JP4517595B2 - Method for transporting workpieces - Google Patents

Method for transporting workpieces Download PDF

Info

Publication number
JP4517595B2
JP4517595B2 JP2003183238A JP2003183238A JP4517595B2 JP 4517595 B2 JP4517595 B2 JP 4517595B2 JP 2003183238 A JP2003183238 A JP 2003183238A JP 2003183238 A JP2003183238 A JP 2003183238A JP 4517595 B2 JP4517595 B2 JP 4517595B2
Authority
JP
Japan
Prior art keywords
chamber
processing chamber
processing
pressure
common transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003183238A
Other languages
Japanese (ja)
Other versions
JP2005019739A (en
Inventor
正道 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2003183238A priority Critical patent/JP4517595B2/en
Priority to PCT/JP2004/009011 priority patent/WO2005001925A1/en
Publication of JP2005019739A publication Critical patent/JP2005019739A/en
Application granted granted Critical
Publication of JP4517595B2 publication Critical patent/JP4517595B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67167Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers surrounding a central transfer chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Description

【0001】
【発明の属する技術分野】
本発明は、例えばクラスタツール型の処理装置内の被処理体の搬送方法に関する。
【0002】
【従来の技術】
一般に、半導体デバイスの製造工程にあっては、半導体ウエハに各種の処理、例えばドライエッチング、スパッタリング、CVD(Chemical Vapor Deposition)等が複数回繰り返し行なわれるが、最近にあっては、処理の効率化を図るために上述したような処理の内、同種或いは異種の処理を施す処理室を複数個集合させて結合し、1つの処理が終了した半導体ウエハを大気に晒すことなくこれに次の処理を連続的に施すことができるようにした、いわゆるクラスタツール型の処理装置が注目されている。
【0003】
この種の装置は、例えば特許文献1に開示されているように例えば25枚のウエハを収容できるカセットを外部との間で搬出入するカセットロードロックと、カセット中のウエハを1枚ずつ内部に取り込んだり、処理済みのウエハをカセット内に収容するバッファロボットを有するバッファ室と、バッファ室に連接された前/後処理室と、この前/後処理室に連接されて内部に搬送ロボットを有する共通搬送室と、この共通搬送室に連接された複数の処理室とにより主に構成されている。そして、バッファロボットによりカセットから移送された未処理ウエハは、前/後処理室にて例えば予備加熱等の前処理がなされた後に共通搬送室内の搬送ロボットにより処理室に移載される。また、処理室間の移載はこの搬送ロボットにより行なわれ、処理済みのウエハは前述したと逆の経路をたどって、カセット内に収容されることになる。
【0004】
【発明が解決しようとする課題】
この種の装置において、上記各室間でウエハを移動させる場合、例えば共通搬送室と処理室との間でウエハを移動して受け渡しする場合には、これらの各室内に非常に僅かに残留する各種のガスやパーティクルがウエハ搬送のために連通された室間を移動し、このためにウエハに対してクロスコンタミネーション等の汚染が発生する場合がある。
このため、ウエハ搬送時にこのクロスコンタミネーション等の汚染の発生を防止する目的で、特許文献2や特許文献3に示すように、各室間の圧力調整を予め行って、連通した時に常に一方向のみに雰囲気が流れるようにして、汚染源となるガスやパーティクルが意図した方向に対して逆方向に流れ込まないようにした技術が開示されている。
【0005】
【特許文献1】
特開平3−19252号公報
【特許文献2】
特開平4−100222号公報
【特許文献3】
特開平7−211761号公報
【0006】
【発明が解決しようとする課題】
ところで、最近にあっては、ウエハに対する処理時にはその雰囲気の汚染を高度に嫌う処理、例えば物理的蒸着処理(Physical Vapor Deposition)(以下、PVDとも称す)を行う処理室とウエハに対する処理時にはその雰囲気の汚染を中程度に嫌う処理、例えば化学的蒸着処理(Chemical Vapor Deposition)(以下、CVDとも称す)を行う処理室とを上記したクラスタツール型の処理装置に共通に接続し、上記した2つの処理を連続して行うようにした一連の処理工程も提案されている。
【0007】
この場合、上記PVD処理室は、到達圧力(ベースプレッシャー)を他の種類の処理室と比較してかなり低くし、且つ処理室内の雰囲気の汚染も高度に避けなければならないが、上述したようなウエハの搬送方法ではこのPVD処理を行う処理室に、CVD処理を行う処理室内の残留ガスやパーティクル、CVD処理後の高温状態にあるウエハ等より発生した汚染源となるガス(アウトガスを含む)やパーティクル等が共通搬送室を介して侵入する場合がある、といった問題があった。
本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたものである。本発明の目的は、被処理体に対して所定の処理を行う時に雰囲気の汚染を高度に嫌う処理を行う処理室の汚染を確実に防止することが可能な被処理体の搬送方法を提供することにある。
【0008】
【課題を解決するための手段】
請求項1に係る発明は、被処理体に対して物理的蒸着処理を行うための高清浄度のPVD処理室と、前記PVD処理室内を真空引きするためにターボ分子ポンプとクライオパネルとを有する真空排気系と、被処理体に対して化学的蒸着処理を行うための中清浄度のCVD処理室と、前記CVD処理室を真空引きする真空排気系と、前記PVD処理室及び前記CVD処理室に対してそれぞれゲートバルブを介して連通及び遮断可能に接続されると共に、内部に前記被処理体を搬送する搬送機構を有する共通搬送室とを有する処理装置内にて前記被処理体を搬送する搬送方法において、前記共通搬送室内は常時圧力が一定に維持され、前記被処理体を搬送するために前記共通搬送室と前記PVD処理室とを連通する際には連通する直前に、前記PVD処理室内に不活性ガスを導入して前記PVD処理室内の圧力が前記共通搬送室内の圧力よりも僅かに高くなるように圧力調整し、前記被処理体を搬送するために前記共通搬送室と前記CVD処理室とを連通する際には連通する直前に、前記CVD処理室内に不活性ガスを導入して前記CV処理室内の圧力が前記共通搬送室内の圧力よりも僅かに低くなるように圧力調整し、前記クライオパネルは前記PVD処理室の圧力調整ができるように水蒸気のみを排気する設定になされていることを特徴とする被処理体の搬送方法である。
【0009】
このように、物理的蒸着処理を行なう高清浄度のPVD処理室と共通搬送室とを連通する際には、連通する直前に高清浄度のPVD処理室内の圧力が僅かに高くなるような状態にしているので、両室の連通時には高清浄度のPVD処理室内の雰囲気は共通搬送室内の方へ流れることになり、また化学的蒸着処理を行なう中清浄度のCVD処理室と共通搬送室とを連通する際には、連通する直前に中清浄度のCVD処理室内の圧力が僅かに低くなるような状態にしたので、両室の連通時には共通搬送室内の雰囲気は中清浄度のCVD処理室内の方向に流れることになり、結果的に、中清浄度のCVD処理室内や共通搬送室内の汚染源となるガスやパーティクルが上記高清浄度のPVD処理室内に侵入することを防止することができる。また高清浄度のPVD処理室の真空排気系にターボ分子ポンプとクライオパネルとを設けるようにしたので、例えばクライオポンプのようなため込み式ポンプに比し、リジェネレーションの回数を低減させることが可能となり、装置の稼働効率を上げることが出来る。
【0010】
この場合、例えば請求項2に規定するように、前記PVD処理室と、前記CVD処理室と、前記共通搬送室とが全て同時に連通された状態にはなされない。
また例えば請求項3に規定するように、前記PVD処理室及び前記CVD処理室の内の少なくともいずれか一方は、複数設けられている。
また例えば請求項4に規定するように、前記クライオパネルの設定温度は、100〜110°Kである。
【0011】
【発明の実施の形態】
以下に、本発明に係る被処理体の搬送方法の一実施例を添付図面に基づいて詳述する。
図1は本発明の被処理体の搬送方法を実施するための処理装置の一例を示す概略平面図、図2は本発明方法を実施するための圧力関係を示すタイミングチャートである。
図1に示すように、この処理装置2は、複数、例えば4つの処理室4A、4B、4C、4Dと、略六角形状の共通搬送室6と、ロードロック機能を有する第1及び第2ロードロック室8A、8Bとを主に有している。具体的には、略六角形状の上記共通搬送室6の4辺に上記各処理室4が接合され、他側の2つの辺に、上記第1及び第2ロードロック室8A、8Bがそれぞれ接合される。
【0012】
上記共通搬送室6と上記4つの各処理室4A〜4Dとの間及び上記共通搬送室6と上記第1及び第2ロードロック室8A、8Bとの間は、それぞれ気密に開閉可能になされたゲートバルブGが介在して接合されて、クラスタツール化されており、必要に応じて共通搬送室6内と連通可能になされている。また、上記第1及び第2各ロードロック室8A、8Bの他方にもそれぞれ気密に開閉可能になされたゲートバルブGが介在されており、図示しない大気側の搬送室やカセット室からウエハWを搬出入できるようになっている。
【0013】
上記4つの処理室4A〜4D内には、それぞれ被処理体としての半導体ウエハを載置するサセプタ12A、12B、12C、12Dが設けられており、被処理体である半導体ウエハWに対して同種の、或いは異種の処理を施すようになっている。そして、この共通搬送室6内においては、上記2つの各ロードロック室8A、8B及び4つの各処理室4A〜4Dにアクセスできる位置に、屈伸、昇降及び旋回可能になされた多関節アームよりなる搬送機構14が設けられており、これは、互いに反対方向へ独立して屈伸できる2つのピックB1、B2を有しており、一度に2枚のウエハを取り扱うことができるようになっている。尚、上記搬送機構14として1つのみのピックを有しているものも用いることができる。
【0014】
ここで上記処理室4A〜4Dには、この内部にArガスやN2 ガス等の不活性ガスを含む所定の処理ガスを供給するガス供給系16A、16B、16C、16Dがそれぞれ接続されると共に、室内の雰囲気を真空排気するための真空排気系18A、18B、18C、18Dがそれぞれ接続される。また同時に、共通搬送室6と第1及び第2ロードロック室8A、8Bにも、ArガスやN2 ガス等の不活性ガスを供給するガス供給系22A、24A、26Aがそれぞれ接続されると共に、内部の雰囲気を真空排気するための真空排気系22B、24B、26Bがそれぞれ接続されている。更には、各処理室4A〜4D、共通搬送室6及び第1、第2ロードロック室8A、8Bには、それらの内部圧力を検出するための圧力計Pがそれぞれ設けられている。
【0015】
ここで、4つの処理室4A〜4Dの内、例えば2つの処理室4A、4Bは、被処理体である半導体ウエハWに対して雰囲気の汚染を高度に嫌う処理を行う高清浄度の処理室であり、これに対して、他の処理室4C、4Dは、被処理体である半導体ウエハWに対して雰囲気の汚染を中程度に嫌う処理を行う中清浄度の処理室である。ここで”高清浄度”や”中清浄度”とは、絶対的な清浄度を示すものではなく、単に両者間における相対的な清浄度の程度を示すものである。ここでは高清浄度の処理としては、例えば1×10-7Torr(1.33×10-5Pa)以下の到達圧力が要求されるPVD処理が対応し、中清浄度の処理としては、例えば1×10-3Torr(1.33×10-1Pa)程度の到達圧力が要求されるCVD処理が対応し、それぞれ処理室4A、4BではTiやCu等をスパッタ成膜するPVD処理が行われ、処理室4C、4DではTaN、WN、W、TiN等を成膜するCVD処理が行われる。ここで、上記処理室4A、4Bの真空排気系18A、18Bには、上記したような高真空を実現するために、ドライポンプやターボ分子ポンプ(図示せず)の他に、クライオポンプ30がそれぞれ併設されている。また各室のガスの給排や各室の圧力制御は、この処理装置2の全体の動作を制御する図示しない主制御部のコントロールにより行われる。
【0016】
次に、以上のように構成された処理装置2に基づいて行われる本発明方法について説明する。
ここでは本発明の理解を容易にするために、高清浄度の処理室である処理室4A、4Bは、共にTi膜をPVD処理により成膜し、中清浄度の処理室である処理室4C、4Dは、共にTiN膜をCVD処理により成膜してバリヤ膜を形成する場合を例にとって説明する。尚、PVD処理は、処理ガスとしては一般的にはプラズマの形成に必要なArガス等の不活性ガスであって汚染を拡大させる恐れがほとんど存在しないのに対して、CVD処理では汚染を拡大する源となる各種の原料ガスが用いられる。本発明の重要な点は、ウエハWの搬送時において、高清浄度の処理室4A、4B内におけるクロスコンタミネーションの発生を防ぐために、高清浄度の処理室4A、4B内の雰囲気は共通搬送室6側へ流すようにし、共通搬送室6内の雰囲気は中清浄度の処理室4C、4D側へ流すようにした点である。
【0017】
すなわち、まず大気側に位置された半導体ウエハWは、第1及び第2ロードロック室8A、8Bの内のいずれか一方のロードロック室を介してこの処理室2内へ取り込まれ、このウエハWは共通搬送室6内の搬送機構14を旋回及び屈伸動作させることによって共通搬送室6内に導入される。
この共通搬送室6内へ導入されたウエハWは、まずTi膜をPVD処理により成膜するために高清浄度の処理室4A、4Bの内のいずれか一方の処理室、例えば処理室4A内へ導入され、すでにTi膜の成膜処理が完了しているウエハWと入れ替える。そして、Ti膜の成膜がすでに完了したウエハWは、次に中清浄度の処理室4C、4Dの内のいずれか一方の処理室、例えば処理室4C内へ導入され、すでにTiN膜の成膜処理が完了しているウエハWを入れ替える。
【0018】
このようにして、Ti膜及びTiN膜の連続処理が完了したウエハWは、第1及び第2ロードロック室8A、8Bの内のいずれか一方のロードロック室を介して外へ搬送され、これと同時に、未処理のウエハWが前述したように取り込まれることになる。そして、上記したような一連の動作が順次、繰り返し行われることになる。ここで共通搬送室6に臨ませて取り付けられる6個のゲートバルブGは、同時に2以上開状態になされる場合はなく、いずれか1つのゲートバルブGが開状態の時には、他の5個のゲートバルブGは必ず閉状態になされている。
【0019】
次に、図2を参照して上記した一連の動作中の高清浄度の処理室4A内と中清浄度の処理室4C内の圧力変化の一例について説明する。
図2(A)は処理室4A内の圧力変化を示し、図2(B)は処理室4C内の圧力変化を示す。この時、共通搬送室6内は常時真空引きされており、例えば略200mTorr(27Pa)程度の圧力を一定に維持しているものとする。また、Ti膜をPVD処理により成膜する時のプロセス圧力は、例えば10mTorr(1Pa)とし、TiN膜をCVD処理により成膜する時のプロセス圧力は、例えば100mTorr(13Pa)とする。尚、上記両プロセス時間は、説明の都合上、略同一であると仮定する。
【0020】
まず図2(A)に示すように、高清浄度の処理室4A内で所定のプロセス圧力の下でPVD処理によりTi膜を成膜したならば、この処理室4A内の雰囲気を不活性ガスでパージして排気した後に、ArガスやN2 ガスの不活性ガスをこの処理室4A内に導入して、期間t1に示すようにこの処理室4A内の圧力調整を行い、この圧力を共通搬送室6内の圧力よりも僅かな圧力、例えば50mTorr(7Pa)程度高くなるように例えば250mTorr(33Pa)に設定する。
上記動作と並行して、図2(B)に示すように、中清浄度の処理室4C内で所定のプロセス圧力の下でCVDによりTiN膜を成膜したならば、この処理室4C内の雰囲気を不活性ガスでパージして排気した後に、ArガスやN2 ガスの不活性ガスをこの処理室4C内に導入して、期間t2に示すようにこの処理室4C内の圧力調整を行い、この圧力を共通搬送室6内の圧力よりも僅かな圧力、例えば50mTorr(7Pa)程度低くなるように例えば150mTorr(20Pa)に設定する。
【0021】
さて、上述したような圧力関係になったならば、図2(A)に示すように、まず処理室4AのゲートバルブGを開状態として、搬送機構14を用いてTi膜の成膜処理済みのウエハWを共通搬送室6内へ取り込む。尚、この時、未処理のウエハを処理室4Aへ同時に搬入して両ウエハを入れ替える。この時、この処理室4A内の圧力は、共通搬送室6内の圧力よりも僅かな圧力(50mTorr)だけ高く維持されているので、処理室4A内の雰囲気は共通搬送室6側に流れ込むことになり、処理室4A内へは、パーティクルや汚染源となるガスが入り込むことはなく、クロスコンタミネーション等が発生することを防止できる。このように、処理室4Aに対するウエハの入れ替えが完了したならば、この処理室4AのゲートバルブGを閉状態とする。
【0022】
次に、図2(B)に示すように、他方の処理室4CのゲートバルブGを開状態として搬送機構14を用いてTi膜の成膜処理済みのウエハWを処理室4C内へ搬入する。尚、この時、処理室4C内のTiN膜の成膜処理済みのウエハを共通搬送室6内へ同時に取り込んで両ウエハを入れ替える。この時、この処理室4C内の圧力は、共通搬送室6内の圧力よりも僅かな圧力(50mTorr)だけ低く維持されているので、共通搬送室6内の雰囲気は処理室4C側へ流れ込むことになり、共通搬送室6内へはパーティクルや汚染源となるガスが入り込むことはない。さらに処理室4Cは僅かな圧力だけ低く維持されるよう不活性ガスが導入され続けているので、処理室内のパーティクルやガスはより効率的に排気される。
このように処理室4Cに対するウエハの入れ替えが完了したならば、この処理室4CのゲートバルブGを閉状態とする。尚、このTi膜及びTiN膜が連続成膜されたウエハWは、前述したように、第1或いは第2ロードロック室8A、8Bを介して大気側へ搬出されることになる。
【0023】
以上のようにして、一連の動作が連続して行われることになり、この間、高清浄度の処理室4A、4Bはそれぞれ空いている方が選択的に用いられ、また、中清浄度の処理室4C、4Dもそれぞれ空いている方が選択的に用いられることになる。
この結果、高清浄度の処理室4A、4Bに対するウエハWの搬入搬出(入れ替え)の際は、これらの処理室4A、4B内の雰囲気は、常に共通搬送室6側へ流れるようにし、また、中清浄度の処理室4C、4Dに対するウエハWの搬入搬出(入れ替え)の際は、共通搬送室6内の雰囲気は常にこれらの処理室4C、4D側へ流れるようにしているので、高清浄度の処理室4A、4B内に汚染源となるガスやパーティクルが侵入することを確実に防止することができる。また、高清浄度の処理室が特にPVD処理室である場合には、上記の如く、原料ガスが使われないため、共通搬送室6の雰囲気が処理室4C、4Dに流れても、これら処理室が汚染されることもない。
【0024】
また各処理室4A〜4Dの容量に対して容量の大きな共通搬送室6内の内圧は、略一定に維持したままこの圧力を変更させる必要はないので、その分、圧力調整が迅速に行われるので、スループットを低下させることもない。
また上記実施例における各圧力値は単に一例を示したに過ぎず、先に説明した数値に限定されない。例えば共通搬送室6内に対する各処理室4A、4B及び4C、4Dの圧力差は、それぞれ+10〜+200mTorr程度或いは−10〜−200mTorr程度の範囲内でもよい。また処理室4C、4Dにおいては共通搬送室6より圧力が低ければよいので、期間t2における圧力調整をせず、ArガスやN2 ガスの不活性ガスを導入しなくてもよい。
【0025】
更に、ここでは高清浄度の処理室と中清浄度の処理室を、共に2つずつ設けたが、それぞれ少なくとも1つ設けるようにすればよく、その設置個数は、各処理の時間を考慮して最適なスループットが得られるように設定される。
また処理室4A、4Bにおいては高い到達圧力が要求されるため、クライオポンプ30が使用されているが、これに代えてターボ分子ポンプの吸気口側にクライオパネルを設けても良い。この際、このクライオパネルの温度は、100〜110°K程度に設定して置く。このようにすれば、処理室から排気される気体分子のうち、水蒸気のみがクライオパネルにトラップされ、ArガスやN ガスはターボポンプにより排気される。
【0026】
このため、クライオポンプのようなため込み式ポンプ(全ての気体をトラップする)に比し、リジェネレーション(トラップされた気体を昇温して排気させること)の回数を低減させることが可能となり、装置の稼働効率を上げることが出来る。特に本願思想のように、処理室内の圧力を250mTorrに維持するよう、不活性ガスを流し続ける場合には、クライオパネルを使用することが好ましい。
【0027】
また成膜処理の態様としては、Ti膜とTiN膜の組み合わせに限定されず、前述したようにPVD処理(高清浄度の処理室)によるCu膜の成膜とCVD処理(中清浄度の処理室)によるTaN膜、WN膜、W膜の成膜等の組み合わせによりバリヤ膜を形成する場合にも本発明を適用し得る。
更には、高清浄度の処理室による処理としては、Arガスだけのプラズマによりエッチング処理を行う、いわゆるソフトエッチング処理(PCEM:プリクリーンエッチングモジュール)を挙げることができ、また中清浄度の処理室による処理としては、ALD(Atomic Layer Deposition)処理、RTP(Rapid Thermal Processing)等を挙げることができる。
また、搬送される被処理体としては半導体ウエハに限定されず、LCD基板、ガラス基板等の場合にも本発明を適用することができる。
【0028】
【発明の効果】
以上説明したように、本発明の被処理体の搬送方法によれば、次のように優れた作用効果を発揮することができる。
物理的蒸着処理を行なう高清浄度のPVD処理室と共通搬送室とを連通する際には、連通する直前に高清浄度のPVD処理室内の圧力が僅かに高くなるような状態にしているので、両室の連通時には高清浄度のPVD処理室内の雰囲気は共通搬送室内の方へ流れることになり、また化学的蒸着処理を行なう中清浄度のCVD処理室と共通搬送室とを連通する際には、連通する直前に中清浄度のCVD処理室内の圧力が僅かに低くなるような状態にしたので、両室の連通時には共通搬送室内の雰囲気は中清浄度のCVD処理室内の方向に流れることになり、結果的に、中清浄度のCVD処理室内や共通搬送室内の汚染源となるガスやパーティクルが上記高清浄度のPVD処理室内に侵入することを防止することができる。また高清浄度のPVD処理室の真空排気系にターボ分子ポンプとクライオパネルとを設けるようにしたので、例えばクライオポンプのようなため込み式ポンプに比し、リジェネレーションの回数を低減させることが可能となり、装置の稼働効率を上げることが出来る。
【図面の簡単な説明】
【図1】本発明の被処理体の搬送方法を実施するための処理装置の一例を示す概略平面図である。
【図2】本発明方法を実施するための圧力関係を示すタイミングチャートである。
【符号の説明】
2 処理装置
4A,4B,4C,4D 処理室
6 共通搬送室
8A,8B ロードロック室
14 搬送機構
W 半導体ウエハ(被処理体)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for transporting an object to be processed in, for example, a cluster tool type processing apparatus.
[0002]
[Prior art]
In general, in the manufacturing process of a semiconductor device, various processes such as dry etching, sputtering, and CVD (Chemical Vapor Deposition) are repeatedly performed on a semiconductor wafer several times. In order to achieve this, among the above-described processes, a plurality of process chambers for performing the same type or different types of processes are assembled and connected, and the next process is performed without exposing the semiconductor wafer after one process to the atmosphere. A so-called cluster tool type processing apparatus that can be applied continuously has been attracting attention.
[0003]
For example, as disclosed in Patent Document 1, this type of apparatus includes, for example, a cassette load lock for loading and unloading a cassette capable of accommodating, for example, 25 wafers, and a wafer inside the cassette one by one. A buffer chamber having a buffer robot for storing wafers that have been taken in or processed in a cassette, a pre / post processing chamber connected to the buffer chamber, and a transfer robot connected to the pre / post processing chamber. It is mainly composed of a common transfer chamber and a plurality of processing chambers connected to the common transfer chamber. The unprocessed wafer transferred from the cassette by the buffer robot is transferred to the processing chamber by the transfer robot in the common transfer chamber after pre-processing such as preheating in the pre / post-processing chamber. Further, the transfer between the processing chambers is performed by the transfer robot, and the processed wafer is stored in the cassette along the reverse path as described above.
[0004]
[Problems to be solved by the invention]
In this type of apparatus, when the wafer is moved between the chambers, for example, when the wafer is moved and transferred between the common transfer chamber and the processing chamber, a very slight amount remains in the chambers. Various gases and particles move between chambers communicated for wafer conveyance, which may cause contamination such as cross-contamination on the wafer.
Therefore, for the purpose of preventing the occurrence of contamination such as cross-contamination during wafer transfer, as shown in Patent Document 2 and Patent Document 3, the pressure adjustment between the chambers is performed in advance and always in one direction when communicating. A technique is disclosed in which the atmosphere flows only in such a manner that the gas or particles as a contamination source do not flow in the opposite direction to the intended direction.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 3-19252 [Patent Document 2]
Japanese Patent Laid-Open No. 4-100222 [Patent Document 3]
Japanese Patent Laid-Open No. 7-211761
[Problems to be solved by the invention]
By the way, recently, a processing chamber that performs processing that highly dislikes contamination of the atmosphere when processing the wafer, for example, physical vapor deposition (hereinafter also referred to as PVD), and the atmosphere when processing the wafer. A processing chamber that performs a process that dislikes contamination of the medium, such as a chemical vapor deposition (hereinafter also referred to as CVD), is commonly connected to the above-described cluster tool type processing apparatus. A series of processing steps in which processing is performed continuously has also been proposed.
[0007]
In this case, the PVD processing chamber has a considerably lower ultimate pressure (base pressure) than other types of processing chambers, and contamination of the atmosphere in the processing chamber must be highly avoided. In the wafer transfer method, residual gases and particles in the processing chamber for CVD processing, gases (including outgas) and particles that become contamination sources generated from wafers in a high temperature state after the CVD processing are added to the processing chamber for PVD processing. And the like may enter through the common transfer chamber.
The present invention has been devised to pay attention to the above problems and to effectively solve them. An object of the present invention is to provide a method of transporting an object to be processed that can reliably prevent contamination of a processing chamber that performs processing that highly dislikes contamination of the atmosphere when performing predetermined processing on the object to be processed. There is.
[0008]
[Means for Solving the Problems]
Invention, a high cleanliness of the PVD processing chamber for performing a physical vapor deposition process on the target object, the pre-Symbol PVD process chamber and the turbo molecular pump and a cryopanel for evacuating according to claim 1 and an evacuation system having a vacuum exhaust system for evacuating the CVD processing chamber of cleanliness in for performing chemical vapor deposition process, the CVD processing chamber with respect to the object to be processed, the PVD processing chamber and said The object to be processed in a processing apparatus having a common transfer chamber having a transfer mechanism for transferring the object to be processed and connected to the CVD process chamber via a gate valve. in transporting method for transporting a, immediately before the common transfer chamber is at all times the pressure is maintained constant, communicates the time of communicating the common transfer chamber and the front Symbol PVD treatment chamber for transporting the object to be processed to, the P By introducing an inert gas into the D treatment chamber pressure adjusted to be higher slightly than the pressure of the pressure is the common transfer chamber of the PVD processing chamber, and the common transfer chamber for conveying the object to be processed a front Symbol CVD processing chamber immediately prior to communicating the time of communicating, the CVD process chamber by introducing an inert gas the CV processing chamber slightly lower than the pressure is the pressure of the common transfer chamber Kunar and the pressure adjusted to the Kuraiopane Le is the transfer method of the object, characterized by being made in setting evacuating only Mizu蒸 care to allow pressure regulation of the PVD processing chamber.
[0009]
Thus, as the time of communicating the performing physical vapor deposition process and high cleanliness of the PVD processing chamber and the common transfer chamber, PVD process pressure in the chamber of a high cleanliness is slightly higher just before communicating since in the state, the atmosphere of PVD process chamber of high cleanliness during communication of both chambers will flow toward the common transfer chamber, also common transfer and cleanliness of the CVD processing chamber in which a chemical vapor deposition process When communicating with the chambers, the pressure in the medium cleanliness CVD processing chamber was slightly lowered immediately before communicating, so the atmosphere in the common transfer chamber was medium cleanliness CVD when communicating between the two chambers. will flow in the direction of the processing chamber, resulting in, CVD processing chamber and the common transfer chamber contamination sources become gas and particles of medium cleanliness is prevented from entering the PVD process chamber of the high cleanliness be able to. Since was provided a turbo molecular pump and a class Iopaneru the evacuation system of a high cleanliness of the PVD processing chamber, for example, compared to the entrapment type pump such as a cryopump, reducing the number of regeneration And the operating efficiency of the apparatus can be increased.
[0010]
In this case, for example, as defined in claim 2, said PVD processing chamber, the pre-Symbol CVD processing chamber, and the common transfer chamber is not performed in all state of being communicated at the same time.
In addition, for example claim 3, the at least one of the pre-Symbol PVD processing chamber and the CVD processing chamber, provided with a plurality.
For example, as defined in claim 4, the set temperature of the cryopanel is 100 to 110 ° K.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a method for conveying an object to be processed according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic plan view showing an example of a processing apparatus for carrying out a method for conveying an object to be treated of the present invention, and FIG. 2 is a timing chart showing a pressure relationship for carrying out the method of the present invention.
As shown in FIG. 1, the processing apparatus 2 includes a plurality of, for example, four processing chambers 4A, 4B, 4C, and 4D, a substantially hexagonal common transfer chamber 6, and first and second loads having a load lock function. It has mainly lock chambers 8A and 8B. Specifically, the processing chambers 4 are joined to four sides of the substantially hexagonal common transfer chamber 6, and the first and second load lock chambers 8A and 8B are joined to the other two sides, respectively. Is done.
[0012]
Between the common transfer chamber 6 and the four processing chambers 4A to 4D and between the common transfer chamber 6 and the first and second load lock chambers 8A and 8B, each can be opened and closed in an airtight manner. The gate valve G is joined and formed into a cluster tool, and can communicate with the common transfer chamber 6 as necessary. A gate valve G that can be opened and closed in an airtight manner is interposed in the other of the first and second load lock chambers 8A and 8B, respectively. It can be carried in and out.
[0013]
In the four processing chambers 4A to 4D, susceptors 12A, 12B, 12C, and 12D for placing semiconductor wafers as processing objects are provided, respectively, and the same kind as the semiconductor wafer W that is the processing object. Or different kinds of processing. In the common transfer chamber 6, the two load lock chambers 8A and 8B and the four processing chambers 4A to 4D are provided with articulated arms that can be bent, extended and lowered and turned. A transfer mechanism 14 is provided, which has two picks B1 and B2 that can be bent and stretched independently in opposite directions, and can handle two wafers at a time. In addition, the conveyance mechanism 14 having only one pick can be used.
[0014]
Here, gas supply systems 16A, 16B, 16C, and 16D for supplying a predetermined processing gas containing an inert gas such as Ar gas and N 2 gas are connected to the processing chambers 4A to 4D, respectively. The evacuation systems 18A, 18B, 18C, and 18D for evacuating the indoor atmosphere are connected to each other. At the same time, gas supply systems 22A, 24A and 26A for supplying an inert gas such as Ar gas and N 2 gas are connected to the common transfer chamber 6 and the first and second load lock chambers 8A and 8B, respectively. The evacuation systems 22B, 24B, and 26B for evacuating the internal atmosphere are connected to each other. Further, each of the processing chambers 4A to 4D, the common transfer chamber 6, and the first and second load lock chambers 8A and 8B are provided with pressure gauges P for detecting their internal pressures.
[0015]
Here, of the four processing chambers 4A to 4D, for example, the two processing chambers 4A and 4B are high-cleanness processing chambers that perform processing that highly dislikes contamination of the atmosphere with respect to the semiconductor wafer W that is an object to be processed. On the other hand, the other processing chambers 4C and 4D are medium cleanliness processing chambers that perform processing that dislikes medium contamination of the semiconductor wafer W that is the object to be processed. Here, “high cleanliness” and “medium cleanliness” do not indicate absolute cleanliness, but merely indicate the degree of relative cleanliness between the two. Here, as a process of high cleanliness, for example, a PVD process that requires an ultimate pressure of 1 × 10 −7 Torr (1.33 × 10 −5 Pa) or less corresponds, and as a process of medium cleanliness, for example, A CVD process requiring an ultimate pressure of about 1 × 10 −3 Torr (1.33 × 10 −1 Pa) is supported, and a PVD process for forming a film such as Ti or Cu is performed in the processing chambers 4A and 4B, respectively. In the processing chambers 4C and 4D, a CVD process for forming a film of TaN, WN, W, TiN or the like is performed. Here, in addition to the dry pump and the turbo molecular pump (not shown), the cryopump 30 is provided in the evacuation systems 18A and 18B of the processing chambers 4A and 4B in order to realize a high vacuum as described above. Each is attached. In addition, gas supply / discharge of each chamber and pressure control of each chamber are performed by control of a main control unit (not shown) that controls the overall operation of the processing apparatus 2.
[0016]
Next, the method of the present invention performed based on the processing apparatus 2 configured as described above will be described.
Here, in order to facilitate understanding of the present invention, the processing chambers 4A and 4B, which are processing chambers with high cleanliness, both form a Ti film by PVD processing, and processing chamber 4C which is a processing chamber with medium cleanliness. In 4D, a case where a TiN film is formed by a CVD process to form a barrier film will be described as an example. In the PVD process, the process gas is generally an inert gas such as Ar gas necessary for plasma formation, and there is almost no risk of expanding the contamination, whereas the CVD process expands the contamination. Various source gases are used as a source for this. The important point of the present invention is that the atmosphere in the high cleanliness processing chambers 4A and 4B is commonly transferred in order to prevent the occurrence of cross-contamination in the high cleanliness processing chambers 4A and 4B when the wafer W is transferred. It is made to flow to the chamber 6 side, and the atmosphere in the common transfer chamber 6 is made to flow to the processing chambers 4C and 4D side of medium cleanliness.
[0017]
That is, first, the semiconductor wafer W positioned on the atmosphere side is taken into the processing chamber 2 through one of the first and second load lock chambers 8A and 8B, and the wafer W Is introduced into the common transfer chamber 6 by rotating and bending the transfer mechanism 14 in the common transfer chamber 6.
The wafer W introduced into the common transfer chamber 6 is formed in any one of the processing chambers 4A and 4B having high cleanliness, for example, the processing chamber 4A, in order to form a Ti film by PVD processing. The wafer W is replaced with the wafer W that has already been subjected to the Ti film forming process. The wafer W on which the Ti film has already been formed is then introduced into one of the process chambers 4C and 4D having medium cleanliness, for example, the process chamber 4C, and the TiN film is already formed. The wafer W that has undergone film processing is replaced.
[0018]
In this way, the wafer W on which the continuous processing of the Ti film and the TiN film has been completed is transferred to the outside through one of the first and second load lock chambers 8A and 8B. At the same time, the unprocessed wafer W is taken in as described above. The series of operations as described above are sequentially repeated. Here, the six gate valves G mounted facing the common transfer chamber 6 are not simultaneously opened to two or more. When any one of the gate valves G is open, the other five gate valves G are not opened. The gate valve G is always closed.
[0019]
Next, an example of the pressure change in the high cleanliness processing chamber 4A and the medium cleanliness processing chamber 4C during the series of operations described above will be described with reference to FIG.
FIG. 2A shows the pressure change in the processing chamber 4A, and FIG. 2B shows the pressure change in the processing chamber 4C. At this time, it is assumed that the inside of the common transfer chamber 6 is constantly evacuated and a pressure of, for example, about 200 mTorr (27 Pa) is maintained constant. Further, the process pressure when the Ti film is formed by PVD processing is, for example, 10 mTorr (1 Pa), and the process pressure when the TiN film is formed by CVD processing is, for example, 100 mTorr (13 Pa). It is assumed that both the process times are substantially the same for convenience of explanation.
[0020]
First, as shown in FIG. 2A, if a Ti film is formed by PVD processing under a predetermined process pressure in a high cleanness processing chamber 4A, the atmosphere in the processing chamber 4A is changed to an inert gas. After purging and evacuating, an inert gas such as Ar gas or N 2 gas is introduced into the processing chamber 4A, and the pressure in the processing chamber 4A is adjusted as shown in a period t1, and this pressure is shared. For example, the pressure is set to 250 mTorr (33 Pa) so as to be slightly higher than the pressure in the transfer chamber 6, for example, about 50 mTorr (7 Pa).
In parallel with the above operation, as shown in FIG. 2B, if a TiN film is formed by CVD under a predetermined process pressure in the medium cleanness processing chamber 4C, the inside of the processing chamber 4C After the atmosphere is purged with an inert gas and exhausted, an inert gas such as Ar gas or N 2 gas is introduced into the processing chamber 4C, and the pressure in the processing chamber 4C is adjusted as shown in a period t2. The pressure is set to, for example, 150 mTorr (20 Pa) so as to be slightly lower than the pressure in the common transfer chamber 6, for example, about 50 mTorr (7 Pa).
[0021]
When the pressure relationship as described above is obtained, as shown in FIG. 2A, first, the gate valve G of the processing chamber 4A is opened, and the Ti film is formed using the transfer mechanism 14. The wafer W is taken into the common transfer chamber 6. At this time, unprocessed wafers are simultaneously loaded into the processing chamber 4A, and the two wafers are exchanged. At this time, since the pressure in the processing chamber 4A is maintained by a slight pressure (50 mTorr) higher than the pressure in the common transfer chamber 6, the atmosphere in the processing chamber 4A flows into the common transfer chamber 6 side. Thus, particles or gas that becomes a contamination source do not enter the processing chamber 4A, and cross contamination and the like can be prevented from occurring. As described above, when the replacement of the wafer with respect to the processing chamber 4A is completed, the gate valve G of the processing chamber 4A is closed.
[0022]
Next, as shown in FIG. 2B, the gate valve G of the other processing chamber 4C is opened, and the wafer W on which the Ti film has been formed is loaded into the processing chamber 4C using the transfer mechanism 14. . At this time, the wafers on which the TiN film in the processing chamber 4C has been formed are simultaneously taken into the common transfer chamber 6 and the two wafers are replaced. At this time, since the pressure in the processing chamber 4C is maintained by a slight pressure (50 mTorr) lower than the pressure in the common transfer chamber 6, the atmosphere in the common transfer chamber 6 flows into the processing chamber 4C. Therefore, particles and gas that becomes a contamination source do not enter the common transfer chamber 6. Furthermore, since the inert gas is continuously introduced into the processing chamber 4C so as to be kept low by a slight pressure, particles and gases in the processing chamber are more efficiently exhausted.
When the replacement of the wafer with respect to the processing chamber 4C is completed in this way, the gate valve G of the processing chamber 4C is closed. The wafer W on which the Ti film and the TiN film are continuously formed is carried out to the atmosphere side through the first or second load lock chambers 8A and 8B as described above.
[0023]
As described above, a series of operations are continuously performed. During this time, the vacant treatment chambers 4A and 4B are selectively used, and the medium cleanliness treatment is performed. The chambers 4C and 4D that are vacant are selectively used.
As a result, when loading / unloading (replacement) the wafer W into / from the high cleanliness processing chambers 4A, 4B, the atmosphere in these processing chambers 4A, 4B always flows toward the common transfer chamber 6; When loading / unloading (replacement) of the wafer W into / from the medium cleanliness processing chambers 4C and 4D, the atmosphere in the common transfer chamber 6 always flows toward the processing chambers 4C and 4D. It is possible to reliably prevent the gas or particles that become a contamination source from entering the processing chambers 4A and 4B. In addition, when the high cleanliness processing chamber is a PVD processing chamber, since the source gas is not used as described above, even if the atmosphere in the common transfer chamber 6 flows into the processing chambers 4C and 4D, these processing are performed. The room is not contaminated.
[0024]
Further, since the internal pressure in the common transfer chamber 6 having a large capacity with respect to the capacities of the respective processing chambers 4A to 4D does not need to be changed while being kept substantially constant, the pressure adjustment is performed quickly accordingly. Therefore, the throughput is not reduced.
Each pressure value in the above embodiment is merely an example, and is not limited to the numerical values described above. For example, the pressure difference between the processing chambers 4A, 4B and 4C, 4D with respect to the common transfer chamber 6 may be in the range of about +10 to +200 mTorr or about −10 to −200 mTorr, respectively. Further, since it is sufficient that the pressure in the processing chambers 4C and 4D is lower than that in the common transfer chamber 6, pressure adjustment in the period t2 is not performed, and it is not necessary to introduce an inert gas such as Ar gas or N 2 gas.
[0025]
Furthermore, although two high-cleanness treatment chambers and two medium-cleanness treatment chambers are provided here, at least one of each may be provided, and the number of installations takes into account the time of each treatment. Therefore, the optimum throughput is set.
The processing chamber 4A, since a high ultimate pressure is requested in 4B, but the cryopump 30 is used, may be a cryopanel provided in the intake port side of the turbo molecular pump instead. At this time, temperature of the click Lion panel places set to about 100 to 110 ° K. Thus, among the gas molecules are exhausted from the processing chamber, only water vapor is trapped in the cryopanel, Ar gas or N 2 gas is exhausted by the turbo pump.
[0026]
For this reason, it becomes possible to reduce the number of regenerations (heating the trapped gas and exhausting it) as compared to a trap pump (which traps all gases) like a cryopump. The operating efficiency of the device can be increased. In particular, it is preferable to use a cryopanel when the inert gas is kept flowing so as to maintain the pressure in the processing chamber at 250 mTorr as in the present application idea.
[0027]
Further, the form of the film forming process is not limited to the combination of the Ti film and the TiN film, and as described above, the film forming of the Cu film by the PVD process (high cleanliness processing chamber) and the CVD process (the process of medium cleanliness). The present invention can also be applied to the case where a barrier film is formed by a combination of a TaN film, a WN film, a W film, etc.
Further, as processing in the high cleanliness processing chamber, there can be mentioned so-called soft etching processing (PCEM: preclean etching module) in which etching processing is performed using only plasma of Ar gas. Examples of the processing by ALD include ALD (Atomic Layer Deposition) processing and RTP (Rapid Thermal Processing).
Further, the object to be processed is not limited to a semiconductor wafer, and the present invention can be applied to an LCD substrate, a glass substrate, and the like.
[0028]
【The invention's effect】
As described above, according to the method for transporting an object to be processed according to the present invention, the following excellent effects can be achieved.
The performing physical vapor deposition process and high cleanliness of the PVD processing chamber and the common transfer chamber in communicating is, PVD process pressure in the chamber of a high cleanliness is in a state such that slightly higher just before communicating since, the atmosphere of the PVD processing chamber of a high cleanliness during communication of both chambers will flow toward the common transfer chamber, also communicates the common transfer chamber and cleanliness of the CVD processing chamber in which a chemical vapor deposition process when the, since the conditions such as CVD processing pressure chamber of the medium cleanliness is slightly lower just before communicating, CVD processing chamber of middle cleanliness atmosphere of the common transfer chamber during communication both chambers will flow in a direction, consequently, it is possible to CVD processing chamber and the common transfer chamber contamination sources become gas and particles of medium cleanliness is prevented from entering the PVD process chamber of the high cleanliness . Since was provided a turbo molecular pump and a class Iopaneru the evacuation system of a high cleanliness of the PVD processing chamber, for example, compared to the entrapment type pump such as a cryopump, reducing the number of regeneration And the operating efficiency of the apparatus can be increased.
[Brief description of the drawings]
FIG. 1 is a schematic plan view showing an example of a processing apparatus for carrying out a method for conveying an object to be processed according to the present invention.
FIG. 2 is a timing chart showing a pressure relationship for carrying out the method of the present invention.
[Explanation of symbols]
2 Processing apparatus 4A, 4B, 4C, 4D Processing chamber 6 Common transfer chamber 8A, 8B Load lock chamber 14 Transfer mechanism W Semiconductor wafer (object to be processed)

Claims (4)

被処理体に対して物理的蒸着処理を行うための高清浄度のPVD処理室と、
記PVD処理室内を真空引きするためにターボ分子ポンプとクライオパネルとを有する真空排気系と、
被処理体に対して化学的蒸着処理を行うための中清浄度のCVD処理室と、
前記CVD処理室を真空引きする真空排気系と、
前記PVD処理室及び前記CVD処理室に対してそれぞれゲートバルブを介して連通及び遮断可能に接続されると共に、内部に前記被処理体を搬送する搬送機構を有する共通搬送室とを有する処理装置内にて前記被処理体を搬送する搬送方法において、
前記共通搬送室内は常時圧力が一定に維持され、
前記被処理体を搬送するために前記共通搬送室と前記PVD処理室とを連通する際には連通する直前に、前記PVD処理室内に不活性ガスを導入して前記PVD処理室内の圧力が前記共通搬送室内の圧力よりも僅かに高くなるように圧力調整し、
前記被処理体を搬送するために前記共通搬送室と前記CVD処理室とを連通する際には連通する直前に、前記CVD処理室内に不活性ガスを導入して前記CV処理室内の圧力が前記共通搬送室内の圧力よりも僅かに低くなるように圧力調整し、前記クライオパネルは前記PVD処理室の圧力調整ができるように水蒸気のみを排気する設定になされていることを特徴とする被処理体の搬送方法。
A high cleanliness of the PVD processing chamber for performing a physical vapor deposition process on the target object,
A vacuum exhaust system and a turbo molecular pump and a cryopanel for evacuating the pre Symbol PVD processing chamber,
A CVD processing chamber of cleanliness in for performing chemical vapor deposition process on the target object,
An evacuation system for evacuating the CVD processing chamber;
In the processing apparatus, which is connected to the PVD processing chamber and the CVD processing chamber via a gate valve so as to be able to communicate and block, and has a common transfer chamber having a transfer mechanism for transferring the object to be processed inside. In the transport method of transporting the object to be processed at
In the common transfer chamber, the pressure is always kept constant,
Wherein immediately prior to communicating the time of communicating the common transfer chamber and the pre-Symbol PVD process chamber for transporting the object to be processed, the pressure of the PVD processing chamber by introducing an inert gas into the PVD processing chamber Adjust the pressure to be slightly higher than the pressure in the common transfer chamber ,
Wherein immediately prior to communicating the time of communicating the common transfer chamber and the pre-Symbol CVD process chamber for transporting the object to be processed, the pressure of the CV process chamber by introducing an inert gas into the CVD process chamber aforementioned pressure regulation in the common transfer chamber of slightly lower Kunar so than the pressure, the Kuraiopane Le is characterized by being made in setting the exhaust only water vapor to allow pressure regulation of the PVD processing chamber A method for conveying the object to be processed.
前記PVD処理室と、前記CVD処理室と、前記共通搬送室とが全て同時に連通された状態にはなされないことを特徴とする請求項1記載の被処理体の搬送方法。 It said PVD processing chamber, the pre-Symbol CVD chamber, transfer method of the object according to claim 1, wherein said common transfer chamber is characterized in that not all made in a state of being communicated at the same time. 記PVD処理室及び前記CVD処理室の内の少なくともいずれか一方は、複数設けられていることを特徴とする請求項1または2記載の被処理体の搬送方法。Is at least one of the pre-Symbol PVD processing chamber and the CVD processing chamber, the transport method according to claim 1 or 2, a target object, wherein in that provided in plural. 前記クライオパネルの設定温度は、100〜110°Kであることを特徴とする請求項1乃至3のいずれか一項に記載の被処理体の搬送方法。  The method for transporting an object to be processed according to any one of claims 1 to 3, wherein a set temperature of the cryopanel is 100 to 110 ° K.
JP2003183238A 2003-06-26 2003-06-26 Method for transporting workpieces Expired - Lifetime JP4517595B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003183238A JP4517595B2 (en) 2003-06-26 2003-06-26 Method for transporting workpieces
PCT/JP2004/009011 WO2005001925A1 (en) 2003-06-26 2004-06-25 Vacuum processing device operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003183238A JP4517595B2 (en) 2003-06-26 2003-06-26 Method for transporting workpieces

Publications (2)

Publication Number Publication Date
JP2005019739A JP2005019739A (en) 2005-01-20
JP4517595B2 true JP4517595B2 (en) 2010-08-04

Family

ID=33549576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003183238A Expired - Lifetime JP4517595B2 (en) 2003-06-26 2003-06-26 Method for transporting workpieces

Country Status (2)

Country Link
JP (1) JP4517595B2 (en)
WO (1) WO2005001925A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005037822A1 (en) * 2005-08-08 2007-02-15 Systec System- Und Anlagentechnik Gmbh & Co.Kg Vacuum coating with condensate removal
JP4884816B2 (en) * 2006-02-02 2012-02-29 上村工業株式会社 Immersion processing equipment
JP2008032335A (en) * 2006-07-31 2008-02-14 Hitachi High-Technologies Corp Mini-environment device, inspection device, manufacturing device, and space cleaning method
JP5330721B2 (en) * 2007-10-23 2013-10-30 オルボテック エルティ ソラー,エルエルシー Processing apparatus and processing method
KR101669685B1 (en) * 2008-03-25 2016-10-27 오보텍 엘티 솔라 엘엘씨 Processing apparatus and processing method
TWI417984B (en) 2009-12-10 2013-12-01 Orbotech Lt Solar Llc Auto-sequencing multi-directional inline processing apparatus
US8459276B2 (en) 2011-05-24 2013-06-11 Orbotech LT Solar, LLC. Broken wafer recovery system
JP5385425B2 (en) * 2012-05-24 2014-01-08 株式会社日立ハイテクノロジーズ Inspection device and mini-environment structure
JP6270952B1 (en) * 2016-09-28 2018-01-31 株式会社日立国際電気 Substrate processing apparatus, semiconductor device manufacturing method, and recording medium.
JP7254924B2 (en) * 2018-11-19 2023-04-10 マトソン テクノロジー インコーポレイテッド Systems and methods for processing workpieces
CN113130345B (en) * 2019-12-31 2023-12-08 中微半导体设备(上海)股份有限公司 Substrate processing system and maintenance method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180117A (en) * 1984-02-28 1985-09-13 Oki Electric Ind Co Ltd Semiconductor manufacturing apparatus
JPH04314981A (en) * 1991-04-12 1992-11-06 Shimadzu Corp Cryopump
JPH0658291A (en) * 1992-08-03 1994-03-01 Ulvac Japan Ltd Cryotrap for turbomolecular pump
JPH10270527A (en) * 1997-03-21 1998-10-09 Ulvac Japan Ltd Composite type vacuum processor
JPH1137047A (en) * 1997-07-23 1999-02-09 Daikin Ind Ltd Cryopump
JP2000274356A (en) * 1999-03-19 2000-10-03 Daikin Ind Ltd Regeneration device for cryopump and its regenration method
JP2001185598A (en) * 1999-12-24 2001-07-06 Anelva Corp Substrate processor
JP2001515176A (en) * 1997-08-28 2001-09-18 ヘリックス・テクノロジー・コーポレーション Cryopump that selectively condenses and defrosts
JP2002289668A (en) * 2001-03-27 2002-10-04 Hitachi Kokusai Electric Inc Substrate treating apparatus
JP2003022931A (en) * 2001-07-10 2003-01-24 Matsushita Electric Ind Co Ltd Manufacturing method of multilayer film, manufacturing method of laminated capacitor and multilayer film manufacturing apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162709A (en) * 1990-10-26 1992-06-08 Fujitsu Ltd Manufacturing apparatus of semiconductor and processing method of reaction
JP3486821B2 (en) * 1994-01-21 2004-01-13 東京エレクトロン株式会社 Processing apparatus and method of transporting object to be processed in processing apparatus
JPH09199569A (en) * 1996-01-17 1997-07-31 Yamaha Corp Wafer processor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180117A (en) * 1984-02-28 1985-09-13 Oki Electric Ind Co Ltd Semiconductor manufacturing apparatus
JPH04314981A (en) * 1991-04-12 1992-11-06 Shimadzu Corp Cryopump
JPH0658291A (en) * 1992-08-03 1994-03-01 Ulvac Japan Ltd Cryotrap for turbomolecular pump
JPH10270527A (en) * 1997-03-21 1998-10-09 Ulvac Japan Ltd Composite type vacuum processor
JPH1137047A (en) * 1997-07-23 1999-02-09 Daikin Ind Ltd Cryopump
JP2001515176A (en) * 1997-08-28 2001-09-18 ヘリックス・テクノロジー・コーポレーション Cryopump that selectively condenses and defrosts
JP2000274356A (en) * 1999-03-19 2000-10-03 Daikin Ind Ltd Regeneration device for cryopump and its regenration method
JP2001185598A (en) * 1999-12-24 2001-07-06 Anelva Corp Substrate processor
JP2002289668A (en) * 2001-03-27 2002-10-04 Hitachi Kokusai Electric Inc Substrate treating apparatus
JP2003022931A (en) * 2001-07-10 2003-01-24 Matsushita Electric Ind Co Ltd Manufacturing method of multilayer film, manufacturing method of laminated capacitor and multilayer film manufacturing apparatus

Also Published As

Publication number Publication date
WO2005001925A1 (en) 2005-01-06
JP2005019739A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
JP3486821B2 (en) Processing apparatus and method of transporting object to be processed in processing apparatus
JP4531557B2 (en) Reduction of cross-contamination between chambers in semiconductor processing tools
US5286296A (en) Multi-chamber wafer process equipment having plural, physically communicating transfer means
JP5208948B2 (en) Vacuum processing system
JP4916140B2 (en) Vacuum processing system
US20100304027A1 (en) Substrate processing system and methods thereof
US6323463B1 (en) Method and apparatus for reducing contamination in a wafer loadlock of a semiconductor wafer processing system
JP2005039185A5 (en)
KR20100065127A (en) Vacuum processing system and substrate transfer method
JP4517595B2 (en) Method for transporting workpieces
JP4634918B2 (en) Vacuum processing equipment
JP2000150618A (en) Vacuum treatment system
JP3151582B2 (en) Vacuum processing equipment
JP4494523B2 (en) Inline type wafer transfer apparatus and substrate transfer method
JP5224567B2 (en) Substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method
JP3268394B2 (en) Processing method
TW202207347A (en) Transfer chamber with integrated substrate pre-process chamber
JP2741156B2 (en) Cleaning method for multi-chamber processing equipment
JP3066691B2 (en) Multi-chamber processing apparatus and cleaning method thereof
JPH04162709A (en) Manufacturing apparatus of semiconductor and processing method of reaction
JP2003017478A (en) Vacuum treatment apparatus and method
JP4748594B2 (en) Vacuum processing apparatus and vacuum processing method
JP7262287B2 (en) Deposition method
WO2022270317A1 (en) Substrate processing method and substrate processing apparatus
JPH09199569A (en) Wafer processor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4517595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term