WO2024070685A1 - Film forming method, film forming device, and film forming system - Google Patents

Film forming method, film forming device, and film forming system Download PDF

Info

Publication number
WO2024070685A1
WO2024070685A1 PCT/JP2023/033332 JP2023033332W WO2024070685A1 WO 2024070685 A1 WO2024070685 A1 WO 2024070685A1 JP 2023033332 W JP2023033332 W JP 2023033332W WO 2024070685 A1 WO2024070685 A1 WO 2024070685A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
gas
ions
film formation
substrate
Prior art date
Application number
PCT/JP2023/033332
Other languages
French (fr)
Japanese (ja)
Inventor
晋 山内
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2024070685A1 publication Critical patent/WO2024070685A1/en

Links

Images

Definitions

  • This disclosure relates to a film formation method, a film formation apparatus, and a film formation system.
  • tungsten is used as a material to fill contact holes formed in substrates and via holes between wiring.
  • Molybdenum which has a high melting point like tungsten and is expected to further reduce resistance, is also being considered for use in a similar application.
  • Patent Document 1 discloses a technique for forming a molybdenum film by ALD or CVD using MoCl5 or MoO2Cl2 as a film-forming source gas.
  • Patent Document 2 discloses that a tungsten film or a molybdenum film is formed at a low temperature of 400°C or less by using an organic metal gas as the film-forming raw material gas.
  • the present disclosure provides a film formation method, a film formation apparatus, and a film formation system that can form a molybdenum or tungsten film with few impurities in the film at a low temperature with minimal damage to the underlying film.
  • a film formation method is a film formation method for forming a molybdenum film or a tungsten film, and includes the steps of preparing a substrate, forming a film containing molybdenum or tungsten on the substrate by ALD film formation using an organometallic source gas containing molybdenum or tungsten and a reactive gas, and performing a process of reacting ions with the film during or after the film formation.
  • the present disclosure provides a film formation method, a film formation apparatus, and a film formation system that can form a molybdenum or tungsten film with few impurities in the film at a low temperature with minimal damage to the underlying film.
  • FIG. 1 is a flowchart showing a flow of a film forming method according to an embodiment.
  • 1 is a timing chart showing an example of a sequence during ALD film formation using a metal-organic source gas and a reactive gas.
  • FIG. 13 is a diagram showing the results of a composition analysis in the depth direction of a film formed on a substrate by ALD deposition using an organic metal source gas and O 3 gas while Ar sputter etching the film.
  • 1 is a timing chart showing an example of a sequence in which Ar ion processing is performed during ALD film formation.
  • 13 is a timing chart showing another example of a sequence when Ar ion processing is performed during ALD film formation.
  • FIG. 1 is a cross-sectional view that illustrates a film formation apparatus as a first example of an apparatus for carrying out a film formation method according to an embodiment. An example of a sequence in which a process of Ar ion treatment is incorporated into an ALD cycle when forming a film using the film forming apparatus of FIG. 6 will be described.
  • FIG. 1 is a cross-sectional view that illustrates a film formation apparatus as a first example of an apparatus for carrying out a film formation method according to an embodiment.
  • FIG. 2 is a plan view showing a film formation system as a second example of an apparatus for carrying out a film formation method according to an embodiment of the present invention.
  • This figure shows the results of XPS composition analysis of the film surfaces of five samples formed by ALD film formation on a substrate using an organic metal source gas and O3 gas, and the results of XPS composition analysis of these samples after Ar ion sputtering to a depth of approximately 7 nm from the surface.
  • Patent Document 1 describes ALD film formation using MoCl5 or MoO2Cl2 as a film formation raw material and H2 gas as a reactive gas.
  • MoCl5 is used as a film formation raw material
  • H2 gas as a reactive gas.
  • MoCl5 is used as a film formation raw material
  • MoO2Cl2 is used as a film formation raw material gas
  • etching of the substrate (underlying) is suppressed, but about 20% of oxygen in the raw material remains in the film, and the film formation temperature is high at 500°C or more.
  • Patent Document 2 describes the formation of a tungsten film or a molybdenum film at a low temperature of 400° C. or less by using an organic metal source gas as a film-forming source gas and O 2 gas as a reactive gas.
  • an organic metal source gas as a film-forming source gas
  • O 2 gas as a reactive gas.
  • components containing carbon and oxygen may remain in the film as impurities. That is, the carbon and oxygen contained in the organic metal source gas, and the components containing oxygen and nitrogen contained in the reactive gas are contained in the film as impurities.
  • Patent Document 2 describes the reduction of the carbon component in the film by using an oxidizing agent, but does not describe a method for reducing the oxygen component or nitrogen component present as an impurity in the film.
  • the film can be formed at a low temperature with minimal damage to the base caused by chlorine, etc., and the process of reacting with ions provides energy to the film, reducing and reducing the oxide or nitride components that exist as impurities in the film.
  • FIG. 1 is a flowchart showing a flow of a film forming method according to an embodiment.
  • the film formation method according to this embodiment includes a step (ST1) of preparing a substrate, a step (ST2) of forming a film containing molybdenum or tungsten on the substrate by ALD using an organometallic source gas containing molybdenum or tungsten and a reactive gas, and a step (ST3) of performing a treatment to react ions with the formed film during or after the film formation step.
  • the substrate is not particularly limited, but may be a semiconductor substrate (semiconductor wafer).
  • the substrate may be a substrate having an insulating film formed on a base, and the insulating film may have a recess such as a trench or a hole formed therein.
  • an insulating film for example, a SiO2 film, formed on a silicon substrate may be used.
  • a barrier film such as a TiN film may be formed on the insulating film.
  • the organometallic source gas containing molybdenum or tungsten preferably contains a metal imide bond and/or a metal amide bond, and does not contain a metal-oxygen bond or a metal-halogen bond.
  • the metal-nitrogen bond constituting them has a relatively low bond energy, which is advantageous in that it is highly reactive.
  • the bond energy of a metal-oxygen bond or a metal-halogen bond is high, if the metal imide bond or the metal amide bond is contained, there is a disadvantage that the film formation temperature becomes high and oxygen tends to remain.
  • organometallic source gas one containing only a metal imide bond and/or a metal amide bond is more preferable.
  • organometallic source gas examples include ( tBuN ) 2Mo ( NMe2 ) 2 and ( tBuN ) 2Mo ( tBuNH ) 2 .
  • an oxygen-containing gas such as O3 gas or O2 gas, or a nitrogen-containing gas such as NH3 gas can be used.
  • an ALD cycle including (1) supplying the metalorganic source gas to the substrate, (2) purging the remaining metalorganic source gas, (3) supplying the reactive gas to the substrate, and (4) purging the remaining reactive gas is repeated multiple times.
  • the metalorganic source gas is supplied to the substrate and adsorbed to the substrate in a certain amount, and the adsorbed metalorganic source gas reacts with the reactive gas to form a unit film with a controlled thickness. Then, this cycle is repeated multiple times to obtain a film with a desired thickness.
  • a purge gas for purging the gas an inert gas such as N2 gas or a rare gas can be suitably used.
  • the purge gas may be constantly supplied during the ALD film formation.
  • low-temperature film formation for example, film formation at 400° C. or less
  • low-temperature film formation at 150° C. has been demonstrated in ALD film formation using the organic metal source gas ( tBuN ) 2 Mo (NMe 2 ) 2 gas and O 3 gas or O 2 gas
  • low-temperature film formation at 350° C. has also been demonstrated in ALD film formation using ( tBuN ) 2 Mo (NMe 2 ) 2 gas and NH 3 gas, and film formation at even lower temperatures is possible by optimizing the conditions.
  • a film containing molybdenum or tungsten is obtained.
  • these films are mainly composed of oxides, and when a nitrogen-containing gas is used as the reactive gas, they are mainly composed of nitrides.
  • the step of ST3 in which ions are allowed to act on the film is performed during or after the ALD film formation in ST2.
  • the ions are preferably rare gas ions (rare gas ions) such as He, Ne, and Ar, and more preferably Ar ions.
  • Ar ions are allowed to act on the film by generating a plasma of Ar gas in a chamber that contains the substrate, and applying a bias (e.g., a high-frequency bias) to the stage on which the substrate is placed to attract the Ar ions in the plasma to the substrate.
  • the temperature of this treatment is not particularly limited, and may be performed at room temperature or at the temperature for film formation.
  • the film during or after the film formation is reduced, and a metal molybdenum film or a metal tungsten film is obtained. That is, the oxides and nitrides in the film are reduced by the energy of the ions, and the oxygen or nitrogen components present as impurities in the film are reduced, resulting in a metal molybdenum film or a metal tungsten film with fewer impurities.
  • the molybdenum oxides e.g., MoO 3 , Mo 2 O 3
  • the reduction action by the treatment of acting with ions can reduce other impurity components such as carbon components.
  • Such an action of ST3 ions was found when ALD film formation was performed using an organic molybdenum source gas and O3 gas as a reactive gas, and then the resulting film was analyzed for its depth profile by XPS.
  • the composition is analyzed in the depth direction while Ar sputter etching is performed on the film from the surface.
  • a film was formed on a substrate having a SiO2 film formed on a Si substrate by ALD deposition using an organic metal source gas and O3 gas, and the film was subjected to Ar sputter etching while undergoing composition analysis in the depth direction.
  • the results are shown in Figure 3. This figure can also be understood as showing the composition when Ar ions are applied at each point in the ALD cycle.
  • a process of treating with ions is carried out during or after the formation of a film containing molybdenum or tungsten on a substrate by ALD using an organometallic source gas (ST2), to obtain a metallic molybdenum film or metallic tungsten film.
  • the process of reacting with ST3 ions is performed on the film obtained by using an oxygen-containing gas as a reactive gas and the film obtained by using a nitrogen-containing gas as a reactive gas.
  • the film produced by using a nitrogen-containing gas is mainly composed of nitride (MoN), while the film produced by using an oxygen-containing gas is mainly composed of oxide (MoO 3 ), but the nitride has a smaller oxidation number than the oxide. Therefore, during the process of reacting with ST3 ions, the film formed by using a nitrogen-containing gas as a reactive gas can be more easily reduced to metal.
  • the ion-induced treatment is appropriately set under conditions so that ion energy is obtained so as to exert a desired reduction effect.
  • the treatment may be performed under conditions so that the film obtained by ALD film formation is sputtered (etched) and removed by ions, but it is also possible to perform the treatment under conditions so that the film is not sputtered and only energy is applied to the film if a desired reduction effect is exerted.
  • Such conditions of only applying energy are more advantageous because they do not involve etching of the film.
  • the ion energy since the amount of Ar sputtering when analyzing the depth profile in XPS is about 0.3 A/s in terms of SiO2 , it is preferable to set the energy to be equal to or less than the energy at that time.
  • the ion-reacting process in ST3 may be performed during or after ALD film formation.
  • the film to be formed is thin, the film can be sufficiently reduced by performing the ion-reacting process after ALD film formation.
  • performing the ion-reacting process after ALD film formation requires a long processing time and may result in insufficient reduction.
  • the ion energy can be applied to a thinner film than when performing the ion-reacting process after ALD film formation, so the film reduction effect is high and the processing time can be short. For this reason, performing the ion-reacting process during film formation is advantageous when forming a thick film.
  • the timing of Ar ion treatment is arbitrary.
  • ALD film formation and ion treatment may be repeated multiple times, or ion treatment may be incorporated into the ALD cycle.
  • ALD film formation and the process of reacting with ions are repeated multiple times, for example, it is performed as shown in FIG. 4. That is, after performing the ALD cycle consisting of (1) supplying metalorganic precursor gas, (2) purging residual gas, (3) supplying reactive gas, and (4) purging residual gas a desired number of times, (5) a process of reacting with ions (ion treatment) and (6) purging residual gas are performed, and this sequence is repeated until the desired film thickness is reached.
  • the ALD cycle consisting of (1) supply of metalorganic precursor gas, (2) purging of residual gas, (3) supply of reactive gas, (4) purging of residual gas, (5) treatment using ions, and (6) purging of residual gas is repeated until the desired film thickness is achieved.
  • purge gas may be supplied continuously during processing.
  • the ion treatment is carried out during ALD film formation, especially when it is incorporated into the ALD cycle, it is preferable to carry out the film formation process in ST2 and the Ar ion treatment process in ST3 in the same equipment. If they are carried out in the same equipment, it is preferable to carry out the ion treatment at the same temperature as the film formation process.
  • ALD film formation is performed using an organometallic precursor gas as the film formation raw material gas, so that the damage to the base due to chlorine and the like is small and the film can be formed at a low temperature.
  • an organometallic precursor gas as the film formation raw material gas
  • energy can be imparted to the film to reduce oxides or nitrides present in the film, thereby reducing impurity components.
  • the reduction effect of the process in which ions are allowed to act can also remove carbon components and the like contained as impurities in the film.
  • FIG. 6 is a cross-sectional view showing a first example of an apparatus for carrying out the film forming method of the present embodiment, which is configured as a film forming apparatus 100 capable of carrying out both the film forming step ST2 and the Ar ion processing step ST3 described above.
  • This film forming apparatus 100 has a metallic chamber 1 that is roughly cylindrical.
  • An exhaust pipe 11 is connected to the bottom of the chamber 1, and this exhaust pipe 11 is provided with an exhaust mechanism 12 that has an automatic pressure control valve for controlling the pressure inside the chamber 1 and a vacuum pump for evacuating the chamber 1.
  • This exhaust mechanism 12 makes it possible to evacuate the chamber 1 and control the pressure to the desired level.
  • the side wall of the chamber 1 is provided with a loading/unloading port 13 for loading/unloading the substrate W between the chamber 1 and a substrate transfer chamber (not shown) provided adjacent to the chamber 1, and a gate valve 14 for opening/closing the loading/unloading port 13.
  • a mounting table 2 is provided for horizontally supporting the substrate W.
  • the mounting table 2 is supported at the center of the bottom wall of the chamber 1 via a cylindrical insulating member 3, and a hole 1a corresponding to the insulating member 3 is formed in the bottom wall.
  • the mounting table 2 functions as a lower electrode.
  • the mounting table 2 may be made of metal or ceramics, and if it is made of ceramics, an electrode plate is provided within it.
  • a heater 18 for heating the wafer W is provided inside the mounting table 2.
  • a high-frequency power supply 16 is connected to the mounting table 2 via a matching unit 15.
  • the high-frequency power supply 16 functions as an ion processing mechanism.
  • the high-frequency power supply 16 is provided below the chamber 1, and a power supply line 17 from the high-frequency power supply 16 is connected to the mounting table 2 via a hole 1a in the chamber 1 and the internal space of the insulating member 3.
  • the mounting table 2 is provided with multiple wafer support pins (not shown) for supporting and raising and lowering the wafer W, which can be protruded and retracted from the surface of the mounting table 2.
  • a circular hole is formed in the ceiling wall 1b of the chamber 1, and a disk-shaped shower head 20 that functions as an upper electrode is fitted into the hole.
  • the shower head 20 is grounded via the chamber 1.
  • the shower head 20 has a base member 21 and a shower plate 22.
  • a gas diffusion space 23 is formed between the base member 21 and the shower plate 22.
  • the shower plate 22 has a plurality of gas discharge holes 24 that penetrate from the gas diffusion space 23 to the inside of the chamber 1.
  • a gas introduction hole 25 is formed in the center of the base member 21 so as to penetrate into the gas diffusion space 23.
  • a common pipe 31 of the gas supply mechanism 30 is connected to the gas introduction hole 25, so that gas from the gas supply mechanism 30 is discharged into the chamber 1 via the shower head 20.
  • high-frequency power is applied from the high-frequency power supply 16 to the lower electrode, the mounting table 2, forming a high-frequency electric field between the upper electrode, the shower head 20, and the lower electrode, the mounting table 2, generating Ar plasma.
  • the high-frequency power supply 16 also has the function of applying a high-frequency bias, drawing Ar ions in the Ar plasma to the substrate W on the mounting table 2.
  • the gas supply mechanism 30 has an MO source gas supply source 41 that supplies an organic metal source gas (MO source gas), an O 3 gas supply source 42 that supplies O 3 gas as a reactive gas, a first N 2 gas supply source 43 and a second N 2 gas supply source 44 that supply N 2 gas as a purge gas, and an Ar gas supply source 45 that supplies Ar gas.
  • the MO source gas is an organic molybdenum source gas or an organic tungsten source gas, and may be a liquid or solid source. In that case, it is vaporized in a container and transported by a carrier gas such as N 2 gas.
  • the reactive gas is not limited to O 3 gas, but may be other oxygen-containing gas such as O 2 gas or a nitrogen-containing gas such as NH 3 gas.
  • the purge gas may be an inert gas other than N 2 gas.
  • the first pipe 47 is connected to the MO raw material gas supply source 41, the second pipe 48 is connected to the O 3 gas supply source 48, the third pipe 49 is connected to the first N 2 gas supply source 43, the fourth pipe 50 is connected to the second N 2 gas supply source 44, and the fifth pipe 51 is connected to the Ar gas supply source 45.
  • the third pipe 49 and the fourth pipe 50 are provided on the first pipe 47 side and the second pipe 48 side, respectively.
  • the N 2 gas flowing from the first N 2 gas supply source 43 through the third pipe 49 also functions as a carrier gas for the MO raw material gas, and the N 2 gas flowing from the second N 2 gas supply source 44 through the third pipe 50 also functions as a carrier gas for the O 3 gas.
  • the other ends of the first to fifth pipes 47 to 51 are connected to the common pipe 31.
  • the first to fifth pipes 47 to 51 are provided with high-speed valves 52, 53, 54, 55, and 56, respectively.
  • the flow rates of the gases flowing through the first to fifth pipes 47 to 51 are controlled by flow rate controllers (not
  • the film forming apparatus 100 has a control unit 60.
  • the control unit 60 is made up of a computer and has a main control unit with a CPU that controls each component of the film forming apparatus 100.
  • the control unit 60 also has an input device, an output device, a display device, and a storage device (storage medium).
  • the components to be controlled are, for example, the heater power supply, the exhaust mechanism 12, the valves and flow rate controllers of the gas supply mechanism 30, the high frequency power supply 16, etc.
  • the main control unit of the control unit 60 causes the film forming apparatus 100 to perform a predetermined operation based on, for example, a processing recipe stored in the storage medium of the storage device.
  • the film formation apparatus 100 configured as described above performs a film formation method based on a process recipe set in the control unit 60.
  • the film formation method includes a process of preparing a substrate, a process of forming a film containing molybdenum or tungsten by ALD using an MO raw material gas and a reactive gas, and a process of performing a process of reacting ions during or after film formation. Since the film formation apparatus 100 is equipped with a high-frequency power supply 16 for performing a process of reacting Ar ions, a sequence for performing a process of reacting ions during ALD film formation can be easily realized, and further, the process of reacting ions can be easily incorporated into the ALD cycle.
  • the substrate W is carried into the chamber 1 and placed on the mounting table 2.
  • the mounting table 2 is set to the desired temperature, preferably 400°C or less, by the heater 18.
  • the processing recipe is started.
  • the chamber 1 is evacuated and purged, and then the pressure is increased to the processing pressure to stabilize the temperature of the substrate W.
  • an ALD cycle is performed that incorporates a process of performing a process in which ions are reacted with the ALD film formed using the MO source gas and reactive gas.
  • the ALD cycle consists of (1) supply of MO source gas, (2) purging of residual gas, (3) supply of O3 gas, (4) purging of residual gas, (5) treatment with Ar ions (Ar ion treatment), and (6) purging of residual gas. This ALD cycle is repeated until the desired film thickness is reached.
  • the MO source is vaporized as necessary, and the MO source gas is supplied into the chamber 1 and adsorbed onto the surface of the substrate W.
  • the chamber 1 is evacuated while N2 gas, which is a purge gas, is supplied into the chamber 1, and the residual gas is discharged from the chamber 1.
  • the reactive gas O3 gas is supplied into the chamber 1 and reacted with the MO source gas adsorbed onto the surface of the substrate W to obtain a unit film.
  • the chamber 1 is purged with N2 gas, as in (2).
  • the ALD cycle consisting of steps (1) to (6) is repeated until a film having a desired thickness is formed.
  • N2 gas may be supplied continuously during the process.
  • This film forming system 200 has a vacuum processing section 300, an atmospheric transfer section 400, an airlock section 500, and a control section 600.
  • the vacuum processing unit 300 has a vacuum transfer chamber 301, a film forming device 302, an Ar ion processing device 303, and a film quality checking device 304.
  • the film forming device 302, the Ar ion processing device 303, and the film quality checking device 304 are connected to the wall of the vacuum transfer chamber 301 via a gate valve G. Note that while the figure shows two film forming devices 302, there may be only one film forming device 302.
  • the film formation apparatus 302 has a configuration in which the high frequency power supply 16 and the matching box 15 are removed from the film formation apparatus 100, and performs only ALD film formation without performing any ion-induced processing.
  • the Ar ion processing device 303 does not perform ALD film formation, but instead supplies only Ar gas into the chamber. Like the film formation device 100, it is configured to connect a high-frequency power source to the mounting table to generate Ar plasma in the chamber and draw Ar ions into the substrate, causing the Ar ions to act on the film formed on the substrate.
  • the film quality confirmation device 304 analyzes the film composition, for example, by XPS, and confirms whether the film composition is as desired.
  • the film quality confirmation device 304 is not essential and does not have to be provided.
  • a first substrate transfer mechanism 310 is provided in the vacuum transfer chamber 301.
  • the first substrate transfer mechanism 310 transfers substrates W to and from the film forming device 302, the Ar ion processing device 303, the film quality checking device 304, and the airlock section 500.
  • the first substrate transfer mechanism 310 has two transfer arms 310a and 310b that can move independently.
  • the atmospheric transfer section 400 has an atmospheric transfer chamber 401.
  • Three carrier attachment ports 402 are provided on the wall of the atmospheric transfer chamber 401 opposite the vacuum processing section 300 to attach carriers C, such as FOUPs, that house substrates W.
  • a second substrate transfer mechanism 410 is provided within the atmospheric transfer chamber 401. The second substrate transfer mechanism 410 transfers substrates W to and from the carriers C and the airlock section 500.
  • the airlock unit 500 is provided between the vacuum processing unit 300 and the atmospheric transfer unit 400, and enables the transfer of the substrate W between the vacuum transfer chamber 301 and the atmospheric transfer chamber 401 by controlling the pressure between atmospheric pressure and vacuum.
  • the airlock unit 500 has multiple airlock chambers whose pressure can be adjusted between atmospheric pressure and vacuum, and the airlock chambers are connected to the vacuum transfer chamber 301 and the atmospheric transfer chamber 401 via gate valves.
  • the film formation system 200 of this example is configured to perform film formation processing and Ar ion processing on the substrate in-situ.
  • the control unit 600 has a main control unit with a CPU (computer), an input device, an output device, a display device, and a storage device.
  • the main control unit controls, for example, substrate processing in the film formation device 302, the Ar ion processing device 303, and the film quality checking device 304, the vacuum exhaust mechanism and gas supply mechanism of these devices and the vacuum transfer chamber 301, pressure control of the airlock unit 500, opening and closing control of the gate valve G, etc.
  • the main control unit also causes the film formation system 200 to perform a predetermined operation based on a processing recipe stored in a storage medium built into the storage device or a storage medium set in the storage device.
  • the carrier C containing multiple substrates W is connected to the carrier attachment port 402 of the atmospheric transfer chamber 401, and the second substrate transfer mechanism 410 removes the substrates from the carrier C.
  • the substrates are then transferred to the airlock chamber of the airlock section 500, and the airlock chamber is evacuated.
  • the substrates in the evacuated airlock chamber are then transported to the film formation device 302 by the first substrate transfer mechanism 310, and a film mainly made of molybdenum oxide or tungsten oxide is formed by ALD film formation.
  • the substrate W is removed by the substrate transfer device 310 and transported to the Ar ion treatment device 303, where Ar ions are applied to the film formed on the substrate W.
  • the substrate W is transported to the film quality confirmation device 304 as necessary to confirm the film quality. If the substrate W is halfway formed and Ar ion treatment is performed, the treatment in the film formation device 302 and the treatment in the Ar ion treatment device 303 are repeated multiple times. After processing, the substrate W is returned to the carrier C via the airlock 500.
  • the above-mentioned processing is carried out simultaneously in parallel for multiple substrates W until processing is completed for the number of substrates loaded on the carrier C.
  • the film formation process and the process of reacting with Ar ions are performed in situ without breaking the vacuum, but these can also be performed ex situ.
  • the film formation process can be performed in a batch-type device, for example a vertical film formation device. This allows the film formation process to be performed with high throughput.
  • the process of reacting with Ar ions is limited to after the ALD film formation.
  • Ar ions are mainly used as the ion-reactive process, but ions other than Ar may be used as long as they have the desired reducing effect on the ALD-deposited film.
  • they are ions of rare gases such as He, Ne, and Ar.
  • FIG. 6 is shown as an example, but FIG. 6 is merely schematic, and various configurations capable of ALD deposition can be used. The same applies to the deposition system shown in FIG. 8.
  • chamber, 2 mounting table, 12; exhaust mechanism, 16; high frequency power source, 18; heater, 20; shower head, 30; gas supply mechanism, 60; control unit, 100; film forming device, 200; film forming system, 300; vacuum processing unit, 301; vacuum transfer chamber, 302; film forming device, 303; Ar ion processing device, 304; film quality confirmation device, 400; atmospheric transfer unit, 500; air lock unit, W; substrate

Abstract

This film forming method for forming a molybdenum film or a tungsten film includes: preparing a substrate; forming a film containing molybdenum or tungsten on the substrate by means of ALD using an organometallic source gas containing molybdenum or tungsten and a reactant gas; and performing treatment in which ions are made to act on the film during or after the film formation.

Description

成膜方法、成膜装置、および成膜システムFilm forming method, film forming apparatus, and film forming system
 本開示は、成膜方法、成膜装置、および成膜システムに関する。 This disclosure relates to a film formation method, a film formation apparatus, and a film formation system.
 半導体製造工程においては、基板に形成されるコンタクトホールや配線間のビアホールを埋め込むための材料等としてタングステンが用いられている。また、タングステンと同様の高融点金属であり、さらなる低抵抗化も期待できるモリブデンも同様の用途への適用が検討されている。 In the semiconductor manufacturing process, tungsten is used as a material to fill contact holes formed in substrates and via holes between wiring. Molybdenum, which has a high melting point like tungsten and is expected to further reduce resistance, is also being considered for use in a similar application.
 特許文献1には、成膜原料ガスとしてMoClまたはMoOClを用いてALDまたはCVDによりモリブデン膜を成膜する技術が開示されている。 Patent Document 1 discloses a technique for forming a molybdenum film by ALD or CVD using MoCl5 or MoO2Cl2 as a film-forming source gas.
 特許文献2には、成膜原料ガスとして有機金属原料ガスを用いてタングステン膜またはモリブデン膜を400℃以下の低温で成膜することが開示されている。 Patent Document 2 discloses that a tungsten film or a molybdenum film is formed at a low temperature of 400°C or less by using an organic metal gas as the film-forming raw material gas.
特開2019-44266号公報JP 2019-44266 A 米国特許出願公開第2020/0115798号明細書US Patent Application Publication No. 2020/0115798
 本開示は、膜中不純物が少ないモリブデン膜またはタングステン膜を、下地に対するダメージが小さくかつ低温で成膜することができる成膜方法、成膜装置、および成膜システムを提供する。 The present disclosure provides a film formation method, a film formation apparatus, and a film formation system that can form a molybdenum or tungsten film with few impurities in the film at a low temperature with minimal damage to the underlying film.
 本開示の一態様に係る成膜方法は、モリブデン膜またはタングステン膜を成膜する成膜方法であって、基板を準備することと、モリブデンまたはタングステンを含有する有機金属原料ガスと反応ガスとを用いたALD成膜により前記基板上にモリブデンまたはタングステンを含有する膜を成膜することと、前記成膜することの途中または前記成膜することの後に前記膜にイオンを作用させる処理を行うことと、を有する。 A film formation method according to one embodiment of the present disclosure is a film formation method for forming a molybdenum film or a tungsten film, and includes the steps of preparing a substrate, forming a film containing molybdenum or tungsten on the substrate by ALD film formation using an organometallic source gas containing molybdenum or tungsten and a reactive gas, and performing a process of reacting ions with the film during or after the film formation.
 本開示によれば、膜中不純物が少ないモリブデン膜またはタングステン膜を、下地に対するダメージが小さくかつ低温で成膜することができる成膜方法、成膜装置、および成膜システムが提供される。 The present disclosure provides a film formation method, a film formation apparatus, and a film formation system that can form a molybdenum or tungsten film with few impurities in the film at a low temperature with minimal damage to the underlying film.
一実施形態に係る成膜方法のフローを示すフローチャートである。1 is a flowchart showing a flow of a film forming method according to an embodiment. 有機金属原料ガスと反応ガスを用いたALD成膜の際のシーケンス例を示すタイミングチャートである。1 is a timing chart showing an example of a sequence during ALD film formation using a metal-organic source gas and a reactive gas. 基板上に有機金属原料ガスとOガスを用いALD成膜を行って成膜した膜を、Arスパッタエッチングしながら深さ方向の組成分析を行った結果を示す図である。FIG. 13 is a diagram showing the results of a composition analysis in the depth direction of a film formed on a substrate by ALD deposition using an organic metal source gas and O 3 gas while Ar sputter etching the film. ALD成膜中にArイオン処理を行う場合における一例のシーケンス例を示すタイミングチャートである。1 is a timing chart showing an example of a sequence in which Ar ion processing is performed during ALD film formation. ALD成膜中にArイオン処理を行う場合における他の例のシーケンス例を示すタイミングチャートである。13 is a timing chart showing another example of a sequence when Ar ion processing is performed during ALD film formation. 一実施形態の成膜方法を実施するための装置の第1の例としての成膜装置を模式的に示す断面図である。1 is a cross-sectional view that illustrates a film formation apparatus as a first example of an apparatus for carrying out a film formation method according to an embodiment. 図6の成膜装置により成膜する場合の、Arイオン処理を行う工程をALDサイクルに組み込んだ場合のシーケンス例について説明する。An example of a sequence in which a process of Ar ion treatment is incorporated into an ALD cycle when forming a film using the film forming apparatus of FIG. 6 will be described. 一実施形態の成膜方法を実施するための装置の第2の例としての成膜システムを模式的に示す平面図である。FIG. 2 is a plan view showing a film formation system as a second example of an apparatus for carrying out a film formation method according to an embodiment of the present invention; 基板上に有機金属原料ガスとOガスを用いALD成膜を行って成膜した5つのサンプルの膜表面をXPSにより組成分析した結果と、これらサンプルを表面から深さ7nm付近までArイオンスパッタしてXPSにより組成分析した結果を示す図である。This figure shows the results of XPS composition analysis of the film surfaces of five samples formed by ALD film formation on a substrate using an organic metal source gas and O3 gas, and the results of XPS composition analysis of these samples after Ar ion sputtering to a depth of approximately 7 nm from the surface.
 以下、添付図面を参照して実施形態について説明する。 The following describes the embodiment with reference to the attached drawings.
 <概要>
 特許文献1には、成膜原料としてMoClやMoOClを用い、反応ガスとしてHガスを用いてALD成膜を行うことが記載されている。しかし、成膜原料としてMoClを用いると、高純度の金属モリブデン膜が得られるものの、原料中に含まれる多量のClにより、基板(下地)がエッチングされてしまい、成膜温度も450℃以上と高い。また、成膜原料ガスとしてMoOClを用いると、基板(下地)のエッチングは抑制されるが、原料中の酸素が膜中に20%程度残留してしまい、成膜温度も500℃以上と高い。
<Overview>
Patent Document 1 describes ALD film formation using MoCl5 or MoO2Cl2 as a film formation raw material and H2 gas as a reactive gas. However, when MoCl5 is used as a film formation raw material, a high-purity metal molybdenum film is obtained, but the substrate (underlying) is etched due to a large amount of Cl contained in the raw material, and the film formation temperature is high at 450°C or more. Also, when MoO2Cl2 is used as a film formation raw material gas, etching of the substrate (underlying) is suppressed, but about 20% of oxygen in the raw material remains in the film, and the film formation temperature is high at 500°C or more.
 一方、特許文献2には、成膜原料ガスとして有機金属原料ガスを用い、反応ガスとしてOガスを用いてタングステン膜またはモリブデン膜を400℃以下の低温で成膜することが記載されている。しかし、有機金属原料ガスと反応ガスを用いて成膜する場合、膜中に炭素や酸素を含む成分が不純物として残留することが懸念される。すなわち、有機金属原料ガスに含まれる炭素や酸素、および、反応ガスに含まれる酸素や窒素等を含む成分が膜中に不純物として含まれてしまう。特許文献2には、酸化剤を用いて膜中の炭素成分を低減することが記載されているが、膜中に不純物として存在する酸素成分または窒素成分を低減する手法は記載されていない。 On the other hand, Patent Document 2 describes the formation of a tungsten film or a molybdenum film at a low temperature of 400° C. or less by using an organic metal source gas as a film-forming source gas and O 2 gas as a reactive gas. However, when forming a film using an organic metal source gas and a reactive gas, there is a concern that components containing carbon and oxygen may remain in the film as impurities. That is, the carbon and oxygen contained in the organic metal source gas, and the components containing oxygen and nitrogen contained in the reactive gas are contained in the film as impurities. Patent Document 2 describes the reduction of the carbon component in the film by using an oxidizing agent, but does not describe a method for reducing the oxygen component or nitrogen component present as an impurity in the film.
 これらの課題を解決すべく種々の検討がなされた結果、モリブデンまたはタングステンを含有する有機金属原料ガスおよび反応ガスを用いてALDにより成膜する途中、または成膜後に、膜に対してイオンを作用させる処理を施すことが有効であることが見出された。 As a result of various studies conducted to solve these problems, it was found that it is effective to subject the film to a treatment in which ions are reacted with the film during or after film formation by ALD using an organometallic source gas and a reactive gas containing molybdenum or tungsten.
 このように、成膜原料ガスとして有機金属原料ガスを用いることにより、塩素等による下地に対するダメージが小さくかつ低温で成膜することができ、イオンを作用させる処理により、膜にエネルギーを与えて膜中に不純物として存在する酸化物成分または窒化物成分を還元し、これらを低減することができる。 In this way, by using an organometallic gas as the film-forming raw material gas, the film can be formed at a low temperature with minimal damage to the base caused by chlorine, etc., and the process of reacting with ions provides energy to the film, reducing and reducing the oxide or nitride components that exist as impurities in the film.
 <具体的な実施形態>
 次に、具体的な実施形態について説明する。
<Specific embodiment>
Next, a specific embodiment will be described.
  [成膜方法]
 図1は一実施形態に係る成膜方法のフローを示すフローチャートである。
 図1に示すように、本実施形態に係る成膜方法は、基板を準備する工程(ST1)と、モリブデンまたはタングステンを含有する有機金属原料ガスと反応ガスとを用いたALDにより基板上にモリブデンまたはタングステンを含有する膜を成膜する工程(ST2)と、成膜する工程の途中または成膜する工程の後に、成膜された膜に対してイオンを作用させる処理を行う工程(ST3)とを有する。
[Film formation method]
FIG. 1 is a flowchart showing a flow of a film forming method according to an embodiment.
As shown in FIG. 1, the film formation method according to this embodiment includes a step (ST1) of preparing a substrate, a step (ST2) of forming a film containing molybdenum or tungsten on the substrate by ALD using an organometallic source gas containing molybdenum or tungsten and a reactive gas, and a step (ST3) of performing a treatment to react ions with the formed film during or after the film formation step.
 ST1の基板を準備する工程において、基板は特に限定されないが、半導体基板(半導体ウエハ)が例示される。基板としては、基体上に絶縁膜が形成されたものが例示され、絶縁膜はトレンチやホール等の凹部が形成されたものであってよい。半導体基板の場合は、シリコン基体上に絶縁膜、例えばSiO膜が形成されたものが例示される。絶縁膜の上にTiN膜等のバリア膜が形成されていてもよい。 In the step of preparing a substrate in ST1, the substrate is not particularly limited, but may be a semiconductor substrate (semiconductor wafer). The substrate may be a substrate having an insulating film formed on a base, and the insulating film may have a recess such as a trench or a hole formed therein. In the case of a semiconductor substrate, an insulating film, for example, a SiO2 film, formed on a silicon substrate may be used. A barrier film such as a TiN film may be formed on the insulating film.
 ST2の成膜工程においては、モリブデンまたはタングステンを含有する有機金属原料ガスとしては、金属イミド結合および/または金属アミド結合を含み、金属-酸素結合および金属-ハロゲン結合を含まないものが好ましい。金属イミド結合および/または金属アミド結合を含むことにより、これらを構成する金属-窒素結合は結合エネルギーが比較的低いので反応性が高くなるという利点がある。また、金属-酸素結合や金属-ハロゲン結合は結合エネルギーが高いので、これらを含むと成膜温度が高温となり、酸素が残留しやすくなる不都合がある。有機金属原料ガスとしては、金属イミド結合および/または金属アミド結合のみを含むものがより好ましい。このような有機金属原料ガスとしては、(BuN)Mo(NMe、(BuN)Mo(BuNH)が例示される。 In the film formation step of ST2, the organometallic source gas containing molybdenum or tungsten preferably contains a metal imide bond and/or a metal amide bond, and does not contain a metal-oxygen bond or a metal-halogen bond. By containing a metal imide bond and/or a metal amide bond, the metal-nitrogen bond constituting them has a relatively low bond energy, which is advantageous in that it is highly reactive. In addition, since the bond energy of a metal-oxygen bond or a metal-halogen bond is high, if the metal imide bond or the metal amide bond is contained, there is a disadvantage that the film formation temperature becomes high and oxygen tends to remain. As the organometallic source gas, one containing only a metal imide bond and/or a metal amide bond is more preferable. Examples of such organometallic source gas include ( tBuN ) 2Mo ( NMe2 ) 2 and ( tBuN ) 2Mo ( tBuNH ) 2 .
 反応ガスとしては、Oガス、Oガスのような酸素含有ガス、NHガスのような窒素含有ガスを用いることができる。 As the reactive gas, an oxygen-containing gas such as O3 gas or O2 gas, or a nitrogen-containing gas such as NH3 gas can be used.
 ST2の有機金属原料ガスと反応ガスを用いたALD成膜では、図2に示すように、(1)基板に対する有機金属原料ガスの供給、(2)残留する有機金属原料ガスのパージ、(3)基板に対する反応ガスの供給、および(4)残留する反応ガスのパージを含むALDサイクルを複数サイクル繰り返す。このALDサイクルでは、有機金属原料ガスが基板に供給されることにより基板に一定量吸着し、吸着された有機金属原料ガスが反応ガスと反応することにより制御された膜厚の単位膜が形成される。そして、このサイクルを複数回繰り返すことにより所望の膜厚の膜を得る。ガスをパージするためのパージガスとしては、Nガスや希ガス等の不活性ガスを好適に用いることができる。パージガスは、ALD成膜中に常時供給してもよい。 In the ALD film formation using the metalorganic source gas and the reactive gas in ST2, as shown in FIG. 2, an ALD cycle including (1) supplying the metalorganic source gas to the substrate, (2) purging the remaining metalorganic source gas, (3) supplying the reactive gas to the substrate, and (4) purging the remaining reactive gas is repeated multiple times. In this ALD cycle, the metalorganic source gas is supplied to the substrate and adsorbed to the substrate in a certain amount, and the adsorbed metalorganic source gas reacts with the reactive gas to form a unit film with a controlled thickness. Then, this cycle is repeated multiple times to obtain a film with a desired thickness. As a purge gas for purging the gas, an inert gas such as N2 gas or a rare gas can be suitably used. The purge gas may be constantly supplied during the ALD film formation.
 このように原料ガスとして有機金属原料ガスを用いることにより、低温成膜、例えば400℃以下の成膜が可能となる。例えば、有機金属原料ガスである(BuN)Mo(NMeガスとOガスまたはOガスを用いたALD成膜では150℃までの低温成膜が実証されている。また、(BuN)Mo(NMeガスとNHガスを用いたALD成膜では350℃までの低温成膜が実証されており、条件を最適化することにより、さらなる低温成膜が可能である。 By using an organic metal source gas as the source gas in this way, low-temperature film formation, for example, film formation at 400° C. or less, is possible. For example, low-temperature film formation at 150° C. has been demonstrated in ALD film formation using the organic metal source gas ( tBuN ) 2 Mo (NMe 2 ) 2 gas and O 3 gas or O 2 gas . Low-temperature film formation at 350° C. has also been demonstrated in ALD film formation using ( tBuN ) 2 Mo (NMe 2 ) 2 gas and NH 3 gas, and film formation at even lower temperatures is possible by optimizing the conditions.
 以上のようなALD成膜により、モリブデンまたはタングステンを含有する膜が得られるが、これらの膜は、反応ガスとして酸素含有ガスを用いた場合は、酸化物が主体となり、反応ガスとして窒素含有ガスを用いた場合は窒化物が主体となる。 By using the above-described ALD deposition method, a film containing molybdenum or tungsten is obtained. When an oxygen-containing gas is used as the reactive gas, these films are mainly composed of oxides, and when a nitrogen-containing gas is used as the reactive gas, they are mainly composed of nitrides.
 ST3のイオンを作用させる処理を行う工程は、ST2のALD成膜の途中または成膜後に、膜に対してイオンを作用させる。ALD成膜の途中とは、成膜が完了する前の任意のタイミングをいう。イオンとしてはHe、Ne、Ar等の希ガスのイオン(希ガスイオン)が好ましく、Arイオンがより好ましい。例えば、基板を収容するチャンバー内にArガスのプラズマを生成し、基板を載置する載置台にバイアス(例えば高周波バイアス)を印加してプラズマ中のArイオンを基板に引き込むことにより、Arイオンを作用させる。この処理の温度は特に限定されず、常温で行っても、膜形成の温度で行ってもよい。 The step of ST3 in which ions are allowed to act on the film is performed during or after the ALD film formation in ST2. During ALD film formation refers to any timing before the film formation is completed. The ions are preferably rare gas ions (rare gas ions) such as He, Ne, and Ar, and more preferably Ar ions. For example, Ar ions are allowed to act on the film by generating a plasma of Ar gas in a chamber that contains the substrate, and applying a bias (e.g., a high-frequency bias) to the stage on which the substrate is placed to attract the Ar ions in the plasma to the substrate. The temperature of this treatment is not particularly limited, and may be performed at room temperature or at the temperature for film formation.
 イオンを作用させる処理により、成膜の途中の膜または成膜後の膜が還元され、金属モリブデン膜または金属タングステン膜が得られる。すなわち、イオンのエネルギーにより膜中の酸化物や窒化物が還元されて、膜中に不純物として存在する酸素成分または窒素成分が低減され、不純物が少ない金属モリブデン膜または金属タングステン膜となる。例えば、有機金属原料ガスである有機モリブデン原料ガスと酸素含有ガスを用いてALD成膜した場合、膜中のモリブデン酸化物(例えばMoO、Mo)が還元されて低酸化数となり、最終的には金属モリブデンとなる(Mo(VI)、Mo(III)→金属Mo(0))。また、イオンを作用させる処理による還元作用により、炭素成分等の他の不純物成分を低減することができる。 By the treatment of acting with ions, the film during or after the film formation is reduced, and a metal molybdenum film or a metal tungsten film is obtained. That is, the oxides and nitrides in the film are reduced by the energy of the ions, and the oxygen or nitrogen components present as impurities in the film are reduced, resulting in a metal molybdenum film or a metal tungsten film with fewer impurities. For example, when ALD film formation is performed using an organomolybdenum source gas, which is an organometallic source gas, and an oxygen-containing gas, the molybdenum oxides (e.g., MoO 3 , Mo 2 O 3 ) in the film are reduced to a low oxidation number, and finally become metal molybdenum (Mo(VI), Mo(III)→metal Mo(0)). In addition, the reduction action by the treatment of acting with ions can reduce other impurity components such as carbon components.
 このようなST3のイオンの作用は、有機モリブデン原料ガスと反応ガスであるOガスを用いてALD成膜を行った後、得られた膜についてXPSにより膜組成のDepth Profileの分析を行った際に見出されたものである。XPSにより膜組成のDepth Profileの分析を行う際には、膜を表面からArスパッタエッチングしながら深さ方向の組成分析を行う。 Such an action of ST3 ions was found when ALD film formation was performed using an organic molybdenum source gas and O3 gas as a reactive gas, and then the resulting film was analyzed for its depth profile by XPS. When analyzing the depth profile of the film composition by XPS, the composition is analyzed in the depth direction while Ar sputter etching is performed on the film from the surface.
 Si基体上にSiO膜が形成された基板上に、有機金属原料ガスとOガスを用いALD成膜を行って成膜した膜を、Arスパッタエッチングしながら深さ方向の組成分析を行った結果を図3に示す。この図は、ALDの各サイクルの時点でArイオンを作用させた場合の組成を示しているとも理解できる。 A film was formed on a substrate having a SiO2 film formed on a Si substrate by ALD deposition using an organic metal source gas and O3 gas, and the film was subjected to Ar sputter etching while undergoing composition analysis in the depth direction. The results are shown in Figure 3. This figure can also be understood as showing the composition when Ar ions are applied at each point in the ALD cycle.
 図3に示すように、ALDにより成膜された膜の内部では、膜中の内部において、Mo成分のほぼ半分が金属Moであることがわかる。しかし、成膜は反応ガスとしてOガスを使用する酸化雰囲気で成膜を行っているため、理論上、成膜中に金属Moが生成されることはない。このことから、組成分析で検出された金属Moは、Arイオンによるスパッタの際に酸化物(MoO、Mo等)が還元されて生成されたものであると、ほぼ断定することができる。すなわち、イオンの作用により酸化物または窒化物を還元することができる。タングステンもモリブデンと同様の性質を有することから、同様の還元作用が得られると考えられる。 As shown in Fig. 3, it can be seen that in the film formed by ALD, almost half of the Mo component is metallic Mo. However, since the film is formed in an oxidizing atmosphere using O3 gas as a reactive gas, in theory, metallic Mo is not generated during film formation. From this, it can be almost concluded that the metallic Mo detected by the composition analysis is generated by reducing oxides ( MoO3 , Mo2O3 , etc.) during sputtering with Ar ions. In other words, oxides or nitrides can be reduced by the action of ions. Since tungsten has the same properties as molybdenum, it is thought that a similar reduction action can be obtained.
 本実施形態では、このような知見に基づき、ST2の有機金属原料ガスを用いたALDにより基板上にモリブデンまたはタングステンを含有する膜を成膜する途中または成膜後にST3のイオンを作用させる処理を行う工程を実施し、金属モリブデン膜または金属タングステン膜を得る。 In this embodiment, based on this knowledge, a process of treating with ions (ST3) is carried out during or after the formation of a film containing molybdenum or tungsten on a substrate by ALD using an organometallic source gas (ST2), to obtain a metallic molybdenum film or metallic tungsten film.
 ST3のイオンを作用させる処理は、上述したように、反応ガスとして酸素含有ガスを用いて得られた膜、および反応ガスとして窒素含有ガスを用いて得られた膜に対して行われる。これらの膜のうち窒素含有ガスを用いて生成される膜は窒化物(MoN)を主体とし、酸素含有ガスを用いて生成される膜は酸化物(MoO)を主体とするが、窒化物のほうが酸化物よりも酸化数が小さい。このため、ST3のイオンを作用させる処理の際に、反応ガスとして窒素含有ガスを用いて形成した膜のほうが容易に金属まで還元することができる。 As described above, the process of reacting with ST3 ions is performed on the film obtained by using an oxygen-containing gas as a reactive gas and the film obtained by using a nitrogen-containing gas as a reactive gas. Of these films, the film produced by using a nitrogen-containing gas is mainly composed of nitride (MoN), while the film produced by using an oxygen-containing gas is mainly composed of oxide (MoO 3 ), but the nitride has a smaller oxidation number than the oxide. Therefore, during the process of reacting with ST3 ions, the film formed by using a nitrogen-containing gas as a reactive gas can be more easily reduced to metal.
 イオンを作用させる処理は、所望の還元作用が及ぼされるようなイオンエネルギーが得られるように適宜条件設定される。このとき、ALD成膜により得られた膜がイオンによりスパッタ(エッチング)除去されるような条件で行ってもよいが、所望の還元作用が及ぼされれば膜がスパッタされずに膜にエネルギーのみを与えるような条件で行うことも可能である。このようにエネルギーのみを与えるような条件は、膜のエッチングをともなわないため、より有利である。イオンのエネルギーとしては、XPSにおいてDepth Profileの分析を行う際におけるArスパッタ量がSiO換算で0.3A/s程度であるため、その際のエネルギー以下のエネルギーとすることが好ましい。 The ion-induced treatment is appropriately set under conditions so that ion energy is obtained so as to exert a desired reduction effect. At this time, the treatment may be performed under conditions so that the film obtained by ALD film formation is sputtered (etched) and removed by ions, but it is also possible to perform the treatment under conditions so that the film is not sputtered and only energy is applied to the film if a desired reduction effect is exerted. Such conditions of only applying energy are more advantageous because they do not involve etching of the film. As for the ion energy, since the amount of Ar sputtering when analyzing the depth profile in XPS is about 0.3 A/s in terms of SiO2 , it is preferable to set the energy to be equal to or less than the energy at that time.
 ST3のイオンを作用させる処理は、上述したように、ALD成膜の途中に行っても、ALD成膜後に行ってもよい。成膜される膜が薄い膜の場合には、ALD成膜後にイオンを作用させる処理を行っても十分に膜を還元することができる。しかし、膜厚が厚くなると、イオンを作用させる処理をALD成膜後に行う場合には、処理時間を長くする必要があるとともに還元効果が不十分になるおそれがある。一方、成膜の途中でイオンを作用させる処理を行う場合は、ALD成膜後に行う場合よりも薄い状態の膜に対してイオンのエネルギーを作用させることができるので、膜を還元する効果が高く、処理時間も短時間でよい。このため、成膜の途中でイオンを作用させる処理を行うほうが厚い膜を成膜する場合に有利である。 As described above, the ion-reacting process in ST3 may be performed during or after ALD film formation. When the film to be formed is thin, the film can be sufficiently reduced by performing the ion-reacting process after ALD film formation. However, when the film thickness is large, performing the ion-reacting process after ALD film formation requires a long processing time and may result in insufficient reduction. On the other hand, when performing the ion-reacting process during film formation, the ion energy can be applied to a thinner film than when performing the ion-reacting process after ALD film formation, so the film reduction effect is high and the processing time can be short. For this reason, performing the ion-reacting process during film formation is advantageous when forming a thick film.
 ALD成膜の途中でイオンを作用させる処理を行う場合、Arイオン処理を行うタイミングは任意である。例えば、ALD成膜とイオンを作用させる処理を複数回繰り返してもよいし、イオンを作用させる処理をALDサイクルに組み込んでもよい。 When ion treatment is performed during ALD film formation, the timing of Ar ion treatment is arbitrary. For example, ALD film formation and ion treatment may be repeated multiple times, or ion treatment may be incorporated into the ALD cycle.
 ALD成膜とイオンを作用させる処理を複数回繰り返す場合は、例えば、図4に示すように行う。すなわち、(1)有機金属原料ガスの供給、(2)残留ガスのパージ、(3)反応ガスの供給、および(4)残留ガスのパージからなるALDサイクルを所望回数行った後、(5)イオンを作用させる処理(イオン処理)および(6)残留ガスのパージを行い、このシーケンスを所望の膜厚になるまで繰り返す。 When ALD film formation and the process of reacting with ions are repeated multiple times, for example, it is performed as shown in FIG. 4. That is, after performing the ALD cycle consisting of (1) supplying metalorganic precursor gas, (2) purging residual gas, (3) supplying reactive gas, and (4) purging residual gas a desired number of times, (5) a process of reacting with ions (ion treatment) and (6) purging residual gas are performed, and this sequence is repeated until the desired film thickness is reached.
 イオン処理をALDサイクルに組み込む場合は、図5に示すように、(1)有機金属原料ガスの供給、(2)残留ガスのパージ、(3)反応ガスの供給、(4)残留ガスのパージ、(5)イオンを作用させる処理、および(6)残留ガスのパージからなるALDサイクルを所望の膜厚になるまで繰り返す。 When ion treatment is incorporated into the ALD cycle, as shown in Figure 5, the ALD cycle consisting of (1) supply of metalorganic precursor gas, (2) purging of residual gas, (3) supply of reactive gas, (4) purging of residual gas, (5) treatment using ions, and (6) purging of residual gas is repeated until the desired film thickness is achieved.
 このように、イオンを作用させる処理をALDサイクルに組み込む場合には、1サイクルのALDごとにイオンを作用させることができるので、膜を還元する効果がより高く、また、周辺形状へのダメージを低減することもできる。 In this way, when ion treatment is incorporated into the ALD cycle, ions can be applied in each ALD cycle, which makes it possible to achieve a higher film reduction effect and also reduces damage to the surrounding shape.
 なお、図4および図5のシーケンスにおいても、パージガスは処理中に常時供給してよい。 In addition, in the sequences of Figures 4 and 5, purge gas may be supplied continuously during processing.
 イオンを作用させる処理をALD成膜の途中で行う場合、特にALDサイクルに組み込む場合は、ST2の膜形成工程と、ST3のArイオン処理工程とを同一の装置で行うことが好ましい。同一の装置で行う場合は、イオンを作用させる処理は成膜工程と同じ温度で行うことが好ましい。 When the ion treatment is carried out during ALD film formation, especially when it is incorporated into the ALD cycle, it is preferable to carry out the film formation process in ST2 and the Ar ion treatment process in ST3 in the same equipment. If they are carried out in the same equipment, it is preferable to carry out the ion treatment at the same temperature as the film formation process.
 本実施形態によれば、成膜原料ガスとして有機金属原料ガスを用いてALD成膜を行うので、塩素等による下地に対するダメージが小さくかつ低温で成膜することができる。また、成膜の途中または成膜後に膜に対してイオンを作用させる処理を行うことにより、膜にエネルギーを与えて膜に存在する酸化物または窒化物を還元することができ、不純物成分を低減することができる。また、イオンを作用させる処理による還元効果により、膜中に不純物として含まれる炭素成分等も除去することができる。 In this embodiment, ALD film formation is performed using an organometallic precursor gas as the film formation raw material gas, so that the damage to the base due to chlorine and the like is small and the film can be formed at a low temperature. In addition, by performing a process in which ions are allowed to act on the film during or after film formation, energy can be imparted to the film to reduce oxides or nitrides present in the film, thereby reducing impurity components. In addition, the reduction effect of the process in which ions are allowed to act can also remove carbon components and the like contained as impurities in the film.
  [装置]
 次に、本実施形態の成膜方法を実施可能な装置の例について説明する。
 まず、装置の第1の例について説明する。図6は本実施形態の成膜方法を実施するための装置の第1の例を模式的に示す断面図であり、上述したST2の膜形成工程とST3のArイオン処理工程の両方を行える成膜装置100として構成される。
[Device]
Next, an example of an apparatus capable of carrying out the film forming method of the present embodiment will be described.
6 is a cross-sectional view showing a first example of an apparatus for carrying out the film forming method of the present embodiment, which is configured as a film forming apparatus 100 capable of carrying out both the film forming step ST2 and the Ar ion processing step ST3 described above.
 この成膜装置100は、略円筒状をなす金属製のチャンバー1を有している。チャンバー1の底面には排気管11が接続されており、この排気管11には、チャンバー1内の圧力を制御するための自動圧力制御弁およびチャンバー1内を排気するための真空ポンプを有する排気機構12が設けられている。この排気機構12によりチャンバー1内を真空排気して所望の圧力に制御することが可能となっている。 This film forming apparatus 100 has a metallic chamber 1 that is roughly cylindrical. An exhaust pipe 11 is connected to the bottom of the chamber 1, and this exhaust pipe 11 is provided with an exhaust mechanism 12 that has an automatic pressure control valve for controlling the pressure inside the chamber 1 and a vacuum pump for evacuating the chamber 1. This exhaust mechanism 12 makes it possible to evacuate the chamber 1 and control the pressure to the desired level.
 チャンバー1の側壁には、チャンバー1と隣接して設けられた図示しない基板搬送室との間で基板Wの搬入出を行うための搬入出口13と、この搬入出口13を開閉するゲートバルブ14とが設けられている。 The side wall of the chamber 1 is provided with a loading/unloading port 13 for loading/unloading the substrate W between the chamber 1 and a substrate transfer chamber (not shown) provided adjacent to the chamber 1, and a gate valve 14 for opening/closing the loading/unloading port 13.
 チャンバー1内には、基板Wを水平に支持するための載置台2が設けられている。載置台2は、円筒状の絶縁部材3を介してチャンバー1の底壁中央に支持され、底壁には絶縁部材3に対応する穴1aが形成されている。 Inside the chamber 1, a mounting table 2 is provided for horizontally supporting the substrate W. The mounting table 2 is supported at the center of the bottom wall of the chamber 1 via a cylindrical insulating member 3, and a hole 1a corresponding to the insulating member 3 is formed in the bottom wall.
 載置台2は下部電極として機能する。載置台2は金属製でもセラミックス製でもよく、セラミックス製の場合はその中に電極板が設けられる。載置台2の内部には、ウエハWを加熱するためのヒーター18が設けられている。また、載置台2には整合器15を介して高周波電源16が接続されている。高周波電源16はイオン処理機構として機能する。高周波電源16はチャンバー1の下方に設けられ、高周波電源16からの給電線17は、チャンバー1の穴1aおよび絶縁部材3の内部空間を介して載置台2に接続されている。 The mounting table 2 functions as a lower electrode. The mounting table 2 may be made of metal or ceramics, and if it is made of ceramics, an electrode plate is provided within it. A heater 18 for heating the wafer W is provided inside the mounting table 2. In addition, a high-frequency power supply 16 is connected to the mounting table 2 via a matching unit 15. The high-frequency power supply 16 functions as an ion processing mechanism. The high-frequency power supply 16 is provided below the chamber 1, and a power supply line 17 from the high-frequency power supply 16 is connected to the mounting table 2 via a hole 1a in the chamber 1 and the internal space of the insulating member 3.
 載置台2にはウエハWを支持して昇降させるための複数のウエハ支持ピン(図示せず)が、載置台2の表面に対して突没可能に設けられている。 The mounting table 2 is provided with multiple wafer support pins (not shown) for supporting and raising and lowering the wafer W, which can be protruded and retracted from the surface of the mounting table 2.
 チャンバー1の天壁1bには、円形の穴が形成されており、その穴には、上部電極として機能する円板状をなすシャワーヘッド20が嵌め込まれている。シャワーヘッド20はチャンバー1を介して接地されている。シャワーヘッド20は、ベース部材21とシャワープレート22とを有している。ベース部材21とシャワープレート22との間にはガス拡散空間23が形成されている。シャワープレート22には、ガス拡散空間23からチャンバー1の内部へ貫通する複数のガス吐出孔24が形成されている。ベース部材21の中央には、ガス拡散空間23内へ貫通するように、ガス導入孔25が形成されている。ガス導入孔25には、ガス供給機構30の共通配管31が接続され、ガス供給機構30からのガスがシャワーヘッド20を介してチャンバー1内に吐出されるようになっている。 A circular hole is formed in the ceiling wall 1b of the chamber 1, and a disk-shaped shower head 20 that functions as an upper electrode is fitted into the hole. The shower head 20 is grounded via the chamber 1. The shower head 20 has a base member 21 and a shower plate 22. A gas diffusion space 23 is formed between the base member 21 and the shower plate 22. The shower plate 22 has a plurality of gas discharge holes 24 that penetrate from the gas diffusion space 23 to the inside of the chamber 1. A gas introduction hole 25 is formed in the center of the base member 21 so as to penetrate into the gas diffusion space 23. A common pipe 31 of the gas supply mechanism 30 is connected to the gas introduction hole 25, so that gas from the gas supply mechanism 30 is discharged into the chamber 1 via the shower head 20.
 チャンバー1内にArガスを供給した状態で、高周波電源16から下部電極である載置台2に高周波電力を印加することにより、上部電極であるシャワーヘッド20と下部電極である載置台2の間に高周波電界が形成され、Arプラズマが形成される。高周波電源16は高周波バイアスを印加する機能も有し、Arプラズマ中のArイオンを載置台2上の基板Wへ引き込む。 With Ar gas supplied into the chamber 1, high-frequency power is applied from the high-frequency power supply 16 to the lower electrode, the mounting table 2, forming a high-frequency electric field between the upper electrode, the shower head 20, and the lower electrode, the mounting table 2, generating Ar plasma. The high-frequency power supply 16 also has the function of applying a high-frequency bias, drawing Ar ions in the Ar plasma to the substrate W on the mounting table 2.
 ガス供給機構30は、有機金属原料ガス(MO原料ガス)を供給するMO原料ガス供給源41と、反応ガスとしてOガスを供給するOガス供給源42と、パージガスであるNガスを供給する第1Nガス供給源43および第2Nガス供給源44と、Arガスを供給するArガス供給源45とを有する。MO原料ガスは有機モリブデン原料ガスまたは有機タングステン原料ガスであり、液体または固体原料の場合がある。その場合は、容器内で気化させてキャリアガスであるNガス等により搬送する。反応ガスとしては、Oガスに限らず、Oガス等の他の酸素含有ガスでも、NHガスのような窒素含有ガスでもよい。パージガスはNガス以外の不活性ガスであってもよい。 The gas supply mechanism 30 has an MO source gas supply source 41 that supplies an organic metal source gas (MO source gas), an O 3 gas supply source 42 that supplies O 3 gas as a reactive gas, a first N 2 gas supply source 43 and a second N 2 gas supply source 44 that supply N 2 gas as a purge gas, and an Ar gas supply source 45 that supplies Ar gas. The MO source gas is an organic molybdenum source gas or an organic tungsten source gas, and may be a liquid or solid source. In that case, it is vaporized in a container and transported by a carrier gas such as N 2 gas. The reactive gas is not limited to O 3 gas, but may be other oxygen-containing gas such as O 2 gas or a nitrogen-containing gas such as NH 3 gas. The purge gas may be an inert gas other than N 2 gas.
 MO原料ガス供給源41には第1配管47、Oガス供給源48には第2配管48、第1Nガス供給源43には第3配管49、第2Nガス供給源44には第4配管50、Arガス供給源45には第5配管51がそれぞれ接続されている。第3配管49および第4配管50は、それぞれ第1配管47側および第2配管48側に設けられている。第1Nガス供給源43から第3配管49を通流するNガスはMO原料ガスのキャリアガスとしても機能し、第2Nガス供給源44から第3配管50を通流するNガスはOガスのキャリアガスとしても機能する。第1~第5配管47~51の他端は、共通配管31に接続されている。第1~第5配管47~51には、それぞれ高速バルブ52、53、54、55、56が介装されている。なお、第1~第5配管47~51を通流するガスの流量は、流量制御器(図示せず)により制御される。 The first pipe 47 is connected to the MO raw material gas supply source 41, the second pipe 48 is connected to the O 3 gas supply source 48, the third pipe 49 is connected to the first N 2 gas supply source 43, the fourth pipe 50 is connected to the second N 2 gas supply source 44, and the fifth pipe 51 is connected to the Ar gas supply source 45. The third pipe 49 and the fourth pipe 50 are provided on the first pipe 47 side and the second pipe 48 side, respectively. The N 2 gas flowing from the first N 2 gas supply source 43 through the third pipe 49 also functions as a carrier gas for the MO raw material gas, and the N 2 gas flowing from the second N 2 gas supply source 44 through the third pipe 50 also functions as a carrier gas for the O 3 gas. The other ends of the first to fifth pipes 47 to 51 are connected to the common pipe 31. The first to fifth pipes 47 to 51 are provided with high- speed valves 52, 53, 54, 55, and 56, respectively. The flow rates of the gases flowing through the first to fifth pipes 47 to 51 are controlled by flow rate controllers (not shown).
 成膜装置100は、制御部60を有している。制御部60は、コンピュータからなり、成膜装置100の各構成部を制御するCPUを有する主制御部を有している。また、制御部60は、他に、入力装置、出力装置、表示装置、および記憶装置(記憶媒体)を有している。制御対象の各構成部は、例えば、ヒーター電源、排気機構12、ガス供給機構30のバルブや流量制御器、高周波電源16等である。制御部60の主制御部は、例えば、記憶装置の記憶媒体に記憶された処理レシピに基づいて、成膜装置100に所定の動作を実行させる。 The film forming apparatus 100 has a control unit 60. The control unit 60 is made up of a computer and has a main control unit with a CPU that controls each component of the film forming apparatus 100. The control unit 60 also has an input device, an output device, a display device, and a storage device (storage medium). The components to be controlled are, for example, the heater power supply, the exhaust mechanism 12, the valves and flow rate controllers of the gas supply mechanism 30, the high frequency power supply 16, etc. The main control unit of the control unit 60 causes the film forming apparatus 100 to perform a predetermined operation based on, for example, a processing recipe stored in the storage medium of the storage device.
 以上のように構成された成膜装置100により、制御部60に設定された処理レシピに基づいて成膜方法を実施する。成膜方法は、上述したように、基板を準備する工程と、MO原料ガスと反応ガスによるALDによりモリブデンまたはタングステンを含有する膜を成膜する工程と、成膜の途中または成膜後にイオンを作用させる処理を行う工程とを有する。成膜装置100は、Arイオンを作用させる処理を行うための高周波電源16を備えているため、ALD成膜中にイオンを作用させる処理を行う工程を行うシーケンスを容易に実現でき、さらにはイオンを作用させる処理を行う工程をALDサイクルに容易に組み込むことができる。 The film formation apparatus 100 configured as described above performs a film formation method based on a process recipe set in the control unit 60. As described above, the film formation method includes a process of preparing a substrate, a process of forming a film containing molybdenum or tungsten by ALD using an MO raw material gas and a reactive gas, and a process of performing a process of reacting ions during or after film formation. Since the film formation apparatus 100 is equipped with a high-frequency power supply 16 for performing a process of reacting Ar ions, a sequence for performing a process of reacting ions during ALD film formation can be easily realized, and further, the process of reacting ions can be easily incorporated into the ALD cycle.
 以下、図7を参照して、イオンを作用させる処理を行う工程をALDサイクルに組み込んだ場合のシーケンス例について説明する。 Below, with reference to Figure 7, we will explain an example sequence when a process for performing ion action processing is incorporated into an ALD cycle.
 まず、チャンバー1内に基板Wを搬入し、載置台2の上に載置する。載置台2はヒーター18により所望の温度、好ましくは400℃以下に設定される。この状態で処理レシピをスタートさせる。まず、チャンバー1内の真空引きおよびパージを行った後、圧力を処理圧力に上昇させて基板Wの温度の安定化を行う。次いで、MO原料ガスと反応ガスによるALD成膜に、イオンを作用させる処理を行う工程を組み込んだALDサイクルを実施する。 First, the substrate W is carried into the chamber 1 and placed on the mounting table 2. The mounting table 2 is set to the desired temperature, preferably 400°C or less, by the heater 18. In this state, the processing recipe is started. First, the chamber 1 is evacuated and purged, and then the pressure is increased to the processing pressure to stabilize the temperature of the substrate W. Next, an ALD cycle is performed that incorporates a process of performing a process in which ions are reacted with the ALD film formed using the MO source gas and reactive gas.
 ALDサイクルは、(1)MO原料ガスの供給、(2)残留ガスのパージ、(3)Oガスの供給、(4)残留ガスのパージ、(5)Arイオンを作用させる処理(Arイオン処理)、および(6)残留ガスのパージからなり、このALDサイクルを所望の膜厚になるまで繰り返す。 The ALD cycle consists of (1) supply of MO source gas, (2) purging of residual gas, (3) supply of O3 gas, (4) purging of residual gas, (5) treatment with Ar ions (Ar ion treatment), and (6) purging of residual gas. This ALD cycle is repeated until the desired film thickness is reached.
 (1)の有機金属原料ガスの供給は、必要に応じてMO原料を気化させ、MO原料ガスをチャンバー1内に供給し、基板Wの表面に吸着させる。(2)の残留ガスのパージは、パージガスであるNガスをチャンバー1内に供給しつつ真空引きを行い、残留ガスをチャンバー1から排出する。(3)のOガスの供給は、反応ガスであるOガスをチャンバー1内に供給し、基板Wの表面に吸着されたMO原料ガスと反応させ、単位膜を得る。(4)の残留ガスのパージは、(2)と同様、Nガスによりチャンバー1内のパージを行う。(5)のArイオン処理は、チャンバー1内にArガスを供給しつつ、高周波電源16から下部電極である載置台2に高周波電力を印加し、チャンバー1内にArプラズマを生成するとともに、プラズマ中のArイオンを基板Wに引き込むことにより行われる。これにより、イオンエネルギーがALD膜に及ぼされ、膜中の酸化物が還元される。(6)の残留ガスのパージは、(2)および(4)と同様、Nガスによりチャンバー1内のパージを行う。 In the supply of the metalorganic source gas in (1), the MO source is vaporized as necessary, and the MO source gas is supplied into the chamber 1 and adsorbed onto the surface of the substrate W. In the purging of the residual gas in (2), the chamber 1 is evacuated while N2 gas, which is a purge gas, is supplied into the chamber 1, and the residual gas is discharged from the chamber 1. In the supply of the O3 gas in (3), the reactive gas O3 gas is supplied into the chamber 1 and reacted with the MO source gas adsorbed onto the surface of the substrate W to obtain a unit film. In the purging of the residual gas in (4), the chamber 1 is purged with N2 gas, as in (2). In the Ar ion treatment in (5), while Ar gas is supplied into the chamber 1, high frequency power is applied from the high frequency power supply 16 to the lower electrode, which is the mounting table 2, to generate Ar plasma in the chamber 1 and draw Ar ions in the plasma into the substrate W. This applies ion energy to the ALD film, and oxides in the film are reduced. (6) Purging of residual gas is performed by purging the inside of the chamber 1 with N2 gas, similar to (2) and (4).
 以上のような(1)~(6)からなるALDサイクルを所望の膜厚の膜が成膜されるまで繰り返す。Nガスは処理中に常時供給してもよい。 The ALD cycle consisting of steps (1) to (6) is repeated until a film having a desired thickness is formed. N2 gas may be supplied continuously during the process.
 所定回数のALDサイクルが終了した後、チャンバー1内のサイクルパージを行い、処理レシピを終了させる。 After a predetermined number of ALD cycles have been completed, a cycle purge is performed inside chamber 1, and the processing recipe is completed.
 次に、装置の第2の例について説明する。図8は本実施形態の成膜方法を実施するための装置の第2の例を模式的に示す平面図であり、上述したST2の成膜処理を行う装置とST3のイオンを作用させる処理を行う装置とを有する成膜システムとして構成される。 Next, a second example of the apparatus will be described. FIG. 8 is a plan view showing a schematic diagram of a second example of the apparatus for carrying out the film formation method of this embodiment, which is configured as a film formation system having an apparatus for performing the above-mentioned ST2 film formation process and an ST3 ion action process.
 この成膜システム200は、真空処理部300と、大気搬送部400と、エアロック部500と、制御部600とを有している。 This film forming system 200 has a vacuum processing section 300, an atmospheric transfer section 400, an airlock section 500, and a control section 600.
 真空処理部300は、真空搬送室301と、成膜装置302と、Arイオン処理装置303と、膜質確認装置304とを有している。成膜装置302、Arイオン処理装置303、および膜質確認装置304はゲートバルブGを介して真空搬送室301の壁部に接続されている。なお、図では、成膜装置302を2つ設けた状態を示しているが、成膜装置302は1つであってもよい。 The vacuum processing unit 300 has a vacuum transfer chamber 301, a film forming device 302, an Ar ion processing device 303, and a film quality checking device 304. The film forming device 302, the Ar ion processing device 303, and the film quality checking device 304 are connected to the wall of the vacuum transfer chamber 301 via a gate valve G. Note that while the figure shows two film forming devices 302, there may be only one film forming device 302.
 成膜装置302は、成膜装置100から高周波電源16および整合器15を除いた構成を有しており、イオンを作用させる処理を行わずにALD成膜のみを行う。 The film formation apparatus 302 has a configuration in which the high frequency power supply 16 and the matching box 15 are removed from the film formation apparatus 100, and performs only ALD film formation without performing any ion-induced processing.
 Arイオン処理装置303は、ALD成膜は行わずチャンバー内にArガスのみが供給されるものとし、成膜装置100と同様、載置台に高周波電源を接続して、チャンバー内にArプラズマを生成するとともに、Arイオンを基板に引き込む構成を有しており、基板に成膜された膜に対しArイオンを作用させる。 The Ar ion processing device 303 does not perform ALD film formation, but instead supplies only Ar gas into the chamber. Like the film formation device 100, it is configured to connect a high-frequency power source to the mounting table to generate Ar plasma in the chamber and draw Ar ions into the substrate, causing the Ar ions to act on the film formed on the substrate.
 膜質確認装置304は、例えばXPSにより膜組成を分析し、所望の膜組成になっているか否かを確認する。膜質確認装置304は必須ではなく、設けなくてもよい。 The film quality confirmation device 304 analyzes the film composition, for example, by XPS, and confirms whether the film composition is as desired. The film quality confirmation device 304 is not essential and does not have to be provided.
 真空搬送室301内には、第1の基板搬送機構310が設けられている。第1の基板搬送機構310は、成膜装置302、Arイオン処理装置303、膜質確認装置304、およびエアロック部500に対する基板Wの授受を行う。第1の基板搬送機構310は、独立に移動可能な2つの搬送アーム310a,310bを有している。 A first substrate transfer mechanism 310 is provided in the vacuum transfer chamber 301. The first substrate transfer mechanism 310 transfers substrates W to and from the film forming device 302, the Ar ion processing device 303, the film quality checking device 304, and the airlock section 500. The first substrate transfer mechanism 310 has two transfer arms 310a and 310b that can move independently.
 大気搬送部400は、大気搬送室401を有している。大気搬送室401の真空処理部300と反対側の壁部には、基板Wを収容するFOUP等のキャリアCを取り付ける3つのキャリア取り付けポート402が設けられている。大気搬送室401内には、第2の基板搬送機構410が設けられている。第2の基板搬送機構410は、キャリアCおよびエアロック部500に対する基板Wの授受を行う。 The atmospheric transfer section 400 has an atmospheric transfer chamber 401. Three carrier attachment ports 402 are provided on the wall of the atmospheric transfer chamber 401 opposite the vacuum processing section 300 to attach carriers C, such as FOUPs, that house substrates W. A second substrate transfer mechanism 410 is provided within the atmospheric transfer chamber 401. The second substrate transfer mechanism 410 transfers substrates W to and from the carriers C and the airlock section 500.
 エアロック部500は、真空処理部300と大気搬送部400との間に設けられ、大気圧と真空との間で圧力制御して真空搬送室301と大気搬送室401との間の基板Wの搬送を可能にするものである。エアロック部500は、大気圧と真空とで圧力を調整可能な複数のエアロック室を有し、エアロック室は、ゲートバルブを介して真空搬送室301および大気搬送室401に接続されている。すなわち、本例の成膜システム200は、in-situで基板に対する成膜処理とArイオン処理を行えるように構成されている。 The airlock unit 500 is provided between the vacuum processing unit 300 and the atmospheric transfer unit 400, and enables the transfer of the substrate W between the vacuum transfer chamber 301 and the atmospheric transfer chamber 401 by controlling the pressure between atmospheric pressure and vacuum. The airlock unit 500 has multiple airlock chambers whose pressure can be adjusted between atmospheric pressure and vacuum, and the airlock chambers are connected to the vacuum transfer chamber 301 and the atmospheric transfer chamber 401 via gate valves. In other words, the film formation system 200 of this example is configured to perform film formation processing and Ar ion processing on the substrate in-situ.
 制御部600は、CPU(コンピュータ)を有する主制御部と、入力装置、出力装置、表示装置、記憶装置を有している。主制御部は、例えば、成膜装置302、Arイオン処理装置303、膜質確認装置304での基板処理、これら装置や真空搬送室301の真空排気機構やガス供給機構の制御、エアロック部500の圧力制御、ゲートバルブGの開閉制御等を制御する。また、主制御部は、記憶装置に内蔵された記憶媒体、または記憶装置にセットされた記憶媒体に記憶された処理レシピに基づいて、成膜システム200に、所定の動作を実行させる。 The control unit 600 has a main control unit with a CPU (computer), an input device, an output device, a display device, and a storage device. The main control unit controls, for example, substrate processing in the film formation device 302, the Ar ion processing device 303, and the film quality checking device 304, the vacuum exhaust mechanism and gas supply mechanism of these devices and the vacuum transfer chamber 301, pressure control of the airlock unit 500, opening and closing control of the gate valve G, etc. The main control unit also causes the film formation system 200 to perform a predetermined operation based on a processing recipe stored in a storage medium built into the storage device or a storage medium set in the storage device.
 以上のように構成される成膜システム200においては、複数枚の基板Wを収容したキャリアCを大気搬送室401のキャリア取り付けポート402に接続し、第2の基板搬送機構410によりキャリアCから基板を取り出す。そして、エアロック部500のエアロック室に受け渡し、エアロック室内を真空引きする。そして、真空引きされたエアロック室内の基板を第1の基板搬送機構310により成膜装置302に搬送してALD成膜によりモリブデン酸化物またはタングステン酸化物を主体とする膜を成膜する。成膜完了後、または途中まで成膜した後、基板搬送装置310により基板Wを取り出し、Arイオン処理装置303に搬送し、基板W上に成膜された膜に対しArイオンを作用させる処理を行う。次いで、必要に応じて基板Wを膜質確認装置304に搬送して膜質の確認を行う。基板Wに対して途中まで成膜してArイオン処理を行った場合は、成膜装置302での処理とArイオン処理装置303での処理とを複数回繰り返す。そして、処理が終了した基板Wをエアロック部500を経てキャリアCに戻す。 In the film formation system 200 configured as described above, the carrier C containing multiple substrates W is connected to the carrier attachment port 402 of the atmospheric transfer chamber 401, and the second substrate transfer mechanism 410 removes the substrates from the carrier C. The substrates are then transferred to the airlock chamber of the airlock section 500, and the airlock chamber is evacuated. The substrates in the evacuated airlock chamber are then transported to the film formation device 302 by the first substrate transfer mechanism 310, and a film mainly made of molybdenum oxide or tungsten oxide is formed by ALD film formation. After the film formation is completed or halfway formed, the substrate W is removed by the substrate transfer device 310 and transported to the Ar ion treatment device 303, where Ar ions are applied to the film formed on the substrate W. Next, the substrate W is transported to the film quality confirmation device 304 as necessary to confirm the film quality. If the substrate W is halfway formed and Ar ion treatment is performed, the treatment in the film formation device 302 and the treatment in the Ar ion treatment device 303 are repeated multiple times. After processing, the substrate W is returned to the carrier C via the airlock 500.
 以上のような処理を、複数の基板Wについて同時並行的に行って、キャリアCに搭載されている枚数の基板に対する処理が完了する。 The above-mentioned processing is carried out simultaneously in parallel for multiple substrates W until processing is completed for the number of substrates loaded on the carrier C.
 以上は成膜処理とArイオンを作用させる処理を、真空を破らずにin-situで行う場合について説明したが、これらをex-situで行ってもよい。ex-situの場合は、成膜処理をバッチ式の装置、例えば縦型の成膜装置で行ってもよい。これにより、高いスループットで成膜処理を行うことができる。ただし、ex-situの場合は、Arイオンを作用させる処理はALD成膜後に限られる。 The above describes the case where the film formation process and the process of reacting with Ar ions are performed in situ without breaking the vacuum, but these can also be performed ex situ. In the case of ex situ, the film formation process can be performed in a batch-type device, for example a vertical film formation device. This allows the film formation process to be performed with high throughput. However, in the case of ex situ, the process of reacting with Ar ions is limited to after the ALD film formation.
 <実験例>
 次に、実験例について説明する。
 ここでは、有機金属原料ガスとして(BuN)Mo(BuNH)を用い、反応ガスとしてOガスまたはOガスを用いて、200~350℃の低温でのALDにより膜形成を行い以下のA~Eの5種類のサンプルを作成した。
 サンプルA   反応ガス:Oガス、成膜温度:200℃
 サンプルB   反応ガス:Oガス、成膜温度:250℃
 サンプルC   反応ガス:Oガス、成膜温度:350℃
 サンプルD   反応ガス:Oガス、成膜温度:350℃
 サンプルE   反応ガス:Oガス、成膜温度:250℃
<Experimental Example>
Next, an experimental example will be described.
Here, ( tBuN ) 2Mo ( tBuNH ) 2 was used as the organometallic source gas, and O3 gas or O2 gas was used as the reactive gas, and film formation was performed by ALD at low temperatures of 200 to 350°C to create the following five types of samples, A to E.
Sample A Reaction gas: O3 gas, Film formation temperature: 200°C
Sample B Reaction gas: O3 gas, film formation temperature: 250°C
Sample C Reaction gas: O3 gas, Film formation temperature: 350°C
Sample D Reaction gas: O2 gas, film formation temperature: 350°C
Sample E Reaction gas: O2 gas, film formation temperature: 250°C
 次に、これらのサンプルの膜表面をXPSにより組成分析した。その結果を図9(a)に示す。図9(a)に示すように、いずれの条件も低温成膜のため不純物が多く、特にMoO(VI)が多く存在し、金属Moが存在しないことがわかる。 Next, the film surfaces of these samples were subjected to composition analysis by XPS. The results are shown in Fig. 9(a). As shown in Fig. 9(a), all of the conditions had a large amount of impurities due to low-temperature film formation, especially MoO3 (VI) and no metallic Mo.
 次に、各サンプルについて、イオンを作用させる処理に相当する処理として、XPSの膜組成のDepth Profileの分析を行う際のArイオンスパッタ処理を行い、表面から深さ7nm付近をXPSにより組成分析した。その結果を図9(b)に示す。図9(b)に示すように、Arイオンスパッタした面は、サンプルによりばらつきがあるものの、MoO(VI)が大幅に減少してほとんど残っておらず、より低酸化数の酸化物成分が増加し、金属Moも多く存在していることがわかる。 Next, for each sample, an Ar ion sputtering process was performed as in the XPS depth profile analysis of the film composition, which corresponds to the process of reacting with ions, and the composition was analyzed by XPS at a depth of about 7 nm from the surface. The results are shown in Figure 9(b). As shown in Figure 9(b), although there is variation depending on the sample, it can be seen that the surface that was sputtered with Ar ions has significantly reduced MoO3 (VI) to the point that almost none remains, and oxide components with lower oxidation numbers have increased, and metallic Mo is also present in large amounts.
 このことから、イオンを作用させる処理により膜に存在する酸化物を還元することができ、成膜条件およびArイオン処理の条件を最適化することにより、金属Mo膜が得られることが確認された。 This confirmed that the oxides present in the film can be reduced by the ion treatment, and that a metallic Mo film can be obtained by optimizing the film formation conditions and the Ar ion treatment conditions.
 <他の適用>
 以上、実施形態について説明したが、今回開示された実施形態は、全ての点において例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の特許請求の範囲およびその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
<Other applications>
Although the embodiments have been described above, the embodiments disclosed herein should be considered to be illustrative and not restrictive in all respects. The above-described embodiments may be omitted, substituted, or modified in various forms without departing from the scope and spirit of the appended claims.
 例えば、上記実施形態では、イオンを作用させる処理として主にArイオンを用いる場合を示したが、ALD成膜された膜に対して所望の還元作用が及ぼされればArイオン以外であってもよい。好ましくは、He、Ne、Ar等の希ガスのイオンである。 For example, in the above embodiment, Ar ions are mainly used as the ion-reactive process, but ions other than Ar may be used as long as they have the desired reducing effect on the ALD-deposited film. Preferably, they are ions of rare gases such as He, Ne, and Ar.
 また、上記実施形態では、成膜装置として図6のものを例示したが、図6はあくまで模式的なものであり、ALD成膜が可能な種々の形態のものを使用することができる。図8の成膜システムについても同様である。 In addition, in the above embodiment, the deposition apparatus shown in FIG. 6 is shown as an example, but FIG. 6 is merely schematic, and various configurations capable of ALD deposition can be used. The same applies to the deposition system shown in FIG. 8.
 1;チャンバー、2;載置台、12;排気機構、16;高周波電源、18;ヒーター、20;シャワーヘッド、30;ガス供給機構、60;制御部、100;成膜装置、200;成膜システム、300;真空処理部、301;真空搬送室、302;成膜装置、303;Arイオン処理装置、304;膜質確認装置、400;大気搬送部、500;エアロック部、W;基板 1; chamber, 2; mounting table, 12; exhaust mechanism, 16; high frequency power source, 18; heater, 20; shower head, 30; gas supply mechanism, 60; control unit, 100; film forming device, 200; film forming system, 300; vacuum processing unit, 301; vacuum transfer chamber, 302; film forming device, 303; Ar ion processing device, 304; film quality confirmation device, 400; atmospheric transfer unit, 500; air lock unit, W; substrate

Claims (13)

  1.  モリブデン膜またはタングステン膜を成膜する成膜方法であって、
     基板を準備することと、
     モリブデンまたはタングステンを含有する有機金属原料ガスと反応ガスとを用いたALD成膜により前記基板上にモリブデンまたはタングステンを含有する膜を成膜することと、
     前記成膜することの途中または前記成膜することの後に前記膜にイオンを作用させる処理を行うことと、
    を有する、成膜方法。
    A method for forming a molybdenum film or a tungsten film, comprising the steps of:
    Preparing a substrate;
    forming a film containing molybdenum or tungsten on the substrate by ALD deposition using a metalorganic source gas containing molybdenum or tungsten and a reaction gas;
    performing a process of reacting ions with the film during or after the film formation;
    The film forming method includes the steps of:
  2.  前記有機金属原料ガスは、金属イミド結合および/または金属アミド結合を含み、金属-酸素結合および金属-ハロゲン結合を含まない、請求項1に記載の成膜方法。 The film formation method according to claim 1, wherein the organometallic precursor gas contains a metal-imide bond and/or a metal-amide bond, and does not contain a metal-oxygen bond or a metal-halogen bond.
  3.  前記有機金属原料ガスは、金属イミド結合および/または金属アミド結合のみを含む、請求項2に記載の成膜方法。 The film forming method according to claim 2, wherein the organometallic source gas contains only metal imide bonds and/or metal amide bonds.
  4.  前記反応ガスは酸素含有ガスまたは窒素含有ガスであり、前記膜には酸化物または窒化物が存在し、前記イオンを作用させる処理を行う工程は、前記膜にイオンエネルギーを与え、前記膜に存在する前記酸化物または前記窒化物を還元する、請求項1に記載の成膜方法。 The film forming method according to claim 1, wherein the reactive gas is an oxygen-containing gas or a nitrogen-containing gas, oxides or nitrides are present in the film, and the step of performing the treatment to act on the ions provides ion energy to the film to reduce the oxides or nitrides present in the film.
  5.  前記イオンを作用させる処理を行うことは、希ガスイオンを作用させる、請求項4に記載の成膜方法。 The film forming method according to claim 4, wherein the process of reacting with ions involves reacting with rare gas ions.
  6.  前記イオンを作用させる処理を行うことは、前記希ガスイオンとしてArイオンを作用させる、請求項5に記載の成膜方法。 The film forming method according to claim 5, wherein the process of reacting with ions involves reacting with Ar ions as the rare gas ions.
  7.  前記イオンを作用させる処理を行うことは、チャンバー内で前記基板を載置台上に載置し、前記チャンバー内にプラズマを生成してイオンを形成し、前記載置台にバイアスを印加して前記イオンを基板に引き込むことにより行う、請求項4に記載の成膜方法。 The film forming method according to claim 4, wherein the process of reacting with the ions is performed by placing the substrate on a stage in a chamber, generating plasma in the chamber to form ions, and applying a bias to the stage to attract the ions to the substrate.
  8.  前記イオンを作用させる処理を行うことは前記膜をスパッタする、請求項7に記載の成膜方法。 The film forming method according to claim 7, wherein the treatment of reacting with ions sputters the film.
  9.  前記成膜することは400℃以下の温度で行う、請求項1から請求項8のいずれか一項に記載の成膜方法。 The film forming method according to any one of claims 1 to 8, wherein the film forming is performed at a temperature of 400°C or less.
  10.  前記イオンを作用させる処理を行うことを、前記成膜することの途中で行う場合は、前記ALD成膜と前記イオンを作用させる処理とを繰り返し行う、請求項1から請求項8のいずれか一項に記載の成膜方法。 The film forming method according to any one of claims 1 to 8, wherein, when the treatment of reacting with ions is performed during the film formation, the ALD film formation and the treatment of reacting with ions are repeatedly performed.
  11.  前記イオンを作用させる処理を行うことを、前記成膜することの途中で行う場合は、前記ALD成膜を行う際のALDサイクルに前記イオンを作用させる処理を行うことを組み込む、請求項1から請求項8のいずれか一項に記載の成膜方法。 The film forming method according to any one of claims 1 to 8, wherein, when the process of reacting with the ions is performed during the film formation, the process of reacting with the ions is incorporated into the ALD cycle when the ALD film formation is performed.
  12.  モリブデン膜またはタングステン膜を成膜する成膜装置であって、
     チャンバーと、
     前記チャンバー内で基板を載置する載置台と、
     モリブデンまたはタングステンを含有する有機金属原料ガスと反応ガスとを含むガスを前記チャンバー内に供給するガス供給機構と、
     前記チャンバー内にプラズマを生成し、前記プラズマ中のイオンを基板に作用させる手段と、
     制御部と、
    を有し、
     前記制御部は、
     前記モリブデンまたはタングステンを含有する有機金属原料ガスと前記反応ガスとを用いたALD成膜により基板上にモリブデンまたはタングステンを含有する膜を成膜することと、
     前記成膜することの途中または前記成膜することの後に前記膜にイオンを作用させる処理を行うことと、
    が行われるように、前記ガス供給機構および前記プラズマ中のイオンを基板に作用させる手段を制御する、成膜装置。
    A film forming apparatus for forming a molybdenum film or a tungsten film, comprising:
    A chamber;
    a mounting table for mounting a substrate within the chamber;
    a gas supply mechanism that supplies a gas containing a metalorganic source gas containing molybdenum or tungsten and a reactive gas into the chamber;
    a means for generating a plasma in the chamber and for causing ions in the plasma to act on a substrate;
    A control unit;
    having
    The control unit is
    forming a film containing molybdenum or tungsten on a substrate by ALD deposition using the organometallic source gas containing molybdenum or tungsten and the reaction gas;
    performing a process of reacting ions with the film during or after the film formation;
    and controlling the gas supply mechanism and the means for causing ions in the plasma to act on the substrate so that the above-mentioned is performed.
  13.  モリブデン膜またはタングステン膜を成膜する成膜システムであって、
     モリブデンまたはタングステンを含有する有機金属原料ガスと反応ガスとを用いたALD成膜により基板上にモリブデンまたはタングステンを含有する膜を成膜する成膜装置と、
     前記成膜装置により成膜された膜にイオンを作用させる処理を行うイオン処理装置と、
    を有し、
     前記イオン処理装置は、前記成膜装置による成膜の途中または成膜後に、前記膜にイオンを作用させる、成膜システム。
    1. A deposition system for depositing a molybdenum or tungsten film, comprising:
    a film formation apparatus for forming a film containing molybdenum or tungsten on a substrate by ALD film formation using an organic metal source gas containing molybdenum or tungsten and a reaction gas;
    an ion treatment device that performs a process of reacting ions with the film formed by the film forming device;
    having
    The ion treatment device is a film formation system that applies ions to the film during or after the film formation by the film formation device.
PCT/JP2023/033332 2022-09-27 2023-09-13 Film forming method, film forming device, and film forming system WO2024070685A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-153314 2022-09-27
JP2022153314A JP2024047686A (en) 2022-09-27 2022-09-27 Film forming method, film forming apparatus, and film forming system

Publications (1)

Publication Number Publication Date
WO2024070685A1 true WO2024070685A1 (en) 2024-04-04

Family

ID=90477613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033332 WO2024070685A1 (en) 2022-09-27 2023-09-13 Film forming method, film forming device, and film forming system

Country Status (2)

Country Link
JP (1) JP2024047686A (en)
WO (1) WO2024070685A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028572A (en) * 2004-07-14 2006-02-02 Ulvac Japan Ltd Thin film deposition method
JP2007523994A (en) * 2003-06-18 2007-08-23 アプライド マテリアルズ インコーポレイテッド Atomic layer deposition of barrier materials
JP2010504999A (en) * 2006-09-28 2010-02-18 プラクスエア・テクノロジー・インコーポレイテッド Organometallic precursor compounds
WO2021035236A1 (en) * 2019-08-22 2021-02-25 Lam Research Corporation Substantially carbon-free molybdenum-containing and tungsten-containing films in semiconductor device manufacturing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007523994A (en) * 2003-06-18 2007-08-23 アプライド マテリアルズ インコーポレイテッド Atomic layer deposition of barrier materials
JP2006028572A (en) * 2004-07-14 2006-02-02 Ulvac Japan Ltd Thin film deposition method
JP2010504999A (en) * 2006-09-28 2010-02-18 プラクスエア・テクノロジー・インコーポレイテッド Organometallic precursor compounds
WO2021035236A1 (en) * 2019-08-22 2021-02-25 Lam Research Corporation Substantially carbon-free molybdenum-containing and tungsten-containing films in semiconductor device manufacturing

Also Published As

Publication number Publication date
JP2024047686A (en) 2024-04-08

Similar Documents

Publication Publication Date Title
US10319582B2 (en) Methods and apparatus for depositing silicon oxide on metal layers
KR100447284B1 (en) Method of cleaning chemical vapor deposition chamber
TWI816676B (en) Wafer treatment for achieving defect-free self-assembled monolayers
JP5046506B2 (en) Substrate processing apparatus, substrate processing method, program, and recording medium recording program
JP5207615B2 (en) Film forming method and substrate processing apparatus
US7695563B2 (en) Pulsed deposition process for tungsten nucleation
JP5097554B2 (en) Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus
KR20170037538A (en) METHOD FOR FORMING TiON FILM
CN110581067A (en) Etching method and etching apparatus
US20120108077A1 (en) Substrate processing apparatus and semiconductor device manufacturing method
WO2020016914A1 (en) Method for manufacturing semiconductor device, substrate treatment device and program
TWI796388B (en) Methods of reducing or eliminating defects in tungsten film
WO2010087362A1 (en) Film formation method, and plasma film formation apparatus
CN108701599B (en) Substrate processing method
CN110783188A (en) Etching method and etching apparatus
WO2010001931A1 (en) Method for thin-film formation and apparatus for thin-film formation
JP6391355B2 (en) Method for forming tungsten film
WO2024070685A1 (en) Film forming method, film forming device, and film forming system
KR101393898B1 (en) Nickel film forming method and storage medium
KR101941766B1 (en) Substrate processing method and recording medium
TWI821661B (en) Doping of metal barrier layers
US20220157600A1 (en) Film forming method, method for manufacturing semiconductor device, film forming device, and system for manufacturing semiconductor device
JP2009049217A (en) Method of manufacturing semiconductor device