FIG. 21 shows an example in which the wavelength router (wavelength multiplexer) according to the eighth embodiment of the present invention is mounted on a box and a box.
  • an isolation problem may occur unless the transmission port and the reception port are distinguished from each other to prevent misuse. Therefore, drawings 291 and 301 showing wavelength routing paths are provided on the upper surfaces of the boxes 290 and, respectively. The wavelength routing paths shown in the drawings 291 and 301 are different from the actual connection of the dielectric thin film filter type three-port device shown in FIG.
  • Each port (receptacle) 255 to 258 on the front face 292 of the box corresponds to the port shown in FIG. 19 (a).
  • channels (full-duplex communication path) with Tx for transmission and Rx for reception are shown as CH1 and CH2, respectively.
  • the wavelengths are expressed as ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4.
  • the common port is represented as common port C.
  • the ports (receptacles) 265 to 268 on the front surface 302 of the box plate correspond to the ports in Fig. 19 (b).
  • the transmission is indicated by ⁇
  • the reception is indicated by Rx
  • the channel full-duplex communication path
  • CH1 and CH2 respectively.
  • the wavelengths are expressed as ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4.
  • the common port is represented as common port C.
  • the wavelength multiplexing device is mounted on the box. It is safe to implement it as a card.
  • FIG. 22 shows a wavelength router (optical add-drop multiplexer 1) according to Embodiment 9 of the present invention.
  • a method for compensating for the lack of isolation by arranging the dielectric thin-film filter type three-port devices 321, 322, 327, and 328 for transmission described in the eighth embodiment near the output port and devising a wavelength arrangement.
  • the wavelength routers 311 to 313 are realized without using a double filter or a double-pass structure.
  • the dielectric thin film filter type three-port devices 323, 324, 235, and 326 are used for reception.
  • Reference numeral 315 indicates an optical fiber, and reference numerals 331 to 338 indicate at-drop ports.
  • the wavelength router 311 uses wavelengths ⁇ 1, ⁇ 2, e4, and e5.
  • the wavelength router 312 uses the wavelengths ⁇ 1, ⁇ 2, e 7, and e 8 to check.
  • the wavelength nolator 313 uses wavelengths 4, 4, 5, ⁇ 7, and ⁇ 8.
  • the paired wavelengths as the transmission wavelength and the reception wavelength, respectively, and using the technique described in the eighth embodiment for the wavelength filter, the lack of isolation between the paired wavelengths is first compensated. Insufficient isolation is further compensated for by leaving one wavelength between the paired wavelengths.
  • a problem of crosstalk 340 as shown in FIG. 23 occurs, for example.
  • the optical signal of wavelength ⁇ 2 is dropped on the wavelength router 311, and the light of wavelength 3 is bypassed.
  • an optical signal having a wavelength of 12 is greatly attenuated from a distant node, and the optical intensity thereof is, for example, -30 dBm.
  • the optical signal of the wavelength ⁇ 3 is from the neighboring node and hardly attenuated and has an OdBm intensity. Since the isolation between wavelengths ⁇ 2 and ⁇ 3 is only about 3 OdB if it is a one-stage filter, the crosstalk from wavelength ⁇ 3 and the optical signal intensity at wavelength 2 are almost equal, and reception should be straight. Can not.
  • a three-port dielectric thin film filter device for low-density wavelength division multiplexing has There is only about 25 to 30 dB of isolation, but for non-adjacent wavelengths there is about 50 to 60 dB of isolation. Therefore, if the wavelength 3 is not used as in the present embodiment, the wavelengths bypassing the wavelength router 311 are all non-adjacent wavelengths, so that the above problem does not occur.
  • the wavelength router in Fig. 22 can be used to configure a full mesh communication path on a ring-shaped optical fiber communication network as shown in Figs. 6 and 7. Further, by combining with the wavelength router shown in FIG. 24, a star-type communication path can be formed on a ring-shaped optical fiber communication network.
  • Fig. 24 shows a wavelength router ⁇ for forming a star-type communication path.
  • the transmitting dielectric thin film filter type three-port devices 361 and 364 are arranged on the outside, and the receiving dielectric thin film filter type three-port devices 362 and 363 are arranged on the inside.
  • Reference numeral 355 indicates an optical fiber, and reference numerals 365 to 368 indicate an add-drop port.
  • the wavelength router 351 uses the wavelengths ⁇ 1, ⁇ 2.
  • the wavelength router 352 uses wavelengths ⁇ 4 and ⁇ 5.
  • the wavelength nolator 353 uses wavelengths ⁇ 7 and ⁇ 8.
  • the wavelength router 354 uses wavelengths ⁇ 7 and ⁇ 8, but the wavelength for transmission and the wavelength for reception are opposite to those of the wavelength router 353.
  • FIG. 25 shows an optical communication network formed by the wavelength routers 311, 351, 352, 353, and 354.
  • One optical fin 361 connects the wavelength nolators 311, 351, 352, 353, and 354.
  • the wavelength routers 351 and 352 around the wavelength router 311 are connected in a star type. Redundant full-duplex communication paths 362 and 363 are formed between the wavelength router 311 and the wavelength routers 351 and 352, respectively.
  • a full-duplex communication path 364 at the point "one point" is formed.
  • the network consisting of the wavelength nolators 311, 351 and 352 and the network consisting of the wavelength nolators 353 and 354 are logically independent.
  • FIG. 26 shows a wavelength router (wavelength multiplexer) according to Embodiment 10 of the present invention.
  • This embodiment is a wavelength multiplexer for performing bidirectional transmission using different wavelengths with one optical fiber.
  • This embodiment is an application of the method of using the CWDM wavelengths shown in Embodiment 9 step by step. is there.
  • the dielectric thin film filter type three-port device 370 transmits a wavelength ⁇ 6 (1570 nm). Further, the dielectric thin film filter type three-port device 380 transmits a wavelength of 4 (1530 nm).
  • the transmission optical signal of wavelength ⁇ 4 is input to the reflection port 372 of the dielectric thin film filter type three port device 370. Further, a transmission light signal having a wavelength of 14 is input to the reflection port 382 of the three-port device 370 of the dielectric thin film filter type.
  • the optical signal of wavelength ⁇ 6 that has propagated through the optical fiber 378 is guided to the transmission port 373 via the input port 371 of the three-port dielectric film filter type device 370.
  • the optical signal of wavelength ⁇ 4 transmitted through the optical fiber 378 is guided to the transmission port 383 via the entrance port 381 of the dielectric thin film filter type three-port device 380.
  • the optical signal incident on the reflection port almost leaks to the transmission port 373 due to the positional relationship of the optical system.
  • the transmitted optical signal 376 has a light of 377 reflected at the reflection point 374 of 25 dB or more at the adjacent wavelength and 50 dB or more at the non-adjacent wavelength. Isolation is obtained.
  • the amount of reflection at the reflection point 374 can reach 4% (-13 dB) of the Fresnel reflection at the glass-air interface.
  • the optical signal input to the reflection port 372 is an optical signal of OdBm
  • the crosstalk reaches up to -38 dBm for adjacent wavelengths.
  • the optical signal transmitted from the dielectric and other filter type three-port device 380 has the power S to attenuate to ⁇ 35 dBm while propagating through the optical fiber 378.
  • the signal-to-noise ratio (signal-to-noise ratio) is only 3 dB, and it cannot be received properly.
  • the isolation can be taken more than 50dB.
  • the S / N ratio can be increased to 28 dB or more, and the conditions for good reception, the SZN ratio of 2 OdB or more (preferably 25 dB or more) can be realized.
  • one bidirectional transmission is realized by one optical fiber using two wavelengths, so that one dielectric thin film filter type three-port device is used for each, thereby reducing costs.
  • FIG. 27 shows an example in which the present embodiment is applied to the case of four wavelengths.
  • the wavelength multiplexer 390 is made up of a dielectric thin film filter type three port device 391, 392, and 393 forces.
  • the wavelength multiplexer 400 is composed of a dielectric thin film filter type three-port device 401, 402, and 403.
  • the wavelength division multiplexing device 390 has four ports 395 and 398 398.
  • the optical signal of wavelength ⁇ 4 input from port 398 is multiplexed with the optical signal of wavelength ⁇ 3 input from port 397 by the dielectric thin film filter type three-port device 393, and the dielectric thin film filter type is used.
  • the light is output to the port 399 via the three-port devices 392 and 391, and reaches the port 409 of the wavelength multiplexer 400 via the optical fiber 410.
  • the optical signals of wavelengths 6 and 7 from the port 409 of the wavelength multiplexer 400 pass through the optical fiber 410 and reach the port 399 of the wavelength multiplexer 390, and then the dielectric thin film filter type three-port device. 391 and 392 lead to ports 395 and 396 respectively.
  • the wavelength multiplexer 400 has four ports 405 to 408.
  • the optical signal of wavelength ⁇ 6 input from the port 408 is multiplexed with the optical signal of wavelength 7 input from the port 407 by the dielectric thin film filter type three-port device 403, and the dielectric thin film filter type three
  • the light is output to the port 409 via the port devices 402 and 401, and reaches the port 399 of the wavelength multiplexer 390 via the optical fiber 410.
  • the optical signals of wavelengths ⁇ 4 and ⁇ 3 from the port 409 of the wavelength multiplexer 390 reach the port 409 of the wavelength multiplexer 400 via the optical fiber 410, and then the dielectric thin film filter type three-port device. 401 and 402 lead to ports 405 and 406, respectively.
  • FIG. 28 shows a wavelength multiplexer ⁇ according to Embodiment 11 of the present invention.
  • This wavelength multiplexer 4Q is a wavelength multiplexer for performing bidirectional transmission by changing the wavelength between upstream and downstream with one optical fiber.
  • CWDM provides high isolation at non-adjacent wavelengths, and can be used to solve the problem of isolation during bidirectional transmission.
  • the wavelength multiplexer 421 is composed of seven dielectric thin film filter type three-port devices 431 to 437. Further, a local port for reception corresponding to the wavelength of port 441 to 444f; 11 for the wavelength ⁇ 4, and ports 445 to 448 are a single port of the transmission port corresponding to the wavelength ⁇ 5 to ⁇ 18. A port 449 is a remote port for transmission and reception.
  • the double-pass type dielectric thin film filter type three-port device has a structure as shown in FIG. 15 (a), and has a high isolation for adjacent wavelengths. This is because in the case of wavelength ⁇ 4, an optical signal of adjacent wavelength ⁇ 5 is used, and if reflection occurs near the transmission / reception remote port 449, a problem of insufficient isolation may occur. This is because ⁇ 4 needs to have a particularly high adjacent wavelength isolation.
  • a normal dielectric thin film filter type three-port device is used because there is no fear that adjacent wavelengths will be reflected back. Also, in the wavelength multiplexer 422 used in pairs with the wavelength multiplexer 421, The double-pass dielectric thin-film filter type three-port device is used as the dielectric thin-film filter type three-port device with a wavelength of 5 mm.
  • a simple two-stage filter is used instead of the double-pass type dielectric thin-film filter type three-port device, or a two-stage filter using the duplicated dielectric thin-film filter type three-port device shown in Fig. 15 (b). Good to use ,.
  • a dielectric thin film filter type three-port device having high adjacent wavelength isolation may be provided only at the reception port of the boundary wavelength. It is.
  • FIG. 29 shows an embodiment in which the wavelength multiplexer is mounted as a patch cord.
  • An optical fiber is fused and connected between the dielectric thin film filter type three-port devices.
  • a force fuser requires a certain length of optical fiber. Therefore, a dielectric thin film filter type three-port device group is usually provided in a rectangular box, and the optical fibers are arranged in an arc shape.
  • the dielectric thin film filter type three-port device group 431, 433, 435, and 437 are mounted on the housing 451, and the dielectric thin-film finoleta type three-port device group 432 is mounted.
  • 434, and 436 are mounted on a housing 453, and the two housings are connected by a cord 452.
  • FIG. 29 (a) is a diagram corresponding to the circuit diagram of the wavelength multiplexer shown in FIG. 28, and FIG. 29 (b) is a diagram showing a state of actual mounting.
  • the housing 451 is provided with a hook 454, and the housing 453 is provided with a hook 455. These hooks are equipment to be hooked and held by optical connectors and appropriate fittings on the front panel of devices such as routers and switches.
  • the patch cord-type wavelength multiplexer shown in Fig. 29 (b) has the advantage that it can be mounted flexibly on the front panel of a router or switch because the two housings are connected by a cord. There is. Also, there is an advantage that the size is smaller than when mounted in a rectangular box as before.
  • a wavelength router such as a wavelength multiplexer or an optical add-drop multiplexer is mounted on a housing by dividing a dielectric thin film filter type three-port device group into two groups as shown in Fig. 29, and a space between the housings is provided. Needless to say, you can connect them with a code. That is, the configuration in FIG. 29 is not limited to the circuit configuration in FIG.
  • a wavelength router and an optical communication network according to the twelfth embodiment of the present invention will be described with reference to FIGS. 30 to 32.
  • a plurality of logical network topologies can be formed on a ring-shaped optical fiber network.
  • a flexible network structure is formed by using high-density wavelength division multiplexing (DWDM), which can use more wavelengths.
  • DWDM high-density wavelength division multiplexing
  • wavelength routers 461 to 468 are connected in a double ring shape by two optical fibers 471 and 472.
  • the structure is similar to that of the network described with reference to FIGS. The difference from the third embodiment is that a full mesh network is not formed between all the wavelength routers.
  • a funnel mesh network is formed between the wavelength routers 461, 464, 465, and 468 using a wavelength ⁇ 1 having a wavelength ⁇ 1.
  • a first star-shaped network (star 1) is formed between the wavelength nolators 462 and 463 around the wavelength nolator 461 using the wavelengths ⁇ 7 and ⁇ 8.
  • a second star-shaped network (star 2) is formed around the wavelength router 468 and between the wavelength routers 466 and 467 using the wavelength; 19 and the wavelength;
  • Fig. 30 (b) Such a wavelength arrangement is shown in Fig. 30 (b).
  • an optical add-drop multiplexer that can add and drop the number of wavelengths of the number of slave stations N is arranged in the wavelength router serving as the center (master station), and the slave station wavelength router is arranged in the wavelength router of the slave station.
  • An optical add-drop multiplexer that add-drops only one wavelength that specifies the wavelength is placed. Therefore, a master station in a star topology accommodating up to N slave stations is equipped with an N-wavelength optical add-drop multiplexer.
  • 2N wavelengths are required.
  • FIG. 31 shows the internal structure of the wavelength router 461 as an example.
  • the optical signal from the input port 492a is amplified by the erbium-doped fiber optical amplifier 491a, and then the first optical add-drop multiplexer ( ⁇ ADM) 481a and the second optical add-drop multiplexer ( ⁇ ADM) 482a Via output port 493a.
  • the first optical add-drop multiplexer ( ⁇ ADM) 481a has a wavelength arrangement that forms a full mesh using wavelengths ⁇ 1 to I6.
  • the second optical add-drop multiplexer (OADM) 482a has a wavelength arrangement that forms a star 1 using the wavelengths ⁇ 7 and ⁇ 8.
  • an optical add-drop multiplexer having an appropriate wavelength arrangement may be vertically connected as necessary. Les ,.
  • the erbium-doped fiber optical amplifier 491b and the optical add-drop multiplexers 481b and 482b perform the same optical amplification and add-drop on the optical signal from the port 492b.
  • FIG. 32 shows a wavelength router according to a modification of the present embodiment. This figure shows only half of the wavelength router, that is, only the functional part that amplifies the optical signal from the left side in FIG. 32, adds the optical add drop, and sends it to the right side.
  • the wavelength router is provided with an optical amplifier and an optical add-drop multiplexer (not shown) that amplify and add optical signals from the right side in FIG.
  • a first optical add-drop multiplexer 483 is connected downstream of the erbium-doped fiber optical amplifier 491c.
  • This optical add-drop multiplexer 483 has a structure similar to that of the optical add-drop multiplexer 101 shown in FIG. 8, and uses wavelengths ⁇ 1 to 128 to transmit signals between eight nodes (wavelength routers). Form a full mesh network.
  • a second optical add-drop multiplexer 484 is connected to the subsequent stage of the optical add-drop multiplexer 483.
  • the second optical add-drop multiplexer 484 has a structure as shown in FIG. 32 (b).
  • This is an optical add-drop multiplexer composed of two arrayed waveguide diffraction gratings 485a and 485b.
  • the two arrayed waveguide gratings 485a and 485b can multiply and demultiplex the 16 wavelengths of wavelength ⁇ 29 power, etc .; 144; Atdodo
  • the wavelength that does not drop is a short circuit between the corresponding ports of the two arrayed waveguide gratings 485a and 485b with an optical fiber, and the wavelength that adds and drops drops the corresponding port to the outside.
  • a wavelength multiplexer formed by multiplexing and connecting dielectric thin film three-port devices, a wavelength multiplexer that multiplexes fiber Bragg grating filters and the like are used. Good to use ,. The point is that the wavelength multiplexers (multiplexers and demultiplexers) should be faced to each other.
  • a wavelength arrangement as shown in FIG. 32 (c) can be realized.
  • a full-mesh network can be constructed using the wavelengths ⁇ 1 to; 128, and further additional communication paths can be arbitrarily set using the wavelengths 129 to 144.
  • Various communication paths on a ring-shaped optical fiber network can be established by arbitrarily connecting the optical add-drop multiplexer for full mesh, the optical add-drop multiplexer for star, the optical add-drop multiplexer for free, etc. Can be realized by wavelength multiplexing.
  • a continuous wavelength arrangement is shown as a wavelength used for each topology form (full mesh, star, free, etc.). However, this wavelength arrangement does not need to be continuous.
  • Each topology can be realized by a set consisting of the required number of wavelengths, and each wavelength does not have to be physically contiguous
  • FIG. 33 shows a wavelength router according to the thirteenth embodiment of the present invention.
  • the wavelength router optical add-drop multiplexer for the full-mesh type or the star type described above can be realized by connecting the basic components shown in FIG. 33 vertically.
  • FIG. 33 (a) shows a basic component 500 of an optical add-drop multiplexer for a network constituted by using two optical fibers.
  • Basic component 500 consists of four dielectric thin film Filter-type three-port device 501-504 force
  • the four dielectric thin film filter type three-port devices 501 to 504 are provided with a dielectric thin film filter having a wavelength of i.
  • the reflection port of the dielectric thin film filter type three-port device 501 is connected to the reflection port of the dielectric thin film filter type three port device 502.
  • the reflection port of the dielectric thin-film filter type three-port device 504 is connected to the reflection port of the dielectric thin-film filter type three-port device 503.
  • the input port of the dielectric thin-film filter type three-port device 501 is one of the input ports of this basic element, and the input port of the dielectric thin-film filter type three-port device 504 is another input port of this basic element ⁇ .
  • the input port of the dielectric thin-film filter type three-port device 502 and the input port of the dielectric thin-film filter type three-port device 503 are output ports of the basic element ⁇ , respectively.
  • the transmission ports of the dielectric thin-film filter type three-port devices 501 to 504 are add-drop ports.
  • Fig. 33 (b) shows an optical add-drop multiplexer applied to a ring-type optical fiber communication network that performs bidirectional transmission using different wavelengths for upstream and downstream using a single optical fiber.
  • the basic component ⁇ consists of four dielectric thin film filter-type three-port devices 501-504.
  • the dielectric thin film filter type three-port devices 511 and 513 are provided with a dielectric thin film filter of wavelength i
  • the dielectric thin film filter type three-port devices 512 and 514 are provided with a dielectric thin film filter of wavelength j.
  • the reflection port of the dielectric thin film filter type three-port device 511 is connected to the incident port of the dielectric thin film filter type three port device 512.
  • the reflection port of the dielectric thin-film filter type three-port device 512 is connected to the reflection port of the dielectric thin-film filter type three-port device 513.
  • the input port of the dielectric thin-film filter type three-port device 513 is connected to the reflection port of the dielectric thin-film filter type three-port device 514.
  • the input port of the dielectric thin-film filter type three-port device 511 is one of the input / output ports of this basic element fi, and the input port of the dielectric thin-film filter type three-port device 514 is another input / output port of this basic element. Become one. Dielectric thin film
  • the transmission ports of the filter type three-port devices 511 to 514 are added drop ports.
  • a point-to-point redundant communication path can be realized on a double ring optical fiber communication network using two optical fibers.
  • Point-to-point can be compared to a "line", and by combining these lines, an arbitrary topology can be constructed, whether it is a full mesh or a star.
  • a point-to-point redundant communication path can be realized on a ring-shaped optical fiber communication network using one optical fiber.
  • Point-to-point can be compared to a "line”. By combining these lines, it is possible to construct an arbitrary topology whether it is a full mesh or a star.
  • an optical circuit equivalent to the basic element ⁇ or in FIG. 33 is formed from a free-space optical system, a free-space optical system using a structure in which a dielectric thin film filter is mounted on a glass block, glass, plastic, or the like. It is needless to say that the present invention also includes such a realization example.
  • FIG. 34 shows an optical communication network according to Embodiment 14 of the present invention.
  • a base station 1002 and optical signal branching circuit units 1001a to 1001d are connected in series by an optical fiber 1004.
  • Client station groups 1003a to 1003d are connected to the optical signal branch circuit units 1001a to 1003d, respectively.
  • FIG. 35 shows the internal structure of the optical signal branch circuit unit 1001.
  • the optical signal branching circuit unit 1001 is a dielectric thin film filter type three-port device 1011 and 1012, a CWDM optical transceiver 1013 having a transmission wavelength of CWDM (low density wavelength multiplexing), and a transmission wavelength of 1.5.
  • Port 1017 is a port on the other side of the base station, and port 1018 is a port connected to the next-stage optical signal branch circuit unit.
  • the port group 1021 is a port connected to the client station group.
  • FIG. 45 (a) Three-port devices 1011 and 1012 of the dielectric thin film filter type are shown in Fig. 45 (a). It has the same internal structure as that shown in FIG. 45, and is represented by simplified symbols as shown in FIG. 45 (b).
  • FIG. 36 is a diagram showing a wavelength multiplexing apparatus IS provided in the base station 1002. It consists of local optical transceivers 1041a through 1041d, remote CWDM (low-density wavelength multiplexing) optical transceiver 1042a, 1042d, and wavelength multiplexer 43. On the left side of the local optical transceivers 1041a to 1041d, a P ⁇ N switch (not shown) is connected. CH1 and CH4 show each channel of P ⁇ N.
  • the optical signals of CH1 to CH4 from the P ⁇ N switch are converted into electrical signals by local optical transceivers 1041a to 1041d, and then the remote CWDM (low-density wavelength multiplexing) optical transceiver 1042a Or the internal force of the CWDM wavelength determined by the ITU-T according to 1042d or converted to the selected wavelengths of ⁇ 1, ⁇ 3, ⁇ 5, and ⁇ 7, and wavelength-multiplexed by the wavelength multiplexer 43. After that, they are sent to the optical signal branching circuit units 1001a to 1001, respectively.
  • CWDM low-density wavelength multiplexing
  • R of the optical transceiver is the receiving port of the optical signal
  • T is the transmitting port of the optical signal
  • Rx is the output port of the electrical signal corresponding to the receiving signal of the optical signal
  • Tx is the electrical signal corresponding to the transmitting signal of the optical signal. Input port.
  • optical signals of wavelengths ⁇ 2, ⁇ 4, ⁇ 6, and 8 are transmitted from the optical signal branch circuit units 1001 a to 1001 via the optical fiber 1004, respectively.
  • the wavelengths 2, 4, 6, and ⁇ 8 also use the selected wavelength of the CWDM wavelength defined by ITU- ⁇ .
  • the CWDM wavelength is set every 20nm from 1270nm to 1610nm.
  • the CWDM wavelengths specified by the ITU-T eight wavelengths from 1470 nm to 1610 nm are particularly frequently used.
  • ⁇ 1 1470 ⁇
  • 2 2 1490nm
  • ⁇ 3 1510nm
  • ⁇ 4 1530
  • ⁇ 5 1550
  • ⁇ 6 1570
  • ⁇ 7 1590nm
  • ⁇ 8 1610 111 ⁇ ⁇ Review.
  • the optical signal transmitted via the optical fiber 1004 is dropped by the optical signal branch circuit unit 1001 as shown in FIG.
  • the optical signal branch circuit unit 1001a drops an optical signal of wavelength ⁇ 1 by the dielectric thin film filter type three-port device 1011.
  • an optical signal of wavelength ⁇ 2 is added by the dielectric thin film filter type three-port device 1012 and sent to the base station 1002 side.
  • CW in optical signal branch circuit unit 1001a The DM (Low Density Wavelength Division Multiplexing) optical transceiver 1013 transmits an optical signal of ⁇ 2.
  • the CWDM (low density wavelength multiplexing) optical transceiver 1013 and the 1.5 / im optical transceiver 1014 are combined back to back.
  • the optical signal received by the CWDM (Low Density Wavelength Multiplexing) optical transceiver 1013 is converted into an electrical signal and sent to a 1.5 xm optical transceiver 1014 to be converted to a wavelength of 1.5 zm and converted into a WDM optical fiber. It is sent to the client station group 1003a via the plastic and the tree coupler 1016.
  • CWDM Low Density Wavelength Multiplexing
  • the optical signal branching unit 1001b drops the optical signal of wavelength ⁇ 3 and adds the optical signal of wavelength ⁇ 4.
  • the optical signal branching unit 1001c drops the optical signal of wavelength ⁇ 5 and adds the optical signal of wavelength ⁇ 7.
  • the optical signal branching unit 100D drops the optical signal of wavelength ⁇ 7 and adds the optical signal of wavelength ⁇ 8.
  • An optical signal having a wavelength of 1.3 ⁇ m from the client station group 1003a is sent to the receiving port (R) of the 1.5 x m optical transceiver 1014 via the tree coupler 1016 and the WDM coupler 1015.
  • the optical signal having the wavelength of 1.3 ⁇ ⁇ ⁇ is converted into an electric signal by the 1.5 ⁇ optical transceiver 1014 and then converted into an optical signal of wavelength ⁇ 1 by the CWDM (low-density wavelength multiplexing) optical transceiver 1013.
  • the signal is sent to the base station 1002 via the dielectric thin film filter type three-port device 1012.
  • each channel can accommodate up to 32 client stations, a total of up to 128 client stations can be accommodated. Therefore, it is effective in reducing the optical fiber installation cost.
  • FIG. 37 shows optical signal branching circuits according to Embodiment 15 of the present invention.
  • the optical signal branching circuit unit 5 is composed of a dielectric thin film filter type three-port device 1011 and 1012, a CWDM (low density wavelength multiplexing) optical transceiver 1013, a WDM (wavelength multiplexing) optical fiber coupler 1015, and a 32-branch tree coupler 1016.
  • the port 1017 is a port on the side different from the base station, and the port 1018 is a port connected to the next-stage optical signal branch circuit unit.
  • the port group 1021 is a port connected to the client station group.
  • optical signal branch circuit unit The difference between the optical signal branch circuit unit and the optical signal branch circuit unit 1001 is that the optical signal branch Circuit unit! ⁇ Is not equipped with a 1.5 ⁇ optical transceiver 1014. Wavelength conversion of upstream optical signals from a tree coupler 1016 to a base station is performed only by a CWDM (low-density wavelength multiplexing) optical transceiver 1013 (1.3 im ⁇ CWDM wavelength).
  • CWDM low-density wavelength multiplexing
  • the Tx and Rx terminals of the CWDM (low-density wavelength division multiplexing) optical transceiver 1013 are short-circuited, and the 1.3 ⁇ m wavelength input to the optical signal input port (R) of the CWDM (low-density wavelength division multiplexing) optical transceiver 1013 is The optical signal is converted into an optical signal ⁇ j of the CWDM wavelength, and is sent to the base station via the dielectric thin film filter type three-port device 1012.
  • the optical signal of CWDM wavelength ⁇ i transmitted from the base station is transmitted to a tree coupler 1016 via a dielectric thin film filter type three-port device 1011, a WDM optical fiber coupler 1015, and a tree coupler 1016.
  • photodiodes used to receive optical signals have sensitivity over a wide wavelength range over the entire CWDM wavelength range (1270_1610 nm), so even if configured as described above, there will be problems with reception at the client station. Absent.
  • the main feature of the present embodiment is that the 1.5 / im optical transceiver 1014 is omitted to reduce the cost by utilizing this feature of the photodiode.
  • a clock recovery retiming circuit (not shown) may be provided between the Rx terminal and the Tx terminal of the CWDM (low-density wavelength multiplex) optical transceiver 1013. By providing the clock recovery retiming circuit, distortion of the optical signal can be corrected. Further, other wavelength multiplexing means such as a dielectric / thin film filter type three-port device may be used instead of the WDM optical fiber coupler 1015.
  • the 1.5 / m optical transceiver can be omitted from the optical signal branching unit as compared with the case of the fourteenth embodiment, resulting in an effect of cost reduction.
  • FIG. 38 shows the internal structure of the optical signal branch circuit units 1050a and 1050b. 1050c. And an optical communication network including these optical signal branch circuit units.
  • FIG. 39 shows a wavelength multiplexing device provided in a base station.
  • the optical signal branch circuit is composed of a completely passive circuit.
  • the reference numerals 1051a, 1051b, and 1051d denote a three-port dielectric thin film filter device having transmission wavelengths of 1, 1, ⁇ 2, and ⁇ 3, respectively.
  • reference numbers 1055a, 1055b, and 1055c are optical fiber power plugs with branch ratios of 3: 1, 2: 1, and 1: 1 respectively, and reference numbers 1056a through 1056d are 8-branch tree couplers.
  • the optical signal of wavelength ⁇ 1 is dropped by the dielectric thin film filter type three-port device 1051a in the optical signal branch circuit unit 1050a, and the dielectric thin film filter type three
  • the data is branched by the tree coupler 1056a via the port device 1052a and sent to the client station group, not shown.
  • the optical signal of wavelength ⁇ 2 is dropped by the dielectric thin film filter type three-port device 1051b in the optical signal branch circuit unit 1050b, and the dielectric thin film filter type three After being branched by the tree coupler 1056b via the port device 1052b, it is sent to the client station group (not shown).
  • the optical signal of wavelength ⁇ 3 is dropped by the dielectric thin film filter type three-port device 5cb in the optical signal branch circuit unit 1050c, and the dielectric thin film filter type is used. After being branched by the tree coupler 1056c via the three-port device 1052c, it is sent to the client station group (not shown).
  • the optical signal of wavelength ⁇ 4 is branched by the tree coupler 1056d in the optical signal branch circuit unit 1050d and sent to a client station group (not shown).
  • an optical signal of an upstream wavelength ⁇ Od from a client station group (not shown) connected to the optical signal branch circuit unit 1050d passes through a tree power plug 1056d in the optical signal branch circuit unit 1050d, and It is dropped by the dielectric thin film filter type three-port device 1054c in the branch circuit unit 1050c and sent to the optical fiber coupler 1055c.
  • Optical signal An optical signal with an upstream wavelength of 0c from a group of client stations (not shown) connected to the branch circuit unit 1050c is a tree force bra 1056c, a dielectric thin film filter type three-port device. The light is sent to the optical fiber coupler 1055c through the reflection port of the chair 1052c.
  • the upstream signal of the optical signal branch circuit unit 1050d and the upstream signal of the optical signal branch circuit unit 1050c are joined by the optical fiber coupler 1055c.
  • the combined upstream signal is transmitted to the base station side by the dielectric thin film filter type three-port device 1053c.
  • the combined signal of the upstream signals of the optical signal branch circuit units 1050d and 1050c is dropped by the dielectric thin film filter type three-port device 1054b in the optical signal branch circuit unit 1050b, and sent to the optical fiber force bra 1055b.
  • the optical signal of the upstream wavelength ⁇ Ob from the client station group (not shown) connected to the optical signal branch circuit unit 1050b passes through the tree coupler 1056b and the reflection port of the dielectric thin film filter type three-port device 1052b, and the optical fiber cover Sent to 1055b.
  • the upstream signals of the optical signal branch circuit units 1050d and 1050c and the upstream signal of the optical signal branch circuit unit 1050b are merged by the optical fiber force bra 1055b.
  • the combined upstream signal is sent to the base station side by the dielectric thin film filter type three-port device 1053b.
  • the combined signal of the upstream signals of the optical signal branch circuit units 1050d, 1050c, and 1050b is dropped by the dielectric thin film filter type three-port device 1054a in the optical signal branch circuit unit 1050a and sent to the optical fiber coupler 1055a.
  • the optical signal of the upstream wavelength ⁇ 0a from the client station group is connected to the optical signal branch circuit unit 1050a, and the optical signal of the upstream wavelength ⁇ 0a is connected to the reflection coupler 1056a and the reflection port of the dielectric thin film filter type three port device 1052c.
  • the light is then sent to the optical fiber coupler 1055a.
  • the optical fiber coupler 1055a By the optical fiber coupler 1055a, the upstream signals of the optical signal branch circuit units 1050d, 1050c, and 1050b and the upstream signal of the optical signal branch circuit unit 1050a are combined.
  • the combined upstream signal is sent to the base station side by the dielectric thin film filter type three-port device 1053a.
  • the wavelength ⁇ 0 is a wavelength in a range of about 1310 nm ⁇ 40 nm. This is because a cheap Fabry-Perot laser with low wavelength accuracy is used for the client station.
  • the wavelengths ⁇ 0a to ⁇ 0d are distinguished only for explaining the flow of the optical signal, and the wavelength is included in a range of about 1310 nm ⁇ 40 nm.
  • the optical communication network of Fig. 38 since the optical communication network of Fig. 38 operates, from the wavelength ⁇ 1; the downlink signal of 14 is divided into eight, each of which is transmitted to the client station, and transmitted from a maximum of 32 client stations. Optical signals of wavelength ⁇ 0 are combined into one and sent to the base station.
  • FIG. 39 shows the structure of a wavelength multiplexing device incorporated in the base station. It consists of CWDM optical transceivers 1057a to 1057d and a wavelength multiplexer 1058.
  • the CWDM optical transceivers 1057a to 1057d the Rx terminal and the Tx terminal are short-circuited, and wavelength conversion is realized by one optical transceiver.
  • the downlink signals from CH1 to CH4 and the uplink signal from CH0 are multiplexed by the wavelength multiplexer 1058.
  • the optical signal branch circuits are composed of passive components, there is no need to supply power to the optical signal branch circuit, and the reliability is high. Further, since four waves are used for the downstream signal and one wave is used for the upstream signal, a wide downstream bandwidth can be obtained. For example, if the transmission speed is 100 Mbps per wave, 32 stations share 100 Mbps on the upstream and 8 stations share 100 Mbps on the downstream. In general, a downlink signal from a base station often requires a wider band, and therefore, such a transmission capacity arrangement has a large economic effect.
  • FIG. 40 shows the internal structure of the optical signal branch circuit units 1060a to 1060d according to the seventeenth embodiment of the present invention, and the optical communication network including these optical signal branch circuit units.
  • Wavelength 11 Dielectric thin-film filter type with transmission wavelengths of 1, ⁇ 2, ⁇ 3, reference number 1063a, 1063b, 1064a, and 1064cf; Dielectric thin-film filter type with transmission wavelength of 10
  • reference number 1063c is a dielectric thin-film filter type three-port device having a transmission wavelength of ⁇ 5
  • reference numbers 1065a and 1065c are optical fiber power plugs having a 1: 1 branching ratio, reference numbers 1066a, 1066d. Is an 8-branch pulley plastic
  • reference numeral 1067 is a CWDM optical transceiver.
  • the optical signal branch circuit unit 1060a has the same configuration as the optical signal branch circuit unit 1050a according to the sixteenth embodiment. Only the point where the branch ratio of the optical fiber coupler 1065a is 1: 1 is the optical signal branch. Different from circuit unit 1050a.
  • the optical signal branch circuit unit 1060d has the same structure as the optical signal branch circuit unit 1050d of the sixteenth embodiment.
  • Optical signal branch circuit unit 1 060b and 1060c have a structure different from that of Example 16.
  • the upstream signals of the optical signal branch circuits 1060d and 1060c are joined to the optical fiber coupler 1065c by the same mechanism as in the sixteenth embodiment.
  • the combined optical signal is converted into an optical signal having a wavelength of ⁇ 5 by the CWDM transceiver 1067, and then transmitted to the base station through the dielectric thin film filter type three-port device 1063c.
  • the main difference from the sixteenth embodiment is that only the upstream signals of the optical signal branch circuit units 1060d and 1060c are combined and wavelength-converted and sent to the base station.
  • the upstream signal of the wavelength ⁇ Ob from the tree coupler 1066b passes through the reflection port of the dielectric thin film filter type three-port device 1062b, the dielectric thin film filter type three-port device 1063b, and the base station side.
  • Sent to In the optical signal branch circuit unit 1060a the optical signal of wavelength ⁇ Ob sent from the optical signal branch circuit unit 1060b is dropped by the dielectric thin film filter type three-port device 1064a, and then sent to the optical fiber coupler 1065a.
  • an upstream signal of wavelength 0a from the tree coupler 1066a is sent to the optical fiber coupler 1065a via the reflection port of the dielectric thin film filter type three-port device 1062a.
  • the optical signals of ⁇ Ob and ⁇ 0a are combined, then added by the dielectric thin film filter type three-port device 1063a, and sent to the base station side.
  • the downstream optical signal is ⁇ 1
  • the optical signal of four wavelengths ⁇ 4 is divided into eight, and is transmitted to the client station side.
  • the upstream signals of 16 client stations are combined with the optical signals of two wavelengths ⁇ 0 and ⁇ 5, respectively, and sent to the base station.
  • FIG. 41 is a diagram showing the configuration of the optical communication network of this embodiment.
  • FIG. 42 is a diagram showing the internal structure of the optical signal branch circuit unit 1071 of this embodiment.
  • reference numerals 1071a, 1071b, 1071c, and 1071d denote optical signal branching circuit units of the present embodiment
  • reference numeral 1072 denotes a base station.
  • the base station 1072 and the optical signal branch circuit units 1071a to 1071d are connected in a ring by an optical fiber 1074.
  • Each of the optical signal branch circuit units 1071a to 1071d is connected to a client station group 1073a or 1073d, respectively.
  • reference numerals 1081 and 1083 denote three-port dielectric thin-film filter devices with transmission wavelengths
  • Ii and reference numerals 1082 and 1084 denote three-port dielectric film finolators with transmission wavelengths
  • Devices, reference numbers 1085 and 1086 are CWDM optical transceivers with transmission wavelength j
  • reference number 1087 is a crosspoint switch and control unit
  • reference numbers 1088 and 1089 are optical transceivers with a transmission wavelength of 1.5 zm.
  • Reference numbers 1090 and 1091 are WDM optical fiber couplers
  • reference numbers 1092 and 1093 are 32-branch tree couplers.
  • Reference numeral 1096 denotes an input / output port for a clockwise transmission path
  • reference numeral 1097 denotes an input / output port for a clockwise transmission path
  • reference numerals 1094 and 1095 denote input / output ports to a client station group.
  • the communication path is routed from the base station 1072 to the optical signal branch circuit unit 1071 in two directions, clockwise and counterclockwise, using two wavelengths, wavelength and wavelength. Able to shape. Therefore, as compared with the case of Example 14, etc., even if one point of a ring-shaped fiber that can be connected by force can be cut off if it can achieve twice the communication capacity with the same number of wavelengths, it can rotate clockwise or counterclockwise. Either route survives, and there is an advantage that a redundant communication network can be realized.
  • the optical signal having the wavelength from the input / output port 1096 for the clockwise transmission path is dropped by the dielectric thin-film filter type three-port device 1081, and the reception port (R) of the CWDM optical transceiver 1085 is Sent.
  • the optical signal of the wavelength converted into the electric signal is transmitted from the Rx terminal of the CWDM optical transceiver 1085 to the optical transceiver 1088 through the crosspoint switch and the control unit 1087. Then, it is converted to the wavelength of wavelength 1.
  • the wavelength is then sent to the input / output port 1094 to the client station group via the WDM optical fiber coupler 1090 and the tree coupler 1092.
  • the wavelength 1 passes through a tree coupler 1092, a WDM optical fiber coupler 1090, an optical transceiver 1088, a crosspoint switch and a controller 1087, and is usually sent to a CWDM optical transceiver 1085, where it is converted into an optical signal having a wavelength j.
  • the optical signal of this wavelength j is added by the dielectric thin film filter type three port device 1082 and sent to the input / output port 1096 for the clockwise transmission path.
  • the optical signal of the wavelength from the input / output port 1097 for the counterclockwise transmission path is dropped by the dielectric thin film filter type three-port device 1083, and the reception port (R) of the CWDM optical transceiver 1086 is dropped.
  • Sent The optical signal of the wavelength converted into the electric signal is transmitted from the Rx terminal of the CWDM optical transceiver 1086 to the optical transceiver 1089 through the crosspoint switch and the control unit 1087. Then, it is converted into the wavelength of wavelength 1.
  • the wavelength is then sent to the input / output port 1095 to the client station group via the WDM optical fiber coupler 1091 and the tree coupler 1093.
  • the optical signal of wavelength 1.3 / im sent from the client station group to the input / output port 1095 is a tree coupler 1093, a WDM optical fiber coupler 1091, an optical transceiver 1089, a cross point switch and a control unit. After passing through 1087, it is usually sent to the CWDM optical transceiver 1086, where it is converted into an optical signal of wavelength j.
  • the optical signal of the wavelength j is added by the dielectric thin film filter type three port device 1084 and sent to the input / output port 1097 for the clockwise transmission path.
  • the crosspoint switch and the control unit 1087 provide a live communication path.
  • the optical transceivers 1088 and 1089 operate in parallel.
  • the interruption of the communication path can be detected by a link signal detection mechanism (not shown) from the CWDM optical transceivers 1085 to 1086. It should be noted that two systems corresponding to the wavelength multiplexing device 1040 shown in FIG. 36 are provided in the base station 1072 in FIG.
  • the dielectric thin film filter type three-port devices 1081 and 1083 can be configured by one duplicate dielectric type filter three-port device.
  • the dielectric thin film filter type three-port device 1082 and 1084 should be composed of one duplicated dielectric filter type three-port device. Advertise.
  • the duplicate dielectric filter type three-port device has been described in the fifth embodiment with reference to FIG.
  • duplex dielectric thin film filter type three-port device in the optical signal branch circuit unit of this embodiment has an advantage that the number of components can be reduced and the cost can be reduced.
  • an optical signal from the base station side communication device 1501 passes through a 2 ⁇ 2 optical switch 1502, passes through an optical fiber (normal path) 1505, passes through an optical fiber (backup path) 1504, and passes through a 2 ⁇ n splitter 1508.
  • a monitoring device (OTDR) device 1503 is connected to the 2 ⁇ 2 optical switch 1502, and a monitoring light (OTDR light) is cut between the optical fiber (normal path) 1505 and the 2 ⁇ n splitter 1508.
  • a filter 1507 is provided.
  • a monitor light (OTDR light) cut filter 1506 is provided between the optical fiber (backup path) 1504 and the 2 ⁇ n splitter 1508.
  • the base station side communication device 1501 is a device called OLT (Optical Line Terminal) in P ⁇ N (Passive Optical Network), and the client station 1509 communicates with ⁇ NU (Optical Network Unit) in P ⁇ N.
  • OLT Optical Line Terminal
  • ⁇ NU Optical Network Unit
  • a device called is provided.
  • a signal from the base station communication device ( ⁇ LT) 1501 is distributed to a large number (about 32 stations) of client stations (ONUs) 1509 by a 2 ⁇ n splitter 1508.
  • Signals from the client station ( ⁇ NU) 1509 are collected by a 2 ⁇ n splitter 1508 and sent to the base station side communication device (OLT) 1501.
  • a so-called protection mechanism is realized by the 2 ⁇ 2 optical switch 1502. If a disconnection or the like occurs in the optical fiber (normal path) 1505, the signal transmission path can be switched to the optical fiber (backup path) 1504 by the 2 ⁇ 2 optical switch 1502.
  • the monitoring device (OTDR) device 1503 is an optical fiber (usually The path is connected to 1505, so the optical fiber disconnection can be checked by OTDR (Optical Time Domain Reflectometry). Since the monitor light (OTDR light) is cut by the monitor light (OTDR light) cut filter 1506 or 1507, it is impossible for the monitor light (OTDR light) to be sent to the client station 1509 through the 2 ⁇ n splitter 1508. Nagu It is possible to detect optical fiber breakage while operating P ⁇ N.
  • the monitoring device (OTDR) device 1503 is not essential for performing protection. This is because even if the monitoring device (OTDR) device 1503 is omitted using a 1 ⁇ 2 optical switch, switching to the backup route can be performed when the normal route is disconnected. In addition, protection can be realized by switching using an electrical switch instead of switching using an optical switch. Two optical transceivers can be prepared in the base station communication device (@LT) 1501, and each transceiver can be connected to the normal route and the backup route, and the route can be switched when an error occurs.
  • the optical fiber (normal path) 1505 and the optical fiber (backup path) 1504 is provided to enable switching (protection) from the normal path to the backup path when an error such as a broken optical fiber occurs.
  • a monitoring device (OTDR) device 1503 at one end of the 2X2 optical switch, it is possible to detect the disconnection location of the abnormal path without stopping the operation of the PON.
  • FIG. 1 is a diagram showing an internal configuration of a wavelength router according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating a double ring optical communication network according to a first embodiment of the present invention.
  • FIG. 3 is a diagram showing wavelength routing between a wavelength router 21 and a wavelength router 22.
  • FIG. 4 is a diagram showing a wavelength routing path in Embodiment 1 of the present invention.
  • FIG. 5 is a diagram illustrating an internal configuration of a wavelength router according to a second embodiment of the present invention.
  • FIG. 6 is a diagram showing a ring-shaped optical communication network according to a second embodiment of the present invention.
  • FIG. 7 is a diagram showing a wavelength routing path in Embodiment 2 of the present invention.
  • FIG. 10 is a diagram showing the internal structure of a wavelength router according to a fourth embodiment of the present invention.
  • FIG. 11 is a diagram showing a problem of insufficient isolation of an optical add-drop multiplexer.
  • FIG. 12 is a diagram illustrating a gain control mechanism of the optical amplifier according to the fourth embodiment of the present invention.
  • FIG. 13 is a diagram showing the structure of a duplicate dielectric thin film filter type three-port device.
  • FIG. 14 is a diagram illustrating a wavelength router according to a fifth embodiment of the present invention.
  • FIG. 15 is a diagram showing a duplicated double-pass type dielectric thin film finolatus port device which is Embodiment 6 of the present invention.
  • FIG. 16 is a diagram showing a wavelength router mounted on a box according to Embodiment 7 of the present invention.
  • Garden 18 is a diagram showing a wavelength router implemented as a patch cord.
  • Garden 19 is a diagram showing a bidirectional transmission optical fiber communication network.
  • Garden 20 is a diagram showing the relationship between transmitted light and reflected light in a dielectric thin film filter type three-port device.
  • FIG. 21 is a diagram showing a wavelength router (wavelength multiplexer) mounted on the box of the eighth embodiment.
  • FIG. 22 is a diagram illustrating a wavelength router (optical add-drop multiplexer 1) according to a ninth embodiment of the present invention.
  • FIG. 23 is a diagram illustrating a problem of crosstalk in the wavelength router 311.
  • FIG. 24 is a diagram showing a wavelength router for forming a star-type communication path.
  • FIG. 25 is a diagram showing an optical communication network formed by wavelength nolators 311, 351, 352, 353, and 354.
  • FIG. 26 is a diagram showing a wavelength router (wavelength multiplexer) according to Embodiment 10 of the present invention.
  • FIG. 27 illustrates a four-wavelength wavelength router (wavelength multiplexer) according to a tenth embodiment of the present invention.
  • FIG. 28 is a diagram showing a wavelength router (wavelength multiplexer) according to Embodiment 11 of the present invention.
  • FIG. 29 is a diagram showing an embodiment in which the wavelength multiplexer according to the eleventh embodiment of the present invention is implemented as a patch cord.
  • FIG. 30 is a diagram illustrating an optical communication network according to Embodiment 12 of the present invention.
  • FIG. 31 is a diagram showing the internal structure of a wavelength router according to Embodiment 12 of the present invention.
  • FIG. 32 is a diagram showing a modification of the wavelength router of the twelfth embodiment of the present invention.
  • FIG. 33 is a diagram showing a wavelength router according to Embodiment 13 of the present invention.
  • FIG. 34 is a diagram showing an optical communication network according to Embodiment 14 of the present invention.
  • FIG. 35 is a diagram showing the internal structure of the optical signal branch circuit unit 1001.
  • FIG. 36 is a diagram showing a wavelength multiplexing apparatus 1 Q provided in a base station 1002.
  • FIG. 37 is a diagram showing an internal structure of an optical signal branch circuit according to Embodiment 15 of the present invention.
  • FIG. 38 is a diagram showing an optical signal branch circuit and an optical communication network according to Embodiment 16 of the present invention.
  • FIG. 39 is a diagram illustrating a structure of a wavelength multiplexing device incorporated in a base station in Embodiment 16 of the present invention.
  • FIG. 40 is a diagram showing an optical signal branch circuit unit and an optical communication network according to Embodiment 17 of the present invention.
  • FIG. 41 is a diagram illustrating a configuration of an optical communication network according to Embodiment 18 of the present invention.
  • FIG. 42 is a diagram showing the internal structure of an optical signal branch circuit unit 1071 according to an embodiment of the present invention.
  • FIG. 43 is a diagram illustrating an optical communication network according to Embodiment 19 of the present invention.
  • FIG. 44 is a diagram showing a conventional optical add-drop multiplexer.
  • FIG. 45 is a view showing the structure of a conventional dielectric thin film filter type three-port device ⁇ Q.
  • FIG. 46 is a diagram showing a conventional passive optical fiber communication network (P ⁇ N).
  • Optical fiber 31-34: Locale report group 44: Switch or router ... Removable optical transceiver, 51, 52- Wavelength / rating /, ° S

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Lasers (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Small-Scale Networks (AREA)

Abstract

 波長多重化技術と波長ルータを用いてフルメッシュなどの高度なネットワーク構造をリング状光ファイバネットワーク上に構築し、その際に生じるアイソレーション不足の問題を解決する。アッド手段ドロップ手段対を(N−1)組からなる光アッドドロップマルチプレクサーを2組備えた波長ルータを用いることによってN個のノードの間にフルメッシュの通信経路を構築する。

Description

明 細 書
光信号分岐回路及び光通信ネットワーク
技術分野
[0001] 本発明は光ファイバ通信に用いられる波長ルータ及び光アツドドロップマルチプレ クサ一(OADM)に関する。また、本発明は光ファイバ通信に用いられる光信号分岐 回路及び光ファイバ一通信ネットワークに関する。特に、リング状に光ファイバを設け た光ファイバ通信ネットワークおよび受動型光信号分岐回路と時分割多元接続 (TD M)とを組み合わせた受動型光ファイバ通信ネットワーク(P〇N passive Optical F iber Network)に関する。
背景技術
[0002] 図 44に従来の光アツドドロップマルチプレクサ一を示す。図 44 (a)は光ファイバ一 グレーティング(FBG) 601と光サーキユレータ 602を用いた光アツドドロップマルチプ レクサーである。ポート 603から入射した光信号は光ファイバ一グレーティング(FBG ) 601で波長 λ iだけが反射され、反射されたえ iの光信号は光サーキユレータ 602に よってアツドドロップポート 605へと導かれる。 λ i以外の波長の光はポート 604へと導 力、れる。
[0003] 図 44 (b)に誘電体薄膜フィルタ型スリーポートデバイス 611及び 612を用いた光ァ ッドドロップマルチプレクサ一を示す。ポート 613から入射した光信号の内; の光信 号は誘電体薄膜フィルタ型スリーポートデバイス 611によってドロップポート 615へと 導かれる。またアツドポート 616からの波長; の光信号は誘電体薄膜フィルタ型スリ 一ポートデバイス 612によってポート 614へと導かれる。
[0004] 図 45 (a)に誘電体薄膜フィルタ型スリーポートデバイス^ βの構造を示す。入射ポ ート(光ファイバ) 621からの光はコリメータ 624、誘電体薄膜フィルタ 625を経て波長 λ iの光はコリメータ 626を経て透過ポート(光ファイノく) 623へと導かれる。波長え i以 外の光は誘電体薄膜フィルタ 625によって反射されてコリメータ 624を再び経て、反 射ポート(光ファイバ) 622へと導かれる。
[0005] 本明細書では入射ポート、透過ポート、反射ポートの区別を図 45 (b)に示すような シンボルで区別することにする。反射ポートを示す線が箱の中にまで延びているのが このシンボルの特徴である。
[0006] また、図 46に従来の受動型光ファイバ通信ネットワーク(PON passive Qptical Fiber Network)を示す。基地局 1210からの光信号は、受動型のツリー型スプリツ ター(ツリー力プラ) 1200によって分岐されて光ファイバ群 1201を介して多数のクラ イアント局群 1213へと送られていた。また、クライアント局群 1213から基地局 1210 への光信号は時分割多元接続 (TDM)によって送られていた。ツリー型スプリツター 1200の分岐比は 32程度に選ばれることが多かった。
発明の開示
発明が解決しょうとする課題
[0007] 従来の光アツドドロップマルチプレクサ一は単一の波長のアツドドロップを行うものが 大半であった。し力、しながら、光ファイバ通信ネットワークの高度化に伴レ、、波長多重 を利用してより複雑なネットワーク構造を構築するニーズが高まっている。このような ニーズに応えるためには光アツドドロップマルチプレクサ一の波長配置の設計技法が 必要である。また、条件によっては光アツドドロップマルチプレクサ一に高いアイソレ ーシヨン特性が要求される場合が生じる。本発明はこれらの問題を解決し、柔軟なネ ットワーク構成を実用上十分な物理特性と共に実現することを目的としている。
[0008] また上記従来の受動形通信ネットワークにあっては、ツリー型スプリツター 1200によ つて分岐された後は、光ファイバは 32本に分岐してしまうため、非常に大量の光ファ ィバを敷設しなくては成らないと言う問題があった。また、 32分岐より多数の分岐を行 おうとするとツリー型スプリツター 1200が非常に複雑な構成となると言う問題があった 課題を解決するための手段
[0009] 上記課題を解決するために、本発明の波長ルータは、一例を挙げるならば、第一 の入力ポート、第一の光アツドドロップマルチプレクサ一、第一の出力ポート、第二の 入力ポート、第二の光アツドドロップマルチプレクサ一、第二の出力ポートを備えた波 長ルータにおいて、予め定められたノード数 Nに対して、第一のアツドドロップマルチ プレクサーは (N— 1)組のアツド手段ドロップ手段対を備え、第二の光アツドドロップマ ルチプレクサーは N— 1)組のアツド手段ドロップ手段対を備えていることを特徴として いる。この構成を有した波長ルータを用いることによって、光ファイバを 2系統設けた 二重リング状光ファイバ通信ネットワーク上に波長多重によってフルメッシュ構造の冗 長化通信経路を実現することができる。
[0010] 本発明の手段及び作用の詳細については、以下の実施例の説明を通してさらに詳 しく解説されるものである。また本発明の上述の側面および他の側面は特許請求の 範囲に記載され以下実施例を用いて詳述される。
また、上記課題を解決するために本発明では波長多重化技術を用いた光アツドドロ ップマルチプレクサ一(OADM)を光信号分岐回路ユニットに適用することにより分 岐数の増大を実現した。本発明の手段及び作用の詳細については、以下の実施例 の説明を通してさらに詳しく解説されるものである。
発明の効果
[0011] 本発明によれば、リング状の光ファイバ通信ネットワーク上に波長多重を利用してフ ノレメッシュを初めとする様々なネットワークトポロジーを柔軟に構築できる。また、その 際に生じるアイソレーション不足などの問題を解決することができる。また、本発明に よれば、受動型光ファイバ通信ネットワーク(P〇N : passive Optical Fiber Networ k)における光ファイバ使用量を減少させることができる。また、冗長化された光通信 ネットワークを実現できる。
発明を実施するための最良の形態
[0012] 以下、この発明の実施例について説明する。
実施例 1
[0013] 図 1ないし図 4を用いて本発明の実施例 1について説明する。図 1に本発明の実施 例 1の波長ルータ の内部構成を示す。図 2にはこの波長ルータ 20を基本形とする 4つの波長ルータ 21ないし 24を用いて構築した二重リング状光通信ネットワークの構 成を示す。図 3には波長ルータ 21と波長ルータ 22との間における波長 λ 1の光信号 のルーティングの様子を示す。図 4は本実施例によって実現される波長ルーティング パスを示す図である。
[0014] 図 1に示すように、波長ルータ は誘電体薄膜フィルタ型スリーポートデバイス 1な レ、し 12から成り立っており、いわゆる光アツドドロップフィルタの構造を有している。波 長ルータ ^は図 2に示す光通信ネットワーク上で用いられる際には、光通信ネットヮ ークのノード(局)ごとに、基本構成は同じであるが各誘電体薄膜フィルタ型スリーボ ートデバイスの波長が異なる波長ルータ 21、 22、 23、 24が用いられる。なお、図 1に は波長ルータ 21の場合についての各波長の光信号のアツドドロップの様子が示され ている。
波長ルータ 21について説明する。誘電体薄膜フィルタ型スリーポートデバイス 1は 光ファイバ 25aから入力した波長; 1 1の光を取り出しローカル側ポート群 (図 2の 3 1に対応)側へ出力する。誘電体薄膜フィルタ型スリーポートデバイス 2はローカルポ 一ト群 (図 2の 31に対応)側から入力した波長 λ ΐの光を光ファイバ 25bへと導く。 誘電体薄膜フィルタ型スリーポートデバイス 3は光ファイバ 25aから入力した波長 λ 2 の光を取り出しローカル側ポート群 2β (図 2の 31に対応)側へ出力する。誘電体薄膜 フィルタ型スリーポートデバイス 4はローカルポート群 (図 2の 31に対応)側から入 力した波長 λ 2の光を光ファイバ 25bへと導く。誘電体薄膜フィルタ型スリーポートデ バイス 5は光ファイバ 25aから入力した波長え 3の光を取り出しローカル側ポート群^ ^ (図 2の 31に対応)側へ出力する。誘電体薄膜フィルタ型スリーポートデバイス 6は口 一カルポート群 K図 2の 31に対応)側から入力した波長 λ 3の光を光ファイバ 25b へと導く。誘電体薄膜フィルタ型スリーポートデバイス 8は光ファイバ 26aから入力した 波長 λ 1の光を取り出しローカル側ポート群 (図 2の 31に対応)側へ出力する。誘 電体薄膜フィルタ型スリーポートデバイス 7はローカルポート群 (図 2の 31に対応) 側から入力した波長 λ 1の光を光ファイバ 26bへと導く。誘電体薄膜フィルタ型スリー ポートデバイス 10は光ファイバ 26aから入力した波長 λ 2の光を取り出しローカル側 ポート群 (図 2の 31に対応)側へ出力する。誘電体薄膜フィルタ型スリーポートデ バイス 9はローカルポート群 ^ (図 2の 31に対応)側から入力した波長; 1 2の光を光 ファイバ 26bへと導く。誘電体薄膜フィルタ型スリーポートデバイス 12は光ファイバ 26 aから入力した波長 λ 3の光を取り出しローカル側ポート群 Κ図 2の 31に対応)側へ 出力する。誘電体薄膜フィルタ型スリーポートデバイス 11はローカルポート群 (図 2の 31に対応)側から入力した波長 λ 3の光を光ファイバ 26bへと導く。 [0016] 他の波長ルータ 22ないし 24は波長ルータ 21と同様の動作をする力 取り扱われる 波長が異なる。波長ルータ 22においては、波長ルータ 21の λ 2を λ 4に、 え 3をえ 5 に置き換えた動作をする。波長ルータ 23においては、波長ルータ 21の λ 1をえ 2に 、波長ノレータ 21の λ 2を; 1 5に、 λ 3を λ 6に置き換えた動作をする。波長ルータ 24 ίこおレヽて fま、波長ノレータ 21の; 1 1を; 1 3 (こ、波長ノレータ 21の; 1 2を; 1 5(こ、 ぇ3をぇ6 に置き換えた動作をする。
[0017] 図 2は波長ルータ 21ないし 24と外周側光ファイバ 25ないし内周側光ファイバ 26と 力 なる二重リング状の光通信ネットワークの構成を示す図である。外周側光ファイバ 25上では波長 λ 1ないし波長 λ 6の光信号は右回りに伝送され、内周側光ファイバ 2 6上では波長; 1 1ないし波長 λ 6の光信号は左回りに伝送されている。波長ルータ 2 1においては波長; 1 1、 λ 2、及び λ 3の光信号がアツドドロップされ、波長 λ 4、 λ 5、 及び λ 6の光信号はバイパスされる。波長ルータ 22においては波長 λ 1、 λ 4、及び λ 5の光信号がアツドドロップされ、波長 λ 2、 λ 3、及びえ 6の光信号はバイパスされ る。波長ルータ 23においては波長え 2、 λ 4、及び λ 6の光信号がアツドドロップされ 、波長 λ 1、 え 3、及びえ 5の光信号はバイパスされる。波長ルータ 24においては波 長え 3、 λ 5、及びえ 6の光信号がアツドドロップされ、波長え 1、 え 2、及び λ 4の光 信号はバイパスされる。
[0018] 波長ルータ 21、 22、 23、及び 24には、それぞれローカル側ポート 31、 32、 33、及 び 34が設けられており、これらのポートには、ツリー状のアーキテクチャを有するスィ ツチ(あるいはルータ) 41、 42、 43、及び 44がそれぞれ対応して接続されている。こ れらスィッチ(あるいはルータ) 41、 42、 43、及び 44には着脱自在の光トランシーバ 4 5が装着されている。着脱自在の光トランシーバ 45には、例えば GBICあるいは SFP と呼ばれている光トランシーバがある。これらの光トランシーバは CWDM (低密度波 長多重)あるいは DWDM (高密度波長多重)に対応した波長の光信号が出力できる ように設計されている。光トランシーバ 45は個々にそれぞれ別々の波長が出力できる ようにすることができるので、波長ルータ内の各誘電体薄膜フィルタ型スリーポートデ バイスに対応した波長になるように、光トランシーバ 45をスィッチ(あるいはルータ) 41 、 42、 43、及び 44の各ポートに装着している。なお、この実施例では着脱自在の光ト ランシーバを用いたが、スィッチ(あるいはルータ) 41、 42、 43、及び 44と対応する波 長ルータ 21、 22、 23、及び 24の間に波長変換機構を介在させても良い。
[0019] 各光信号の具体的な波長としては、例えば ITUで定められた CWDM波長の内か ら、 λ 1 : 1490應、 λ 2 : 1510應、 λ 3 : 1530應、 λ 4 : 1550讓、 ぇ5 : 1570讓 、 6 : 1590nmとレ、うような値を選ぶこと力 Sできる。もちろん、この波長は他の任意の 波長の組み合わせ、例えば、 ITUで定められた DWDMの波長帯の中力 C—バンド 100GHzグリッドから 6波選ぶようなことも可能である。
[0020] 図 3において、波長ルータ 21のローカル側ポート 31からの 2系統の波長; 1 1の光信 号は、 1系統(λ la)は右回りで外周側光ファイバ 25上を伝播して波長ルータ 22に 至り、もう 1系統(λ lc)は左回りで内周側光ファイバ 26上を伝播して波長ルータ 24、 23を順にバイパスしてやはり波長ルータ 22に至り、共にローカル側ポート 32へと出 力される。一方、波長ルータ 22のローカル側ポート 32からの 2系統の波長; 1 1の光 信号は、 1系統(え lb)は左回りで内周側光ファイバ 26上を伝播して波長ルータ 21 に至り、もう 1系統(え d)は外周側光ファイバ 25上を伝播して波長ルータ 23、 24を順 にバイパスしてやはり波長ルータ 21に至り、共にローカル側ポート 31へと出力される 。即ち、波長ルータ 21と波長ルータ 22の間には右回りと左回りの 2系統の全二重の 信号経路が波長 λ 1の光信号によって形成されている。このため、図 3に示す二重リ ング状の光ファイバ通信ネットワークのどこか一力所で光ファイバ一切断が生じたとし ても、右回りもしくは左回りの系統のいずれかは生き残ることとなり通信ネットワークの 信頼性を向上させることができる。
[0021] 図 4は図 2に示した本実施例の二重リング状光ファイバ通信ネットワークによって形 成される波長ルーティングパスを示す。本実施例の二重リング状光ファイバ通信ネッ トワークは図 4の^で示されるフルメッシュかつ冗長化された波長ルーティングパスを スィッチ(あるいはルータ) 41、 42、 43、及び 44の間に形成する。例えば、波長ルー ティングパス 51は図 4で示された波長 λ la、波長 λ lbの光信号の組から成る全二重 の波長ルーティングパスである。また、波長ルーティングパス 52は図 4で示された波 長 λ lc、波長 λ Idの光信号の組力 成る全二重の波長ルーティングパスである。
[0022] 波長ルーティングパス 50はスィッチ 41と 42の間を波長 λ 1で、スィッチ 41と 43の間 を波長 λ 2で、スィッチ 41と 44の間を波長 λ 3で、スィッチ 42と 43の間を波長え 4で 、スィッチ 42とスィッチ 44の間を波長 λ 5で、そしてスィッチ 43とスィッチ 44の間を波 長 λ 6でそれぞれ結んでレ、ることが図 4に示されてレ、る。
[0023] 4つのスィッチの間には 6通りの経路が存在する力 それぞれの経路がそれぞれの 波長に対応しているのである。しかも、各経路には右回りと左回りの冗長化した経路 が設けられている。フルメッシュ状の通信経路は通信効率の高い経路であり、し力も 各経路は冗長化されていて、物理的な光ファイバ一切断などの事故に際しても片方 の経路は確保されるとレ、う利点を有してレ、る。
[0024] また、図 2に示されるように各波長ルータではその波長ルータがアツドドロップする 以外の光信号は光学的にバイパスするので、これらバイパスされる光信号の処理を スィッチ 41ないし 44が行う必要が無ぐスィッチの処理能力を軽減している。すなわ ち、各ノード(波長ルータ)は 3波のみアツドドロップし、他の 3波はバイパスしており、 これを全部電気的に処理した場合に比べてスィッチのハードウェア規模が半分で済 むことになる。
実施例 2
[0025] 図 5ないし図 7を用いて本発明の実施例 2について説明する。実施例 1においては 2本の光ファイバを用いて二重リングを構築していた力 S、本実施例では一本の光ファ ィバー上に異波長双方向伝送を行うことによって二重リングを構築している。図 5に 本発明の実施例 2の波長ルータ ISの内部構成を示す。図 6にはこの波長ルータ 70 を基本形とする 3つの波長ルータ 71ないし 73を用いて構築した二重リング状光通信 ネットワークの構成を示す。図 7は本実施例によって実現される波長ルーティングパ スを示す図である。
[0026] 図 5に示すように、波長ルータ ISは誘電体薄膜フィルタ型スリーポートデバイス 61 ないし 68から成り立っており、いわゆる光アツドドロップフィルタの構造を有している。 波長ルータ ι は図 2に示す光通信ネットワーク上で用いられる際には、光通信ネット ワークのノード(局)ごとに、基本構成は同じであるが各誘電体薄膜フィルタ型スリー ポートデバイスの波長が異なる波長ルータ 71、 72、及び、 73が用いられる。なお、図 5には波長ルータ 71の場合についての各波長の光信号のアツドドロップの様子が示 されている。
[0027] 波長ルータ 71について説明する。誘電体薄膜フィルタ型スリーポートデバイス 71は ローカルポート側から光ファイバ 75a側に波長 λ 1の光信号を出力する。誘電体薄膜 フィルタ型スリーポートデバイス 62は光ファイバ 75aから入力した波長 λ 2の光を取り 出しローカル側へ出力する。波長 λ 1と波長 λ 2の光信号で一組の全二重の光信号 伝送路が形成されている。
[0028] 誘電体薄膜フィルタ型スリーポートデバイス 63はローカルポート側から波長 λ 1の 光を光ファイバ 75b側へ出力する。誘電体薄膜フィルタ型スリーポートデバイス 64は 光ファイバ 75bから入力した波長 λ 2の光をローカルポート側へ出力する。誘電体薄 膜フィルタ型スリーポートデバイス 65はローカルポート側からの波長 λ 3の光を光ファ ィバ 75a側へ出力する。誘電体薄膜フィルタ型スリーポートデバイス 66は光ファイバ 7 5a側からの波長; 14の光をローカルポート側へ出力する。薄膜スリーポートデバイス 67はローカルポート側からの波長 λ 3の光を光ファイバ 75b側へ出力する。薄膜スリ 一ポートデバイス 68は光ファイア 75b側からの波長 λ 4の光をローカルポート側へ出 力する。
[0029] 他の波長ルータ 72および 73は波長ルータ 71と同様の動作をする力 取り扱われる 波長が、図 5に示されるようにそれぞれ異なっている。
[0030] 図 6は波長ルータ 71ないし 73と光ファイバ 75とからなるリング状の光通信ネットヮー クの構成を示す図である。波長ルータ 71、 72、及び 73、にはツリー状のァーキテク チヤを有するスィッチ(あるいはルータ) 81、 82、及び 83がそれぞれ対応して接続さ れている。スィッチ 81、 82、及び 83には着脱自在の光トランシーバ 85が装着されて いる。着脱自在の光トランシーバ 85には、例えば GBICあるいは SFPと呼ばれている 光トランシーバがある。これらの光トランシーバは CWDM (低密度波長多重)あるレヽ は DWDM (高密度波長多重)に対応した波長の光信号が出力できるように設計され ている。
[0031] 図 6に示すように、波長ルータ 71からは 2系統の波長 λ 1の光信号 λ laと λ lbが 波長ルータ 72へと送られる。また、波長ルータ 72からは 2系統の波長 λ 2の光信号 λ 2aと λ 2bが波長ルータ 71へと送られる。波長 λ laと波長 λ 2aとでひとつの全二 重の通信経路が形成され、波長 λ lbと波長え 2bとで別の全二重の通信経路が形成 される。この結果、冗長化された 2つの通信経路 (右回りと左回り)とが形成されること になる。
[0032] 図 7は図 6に示した本実施例のリング状光ファイバ通信ネットワークによって形成さ れる波長ルーティングパスを示す。本実施例のリング状光ファイバ通信ネットワークは 図 8の で示されるフルメッシュかつ冗長化された波長ルーティングパスをスィッチ 8 1、 82、及び 83の間に形成する。
実施例 3
[0033] 図 8に本発明の実施例 3の波長ルータ皿の内部構成を示す。本実施例では高密 度波長多重(DWDM)を用い光ファイバ一増幅器を内部に備えている。本実施例の 波長ルータ 100は、光アツドドロップマルチプレクサ一(OADM) 101及び 102とェノレ ビゥムドープファイバ光増幅器(EDFA) 103及び 104力 成り立つている。
[0034] 光アツドドロップマルチプレクサ一(OADM) 101及び 102の内部には図示しない 誘電体薄膜フィルタ型スリーポートデバイス群が組み込まれており、所定の波長を付 け加えたり(アツド)取り出したり(ドロップ)すること力 Sできる。
[0035] 光ファイバ 107aからの光信号はまずエルビウムドープファイバ光増幅器(EDFA) 1 03で増幅された後、光アツドドロップマルチプレクサ一(OADM) 101によって所定 の光信号のアツドドロップを行った後、光ファイバ 107bへと出力する。同様に光フアイ バ 108aからの光信号はまずエルビウムドープファイバ光増幅器(EDFA) 104で増 幅された後、光アツドドロップマルチプレクサ一(OADM) 102によって所定の光信号 のアツドドロップを行った後、光ファイバ 108bへと出力する。
[0036] ローカルポート群 105及び 106は図示しないスィッチなどと接続されている。ロー力 ル側ポート群 105には左回りで他の波長ルータと接続する光信号が入出力される。 光ファイバ 107aから入力した光信号の中から取り出された(ドロップした)光信号は口 一カル側ポート群 105に送られる。ローカル側ポート群 105に図示しないスィッチ側 力 入力した光信号群は光ファイバ 108b側へ伝送される光信号に付け加えられる( アツドされる)。ローカル側ポート群 106には左回りで他の波長ルータと接続する光信 号群が入出力される。光ファイバ 108aから入力した光信号の中から取り出された(ド ロップした)光信号はローカル側ポート群 106に送られる。ローカル側ポート群 106に 図示しなレ、スィッチ側から入力した光信号群は光ファイバ 107b側へ伝送される光信 号に付け加えられる(アツドされる)。
[0037] 図 9には本実施例の波長ルータを用いて形成した二重リング状光通信ネットワーク の構成を示す。この二重リング状光通信ネットワークでは波長ルータ 111なレ、し 118 と外周側光ファイバ 121と内周側光ファイバ 122とから成り立つている。外周側光ファ ィバ 121では光信号は右回りに伝送され、内周側光ファイバ 122では光信号は左回 りに伝送されている。本実施例では λ 1ないし λ 28の 28種類の波長の光信号が用 レ、られて波長ルータ 111なレ、し 118の間に 28経路の冗長化全二重通信経路がフル メッシュに形成されている。
[0038] 全体では 28種類の波長が用いられている力 各ノード(波長ルータ)ではそれぞれ のノード固有の 7波長のみがアツドドロップされていて、残りの 21波長はバイパスされ ている。つまり、これを全部電気的に処理した場合に比べて波長ルータに接続される スィッチやルータのハードウェア規模が 25%で済むことになる。
[0039] ここで複数のノード間にフルメッシュの通信路を形成する場合に必要な波長数及び 波長配置について述べる。ノード数 Ν局の場合、 Ν個のノードから残りの N_l個のノ ードへの経路が必要なるが、相手のノードにぉレ、てもこの経路数を二重に数えること になるので、結局 Ν個のノード間にフルメッシュの通信経路を形成するには以下の式 で与えられる Μ個の経路が必要となる。
[数 1]
Figure imgf000012_0001
[0040] この Μ個の経路は光ファイバを図 2や図 9に示したように 2本用いるのなら Μ個の波 長で実現できるし、図 6に示したように 1本の光ファイバを用いて、上りと下りの波長を 変えて通信経路を形成するのなら 2Μ個の波長が必要となる。
[0041] 光ファイバを図 2や図 9に示したように 2本用いて、かつ、 8個のノードがある場合は( 1)式より 28個の波長が必要となる。この時の波長配置をマトリクス表現すると(2)式 で示される
[数 2]
Φ \ h 17
Λ, Λ Φ Λ
Figure imgf000013_0001
As
Λ3 Φ + As
Λ Φ
Λ, ο Φ 3 5
Λ6 11 3 Φ 25
Λ7 1 4 (5 Φ S
Λ8. s ^22 5 ^38 Φ
[0042] Λ1は 8個の要素を持つベクトルであり、その要素ぇ1ないし λ 7はノード 1から他の ノードへの通信経路を形成する波長を示している。 Λ1の要素 φはノード 1からノード 1への通信経路を示す「波長」であるが、これは実際には設ける必要がないので空集 合を表す概念の φを揷入してある。ノード 1とノード 2の間の通信経路を波長 λ 1で形 成するとすると、ノード 2から他のノードへの通信経路を示すベクトノレ中にも波長; 11 は必ず含まれることになり、事実 Λ 2の要素は [λ1、 φ、 λ8、 λ9、 λ10、 λ11、 λ 12、 λ 13]となっている。即ち、(2)式のマトリクスは転置行列となっている。これは光 ファイバを図 2や図 9に示したように 2本用いて形成した光通信ネットワークでは、ノー ド 2からノード 1への通信経路として用いられる波長はノード 1からノード 2への通信経 路として用いられる波長と一致していなくてはならないからである。なお、ノード 1から ノード 2への通信経路を波長; 11で形成する、とはノード 1から送信される光信号の波 長が λ 1であり、この λ 1の光信号がノード 2で受信されることを示している。
[0043] 図 2や図 9に示した通信ネットワークを用いて Ν個のノード間にフルメッシュで最小 の波長数で通信経路を形成するには(3)式ないし (4)で示す波長配置を設ける必要 力 sある。
[数 3] —
2W
Figure imgf000014_0001
λ
( 3 ) a≠ J)
Φ (^ = J)
< i , J≤N
( 4 )
[0044] 上記の(3)中には空集合が含まれるわけである力 空集合で表される波長につい ては実装する必要はないので、実装される波長は N個のノード間にフルメッシュを設 ける波長ルータは N— 1個の波長を実装すれば良い。また、各ノードに異なる波長が 実装されるので、 Λ 1から ΛΝに対応する N種類の光アツドドロップマルチプレクサ一 が実装されることになる。
[0045] またリング状のネットワークで冗長化経路を設けるためには各波長について右回り の送受信、左回りの送受信を行わなくてはならないので、各波長のアツド手段とドロッ プ手段を 2組設ける必要がある。結局、 N個のノード間のフルメッシュ接続に対応した 光アツドドロップマルチプレクサ一 2 (N— 1)組のアツド手段ドロップ手段対を備えるこ とになる。 (N— 1)個のアツド手段ドロップ手段対が右回り用、もうひとつの(N— 1)個の アツド手段ドロップ手段対が左回り用に供されるのである。なお、このアツド手段とドロ ップ手段は具体的には誘電体薄膜フィルタであっても良レ、し、ファイバーブラッグダレ 一ティングフィルタなどであっても良レ、。
[0046] 上記の波長配置では、例えば(3)式のマトリクスの非対角成分の右上半面は任意 に決めることができるが、左下反面は右上半面に対応して一意にきまってしまう。これ は使用する波長数を少なくするには有効である力 波長配置の自由度が減ると言う 欠点もある。そこで、別の実施形態としてノード 1からノード 2への通信経路の波長とノ ード 2からノード 1への通信経路の波長を一致させないでネットワークを構成しても良 レ、。この場合は使用する波長数が 2倍に増えてしまうが、波長配置が自由になるとい う利点がある。
[0047] 図 6に示したように一本の光ファイバを用いて上りと下りで波長を変えて通信経路を 形成する場合は(3)式に示すような波長配置を取ることはできる、例えばノード間に フルメッシュを形成するには 56通りの波長が必要となる。一般的に言うなら、図 6の通 信ネットワークでは Nノード間に 2M個の波長を設けることによってフルメッシュが形成 される。ここで、 Mは(1)式で示された値である。
[0048] ノード 1からノード 2への通信経路の波長とノード 2からノード 1への通信経路の波長 を一致させない場合の波長配置は以下の式で与えられる。
[数 4]
Figure imgf000015_0001
^ = Ψ (i = J)
\ < i , j≤N ( 6 )
[0049] (5)式及び(6)式で洗わせられる波長配置は、 1本の光ファイバで上りと下りの波長 を変えて双方向伝送を実現する場合にも用いることができる。
[0050] 光アツドドロップマルチプレクサ一にはフルメッシュの通信経路を実現できるように 波長配置しておき、その内の一部の通信経路を使わない実施形態もある。フルメッシ ュとは N個のノード間に考えられる全ての経路を備えたものであるので、フルメッシュ 経路の一部の経路を使わないことによってスター状のトポロジーを実現したりすること あでさる。
[0051] 図 8において右回り用に光信号と左回り用に光信号をさらに波長多重化して一本の 光ファイバで実現する形態もある。例えばエルビウムドープファイバ光増幅器 103に C—バンド(1530_1560nm)光増幅器を用レ、、エルビウムドープファイバ光増幅器 1 0Lに L—バンド(1565_1605nm)光増幅器を用レ、、右回りと左回りの信号とを図示 しない波長多重化器によって一本の光ファイバに多重化する実施形態である。エル ビゥムドープファイバ光増幅器 103の入力ポート 107aと光アツドドロップマルチプレク サー 102の出力ポート 108bとを図示しない波長多重化器によって多重化し、同様に エルビウムドープファイバ光増幅器 104の入力ポート 108aと光アツドドロップマルチ プレクサー 101の出力ポート 107bとを図示しない波長多重化器によって多重化すれ ばよい。
[0052] なお、同じ C一バンドのエルビウムドープファイバ光増幅器を用いて、 C—バンドの中 を短波長側と長波長側に分けても良い。
[0053] なお、上記実施例では誘電体薄膜フィルタ型スリーポートデバイスによって光アツド ドロップマルチプレクサ一を実現している力 S、これは他の手段、例えば、ファイバーブ ラッググレーティングフィルタ(FBG)と光サーキユレータを組み合わせて、光アツドド ロップマルチプレクサ一を実現することもできる。
[0054] また、光増幅器として、エルビウムドープファイバ光増幅器に限らず、他の希土類ド ープファイバ光増幅器、ラマン光増幅器、半導体レーザ光増幅器、希土類ドープ平 面導波路光増幅器などを用いても良い。
実施例 4
[0055] 図 10に本発明の実施例 4の波長ルータの内部構造を示す。本実施例は図 8の波 長ルータの変形例である。図 10 (a)は実施例 3の場合を示し、エルビウムドープ光フ アイバ増幅器 103が前置増幅器として光アツドドロップマルチプレクサ一(OADM) 1 01の前に配置されている。
[0056] 図 10 (b)ではエルビウムドープ光ファイバ増幅器 105がブーストアンプとして光アツ ドドロップマルチプレクサ一(OADM) 101の後段に配置されている。また、図 10 (c) では、エルビウムドープ光ファイバ増幅器 103が前置増幅器として、エルビウムドープ 光ファイバ増幅器 105がブーストアンプとして、それぞれ配置されている。
[0057] 図 10 (a)、 (b)、 (c)はいずれも動作可能である力 光アツドドロップマルチプレクサ 一 (OADM) 101のアイソレーション特性を考慮すると図 10 (a)ないし )が望ましレヽ 。長距離伝送特性という観点からは、前置増幅器とブースターアンプを配置した図 1 0 (c)が最も望ましい。一方、コストという観点からは図 10 (a)ないし (b)が望ましい。
[0058] 図 11を用いて、光アツドドロップマルチプレクサ一(OADM) 101のアイソレーショ ン特性とエルビウムドープ光ファイバ増幅器の配置の関係を説明する。光アツドドロッ プマルチプレクサ一(OADM) 101内部には誘電体薄膜フィルタ型スリーポートデバ イス 131及び 132が設けられている。誘電体薄膜フィルタ型スリーポートデバイス 131 によってポート 136側からの光信号 133がアツドされ、誘電体薄膜フィルタ型スリーボ ートデバイス 131によって光信号 134がドロップされている。図 10 (b)に示すように光 アツドドロップマルチプレクサ一(OADM) 101の全段にエルビウムドープ光ファイバ 増幅器が無い場合、光信号 134は長距離の伝送によって減衰している場合がある。 一方、アツドされる光信号 133は強力である。例えば、光信号 134は一 25dBm程度ま で減衰すること力ある。一方、光信号 133は OdBm程度である。すると、光信号 133 が誘電体薄膜フィルタ型スリーポートデバイス 132からポート 137側へ漏れていく光 量 135が無視できなくなる場合が生じる。
[0059] 誘電体薄膜フィルタ型スリーポートデバイスが他の波長の光の信号を漏らさない割 合をアイソレーション 138と呼んでいる力 この値は通常 25ないし 30dB程度ある。こ こでアイソレーションが 25dBとは漏れ光量力 S-25dBに減衰することを差している。ァ イソレーシヨンとレ、う場合は通常、マイナスは省レ、て表す。
[0060] したがってポート 137へドロップされた受信光信号 134が _25dBmであるのに、漏 れ光量 135がー 30dBに達し、その差がわずか 5dBしかないことになる。通常、信号 成分 (この場合は受信信号 134)と雑音信号 (この場合は漏れ光量 135)の差は少な くとも 20dB、好ましくは 25dBは必要と言われているため、これでは受信信号 134を 正しく受信することができなレ、(図 11 (b)参照)。
[0061] また、遠いノードから何段も光アツドドロップマルチプレクサ一を通過して減衰した信 号を受信する場合に、近いノードからの強力な信号がクロストークを発生させることも ある。
[0062] 図 10 (a)のようにエルビウムドープ光ファイバ増幅器 103が光アツドドロップマルチ プレクサー(〇ADM) 101の全段に配置されているとドロップされる受信光信号も Od Bmに近い値に増幅されているため上記のような信号対雑音比の低下という問題が 生じない。したがって、この観点からは図 10 (a)あるいは図 10 (c)のような構成が望ま しいことになる。すなわち、図 10 (a)あるいは図 10 (c)のような構成を用いれば、アイ ソレーシヨンの値が 25なレ、し 30dB程度の光アツドドロップマルチプレクサ一(OAD M)を用いることができ、特別にアイソレーションを高めた光アツドドロップマルチプレ クサ一(OADM)を用いる必要が無レ、。
[0063] 図 12は本実施例にさらにエルビウムドープファイバ光増幅器 103の利得制御機構 を取り付けた場合を示す。光アツドドロップマルチプレクサ一(OADM) 101のポート 141からドロップされた光信号の一部を光ファイバカプラ 142で取り出し、エルビウム ドープファイバ光増幅器 103のポート 143に入力する構造としてある。エルビウムドー プファイバ光増幅器 103はポート 143の入力光信号に応じて利得を変化させ、ポート 143からの光信号強度を略一定に保つように動作する。
[0064] 光ファイバカプラ 142の分岐比はポート 143側への分岐が 1/10ないし 1/100程 度となるように選ばれるのが好ましい。ポート 141からの光信号は通常の光信号が用 いられても良いが、ネットワーク監視のためのモニターチャネル(あるいはスーパバイ ザチャネル)の光信号を用いる頃が特に好ましい。
[0065] なお、図 12ではエルビウムドープファイバ光増幅器 103内に光量の検出機構を設 けたが、光アツドドロップマルチプレクサ一(OADM) 101に接続されるべき光トラン シーバに受信光量の検出機構を設け、その検出結果を電気信号の形でエルビウム ドープファイバ光増幅器 103に送って、利得制御を行うようにしても良い。この方法は 光トランシーバの構造が複雑になるものの、光量損失が少ないという利点がある。 実施例 5
[0066] 図 14に本発明の実施例 5の波長ルータ(光アツドドロップマルチプレクサ一)を示す 。以下に述べるデュプリケート誘電体薄膜フィルタ型スリーポートデバイスを用いたこ とが大きな特徴である。
[0067] コリメータとフィルタを共用して実質的に 2個の誘電体薄膜フィルタ型スリーポートデ バイスを形成することができる。図 13はこのようなデュプリケート誘電体薄膜フィルタ 型スリーポートデバイス!^の構造を示す図である。入射ポート 151、反射ポート 152 、透過ポート 153でひとつの誘電体薄膜フィルタ型スリーポートデバイスを形成し、ま た、入射ポート 161、反射ポート 162、透過ポート 163で別のひとつの誘電体スリーボ ートデバイスを形成している。コリメータレンズ 154と 156、誘電体薄膜フィルタ 155は 共用されている。誘電体薄膜フィルタが共用されているので上記のようにして形成さ れるふたつの誘電体薄膜フィルタ型スリーポートデバイスの透過波長は同一である。
[0068] 図 1に示した波長ルータ^は同じ波長の誘電体薄膜フィルタ型スリーポートデバイ スを多数用いている。例えば、誘電体薄膜フィルタ型スリーポートデバイス 1、 2、 7、 及び 8は; 1 1の波長である。したがって、これらの誘電体薄膜フィルタ型スリーポート デバイスに図 13に示すようなデュプリケート型誘電体薄膜フィルタ型スリーポートデ バイス 150を用いて、実際に使用する誘電体薄膜フィルタゃコリメータレンズの数を 減らすことができ、ひいてはコストを削減することができる。
[0069] 図 11において説明したようなアイソレーションの問題は実は図 5に示した波長ルー タ(光アツドドロップマルチプレクサ)においても生じる。このようなアイソレーション不 足を解消するために図 14に示すように光信号をドロップするポートに誘電体薄膜フィ ルタ型スリーポートデバイスを二重に設けることがある。図 14は図 5の波長ルータ: m のドロップポートにこのような二重フィルタ構成を設けた構成である。フィルタ一段のァ イソレーシヨンが 25dBであったとするとフィルタを 2段重ねるとアイソレーションは 2倍 の 50dBになる。したがって、アイソレーション不足を解消することができるのである。
[0070] 図 14において、誘電体薄膜フィルタ型スリーポートデバイス 62a及び 62bを図 13に 示したデュプリケート型誘電体薄膜フィルタ型スリーポートデバイスによって構成する こと力 Sできる。このようにすれば実際に使用される誘電体薄膜フィルタ及びコリメータ レンズの数を減らしてコストを削減することができる。同様に誘電体薄膜フィルタ型スリ 一ポートデノイス 64aと 64b、誘電体薄膜フィルタ型スリーポートデバイス 66aと 66b、 誘電体薄膜フィルタ型スリーポートデバイス 68aと 68bをそれぞれデュプリケート型誘 電体薄膜フィルタ型スリーポートデバイスによって構成することができる。さらに、誘電 体薄膜フィルタ型スリーポートデバイス 61と 63、誘電体薄膜フィルタ型スリーポートデ バイス 65と 67もそれぞれ対をなしてデュプリケート型誘電体薄膜フィルタ型スリーボ ートデバイスに置き換えることができる。
実施例 6
[0071] 図 15 (a)にダブルパス型の誘電体薄膜フィルタスリーポートデバイス を示す。こ れは入射ポート 181からの光がコリメータ 184を経て誘電体薄膜フィルタ 185へ導か れ反射光は反射ポート 182へと導かれ、透過光はミラー 186で反射されてから、もう 一度誘電体薄膜フィルタ 185を透過して、コリメータ 184を経て透過ポート 183へと透 過光を導く方式である。透過光は誘電体薄膜フィルタを 2回透過(ダブルパス)するの で、アイソレーションが 2倍になる。また、コリメータレンズは 1個で済み、入射ポート、 反射ポート、透過ポートが全て、誘電体薄膜フィルタ 185に対して同じ側に設けること ができるという特徴がある。
[0072] 図 15 (b)にさらに本発明の第 6実施例であるデュプリケート構造のダブルパス型誘 電体薄膜フィルタスリーポートデバイス!^を示す。入射ポート 181、反射ポート 182 、透過ポート 183でひとつのダブルパス型誘電体薄膜フィルタスリーポートデバイスを 形成し、入射ポート 191、反射ポート 192、透過ポート 193で別のひとつのダブルパ ス型誘電体薄膜フィルタスリーポートデバイスを形成している。そして、このふたつの ダブルパス型誘電体薄膜フィルタスリーポートデバイスはコリメートレンズ 184、誘電 体薄膜フィルタ 185、ミラー 186を共用しているので部品点数が減り、コストを削減す ること力 Sできる。
[0073] ダブルパス型誘電体薄膜フィルタフィルタスリーポートデバイスは光アツドドロップマ ルチプレクサーの光信号のドロップを行うポートに用いることにより、図 11で示したよう なアイソレーション不足の問題を解決することができる。
[0074] また、デュプリケート構造のダブルパス型誘電体薄膜フィルタスリーポートデバイス は、例えば、図 5の誘電体薄膜フィルタスリーポートデバイス 62と 64を置き換えたりす ること力 Sできる。光アツドドロップマルチプレクサ一は同一波長の光信号をアツドしてド ロップするために同じ波長の誘電体薄膜フィルタスリーポートデバイスを複数使う構 造となることが多いので、デュプリケート型の誘電体薄膜フィルタスリーポートデバイス を用いることによって部品点数を削減し、コストを低減すること力 Sできる。
実施例 7
[0075] 図 16に図 14の波長ルータ(光アツドドロップマルチプレクサ一) USをボックスに実 装した実施例皿を示す。二段フィルタを用いたポートをドロップポートとして用いる 必要があるので、ドロップポートとアツドポートの誤用を防がなくてはならなレ、。そこで 本実施例では、ボックスの上面に波長ルーティング経路を示す図面 201を設け、ボッ タス前面 202の各ポート(レセプタクル) 210ないし 219に波長及び送受信の区別、 右回り、左回りの区別を示す記号を表示したことが特徴である。ボックス前面 202の 各記号は、波長を λ 1、 え 2、 え 3、 λ 4として表し、送信を Τχ、受信を Rx、右回りを Ri ght、左回りを Left、コモンポートを Cとして表している。
[0076] レセプタクル 210は左回りのコモンポート、レセプタクル 211は左回りの波長 λ 1の 送信ポート、レセプタクル 212は左回りの波長え 2の受信ポート、レセプタクル 213は 左回りの波長え 3の送信ポート、レセプタクル 214は左回りの波長え 4の受信ポート である。また、レセプタクル 215は右回りの波長 λ 1の送信ポート、レセプタクル 216 は右回りの波長 λ 2の受信ポート、レセプタクル 217は右回りの波長 λ 3の送信ポー ト、レセプタクル 218は右回りの波長; 1 4の受信ポート、レセプタクル 219は右回りの コモンポートである。
[0077] 図 17に図 14の波長ルータ(光アツドドロップマルチプレクサ一) USをボックスに実 装した別の実施例 βを示す。ボックスの上面に波長ルーティング経路を示す別の 図面 221を設けてある。この図面は自局(Station_l)と他の局(Station_2、 Statio n— 3)とがどのようにルーティングされているかを示した図となっている。ユーザから見 た場合、各局(ノード)が物理的にどのように接続されているかより、論理的な接続形 態の方が重要な場合があり、図 17の実施例はそのような場合に有用な表示方法であ る。
[0078] ボックス前面 222の各記号は、波長を λ 1、 え 2、 え 3、 λ 4として表し、送信を Τχ、 受信を Rx、右回りを Right、左回りを Left、コモンポートを Cとして表している。また、 Station— 2と Station_3の表示は通信経路の相手先を示している。 [0079] ボックス前面 222に設けられている各レセプタクルの接続は図 16の場合とは異なつ ている。レセプタクル 230は左回りのコモンポート、レセプタクル 231は左回りで Stati on-2へ向力う波長 λ 1の送信ポート、レセプタクル 232は左回りで Station— 2から受 け取る波長 λ 2の受信ポート、レセプタクル 233は右回りで Station— 2へと向力、う波 長 λ 1の送信ポート、レセプタクル 234は右回りで Station— 2から受け取る波長 λ 2 の受信ポートである。また、レセプタクル 235は左回りで Station— 3へと向力 波長; I 3の送信ポート、レセプタクル 236は左回りで Station— 3から受け取る波長 λ 4の受 信ポート、レセプタクル 237は右回りで Station— 3へと向力 波長 λ 3の送信ポート、 レセプタクル 238は右回りの Station— 3から受け取る波長 λ 4の受信ポート、レセプ タクル 239は右回りのコモンポートである。
[0080] 図 18は図 14の波長ルータ(光アツドドロップマルチプレクサ一) USをパッチコード ^として実装した場合を示している。をパッチコード ^本体上面 241には各局(S 1、 S2、 S3として表示)の間の信号経路が示されている。パッチコードから出てくる光 ファイバーコード 244の先に光コネクタ 242が設けられ、光コネクタ 242の近くにタグ 2 43が設けられており、各タグには各光コネクタの波長、役割、通信経路などが示され ている。
実施例 8
[0081] 実施例 7の構成は光アツドドロップマルチプレクサ一に限らず有用である。図 19に は、上り波長と下り波長を変えることによって一本の光ファイバ 270上で双方向伝送 を実現した光ファイバ通信ネットワークを示す。
[0082] 図 19において、波長多重化器^は誘電体薄膜フィルタ型スリーポートデバイス 2 51ないし 254を備えている。また、波長多重化器 ^は誘電体薄膜フィルタ型スリー ポートデバイス 261なレ、し 264を備えてレ、る。
[0083] 波長多重化器^のポート 255には送信用の波長 λ 1の光信号が、ポート 256に は送信用の波長え 2の光信号が、それぞれ加えられる。それぞれ誘電体薄膜フィル タ型スリーポートデバイス 251及び 252によって多重化された光信号は共通ポート 25 9、光ファイバ 270、波長多重化器^の共通ポート 269に送られる。多重化された 光信号は波長多重化器^内の誘電体薄膜フィルタ型スリーポートデバイス 261及 び 262によって、それぞれ元の波長え 1及びえ 2の光信号に分離されて、それぞれ ポート 265と 266へと出力される。
[0084] 波長多重化器 のポート 267には送信用の波長え 3の光信号が、ポート 268に は送信用の波長 14の光信号が、それぞれ加えられる。それぞれ誘電体薄膜フィル タ型スリーポートデバイス 263及び 264によって多重化された光信号は共通ポート 26 9、光ファイバ 270、波長多重化器 の共通ポート 259に送られる。多重化された 光信号は波長多重化器^内の誘電体薄膜フィルタ型スリーポートデバイス 253及 び 254によって、それぞれ元の波長; 1 3及び; 14の光信号に分離されて、それぞれ ポー卜 257と 258へと出力される。
[0085] これら波長多重化器 250ないし 260は、最も単純な機能を有する波長ルータと見な すことができる。なぜなら、ポイント 'ツー ·ポイントではあるが波長ルーティングを行つ ているからである。
[0086] 波長多重化器 250において、共通ポート 259に近い位置に送信用の誘電体薄膜 フィルタ型スリーポートデバイス 251ないし 252を配置するのには意味がある。このこ とを図 20を用いて説明する。
[0087] 図 20において、ポート 281は入射ポート、ポート 282は反射ポート、ポート 283は透 過ポートである。またこれらポートとコリメータ 284、誘電体薄膜フィルタ 285、コリメ一 タ 285から誘電体薄膜フィルタ型スリーポートデバイス^ は成り立っている。ここで、 誘電体薄膜フィルタ型スリーポートデバイス において、透過ポート 283側から送 信用の光信号を入射させると、反射ポート 282側へはクロストークがほとんど生じない ことが知られている。透過ポート 283側から入射した光の内クロストークとなる成分は 方向 287側へ反射し、反射ポート 282へと結合する方向 288側へ伝搬する成分がほ とんど生じないためである。
[0088] また、入射ポート 281のすぐ近傍に光コネクタなどがあって大きな反射(空気ーガラ ス界面のフレネル反射によって生じるレ、わゆる _13dB反射)が生じてレ、るような場合 にも図 19の構成は効果を発する。入射ポート 281近傍からのフレネル反射光は大半 が透過ポート 283へと導かれ、方向 288側へ反射される光量は入射光に対して- 15 dBないし一 20dBに減衰することが知られている。この減衰量が、受信側の誘電体薄 膜フィルタ型スリーポートデバイス 253、 254、 261、ないし 262などのアイソレーショ ンに加算されることになる。したがって、合計で 40dBないし 50dB程度の実効的なァ イソレーシヨンが実現でき、クロストークの問題を排除することができる。
[0089] 上記の性質を利用して、波長多重化器 250では、共通ポート 259に近い位置に送 信用の誘電体薄膜フィルタ型スリーポートデバイス 251ないし 252を配置した。この 結果、図 11で説明したようなアイソレーション不足の問題を生じることなぐ一本の光 ファイバ上で上り下りに異なる波長を用いて双方向伝送を実現することができる。な お、図 19では 4つの波長を用いて 2チャネルの全二重通信経路を実現している力 2 波長を用いて 1チャネルの全二重通信経路を実現したり、 8波長を用いて 4チャネル の全二重通信経路を実現することもできる。いずれの場合も、送信用の誘電体薄膜 フィルタ型スリーポートデバイスを、受信用の誘電体薄膜フィルタ型スリーポートデバ イスよりも共通ポートに近い側に配置しておく必要がある。
[0090] さて、図 21には本発明の実施例 8の波長ルータ(波長多重化器)をボックス 及 び に実装した例を示す。本実施例では、送信ポートと受信ポートを区別して誤用 を防ぐようにしないとアイソレーションの問題が生じることがある。そこで、ボックス 290 及び の上面に波長ルーティング経路を示す図面 291、 301をそれぞれ設けた。 図面 291、 301に示されている波長ルーティング経路は図 19に示した実際の誘電体 薄膜フィルタ型スリーポートデバイスの接続とは異なっている力 ユーザから見て解り 易い表現となっている。
[0091] ボックス の前面 292の各ポート(レセプタクル) 255ないし 258は図 19 (a)のポ ートに対応させてある。ボックス前面 292には送信を Tx、受信を Rxとしたほカ チヤ ネル(全二重の通信経路)をそれぞれ CH1、 CH2として示した。また波長は λ 1、 λ 2、 λ 3、 λ 4として表してレ、る。共通ポートはコモンポート Cとして表している。
[0092] ボックス皿の前面 302の各ポート(レセプタクル) 265ないし 268は図 19 (b)のポ ートに対応させてある。ボックス前面 292には送信を Τχ、受信を Rxとしたほ力、、チヤ ネル(全二重の通信経路)をそれぞれ CH1、 CH2として示した。また波長は λ 1、 λ 2、 λ 3、 λ 4として表してレ、る。共通ポートはコモンポート Cとして表している。
[0093] なお、本実施例では波長多重化器をボックスに実装した場合を示したが、パッチコ ードとして実装しても差し支えなレ、。
実施例 9
[0094] 図 22に本発明の実施例 9の波長ルータ(光アツドドロップマルチプレクサ一) を 示す。実施例 8で示した送信用の誘電体薄膜フィルタ型スリーポートデバイス 321、 3 22、 327、及び、 328を出力ポートに近い位置に配置してアイソレーション不足を補う 方法と波長配置を工夫することによって、二重フィルタやダブルパス構造を用いない で波長ルータ 311ないし 313を実現している。なお、誘電体薄膜フィルタ型スリーボ ートデバイス 323、 324、 235、及び 326は受信用に用いられている。また、参照番号 315は光ファイバ、参照番号 331ないし 338はアツドロップポートを示している。
[0095] 波長ルータ 311は波長 λ 1、 λ 2、 え 4、 え 5を用いている。波長ルータ 312は波長 λ 1、 λ 2、 え 7、 え 8を用レヽてレヽる。波長ノレータ 313は波長え 4、 え 5、 λ 7、 λ 8を用 いている。
[0096] 低密度波長多重(CWDM)で好適に用いられる 8つの波長、 λ 1 = 1470ηπι、 1 2 = 1490應、 λ 3 = 1510應、 ぇ4 = 1530應、 λ 5 = 1550應、 λ 6 = 1570應、 7 = 1590nm、 え 8 = 1610nm力ら、 λ ΐとえ 2、 え 4とえ 5、 λ 7とえ 8の 3対の波長 を選んだところに本発明の特徴がある。対となる波長同士をそれぞれ送信用波長と 受信用波長として使用し、波長フィルタに実施例 8に示した技法を使うことによって、 対となる波長間のアイソレーション不足をまず補っている。さらに対となる波長間に一 つ分だけ波長を空けることによってさらにアイソレーション不足を補っている。
[0097] もしも、連続して波長を使ったとすると、例えば図 23に示したようなクロストーク 340 の問題が生じる。図 23では波長ルータ 311に波長 λ 2の光信号がドロップされてい て、波長 3の光がバイパスされている。ここで、波長; 1 2の光信号が遠方のノードから のもので大きく減衰していて、例えばその光強度が— 30dBmであったとする。一方、 波長 λ 3の光信号は近接ノードからのものでほとんど減衰しておらず OdBmの強度で あつたとする。波長 λ 2と波長 λ 3の間のアイソレーションは一段フィルタであるなら 3 OdB程度しかないので、波長 λ 3からのクロストークと波長え 2の光信号強度がほぼ 等しくなり、まともに受信することはできない。
[0098] 低密度波長多重用の誘電体薄膜フィルタ型スリーポートデバイスは、隣接波長には 25ないし 30dB程度のアイソレーションしかないが、非隣接波長に対しては 50ないし 60dB程度のアイソレーションがある。それで、本実施例のように波長え 3をつかわな レ、とすると波長ルータ 311をバイパスする波長は、全て非隣接波長となるため、上記 のような問題が生じないのである。
[0099] 図 22の波長ルータは図 6ないし図 7で示したようにリング状の光ファイバ通信ネット ワーク上にフルメッシュ型の通信経路を構成させるために用いることができる。さらに 、図 24に示す波長ルータと組み合わせればリング状の光ファイバ通信ネットワーク上 にスター型の通信経路を構成することもできる。
[0100] 図 24にスター型通信路形成用の波長ルータ^を示す。送信用の誘電体薄膜フ ィルタ型スリーポートデバイス 361及び 364を外側に配置し、受信用誘電体薄膜フィ ルタ型スリーポートデバイス 362及び 363を内側に配置している。参照番号 355は光 ファイバ、参照番号 365ないし 368はアツドドロップポートを示している。
[0101] 波長ルータ 351は波長 λ 1、 λ 2、を用レ、てレ、る。波長ルータ 352は波長 λ 4、 λ 5 、を用いている。波長ノレータ 353は波長 λ 7、 λ 8を用いている。波長ルータ 354は 波長 λ 7、 λ 8を用いているが、波長ルータ 353と送信用波長と受信用波長が反対に なっている。
[0102] 図 25に波長ルータ 311、 351、 352、 353、及び 354で形成した光通信ネットヮー クを示す。一本の光ファイノ 361 ίこよって、波長ノレータ 311、 351、 352、 353、及び 354は接続されている。波長ルータ 311を中心として波長ルータ 351及び 352はスタ 一型に接続されている。波長ルータ 311と波長ルータ 351及び 352の間にはそれぞ れ冗長化された全二重通信経路 362及び 363が形成されている。一方、波長ルータ 353及び 354の間には、ポイント'ッ一'ポイントの全二重通信経路 364が形成されて レヽる。波長ノレータ 311、 351、及び 352力らなるネットワークと、波長ノレータ 353及び 3 54からなるネットワークは論理的には独立している。
実施例 10
[0103] 図 26に本発明の実施例 10の波長ルータ(波長多重化器)を示す。本実施例は一 本の光ファイバで異なる波長を用いて双方向伝送行うための波長多重化器である。 本実施例は実施例 9で示した CWDM波長を飛び飛びに使う手法を応用したもので ある。
[0104] 誘電体薄膜フィルタ型スリーポートデバイス 370は波長 λ 6 (1570nm)を透過する 。また、誘電体薄膜フィルタ型スリーポートデバイス 380は波長え 4 (1530nm)を透 過する。誘電体薄膜フィルタ型スリーポートデバイス 370の反射ポート 372に波長 λ 4の送信光信号を入力している。また、誘電体薄膜フィルタ型スリーポートデバイス 37 0の反射ポート 382に波長; 14の送信光信号を入力している。光ファイバ 378を伝搬 してきた波長 λ 6の光信号は誘電体薄膜フィルタ型スリーポートデバイス 370の入射 ポート 371を経て透過ポート 373へと導かれる。光ファイバ 378を伝搬してきた波長 λ 4の光信号は誘電体薄膜フィルタ型スリーポートデバイス 380の入射ポート 381を 経て透過ポート 383へと導かれる。
[0105] 誘電体薄膜フィルタ型スリーポートデバイス 370では図 20において示したように反 射ポートに入射した光信号は光学系の位置関係により透過ポート 373へはほとんど 漏れていかなレ、。し力 ながら、入射ポート 371の近傍に反射点 374がある場合、送 信光信号 376が反射点 374で反射された光 377に対しては、隣接波長なら 25dB以 上、非隣接波長なら 50dB以上のアイソレーションが得られる。反射点 374での反射 量はガラス一空気界面のフレネル反射 4% (— 13dB)に達すること力 Sある。反射ポート 372に入力する光信号が OdBmの光信号であったとすると隣接波長の場合はクロスト ークは最大- 38dBmに達することになる。一方、誘電他フィルタ型スリーポートデバイ ス 380から送られてきた光信号は光ファイバ 378を伝搬する内に- 35dBmまで減衰 すること力 Sある。これでは S/N比(信号対雑音比)が 3dBしか取れず、まともに受信 することができない。
[0106] し力、しながら、本実施例では送信波長と受信波長を CWDM波長の非隣接波長で ある λ 4 = 1530nm及び λ 6 = 1570nmとしてレヽるので、誘電体薄膜フイノレタ型スリ 一ポートデバイス 370ないし 380はアイソレーションが 50dB以上とれることになる。す ると S/N比も 28dB以上取れることになり、良好な受信をするための条件、 SZN比 2 OdB以上 (好ましくは 25dB以上)を実現することができる。
[0107] 本実施例によれば 2波長を使って一本の光ファイバで双方向伝送を実現するのに それぞれ一個の誘電体薄膜フィルタ型スリーポートデバイスを用いるのでコスト削減 の効果がある。また、非隣接波長を用いたので十分なアイソレーションを得ることがで きる。なお、用いる波長は CWDM波長の非隣接波長であればよぐ X 4= 1530nm 及び λ 6 = 1570nmに限定されなレ、ことは言うも出もなレ、。
[0108] 図 27に本実施例を 4波長の場合に適用した例を示す。波長多重化器 390は誘電 体薄膜フィルタ型スリーポートデバイス 391、 392、及び 393力、ら成り立ってレ、る。また 、波長多重化器 400は誘電体薄膜フィルタ型スリーポートデバイス 401、 402、及び 4 03力、ら成り立ってレ、る。また、用いている波長は ITU— Tで定められた CWDM波長 の中力も λ 3 = 1510讓、 λ 4 = 1530讓、 ぇ6 = 1570讓、 λ 7 = 1590應を選ん でいる。
[0109] 波長多重ィ匕器 390は 4本のポート 395なレヽし 398を備えてレヽる。ポート 398力ら入 力した波長 λ 4の光信号は、誘電体薄膜フィルタ型スリーポートデバイス 393によつ てポート 397から入力した波長 λ 3の光信号と多重化されて、誘電体薄膜フィルタ型 スリーポートデバイス 392、 391を経てポート 399へ出力され、光ファイバ 410を経て 波長多重化器 400のポート 409へと達する。また、波長多重化器 400のポート 409か らの波長え 6及びえ 7の光信号は光ファイバ 410を経て、波長多重化器 390のポート 399に達し、次いで、誘電体薄膜フィルタ型スリーポートデバイス 391と 392によって それぞれポート 395、 396へと導カゝれる。
[0110] 波長多重化器 400は 4本のポート 405ないし 408を備えている。ポート 408から入 力した波長 λ 6の光信号は、誘電体薄膜フィルタ型スリーポートデバイス 403によつ てポート 407から入力した波長え 7の光信号と多重化されて、誘電体薄膜フィルタ型 スリーポートデバイス 402、 401を経てポート 409へ出力され、光ファイバ 410を経て 波長多重化器 390のポート 399へと達する。また、波長多重化器 390のポート 409か らの波長 λ 4及び λ 3の光信号は光ファイバ 410を経て、波長多重化器 400のポート 409に達し、次いで、誘電体薄膜フィルタ型スリーポートデバイス 401と 402によって それぞれポート 405、 406へと導カゝれる。
[0111] 図 27の構成によれば、 3個の誘電体薄膜フィルタ型スリーポートデバイスを用いて 4 波長の双方向伝送用波長多重化器を実現することができる。したがって、コスト削減 を行うこと力 Sできる。また、送信波長群と受信波長群の間に一波長分の間隔を置いた ので十分なアイソレーションを得ることができる。
実施例 11
[0112] 図 28に本発明の実施例 11の波長多重化器^を示す。この波長多重化器 4 Qは 一本の光ファイバで上りと下りで波長を変えて双方向伝送を行うための波長多重化 器である。実施例 9及び実施例 10で述べたように CWDMでは非隣接波長では高い アイソレーションが得られるので、これを利用して双方向伝送時のアイソレーションの 問題を解決することができる。
[0113] 本実施例では、波長多重化器 421において送信波長を λ l = 1470nm、 え 2 = 14 90應、 λ 3 = 1510應、及びえ 4 = 1530應と選び、受信波長をえ 5 = 1550應、 λ 6 = 1570應、 ぇ7 = 1590應、及び、 λ 8 = 1610應と選んだ。また、波長多重 化器 421と対をなして用いられる波長多重化器 422におレ、て、送信波長を λ 5 = 15 50應、 λ 6 = 1570應、 ぇ7 = 1590應、及び、 λ 8 = 1610應と選び、受信波長 を λ 1 = 1470應、 λ 2 = 1490應、 λ 3 = 1510應、及びえ 4= 1530應と選んだ
[0114] 波長多重化器 421は 7個の誘電体薄膜フィルタ型スリーポートデバイス 431ないし 437力、ら成り立ってレヽる。また、ポート 441なレヽし 444fま波長; 1 1なレヽし λ 4に対応す る受信ローカルポート、ポート 445ないし 448は波長 λ 5ないし; 1 8に対応する送信口 一カルポートである。また、ポート 449は送受信リモートポートである。
[0115] 波長多重化器 421において、特に、波長 4 = 1530nmの誘電体薄膜フィルタ型 スリーポートデバイス 434として、ダブルパス型の誘電体薄膜フィルタ型スリーポート デバイス 434を用いている。ダブルパス型の誘電体薄膜フィルタ型スリーポートデバ イスは図 15 (a)に示したような構造をしていて、隣接波長に対しても高いアイソレーシ ヨンを有してレ、る。これは波長 λ 4の場合は隣接波長である λ 5の光信号が用いられ ているため、送受信リモートポート 449の近傍で反射が生じるとアイソレーション不足 の問題が生じる場合があるために、この波長 λ 4には特に高い隣接波長アイソレーシ ヨンを備える必要があるからである。他の波長については、隣接波長が反射されて戻 つてくる心配がないために、通常の誘電体薄膜フィルタ型スリーポートデバイスを用 いている。また、波長多重化器 421と対をなして用いられる波長多重化器 422におい てはえ 5の波長の誘電体薄膜フィルタ型スリーポートデバイスにダブルパス型誘電体 薄膜フィルタ型スリーポートデバイスを用いている。
[0116] なお、ダブルパス型誘電体薄膜フィルタ型スリーポートデバイスに代えて単純な二 段フィルタを用いたり、図 15 (b)に示すデュプリケート型誘電体薄膜フィルタ型スリー ポートデバイスを用いた二段フィルタを用いても良レ、。 CWDM波長において連続し た送信波長群と連続した受信波長群を設けた時に、境界となる波長の受信ポートに のみ高い隣接波長アイソレーションを有する誘電体薄膜フィルタ型スリーポートデバ イスを設ければよいのである。
[0117] 図 29は波長多重化器をパッチコードとして実装した実施例を示す。誘電体薄膜フ ィルタ型スリーポートデバイス間は光ファイバを融着して結線を行うのである力 融着 器にはある程度の長さの光ファイバが必要である。そのため、通常は長方形の箱の 中に誘電体薄膜フィルタ型スリーポートデバイス群を設け、光ファイバを円弧状に配 線している。これに対して、本実施例では、誘電体薄膜フィルタ型スリーポートデバイ ス群 431、 433、 435、 437を/、ウジング 451 ίこ実装し、また、誘電体薄莫フイノレタ型 スリーポートデバイス群 432、 434、 436をハウジング 453に実装し、ふたつのハウジ ング間をコード 452によって接続している。図 29 (a)は図 28に示した波長多重化器 の回路図を対応させた図であり、図 29 (b)は実際の実装の様子を示す図である。ま た、ハウジング 451にはフック 454を設け、ハウジング 453にはフック 455を設けてあ る。これらのフックは、ルータやスィッチなどの装置の前面パネルで光コネクタや適当 な取り付け金具に引っかけられて保持されるための機具である。
[0118] 図 29 (b)に示したパッチコード型の波長多重化器は、ふたつのハウジングをコード で接続した形なのでルータやスィッチなどの前面パネルなどにフレキシブルに取り付 けることができるという利点がある。また、従来のように長方形の箱の中に実装した場 合に比べて小型であるとレ、う利点がある。
[0119] 2段フィルタやデュプリケート型誘電体薄膜フィルタ型スリーポートデバイスをダブル パス型誘電体薄膜フィルタ型スリーポートデバイス 434の代わりに用いるとハウジング 453内にループ状の光ファイバの配線をしなくてはならず、ハウジングの大型化を招 く。したがって、パッチコードとして図 28の波長多重化器を実装する場合はダブルパ ス型誘電体薄膜フィルタ型スリーポートデバイスの採用が望ましい。
[0120] なお、波長多重化器や光アツドドロップマルチプレクサなどの波長ルータを、図 29 のように誘電体薄膜フィルタ型スリーポートデバイス群を 2群に分けてハウジングに実 装し、ハウジング間をコードでつないで良いことは言うまでもなレ、。すなわち、図 29の 構成は図 28の回路構成に限定されることはない。
実施例 12
[0121] 図 30ないし図 32を用いて本発明の実施例 12の波長ルータ及び光通信ネットヮー クについて説明する。実施例 9において図 25を用いて説明したように、本発明の波 長ルータを用いると、複数の論理的ネットワークトポロジーをリング状光ファイバネット ワーク上に形成することができる。本実施例は波長数をより多く用いることのできる高 密度波長多重(DWDM)を用いて、柔軟なネットワーク構造を形成するものである。
[0122] 図 30 (a)において波長ルータ 461ないし 468が 2本の光ファイバ 471及び、 472に よって二重リング状に接続されている。実施例 3において図 9及び図 8を用いて説明 したネットワークと構造は類似している。実施例 3との違いは、全ての波長ルータ間に フルメッシュ状のネットワークが形成されているのではないことである。まず、波長ルー タ 461、 464、 465、及び 468の間に波長 λ 1なレヽし λ 6を用レヽてフノレメッシュネットヮ ークが形成されている。また波長ノレータ 461を中心として波長ノレータ 462と 463との 間に第一のスター状ネットワーク (スター 1)が波長 λ 7と波長 λ 8とを用いて形成され ている。さらに波長ルータ 468を中心として波長ルータ 466と 467との間に第二のス ター状ネットワーク(スター 2)が波長; 1 9と波長; 1 10とを用いて形成されている。この ような波長配置を図 30 (b)に示す。
[0123] スター型のトポロジーは中心(親局)となる波長ルータには子局数 Nの波長数をアツ ドドロップできる光アツドドロップマルチプレクサ一を配置し、子局の波長ルータには その子局を特定するひとつの波長だけをアツドドロップする光アツドドロップマルチプ レクサーを配置する。したがって、最大 N個の子局を収容するスター型トポロジーの 親局は N波長の光アツドドロップマルチプレクサ一を備える。ただし、一本の光フアイ バで上りと下りの波長を変えて双方向伝送をする場合は、 2N個の波長数が必要とな る。 [0124] 図 31は、一例として波長ルータ 461の内部構造を示す。入力ポート 492aからの光 信号はエルビウムドープファイバ光増幅器 491aで増幅された後、第一の光アツドドロ ップマルチプレクサ一(〇ADM) 481a、第二の光アツドドロップマルチプレクサ一(〇 ADM) 482aを経て出力ポート 493aと送られる。第一の光アツドドロップマルチプレク サー(〇ADM) 481aは波長 λ 1ないし; I 6を用いてフルメッシュを形成するような波 長配置を有している。一方、第二の光アツドドロップマルチプレクサ一(OADM) 482 aは波長 λ 7と λ 8を用いてスター 1を形成するような波長配置を有している。
[0125] このように複数のネットワークトポロジーを図 30のようなリング状光ファイバトポロジー 上に形成するには、必要に応じて適当な波長配置を有する光アツドドロップマルチプ レクサーを縦接続すれば良レ、。
[0126] なお、エルビウムドープファイバ光増幅器 491b、光アツドドロップマルチプレクサ一 481b, 482bはポート 492bからの光信号に対して上記と同様の光増幅、アツドドロッ プを行っている。
[0127] 図 32は本実施例の変形例の波長ルータである。この図では波長ルータの半分、す なわち、図 32上の左側からの光信号を増幅、光アツドドロップして右側へ送る機能部 分のみを示している。実際には、図 32上の右側からの光信号を増幅、アツドドロップ すべぐ図示しない光増幅器と光アツドドロップマルチプレクサ一が波長ルータには 備えられている。
[0128] さて、図 32 (a)においてはエルビウムドープファイバ光増幅器 491cの後段に第一 の光アツドドロップマルチプレクサ一 483が接続されてレ、る。この光アツドドロップマル チプレクサー 483は図 8に示した光アツドドロップマルチプレクサ一 101と同様の構造 をしており、波長 λ 1ないし; 1 28を用いて 8個のノード(波長ルータ)間にフルメッシュ 状のネットワークを形成してレ、る。光アツドドロップマルチプレクサ一 483の後段には 第二の光アツドドロップマルチプレクサ一 484が接続されている。
[0129] この第二の光アツドドロップマルチプレクサ一 484は図 32 (b)に示すような構造を有 してレ、る。 2つのアレイ状導波路回折格子 485aと 485bからなる光アツドドロップマル チプレクサーである。この 2つのアレイ状導波路回折格子 485aと 485bは波長 λ 29 力、ら; 144の 16波長をマルチプレタス及びデマルチプレタスすることができる。アツドド ロップしない波長は 2つのアレイ状導波路回折格子 485aと 485bの対応するポート間 を光ファイバで短絡し、アツドドロップする波長は対応するポートを外部に引き出して いる。
[0130] なお、アレイ状導波路回折格子に代えて、誘電体薄膜スリーポートデバイスを多重 縦接続して形成した波長多重化器や、ファイバーブラッググレーティングフィルタを多 重縦接続した波長多重化器などを用いても良レ、。要は波長多重化器 (マルチプレク サー、デマルチプレクサ一)を向かい合わせにすればよいのである。
[0131] 図 32 (a)及び、図 32 (b)のような構成としたので、図 32 (c)に示すような波長配置 を実現することができる。すなわち、波長 λ 1ないし; 1 28を用いてフルメッシュのネッ トワークを構築し、波長; 1 29ないし; 1 44を用いてさらに追加の通信経路を任意に設 けることができるのである。
[0132] フルメッシュ用光アツドドロップマルチプレクサ一、スター用光アツドドロップマルチ プレクサー、フリー用光アツドドロップマルチプレクサ一などを任意に縦接続すること によりリング状光ファイバネットワーク上に様々な通信経路を波長多重によって実現 すること力 Sできる。
[0133] 図 30 (b)や図 32 (c)において、各トポロジー形態(フルメッシュ、スター、フリーなど )に用いられる波長として連続した波長配置を示した。し力 ながら、この波長配置は 連続である必要はない。必要な数の波長を要素とする集合によって各トポロジー形 態を実現することができ、各波長が物理的に連続していなくてはならない必要はない
[0134] また、フルメッシュやスターなどのトポロジーの個数に制限は無ぐフルメッシュを 2 個あるいはそれ以上の数、備えるようにすることも差し支えなレ、。
実施例 13
[0135] 図 33に本発明の実施例 13の波長ルータを示す。これまで述べてきたフルメッシュ 型やスター型用の波長ルータ(光アツドドロップマルチプレクサ一)、は図 33に示す 基本構成要素の縦接続で実現することができる。
[0136] 図 33 (a)は 2本の光ファイバを用いて構成したネットワーク用の光アツドドロップマル チプレクサーの基本構成要素 500である。基本構成要素 500は 4つの誘電体薄膜フ ィルタ型スリーポートデバイス 501ないし 504力 成り立っている。 4つの誘電体薄膜 フィルタ型スリーポートデバイス 501ないし 504は波長え iの波長の誘電体薄膜フィル タを備えている。
[0137] 誘電体薄膜フィルタ型スリーポートデバイス 501の反射ポートは誘電体薄膜フィル タ型スリーポートデバイス 502の反射ポートに接続されている。誘電体薄膜フィルタ型 スリーポートデバイス 504の反射ポートは誘電体薄膜フィルタ型スリーポートデバイス 503の反射ポートに接続されている。誘電体薄膜フィルタ型スリーポートデバイス 50 1の入射ポートはこの基本要素の入力ポートのひとつとなり、誘電体薄膜フィルタ型ス リーポートデバイス 504の入射ポートはこの基本要素^の入力ポートの別のひとつ となる。誘電体薄膜フィルタ型スリーポートデバイス 502の入射ポートと誘電体薄膜フ ィルタ型スリーポートデバイス 503の入射ポートはそれぞれこの基本要素^の出力 ポートとなる。誘電体薄膜フィルタ型スリーポートデバイス 501ないし 504の透過ポー トはアツドドロップポートとなる。
[0138] 図 33 (b)は一本の光ファイバを用いて上りと下りで異なる波長を用いて双方向伝送 を行うタイプのリング状光ファイバ通信ネットワークに適用される光アツドドロップマル チプレクサーの基本構成要素 ^を示す。基本構成要素^は 4つの誘電体薄膜 フィルタ型スリーポートデバイス 501ないし 504力 成り立っている。誘電体薄膜フィ ルタ型スリーポートデバイス 511と 513は波長え iの誘電体薄膜フィルタを備え、誘電 体薄膜フィルタ型スリーポートデバイス 512と 514は波長 jの誘電体薄膜フィルタを 備えている。
[0139] 誘電体薄膜フィルタ型スリーポートデバイス 511の反射ポートは誘電体薄膜フィル タ型スリーポートデバイス 512の入射ポートに接続されている。誘電体薄膜フィルタ型 スリーポートデバイス 512の反射ポートは誘電体薄膜フィルタ型スリーポートデバイス 513の反射ポートに接続されてレ、る。誘電体薄膜フィルタ型スリーポートデバイス 51 3の入射ポートは誘電体薄膜フィルタ型スリーポートデバイス 514の反射ポートに接 続されている。誘電体薄膜フィルタ型スリーポートデバイス 511の入射ポートはこの基 本要素 fiの入出力ポートのひとつとなり、誘電体薄膜フィルタ型スリーポートデバイ ス 514の入射ポートはこの基本要素の入出力ポートの別のひとつとなる。誘電体薄膜 フィルタ型スリーポートデバイス 511ないし 514の透過ポートはアツドドロップポートと なる。
[0140] 基本構成要素 を 2組用いると 2本の光ファイバを用いた二重リング状光ファイバ 通信ネットワーク上にポイント ·ツー ·ポイントの冗長化通信経路を実現できる。ポイン ト'ツー.ポイントは「線」に例えることができるわけで、この線を組み合わせることによつ てフルメッシュにせよスターにせよ任意のトポロジーを構築することができるのである。
[0141] 基本構成要素 fiの同様に 2組用いると 1本の光ファイバを用いたリング状光フアイ バ通信ネットワーク上にポイント'ツー'ポイントの冗長化通信経路を実現できる。ボイ ント 'ツー.ポイントは「線」に例えることができるわけで、この線を組み合わせることによ つてフルメッシュにせよスターにせよ任意のトポロジーを構築することができるのであ る。
[0142] なお、図 33の基本要素 ^ないし と同等の光学回路を自由空間光学系、ガラ スブロック上に誘電体薄膜フィルタを取り付けた構造を利用した自由空間光学系、ガ ラスやプラスチックなどから成る平面光導波路上に実現することもでき、本発明はこれ らの実現例も含むことは言うまでもなレ、。
実施例 14
[0143] 図 34に本発明の実施例 14の光通信ネットワークを示す。基地局 1002と光信号分 岐回路ユニット 1001aないし lOOldが光ファイバ 1004によって直列に接続されてい る。光信号分岐回路ユニット 1001aないし lOOldには、それぞれクライアント局群 10 03aないし 1003dがそれぞれ接続されている。
[0144] 図 35に光信号分岐回路ユニット 1001の内部構造を示す。光信号分岐回路ュニッ ト 1001は誘電体薄膜フィルタ型スリーポートデバイス 1011及び 1012、送信波長が CWDM (低密度波長多重)波長である CWDM光トランシーバ 1013、送信波長が 1 . の波長である 1. 5 x m光トランシーバ 1014、 WDM (波長多重)光ファイバ力 プラ 1015、 32分岐のツリーカプラ 1016力 成り立っている。ポート 1017は基地局 に違い側のポートであり、ポート 1018は次段の光信号分岐回路ユニットへと接続さ れるポートである。ポート群 1021はクライアント局群に接続されるポートである。
[0145] 誘電体薄膜フィルタ型スリーポートデバイス 1011及び 1012は図 45 (a)に示したも のと同様の内部構造を有し、図 45 (b)のように簡略化したシンボルで示す。
[0146] 図 36は基地局 1002内に設けられた波長多重化装置 I Sを示す図である。ロー カル光トランシーバ 1041aないし 1041d、リモート用 CWDM (低密度波長多重)光ト ランシーノ 1042aなレ、し 1042d、及び波長多重化器 43と力、ら成り立つている。ロー カル光トランシーバ 1041aないし 1041dの左側には図示しなレ、 P〇Nスィッチが接続 されてレ、る。 CH1なレ、し CH4は P〇Nの各チャネルを示してレ、る。
[0147] 図示しなレ、 P〇Nスィッチからの CH1ないし CH4の光信号はローカル光トランシー バ 1041aないし 1041dによって電気信号に変えられた後、リモート用 CWDM (低密 度波長多重)光トランシーバ 1042aないし 1042dによって ITU-Tによって定められ た CWDM波長の内力 選ばれた λ 1、 λ 3、 λ 5、 λ 7の波長に変換され、波長多重 化器 43によって波長多重化された後、光ファイバ 1004を経て、それぞれ光信号分 岐回路ユニット 1001aないし lOOldへと送られる。ここで光トランシーバの Rは光信 号の受信ポート、 Tは光信号の送信ポート、 Rxは光信号の受信号に対応する電気信 号の出力ポート、 Txは光信号の送信信号に対応する電気信号の入力ポートである。
[0148] また、光信号分岐回路ユニット 1001aないし lOOldからはそれぞれ波長 λ 2、 λ 4 、 λ 6、 え 8の光信号が光ファイバ 1004を経て送られてくる。この波長え 2、 え 4、 6 、 λ 8も ITU— Τによって定められた CWDM波長の内力 選ばれた波長を用いてい る
[0149] ITU— Tでは、 CWDM波長は 1270nmから 1610nmまでの 20nmおきの波長が定 められている。 ITU— Tで定められた CWDM波長の内、 1470nm力ら 1610nmまで の 8波長が特によく使われている。本実施例では、 λ 1 = 1470ηιη、 え 2 = 1490nm 、 λ 3 = 1510nm, λ 4= 1530應、 λ 5 = 1550讓、 λ 6 = 1570讓、 λ 7 = 1590 nm、 ぇ8 = 1610 111を^§レヽてレヽる。
[0150] 光ファイバ 1004を経て送られた光信号は図 35に示すような光信号分岐回路ュニッ ト 1001によってドロップされる。例えば、光信号分岐回路ユニット 1001aは波長 λ 1 の光信号を誘電体薄膜フィルタ型スリーポートデバイス 1011によってドロップする。 一方、誘電体薄膜フィルタ型スリーポートデバイス 1012によって波長 λ 2の光信号が アツドされて基地局 1002側へと送られる。光信号分岐回路ユニット 1001a内の CW DM (低密度波長多重)光トランシーバ 1013は λ 2の光信号を送信するようになって レ、る。 CWDM (低密度波長多重)光トランシーバ 1013と 1 · 5 /i m光トランシーバ 10 14とは背中合わせに組み合わされている。 CWDM (低密度波長多重)光トランシー バ 1013によって受信された光信号は電気信号に変換されて 1. 5 x m光トランシー バ 1014に送られて 1. 5 z mの波長に変えられて WDM光ファイバ力プラ、ツリーカブ ラ 1016を経てクライアント局群 1003aへと送られる。
[0151] 光信号分岐ユニット 1001bでは波長 λ 3の光信号をドロップし波長 λ 4の光信号を アツドする。光信号分岐ユニット 1001cでは波長 λ 5の光信号をドロップし波長 λ 7の 光信号をアツドする。光信号分岐ユニット lOOldでは波長 λ 7の光信号をドロップし 波長 λ 8の光信号をアツドする。
[0152] クライアント局群 1003aからの波長 1. 3 μ mの光信号はツリーカプラ 1016、 WDM カプラ 1015を経て 1. 5 x m光トランシーバ 1014の受信ポート(R)へと送られる。こ の波長 1. 3 μ ΐηの光信号は 1. 5 μ ΐη光トランシーバ 1014で電気信号に変換された 後、 CWDM (低密度波長多重)光トランシーバ 1013によって波長 λ 1の光信号に変 えられて誘電体薄膜フィルタ型スリーポートデバイス 1012を経て基地局 1002へと送 られる。
[0153] 上記のように構成されたので、本実施例では一本の光ファイバで 4チャネルの TD Μ信号を送受信することができる。各チャネルで 32局までのクライアント局を収容で きるので合計 128局までのクライアント局が収容可能である。したがって、光ファイバ 敷設費用を削減に効果がある。
実施例 15
[0154] 図 37に本発明の実施例 15の光信号分岐回路互を示す。光信号分岐回路ユニット 5 は誘電体薄膜フィルタ型スリーポートデバイス 1011及び 1012、 CWDM (低密度波 長多重)光トランシーバ 1013、 WDM (波長多重)光ファイバカプラ 1015、 32分岐の ツリーカプラ 1016から成り立つている。ポート 1017は基地局に違い側のポートであり 、ポート 1018は次段の光信号分岐回路ユニットへと接続されるポートである。ポート 群 1021はクライアント局群に接続されるポートである。
[0155] 光信号分岐回路ユニット と光信号分岐回路ユニット 1001の違いは、光信号分岐 回路ユニット!^とは 1 · 5 μ ΐη光トランシーバ 1014を備えておらず、 CWDM (低密 度波長多重)光トランシーバ 1013だけでツリーカプラ 1016からの基地局への上りの 光信号の波長変換(1 · 3 i m→CWDM波長)を行っている点である。 CWDM (低 密度波長多重)光トランシーバ 1013の Tx端子と Rx端子が短絡されており、 CWDM (低密度波長多重)光トランシーバ 1013の光信号入力ポート (R)に入力した波長 1. 3 μ mの光信号は、 CWDM波長の光信号 λ jに変換されて誘電体薄膜フィルタ型ス リーポートデバイス 1012を経て基地局へと送られる。
[0156] また、基地局から送られた CWDM波長 λ iの光信号は誘電体薄膜フィルタ型スリー ポートデバイス 1011を経て WDM光ファイバカプラ 1015を経てツリーカプラ 1016へ と送られる。一般に光信号を受信するのに用いられるフォトダイオードは CWDM波 長全域(1270_1610nm)にわたる広い波長範囲に感度を有しているので、上記の ように構成してもクライアント局側の受信に問題は生じない。
[0157] 本実施例では、フォトダイオードのこの特徴を利用して、 1. 5 /i m光トランシーバ 10 14を省略してコスト削減をしたことに主な特徴がある。なお、 CWDM (低密度波長多 重)光トランシーバ 1013の Rx端子と Tx端子の間に図示しないクロック再生リタイミン グ回路を設けても良い。クロック再生リタイミング回路を設けることによって、光信号の 歪みを補正することができる。また、 WDM光ファイバカプラ 1015に変えて誘電他薄 膜フィルタ型スリーポートデバイスなどの他の波長多重化手段を用いても良い。
[0158] 本実施例の構成によれば、実施例 14の場合に比べて光信号分岐ユニット中から 1 . 5 / m光トランシーバを省略することができ、コスト削減の効果がある。
実施例 16
[0159] 図 38ないし図 39を用いて本発明の実施例 16について説明する。図 38は光信号 分岐回路ユニット 1050a、 1050b. 1050c. の内部構造を及びこれらの光信 号分岐回路ユニットからなる光通信ネットワークを示している。図 39には基地局内に 設けられる波長多重化装置を示してレ、る。
[0160] 本実施例では、下り信号に 4つの波長を用い、上り信号には一つの波長を用いて おり、上りと下りで非対称な伝送容量を実現している。また、光信号分岐回路が完全 な受動回路で構成されている。 [0161] 図 38におレヽて、参照番号 1051a、 1051b, 1051dまそれぞれ波長 1、 λ 2、 λ 3 を透過波長とする誘電体薄膜フィルタ型スリーポートデバイス、参照番号 1052a、 10 52b、 1052cはそれぞれ波長え 1、 え 2、 λ 3を透過波長とする誘電体薄膜フィルタ 型スリーポートデノイス、参照番号 1053aなレヽし 1053c及び 1054aなレヽし 1054c¾; λ 0を透過波長とする誘電体薄膜フィルタ型スリーポートデバイス、参照番号 1055a 、 1055b, 1055cはそれぞれ分岐比 3 : 1、 2 : 1、 1: 1の光ファイバ力プラ、そして、参 照番号 1056aないし 1056dは 8分岐のツリーカプラである。
[0162] 基地局からの下りの光信号の内、波長 λ 1の光信号は光信号分岐回路ユニット 10 50a内の誘電体薄膜フィルタ型スリーポートデバイス 1051aによってドロップされて、 誘電体薄膜フィルタ型スリーポートデバイス 1052aを経てツリーカプラ 1056aによつ て分岐されて図示しなレ、クライアント局群に送られる。
[0163] 基地局からの下りの光信号の内、波長 λ 2の光信号は光信号分岐回路ユニット 10 50b内の誘電体薄膜フィルタ型スリーポートデバイス 1051bによってドロップされて、 誘電体薄膜フィルタ型スリーポートデバイス 1052bを経てツリーカプラ 1056bによつ て分岐されて図示しなレ、クライアント局群に送られる。
[0164] 基地局からの下りの光信号の内、波長 λ 3の光信号は光信号分岐回路ユニット 10 50c内の誘電体薄膜フィルタ型スリーポートデバイス 5cbによってドロップされて、誘 電体薄膜フィルタ型スリーポートデバイス 1052cを経てツリーカプラ 1056cによって 分岐されて図示しなレ、クライアント局群に送られる。
[0165] 基地局からの下りの光信号の内、波長 λ 4の光信号は光信号分岐回路ユニット 10 50d内のツリーカプラ 1056dによって分岐されて図示しないクライアント局群に送られ る。
[0166] 一方、光信号分岐回路ユニット 1050dに接続されている図示しないクライアント局 群からの上りの波長 λ Odの光信号は、光信号分岐回路ユニット 1050d内のツリー力 プラ 1056dを経て、光信号分岐回路ユニット 1050c内の誘電体薄膜フィルタ型スリ 一ポートデバイス 1054cでドロップされて光ファイバカプラ 1055cに送られる。光信号 分岐回路ユニット 1050cに接続されている図示しないクライアント局群からの上りの 波長 0cの光信号は、ツリー力ブラ 1056c、誘電体薄膜フィルタ型スリーポートデバ イス 1052cの反射ポートを経て光ファイバカプラ 1055cに送られる。光ファイバカプラ 1055cによって、光信号分岐回路ユニット 1050dの上り信号と光信号分岐回路ュニ ット 1050cの上り信号とは合流される。合流された上り信号は、誘電体薄膜フィルタ 型スリーポートデバイス 1053cによって基地局側へ送られる。
[0167] 光信号分岐回路ユニット 1050dと 1050cの上り信号の合流信号は、光信号分岐回 路ユニット 1050b内の誘電体薄膜フィルタ型スリーポートデバイス 1054bでドロップさ れて光ファイバ力ブラ 1055bに送られる。光信号分岐回路ユニット 1050bに接続され ている図示しないクライアント局群からの上りの波長 λ Obの光信号は、ツリーカプラ 1 056b,誘電体薄膜フィルタ型スリーポートデバイス 1052bの反射ポートを経て光ファ ィバカブラ 1055bに送られる。光ファイバ力ブラ 1055bによって、光信号分岐回路ュ ニット 1050d及び 1050cの上り信号と光信号分岐回路ユニット 1050bの上り信号と は合流される。合流された上り信号は、誘電体薄膜フィルタ型スリーポートデバイス 1 053bによって基地局側へ送られる。
[0168] 光信号分岐回路ユニット 1050d、 1050c, 1050bの上り信号の合流信号は、光信 号分岐回路ユニット 1050a内の誘電体薄膜フィルタ型スリーポートデバイス 1054aで ドロップされて光ファイバカプラ 1055aに送られる。光信号分岐回路ユニット 1050a に接続されてレ、る図示しなレ、クライアント局群からの上りの波長 λ 0aの光信号は、ッ リーカプラ 1056a、誘電体薄膜フィルタ型スリーポートデバイス 1052cの反射ポート を経て m光ファイバカプラ 1055aに送られる。光ファイバカプラ 1055aによって、光信 号分岐回路ユニット 1050d、 1050c, 1050bの上り信号と光信号分岐回路ユニット 1 050aの上り信号とは合流される。合流された上り信号は、誘電体薄膜フィルタ型スリ 一ポートデバイス 1053aによって基地局側へ送られる。
[0169] なお、波長 λ 0は波長 1310nm±40nm程度の範囲の波長である。これはクライア ント局には安価だが波長精度の低いフアブリ一ペローレーザーを用いるためである。 波長 λ 0aないし λ 0dは光信号の流れを説明する上で区別しているのみで、波長は 1310nm±40nm程度の範囲に含まれている。
[0170] 上記のように図 38の光通信ネットワークは動作するので、波長 λ 1から; 1 4の下り信 号はそれぞれ 8分岐されてクライアント局に送られ、最大 32局のクライアント局からの 波長 λ 0の光信号がひとつに合流されて基地局へと送られる。
[0171] 図 39には基地局側に組み込まれる波長多重化装置の構造を示す。 CWDM光トラ ンシーバ 1057aないし 1057dと波長多重化器 1058と力ら成り立っている。 CWDM 光トランシーバ 1057aないし 1057dは Rx端子と Tx端子とが短絡されており、ひとつ の光トランシーバで波長変換が実現されている。 CH1から CH4の下り信号、 CH0の 上り信号が波長多重化器 1058によって多重化されている。
[0172] 本実施例によれば、光信号分岐回路を全て受動部品で構成しているので、光信号 分岐回路への電源供給の必要が無ぐまた、信頼性も高い。また、下りの信号に 4波 、上り信号に 1波用いているので、下りの帯域幅を広く取ることができる。例えば、 1波 あたり 100Mbpsの伝送速度であったとすると、上りは 100Mbpsを 32局でシェアし、 下りは 100Mbpsを 8局でシェアすることになる。一般に基地局からの下り信号の方が 広帯域を要求されることが多レ、ので、このような伝送容量の配置は経済的効果が大き レ、。
実施例 17
[0173] 図 40に本発明の実施例 17の光信号分岐回路ユニット 1060aないし 1060dの内部 構造及び、これら光信号分岐回路ユニットからなる光通信ネットワークを示す。
[0174] 図 4CHこおレヽて、参照番号 1061a、 1061b, 1061cfまそれぞれ波長え 1、 2、 3 を透過波長とする誘電体薄膜フィルタ型スリーポートデバイス、参照番号 1062a、 10 62b、 1062cはそれぞれ波長; 1 1、 λ 2、 λ 3を透過波長とする誘電体薄膜フィルタ 型スリーポー卜デノイス、参照番号 1063aなレヽし 1063b、 1064a,及び 1064cfま; 1 0 を透過波長とする誘電体薄膜フィルタ型スリーポートデバイス、参照番号 1063cは λ 5を透過波長とする誘電体薄膜フィルタ型スリーポートデバイス、参照番号 1065aと 1 065cは分岐比 1: 1の光ファイバ力プラ、参照番号 1066aなレ、し 1066dは 8分岐のッ リー力プラ、そして、参照番号 1067は CWDM光トランシーバである。
[0175] 光信号分岐回路ユニット 1060aは実施例 16の光信号分岐回路ユニット 1050aと同 様の構成を有しており、光ファイバカプラ 1065aの分岐比が 1: 1である点のみが光信 号分岐回路ユニット 1050aと異なる。光信号分岐回路ユニット 1060dは実施例 16の 光信号分岐回路ユニット 1050dと同等の構造をしている。光信号分岐回路ユニット 1 060bと 1060cが実施例 16と異なる構造を有している。
[0176] 光信号分岐回路ユニット 1060cにおいて、実施例 16と同様の仕組みによって光フ アイバカプラ 1065cに光信号分岐回路 1060dと 1060cの上り信号が合流される。こ の合流された光信号は CWDMトランシーバ 1067によって波長 λ 5の光信号に変換 された後、誘電体薄膜フィルタ型スリーポートデバイス 1063cを経て基地局側へと送 られる。このように光信号分岐回路ユニット 1060dと 1060cの上り信号のみを合流さ せて波長変換して基地局へ送る点が実施例 16との主要な相違点である。
[0177] 光信号分岐回路ユニット 1060bでは、ツリーカプラ 1066bからの波長 λ Obの上り 信号が誘電体薄膜フィルタ型スリーポートデバイス 1062bの反射ポート、誘電体薄膜 フィルタ型スリーポートデバイス 1063bを経て基地局側へ送られる。光信号分岐回路 ユニット 1060aでは、光信号分岐回路ユニット 1060bから送られてきた波長 λ Obの 光信号は、誘電体薄膜フィルタ型スリーポートデバイス 1064aでドロップされた後、光 ファイバカプラ 1065aへと送られる。また、ツリーカプラ 1066aからの波長 0aの上り 信号が誘電体薄膜フィルタ型スリーポートデバイス 1062aの反射ポートを経て光ファ ィバカプラ 1065aへと送られる。光ファイバカプラ 1065aでは λ Obと λ 0aの光信号 が合流された後、誘電体薄膜フィルタ型スリーポートデバイス 1063aでアツドされて 基地局側へと送られる。
[0178] 本実施例の光通信ネットワークは上記のように構成されているので、下りの光信号 は λ 1なレ、し λ 4の 4波長の光信号がそれぞれ 8分岐されてクライアント局側へ伝えら れる。また、 ぇ0と λ 5の 2波長の光信号にそれぞれ 16局ずつ分のクライアント局の上 り信号が合流されて基地局へと送られる。
[0179] 本実施例によれば、下りと上りに割り当てる波長数を任意に変えることができるとレ、 う効果がある。
実施例 18
[0180] 図 41及び図 42を用いて本発明の実施例 18の光信号分岐回路ユニットと光通信ネ ットワークを説明する。図 41は本実施例の光通信ネットワークの構成を示す図である 。また、図 42は本実施例の光信号分岐回路ユニット 1071の内部構造を示す図であ る。 [0181] 図 41において、参照番号 1071a、 1071b, 1071c,及び 1071dは本実施例の光 信号分岐回路ユニットであり、参照番号 1072は基地局である。基地局 1072と光信 号分岐回路ユニット 1071aないし 1071dは光ファイバ 1074によってリング状に接続 されている。また、各光信号分岐回路ユニット 1071aないし 1071dにはそれぞれクラ イアント局群 1073aなレ、し 1073dが接続されてレ、る。
[0182] 図 42において、参照番号 1081、 1083は透過波長; I iの誘電体薄膜フィルタ型スリ 一ポートデバイスであり、参照番号 1082、 1084は透過波長; ljの誘電体薄膜フィノレ タ型スリーポートデバイスであり、参照番号 1085、 1086は送信波長 jの CWDM光 トランシーバであり、参照番号 1087はクロスポイントスィッチ及び制御部であり、参照 番号 1088、 1089は送信波長 1. 5 z mの光トランシーバであり、参照番号 1090、 10 91は WDM光ファイバカプラであり、参照番号 1092、 1093は 32分岐のツリーカプラ であり。また、参照番号 1096は左回りの伝送経路用の入出力ポート、参照番号 109 7は右回りの伝送経路用の入出力ポート、参照番号 1094及び 1095はクライアント局 群への入出力ポートである。
[0183] 図 41及び図 42の構成によれば、波長 と波長 の 2波長を使って、基地局 107 2から光信号分岐回路ユニット 1071に対して右回りと左回りの 2方向で通信経路を 形成すること力できる。したがって、実施例 14などの場合に比べて、同じ波長数で 2 倍の通信容量が実現できるば力りでなぐリング状のファイバの一力所が切断された 場合でも、右回りもしくは左回りのどちらかの経路は生き残ることになり冗長化された 通信ネットワークが実現できるという利点がある。
[0184] 図 42において、右回りの伝送経路用の入出力ポート 1096からの波長 の光信号 は誘電体薄膜フィルタ型スリーポートデバイス 1081によってドロップされて、 CWDM 光トランシーバ 1085の受信ポート (R)を送られる。電気信号に変換された波長; の 光信号は、 CWDM光トランシーバ 1085の Rx端子からクロスポイントスィッチ及び制 御部 1087を経て、通常は光トランシーバ 1088へ送られる。そして波長 1. の 波長に変換されて WDM光ファイバカプラ 1090、ツリーカプラ 1092を経てクライアン ト局群への入出力ポート 1094へと送られる。
[0185] 反対にクライアント局群から入出力ポート 1094へと送られてきた、波長 1. の 光信号はツリーカプラ 1092、 WDM光ファイバカプラ 1090、光トランシーバ 1088、 クロスポイントスィッチ及び制御部 1087を経て、通常は CWDM光トランシーバ 1085 へ送られて、波長え jの光信号に変換される。この波長 jの光信号は誘電体薄膜フ ィルタ型スリーポートデバイス 1082によってアツドされて右回りの伝送経路用の入出 力ポート 1096へと送られる。
[0186] 図 42において、左回りの伝送経路用の入出力ポート 1097からの波長 の光信号 は誘電体薄膜フィルタ型スリーポートデバイス 1083によってドロップされて、 CWDM 光トランシーバ 1086の受信ポート (R)を送られる。電気信号に変換された波長; の 光信号は、 CWDM光トランシーバ 1086の Rx端子からクロスポイントスィッチ及び制 御部 1087を経て、通常は光トランシーバ 1089へ送られる。そして波長 1. の 波長に変換されて WDM光ファイバカプラ 1091、ツリーカプラ 1093を経てクライアン ト局群への入出力ポート 1095へと送られる。
[0187] 反対にクライアント局群から入出力ポート 1095へと送られてきた、波長 1. 3 /i mの 光信号はツリーカプラ 1093、 WDM光ファイバカプラ 1091、光トランシーバ 1089、 クロスポイントスィッチ及び制御部 1087を経て、通常は CWDM光トランシーバ 1086 へ送られて、波長え jの光信号に変換される。この波長 jの光信号は誘電体薄膜フ ィルタ型スリーポートデバイス 1084によってアツドされて右回りの伝送経路用の入出 力ポート 1097へと送られる。
[0188] 図 41のリング状光ファイバ 1074がどこかで切断されて右回りない左回りの光通信 経路のいずれかが遮断された場合、クロスポイントスィッチ及び制御部 1087は、生き ている通信経路の光トランシーバ 1088および 1089を並列に接続するように動作す る。通信経路の遮断は CWDM光トランシーバ 1085ないし 1086からの図示しないリ ンク信号検出機構によって検出することができる。なお、図 41の基地局 1072内には 図 36で示した波長多重化装置 1040に相当する装置が 2系統設けられている。
[0189] 図 42の光信号分岐回路ユニットにおいて、誘電体薄膜フィルタ型スリーポートデバ イス 1081と 1083をひとつのデュプリケート型誘電体フィルタ型スリーポートデバイス で構成することもできる。また、誘電体薄膜フィルタ型スリーポートデバイス 1082と 10 84をひとつのデュプリケート型誘電体フィルタ型スリーポートデバイスで構成すること あでさる。
[0190] デュプリケート型誘電体フィルタ型スリーポートデバイスについては実施例 5におい て図 13を用いて説明した。
[0191] デュプリケート型誘電体薄膜フィルタ型スリーポートデバイスを本実施例の光信号 分岐回路ユニットに用いることによって、部品点数を削減しコストを低下させることが できるという利点がある。
実施例 19
[0192] 図 43を用いて本発明の実施例 20の光通信ネットワークを説明する。図 43において 、基地局側通信装置 1501からの光信号は 2 X 2光スィッチ 1502を経て光ファイバ( 通常経路) 1505または光ファイバ(バックアップ経路) 1504を経て 2 X n分岐のスプリ ッター 1508を経てクライアント局 9へと接続されている。クライアント局は通常、 32局 程度がひとつのスプリツター 1508に接続されている。したがって、通常は n= 32とな る力 nは 2以上の任意の整数を取ることができる。また、 2 X 2光スィッチ 1502には 監視装置(OTDR)装置 1503が接続されると共に、光ファイバ(通常経路) 1505と 2 X n分岐のスプリツター 1508との間には監視光(OTDR光)カットフィルタ 1507が、 光ファイバ(バックアップ経路) 1504と 2 X n分岐のスプリツター 1508との間には監視 光(OTDR光)カットフィルタ 1506がそれぞれ設けられている。
[0193] 基地局側通信装置 1501は P〇N (Passive Optical Network)において OLT ( Optical Line Terminal)と呼ばれる装置であり、クライアント局 1509には P〇Nに おいて〇NU (Optical Network Unit)と呼ばれる装置が設けられている。 P〇N では基地局側通信装置(〇LT) 1501からの信号が 2 X n分岐のスプリツター 1508に よって多数(32局程度)のクライアント局(ONU) 1509に分配されることになる。また 、クライアント局(〇NU) 1509からの信号は 2 X n分岐のスプリツター 1508によって 集められて基地局側通信装置(OLT) 1501に送られる。
[0194] 図 43の本実施例では、 2 X 2光スィッチ 1502によっていわゆるプロテクションメカ二 ズムを実現している。もしも光ファイノく(通常経路) 1505に断線などが生じたなら、 2 X 2光スィッチ 1502によって信号の伝送経路を光ファイバ(バックアップ経路) 1504 と切り替えることができる。そして、監視装置(OTDR)装置 1503は光ファイバ(通常 経路) 1505に接続されるので、 OTDR (Optical Time Domain Reflectometr y)によって光ファイバの断線箇所を調べることができるのである。監視光(OTDR光) は監視光(OTDR光)カットフィルタ 1506ないし 1507によってカットされるので、監視 光(OTDR光)が 2 X n分岐のスプリツター 1508を越えてクライアント局 1509側へ送 られることはなぐ P〇Nの運用をしながら光ファイバ断線箇所の検出を行うことができ る。
[0195] なお、プロテクションを行うには監視装置(OTDR)装置 1503は必須ではなレ、。 1 X 2の光スィッチを用いて監視装置(OTDR)装置 1503を省略しても、通常経路断線 時にバックアップ経路への切り替えを行うことはできるからである。また、光スィッチに よる切り替えではなぐ電気的スィッチによる切り替えによってプロテクションを実現す ることもできる。基地局側通信装置(〇LT) 1501に光トランシーバを 2系統用意して おき、それぞれのトランシーバを通常経路とバックアップ経路とに接続しておき、異常 発生時に経路を切り替えれば良いのである。
[0196] 本実施例によれば、 PONにおいて、基地局側通信装置(OLT) 1501と 2 X n分岐 のスプリツター 1508との間に、光ファイバ(通常経路) 1505と光ファイバ(バックアツ プ経路) 1504とを設け、光ファイバの断線などの異常発生時に通常経路からバック アップ経路への切り替え(プロテクション)を行うことができる。また、 2 X 2光スィッチの 一端に監視装置(OTDR)装置 1503を設けておくことにより、 PONの運用を停止せ ずに異常の生じた経路の断線箇所検知を行うことができるという効果がある。
[0197] なお、この発明は上述の実施例に限定されるものではなくその趣旨を逸脱しない範 囲で種々変更が可能である。
図面の簡単な説明
[0198] [図 1]本発明の実施例 1の波長ルータの内部構成を示す図である。
[図 2]本発明の実施例 1の二重リング状光通信ネットワークを示す図である。
[図 3]波長ルータ 21と波長ルータ 22の間の波長ルーティングを示す図である。
[図 4]本発明の実施例 1における波長ルーティングパスを示す図である。
[図 5]本発明の実施例 2の波長ルータの内部構成を示す図である。
[図 6]本発明の実施例 2のリング状光通信ネットワークを示す図である。 園 7]本発明の実施例 2における波長ルーティングパスを示す図である。
園 8]本発明の実施例 3の波長ルータの内部構成を示す図である。
園 9]本発明の実施例 3の二重リング状光通信ネットワークを示す図である。
園 10]本発明の実施例 4の波長ルータの内部構造を示す図である。
[図 11]光アツドドロップマルチプレクサ一のアイソレーション不足の問題を示す図であ る。
園 12]本発明の実施例 4における光増幅器の利得制御機構を示す図である。
園 13]デュプリケート誘電体薄膜フィルタ型スリーポートデバイスの構造を示す図であ る。
[図 14]本発明の実施例 5の波長ルータを示す図である。
[図 15]本発明の実施例 6であるデュプリケート型のダブルパス型の誘電体薄膜フィノレ タスリーポートデバイスを示す図である。
園 16]本発明の実施例 7のボックスに実装された波長ルータを示す図である。
園 17]別のボックスに実装された波長ルータを示す図である。
園 18]パッチコードとして実装された波長ルータを示す図である。
園 19]双方向伝送光ファイバ通信ネットワークを示す図である。
園 20]誘電体薄膜フィルタ型スリーポートデバイスにおける透過光と反射光の関係を 示す図である。
園 21]実施例 8のボックスに実装された波長ルータ(波長多重化器)を示す図である。 園 22]本発明の実施例 9の波長ルータ(光アツドドロップマルチプレクサ一)を示す図 である。
[図 23]波長ルータ 311におけるクロストークの問題を示す図である。
園 24]スター型通信路形成用の波長ルータを示す図である。
[図 25]波長ノレータ 311、 351、 352、 353、及び 354で形成した光通信ネットワークを 示す図である。
園 26]本発明の実施例 10の波長ルータ(波長多重化器)を示す図である。
園 27]本発明の実施例 10の 4波長の波長ルータ(波長多重化器)を示す図である。 園 28]本発明の実施例 11の波長ルータ(波長多重化器)を示す図である。 [図 29]本発明の実施例 11の波長多重化器をパッチコードとして実装した実施例を示 す図である。
[図 30]本発明の実施例 12の光通信ネットワークを示す図である。
[図 31]本発明の実施例 12の波長ルータの内部構造を示す図である。
[図 32]本発明の実施例 12の波長ルータの変形例を示す図である。
[図 33]本発明の実施例 13の波長ルータを示す図である。
[図 34]本発明の実施例 14の光通信ネットワークを示す図である。
[図 35]光信号分岐回路ユニット 1001の内部構造を示す図である。
[図 36]基地局 1002内に設けられた波長多重化装置 1 Qを示す図である。
[図 37]本発明の実施例 15の光信号分岐回路の内部構造を示す図である。
[図 38]本発明の実施例 16の光信号分岐回路及び光通信ネットワークを示す図であ る。
[図 39]本発明の実施例 16で基地局内に組み込まれる波長多重化装置の構造を示 す図である。
[図 40]本発明の実施例 17の光信号分岐回路ユニット及び光通信ネットワークを示す 図である。
[図 41]本発明の実施例 18の光通信ネットワークの構成を示す図である。
[図 42]本発明の実施例の光信号分岐回路ユニット 1071の内部構造を示す図である
[図 43]本発明の実施例 19の光通信ネットワークを説明する図である。
[図 44]従来の光アツドドロップマルチプレクサ一を示す図である。
[図 45]従来の誘電体薄膜フィルタ型スリーポートデバイス^ Qの構造を示す図である
[図 46]従来の受動型光ファイバ通信ネットワーク(P〇N)を示す図である。
符号の説明
1_12…誘電体薄膜フィルタ型スリーポートデバイス
20、 21-24…波長ルータ
25…外周側光ファイバ …内周側光ファイバ
a, 25b、 26a, 26b…光ファイバ 、 31— 34…ローカノレポート群 一 44…スィッチあるいはルータ …着脱自在の光トランシーバ 、 51、 52- · ·波長/レーティング /、°ス

Claims

請求の範囲
[1] 第一の入力ポート、第一の光アツドドロップマルチプレクサ一、第一の出力ポート、 第二の入力ポート、第二の光アツドドロップマルチプレクサ一、第二の出力ポートを備 えた波長ルータにおレ、て、
予め定められたノード数 Nに対して、第一のアツドドロップマルチプレクサ一は(N— 1)組のアツド手段ドロップ手段対を備え、第二の光アツドドロップマルチプレクサ一は (N— 1)組のアツド手段ドロップ手段対を備えていることを特徴とする波長ルータ。
[2] 請求項 1の波長ルータにおいて、
さらに第一の光増幅器と第 2の光増幅器とを備え、第一の光増幅器は前記第一の 光アツドドロップマルチプレクサ一の前置増幅器として備えられ、第二の光増幅器は 前記第二の光アツドドロップマルチプレクサ一の前置増幅器として備えられていること を特徴とする波長ルータ。
[3] 請求項 1の波長ルータにおいて、
少なくとも第一及もしくは第二のアツドドロップマルチプレクサ一が下式で示される Aiで与えられる波長配置の中から空集合で表される波長以外を実装したことを特徴 とする波長ルータ。
[数 5]
" Λ …
Λ 2 2 ■"
― ■■■ h
■■■
Figure imgf000051_0001
請求項 1の波長ルータにおいて、
少なくとも第一及もしくは第二のアツドドロップマルチプレクサ一が下式で示される
Aiで与えられる波長配置の中から空集合で表される波長以外を実装したことを特徴 とする波長ルータ。
[数 6]
i
Figure imgf000052_0001
ただし
Figure imgf000052_0002
[5] 複数のノードを 2系統のリング状光ファイバによって接続した光通信ネットワークに おいて、
該ノードの少なくともひとつが請求項 1ないし 4の波長ルータを備えていることを特 徴とする光通信ネットワーク。
[6] 請求項 2の波長ルータにおいて、
さらに第一の波長多重化器と第二の波長多重化器とを備え、第一の波長多重化器 が第一の光増幅器の出力と第二の光アツドドロップマルチプレクサ一の入力とを波長 多重化し、第二の波長多重化器が第二の光増幅器の出力と第一の光アツドドロップ マルチプレクサ一の入力とを波長多重化することを特徴とする波長ルータ。
[7] 複数のノードを 1系統のリング状光ファイバによって接続した光通信ネットワークに おいて、
該ノードの少なくとも一つが請求項 6の波長ルータを備えていることを特徴とする光 通信ネットワーク。
[8] ひとつの入力ポート、ひとつの光アツドドロップマルチプレクサ一、ひとつの出力ポ ート、を備えた波長ルータにおいて、 予め定められたノード数 Nに対して、該アツドドロップマルチプレクサ一は 2 (N— 1) 組のアツド手段ドロップ手段対を備えていることを特徴とする波長ルータ。
[9] 請求項 8の波長ルータにおいて、
前記アツドドロップマルチプレクサ一が下式で示される Aiで与えられる波長配置の 中から空集合で表される波長以外を実装したことを特徴とする波長ルータ。
[数 7]
Figure imgf000053_0001
ただし
l≤i ≤N '
[io] 複数のノ一ドを l系統のリング状光ファイバによって接続した光通信ネットヮークに おいて、
該ノニドの少なくとも一つが請求項 8ないし 9の波長ルータを備えていることを特徴 とする光通信ネットワーク。
[113 波長多重化された複数の光信号を同時増幅する光増幅器にぉ ヽて、
光増幅器の出力信号から特定のひとつの光信号を取りだす手段と、この取り出され たひとつの光信号の強度測定手段と、光増幅器の利得制御手段とを備え、該強度測 定手段の値に応じて該利得制御手段を制御することを特徴とする光増幅器。
[12] 請求項 2の波長ルータにおいて、
訂正された用紙 (規則 91) 前記第一及び第二の光増幅器の内、少なくともひとつが請求項 11の光増幅器であ ることを特徴とする波長ルータ。
[13] 誘電体薄膜フィルタ型スリーポートデバイスの縦接続によって構成された光アツドド ロップマルチプレクサ一において、
ドロップ手段として用いられる誘電体薄膜フィルタ型スリーポートデバイスが二段フィ ルタ型であることを特徴とする波長ルータ。
[14] 誘電体薄膜フィルタ型スリーポートデバイスの縦接続によって構成された光アツドド ロップマルチプレクサ一において、
ドロップ手段として用いられる誘電体薄膜フィルタ型スリーポートデバイスがダブル パス型であることを特徴とする波長ルータ。
[15] 誘電体薄膜フィルタ型スリーポートデバイスにおいて、
第一の入射ポート、第一の反射ポート、第一の透過ポート、第二の入射ポート、第 二の反射ポート、第二の透過ポート、コリメータレンズ、誘電体薄膜フィルタ、及び反 射ミラーとを備え、
第一の入射ポート、第一の反射ポート、第一の透過ポート、第二の入射ポート、第 二の反射ポート、及び第二の透過ポートはコリメータレンズを中心として前記誘電体ミ ラーとは反対側に配置されていることを特徴とする誘電体薄膜フィルタ型スリーポート デバイス。
[16] ボックス内に実装された波長ルータにおいて、
該ボックスのいずれかの面上に波長ルータの波長ルーティングを示す図が記載さ れてレ、ることを特徴とする波長ルータ。
[17] パッチコード形式に実装された波長ルータにおいて、
該パッチコードのいずれかの面上に波長ルータの波長ルーティングを示す図が記 載されてレ、ることを特徴とする波長ルータ。
[18] パッチコード形式に実装された波長ルータにおいて、
二つのハウジングとこの二つのハウジングを結ぶコードとを有し、それぞれの該ハウ ジング内には誘電体スリーポートデバイスが収納され、該コードには該誘電体スリー ポート間を配線する光ファイバが収納されていることを特徴とする波長ルータ。 ふたつの波長多重化手段を向かい合わせに設け、アツドドロップしない波長はこの 二つの波長多重化手段の対応するポート同士を光ファイバで短絡接続し、アツドドロ ップする波長はアツドドロップポートに引き出すことを特徴とする光アツドドロップマル チプレクサー。
[20] 請求項 19の光アツドドロップマルチプレクサ一において、
前記波長多重化手段はアレイ状導波路回折格子であることを特徴とする光アツドド ロップマノレチプレクサー。
[21] 光アツドドロップマルチプレクサ一を有する波長ルータにおいて
複数の波長の中から選び出して波長の集合を複数作り、この波長の集合にネットヮ ークトポロジーを対応させた光アツドドロップマルチプレクサ一を設け、この光アツドド ロップマルチプレクサ一を縦接続することによって任意のネットワークトポロジーを実 現することを特徴とする波長ルータ。
[22] 一本の光ファイバで上りと下りとで波長を変えて双方伝送を行う波長ルータにおい て、
ITU— Tで定められた低密度波長多重の波長を用い、
いずれの上り波長といずれの下り波長ともが隣接波長とはならないように波長配置 を定めたことを特徴とする波長ルータ。
[23] 第一及び第二の入出力ポートを有する光アツドドロップマルチプレクサ一において
ITU— Tで定められた低密度波長多重の波長を用い、かつ、一本の光ファイバで上 りと下りとで波長を変えて双方伝送を行い、
隣接波長からなる上りと下りの波長を複数対選び、かつ各波長対の間には一波長 以上の間隔を空け、
該入出力ポートの近傍にアツド手段群を設け、該当アツド手段群に囲まれるようにド ロップ手段群を設けたことを特徴とする光アツドドロップマルチプレクサ一。
[24] 波長 λ iの光信号をドロップする光ドロップ手段、波長; ljの光信号をアツドする光ァ ッド手段、第一の光トランシーバ、第二の光トランシーバ、波長多重化手段、ツリー力 ブラを備えたことを特徴とする光信号分岐回路。
[25] 請求項 24の光信号分岐回路を複数備え、この光信号分岐回路がアツドドロップす る波長をそれぞれの光信号分岐回路によって変え、この複数の光信号分岐回路を 光ファイバを介して縦接続したことを特徴とする光通信ネットワーク。
[26] 請求項 25の光通信ネットワークにおいて、
さらに基地局を備え、該基地局には複数の伝送チャネルを波長多重化によって一 本の光ファイバに束ねる波長多重化装置を備えてレ、ることを特徴とする光通信ネット ワーク。
[27] 光トランシーバの電気側出力端子と電気側入力端子とを接続し、光トランシーバの 光入力ポートに入力した光信号を増幅して中継することを特徴とする光中継増幅器。
[28] 請求項 27の光中継増幅器において、
前記光トランシーバの電気側出力端子と電気側入力端子との間にクロック再生理タ イミング回路を設けたことを特徴とする光中継増幅器。
[29] 請求項 27ないし 28の光中継増幅器を用いた波長変換器であって、
入力した光信号と出力される光信号の波長とが異なることを特徴とした波長変換器
[30] 波長 λ iの光信号をドロップする光ドロップ手段、波長え 0をドロップする光ドロップ 手段、波長 λ θをアツドする光アツド手段、光ファイバ力ブラ、波長多重化手段、ッリ 一力ブラを備えたことを特徴とする光信号分岐回路。
[31] 請求項 30の光信号分岐回路において、
さらに、光トランシーバを備えたことを特徴とする光信号分岐回路。
[32] 波長 λ iの光信号をドロップする光ドロップ手段、波長 λ 0をアツドする光アツド手段
、光ファイバ力ブラ、波長多重化手段、ツリー力ブラを備えたことを特徴とする光信号 分岐回路。
[33] 波長 λ iの光信号をドロップする第一の光ドロップ手段、波長 jの光信号をアツドす る第二の光アツド手段、波長; の光信号をドロップする第三の光ドロップ手段、波長 jの光信号をアツドする第四の光アツド手段、第一の光トランシーバ、第二の光トラ ンシーバ、第三の光トランシーバ、第四の光トランシーバ、第一の波長多重化手段、 第二の波長多重化手段、第一のツリー力プラ、第二のッリ一力プラ、クロスポイントス イッチ及び制御機構とを備えたことを特徴とする光信号分岐回路。
[34] 請求項 33の光信号分岐回路において、
波長 λ iの光信号をドロップする第一の光ドロップ手段と波長 λ iの光信号をドロップ する第三の光ドロップ手段とがデュプリケート型誘電体薄膜フィルタ型スリ一ポートデ ノイスによって構成されてレヽることを特徴とする光信号分岐回路。
[35] 請求項 33の光信号分岐回路にお!/、て、
波長; ljの光信号をドロップする第二の光ドロップ手段と波長; の光信号をドロップ する第四の光ドロップ手段とがデュプリケート型誘電体薄膜フィルタ型スリーポートデ バイスによって構成されていることを特徴とする光信号分岐回路。
[36] 請求項 33ないし 35の光信号分岐回路を複数備え、この光信号分岐回路がアツドド ロップする波長をそれぞれの光信号分岐回路によって変え、該光信号分岐回路を光 ファイバを用いてリ グ状に接続したことを特徴とする光通信ネットワーク。
[37] 基地局側通信装置 (OLT)、第一の光ファイバ、第二の光ファイバ、このふたつの 光ファイバの切り替え手段、 2 Xn分岐 (nは 2以上の整数)のスプリツター、及び複数 のクライアント (ONU)局とを備えたことを特徴とする光通信ネットワーク。
[38] 請求項 37の光通信ネットワークにおいて、前記光ファイバの切り替え手段は 2 X 2の 光スィッチであり、さらに監視装置 (OTDR)を備え、この監視装置 (OTDR)は前記 2 X 2の光スィッチに接続されて、第一の光ファイノくもしくは第二の光ファイバの断線筒 所を検知することを特徴とする光通信ネットワーク。'
訂正された用紙 (規則 91)
PCT/JP2004/010036 2003-07-17 2004-07-14 光信号分岐回路及び光通信ネットワーク WO2005008925A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005511834A JP4429271B2 (ja) 2003-07-17 2004-07-14 光信号分岐回路及び光通信ネットワーク

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003276166 2003-07-17
JP2003-276166 2003-07-17
JP2003-279621 2003-07-25
JP2003279621 2003-07-25

Publications (2)

Publication Number Publication Date
WO2005008925A1 WO2005008925A1 (ja) 2005-01-27
WO2005008925A9 true WO2005008925A9 (ja) 2005-07-14

Family

ID=34082364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010036 WO2005008925A1 (ja) 2003-07-17 2004-07-14 光信号分岐回路及び光通信ネットワーク

Country Status (2)

Country Link
JP (1) JP4429271B2 (ja)
WO (1) WO2005008925A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080279A1 (ja) * 2005-01-28 2006-08-03 Kabushiki Kaisha Route Lamda 光信号伝送装置及び光通信ネットワーク
JP2009038650A (ja) * 2007-08-02 2009-02-19 Osaka Prefecture Univ OADM(OpticalAddDropMultiplexer)モジュールおよびそれが装着されてなるOADMユニット
JP7439901B2 (ja) * 2020-03-17 2024-02-28 日本電信電話株式会社 光通信システム及び光通信方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5680235A (en) * 1995-04-13 1997-10-21 Telefonaktiebolaget Lm Ericsson Optical multichannel system

Also Published As

Publication number Publication date
WO2005008925A1 (ja) 2005-01-27
JP4429271B2 (ja) 2010-03-10
JPWO2005008925A1 (ja) 2007-09-20

Similar Documents

Publication Publication Date Title
CN1993915B (zh) 将多个光学传感器与一个波分多路复用光交换器互连的方法和装置
US7340170B2 (en) Wavelength-division multiplexed self-healing passive optical network
US8131150B2 (en) Tunable bidirectional multiplexer/demultiplexer for optical transmission system
EP2525517B1 (en) An optical wavelength division multiplex (WDM) transmission system, especially a WDM passive optical network
KR19980703824A (ko) 광 다중 채널 시스템
US6411407B1 (en) Method for providing a bidirectional optical supervisory channel
KR100334432B1 (ko) 하나의도파관열격자다중화기를이용한양방향애드/드롭광증폭기모듈
EP1643670B1 (en) Optical network and optical add/drop apparatus
CA2299441A1 (en) Multi-band amplification system for dense wavelength division multiplexing
EP1088417B1 (en) Method and device for dropping optical channels in an optical transmission system
JP4256843B2 (ja) 光ネットワーク及びゲートウェイノード
US20230224060A1 (en) Apparatus and Method for Coherent Optical Multiplexing 1+1 Protection
JP2006191643A (ja) 光ネットワーク、ハブ・ノード及びアクセス・ノード
US7092634B2 (en) Bidirectional wavelength division multiplexed self-healing ring network composed of add fiber and drop fiber
Wagner et al. Multiwavelength ring networks for switch consolidation and interconnection
EP1407567B1 (en) Optical filtering by using an add-drop node
JP4429271B2 (ja) 光信号分岐回路及び光通信ネットワーク
US11582539B2 (en) Method and apparatus for management of a spectral capacity of a wavelength division multiplexing system
US6873758B1 (en) Optical add-drop filter
US20230358970A1 (en) Apparatus and method for modelling of passive connectors and a one-touch roadm optical network
US20240154693A1 (en) Optical amplifier apparatus and method
JP2005012278A (ja) 波長多重ponシステム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
COP Corrected version of pamphlet

Free format text: PAGES 51 AND 55, CLAIMS, REPLACED BY NEWPAGES 51 AND 55; AFTER RECTIFICATION OF OBVIOUS ERRORS AUTHORIZED BY THE INTERNATIONAL SEARCH AUTHORITY

WWE Wipo information: entry into national phase

Ref document number: 2005511834

Country of ref document: JP

122 Ep: pct app. not ent. europ. phase