WO2005001925A1 - Vacuum processing device operating method - Google Patents

Vacuum processing device operating method Download PDF

Info

Publication number
WO2005001925A1
WO2005001925A1 PCT/JP2004/009011 JP2004009011W WO2005001925A1 WO 2005001925 A1 WO2005001925 A1 WO 2005001925A1 JP 2004009011 W JP2004009011 W JP 2004009011W WO 2005001925 A1 WO2005001925 A1 WO 2005001925A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
cleanliness
chamber
common transfer
medium
Prior art date
Application number
PCT/JP2004/009011
Other languages
French (fr)
Japanese (ja)
Inventor
Masamichi Hara
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2005001925A1 publication Critical patent/WO2005001925A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67167Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers surrounding a central transfer chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Definitions

  • the present invention provides a vacuum processing apparatus for continuously performing a process such as PVD or CVD on a semiconductor wafer or the like using a vacuum processing apparatus having a plurality of processing chambers connected to a common transfer chamber. Related to the operation method.
  • the apparatus includes a pre / post-processing chamber, a common transfer chamber connected to the pre / post-processing chamber and having a transfer robot therein, and a plurality of processing chambers connected to the common transfer chamber.
  • the wafer to be processed is transferred to the first processing chamber by the transfer robot in the common transfer chamber after preprocessing such as preheating in the pre-Z post-processing chamber.
  • the wafer is transferred to each processing room by the transfer robot, and the processing is performed in each processing room.
  • high cleanliness processing is physical vapor deposition (PVD) and medium cleanliness processing is CVD.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the common transfer room is connected to a PVD processing room as a high cleanliness processing room and a CVD processing room as a medium cleanliness processing room.
  • PVD processing chambers must achieve a significantly lower pressure (base pressure) than CVD processing chambers, and must highly avoid contamination of the atmosphere inside the processing chamber.
  • base pressure base pressure
  • the residual gas and particles in the CVD processing chamber, the gas (including outgas) and the contamination source generated from the wafer in a high temperature state after the CVD processing, etc. Etc. may enter through the common transfer chamber.
  • an object of the present invention is to provide a method of operating a vacuum processing apparatus capable of reliably preventing contamination in a high-cleanliness processing chamber connected to a medium-cleanliness processing chamber via a common transfer chamber. It is in.
  • a high-cleanliness processing chamber that is capable of being evacuated to perform a high-purity processing that highly dislikes atmospheric contamination is performed on an object to be processed.
  • a medium-cleanliness processing chamber capable of being evacuated for performing medium-cleanliness processing on the object, which dislikes contamination of the atmosphere to a level lower than the high-cleanliness processing.
  • a medium transfer chamber having a medium cleanliness processing container and a transfer mechanism for transferring the object is defined, and the common transfer chamber communicates with the high cleanliness processing chamber and the medium cleanliness processing chamber, respectively.
  • a common transport container connected to the high-cleanliness processing container and the medium-cleanliness processing container via a gate vanoleb, respectively, so as to be able to shut off.
  • the pressure in the high-cleanliness processing chamber is slightly higher than the pressure in the common transfer chamber, and the common transfer is performed.
  • the medium cleanliness A method for operating a vacuum processing apparatus is provided, wherein the pressure in the processing chamber is slightly lower than the pressure in the common transfer chamber.
  • the pressure in the high-cleanliness processing chamber is slightly higher than the pressure in the common transfer chamber immediately before the communication.
  • the atmosphere in the high-purity processing chamber flows toward the common transfer chamber during communication.
  • the pressure in the medium-cleanliness processing chamber was slightly lower than the pressure in the common transfer chamber immediately before the communication.
  • the atmosphere in the common transfer chamber flows toward the medium-cleanliness processing chamber. Therefore, it is possible to prevent gas and particles, which are a source of contamination in the medium-cleanliness processing chamber and the common transfer chamber, from entering the high-cleanliness processing chamber.
  • the high cleanliness process is physical vapor deposition and the medium cleanliness process is chemical vapor deposition.
  • FIG. 1 is a schematic plan view showing an example of a vacuum processing apparatus to which the operation method of the present invention is applied.
  • FIG. 2 is a timing chart showing a pressure change by the operation method of the present invention.
  • FIG. 1 shows an example of a vacuum processing apparatus to which the operation method of the present invention is applied.
  • the processing apparatus 2 shown in FIG. 1 includes four processing chambers 4A, 4B, 4C, and 4D, one common transfer chamber 6, and two load lock chambers 8A and 8B.
  • Each chamber is defined by a processing container 4A, 4B, 4C, 4D, a common transfer container 6, and a load lock container 8A, 8B.
  • the common transfer container 6 has a substantially hexagonal prism shape, and the processing containers 4 are joined to four sides thereof, and the load lock containers 8A and 8B are joined to the other two sides.
  • the common transfer chamber 6 and each of the processing chambers 4A-4D, and the common transfer chamber 6 and each of the load lock chambers 8A and 8B are connected via a gate vanoleb G that can be opened and closed in an airtight manner. ing .
  • a gate valve G which can be opened and closed in an airtight manner is provided on the opposite side of the common transfer chamber 6 of each of the load lock chambers 8A and 8B.
  • susceptors 12A, 12B, 12 are in each of the processing chambers 4A and 4D.
  • a transfer mechanism 14 composed of an articulated arm that can be bent, extended, raised and lowered, and pivoted is provided at a position where the load lock chambers 8A and 8B and the processing chambers 4A to 4D can be accessed.
  • the transfer mechanism 14 has two picks Bl and B2 that can bend and stretch independently in the opposite directions, and can handle two wafers at a time. Note that the transport mechanism 14 may be one having only one pick.
  • Each of the processing chambers 4A to 4D has a predetermined processing containing an inert gas (Ar gas, N gas, or the like) therein.
  • an inert gas Ar gas, N gas, or the like
  • Gas supply systems 16A, 16B, 16C and 16D for supplying the processing gas are connected respectively.
  • vacuum evacuation systems 18A, 18B, 18C, and 18D for evacuating the internal atmosphere are connected to the processing chambers 4A to 4D, respectively.
  • the common transfer chamber 6 and each of the load lock chambers 8A, 8B also have a gas supply system 22A, 24A, 26A for supplying inert gas, and a vacuum exhaust system 22B, 24B, 26B for evacuating the internal atmosphere, respectively. It is connected.
  • a pressure gauge P for detecting the internal pressure is provided in each of the common transfer chamber 6 and each of the load lock chambers 8A and 8B.
  • the two processing chambers 4A-4D are high-cleanliness processing chambers for performing high-cleanliness processing that highly dislikes atmospheric contamination of the wafer W. .
  • the other two processing chambers 4C and 4D are medium-cleanliness processing chambers for performing medium-cleanliness processing on wafers W, which dislikes atmospheric contamination to a lower degree than high-cleanliness processing.
  • “high cleanliness” “Medium cleanliness” does not indicate absolute cleanliness but merely indicates the relative degree of cleanliness between the two.
  • the high cleanliness processing for example, 1 X 10- 7 Torr (l. 33 X 10- 5 Pa) less ultimate pressure there is a PVD processing required.
  • the medium cleanliness processing there is a CVD processing which requires an ultimate pressure of, for example, about 1 ⁇ 10 ⁇ 3 Torr (1.33 ⁇ 10 ⁇ ⁇ a).
  • PVD processing for forming a sputter film of Ti, Cu, or the like is performed in the high cleanliness processing chambers 4A and 4B, and TaN, WN, W, TiN, and the like are performed in the medium cleanliness processing chambers 4C and 4D.
  • a case where a CVD process for forming a film is performed will be described.
  • Each of the vacuum exhaust systems 18A and 18B of the high cleanliness processing chambers 4A and 4B has a cryopump in addition to a dry pump and a turbo molecular pump (not shown) in order to achieve the high vacuum described above. 30 are attached. Further, control of gas supply / exhaust and pressure of each chamber is performed by a controller (not shown) which controls the overall operation of the processing apparatus 2.
  • a Ti film is formed by PVD processing in both the high cleanliness processing chambers 4A and 4B, and a TiN film is formed by CVD processing in both the medium cleanliness processing chambers 4C and 4D.
  • a barrier film is formed on the wafer W by film formation will be described as an example.
  • an inert gas such as Ar gas necessary for forming a plasma is used as a process gas, and there is almost no risk of expanding contamination.
  • various source gases are used as a processing gas which is a source of expanding pollution.
  • An important point of the present invention is that the atmosphere in the high-cleanliness processing chambers 4A and 4B is common in order to prevent cross contamination in the high-cleanliness processing chambers 4A and 4B when transferring the wafer W. This is to flow to the transfer chamber 6 side, and the atmosphere in the common transfer chamber 6 is to flow to the medium cleanliness processing chambers 4C and 4D.
  • the semiconductor wafer W to be processed is taken into the common transfer chamber 6 by the transfer mechanism 14 from the outside (atmosphere side) via one of the load lock chambers 8A and 8B.
  • the wafer W is first introduced into one of the high-cleanliness processing chambers 4A and 4B for forming a Ti film by PVD processing, for example, into the processing chamber 4A, and the PVD processing has already been completed. ⁇ C Replaced with W.
  • the PVD-processed wafer W taken out of the processing chamber 4A is introduced into one of the medium-cleanliness processing chambers 4C and 4D, for example, the processing chamber 4C, to form a TiN film by C VD processing. Replaced with wafer W for which CVD processing has been completed.
  • the wafer W that has been subjected to the continuous processing of the PVD processing (Ti film formation) and the CVD processing (TiN film formation) is unloaded to the outside via one of the load lock chambers 8A and 8B. Is performed. A series of operations as described above are sequentially and repeatedly performed. Note that two or more of the six gate valves G provided around the common transfer chamber 6 are not opened at the same time, and that when one gate valve G is opened, The five gate vanolebs G are always closed.
  • FIG. 2A shows a pressure change in the high-cleanliness processing chamber 4A
  • FIG. 2B shows a pressure change in the medium-cleanliness processing chamber 4C.
  • the interior of the common transfer chamber 6 is constantly evacuated, and a constant pressure of, for example, about 200 mTorr (27 Pa) is maintained. It is assumed that the process times of the PVD process and the CVD process are substantially the same for convenience of explanation.
  • a Ti film is formed by PVD processing under a predetermined process pressure (for example, lOmTorr (lPa)) in the high cleanliness processing chamber 4A, Purging and exhausting the atmosphere in chamber 4A with inert gas.
  • a predetermined process pressure for example, lOmTorr (lPa)
  • inert gas such as Ar gas or N gas
  • the pressure in the processing chamber 4A is slightly higher than the pressure in the common transfer chamber 6, for example, 250 mTorr (33 Pa), which is higher by about 50 mTorr (7 Pa).
  • a TiN film was formed by CVD under a predetermined process pressure (for example, 100 mTorr (13 Pa)) in the medium cleanliness processing chamber 4C. Then, the atmosphere in the processing chamber 4C is purged with an inert gas and exhausted. After that, Ar gas or N gas
  • the gate vanoleb G of the medium cleanliness processing chamber 4C is opened, and the wafer W on which the Ti film is formed is loaded into the processing chamber 4C using the transfer mechanism 14. .
  • the wafer W on which the TiN film has been formed in the processing chamber 4C is taken out into the common transfer chamber 6.
  • the pressure in the medium-cleanliness processing chamber 4C is maintained slightly lower than the pressure in the common transfer chamber 6, the atmosphere in the common transfer chamber 6 flows into the processing chamber 4C. For this reason, particles and gas that is a source of contamination do not enter the common transfer chamber 6.
  • the introduction of the inert gas and the exhaust of the internal atmosphere are continued, so that the particles and gases in the processing chamber 4C are exhausted more efficiently.
  • the gate valve G of the processing room 4C is closed. As described above, the wafer W on which the Ti film and the TiN film are continuously formed is carried out to the atmosphere through one of the load lock chambers 8A and 8B.
  • the atmosphere in the processing chambers 4A and 4B may always flow to the common transfer chamber 6 side. it can. Further, when loading / unloading (swapping) the wafer W to / from the medium-cleanliness processing chambers 4C and 4D, the atmosphere in the common transfer chamber 6 can always flow toward the processing chambers 4C and 4D. For this reason, it is possible to reliably prevent gas or particles serving as a contamination source from entering the high cleanliness processing chambers 4A and 4B.
  • the atmosphere in the common transfer chamber 6 becomes medium-cleanliness processing chambers 4C and 4 Even if it flows into D, these processing chambers 4C and 4D are not contaminated.
  • each pressure value in the above-described embodiment is merely an example, and is not limited to the numerical values shown.
  • the pressure difference between the processing chambers 4A, 4B and 4C and 4D with respect to the common transfer chamber 6 may be about + 10- + 200 mTorr and about -10 ⁇ 200 mTorr, respectively.
  • the pressure is simply lower than that of the common transfer chamber 6, so that the pressure adjustment during the period t2 and the inert gas such as Ar gas and N gas are performed.
  • cryopump 30 is used instead of this.
  • a turbo molecular pump may be used.
  • the temperature of the cryopanel is set at about 100-110 ° K. In this way, of the gas molecules exhausted from the processing chambers 4A and 4B, only water vapor is trapped in the cryopanel, and Ar gas, N gas, etc. are trapped.
  • a vacuum processing apparatus provided with two high-cleanliness processing chambers and two medium-cleanliness processing chambers was used. It can be any number greater than one. The number of each processing chamber should be set so as to obtain the optimum throughput in consideration of the processing time in each processing chamber.
  • the type of film to be formed is not limited to the combination of the Ti film and the TiN film.
  • a Cu film formed by PVD processing, a TaN film formed by CVD processing, a WN film or a W film, or the like is used.
  • the present invention can be applied to a case where a barrier film is formed by a combination of the above.
  • etching processing is performed using only Ar gas plasma.
  • the so-called soft etching process PCEM: pre-clean etching module
  • Examples of the medium cleanliness processing include ALD (Atomic Layer Deposition) processing, RTP (Rapid Thermal Processing), and the like, in addition to CVD processing.
  • the object to be processed is not limited to a semiconductor wafer, and the present invention can be applied to a case where an LCD substrate, a glass substrate, or the like is to be processed.

Abstract

A vacuum processing device operating method for performing a high purification degree of processing for which contamination of atmosphere should be avoided and for performing a medium purification degree of processing for which contamination of atmosphere should be avoided in a less degree than for the high purification degree of processing. The processing device comprises processing chambers (4A, 4B) for performing a high purification degree of processing, processing chambers (4C, 4D) for performing a medium purification degree of processing, and a common transfer chamber (6) provided with a transfer mechanism for transferring a processing subject object. Each chamber (4A-4D, 6) is arranged so that it can be evacuated. Gate valves (G) are installed to allow the common transfer chamber (6) to communicate with or to be shut off from each processing chamber (4A-4D). In this operating method, it is arranged that when communication is to be established between the common transfer chamber (6) and the processing chambers (4A, 4B) for a high degree of purification, just before communication the pressures in the processing chambers (4A, 4B) become slightly higher than the pressure in the common transfer chamber and when communication is to be established between the common transfer chamber (6) and the processing chambers (4C, 4D) for a medium degree of purification, just before communication the pressures in the processing chambers (4C, 4D) become slightly lower than the pressure in the common transfer chamber.

Description

明 細 書  Specification
真空処理装置の操作方法  Operation method of vacuum processing equipment
技術分野  Technical field
[0001] 本発明は、共通搬送室に接続された複数の処理室を備えた真空処理装置を用い て、半導体ウェハ等に対して PVDや CVD等の処理を連続的に行うための真空処理 装置の操作方法に関する。  [0001] The present invention provides a vacuum processing apparatus for continuously performing a process such as PVD or CVD on a semiconductor wafer or the like using a vacuum processing apparatus having a plurality of processing chambers connected to a common transfer chamber. Related to the operation method.
^景技術  ^ Scenic technology
[0002] 一般に、半導体デバイスの製造工程にあっては、半導体ウェハに各種の処理、例 えばドライエッチング、スパッタリング、化学的蒸着処理 (CVD)等が複数回繰り返し 行われる。最近では、処理の効率化を図るために、これらの処理を施す複数の処理 室を結合し、半導体ウェハを大気に晒すことなく連続的に処理できるようにした、いわ ゆるクラスタツール型の真空処理装置が注目されている。  In general, in a semiconductor device manufacturing process, various processes such as dry etching, sputtering, and chemical vapor deposition (CVD) are repeatedly performed on a semiconductor wafer a plurality of times. Recently, in order to improve the efficiency of processing, a so-called cluster tool type vacuum processing system, which combines multiple processing chambers for performing these processing so that semiconductor wafers can be processed continuously without exposing them to the atmosphere. The device is receiving attention.
[0003] この種の装置は、例えば特開平 3-19252号公報に開示されている。その装置は、 前/後処理室と、この前/後処理室に連接されて内部に搬送ロボットを有する共通 搬送室と、この共通搬送室に連接された複数の処理室とを備えている。処理すべき ウェハは、前 Z後処理室にて予備加熱等の前処理がなされた後、共通搬送室内の 搬送ロボットにより最初の処理室に移載される。また、搬送ロボットによりウェハが各処 理室に移載され、各処理室でそれぞれ処理が行われる。  [0003] An apparatus of this type is disclosed, for example, in Japanese Patent Application Laid-Open No. 3-19252. The apparatus includes a pre / post-processing chamber, a common transfer chamber connected to the pre / post-processing chamber and having a transfer robot therein, and a plurality of processing chambers connected to the common transfer chamber. The wafer to be processed is transferred to the first processing chamber by the transfer robot in the common transfer chamber after preprocessing such as preheating in the pre-Z post-processing chamber. In addition, the wafer is transferred to each processing room by the transfer robot, and the processing is performed in each processing room.
[0004] この種の装置において、各処理室間でウェハを移動させる際には、共通搬送室と 各処理室との間でのウェハの受け渡しを経ることになる。その場合、ウェハ搬送のた めに連通された処理室と共通搬送室との間で、各室内に僅かに残留する各種のガス やパーティクルが移動し得る。このため、ウェハに対してクロスコンタミネーシヨン等の 汚染が発生する場合がある。そこで、このような汚染の発生を防止するための技術が 、特開平 4-100222号公報ゃ特開平 7-211761号公報に開示されている。その技 術は、予め各室間の圧力調整を行って、各室どうしが連通した時には常に一方向の みに雰囲気が流れるようにすることで、汚染源となるガスやパーティクルが意図した方 向に対して逆方向には流れなレ、ようにしたものである。 [0005] ところで最近、ウェハに対して、処理室内の雰囲気の汚染を高度に嫌う高清浄度処 理と、処理室内の雰囲気の汚染を高清浄度処理よりは低い中程度に嫌う中清浄度 処理とを連続して行うためのクラスタツール型の真空処理装置も提案されている。例 えば、高清浄度処理は物理的蒸着処理 (PVD)であり、中清浄度処理は CVDである 。この場合、共通搬送室に、高清浄度処理室としての PVD処理室と、中清浄度処理 室としての CVD処理室とが接続される。 PVD処理室は、 CVD処理室と比較して到 達圧力(ベースプレッシャー)をかなり低くし、且つ処理室内の雰囲気の汚染も高度 に避けなければならなレ、。しかし、上述したような操作方法では、 PVD処理室に、 C VD処理室内の残留ガスやパーティクル、 CVD処理後の高温状態にあるウェハ等よ り発生した汚染源となるガス(アウトガスを含む)やパーティクル等が共通搬送室を介 して侵入する場合がある。 [0004] In this type of apparatus, when a wafer is moved between processing chambers, the wafer is transferred between the common transfer chamber and each processing chamber. In that case, various gases and particles slightly remaining in each chamber may move between the processing chamber communicated for wafer transfer and the common transfer chamber. For this reason, contamination such as cross contamination may occur on the wafer. Therefore, a technique for preventing the occurrence of such contamination is disclosed in JP-A-4-100222 and JP-A-7-211761. The technology is to adjust the pressure between the chambers in advance, so that when the chambers communicate with each other, the atmosphere always flows in one direction only, so that the gas or particles that are the source of contamination can be directed in the intended direction. On the other hand, it does not flow in the opposite direction. [0005] Recently, high cleanliness processing of wafers that highly dislikes the contamination of the atmosphere in the processing chamber and medium cleanliness processing that dislikes the contamination of the atmosphere in the processing chamber to a moderate degree that is lower than that of the high cleanliness processing. And a cluster tool type vacuum processing apparatus for continuously performing the above processes have also been proposed. For example, high cleanliness processing is physical vapor deposition (PVD) and medium cleanliness processing is CVD. In this case, the common transfer room is connected to a PVD processing room as a high cleanliness processing room and a CVD processing room as a medium cleanliness processing room. PVD processing chambers must achieve a significantly lower pressure (base pressure) than CVD processing chambers, and must highly avoid contamination of the atmosphere inside the processing chamber. However, in the operation method as described above, the residual gas and particles in the CVD processing chamber, the gas (including outgas) and the contamination source generated from the wafer in a high temperature state after the CVD processing, etc. Etc. may enter through the common transfer chamber.
発明の開示  Disclosure of the invention
[0006] 本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたもの である。すなわち、本発明の目的は、共通搬送室を介して中清浄度処理室と連結さ れた高清浄度処理室内の汚染を確実に防止することが可能な真空処理装置の操作 方法を提供することにある。  [0006] The present invention has been devised in view of the above problems and effectively solving them. That is, an object of the present invention is to provide a method of operating a vacuum processing apparatus capable of reliably preventing contamination in a high-cleanliness processing chamber connected to a medium-cleanliness processing chamber via a common transfer chamber. It is in.
[0007] そこで、本発明によれば、被処理物体に対して、雰囲気の汚染を高度に嫌う高清 浄度処理を行うための、真空引き可能になされた高清浄度処理室を画定する高清浄 度処理容器と、前記物体に対して、雰囲気の汚染を前記高清浄度処理よりは低い中 程度に嫌う中清浄度処理を行うための、真空引き可能になされた中清浄度処理室を 画定する中清浄度処理容器と、前記物体を搬送する搬送機構が設けられた共通搬 送室を画定すると共に、この共通搬送室が前記高清浄度処理室および前記中清浄 度処理室に対してそれぞれ連通および遮断可能となるよう、前記高清浄度処理容器 および前記中清浄度処理容器に対してそれぞれゲートバノレブを介して接続された共 通搬送容器と、を備えた真空処理装置の操作方法において、前記共通搬送室と前 記高清浄度処理室とを連通する際には、連通する直前に、前記高清浄度処理室内 の圧力が前記共通搬送室内の圧力よりも僅かに高くなつているようにし、前記共通搬 送室と前記中清浄度処理室とを連通する際には、連通する直前に、前記中清浄度 処理室内の圧力が前記共通搬送室内の圧力よりも僅かに低くなつているようにする、 ことを特徴とする真空処理装置の操作方法が提供される。 [0007] Therefore, according to the present invention, a high-cleanliness processing chamber that is capable of being evacuated to perform a high-purity processing that highly dislikes atmospheric contamination is performed on an object to be processed. And a medium-cleanliness processing chamber capable of being evacuated for performing medium-cleanliness processing on the object, which dislikes contamination of the atmosphere to a level lower than the high-cleanliness processing. A medium transfer chamber having a medium cleanliness processing container and a transfer mechanism for transferring the object is defined, and the common transfer chamber communicates with the high cleanliness processing chamber and the medium cleanliness processing chamber, respectively. And a common transport container connected to the high-cleanliness processing container and the medium-cleanliness processing container via a gate vanoleb, respectively, so as to be able to shut off. Transfer room When communicating with the high-cleanliness processing chamber, immediately before the communication, the pressure in the high-cleanliness processing chamber is slightly higher than the pressure in the common transfer chamber, and the common transfer is performed. When communicating between the chamber and the medium cleanliness processing chamber, immediately before the communication, the medium cleanliness A method for operating a vacuum processing apparatus is provided, wherein the pressure in the processing chamber is slightly lower than the pressure in the common transfer chamber.
[0008] この操作方法によれば、共通搬送室と高清浄度処理室とを連通する際には、連通 する直前に、高清浄度処理室内の圧力が共通搬送室内の圧力よりも僅かに高くなつ ているようにしたので、連通時には、高清浄度処理室内の雰囲気が共通搬送室内の 方へ流れることになる。また、共通搬送室と中清浄度処理室とを連通する際には、連 通する直前に、中清浄度処理室内の圧力が共通搬送室内の圧力よりも僅かに低くな つているようにしたので、連通時には、共通搬送室内の雰囲気が中清浄度処理室内 の方へ流れることになる。従って、中清浄度処理室や共通搬送室内の汚染源となる ガスやパーティクルが高清浄度処理室内に侵入することを防止することができる。  [0008] According to this operation method, when communicating the common transfer chamber and the high-cleanliness processing chamber, the pressure in the high-cleanliness processing chamber is slightly higher than the pressure in the common transfer chamber immediately before the communication. As a result, the atmosphere in the high-purity processing chamber flows toward the common transfer chamber during communication. Also, when communicating the common transfer chamber and the medium-cleanliness processing chamber, the pressure in the medium-cleanliness processing chamber was slightly lower than the pressure in the common transfer chamber immediately before the communication. At the time of communication, the atmosphere in the common transfer chamber flows toward the medium-cleanliness processing chamber. Therefore, it is possible to prevent gas and particles, which are a source of contamination in the medium-cleanliness processing chamber and the common transfer chamber, from entering the high-cleanliness processing chamber.
[0009] この場合、前記共通搬送室と前記高清浄度処理室とが連通されているときには、前 記共通搬送室と前記中清浄度処理室との間が遮断され、前記共通搬送室と前記中 清浄度処理室とが連通されているときには、前記共通搬送室と前記高清浄度処理室 との間が遮断されているようにする、ことが好ましい。  [0009] In this case, when the common transfer chamber and the high-cleanliness processing chamber are in communication with each other, the common transfer chamber and the middle-cleanliness processing chamber are shut off, and the common transfer chamber and the high-cleanliness processing chamber are disconnected. When the medium cleanliness processing chamber is in communication, it is preferable that the common transfer chamber and the high cleanliness processing chamber be shut off.
典型的には、前記高清浄度処理は物理的蒸着であり、前記中清浄度処理は化学 的蒸着である。  Typically, the high cleanliness process is physical vapor deposition and the medium cleanliness process is chemical vapor deposition.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]は、本発明の操作方法が適用される真空処理装置の一例を示す概略平面図。  FIG. 1 is a schematic plan view showing an example of a vacuum processing apparatus to which the operation method of the present invention is applied.
[図 2]は、本発明の操作方法による圧力変化を示すタイミングチャート。  FIG. 2 is a timing chart showing a pressure change by the operation method of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下に、本発明に係る真空処理装置の操作方法の一実施形態を添付図面に基づ いて詳述する。 Hereinafter, an embodiment of a method for operating a vacuum processing apparatus according to the present invention will be described in detail with reference to the accompanying drawings.
図 1には、本発明の操作方法が適用される真空処理装置の一例が示されている。 図 1に示す処理装置 2は、 4つの処理室 4A、 4B、 4C、 4Dと、 1つの共通搬送室 6と、 2つのロードロック室 8A、 8Bとを備えている。各室は、それぞれ処理容器 4A、 4B、 4 C、 4D、共通搬送容器 6、ロードロック容器 8A、 8Bによって画定されている。共通搬 送容器 6は略六角柱形状をなし、その 4辺に各処理容器 4が接合され、他の 2辺に各 ロードロック容器 8A、 8Bが接合されている。 [0012] 共通搬送室 6と各処理室 4A— 4Dとの間、および共通搬送室 6と各ロードロック室 8 A、 8Bとの間は、それぞれ気密に開閉可能なゲートバノレブ Gを介して接続されている 。必要に応じて各ゲートバルブ Gを開/閉することで、共通搬送室 6内と各室 4A— 4 D内との間、および共通搬送室 6と各ロードロック室 8A、 8B内との間を、それぞれ連 通/遮断できるようになつている。また、各ロードロック室 8A、 8Bの共通搬送室 6とは 反対の側にも、それぞれ気密に開閉可能になされたゲートバルブ Gが設けられてい る。これらのゲートバノレブ Gを開くことで、図示しない大気側の搬送室やカセット室と 各ロードロック室 8A、 8Bとの間で、被処理物体としての半導体ウェハ Wを搬出入で きるようになつている。 FIG. 1 shows an example of a vacuum processing apparatus to which the operation method of the present invention is applied. The processing apparatus 2 shown in FIG. 1 includes four processing chambers 4A, 4B, 4C, and 4D, one common transfer chamber 6, and two load lock chambers 8A and 8B. Each chamber is defined by a processing container 4A, 4B, 4C, 4D, a common transfer container 6, and a load lock container 8A, 8B. The common transfer container 6 has a substantially hexagonal prism shape, and the processing containers 4 are joined to four sides thereof, and the load lock containers 8A and 8B are joined to the other two sides. [0012] The common transfer chamber 6 and each of the processing chambers 4A-4D, and the common transfer chamber 6 and each of the load lock chambers 8A and 8B are connected via a gate vanoleb G that can be opened and closed in an airtight manner. ing . By opening and closing each gate valve G as needed, between the common transfer chamber 6 and each of the chambers 4A-4D, and between the common transfer chamber 6 and each of the load lock chambers 8A and 8B. Can be connected / disconnected, respectively. Further, a gate valve G which can be opened and closed in an airtight manner is provided on the opposite side of the common transfer chamber 6 of each of the load lock chambers 8A and 8B. By opening these gate vanolebs G, the semiconductor wafer W as an object to be processed can be carried in and out between the transfer chamber or cassette chamber (not shown) and the load lock chambers 8A and 8B. .
[0013] 各処理室 4A 4D内には、それぞれウェハ Wを載置するサセプタ 12A、 12B、 12 In each of the processing chambers 4A and 4D, susceptors 12A, 12B, 12
C、 12Dが設けられている。共通搬送室 6内には、各ロードロック室 8A、 8Bおよび各 処理室 4A— 4Dにアクセスできる位置に、屈伸、昇降および旋回可能になされた多 関節アームよりなる搬送機構 14が設けられている。この搬送機構 14は、互いに反対 方向へ独立して屈伸できる 2つのピック Bl、 B2を有し、一度に 2枚のウェハを取り扱 うことができるようになつている。尚、搬送機構 14としては、 1つのピックのみ有するも のを用いてもよい。 C and 12D are provided. In the common transfer chamber 6, a transfer mechanism 14 composed of an articulated arm that can be bent, extended, raised and lowered, and pivoted is provided at a position where the load lock chambers 8A and 8B and the processing chambers 4A to 4D can be accessed. . The transfer mechanism 14 has two picks Bl and B2 that can bend and stretch independently in the opposite directions, and can handle two wafers at a time. Note that the transport mechanism 14 may be one having only one pick.
[0014] 各処理室 4A— 4Dには、内部に不活性ガス(Arガスや Nガス等)を含む所定の処  [0014] Each of the processing chambers 4A to 4D has a predetermined processing containing an inert gas (Ar gas, N gas, or the like) therein.
2  2
理ガスを供給するガス供給系 16A、 16B、 16C、 16Dがそれぞれ接続される。また、 各処理室 4A— 4Dには、内部雰囲気を真空排気するための真空排気系 18A、 18B 、 18C、 18Dがそれぞれ接続される。共通搬送室 6と各ロードロック室 8A、 8Bにも、 不活性ガスを供給するガス供給系 22A、 24A、 26Aと、内部雰囲気を真空排気する ための真空排気系 22B、 24B、 26Bとがそれぞれ接続されている。各処理室 4A 4 Gas supply systems 16A, 16B, 16C and 16D for supplying the processing gas are connected respectively. In addition, vacuum evacuation systems 18A, 18B, 18C, and 18D for evacuating the internal atmosphere are connected to the processing chambers 4A to 4D, respectively. The common transfer chamber 6 and each of the load lock chambers 8A, 8B also have a gas supply system 22A, 24A, 26A for supplying inert gas, and a vacuum exhaust system 22B, 24B, 26B for evacuating the internal atmosphere, respectively. It is connected. Each processing room 4A 4
D、共通搬送室 6および各ロードロック室 8A、 8Bには、内部圧力を検出するための 圧力計 Pがそれぞれ設けられている。 D, a pressure gauge P for detecting the internal pressure is provided in each of the common transfer chamber 6 and each of the load lock chambers 8A and 8B.
[0015] 4つの処理室 4A— 4Dの内、 2つの処理室 4A、 4Bは、ウェハ Wに対して雰囲気の 汚染を高度に嫌う高清浄度処理処理を行うための高清浄度処理室である。他の 2つ の処理室 4C、 4Dは、ウェハ Wに対して雰囲気の汚染を高清浄度処理よりは低い中 程度に嫌う中清浄度処理を行うための中清浄度処理室である。ここで"高清浄度"や "中清浄度"とは、絶対的な清浄度を示すものではなぐ単に両者間における相対的 な清浄度の程度を示すものである。高清浄度処理としては、例えば 1 X 10— 7Torr (l . 33 X 10— 5Pa)以下の到達圧力が要求される PVD処理がある。また、中清浄度処理と しては、例えば 1 X 10— 3Torr (l . 33 X 10— ^a)程度の到達圧力が要求される CVD 処理がある。 [0015] Of the four processing chambers 4A-4D, the two processing chambers 4A and 4B are high-cleanliness processing chambers for performing high-cleanliness processing that highly dislikes atmospheric contamination of the wafer W. . The other two processing chambers 4C and 4D are medium-cleanliness processing chambers for performing medium-cleanliness processing on wafers W, which dislikes atmospheric contamination to a lower degree than high-cleanliness processing. Here, "high cleanliness" "Medium cleanliness" does not indicate absolute cleanliness but merely indicates the relative degree of cleanliness between the two. The high cleanliness processing, for example, 1 X 10- 7 Torr (l. 33 X 10- 5 Pa) less ultimate pressure there is a PVD processing required. Further, as the medium cleanliness processing, there is a CVD processing which requires an ultimate pressure of, for example, about 1 × 10 −3 Torr (1.33 × 10 − ^ a).
[0016] 本実施形態においては、高清浄度処理室 4A、 4Bで Tiや Cu等をスパッタ成膜する PVD処理が行われ、中清浄度処理室 4C、 4Dでは TaN、 WN、 W、 TiN等を成膜す る CVD処理が行われる場合について説明する。高清浄度処理室 4A、 4Bの真空排 気系 18A、 18Bにはそれぞれ、上記のような高真空度を実現するために、ドライボン プゃターボ分子ポンプ(図示せず)の他に、クライオポンプ 30が併設されている。また 各室のガス給排気や圧力の制御が、処理装置 2の全体の動作を制御する図示しな レ、コントローラにより行われる。  In the present embodiment, PVD processing for forming a sputter film of Ti, Cu, or the like is performed in the high cleanliness processing chambers 4A and 4B, and TaN, WN, W, TiN, and the like are performed in the medium cleanliness processing chambers 4C and 4D. A case where a CVD process for forming a film is performed will be described. Each of the vacuum exhaust systems 18A and 18B of the high cleanliness processing chambers 4A and 4B has a cryopump in addition to a dry pump and a turbo molecular pump (not shown) in order to achieve the high vacuum described above. 30 are attached. Further, control of gas supply / exhaust and pressure of each chamber is performed by a controller (not shown) which controls the overall operation of the processing apparatus 2.
[0017] 次に、以上のように構成された処理装置 2に基づいて行われる本発明方法につい て説明する。ここでは本発明の理解を容易にするために、高清浄度処理室 4A、 4B では共に Ti膜を PVD処理により成膜し、中清浄度処理室 4C、 4Dでは共に TiN膜を CVD処理により成膜して、ウェハ W上にバリヤ膜を形成する場合を例にとって説明 する。  Next, a method of the present invention performed based on the processing apparatus 2 configured as described above will be described. Here, in order to facilitate understanding of the present invention, a Ti film is formed by PVD processing in both the high cleanliness processing chambers 4A and 4B, and a TiN film is formed by CVD processing in both the medium cleanliness processing chambers 4C and 4D. The case where a barrier film is formed on the wafer W by film formation will be described as an example.
[0018] PVD処理では一般的に、処理ガスとしてプラズマの形成に必要な Arガス等の不活 性ガスが用いられ、汚染を拡大させる恐れがほとんど存在しない。これに対して、 CV D処理では、処理ガスとして汚染を拡大する源となる各種の原料ガスが用いられる。 本発明の重要な点は、ウェハ Wの搬送時において、高清浄度処理室 4A、 4B内に おけるクロスコンタミネーシヨンの発生を防ぐために、高清浄度処理室 4A、 4B内の雰 囲気は共通搬送室 6側へ流し、共通搬送室 6内の雰囲気は中清浄度処理室 4C、 4 D側へ流すようにしたことである。  In general, in the PVD process, an inert gas such as Ar gas necessary for forming a plasma is used as a process gas, and there is almost no risk of expanding contamination. On the other hand, in the CVD process, various source gases are used as a processing gas which is a source of expanding pollution. An important point of the present invention is that the atmosphere in the high-cleanliness processing chambers 4A and 4B is common in order to prevent cross contamination in the high-cleanliness processing chambers 4A and 4B when transferring the wafer W. This is to flow to the transfer chamber 6 side, and the atmosphere in the common transfer chamber 6 is to flow to the medium cleanliness processing chambers 4C and 4D.
[0019] まず、処理すべき半導体ウェハ Wは、外部(大気側)から、ロードロック室 8A、 8Bの いずれか一方を介して、搬送機構 14によって共通搬送室 6内へ取り込まれる。このゥ ェハ Wは、まず PVD処理により Ti膜を成膜するために高清浄度処理室 4A、 4Bのレヽ ずれか一方、例えば処理室 4A内へ導入され、すでに PVD処理が完了しているゥェ ハ Wと入れ替えられる。処理室 4Aから取り出された PVD処理済みのウェハ Wは、 C VD処理により TiN膜を成膜するために中清浄度処理室 4C、 4Dのいずれか一方、 例えば処理室 4C内へ導入され、すでに CVD処理が完了しているウェハ Wと入れ替 られる。 First, the semiconductor wafer W to be processed is taken into the common transfer chamber 6 by the transfer mechanism 14 from the outside (atmosphere side) via one of the load lock chambers 8A and 8B. The wafer W is first introduced into one of the high-cleanliness processing chambers 4A and 4B for forming a Ti film by PVD processing, for example, into the processing chamber 4A, and the PVD processing has already been completed.ゥ C Replaced with W. The PVD-processed wafer W taken out of the processing chamber 4A is introduced into one of the medium-cleanliness processing chambers 4C and 4D, for example, the processing chamber 4C, to form a TiN film by C VD processing. Replaced with wafer W for which CVD processing has been completed.
[0020] このようにして、 PVD処理 (Ti成膜)および CVD処理 (TiN成膜)の連続処理が完 了したウェハ Wは、ロードロック室 8A、 8Bのいずれか一方を介して外部へ搬出され る。以上のような一連の動作が順次、繰り返し行われることになる。なお、共通搬送室 6の周囲に設けられた 6個のゲートバルブ Gは、 2つ以上が同時に開放されることはな く、いずれ力、 1つのゲートバルブ Gが開放されているときには、他の 5つのゲートバノレ ブ Gは必ず閉鎖されてレ、る。  [0020] In this manner, the wafer W that has been subjected to the continuous processing of the PVD processing (Ti film formation) and the CVD processing (TiN film formation) is unloaded to the outside via one of the load lock chambers 8A and 8B. Is performed. A series of operations as described above are sequentially and repeatedly performed. Note that two or more of the six gate valves G provided around the common transfer chamber 6 are not opened at the same time, and that when one gate valve G is opened, The five gate vanolebs G are always closed.
[0021] 次に、図 2を参照して、本発明の操作方法による高清浄度処理室 4A内と中清浄度 処理室 4C内の圧力変化の一例について説明する。図 2 (A)は高清浄度処理室 4A 内の圧力変化を示し、図 2 (B)は中清浄度処理室 4C内の圧力変化を示す。共通搬 送室 6内は、常時真空引きされており、例えば略 200mTorr (27Pa)程度の一定の 圧力を維持しているものとする。尚、 PVD処理と CVD処理のプロセス時間は、説明 の都合上、略同一であると仮定する。  Next, with reference to FIG. 2, an example of pressure changes in the high cleanliness processing chamber 4A and the medium cleanliness processing chamber 4C according to the operation method of the present invention will be described. FIG. 2A shows a pressure change in the high-cleanliness processing chamber 4A, and FIG. 2B shows a pressure change in the medium-cleanliness processing chamber 4C. The interior of the common transfer chamber 6 is constantly evacuated, and a constant pressure of, for example, about 200 mTorr (27 Pa) is maintained. It is assumed that the process times of the PVD process and the CVD process are substantially the same for convenience of explanation.
[0022] まず、図 2 (A)に示すように、高清浄度処理室 4A内で所定のプロセス圧力(例えば lOmTorr (lPa) )の下で PVD処理により Ti膜を成膜したならば、処理室 4A内の雰 囲気を不活性ガスでパージして排気する。その後、 Arガスや Nガス等の不活性ガス  First, as shown in FIG. 2 (A), if a Ti film is formed by PVD processing under a predetermined process pressure (for example, lOmTorr (lPa)) in the high cleanliness processing chamber 4A, Purging and exhausting the atmosphere in chamber 4A with inert gas. After that, inert gas such as Ar gas or N gas
2  2
を処理室 4A内に導入して圧力調整を行う。これにより、期間 tlにおいて、処理室 4A 内の圧力を共通搬送室 6内の圧力よりも僅かに、例えば 50mTorr (7Pa)程度高い、 250mTorr (33Pa)とする。  Is introduced into the processing chamber 4A to adjust the pressure. Thus, in the period tl, the pressure in the processing chamber 4A is slightly higher than the pressure in the common transfer chamber 6, for example, 250 mTorr (33 Pa), which is higher by about 50 mTorr (7 Pa).
[0023] これと並行して、図 2 (B)に示すように、中清浄度処理室 4C内で所定のプロセス圧 力(例えば lOOmTorr (13Pa) )の下で CVDにより TiN膜を成膜したならば、処理室 4C内の雰囲気を不活性ガスでパージして排気する。その後、 Arガスや Nガス等の In parallel with this, as shown in FIG. 2 (B), a TiN film was formed by CVD under a predetermined process pressure (for example, 100 mTorr (13 Pa)) in the medium cleanliness processing chamber 4C. Then, the atmosphere in the processing chamber 4C is purged with an inert gas and exhausted. After that, Ar gas or N gas
2 不活性ガスを処理室 4C内に導入して圧力調整を行う。これにより、期間 t2において 、処理室 4C内の圧力を共通搬送室 6内の圧力よりも僅かに、例えば 50mTorr (7Pa )程度低い、 150mTorr (20Pa)とする。 [0024] 次に、図 2 (A)に示すように、処理室 4Aのゲートバルブ Gを開放し、搬送機構 14を 用いて Ti成膜済みのウェハ Wを共通搬送室 6内へ取り出す。これと同時に、未処理 のウェハを処理室 4Aへ搬入する。この時、高清浄度処理室 4A内の圧力は、共通搬 送室 6内の圧力よりも僅かに高く維持されているので、処理室 4A内の雰囲気が共通 搬送室 6側に流れ込むことになる。このため、高清浄度処理室 4A内へは、パーテイク ルゃ汚染源となるガスが入り込むことはなぐクロスコンタミネーシヨン等が発生するこ とを防止できる。高清浄度処理室 4Aに対するウェハの入れ替えが完了したならば、 処理室 4Aのゲートバルブ Gを閉鎖する。 2 Introduce inert gas into processing chamber 4C to adjust pressure. As a result, in the period t2, the pressure in the processing chamber 4C is slightly lower than the pressure in the common transfer chamber 6, for example, 150 mTorr (20 Pa), which is lower by about 50 mTorr (7 Pa). Next, as shown in FIG. 2A, the gate valve G of the processing chamber 4A is opened, and the wafer W on which the Ti film has been formed is taken out into the common transfer chamber 6 using the transfer mechanism 14. At the same time, the unprocessed wafer is carried into the processing chamber 4A. At this time, the pressure in the high-cleanliness processing chamber 4A is maintained slightly higher than the pressure in the common transfer chamber 6, so that the atmosphere in the processing chamber 4A flows into the common transfer chamber 6 side. . For this reason, it is possible to prevent the generation of cross contamination or the like that prevents gas as a source of particulate II contamination from entering the high-cleanliness processing chamber 4A. When the replacement of the wafer in the high-cleanliness processing chamber 4A is completed, the gate valve G of the processing chamber 4A is closed.
[0025] 次に、図 2 (B)に示すように、中清浄度処理室 4Cのゲートバノレブ Gを開放し、搬送 機構 14を用いて Ti成膜済みのウェハ Wを処理室 4C内へ搬入する。これと同時に、 処理室 4C内の TiN成膜済みのウェハ Wを共通搬送室 6内へ取り出す。この時、中 清浄度処理室 4C内の圧力は、共通搬送室 6内の圧力よりも僅かに低く維持されてい るので、共通搬送室 6内の雰囲気が処理室 4C側へ流れ込むことになる。このため、 共通搬送室 6内へはパーティクルや汚染源となるガスが入り込むことはない。また、中 清浄度処理室 4C内では、不活性ガスの導入と内部雰囲気の排気とが続けられてい るので、処理室 4C内のパーティクルやガスがより効率的に排気される。中清浄度処 理室 4Cに対するウェハの入れ替えが完了したならば、処理室 4Cのゲートバルブ G を閉鎖する。尚、 Ti膜および TiN膜が連続成膜されたウェハ Wは、前述したように、 ロードロック室 8A、 8Bのいずれかを介して大気側へ搬出されることになる。  Next, as shown in FIG. 2 (B), the gate vanoleb G of the medium cleanliness processing chamber 4C is opened, and the wafer W on which the Ti film is formed is loaded into the processing chamber 4C using the transfer mechanism 14. . At the same time, the wafer W on which the TiN film has been formed in the processing chamber 4C is taken out into the common transfer chamber 6. At this time, since the pressure in the medium-cleanliness processing chamber 4C is maintained slightly lower than the pressure in the common transfer chamber 6, the atmosphere in the common transfer chamber 6 flows into the processing chamber 4C. For this reason, particles and gas that is a source of contamination do not enter the common transfer chamber 6. In the medium-cleanliness processing chamber 4C, the introduction of the inert gas and the exhaust of the internal atmosphere are continued, so that the particles and gases in the processing chamber 4C are exhausted more efficiently. When the replacement of the wafer in the medium-cleanliness processing room 4C is completed, the gate valve G of the processing room 4C is closed. As described above, the wafer W on which the Ti film and the TiN film are continuously formed is carried out to the atmosphere through one of the load lock chambers 8A and 8B.
[0026] 他方の高清浄度処理室 4Bおよび他方の中清浄度処理室 4Dについても、以上の ような一連の動作がそれぞれ行われる。  [0026] The above-described series of operations are also performed in the other high-cleanliness processing chamber 4B and the other medium-cleanliness processing chamber 4D.
[0027] 従って、高清浄度処理室 4A、 4Bに対するウェハ Wの搬入搬出(入れ替え)の際は 、これらの処理室 4A、 4B内の雰囲気が常に共通搬送室 6側へ流れるようにすること ができる。また、中清浄度処理室 4C、 4Dに対するウェハ Wの搬入搬出(入れ替え) の際は、共通搬送室 6内の雰囲気が常に処理室 4C、 4D側へ流れるようにすることが できる。このため、高清浄度処理室 4A、 4B内に汚染源となるガスやパーティクルが 侵入することを確実に防止することができる。特に、高清浄度処理として原料ガスを 使わない PVD処理を行うことで、共通搬送室 6内の雰囲気が中清浄度処理室 4C、 4 D内へ流入しても、これらの処理室 4C、 4Dが汚染されることがない。 Therefore, when loading / unloading (swapping) the wafer W to / from the high-cleanliness processing chambers 4A and 4B, the atmosphere in the processing chambers 4A and 4B may always flow to the common transfer chamber 6 side. it can. Further, when loading / unloading (swapping) the wafer W to / from the medium-cleanliness processing chambers 4C and 4D, the atmosphere in the common transfer chamber 6 can always flow toward the processing chambers 4C and 4D. For this reason, it is possible to reliably prevent gas or particles serving as a contamination source from entering the high cleanliness processing chambers 4A and 4B. In particular, by performing PVD processing that does not use raw material gas as high-cleanliness processing, the atmosphere in the common transfer chamber 6 becomes medium-cleanliness processing chambers 4C and 4 Even if it flows into D, these processing chambers 4C and 4D are not contaminated.
[0028] また、共通搬送室 6内の内圧は略一定に維持したまま、共通搬送室 6よりも容積の 小さい各処理室 4A— 4D内の圧力の方を変化させることで、圧力調整を迅速に行う こと力 Sできる。このため連続処理のスループットを低下させることもなレ、。 [0028] In addition, while maintaining the internal pressure in the common transfer chamber 6 substantially constant, the pressure in each of the processing chambers 4A-4D having a smaller volume than the common transfer chamber 6 is changed, so that the pressure can be quickly adjusted. The ability to do S. Therefore, the throughput of the continuous processing is not reduced.
[0029] 上述した実施形態における各圧力値は単に一例を示したに過ぎず、示された数値 には限定されない。例えば、共通搬送室 6内に対する各処理室 4A、 4Bおよび 4C、 4Dの圧力差は、それぞれ + 10— + 200mTorr程度および—10^ 200mTorr程 度でもよレ、。また、中清浄度処理室 4C、 4Dに関しては、単に共通搬送室 6より圧力 が低ければよいので、期間 t2における圧力調整や、 Arガスや Nガス等の不活性ガ [0029] Each pressure value in the above-described embodiment is merely an example, and is not limited to the numerical values shown. For example, the pressure difference between the processing chambers 4A, 4B and 4C and 4D with respect to the common transfer chamber 6 may be about + 10- + 200 mTorr and about -10 ^ 200 mTorr, respectively. Further, as for the medium cleanliness processing chambers 4C and 4D, it is sufficient that the pressure is simply lower than that of the common transfer chamber 6, so that the pressure adjustment during the period t2 and the inert gas such as Ar gas and N gas are performed.
2  2
スの導入は省略してもよい。  May be omitted.
[0030] また高清浄度処理室 4A、 4Bにおいていは、極めて低い到達圧力が要求されるた め、クライオポンプ 30が使用されている力 これに代えて、吸気口側にクライオパネ ルを設けたターボ分子ポンプを用いてもよい。その場合、クライオパネルの温度は、 1 00— 110° K程度に設定する。このようにすれば、処理室 4A、 4Bから排気される気 体分子のうち、水蒸気のみがクライオパネルにトラップされ、 Arガスや Nガス等はタ  [0030] In the high-cleanliness processing chambers 4A and 4B, since extremely low ultimate pressure is required, the cryopump 30 is used instead of this. A turbo molecular pump may be used. In this case, the temperature of the cryopanel is set at about 100-110 ° K. In this way, of the gas molecules exhausted from the processing chambers 4A and 4B, only water vapor is trapped in the cryopanel, and Ar gas, N gas, etc. are trapped.
2  2
ーボポンプにより排気される。このため、クライオポンプのような、全ての気体をトラッ プするため込み式ポンプに比べ、リジェネレーション(トラップされた気体を昇温して 排気させること)の回数を低減させることが可能となり、装置の稼働効率を上げること が出来る。特に、高清浄度処理室 4A、 4B内の圧力を 250mTorrに維持するよう不 活性ガスを流し続ける場合には、クライオパネルを使用することが好ましい。  Exhausted by the pump. This makes it possible to reduce the number of times of regeneration (raising the temperature of the trapped gas and exhausting it) as compared with a plug-in pump such as a cryopump for trapping all the gas. Operation efficiency can be improved. In particular, when an inert gas is continuously supplied so as to maintain the pressure in the high-cleanliness processing chambers 4A and 4B at 250 mTorr, it is preferable to use a cryopanel.
[0031] 次に、高清浄度処理室および中清浄度処理室を、それぞれ 2つずつ設けた真空処 理装置を用いたが、高清浄度処理室および中清浄度処理室の数は、それぞれ 1以 上の任意の数とすることができる。各処理室の個数は、各処理室における処理時間 を考慮して最適なスループットが得られるように設定すればょレ、。  Next, a vacuum processing apparatus provided with two high-cleanliness processing chambers and two medium-cleanliness processing chambers was used. It can be any number greater than one. The number of each processing chamber should be set so as to obtain the optimum throughput in consideration of the processing time in each processing chamber.
[0032] また、成膜される膜の種類は、 Ti膜と TiN膜の組み合わせに限定されず、前述した ように PVD処理による Cu膜と、 CVD処理による TaN膜、 WN膜ないし W膜等との組 み合わせによりバリヤ膜を形成する場合にも本発明を適用し得る。更に、高清浄度処 理としては、 PVD処理の他に、 Arガスだけのプラズマによりエッチング処理を行う、 いわゆるソフトエッチング処理(PCEM:プリクリーンエッチングモジュール)を挙げる こと力 Sできる。また、中清浄度処理としては、 CVD処理の他に、 ALD (Atomic Laye r Deposition)処理、 RTP (Rapid Thermal Processing)等を挙げることができる。 また、被処理物体は半導体ウェハに限定されず、 LCD基板、ガラス基板等を被処理 物体とする場合にも本発明を適用することができる。 [0032] The type of film to be formed is not limited to the combination of the Ti film and the TiN film. As described above, a Cu film formed by PVD processing, a TaN film formed by CVD processing, a WN film or a W film, or the like is used. The present invention can be applied to a case where a barrier film is formed by a combination of the above. In addition to the high cleanliness processing, in addition to PVD processing, etching processing is performed using only Ar gas plasma. The so-called soft etching process (PCEM: pre-clean etching module) can be used. Examples of the medium cleanliness processing include ALD (Atomic Layer Deposition) processing, RTP (Rapid Thermal Processing), and the like, in addition to CVD processing. The object to be processed is not limited to a semiconductor wafer, and the present invention can be applied to a case where an LCD substrate, a glass substrate, or the like is to be processed.

Claims

請求の範囲 The scope of the claims
[1] 被処理物体に対して、雰囲気の汚染を高度に嫌う高清浄度処理を行うための、真 空引き可能になされた高清浄度処理室を画定する高清浄度処理容器と、  [1] A high-cleanliness processing container defining a vacuum-cleanable high-cleanliness processing chamber for performing high-cleanliness processing on objects to be processed, which highly dislikes atmospheric contamination,
前記物体に対して、雰囲気の汚染を前記高清浄度処理よりは低い中程度に嫌う中 清浄度処理を行うための、真空引き可能になされた中清浄度処理室を画定する中清 浄度処理容器と、  Medium cleanliness processing that defines a vacuum-evacuable medium cleanliness processing chamber for performing medium cleanliness processing on the object, which dislikes contamination of the atmosphere to a lower degree than the high cleanliness processing. A container,
前記物体を搬送する搬送機構が設けられた共通搬送室を画定すると共に、この共 通搬送室が前記高清浄度処理室および前記中清浄度処理室に対してそれぞれ連 通および遮断可能となるよう、前記高清浄度処理容器および前記中清浄度処理容 器に対してそれぞれゲートバルブを介して接続された共通搬送容器と、  A common transfer chamber provided with a transfer mechanism for transferring the object is defined, and the common transfer chamber can communicate with and shut off the high-cleanliness processing chamber and the medium-cleanliness processing chamber, respectively. A common transport container connected to the high-cleanliness processing container and the medium-cleanliness processing container via a gate valve, respectively;
を備えた真空処理装置の操作方法にぉレ、て、  The operation method of the vacuum processing apparatus equipped with
前記共通搬送室と前記高清浄度処理室とを連通する際には、連通する直前に、前 記高清浄度処理室内の圧力が前記共通搬送室内の圧力よりも僅かに高くなつてい るよつにし、  When communicating the common transfer chamber and the high-cleanliness processing chamber, immediately before the communication, the pressure in the high-cleanliness processing chamber is slightly higher than the pressure in the common transfer chamber. West,
前記共通搬送室と前記中清浄度処理室とを連通する際には、連通する直前に、前 記中清浄度処理室内の圧力が前記共通搬送室内の圧力よりも僅かに低くなつてい るようにする、ことを特徴とする真空処理装置の操作方法。  When communicating the common transfer chamber and the medium cleanliness processing chamber, immediately before the communication, the pressure in the medium cleanliness processing chamber is slightly lower than the pressure in the common transfer chamber. A method of operating a vacuum processing apparatus.
[2] 前記高清浄度処理は物理的蒸着であり、前記中清浄度処理は化学的蒸着である [2] The high cleanliness processing is physical vapor deposition, and the medium cleanliness processing is chemical vapor deposition.
、ことを特徴とする請求項 1記載の真空処理装置の操作方法。 2. The method for operating a vacuum processing apparatus according to claim 1, wherein:
[3] 前記共通搬送室と前記高清浄度処理室とが連通されているときには、前記共通搬 送室と前記中清浄度処理室との間が遮断され、 [3] When the common transfer chamber and the high cleanliness processing chamber are in communication, the communication between the common transfer chamber and the medium cleanliness processing chamber is shut off,
前記共通搬送室と前記中清浄度処理室とが連通されているときには、前記共通搬 送室と前記高清浄度処理室との間が遮断されているようにする、  When the common transfer chamber and the medium cleanliness processing chamber are in communication with each other, the communication between the common transfer chamber and the high cleanliness processing chamber is shut off.
ことを特徴とする請求項 1記載の真空処理装置の操作方法。  2. The method for operating a vacuum processing apparatus according to claim 1, wherein:
[4] 前記高清浄度処理は物理的蒸着であり、前記中清浄度処理は化学的蒸着である[4] The high cleanliness processing is physical vapor deposition, and the medium cleanliness processing is chemical vapor deposition.
、ことを特徴とする請求項 3記載の真空処理装置の操作方法。 4. The method for operating a vacuum processing apparatus according to claim 3, wherein:
PCT/JP2004/009011 2003-06-26 2004-06-25 Vacuum processing device operating method WO2005001925A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003183238A JP4517595B2 (en) 2003-06-26 2003-06-26 Method for transporting workpieces
JP2003-183238 2003-06-26

Publications (1)

Publication Number Publication Date
WO2005001925A1 true WO2005001925A1 (en) 2005-01-06

Family

ID=33549576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009011 WO2005001925A1 (en) 2003-06-26 2004-06-25 Vacuum processing device operating method

Country Status (2)

Country Link
JP (1) JP4517595B2 (en)
WO (1) WO2005001925A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8672603B2 (en) 2009-12-10 2014-03-18 Orbotech LT Solar, LLC. Auto-sequencing inline processing apparatus
US8998552B2 (en) 2007-10-23 2015-04-07 Orbotech LT Solar, LLC. Processing apparatus and processing method
US9462921B2 (en) 2011-05-24 2016-10-11 Orbotech LT Solar, LLC. Broken wafer recovery system
CN113130345A (en) * 2019-12-31 2021-07-16 中微半导体设备(上海)股份有限公司 Substrate processing system and maintenance method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005037822A1 (en) * 2005-08-08 2007-02-15 Systec System- Und Anlagentechnik Gmbh & Co.Kg Vacuum coating with condensate removal
JP4884816B2 (en) * 2006-02-02 2012-02-29 上村工業株式会社 Immersion processing equipment
JP2008032335A (en) * 2006-07-31 2008-02-14 Hitachi High-Technologies Corp Mini-environment device, inspection device, manufacturing device, and space cleaning method
KR101669685B1 (en) * 2008-03-25 2016-10-27 오보텍 엘티 솔라 엘엘씨 Processing apparatus and processing method
JP5385425B2 (en) * 2012-05-24 2014-01-08 株式会社日立ハイテクノロジーズ Inspection device and mini-environment structure
JP6270952B1 (en) * 2016-09-28 2018-01-31 株式会社日立国際電気 Substrate processing apparatus, semiconductor device manufacturing method, and recording medium.
JP7254924B2 (en) * 2018-11-19 2023-04-10 マトソン テクノロジー インコーポレイテッド Systems and methods for processing workpieces

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162709A (en) * 1990-10-26 1992-06-08 Fujitsu Ltd Manufacturing apparatus of semiconductor and processing method of reaction
JPH07211761A (en) * 1994-01-21 1995-08-11 Tokyo Electron Ltd Transfer of material to be treated in treating device
JPH09199569A (en) * 1996-01-17 1997-07-31 Yamaha Corp Wafer processor
JPH10270527A (en) * 1997-03-21 1998-10-09 Ulvac Japan Ltd Composite type vacuum processor
JP2002289668A (en) * 2001-03-27 2002-10-04 Hitachi Kokusai Electric Inc Substrate treating apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180117A (en) * 1984-02-28 1985-09-13 Oki Electric Ind Co Ltd Semiconductor manufacturing apparatus
JPH04314981A (en) * 1991-04-12 1992-11-06 Shimadzu Corp Cryopump
JP3155366B2 (en) * 1992-08-03 2001-04-09 日本真空技術株式会社 Cryotrap for turbo molecular pump
JP3061011B2 (en) * 1997-07-23 2000-07-10 ダイキン工業株式会社 Cryopump
US5819545A (en) * 1997-08-28 1998-10-13 Helix Technology Corporation Cryopump with selective condensation and defrost
JP2000274356A (en) * 1999-03-19 2000-10-03 Daikin Ind Ltd Regeneration device for cryopump and its regenration method
JP4451952B2 (en) * 1999-12-24 2010-04-14 キヤノンアネルバ株式会社 Substrate processing equipment
JP4593023B2 (en) * 2001-07-10 2010-12-08 パナソニック株式会社 Method for producing multilayer film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162709A (en) * 1990-10-26 1992-06-08 Fujitsu Ltd Manufacturing apparatus of semiconductor and processing method of reaction
JPH07211761A (en) * 1994-01-21 1995-08-11 Tokyo Electron Ltd Transfer of material to be treated in treating device
JPH09199569A (en) * 1996-01-17 1997-07-31 Yamaha Corp Wafer processor
JPH10270527A (en) * 1997-03-21 1998-10-09 Ulvac Japan Ltd Composite type vacuum processor
JP2002289668A (en) * 2001-03-27 2002-10-04 Hitachi Kokusai Electric Inc Substrate treating apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8998552B2 (en) 2007-10-23 2015-04-07 Orbotech LT Solar, LLC. Processing apparatus and processing method
US8672603B2 (en) 2009-12-10 2014-03-18 Orbotech LT Solar, LLC. Auto-sequencing inline processing apparatus
US9287152B2 (en) 2009-12-10 2016-03-15 Orbotech LT Solar, LLC. Auto-sequencing multi-directional inline processing method
US9462921B2 (en) 2011-05-24 2016-10-11 Orbotech LT Solar, LLC. Broken wafer recovery system
CN113130345A (en) * 2019-12-31 2021-07-16 中微半导体设备(上海)股份有限公司 Substrate processing system and maintenance method thereof
CN113130345B (en) * 2019-12-31 2023-12-08 中微半导体设备(上海)股份有限公司 Substrate processing system and maintenance method thereof

Also Published As

Publication number Publication date
JP2005019739A (en) 2005-01-20
JP4517595B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
JP3486821B2 (en) Processing apparatus and method of transporting object to be processed in processing apparatus
JP5048352B2 (en) Substrate processing method and substrate processing apparatus
KR100809126B1 (en) Processed object processing apparatus
JP4916140B2 (en) Vacuum processing system
US20100304027A1 (en) Substrate processing system and methods thereof
JP5208948B2 (en) Vacuum processing system
JP2009062604A (en) Vacuum treatment system, and method for carrying substrate
JP2005527120A (en) Reduction of cross-contamination between chambers in semiconductor processing tools
US20130239889A1 (en) Valve purge assembly for semiconductor manufacturing tools
WO2018180670A1 (en) Substrate processing method and storage medium
WO2005001925A1 (en) Vacuum processing device operating method
KR20160130192A (en) Substrate processing apparatus, method of manufacturing semiconductor device, computer program and non-transitory computer-readable recording medium
JP2007149948A (en) Vacuum treatment device
JP4472005B2 (en) Vacuum processing apparatus and vacuum processing method
JP3268394B2 (en) Processing method
JP5224567B2 (en) Substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method
TW202207347A (en) Transfer chamber with integrated substrate pre-process chamber
JP3020567B2 (en) Vacuum processing method
JP6417916B2 (en) Substrate transport method, substrate processing apparatus, and storage medium
JP3121022B2 (en) Decompression processing equipment
WO2022270317A1 (en) Substrate processing method and substrate processing apparatus
JP7262287B2 (en) Deposition method
JP3136615B2 (en) Multi-chamber process apparatus and semiconductor device manufacturing method
WO2024070685A1 (en) Film forming method, film forming device, and film forming system
JPH11186355A (en) Load locking mechanism, substrata processing device and substrate processing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase