WO2005001920A1 - プラズマ発生方法、クリーニング方法および基板処理方法 - Google Patents

プラズマ発生方法、クリーニング方法および基板処理方法 Download PDF

Info

Publication number
WO2005001920A1
WO2005001920A1 PCT/JP2004/009026 JP2004009026W WO2005001920A1 WO 2005001920 A1 WO2005001920 A1 WO 2005001920A1 JP 2004009026 W JP2004009026 W JP 2004009026W WO 2005001920 A1 WO2005001920 A1 WO 2005001920A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
plasma
mixed gas
cleaning
pressure
Prior art date
Application number
PCT/JP2004/009026
Other languages
English (en)
French (fr)
Inventor
Hiroshi Kannan
Noboru Tamura
Kazuya Dobashi
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003185160A external-priority patent/JP4558284B2/ja
Priority claimed from JP2003185161A external-priority patent/JP4558285B2/ja
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to US10/562,400 priority Critical patent/US20060226119A1/en
Publication of WO2005001920A1 publication Critical patent/WO2005001920A1/ja
Priority to US12/752,813 priority patent/US8574448B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0035Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching

Definitions

  • the present invention generally relates to a method for manufacturing a semiconductor device, and more particularly to a cleaning method using plasma and a substrate processing method.
  • the present invention also relates to a plasma generator, and more particularly to a plasma ignition method.
  • Plasma generators are widely used in the manufacture of semiconductor devices and liquid crystal display devices. For example, by using a plasma generator, it is possible to perform a film forming process or an etching process at a low temperature at which the concentration distribution of impurity elements formed in a semiconductor substrate does not change. Also, the plasma generator is used to clean the inside of the processing container after performing the substrate processing.
  • FIG. 1 shows the configuration of a typical conventional single-wafer CVD apparatus 10.
  • a single-wafer CVD apparatus 10 includes a susceptor 12 that includes a heating mechanism (not shown) and holds a substrate 12A to be processed, and uses a vacuum pump 13 to shut off a valve 13A and conductance valve 13B.
  • the processing vessel 11 includes a processing head 11 that is evacuated through the susceptor 12 and a shower head 14 that is supplied with a raw material gas from a raw gas supply system 15 via a line L1 and a valve VI. It is provided so as to face the substrate to be processed 12A.
  • the source gas supply system 15 includes source gas sources 15A to 15C.
  • the source gas in the source gas source 15A is connected to the line L1 via a valve 15VA, and the source gas in the source gas source 15B is the source gas.
  • the source gas in the source gas source 15C is supplied to the line L1 via a valve 15VB, and the source gas is supplied to the line L1 via a valve 15VC.
  • the raw material gas supplied through the line L1 is released into the process space in the processing container 11 via the shower head 14, and is subjected to a decomposition reaction on the surface of the processing target substrate 12A, thereby causing the processing target substrate 12A to degrade.
  • a desired film is formed on the surface of the substrate 12.
  • a lube structure is provided for taking in and out the substrate to be processed 12A, and the glove structure is connected to a substrate transfer chamber.
  • the single-wafer CVD apparatus 10 constitutes a single-wafer substrate processing system together with another processing apparatus coupled to the substrate transfer chamber.
  • the substrate temperature is controlled by a heating device formed in the susceptor 12 during the film forming process. Is kept at a relatively low temperature, for example, at about room temperature to about 150 ° C. (cold wall).
  • a cleaning module 16 including an etching gas source 16 A, a plasma gas source 16 B, and a remote plasma source 16 C is provided outside the processing vessel 11.
  • the highly reactive etching gas formed by the 16C is emptied into the process space inside the processing vessel 11 via the line L2 and the valve 16V.
  • the etching gas source 16A is an etching containing fluorine such as NF.
  • Gas is supplied to the remote plasma source 16C via a valve 16VA and the plasma
  • the magaz source 16B supplies a rare gas such as Ar to the remote plasma source 16C via a valve 16VB.
  • the cleaning gas containing fluorine includes halogen compound such as NF.
  • non-halogenated compounds such as CH COOH may be used.
  • the plasma may be any organic compound.
  • non-halogenated compounds such as CH COOH may be used.
  • the plasma may be any organic compound.
  • He, Ne, Kr, Xe, etc. may be used as the diluent gas from the gas source 16B, and H ⁇ , O, H, N, CF, etc. may be used as the diluent gas in addition to the rare gas.
  • Such a remote plasma source 16C includes an inductively coupled (ICP) plasma generator 20 shown in Fig. 2A, an electron cyclotron resonance (ECR) plasma generator 30 shown in Fig. 2B, and a helicon plasma generator shown in Fig. 2C.
  • ICP inductively coupled
  • ECR electron cyclotron resonance
  • a helicon plasma generator shown in Fig. 2C.
  • a wave excitation type plasma generator 40, a microwave resonator type plasma generator 50 shown in FIG. 2D, a toroidal type plasma generator 60 shown in FIG. 2E, and the like are known.
  • a parallel plate (CCP) type plasma generator 70 shown in FIG. 3 is used as a plasma source provided inside the processing vessel 11.
  • a high-frequency coil 22 is wound around a plasma container 21 in which plasma is generated, and is driven by a high-frequency power supply 23, so that the inside of the plasma container is To form a plasma.
  • a magnetic field is applied by disposing a magnet 32 around the plasma container 31 in a space inside the plasma container 31 in which plasma is generated. Further, in this state, by supplying a microwave from the microwave power supply 33 to the gas inside the container 31, electron cyclotron resonance is induced in the gas inside the container 31.
  • a magnet 44 is provided in proximity to a plasma container 41 in which plasma is generated, and a loop antenna 42 is provided in proximity to the plasma container 41.
  • This loop antenna is driven by high-frequency power from the high-frequency power supply 43, and a high-density plasma is formed by propagating a recombination wave into the plasma container 41.
  • a plasma container 51 in which plasma is formed forms a microwave resonator.
  • Plasma is formed by driving a microwave from the wave power supply 52 by an electric field.
  • a circulating gas passage 61 provided with a gas inlet 61A and a gas outlet 61B is provided, and a high-frequency coil is provided outside the gas passage 61. 62 is wound.
  • the rare gas such as Ar introduced into the gas inlet 61A circulates in the circulating gas passage 61.
  • the high-frequency coil 62 is driven by microwaves, so that the rare gas Is induced in the plasma.
  • a pair of parallel plate electrodes 71A and 71B are arranged in a plasma container 71 in which plasma is generated.
  • the plasma generator 70 in FIG. 3 itself constitutes a plasma processing apparatus, and the plasma container 71 is used as a processing container.
  • the lower electrode 71B serves as a susceptor, on which the substrate to be processed is mounted.
  • the plasma is generated away from the wall surface of the generator, and a preferable feature is that the introduction of large-mass charged particles such as ions into the process space inside the processing chamber 11 is small. Therefore, it is considered that the plasma processing apparatus 10 of FIG. 1 is preferably used as a powerful toroidal type plasma generator remote plasma source 16C.
  • FIG. 4 shows in more detail the toroidal plasma generator 60 shown in FIG. 2E used as the remote plasma source 16C.
  • the plasma generator 60 has a circulating gas passage 61 provided with a gas inlet 61A and a gas outlet 61B, and a high-frequency coil 62 is provided outside the gas passage. It is wound.
  • the rare gas such as Ar introduced into the gas inlet 61A circulates in the circulating gas passage 61.
  • the high-frequency coil 62 is driven by high-frequency electric power, so that the rare gas To induce plasma.
  • a circulating current path indicated by a solid line 61a in FIG. 4 is formed in the gas passage 61, and the high-frequency coil Fig. 4 The path is narrowed down to a path corresponding to the current path 61a as shown by a broken line 61b in the middle.
  • the plasma generator 60 of FIG. 4 since the high-density plasma is formed at a position distant from the wall defining the circulating gas passage 61, the plasma is accelerated particularly by high energy. It is possible to form plasma with less contamination by less sputtering of wall surfaces by electrons. In addition, the plasma is maintained stably without such contamination.
  • Patent Document 1 U.S. Patent No. 6374831
  • the toroidal type plasma generator 60 shown in FIG. 4 once a high-density plasma is formed, the force that can stably maintain it is understood from the above description. There is a problem with ignition. This problem is particularly prominent when, for example, the plasma generator 60 of FIG. 4 is used as the remote plasma source 16C in the CVD apparatus 10 of FIG.
  • the NF etching gas is used for etching the power NF supplied to the remote plasma source 16 C and the etching of F, CF, CF, CF, SF, C1F, and the like.
  • the fluorine-containing compound used has an ionization energy much larger than that of Ar. Therefore, in the remote plasma source 16C, the Ar gas from the Ar gas source 16B contains fluorine such as NF containing F having a high electronegativity in the Ar gas from the Ar gas source 16B. If the contained etching gas is added, there arises a problem that it is difficult to ignite the plasma in the remote plasma source 16C.
  • FIG. 5 shows that the inventor of the present invention used the toroidal type apparatus 60 of FIG. 4 as the remote plasma source 16 C in the CVD apparatus 10 of FIG.
  • the pressure in the circulating gas passage 61 of FIG. 4 was set to 1333 Pa (l OTorr)
  • the temperature of the susceptor 12 was set to 100 ° C.
  • the total flow rate of Ar gas and NF gas was
  • Etching (cleaning) of the thermal oxide film formed on the substrate 12A of FIG. 1 is performed under the condition of 1500 SCCM.
  • the vertical axis indicates the cleaning rate of the thermal oxide film per minute.
  • the remote plasma source 16C is driven by a high frequency of 400 kHz.
  • the cleaning rate increases as the NF gas concentration in the Ar / NF mixed gas increases.
  • FIG. 6 shows the relationship between the cleaning speed and the NF gas partial pressure in the CVD apparatus 10 of FIG.
  • the experiment shown in FIG. 6 was also conducted by the inventor of the present invention in the research on which the present invention was based, and the toroidal plasma generator 60 shown in FIG. 4 was used as the remote plasma source 16C.
  • the concentration of the NF gas supplied to the remote plasma source 16C was set to 45% and the total flow rate of the Ar / NF mixed gas was set to 1500 SCCM, The etching of the thermal oxide film is performed while changing the total pressure in the processing vessel 11.
  • the concentration of the NF gas when the concentration of the NF gas is fixed, the total pressure in the processing vessel 11 (accordingly, the partial pressure of the NF gas) is increased to increase the etching rate of the thermal oxide film, that is, It can be seen that the tallying speed increases. From the relationship in Fig. 6, it can be seen that when the NF concentration is set to 45%, a cleaning rate (etching rate) exceeding 500 nm / min is realized at a pressure of about 266 Pa (2 Torr) or more.
  • FIGS. 5 and 6 are supplied to the remote plasma source 16C when the toroidal plasma generator 60 shown in FIG. 4 is used as the remote plasma source 16C in the CVD apparatus 10 of FIG. It is shown that by increasing the NF gas concentration or partial pressure in the Ar / NF mixed gas, a cleaning speed exceeding 500 nm per minute can be achieved.Therefore, in order to efficiently perform cleaning in the CVD apparatus 10 in FIG. Thus, NF gas concentration It is understood that it is preferable to increase the degree.
  • FIG. 7 shows the relationship between the plasma sustaining power in the toroidal plasma generator 60 of FIG. 4 and the NF concentration in the Ar / NF mixed gas supplied to the plasma generator 60.
  • FIG. 8 shows the relationship between the plasma maintenance power in the toroidal plasma generator 60 of FIG. 4 and the total pressure of the Ar / NF mixed gas supplied to the plasma generator 60.
  • Plasma is generated under the condition that the total flow rate is set to 1500 SCCM.
  • the plasma maintenance power in the Ar / NF mixed gas decreases in total pressure.
  • the plasma when the total pressure is about 333 Pa (2.5 Torr), for example, the plasma is maintained at a high frequency power of about 3 kW. On the other hand, when the total pressure is about 2000 Pa (15 Torr), it can be seen that the plasma cannot be maintained unless the RF power exceeding 4 kW is applied.
  • toroidal plasma generators especially those with electronegativity such as NF,
  • the plasma is no longer ignited just by being burned. When the total pressure rises, the plasma ignites No longer.
  • the problem is that the plasma sustaining power and NF concentration or partial pressure in Figs.
  • the plasma cannot be ignited unless the NF gas is removed by sufficiently purging the circulating gas passage 61 in FIG. 4 at the time of plasma ignition.
  • the plasma generating apparatus of either type shown in FIGS. 2A to 2F or FIG.
  • a high drive voltage must be applied.However, if such a high drive voltage is applied, the coils and electrodes are immediately turned on when the plasma is ignited.
  • the impedance of the driving system including the driving system greatly changes, and the overshoot driving voltage may damage the driving system and the high-frequency power supply.
  • Another object of the present invention is to provide a toroidal plasma generator, a plasma ignition method for igniting plasma with respect to a mixed gas of Ar gas and NF gas, and a substrate treatment using such a toroidal plasma generator. It is to provide a method.
  • Another object of the present invention is to provide a plasma cleaning method capable of igniting plasma at a low voltage and thereby avoiding damage to a power supply, a coil, an electrode, and the like due to a high voltage.
  • the present invention provides
  • a gas passage having a gas inlet and a gas outlet, forming a peripheral circuit
  • a toroidal-type plasma generator having a coil wound around a part of the gas passage
  • the present invention also provides
  • a gas passage having a gas inlet and a gas outlet, forming a peripheral circuit
  • a toroidal-type plasma generator having a coil wound around a part of the gas passage
  • the present invention provides a plasma generation method characterized in that the plasma ignition step is performed under a total pressure of 6.65 to 66.5 Pa.
  • the present invention also provides
  • a method for cleaning a processing vessel exhausted by an exhaust system and coupled to a remote plasma source comprising:
  • the remote plasma source includes a gas inlet and a gas outlet, and includes a toroidal plasma generator having a gas passage forming a peripheral circuit, and a coil wound around a part of the gas passage.
  • the cleaning method includes the steps of: forming a radical containing F in the remote plasma source;
  • the cleaning step provides a cleaning method, wherein the inside of the processing container is tallied at the second pressure.
  • the present invention also provides
  • a method for processing a substrate in a processing vessel exhausted by an exhaust system and coupled with a remote plasma source comprising:
  • the remote plasma source includes a gas inlet and a gas outlet, and includes a toroidal plasma generator having a gas passage forming a peripheral circuit, and a coil wound around a part of the gas passage.
  • Etch NF or F at a concentration of at least 5% in Ar gas in the gas passage
  • the etching process is performed at the second pressure, and a substrate processing method is provided.
  • the present invention also provides
  • a cleaning method for cleaning the inside of a processing container in a first pressure band with radicals of a cleaning gas excited by plasma comprising:
  • a mixed gas of a dilution gas and a cleaning gas is supplied to the plasma generator from the first pressure zone.
  • a second pressure zone which is lower in temperature, to ignite the plasma,
  • a cleaning method characterized by including a step of increasing a pressure inside the processing container from the second pressure zone to the first pressure zone.
  • the present invention also provides
  • a substrate processing method for etching a surface of a substrate to be processed in a processing chamber in a first pressure zone by a plasma-excited etching radical for etching a surface of a substrate to be processed in a processing chamber in a first pressure zone by a plasma-excited etching radical.
  • the present invention provides a substrate processing method including a step of increasing a pressure inside the processing container from the second pressure zone to the first pressure zone.
  • the present invention provides
  • a cleaning method for cleaning the inside of a processing container in a first pressure band with radicals of a cleaning gas excited by plasma comprising:
  • the present invention provides
  • a mixed gas of Ar gas and NF gas containing at least 5% of NF is supplied into the gas passage, and 6.6 is supplied by high frequency power.
  • the throughput of cleaning and substrate processing can be greatly improved. Also, once the plasma is ignited, it is possible to shift from the plasma ignition point to the process point where tally jung and etching are performed without extinguishing the plasma, making it possible to execute an efficient plasma process Become.
  • the present invention by reducing the gas pressure at the time of plasma ignition, it becomes possible to perform plasma ignition at a low voltage even with a gas containing a halogen compound. As a result, the occurrence of a large voltage overshoot caused by a large impedance change at the moment of plasma ignition and the damage to the drive power supply, electrodes, coils, etc. due to this are avoided.
  • the desired cleaning process or etching process can be efficiently performed by increasing the gas pressure to a predetermined process condition while maintaining the plasma. Become.
  • the plasma is ignited with respect to the gas containing the halogenated compound, especially in the case of frequently interrupting the plasma, such as in a single-wafer processing step, the plasma is ignited every time the plasma is ignited. This eliminates the need for purging the gas containing the halogenated compound, thereby greatly improving the throughput of the tallying or substrate processing.
  • FIG. 1 is a diagram showing a configuration of a CVD apparatus to which the present invention is applied.
  • FIG. 2A is a diagram showing an outline of a conventional inductively coupled plasma generator.
  • FIG. 2B is a diagram showing an outline of a conventional electron cyclotron resonance type plasma generator.
  • FIG. 2C is a diagram showing an outline of a conventional helicon wave excitation type plasma generator.
  • FIG. 2D is a diagram showing an outline of a conventional microwave resonator type plasma generator.
  • FIG. 2E is a diagram showing an outline of a conventional toroidal plasma generator.
  • FIG. 3 is a diagram showing an outline of a conventional parallel plate type plasma generator.
  • FIG. 4 is a view showing a configuration of a conventional toroidal plasma generator used in the CVD apparatus of FIG. 1.
  • FIG. 5 is a graph showing the relationship between the NF3 concentration in the Ar / NF mixed gas used in the plasma cleaning process and the tallying speed.
  • FIG. 6 is a diagram showing the relationship between the total pressure of an Ar / NF mixed gas used in the plasma cleaning process and the tallying speed.
  • FIG. 7 is a graph showing a relationship between NF concentration and plasma maintenance power in an Ar / NF mixed gas used in a plasma cleaning process.
  • FIG. 8 is a diagram showing the relationship between the total pressure of an Ar / NF mixed gas used in the plasma cleaning process and the plasma maintenance power.
  • FIG. 9 is a diagram for explaining a search for plasma ignition conditions according to the first embodiment of the present invention.
  • FIG. 10 is a diagram showing plasma ignition conditions found according to the first example of the present invention.
  • FIG. 11 is a diagram showing the relationship between the plasma ignition voltage and the total pressure found by the first embodiment of the present invention.
  • FIG. 12 is a view showing plasma ignition conditions of Ar / F gas according to a second embodiment of the present invention.
  • FIG. 13 is a diagram showing a transition from a plasma ignition point to a plasma cleaning or plasma etching process point according to a third embodiment of the present invention.
  • FIG. 14 is a view showing a configuration of a gas flow rate switching mechanism used in a third embodiment of the present invention.
  • FIG. 15 is a view showing a gas and RF power supply sequence in a plasma cleaning / etching step according to a third embodiment of the present invention.
  • Microwave resonator type plasma generator Microwave resonator
  • the toroidal plasma generator has a preferable feature that contamination in the substrate processing step using plasma is small because sputtering of the plasma generator wall by plasma is suppressed.
  • plasma ignition is difficult and plasma ignition is to be performed, it is necessary to eliminate the etching gas or cleaning gas containing halogen with a high electronegativity such as NF and perform ignition in an atmosphere of 100% Ar gas. was there.
  • FIG. 9 shows that, based on such an idea, the inventor of the present invention conducted a study on the basis of the present invention to obtain a toroidal plasma generator 60 (ASTRONi, MKS, US Pat. No. 150628), the plasma ignition conditions were changed in the Ar / NF mixed gas.
  • the total pressure and flow rate of the Ar / NF mixed gas and the NF concentration in the mixed gas are determined.
  • the plasma ignition point was searched with various changes, the results shown in Fig. 10 were obtained.
  • a high frequency of 400 kHz is supplied at a power of 1500 W.
  • FIG. 10 shows that the NF was reduced by reducing the total pressure in the gas passage 61 at the time of plasma ignition to 66.5 Pa (0.5 Torr) or less, preferably 6.65 Pa (0.05 Torr) or less. It can be seen that plasma ignition is possible in an Ar / NF mixed gas containing 5% or more, and in particular, even if the NF concentration in the Ar / NF mixed gas reaches 45%, plasma ignition may be possible. .
  • FIG. 10 is a view showing a state in which A is supplied to the toroidal type plasma generator at the time of plasma ignition.
  • the force range is limited, as the gas flow rate is reduced to 20 SCCM, 5 SCCM, and 3 SCCM, the NF concentration range and pressure range where plasma ignition occurs expands.
  • the gas flow rate of the Ar / NF mixed gas was 100SCC.
  • FIG. 11 shows the relationship between the plasma ignition voltage and the total pressure in the toroidal plasma generator 60 of FIG. 4, which was obtained based on the results of FIGS.
  • the NF power% is contained in the Ar / NF mixed gas.
  • the plasma ignition voltage decreases as the total pressure decreases, and reaches a minimum at a pressure approximately corresponding to the ignition point indicated by ⁇ in FIG. If the pressure decreases below this, the collision probability decreases, and as a result, the plasma ignition voltage sharply increases.
  • the NF is 5
  • FIG. 12 shows that the inventor of the present invention uses a mixed gas of Ar and F in the gas passage 61 in the toroidal plasma generator 60 shown in FIG. 4 at various F concentrations (F / (Ar + F)).
  • F / (Ar + F) various F concentrations
  • the flow rate of the Ar / F mixed gas was set to 100 SCCM, and a high frequency of OO kHz was supplied at a power of 1300 W.
  • plasma ignition is about 6.65 Pa (0.05 Torr) or more and 66.5 Pa when the F concentration in the mixed gas is 5%.
  • the inventors of the present invention found that, in the research on which the present invention is based, the Ar gas contains a halogen with a high electronegativity such as NF or F in the toroidal plasma generator as shown in FIG. We succeeded in finding out that plasma ignition was possible and the conditions under which plasma ignition was possible even when a mixed gas containing gas was supplied.
  • a halogen with a high electronegativity such as NF or F
  • the pressure or gas flow actually used for cleaning or etching in the CVD apparatus is much larger than the ignition point shown in FIG. In 60, after the plasma is ignited at the ignition point in Fig. 9 or 10, it is required that the conditions can be changed to the process point where the process is actually performed without extinguishing the plasma.
  • the concentration of NF in the ArZNF mixed gas becomes 50% or more, and the pressure (total pressure) also increases. 13
  • the inventors of the present invention set the ignition point corresponding to the plasma ignition point described with reference to Fig. 9 or 10 for the CVD apparatus 10 shown in Fig. 1 as shown in Fig. 13. From point (1), the actual cleaning or Up to the process point (2), the total pressure and flow rate of the Ar / NF mixed gas were changed in various ways, and it was verified whether the plasma was maintained from the point (1) to the point (2). However, in this experiment, the valve 16Vc was fully opened in the CVD apparatus 10 of FIG. 1, and the pressure in the gas passage 21 of the toroidal type plasma generator 20 of FIG. Inside the pressure is substantially equal.
  • the total pressure at the ignition point (1) was set to about 11 Pa (0.08 Torr), and the total flow rate of the Ar / NF mixed gas was set to 3 SCCM, and the process point (2) , The total pressure is set to 1330 Pa (10 Torr), and the total flow rate of the ArZNF mixed gas is set to 3 SLM.
  • the gas flow rate is increased from the ignition point (1) while maintaining the pressure of about 11 Pa (0.08 Torr), and reaches the point (4). That is, from point (1) to point (4), in the CVD apparatus 10 of FIG. 1, the pressure in the processing vessel 11 is maintained constant even if the flow rate of the Ar / NF mixed gas increases.
  • the conductance valve 13B of the exhaust system is gradually opened, and at the point (4), the conductance valve 13B is fully opened.
  • the point (4) is determined by the capacity of the conductance valve 13B and the vacuum pump 13 cooperating therewith.
  • the conductance valve 13B is gradually closed while the flow rate of the Ar / NF mixed gas is kept constant, so that the pressure inside the processing vessel 11 and, accordingly, the gas passage 61
  • the total pressure inside gradually increases and reaches point (6) in the fully closed state. That is, the point (6) is determined by the gas leak amount and the capacity of the vacuum pump 13 when the conductance valve 13B is fully closed.
  • the flow rate of the Ar / NF mixed gas is increased while the conductance valve 13B is kept in the fully closed state, thereby obtaining the processing vessel 1
  • the flow rate of the ArZNF mixed gas is set to a predetermined value while maintaining the opening of the conductance valve 13B.
  • the route from point (4) and point (6), and hence the route from point (4) to point (5), and the route from point (6) to point (7) The path is determined by the design of the conductance valve 13B of the CVD device used and the capacity of the vacuum pump 13. If the maximum conductance of the conductance valve 13B is increased or the capacity of the vacuum pump 13 is increased, the point ( The route from 4) to point (5) shifts to the high flow side. When the minimum conductance of the conductance valve 13B is reduced or the capacity of the vacuum pump 13 is reduced, the path from the point (6) to the point (7) shifts to the high pressure side.
  • the process point (2) can be set to any of the conditions described above with reference to FIG.
  • the toroidal plasma generator 20 is used as a remote plasma source 16 C, and the plasma of an insulating film such as a thermal oxide film or a CVD oxide film is placed in the processing vessel 11.
  • Etching, plasma etching of a metal film such as a W film or a Ti film, plasma etching of a conductive nitride film such as a TiN film, and plasma etching of a polysilicon film can be performed.
  • the NF gas source 16A is provided with a plurality of mass flow controllers 16a and 16b having different capacities as shown in FIG.
  • the Ar gas source 16B is also provided with a plurality of mass flow controllers 16c and 16d having different capacities, and these are switched by valves.
  • the mass flow controller 16a first increases the ArZNF3 mixed gas flow rate along the path C, and at the point (8) on the path C Considering a case where the mass flow controller 16a is switched to a larger capacity mass flow controller 16b, the flow rate is temporarily changed with the switching of the mass flow controller. And the force at which the total pressure may drop to point (9). Returning to point (10) on path C can be achieved by driving a larger mass flow controller 16b. At this time, according to the present embodiment, the plasma ignited at the point (1) will not be extinguished as long as the point (9) is located in the plasma maintaining region shown in FIG.
  • the point (10) after the return is not limited to the path C, but may be selected to an arbitrary point in the plasma maintenance region within a range where the flow rate is larger than that of the point (8). Can be.
  • the F concentration in the Ar / F mixed gas may be kept constant or may be changed during the pressurization.
  • the rare gas supplied into the plasma generator is not limited to Ar gas, and gases such as He, Ne, Kr, and Xe can also be used.
  • FIG. 15 shows a supply sequence of gas and RF power used in the cleaning or etching process according to the third embodiment of the present invention based on the above results.
  • a small amount of Ar gas and NF gas were supplied to the toroidal type plasma generator 60 of Fig. 4 and the total pressure of 6.65-66.5Pa (P1 ) Provide RF power below to ignite the plasma.
  • the pressure Pl in the ignition step and the flow rates of the Ar gas and the F gas at that time may be set so as to fall within the ignition range described with reference to FIG. [Fourth embodiment]
  • Fig. 11 The relationship shown in Fig. 11 above, that is, the tendency that the plasma ignition voltage decreases on the low pressure side and rapidly increases after passing the pressure corresponding to a certain minimum value is not limited to the toroidal type plasma generator, but is shown in Figs. In the plasma generators 20 to 70 described below, it is considered that the tendency is universally established regardless of the type of rare gas and the type of halogen-containing etching gas or cleaning gas.
  • the mixed gas of the rare gas and the gas containing the halogen compound may be mixed with the gas having the minimum ignition voltage shown in FIG. Ignition plasma using conditions
  • the cleaning / etching gas such as NF or F
  • the total pressure of the mixed gas of the rare gas and the cleaning Z etching gas is gradually increased to a desired process pressure according to the same sequence as in FIG. To increase.
  • the ignition point (1) corresponding to the pressure P1 of FIG. 15 is changed to the pressure P2 of FIG. 15 where the actual cleaning process is performed.
  • the total pressure and the gas flow rate can be achieved without extinguishing.
  • the route from point (4) to point (6) and therefore the route from point (4) to point (5), and the route from point (6) to point (7).
  • the path is determined by the design of the conductance valve 13B of the CVD apparatus used and the capacity of the vacuum pump 13.
  • the point ( The route from 4) to point (5) shifts toward the higher flow rate.
  • the minimum conductance of the conductance valve 13B is reduced or the capacity of the vacuum pump 13 is reduced, the path from the point (6) to the point (7) shifts to the high pressure side.
  • the process point (2) can be set to a known condition or deviation under which plasma cleaning can be efficiently performed.
  • cleaning in the CVD apparatus 10 of FIG. 1 is started from the time when plasma ignition occurs in the toroidal type plasma generator 20 used as the remote plasma source 16C.
  • the mixture ratio of Ar gas and NF gas in the Ar / NF mixed gas may be fixed or changed. ,.
  • the NF concentration in the Ar / NF mixed gas is increased during the transition from the ignition point (1) to the process point (2). In addition to this, it is possible to reduce it as necessary.
  • any one of the plasma generating apparatuses of FIGS. 2A to 2E is used as a remote plasma source 16 C, and a thermal oxide film or a CVD oxide film is formed in the processing chamber 11.
  • plasma etching of an insulating film plasma etching of an insulating film, plasma etching of a metal film such as a W film or a Ti film, plasma etching of a conductive nitride film such as a TiN film, and plasma etching of a polysilicon film can be performed.
  • the Ar gas source 16B is also provided with a plurality of mass flow controllers 16c and 16d having different capacities, and these are switched by using valves.
  • the Ar / NF mixed gas flow rate is first increased from the ignition point (1) in Fig. 13 by the mass flow controller 16a along the path C, and the point (8) on the path C Considering the case where the mass flow controller 16a is switched to the larger capacity mass flow controller 16b, the flow rate and total pressure may temporarily drop to the point (9) with the switching of the mass flow controller.
  • the mass flow controller 16b By driving the mass flow controller 16b with a certain force, it is possible to return to the point (10) on the route C.
  • the plasma ignited at the point (1) does not disappear.
  • the point (10) after the return is not limited to the path C, but may be selected to an arbitrary point in the plasma maintenance region within a range where the flow rate is larger than that of the point (8). Can be.
  • the present invention has been described above mainly on the case where the plasma is formed by supplying an Ar / NF mixed gas or an Ar / F mixed gas to a toroidal plasma generator.
  • the apparatus is not limited to the toroidal type plasma generator, and the present invention can be applied to the other plasma generators shown in FIGS. 2A to 2E or 3 as described in the fourth embodiment.
  • the diluent gas supplied for plasma formation is not limited to Ar.
  • the present invention relates to rare gases such as He, Ne, Kr, and Xe, or H ⁇ , ⁇ , H, N , CF and so on.
  • the cleaning / etching gas used in the present invention is not limited to NF or F, and it is also possible to use other halogen compound gas, and also a compound containing CH COO group such as CH COOH.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

 ガス入口とガス出口とを備え、周回路を形成するガス通路と、前記ガス通路の一部に巻回されたコイルとを有するトロイダル型プラズマ発生装置におけるプラズマ発生方法は、前記ガス通路中に、少なくとも5%のNF3を含むArガスとNF3ガスの混合ガスを供給し、前記コイルを高周波電力により駆動してプラズマを着火する工程を含み、前記プラズマ着火工程は、6.65~66.5Paの全圧下において実行される。

Description

明 細 書
プラズマ発生方法、クリーニング方法および基板処理方法
技術分野
[0001] 本発明は一般に半導体装置の製造方法に係り、特にプラズマを使ったクリーニング 方法および基板処理方法に関する。また本発明はプラズマ発生装置に係り、特にプ ラズマ着火方法に関する。
[0002] プラズマ発生装置は半導体装置や液晶表示装置の製造にぉレ、て広く使われてレ、 る。例えばプラズマ発生装置を使うことにより、半導体基板中に形成された不純物元 素の濃度分布が変化しないような低温において成膜処理あるいはエッチング処理を 実行すること力 Sできる。またプラズマ発生装置は、基板処理を行った後、処理容器内 部をクリーニングするのに使われている。
背景技術
[0003] 図 1は、従来の典型的な枚葉式 CVD装置 10の構成を示す。
[0004] 図 1を参照するに枚葉式 CVD装置 10は、加熱機構(図示せず)を含み被処理基板 12Aを保持するサセプタ 12を含み、真空ポンプ 13により遮断バルブ 13Aおよびコン ダクタンスバルブ 13Bを介して排気される処理容器 11を含み、前記処理容器 11中 には、原料ガス供給系 15からライン L1およびバルブ VIを介して原料ガスを供給され るシャワーヘッド 14が、前記サセプタ 12上の被処理基板 12Aに対面するように設け られている。
[0005] 前記原料供給系 15は原料ガス源 15A— 15Cを含み、前記原料ガス源 15A中の原 料ガスは前記ライン L1にバルブ 15VAを介して、前記原料ガス源 15B中の原料ガス は前記ライン L1にバルブ 15VBを介して、また前記原料ガス源 15C中の原料ガスは 前記ライン L1にバルブ 15 VCを介して、供給される。
[0006] 前記ライン L1を通して供給された原料ガスは前記処理容器 11中のプロセス空間に 、前記シャワーヘッド 14を介して放出され、前記被処理基板 12Aの表面における分 解反応により、前記被処理基板 12の表面に所望の成膜が生じる。
[0007] 図 1の枚葉式 CVD装置 10では、前記処理容器 11には、図示を省略したゲー ί ルブ構造が前記被処理基板 12Aの出し入れのために設けられており、前記ゲー I ルブ構造は基板搬送室に結合されている。前記枚葉式 CVD装置 10は、前記基板 搬送室に結合された他の処理装置と共に、枚葉式基板処理システムを構成する。
[0008] このような枚葉式処理システムを構成する枚葉式 CVD装置 10では、成膜処理の際 に基板温度をサセプタ 12中に形成した加熱装置により制御しており、処理容器 10の 壁面は、比較的低い、例えば室温一 150°C程度の温度に保持される(コールドゥォ 一ル)。
[0009] このようなコールドウォール型の CVD装置では、被処理基板 12A上への成膜時に 処理容器 11の内壁面への反応生成物の堆積がある程度生じるのが避けられず、こ のため一又は複数の被処理基板の成膜処理が終了するごとに、前記処理容器 11内 部にエッチング性のクリーニングガスを流し、堆積物を除去するクリーニング工程が行 われる。
[0010] 特に最近の超微細化半導体装置の製造に使われる CVD装置の場合、所定の初 期プロセス条件を回復させるために、頻繁に、理想的には被処理基板を 1枚処理す るたびに、クリーニング工程を行うのが望ましい。し力 このように頻繁にクリーニング 工程を行う場合には、クリーニング時間が半導体装置の製造スループットを大きく低 下させる要因となる。
[0011] このため、図 1の CVD装置では、前記処理容器 11の外部に、エッチングガス源 16 Aおよびプラズマガス源 16B、さらにリモートプラズマ源 16Cよりなるクリーニングモジ ユール 16を設け、前記リモートプラズマ源 16Cにより形成された反応性の高いエッチ ングガスをライン L2およびバルブ 16Vを介して前記処理容器 11内部のプロセス空
C
間へと供給するようにしている。このようにプラズマ源を処理容器 11の外部に設ける ことにより、高工ネルギのプラズマによる処理容器 11内壁の損傷が回避され、安定な クリーニングを行うことが可能になる。またプラズマ中に形成されるイオンはリモートプ ラズマ源 16Cから処理容器 11へ輸送される途中に電子と再結合するため、図 1の構 成では反応を促進するラジカルのみが処理容器 11中に供給される。
[0012] なお図 1において前記エッチングガス源 16Aは NFなどのフッ素を含むエッチング
3
ガスを前記リモートプラズマ源 16Cにバルブ 16VAを介して供給し、また前記プラズ マガス源 16Bは Arなどの希ガスを前記リモートプラズマ源 16Cに、バルブ 16 VBを介 して供給する。
[0013] なお、前記フッ素を含むクリーニングガスとしては、前記 NFなどハロゲン化合物の
3
他に、 CH COOHなど、非ハロゲンィ匕合物が使われることもある。また前記プラズマ
3
ガス源 16Bからの希釈ガスとしては Ar以外に He, Ne, Kr, Xeなどが使われることも あり、さらに前記希釈ガスとして、希ガス以外に H〇, O , H , N, C Fなどが使われ
2 2 2 2 2 6
ることちある。
[0014] このようなリモートプラズマ源 16Cとしては、図 2Aに示す誘導結合 (ICP)型プラズ マ発生装置 20、図 2Bに示す電子サイクロトロン共鳴 (ECR)型プラズマ発生装置 30 、図 2Cに示すヘリコン波励起型プラズマ発生装置 40、図 2Dに示すマイクロ波共振 器型プラズマ発生装置 50、図 2Eに示すトロイダル型プラズマ発生装置 60などが知 られている。また処理容器 11の内部に設けられるプラズマ源として、図 3に示す平行 平板(CCP)型プラズマ発生装置 70が使われてレ、る。
[0015] 図 2Aの ICP型プラズマ発生装置 20では、内部でプラズマが発生されるプラズマ容 器 21の周囲に高周波コイル 22を卷回し、これを高周波電源 23により駆動することで 、前記プラズマ容器内にプラズマを形成する。
[0016] さらに図 2Bの ECR型プラズマ発生装置 30では、内部でプラズマが発生されるプラ ズマ容器 31内部の空間に、前記プラズマ容器 31の周囲に磁石 32を配置することに より磁界を印加し、さらにこの状態で前記容器 31内部のガスにマイクロ波電源 33から マイクロ波を供給することにより、前記容器 31内部のガスに電子サイクロトロン共鳴を 誘起する。
[0017] 図 2Cのへリコン波型プラズマ発生装置 40では、内部でプラズマが発生されるプラ ズマ容器 41に磁石 44が近接して設けられ、さらに前記プラズマ容器 41に近接して ループアンテナ 42が設けられる。このループアンテナを高周波電源 43からの高周波 電力で駆動し、前記プラズマ容器 41内にへリコン波を伝播させることにより、高密度 プラズマを形成する。
[0018] 図 2Dのマイクロ波共振器型プラズマ発生装置 50では、内部でププラズマが形成さ れるプラズマ容器 51がマイクロ波共振器を形成し、このマイクロ波共振器にマイクロ 波電源 52からのマイクロ波を電界により駆動することにより、プラズマを形成する。
[0019] 図 2Eのトロイダル型プラズマ発生装置 60では、ガス入口 61Aとガス出口 61Bとを 設けられた循環的なガス通路 61が設けられており、前記ガス通路 61の外側には、高 周波コイル 62が卷回されている。
[0020] そこで前記ガス入口 61Aに導入された Arなどの希ガスは、前記循環ガス通路 61中 を周回するが、その際に前記高周波コイル 62をマイクロ波により駆動することにより、 前記希ガス中にプラズマが誘起される。
[0021] さらに図 3の CCP型プラズマ発生装置 70では、内部でプラズマが発生されるプラズ マ容器 71内に一対の平行平板電極 71A,71Bを配置しており、これを高周波電源 7
2により駆動することで、前記電極間にプラズマを形成する。すなわち図 3のプラズマ 発生装置 70はそれ自体がプラズマ処理装置を構成し、前記プラズマ容器 71が処理 容器として使われる。この場合、前記下部電極 71Bがサセプタとなり、この上に被処 理基板が載置される。
[0022] 特に図 2Eのトロイダル型プラズマ発生装置では、プラズマ発生が発生装置の壁面 から離れて生じ、処理容器 11内部のプロセス空間へのイオンなど、質量の大きな荷 電粒子の導入が少ない好ましい特徴が得られるため、図 1のプラズマ処理装置 10に おいて、力かるトロイダル型プラズマ発生装置リモートプラズマ源 16Cとして使うのが 好ましいと考えられている。
[0023] 図 4は、このような前記リモートプラズマ源 16Cとして使われる前記図 2Eに示したト ロイダル型プラズマ発生装置 60をより詳細に示す。
[0024] 図 4を参照するに、プラズマ発生装置 60はガス入口 61Aとガス出口 61Bとを設けら れた循環的なガス通路 61を有し、前記ガス通路の外側には、高周波コイル 62が卷 回されている。
[0025] そこで前記ガス入口 61Aに導入された Arなどの希ガスは、前記循環ガス通路 61中 を周回するが、その際に前記高周波コイル 62を高周波電力により駆動することにより 、前記希ガス中にプラズマを誘起する。このようにして誘起されたプラズマが前記ガス 通路 61中を高速で周回するにつれて前記ガス通路 61中には図 4中に実線 61 aで示 した周回的な電流路が形成され、さらに前記高周波コイルが形成する磁力線が図 4 中、破線 61bに示すように前記電流路 61aに一致した経路に絞り込まれる。このよう に磁力線が経路 61bに絞り込まれるとプラズマ中の電子やイオンが前記磁力線経路 61bに一致する電流路 61aに絞り込まれ、前記電流路 61a中の電流密度がさらに増 大するが、このような電流密度の増大は前記磁力線経路 6 lbへのさらなる磁力線の 絞込みを生じる。
[0026] 図 4のトロイダル型のプラズマ発生装置 60では、このように高密度プラズマは前記 循環ガス通路 61を画成する壁面から離れた位置に形成されるため、特に高工ネルギ に加速された電子による壁面のスパッタが少なぐ汚染の少ないプラズマの形成が可 能になる。またこのような汚染の少なレ、プラズマは安定に維持される。
[特許文献 1] 米国特許第 6374831号公報
発明の開示
発明が解決しょうとする課題
[0027] このように、図 4のトロイダル型のプラズマ発生装置 60では、いったん高密度プラズ マが形成されるとそれを安定に維持することができる力 上記の説明からもわかるよう に、プラズマの着火については課題を有している。この問題は、例えば図 4のプラズ マ発生装置 60を図 1の CVD装置 10においてリモートプラズマ源 16Cとして使った場 合に特に顕著に顕れる。
[0028] 図 1を再び参照するに、前記 CVD装置 10においては NFエッチングガスが前記リ モートプラズマ源 16Cに供給されている力 NFや F , CF , C F , C F , SF , C1F などのエッチングに使われるフッ素を含む化合物は電離エネルギが Arに比べて非常 に大きぐこのため前記リモートプラズマ源 16C中において前記 Arガス源 16Bからの Arガスに電気陰性度の高い Fを含む NFなどのフッ素を含むエッチングガスが添カロ された場合、前記リモートプラズマ源 16C中におけるプラズマの着火が困難になる問 題が生じる。
[0029] 図 5は、本発明の発明者が本発明の基礎となる研究において、図 1の CVD装置 10 においてリモートプラズマ源 16Cとして図 4のトロイダル型装置 60を使い、前記リモー トプラズマ源 16Cに供給される Ar/NF混合ガス中における NFガスの割合を様々 に変化させてクリーニングを行った場合の、クリーニング速度と NFガス濃度との関係 を示す。ただし図 5の実験では、前記図 4の循環ガス通路 61中の圧力を 1333Pa (l OTorr)に設定し、サセプタ 12の温度を 100°C、また Arガスと NFガスの合計流量を
1500SCCMとした条件下で、前記図 1の基板 12A上に形成された熱酸化膜のエツ チング (クリーニング)を行っている。図中、縦軸のクリーニング速度は、前記熱酸化 膜の毎分あたり膜厚変化率を示す。前記リモートプラズマ源 16Cは、周波数が 400k Hzの高周波により駆動している。
[0030] 図 5を参照するに、クリーニング速度は Ar/NF混合ガス中における NFガス濃度 が増大するにつれて増大するのがわかる。このこと力 、 1200Paの圧力下で 500η mZ分以上のクリーニング速度を実現しょうとすると、前記リモートプラズマ源 16Cに 供給される Ar/NF混合ガスには、少なくとも 5%の濃度(=Ar/ (Ar + NF ) )にな るように NFを添カ卩するのが望ましいことがわかる。
[0031] 図 6は、図 1の CVD装置 10におけるクリーニング速度と NFガス分圧との関係を示 す。ただし図 6の実験も本発明の発明者が本発明の基礎となる研究において行った ものであり、リモートプラズマ源 16Cとして図 4のトロイダル型プラズマ発生装置 60を 使っている。ただし図 6の実験では、前記リモートプラズマ源 16Cに供給される NFガ スの濃度を 45%に設定し、 Ar/NF混合ガスの全流量を 1500SCCMに設定した 条件下におレ、て、前記処理容器 11内の全圧を変化させながら前記熱酸化膜のエツ チングを行っている。
[0032] 図 6を参照するに、 NFガスの濃度を固定した場合には、処理容器 11内の全圧(従 つて NFガス分圧)を増大させることにより、熱酸化膜のエッチング速度、すなわちタリ 一二ング速度が増大することがわかる。図 6の関係からは、 NFの濃度を 45%に設定 した場合、約 266Pa (2Torr)以上の圧力において毎分 500nmを超えるクリーニング 速度(エッチング速度)が実現されてレ、るのがわかる。
[0033] 図 5, 6の結果は、前記図 1の CVD装置 10において図 4に示すトロイダル型プラズ マ発生装置 60をリモートプラズマ源 16Cとして使った場合、前記リモートプラズマ源 1 6Cに供給される Ar/NF混合ガス中の NFガス濃度あるいは分圧を増大させること により、毎分 500nmを超えるクリーニング速度が実現できることを示しており、従って 図 1の CVD装置 10においてクリーニングを効率良く行うには、このように NFガス濃 度を増加させるのが好ましレ、ことがわかる。
[0034] さらに図 7は、図 4のトロイダル型プラズマ発生装置 60におけるプラズマ維持パワー と、前記プラズマ発生装置 60に供給される Ar/NF混合ガス中の NF濃度との関係
3 3
を示す。ただし図 7の実験も本発明の発明者が本発明の基礎となる研究において行 つたものであり、全圧を 10Torr、前記 ArZNF混合ガスの全流量を 1500SCCMに
3
設定した条件下におレ、て、プラズマの発生を行ってレ、る。
[0035] 図 7を参照するに、レ、つたんプラズマが形成されると、 NFガスの濃度が増大しても
3
、供給される RFパワーを増大させることにより、プラズマを維持することができるのが わかる。一方、図 7の関係は、 Ar/NF混合ガスの濃度を増大させた場合には、ブラ
3
ズマを維持するのに大きな RFパワーが要求されることをも示している。前記 ArZNF
3 混合ガス中の NF濃度がゼロの場合には、ごくわずかの RFパワーでプラズマが維持
3
されるのがわかる。
[0036] さらに図 8は、図 4のトロイダル型プラズマ発生装置 60におけるプラズマ維持パワー と、前記プラズマ発生装置 60に供給される Ar/NF混合ガスの全圧との関係を示す
3
。ただし図 8の実験も本発明の発明者が本発明の基礎となる研究において行ったも のであり、 Ar/NF混合ガス中の NF濃度を 45%に、また前記 Ar/NF混合ガスの
3 3 3
全流量を 1500SCCMに設定した条件下において、プラズマの発生を行っている。
[0037] 図 8より、前記 Ar/NF混合ガス中におけるプラズマ維持パワーは、全圧が低下す
3
ると減少し、例えば全圧が約 333Pa (2. 5Torr)では 3kW程度の高周波パワーでプ ラズマが維持されることがわかる。これに対し、全圧が約 2000Pa (15Torr)の場合、 4kWを超える RFパワーを投入しなければプラズマを維持できないことがわかる。
[0038] このように、図 4のトロイダル型プラズマ発生装置 60では、いったんプラズマが着火 すれば高い NF分圧あるいは濃度において、大きな RFパワーを投入することにより
3
効率よくプラズマエッチングあるいはプラズマクリーニングを行うことができる力 先に も述べたように、トロイダル型のプラズマ発生装置では、特に NFなど電気陰性度の
3
高い元素を含むガスを供給した場合、プラズマの着火が困難になる問題点を有して レ、る。図 4のトロイダル型プラズマ発生装置 60では、 Arガスに NFガスがわずかに添
3
カロされただけでも、プラズマは着火しなくなる。また全圧が高くなるとプラズマは着火 しなくなる。この問題点は、図 7, 8のプラズマ維持パワーと NF濃度あるいは分圧、さ
3
らにプラズマ維持パワーと全圧との関係からも示唆されるものである。
[0039] このプラズマ着火の問題を回避するために、従来はリモートプラズマ源 16Cの着火 時には Arl00%ガスを供給し、プラズマが形成された時点でフッ素を含むエッチング ガスをこれに添加することが行われていた。例えば特許文献 1を参照。先に図 5 8 で説明した実験でも、プラズマの着火は、このようにプラズマ着火時に Arl 00%ガス を使うことで行っている。
[0040] しかし、このような従来の方法では、プラズマ着火時に図 4の循環ガス通路 61を十 分にパージして NFガスを除去しなければプラズマが着火できないため、特に最近
3
の、例えば設計ルールが 1 μ m以下の超微細化半導体装置の製造に際して要求さ れる頻繁な処理容器のクリーニング、例えば基板を:!枚処理するたびに処理容器 11 のクリーニング処理を行おうとすると、非常に長い処理時間が力、かってしまレ、、基板 処理スループットが大きく低下してしまう。
[0041] また従来、ハロゲンを含むクリーニングガスをプラズマ発生装置に供給した状態で プラズマを着火しょうとすると、図 2A— 2Fあるいは図 3のいずれの形式のプラズマ発 生装置であっても、先に述べたようにプラズマ着火が困難になるため、高い駆動電圧 を印加せざるを得なレ、が、このように高い駆動電圧を印加していると、プラズマが着 火した瞬間にコイルや電極を含む駆動系のインピーダンスが大きく変化し、オーバー シュートした駆動電圧が前記駆動系や高周波電源を破損させる恐れがある。
[0042] そこで本発明は上記の問題点を解決した、新規で有用なプラズマ着火方法、タリー ニングおよび基板処理方法を提供することを概括的課題とする。
[0043] 本発明の他の課題は、トロイダル型プラズマ発生装置において、 Arガスと NFガス の混合ガスに対してプラズマを着火させるプラズマ着火方法、およびかかるトロイダ ル型プラズマ発生装置を使った基板処理方法を提供することにある。
[0044] 本発明の他の課題は、低電圧においてプラズマを着火でき、もって高電圧による電 源やコイル、電極などの損傷を回避できるプラズマクリーニング方法を提供することに ある。
課題を解決するための手段 [0045] 本発明は、
ガス入口とガス出口とを備え、周回路を形成するガス通路と、
前記ガス通路の一部に卷回されたコイルとを有するトロイダル型プラズマ発生装置 におけるプラズマ発生方法であって、
前記ガス通路中に、少なくとも 5%の NFを含む Arガスと NFガスの混合ガスを供 給し、前記コイルを高周波電力により駆動してプラズマを着火する工程を含み、 前記プラズマ着火工程は、 6. 65— 66. 5Paの全圧下において実行されることを特 徴とするプラズマ発生方法を提供する。
[0046] 本発明はまた、
ガス入口とガス出口とを備え、周回路を形成するガス通路と、
前記ガス通路の一部に卷回されたコイルとを有するトロイダル型プラズマ発生装置 におけるプラズマ発生方法であって、
前記ガス通路中に、少なくとも 5%の Fを含む Arガスと Fガスの混合ガスを供給し、 前記コイルを高周波電力により駆動してプラズマを着火する工程を含み、
前記プラズマ着火工程は、 6. 65— 66. 5Paの全圧下において実行されることを特 徴とするプラズマ発生方法を提供する。
[0047] 本発明はまた、
排気系により排気され、リモートプラズマ源を結合された処理容器のクリーニング方 法であって、
前記リモートプラズマ源は、ガス入口とガス出口とを備え、周回路を形成するガス通 路と、前記ガス通路の一部に卷回されたコイルとを有するトロイダル型プラズマ発生 装置よりなり、
前記クリーニング方法は、前記リモートプラズマ源において、 Fを含むラジカルを形 成する工程と、
前記ラジカルを前記処理容器内部に供給し、前記ラジカルにより前記処理容器内 部をクリーニングする工程とを含み、
前記ラジカルを形成する工程は、
前記ガス通路中に、 Arガス中に少なくとも 5。/0の濃度で NFまたは Fをクリーニング ガスとして含む混合ガスを、プラズマが着火する第 1の圧力において供給し、前記コ ィルを高周波電力により駆動してプラズマを着火する工程と、
前記ガス通路中における前記混合ガスの全圧を、前記プラズマを維持しつつ、第 2 の圧力まで増大させる工程とを含み、
前記クリーニング工程は、前記第 2の圧力において前記処理容器内部をタリーニン グすることを特徴とするクリーニング方法を提供する。
[0048] 本発明はまた、
排気系により排気され、リモートプラズマ源を結合された処理容器中における基板 処理方法であって、
前記リモートプラズマ源は、ガス入口とガス出口とを備え、周回路を形成するガス通 路と、前記ガス通路の一部に卷回されたコイルとを有するトロイダル型プラズマ発生 装置よりなり、
前記基板処理方法は、前記リモートプラズマ源において、 Fを含むラジカルを形成 する工程と、
前記ラジカルを前記処理容器内部に供給し、前記ラジカルにより前記処理容器内 において被処理基板表面をエッチングする工程とを含み、
前記ラジカルを形成する工程は、
前記ガス通路中に、 Arガス中に少なくとも 5%の濃度で NFまたは Fをエッチング
3 2
ガスとして含む混合ガスを、プラズマが着火する第 1の圧力において供給し、前記コ ィルを高周波電力により駆動してプラズマを着火する工程と、
前記ガス通路中における前記混合ガスの全圧を、前記プラズマを維持しつつ、第 2 の圧力まで増大させる工程とを含み、
前記エッチング工程は、前記第 2の圧力におレ、て実行されることを特徴とする基板 処理方法を提供する。
[0049] 本発明はまた、
処理容器内部を、プラズマ励起されたクリーニングガスのラジカルにより、第 1の圧 力帯でクリーニングするクリーニング方法であって、
プラズマ発生装置に希釈ガスとクリーニングガスの混合ガスを、前記第 1の圧力帯よ りも低い第 2の圧力帯で導入し、プラズマを着火する工程と、
前記処理容器内部の圧力を、前記第 2の圧力帯から前記第 1の圧力帯まで増大さ せる工程を含むことを特徴とするクリーニング方法を提供する。
[0050] 本発明はまた、
処理容器中において被処理基板表面を、プラズマ励起されたエッチングのラジカ ルにより、第 1の圧力帯でエッチングする基板処理方法であって、
プラズマ発生装置に希釈ガスとエッチングガスの混合ガスを、前記第 1の圧力帯より も低い第 2の圧力帯で導入し、プラズマを着火する工程と、
前記処理容器内部の圧力を、前記第 2の圧力帯から前記第 1の圧力帯まで増大さ せる工程を含むことを特徴とする基板処理方法を提供する。
[0051] さらに本発明は、
処理容器内部を、プラズマ励起されたクリーニングガスのラジカルにより、第 1の圧 力帯でクリーニングするクリーニング方法であって、
プラズマ発生装置に希釈ガスとクリーニングガスの混合ガスを、前記第 1の流量帯よ りも低レ、第 2の流量帯で導入し、プラズマを着火する工程と、
前記混合ガスの流量を、前記第 2の流量帯から前記第 1の流量帯まで増大させる 工程を含むことを特徴とするクリーニング方法を提供する。
[0052] さらに本発明は、
処理容器中において被処理基板表面を、プラズマ励起されたエッチングのラジカ ルにより、第 1の流量帯でエッチングする基板処理方法であって、
プラズマ発生装置に希釈ガスとエッチングガスの混合ガスを、前記第 1の流量帯より も低レ、第 2の流量帯で導入し、プラズマを着火する工程と、
前記混合ガスの流量を、前記第 2の流量帯から前記第 1の流量帯まで増大させる 工程を含むことを特徴とする基板処理方法を提供する。
発明の効果
[0053] 本発明によれば、トロイダル型のプラズマ発生装置において、ガス通路中に、少なく とも 5%の NFを含む Arガスと NFガスの混合ガスを供給し、高周波電力により、 6. 6
3 3
5— 66. 5Paの全圧下においてプラズマを着火することにより、 Ar/NF混合ガスに
3 ついてプラズマを着火することが可能になり、その結果、プラズマを断続的に形成す る必要がある枚葉式の基板処理システムなどにおいて、プラズマを着火しょうとする たびに必要であった、リモートプラズマ源から NFガスをパージする工程が省略でき、
3
クリーニングや基板処理のスループットを大きく改善することができる。またいつたん プラズマが着火すると、プラズマを消滅させることなくプラズマ着火ポイントからタリー ユングやエッチングが実行されるプロセスポイントまで移行することが可能になり、効 率的なプラズマプロセスを実行することが可能になる。
[0054] さらに本発明によれば、プラズマ着火時にガス圧を低減させることにより、ハロゲン 化合物を含んだガスであっても低い電圧でプラズマ着火をすることが可能になる。こ れにより、これにより、プラズマ着火の瞬間の大きなインピーダンス変化に起因して生 じる大きな電圧オーバーシュートの発生、およびこれによる駆動電源あるいは電極、 コイルなどの破損が回避される。本発明では、このようにしてプラズマが着火した後、 プラズマを維持したまま、所定のプロセス条件までガス圧を増大させることにより、所 望のクリーニングプロセスあるいはエッチングプロセスを効率よく実行することが可能 になる。また本発明によれば、ハロゲンィ匕合物を含んだガスに対してプラズマが着火 されるため、特に枚葉処理工程のように、プラズマを頻繁に断続する工程の場合、プ ラズマを着火するたびにハロゲンィ匕合物を含むガスをパージする必要がなくなり、タリ 一二ングあるいは基板処理のスループットが大きく向上する。
図面の簡単な説明
[0055] [図 1]本発明が適用される CVD装置の構成を示す図である。
[図 2A]従来の誘導結合型プラズマ発生装置の概要を示す図である。
[図 2B]従来の電子サイクロトロン共鳴型プラズマ発生装置の概要を示す図である。
[図 2C]従来のへリコン波励起型プラズマ発生装置の概要を示す図である。
[図 2D]従来のマイクロ波共振器型プラズマ発生装置の概要を示す図である。
[図 2E]従来のトロイダル型プラズマ発生装置の概要を示す図である。
[図 3]従来の平行平板型プラズマ発生装置の概要を示す図である。
[図 4]図 1の CVD装置で使われる、従来のトロイダル型プラズマ発生装置の構成を示 す図である。 [図 5]プラズマクリーニングプロセスで使われる Ar/NF混合ガス中の NF3濃度とタリ 一二ング速度との関係を示す図である。
[図 6]プラズマクリーニングプロセスで使われる Ar/NF混合ガスの全圧とタリーニン グ速度との関係を示す図である。
[図 7]プラズマクリーニングプロセスで使われる Ar/NF混合ガス中の NF濃度プラ ズマ維持パワーとの関係を示す図である。
[図 8]プラズマクリーニングプロセスで使われる Ar/NF混合ガスの全圧とプラズマ維 持パワーとの関係を示す図である。
[図 9]本発明の第 1実施例によるプラズマ着火条件の探索を説明する図である。
[図 10]本発明の第 1実施例により見出されたプラズマ着火条件を示す図である。
[図 11]本発明の第 1実施例により見出された、プラズマ着火電圧と全圧との関係を示 す図である。
[図 12]本発明の第 2実施例による、 Ar/Fガスのプラズマ着火条件を示す図である
[図 13]本発明の第 3実施例による、プラズマ着火ポイントから、プラズマクリーニングあ るいはプラズマエッチングプロセスポイントまでの移行を示す図である。
[図 14]本発明の第 3実施例において使われる、ガス流量切り替え機構の構成を示す 図である。
[図 15]本発明の第 3実施例によるプラズマクリーニング/エッチング工程のガスおよ び RFパワー供給シーケンスを示す図である。
符号の説明
10 CVD装置
11 処理容器
12 サセプタ
13 真空ポンプ
13A 遮断バルブ
13B コンダクタンスバルブ
14 シャワーヘッド 原料ガス供給系
A— 15C 原料ガス源
V一 15V バルブ
A C
クリーニングモジュール
A クリーニングガス源
B Arガス源
a 16d 質量流量コントローラ
C リモートプラズマ源
V— 16V バルブ
A C ICP型プラズマ発生装置
プラズマ容器
コイル
高周波電源
ECR型プラズマ発生装置
プラズマ容器
磁石
マイクロ波電源
へリコン波型プラズマ発生装置 プラズマ容器
ループアンテナ
高周波電源
磁石
マイクロ波共振器型プラズマ発生装置 マイクロ波共振器
マイクロ波電源
トロイダル型プラズマ発生装置 ガス通路
A ガス入口 61B ガス出口
62 高周波コイル
70 平行平板型プラズマ発生装置
71 プラズマ容器
71A, 71B 電極
72 高周波電源
L1 原料ガスライン
L2 クリーニングガスライン
発明を実施するための最良の形態
[0057] [第 1実施例]
以下、本発明を好ましい実施例について説明する。
[0058] 先にも説明したように、トロイダル型プラズマ発生装置では、プラズマによるプラズマ 発生装置壁面のスパッタリングが抑制されるため、プラズマを使った基板処理工程に おける汚染が少ない好ましい特徴があるものの、プラズマの着火が困難であり、プラ ズマ着火を行う場合には、 NFなど電気陰性度の大きいハロゲンを含むエッチングガ スあるいはクリーニングガスを排除し、 Arガス 100%の雰囲気において着火を実行す る必要があった。
[0059] このように従来、トロイダル型プラズマ発生装置では、プラズマの着火は Arガス 100 Q/oの雰囲気中におレ、てのみ可能であることが一般的に受け入れられてレ、た。これに 対し本発明の発明者は、減圧環境下においては電子の平均自由工程が長くなること に着目し、トロイダル型のプラズマ発生装置においても、通常のクリーニングやエッチ ングに使われるよりも低圧の減圧環境下において高周波電界を印加した場合、電子 が電界により大きく加速される結果、大きなエネルギを獲得するであろうこと、および このように電子が大きなエネルギを有する場合、 Arガス中に NFなど、電気陰性度の 高いハロゲンを含むガスが添加されていても、プラズマが着火する可能性があること を着想するに至った。
[0060] 図 9は、このような着想に基づいて本発明の発明者が、本発明の基礎となる研究に おいて、図 4のトロイダル型プラズマ発生装置 60 (ASTRONi, MKS製、米国特許 6 150628号公報)についてプラズマ着火条件を、前記 Ar/NF混合ガス中における
NF濃度を様々に変化させ、さらに全圧力を様々に変化させながら探索した結果を 示す。
[0061] 図 9を参照するに、秦はプラズマ着火が生じなかった点を示しており、前記 NF濃 度が 2. 5%以上では、実験したいずれの圧力においてもプラズマ着火は生じなかつ た力 NF濃度を 1. 7%とした場合、図中に〇で示すように、全圧を 69Pa (520mTo rr)まで低減した場合にプラズマ着火が生じることを見出した。ただし図 9の実験では 、前記 Ar/NF混合ガスの全流量を 500SCCMとしており、 1. 7kWの高周波電力 を印加している。
[0062] そこで、図 4のトロイダル型プラズマ発生装置 60について、このようにして発見され た着火点を出発点として、前記 Ar/NF混合ガスの全圧力、流量および前記混合ガ ス中における NF濃度を様々に変化させてプラズマ着火点を探索したところ、図 10 に示すような結果を得た。ただし図 10の実験では、周波数が 400kHzの高周波を、 1 500Wのパワーで供給してレ、る。
[0063] 図 10を参照するに、縦軸は前記 Ar/NF混合ガス中における NFの濃度( = NF
+ NF ) )を、横軸は前記ガス通路 21中の全圧を示しており、影を付した範囲 がプラズマの着火が可能であった条件を示している。
[0064] すなわち前記ガス通路 21中の全圧が減少するにつれてプラズマ着火が可能な NF 濃度範囲が増大し、また前記 Ar/NF混合ガスの全流量が減少するにつれてブラ ズマ着火が可能な NF濃度範囲が増大するのがわかる。
[0065] 一方、前記ガス通路 61中の全圧が低くなりすぎると、加速された電子が Ar原子ある レ、は NF分子に衝突する確率が低減し、プラズマの着火は困難になる。
[0066] 図 10より、プラズマ着火時における前記ガス通路 61中の全圧を 66. 5Pa (0. 5Tor r)以下、好ましくは 6. 65Pa (0. 05Torr)以下に減少させることにより、 NFを 5%以 上含む Ar/NF混合ガス中においてプラズマ着火が可能であり、特に Ar/NF混 合ガス中における NFの濃度が 45%に達しても、プラズマ着火が可能な場合がある ことがわかる。
[0067] また図 10は、プラズマ着火時に前記トロイダル型プラズマ発生装置に供給される A r/NF混合ガスの流量を低減させることにより、プラズマ着火が生じる NF濃度範囲
3 3 が増大する傾向を示している。例えば前記 Ar/NF混合ガスのガス流量が 80SCC
3
Mの場合、プラズマ着火は生じるが、プラズマ着火が生じる NF濃度範囲あるいは圧
3
力範囲は限られているのに対し、前記ガス流量を 20SCCM, 5SCCM, 3SCCMと 減少させるにつれて、プラズマ着火が生じる NF濃度範囲および圧力範囲は拡大す
3
るのがわかる。なお、プラズマ着火は前記 Ar/NF混合ガスのガス流量が 100SCC
3
M以下であれば、前記混合ガスが 5%程度の NFを含んでいても、生じることが確認
3
されている。
[0068] 図 11は、図 9, 10の結果に基づいて求めた、図 4のトロイダル型プラズマ発生装置 60におけるプラズマ着火電圧と全圧との関係を示す。
[0069] 図 11を参照するに、図示の例は前記 Ar/NF混合ガス中に NF力 %含まれてい
3 3
る場合についてのものである力 プラズマ着火電圧は全圧の低下と共に低下し、図 9 の〇で示した着火点に略対応する圧力において最小になるのがわかる。これよりも圧 力が低下すると前記衝突確率が低下する結果、プラズマ着火電圧は急激に上昇す る。
[0070] 図 11の関係からは、前記混合ガスの全圧が非常に高い場合あるいは非常に低い 場合であっても、前記混合ガスに対して図 11の曲線を超える十分な電圧を与えれば プラズマを着火することが可能であることがわかる力 S、実際のプラズマ発生装置では 装置的設計上の、あるいは費用的な制約があり、実際にプラズマ着火可能な圧力範 囲は、 6. 65— 66. 5Pa (0. 05—0. 5Torr)程度の範囲に限られることになる。
[0071] このように、本実施例によれば、トロイダル型プラズマ発生装置において、 NFを 5
3
%以上含んだ ArZNF混合ガスを使った場合でもプラズマの着火が可能となる。こ
3
のため、例えば枚葉式の基板処理装置において、頻繁に、あるいは基板を:!枚処理 するごとに処理容器内部をクリーニングする場合、プラズマを着火させるのに処理容 器内部から NFクリーニングガスを長い時間かけてパージする必要がなくなり、基板
3
処理のスループットが大きく向上する。同様な利点は、 NFガスを使って被処理基板
3
を 夂ずつエッチングする枚葉式のプラズマエッチング装置の場合においても得られ る。 [第 2実施例]
図 12は、本発明の発明者が、図 4に示すトロイダル型プラズマ発生装置 60におい て前記ガス通路 61に Arと Fの混合ガスを、様々な F濃度(F / (Ar+F ) )で供給し た場合について、先の図 9と同様な手順により、プラズマ着火条件を探索した結果を 、本発明の第 2実施例として示す。
[0072] ただし図 12の実験では、前記 Ar/F混合ガスの流量を 100SCCMに設定し、周 波数力 OOkHzの高周波を、 1300Wのパワーで供給している。
[0073] 図 12を参照するに、全ガス流量を 100SCCMとした場合、プラズマの着火は前記 混合ガス中の F濃度が 5%の場合、おおよそ 6. 65Pa (0. 05Torr)以上、 66. 5Pa (
0. 5Τοη·)以下の圧力範囲において生じ、この着火可能な圧力範囲は、前記混合ガ ス中の F濃度が増大するにつれて縮小するものの、約 45%の F濃度までは着火が 可能であることがわかる。
[第 3実施例]
このように、本発明の発明者は、本発明の基礎となる研究において、図 4に示すよう なトロイダル型のプラズマ発生装置において、 Arガスに NFや Fなど、電気陰性度 の高いハロゲンを含むガスを添加した混合ガスを供給した場合であってもプラズマ着 火が可能なこと、およびプラズマ着火が可能となる条件を見出すことに成功した。
[0074] 一方、実際に CVD装置、例えば図 1の CVD装置 10においてクリーニングあるいは エッチングに使われる圧力あるいはガス流量は図 9あるいは 10で示した着火点よりも はるかに大きぐ従って、トロイダル型プラズマ発生装置 60では、図 9あるいは 10の 着火点においてプラズマが着火した後、プラズマを消すことなく実際にプロセスが行 われるプロセス点まで条件を変化させられることが要求される。例えば先に説明した 図 5あるいは図 6によれば、毎分 150あるいは 200nmのクリーニング速度を達成しよ うとすると、 ArZNF混合ガス中の NFの濃度を 50%以上に、また圧力(全圧)も 13
30Pa (lOTorr)以上に設定する必要があるのがわかる。
[0075] そこで、本発明の発明者は、本発明の基礎となる研究において、前記図 1の CVD 装置 10について、図 13に示すように図 9あるいは 10で説明したプラズマ着火点に対 応する着火ポイント (1)から実際のクリーニングあるいはェ プロセスポイント (2)まで、前記 Ar/NF混合ガスの全圧および流量を様々な経路で 変化させ、ポイント (1)からポイント (2)までプラズマが維持されるかどうかを検証した。た だしこの実験では図 1の CVD装置 10において前記バルブ 16Vcは全開されており、 前記リモートプラズマ源 16 Cとして使われる図 2のトロイダル型プラズマ発生装置 20 のガス通路 21における圧力と前記処理容器 11内部に圧力は実質的に等しくなって いる。
[0076] 図 13の実験では、着火ポイント (1)における全圧を約 l lPa (0. 08Torr)に、また前 記 Ar/NF混合ガスの全流量を 3SCCMに設定し、プロセスポイント (2)における全 圧を 1330Pa (10Torr)に、また前記 ArZNF混合ガスの全流量を 3SLMに設定し ている。
[0077] 図 13を参照するに、経路 Aでは前記着火ポイント (1)から前記約 l lPa (0. 08Torr) の圧力を維持したままガス流量を増加させ、ポイント (4)に到達する。すなわちポイント (1)からポイント (4)までは、図 1の CVD装置 10において前記処理容器 11中の圧力が 、前記 Ar/NF混合ガスの流量が増大しても一定に維持されるように、排気系のコン ダクタンスバルブ 13Bを徐々に開いており、前記ポイント (4)においては前記コンダク タンスバルブ 13Bは全開状態になっている。このように、前記ポイント (4)は前記コンダ クタンスバルブ 13Bおよびこれに協働する真空ポンプ 13の能力により決定される。
[0078] この状態で前記 Ar/NF混合ガスの流量を前記プロセスポイント (2)に対応した所 定のプロセス流量まで徐々に増大させると前記処理容器 11内部の圧力、従って前 記ガス通路 61中の全圧は増大し、ポイント (5)に到達する。この時点から前記 Ar/N F混合ガス流量を一定に保持したまま、前記コンダクタンスバルブ 13Bを徐々に閉じ ることにより、前記処理容器 11内部の圧力、従って前記ガス通路 61中の圧力は前記 プロセスポイント (2)まで徐々に増大する。
[0079] 一方図 13の経路 Bでは、前記 Ar/NF混合ガス流量を一定に保持したまま前記コ ンダクタンスバルブ 13Bを徐々に閉じることにより前記処理容器 11内部の圧力、従つ て前記ガス通路 61中の全圧は徐々に増大し、全閉状態において前記ポイント (6)に 到達する。すなわち前記ポイント (6)は前記コンダクタンスバルブ 13Bの全閉状態に おけるガスリーク量および真空ポンプ 13の能力により決定される。 [0080] 前記経路 Bでは前記ポイント (6)から、前記コンダクタンスバルブ 13Bを全閉状態に 保持したまま前記 Ar/NF混合ガスの流量を増大させることにより、前記処理容器 1
3
1内部の圧力、従って前記ガス通路 61中の全圧は徐々に増大し、前記プロセスボイ ント (2)のプロセス圧に対応したポイント (7)に到達する。さらに前記ポイント (7)から ArZ NF混合ガスの流量を前記プロセスポイント (2)まで徐々に増大させる。その際、前記
3
コンダクタンスバルブ 13Bを徐々に閉じることにより、前記処理容器 11内部の圧力、 従って前記ガス通路 61中の全圧を前記プロセス圧に維持する。
[0081] さらに図 11の経路 Cでは、前記着火ポイント (1)でプラズマを着火させた後、前記コ ンダクタンスバルブ 13Bの開度を保持したまま前記 ArZNF混合ガスの流量を所定
3
のプロセス流量に対応したポイント (3)まで増加させ、さらにその後前記コンダクタンス バルブ 13Bを徐々に絞ることにより、前記プロセスポイント (2)まで前記処理容器 11内 部の圧力、従って前記ガス通路 61中の全圧を増大させる。
[0082] このように、前記着火ポイント (1)からプロセスポイント (2)まで様々な経路でガス流量 および全圧を変化する実験を行った結果、図 13中、前記ポイント (1)一 (7)で囲まれた 領域においては、前記全圧およびガス流量を変化させても、いったん着火されたブラ ズマは消滅することがないのが確認されている。
[0083] なお、先にも説明したように、ポイント (4)およびポイント (6)、従ってポイント (4)からポ イント (5)までの経路、およびポイント (6)からポイント (7)までの経路は、使われる CVD 装置のコンダクタンスバルブ 13Bの設計および真空ポンプ 13の能力により決定され るもので、前記コンダクタンスバルブ 13Bの最大コンダクタンスを増大させ、あるいは 真空ポンプ 13の能力を増大させると前記ポイント (4)からポイント (5)への経路は大流 量側にシフトする。また前記コンダクタンスバルブ 13Bの最小コンダクタンスを減少さ せ、あるいは真空ポンプ 13の能力を低下させると前記ポイント (6)からポイント (7)への 経路は高圧側にシフトする。
[0084] また前記プロセスポイント (2)は、先に図 5 9で説明した条件のいずれかに設定す ることが可能である。
[0085] すなわち、前記プロセスポイント (2)において、図 5に示すように前記 Ar/NF混合
3 ガス中の NF濃度を 80%まで増大させることにより、熱酸化膜に対して毎分 2000η
3 mのクリーニング速度を実現することが可能である。この場合には、前記着火ポ
(1)からプロセスポイント (2)までの間に前記 Ar/NF混合ガス中における NF濃度を
3 3 変化させる必要がある。このような場合であっても、レ、つたんプラズマが着火するとプ ラズマは維持されることが確認されてレ、る。
[0086] このようにしてプロセスポイント (2)に到達した後は、通常のクリーニング工程を行うこ とが可能である。なお、図 1の CVD装置 10ではクリーニングは、前記リモートプラズマ 源 16Cとして使われるトロイダル型のプラズマ発生装置 20においてプラズマ着火が 生じた時点から開始されていることに注意すべきである。
[0087] 先にも説明したように、図 13において着火ポイント (1)からプロセスポイント (2)へ移行 する場合に、前記 Ar/NF混合ガス中の Arガスと NFガスの混合比は固定しても変
3 3
化させてもよい。その際、本発明ではプラズマ着火が生じた直後からクリーニングが 開始されているため、前記 Ar/NF混合ガス中の NF濃度を着火ポイント (1)からプ
3 3
ロセスポイント (2)へ移行する間に増加させるのみならず、必要に応じて低減させるこ とも可能である。
[0088] また、図 1の CVD装置 10において、前記トロイダル型プラズマ発生装置 20をリモー トプラズマ源 16Cとして使い、前記処理容器 11中におレヽて熱酸化膜や CVD酸化膜 など絶縁膜のプラズマエッチング、あるいは W膜や Ti膜などの金属膜のプラズマエツ チング、さらには TiN膜など導電性窒化膜のプラズマエッチングやポリシリコン膜のプ ラズマエッチングを行うことができる。
[0089] さらに本実施例においては図 1の CVD装置 10において、図 14に示すように前記 N Fガス源 16Aに能力の異なる複数の質量流量コントローラ 16a, 16bを設け、これら
3
をバルブにより切り替えて使うことも可能である。図 13では、同様に、 Arガス源 16B にも、能力の異なる複数の質量流量コントローラ 16c, 16dが設けられており、これら がバルブにより切り替えて使われる。
[0090] そこで、例えば図 13の着火ポイント (1)から最初に質量流量コントローラ 16aにより A rZNF3混合ガス流量が経路 Cに沿って増大しており、前記経路 C上のポイント (8)に おいて質量流量コントローラ 16aからより大容量の質量流量コントローラ 16bに切り替 える場合を考えると、前記質量流量コントローラの切り替えに伴って一時的に流量お よび全圧がポイント (9)まで低下する場合がある力 より大容量の質量流量コントローラ 16bを駆動することにより、経路 C上のポイント (10)に戻すことができる。その際、本実 施例によれば、前記ポイント (9)が図 11中に示したプラズマ維持領域内位置している 限り、ポイント (1)で着火したプラズマが消滅することはない。
[0091] さらに前記復帰後のポイント (10)は前記経路 C上に限定されるものではなぐ前記ポ イント (8)よりも流量が大きい範囲内で前記プラズマ維持領域内の任意の点に選ぶこ とができる。
[0092] 同様な、低圧力下で着火したプラズマを維持したままプロセス条件に対応した高圧 力までプラズマ発生装置中の圧力を増大させることは、前記 Ar/NFガスの場合の みならず、 Ar/F混合ガスを使う場合においても可能である。
[0093] この場合にも、昇圧中に前記 Ar/F混合ガス中の F濃度を一定に保持してもよぐ また変化させてもよい。
[0094] さらに前記プラズマ発生装置中に供給される希ガスは Arガスに限定されるものでは なぐ He, Ne, Kr, Xeなどのガスを使うことも可能である。
[0095] 図 15は、上記の結果に基づいた本発明の第 3実施例によるクリーニングあるいはェ ツチングプロセスで使われるガスおよび RFパワーの供給シーケンスを示す。
[0096] 図 15を参照するに、本実施例においては最初に少量の Arガスおよび NFガスを 図 4のトロイダル型プラズマ発生装置 60に供給し、 6. 65— 66. 5Paの全圧(P1)下 におレ、て RFパワーを供給し、プラズマを着火させる。
[0097] プラズマが着火した後、前記 Arガスおよび NFガスの流量は、図 13中のポイント (1) 一 (7)で囲まれた領域中を任意の経路で増大され、所定のプロセス圧 P2に達したとこ ろで所望のクリーニングあるいはエッチングプロセスを実行した後、 RFパワーを遮断 する。
[0098] なお、先にも説明したように、 NFを使ったクリーニングあるいはエッチングプロセス は、プラズマ着火直後からすでに開始されてレ、る。
[0099] なお、本実施例においても前記 NFガスの代わりに Fガスを使うことが可能である。
この場合には、前記着火工程の圧力 Pl、およびその際の Arガスおよび Fガスの流 量を、図 12で説明した着火範囲内に収まるように設定すればよい。 [第 4実施例]
先の図 11の関係、すなわちプラズマ着火電圧が低圧側において減少し、ある最小 値に対応する圧力を過ぎると急増する傾向は、トロイダル型のプラズマ発生装置に限 らず、図 2A 2Eあるいは図 3に示すプラズマ発生装置 20— 70において、希ガスの 種類およびハロゲン含有エッチングガスあるいはクリーニングガスの種類によらず普 遍的に成立する傾向であると考えられる。
[0100] そこで本実施例では、図 2A 2Eあるいは図 3に示すプラズマ発生装置 20— 70に おいて、ハロゲンィ匕合物を含むガスを使って処理容器内部をプラズマクリーニングす る際に、あるいはハロゲンィ匕合物を含むガスを使って被処理基板表面をプラズマエツ チングする際に、希ガスと前記ハロゲン化合物を含むガスの混合ガスに、図 11に示 す着火電圧が最小となる条件あるいはその近傍の条件を使ってプラズマを着火する
[0101] 本実施例ではプラズマの着火が低電圧で生じるため、プラズマ発生装置の電極や コイルに高電圧が印加されることがなぐプラズマ着火に伴って瞬間的に大きなイン ピーダンスが変化が生じても、高周波電源や電極、コイルなどが破損することがない
[0102] 一方、先にも説明したように、プラズマクリーニングあるいはプラズマエッチングでは 、 NFや Fなどクリーニング/エッチングガスの濃度あるいは分圧は高ければ高いほ ど、プロセスの効率が向上する。勿論、図 10あるいは図 12の着火領域内においても プラズマが着火すれば、プラズマ中に前記クリーニング/エッチングガスが含まれる ため、クリーニング工程やエッチング工程は開始される力 装置によっては、タリー二 ング/エッチングガスの濃度が不十分であるために十分な処理効率を達成できない 場合も考えられる。
[0103] そこで、本実施例では、先の図 15と同様なシーケンスに従って、プラズマが着火し た後、前記希ガスとクリーニング Zエッチングガスの混合ガスの全圧を、所望のプロセ ス圧まで徐々に増大させることを行う。
[0104] 例えば図 15のシーケンスでは、先にも図 13で説明したように、図 15の圧力 P1に対 応する着火ポイント (1)から実際のクリーニングプロセスが行われる図 15の圧力 P2に 対応するプロセスポイント (2)まで、図 13中、前記ポイント (1)一 (7)で囲まれた領域を通 つて全圧およびガス流量を変化さることにより、レ、つたん着火されたプラズマを消滅さ せることなぐ所望の全圧およびガス濃度を実現できる。
[0105] なお、先にも説明したように、ポイント (4)およびポイント (6)、従ってポイント (4)からポ イント (5)までの経路、およびポイント (6)からポイント (7)までの経路は、使われる CVD 装置のコンダクタンスバルブ 13Bの設計および真空ポンプ 13の能力により決定され るもので、前記コンダクタンスバルブ 13Bの最大コンダクタンスを増大させ、あるいは 真空ポンプ 13の能力を増大させると前記ポイント (4)からポイント (5)への経路は大流 量側にシフトする。また前記コンダクタンスバルブ 13Bの最小コンダクタンスを減少さ せ、あるいは真空ポンプ 13の能力を低下させると前記ポイント (6)からポイント (7)への 経路は高圧側にシフトする。
[0106] また前記プロセスポイント (2)は、効率よくプラズマクリーニングが実行できる既知の 条件のレ、ずれかに設定することが可能である。
[0107] すなわち、前記プロセスポイント (2)において、例えば前記 Ar/NF混合ガス中の N
F濃度を 80%まで増大させることにより、熱酸化膜に対して毎分 2000nmのタリー二 ング速度を実現することが可能である。この場合には、前記着火ポイント (1)からプロ セスポイント (2)までの間に前記 Ar/NF混合ガス中における NF濃度を変化させる 必要がある。このような場合であっても、いったんプラズマが着火するとプラズマは維 持されることが確認されてレ、る。
[0108] このようにしてプロセスポイント (2)に到達した後は、通常のクリーニング工程を行うこ とが可能である。なお、図 1の CVD装置 10ではクリーニングは、前記リモートプラズマ 源 16Cとして使われるトロイダル型のプラズマ発生装置 20においてプラズマ着火が 生じた時点から開始されていることに注意すべきである。
[0109] 図 13において着火ポイント (1)からプロセスポイント (2)へ移行する場合に、前記 Ar /NF混合ガス中の Arガスと NFガスの混合比は固定しても変化させてもよレ、。その 際、本発明ではプラズマ着火が生じた直後からクリーニングが開始されているため、 前記 Ar/NF混合ガス中の NF濃度を着火ポイント (1)からプロセスポイント (2)へ移 行する間に増加させるのみならず、必要に応じて低減させることも可能である。 [0110] また、図 1の CVD装置 10において、前記図 2A— 2Eのいずれかのプラズマ発生装 置をリモートプラズマ源 16Cとして使レ、、前記処理容器 11中において熱酸化膜や C VD酸化膜など絶縁膜のプラズマエッチング、あるいは W膜や Ti膜などの金属膜の プラズマエッチング、さらには TiN膜など導電性窒化膜のプラズマエッチングやポリシ リコン膜のプラズマエッチングを行うことができる。
[0111] さらに本実施例においても先の実施例と同様に、図 1の CVD装置 10において、図
14に示すように前記 NFガス源 16Aに能力の異なる複数の質量流量コントローラ 16 a, 16bを設け、これらをバルブにより切り替えて使うことも可能である。図 10では、同 様に、 Arガス源 16Bにも、能力の異なる複数の質量流量コントローラ 16c, 16dが設 けられており、これらがバルブにより切り替えて使われる。
[0112] そこで、例えば図 13の着火ポイント (1)から最初に質量流量コントローラ 16aにより A r/NF混合ガス流量が経路 Cに沿って増大しており、前記経路 C上のポイント (8)に おいて質量流量コントローラ 16aからより大容量の質量流量コントローラ 16bに切り替 える場合を考えると、前記質量流量コントローラの切り替えに伴って一時的に流量お よび全圧がポイント (9)まで低下する場合がある力 より大容量の質量流量コントローラ 16bを駆動することにより、経路 C上のポイント (10)に戻ることができる。その際、本実 施例によれば、前記ポイント (9)が図 9中に示したプラズマ維持領域内位置している限 り、ポイント (1)で着火したプラズマが消滅することはない。
[0113] さらに前記復帰後のポイント (10)は前記経路 C上に限定されるものではなぐ前記ポ イント (8)よりも流量が大きい範囲内で前記プラズマ維持領域内の任意の点に選ぶこ とができる。
[0114] 以上本発明を、主にトロイダル型プラズマ発生装置に Ar/NF混合ガスあるいは A r/F混合ガスを供給してプラズマを形成する場合を例に説明したが、本発明におい てプラズマ発生装置はトロイダル型プラズマ発生装置に限定されるものではなぐ本 発明は、前記第 4実施例において説明した通り、図 2A 2Eあるいは図 3に示した他 のプラズマ発生装置においても適用可能である。
[0115] また本発明において、プラズマ形成のために供給される希釈ガスは Arに限定され るものではなぐ本発明は He, Ne, Kr, Xeなどの希ガス、あるいは H〇,〇, H , N , C Fなどを使った場合でも成立する。さらに本発明で使われるクリーニング/エツ チングガスは NFあるいは Fに限定されるものではなぐ他のハロゲン化合物ガス、さ らには CH COOHなど、 CH COO基を含む化合物を使うことも可能である。
以上、本発明を好ましい実施例について説明したが、本発明はかかる特定の実施 例に限定されるものではなく、特許請求の範囲に記載の要旨内におレ、て様々な変形 •変更が可能である。

Claims

請求の範囲
[I] ガス入口とガス出口とを備え、周回路を形成するガス通路と、
前記ガス通路の一部に卷回されたコイルとを有するトロイダル型プラズマ発生装置 におけるプラズマ発生方法であって、
前記ガス通路中に、少なくとも 5%の NFを含む Arガスと NFガスの混合ガスを供 給し、前記コイルを高周波電力により駆動してプラズマを着火する工程を含み、 前記プラズマ着火工程は、 6. 65— 66. 5Paの全圧下において実行されることを特 徴とするプラズマ発生方法。
[2] 前記プラズマ着火工程において前記混合ガスは、 NFを、 5%以上、 45%以下の 濃度で含むことを特徴とする請求項 1記載のプラズマ発生方法。
[3] 前記プラズマ着火工程において前記混合ガスは、 NFを、 10%以上、 45%以下の 濃度で含むことを特徴とする請求項 1記載のプラズマ発生方法。
[4] 前記プラズマ着火工程において前記混合ガスは、 NFを、 20%以上、 45%以下の 濃度で含むことを特徴とする請求項 1記載のプラズマ発生方法。
[5] 前記着火工程の後、前記混合ガスの全圧を増大させる工程を含むことを特徴とす る請求項 1記載のプラズマ発生方法。
[6] 前記混合ガスの全圧を増大させる工程は、前記前記混合ガス中の NF濃度を一定 に保持しながら実行されることを特徴とする請求項 5記載のプラズマ発生方法。
[7] 前記混合ガスの全圧を増大させる工程は、前記混合ガス中の NF濃度を変化させ ながら実行されることを特徴とする請求項 5記載のプラズマ発生方法。
[8] 前記混合ガスの全圧を増大させる工程の後、前記混合ガスは NFを 50 40%の 濃度で含むことを特徴とする請求項 5記載のプラズマ発生方法。
[9] 前記プラズマ着火工程において前記混合ガスは、 100SCCM以下の流量で供給 されることを特徴とする請求項 1記載のプラズマ発生方法。
[10] 前記プラズマ着火工程において前記混合ガスは、 3SCCM以上、 80SCCM以下 の流量で供給されることを特徴とする請求項 1記載のプラズマ発生方法。
[II] ガス入口とガス出口とを備え、周回路を形成するガス通路と、
前記ガス通路の一部に卷回されたコイルとを有するトロイダル型プラズマ発生装置 におけるプラズマ発生方法であって、
前記ガス通路中に、少なくとも 5%の Fを含む Arガスと Fガスの混合ガスを供給し、
2 2
前記コイルを高周波電力により駆動してプラズマを着火する工程を含み、
前記プラズマ着火工程は、 6. 65— 66. 5Paの全圧下において実行されることを特 徴とするプラズマ発生方法。
[12] 前記プラズマ着火工程において前記混合ガスは、 Fを 5%以上、 45%以下の濃度
2
で含むことを特徴とする請求項 11記載のプラズマ発生方法。
[13] 前記着火工程の後、前記混合ガスの全圧を増大させる工程を含むことを特徴とす る請求項 11記載のプラズマ発生方法。
[14] 前記混合ガスの全圧を増大させる工程は、前記前記混合ガス中の F濃度を一定に
2
保持しながら実行されることを特徴とする請求項 13記載のプラズマ発生方法。
[15] 前記混合ガスの全圧を増大させる工程は、前記混合ガス中の F濃度を変化させな
2
がら実行されることを特徴とする請求項 13記載のプラズマ発生方法。
[16] 前記プラズマ着火工程において前記混合ガスは、 100SCCM以下の流量で供給 されることを特徴とする請求項 11記載のプラズマ発生方法。
[17] 排気系により排気され、リモートプラズマ源を結合された処理容器のクリーニング方 法であって、
前記リモートプラズマ源は、ガス入口とガス出口とを備え、周回路を形成するガス通 路と、前記ガス通路の一部に卷回されたコイルとを有するトロイダル型プラズマ発生 装置よりなり、
前記クリーニング方法は、前記リモートプラズマ源において、 Fを含むラジカルを形 成する工程と、
前記ラジカルを前記処理容器内部に供給し、前記ラジカルにより前記処理容器内 部をクリーニングする工程とを含み、
前記ラジカルを形成する工程は、
前記ガス通路中に、 Arガス中に少なくとも 5。/0の濃度で NFまたは Fをクリーニング
3 2
ガスとして含む混合ガスを、プラズマが着火する第 1の圧力において供給し、前記コ ィルを高周波電力により駆動してプラズマを着火する工程と、 前記ガス通路中における前記混合ガスの全圧を、前記プラズマを維持しつつ、第 2 の圧力まで増大させる工程とを含み、
前記クリーニング工程は、前記第 2の圧力において前記処理容器内部をタリーニン グすることを特徴とするクリーニング方法。
[18] 前記混合ガスの全圧を増大させる工程は、前記排気系のコンダクタンスを変化させ る工程と、前記混合ガスの流量を変化させる工程とを含むことを特徴とする請求項 17 記載のクリーニング方法。
[19] 前記混合ガスの全圧を変化させる工程は、前記排気系のコンダクタンスと前記混合 ガスの流量を同時に変化させながら実行されることを特徴とする請求項 17記載のタリ 一ユング方法。
[20] 前記混合ガスの全圧を変化させる工程は、前記混合ガスの流量を一定に保持しな がら、前記排気系のコンダクタンスを減少させる工程と、前記全圧を一定の保持しな がら前記混合ガスの流量を増大させる工程とを含むことを特徴とする請求項 17記載 のクリーニング方法。
[21] さらに前記排気系のコンダクタンスを最大に保持しながら、前記混合ガスの流量を 増大させる工程を含むことを特徴とする請求項 20記載のクリーニング方法。
[22] 前記混合ガスの全圧を変化させる工程は、複数の質量流量コントローラを切り替え る工程を含むことを特徴とする請求項 17記載のクリーニング方法。
[23] 前記混合ガスの全圧を増大させる工程は、前記前記混合ガス中の前記タリーニン グガス濃度を一定に保持しながら実行されることを特徴とする請求項 17記載のタリー ユング方法。
[24] 前記混合ガスの全圧を増大させる工程は、前記混合ガス中の前記クリーニングガス 濃度を変化させながら実行されることを特徴とする請求項 17記載のクリーニング方法
[25] 前記クリーニング工程は、前記混合ガス中における NFの濃度を 50— 40%に設定 して実行されることを特徴とする請求項 17記載のクリーニング方法。
[26] 前記プラズマ着火工程において前記混合ガスは 100SCCM以下の流量で供給さ れることを特徴とする請求項 17記載のクリーニング方法。
[27] 前記混合ガスは前記クリーニングガスとして NFを含み、前記第 1の圧力は、 6. 65
3
一 66· 5Paに設定されることを特徴とする請求項 17— 26クリーニング方法。
[28] 前記プラズマ着火工程にぉレ、て前記混合ガスは、 NFを前記クリーニングガスとし
3
て、 5%以上、 45%以下の濃度で含むことを特徴とする請求項 27記載のタリーニン グ方法。
[29] 前記プラズマ着火工程にぉレ、て前記混合ガスは、 NFを前記クリーニングガスとし
3
て、 10%以上、 45%以下の濃度で含むことを特徴とする請求項 27記載のタリーニン グ方法。
[30] 前記プラズマ着火工程にぉレ、て前記混合ガスは、 NFを前記クリーニングガスとし
3
て、 20%以上、 45%以下の濃度で含むことを特徴とする請求項 27記載のタリーニン グ方法。
[31] 前記混合ガスは Fを前記クリーニングガスとして含み、前記第 1の圧力は、 6. 65
2
66. 5Paに設定されることを特徴とする請求項 17記載のクリーニング方法。
[32] 前記プラズマ着火工程にぉレ、て前記混合ガスは、 Fを前記クリーニングガスとして
2
、 5%以上、 45%以下の濃度で含むことを特徴とする請求項 31記載のクリーニング 方法。
[33] 排気系により排気され、リモートプラズマ源を結合された処理容器中における基板 処理方法であって、
前記リモートプラズマ源は、ガス入口とガス出口とを備え、周回路を形成するガス通 路と、前記ガス通路の一部に卷回されたコイルとを有するトロイダル型プラズマ発生 装置よりなり、
前記基板処理方法は、前記リモートプラズマ源において、 Fを含むラジカルを形成 する工程と、
前記ラジカルを前記処理容器内部に供給し、前記ラジカルにより前記処理容器内 において被処理基板表面をエッチングする工程とを含み、
前記ラジカルを形成する工程は、
前記ガス通路中に、 Arガス中に少なくとも 5。/0の濃度で NFまたは Fをエッチング
3 2
ガスとして含む混合ガスを、プラズマが着火する第 1の圧力において供給し、前記コ ィルを高周波電力により駆動してプラズマを着火する工程と、
前記ガス通路中における前記混合ガスの全圧を、前記プラズマを維持しつつ、第 2 の圧力まで増大させる工程とを含み、
前記エッチング工程は、前記第 2の圧力におレ、て実行されることを特徴とする基板 処理方法。
[34] 前記混合ガスの全圧を増大させる工程は、前記排気系のコンダクタンスを変化させ る工程と、前記混合ガスの流量を変化させる工程とを含むことを特徴とする請求項 33 記載の基板処理方法。
[35] 前記混合ガスの全圧を変化させる工程は、前記排気系のコンダクタンスと前記混合 ガスの流量を同時に変化させながら実行されることを特徴とする請求項 33記載の基 板処理方法。
[36] 前記混合ガスの全圧を変化させる工程は、前記混合ガスの流量を一定に保持しな がら、前記排気系のコンダクタンスを減少させる工程と、前記全圧を一定の保持しな 力 Sら前記混合ガスの流量を増大させる工程とを含むことを特徴とする請求項 33記載 の基板処理方法。
[37] さらに前記排気系のコンダクタンスを最大に保持しながら、前記混合ガスの流量を 増大させる工程を含むことを特徴とする請求項 36記載の基板処理方法。
[38] 前記混合ガスの全圧を変化させる工程は、複数の質量流量コントローラを切り替え る工程を含むことを特徴とする請求項 33記載の基板処理方法。
[39] 前記混合ガスの全圧を増大させる工程は、前記前記混合ガス中の前記エッチング ガス濃度を一定に保持しながら実行されることを特徴とする請求項 33記載の基板処 理方法。
[40] 前記混合ガスの全圧を増大させる工程は、前記混合ガス中の前記エッチングガス 濃度を変化させながら実行されることを特徴とする請求項 33記載の基板処理方法。
[41] 前記エッチング工程は、前記混合ガス中における NFの濃度を 50— 40%に設定し て実行されることを特徴とする請求項 33記載の基板処理方法。
[42] 前記プラズマ着火工程にぉレ、て前記混合ガスは 100SCCM以下の流量で供給さ れることを特徴とする請求項 33記載の基板処理方法。
[43] 前記混合ガスは前記エッチングガスとして NFを含み、前記第 1の圧力は、 6. 65—
3
66. 5Paに設定されることを特徴とする請求項 33記載の基板処理方法。
[44] 前記プラズマ着火工程にぉレ、て前記混合ガスは、 NFを前記エッチングガスとして
3
、 5。/。以上、 45%以下の濃度で含むことを特徴とする請求項 43記載の基板処理方 法。
[45] 前記プラズマ着火工程にぉレ、て前記混合ガスは、 NFを前記エッチングガスとして
3
、 10%以上、 45%以下の濃度で含むことを特徴とする請求項 43記載の基板処理方 法。
[46] 前記プラズマ着火工程にぉレ、て前記混合ガスは、 NFを前記エッチングガスとして
3
、 20%以上、 45%以下の濃度で含むことを特徴とする請求項 43記載の基板処理方 法。
[47] 前記混合ガスは Fを前記エッチングガスとして含み、前記第 1の圧力は、 6. 65— 6
2
6. 5Paに設定されることを特徴とする請求項 33記載の基板処理方法。
[48] 前記プラズマ着火工程にぉレ、て前記混合ガスは、 Fを前記エッチングガスとして、
2
5%以上、 45%以下の濃度で含むことを特徴とする請求項 47記載の基板処理方法
[49] 処理容器内部を、プラズマ励起されたクリーニングガスのラジカルにより、第 1の圧 力帯でクリーニングするクリーニング方法であって、
プラズマ発生装置に希釈ガスとクリーニングガスの混合ガスを、前記第 1の圧力帯よ りも低い第 2の圧力帯で導入し、プラズマを着火する工程と、
前記処理容器内部の圧力を、前記第 2の圧力帯から前記第 1の圧力帯まで増大さ せる工程を含むことを特徴とするクリーニング方法。
[50] 前記クリーニングガスはハロゲン化合物を含むことを特徴とする請求項 49記載のク リーユング方法。
[51] 前記クリーニングガスは NFを含むことを特徴とする請求項 49記載のクリーニング
3
方法。
[52] 前記クリーニングガスは Fを含むことを特徴とする請求項 49記載のクリーニング方
2
法。
[53] 前記希釈ガスは、 Ar, Kr, Xeのいずれかより選ばれることを特徴とする請求項 49 記載のクリーニング方法。
[54] 前記プラズマ発生装置は、トロイダル型プラズマ発生装置であることを特徴とする請 求項 49記載のクリーニング方法。
[55] 前記プラズマ発生装置は、平行平板型プラズマ発生装置、誘導結合型プラズマ発 生装置、 ECR型プラズマ発生装置、へリコン波型プラズマ発生装置、マイクロ波共振 器型プラズマ発生装置のいずれかであることを特徴とする請求項 49記載のタリー二 ング方法。
[56] 処理容器中において被処理基板表面を、プラズマ励起されたエッチングのラジカ ルにより、第 1の圧力帯でエッチングする基板処理方法であって、
プラズマ発生装置に希釈ガスとエッチングガスの混合ガスを、前記第 1の圧力帯より も低い第 2の圧力帯で導入し、プラズマを着火する工程と、
前記処理容器内部の圧力を、前記第 2の圧力帯から前記第 1の圧力帯まで増大さ せる工程を含むことを特徴とする基板処理方法。
[57] 前記エッチングガスはハロゲン化合物を含むことを特徴とする請求項 56記載の基 板処理方法。
[58] 前記エッチングガスは NFを含むことを特徴とする請求項 56記載の基板処理方法
[59] 前記エッチングガスは Fを含むことを特徴とする請求項 56記載の基板処理方法。
[60] 前記希釈ガスは、 Ar, Kr, Xeのいずれかより選ばれることを特徴とする請求項 56 記載の基板処理方法。
[61] 前記プラズマ発生装置は、トロイダル型プラズマ発生装置であることを特徴とする請 求項 56記載の基板処理方法。
[62] 前記プラズマ発生装置は、平行平板型プラズマ発生装置、誘導結合型プラズマ発 生装置、 ECR型プラズマ発生装置、へリコン波型プラズマ発生装置、マイクロ波共振 器型プラズマ発生装置のいずれかであることを特徴とする請求項 56記載の基板処 理方法。
[63] 処理容器内部を、プラズマ励起されたクリーニングガスのラジカルにより、第 1の流 量帯でクリーニングするクリーニング方法であって、
プラズマ発生装置に希釈ガスとクリーニングガスの混合ガスを、前記第 1の流量帯よ りも低レ、第 2の流量帯で導入し、プラズマを着火する工程と、
前記混合ガスの流量を、前記第 2の流量帯から前記第 1の流量帯まで増大させる 工程を含むことを特徴とするクリーニング方法。
[64] 前記クリーニングガスはハロゲン化合物を含むことを特徴とする請求項 63記載のク リーユング方法。
[65] 前記クリーニングガスは NFを含むことを特徴とする請求項 63記載のクリーニング
3
方法。
[66] 前記クリーニングガスは Fを含むことを特徴とする請求項 63記載のクリーニング方
2
法。
[67] 前記希釈ガスは、 Ar, Kr, Xeのいずれかより選ばれることを特徴とする請求項 63 記載のクリーニング方法。
[68] 前記プラズマ発生装置は、トロイダル型プラズマ発生装置であることを特徴とする請 求項 63記載のクリーニング方法。
[69] 前記プラズマ発生装置は、平行平板型プラズマ発生装置、誘導結合型プラズマ発 生装置、 ECR型プラズマ発生装置、へリコン波型プラズマ発生装置、マイクロ波共振 器型プラズマ発生装置のいずれかであることを特徴とする請求項 63記載のタリー二 ング方法。
[70] 処理容器中において被処理基板表面を、プラズマ励起されたエッチングのラジカ ルにより、第 1の流量帯でエッチングする基板処理方法であって、
プラズマ発生装置に希釈ガスとエッチングガスの混合ガスを、前記第 1の流量帯より も低レ、第 2の流量帯で導入し、プラズマを着火する工程と、
前記混合ガスの流量を、前記第 2の流量帯から前記第 1の流量帯まで増大させる 工程を含むことを特徴とする基板処理方法。
[71] 前記エッチングガスはハロゲン化合物を含むことを特徴とする請求項 70記載の基 板処理方法。
[72] 前記エッチングガスは NFを含むことを特徴とする請求項 70記載の基板処理方法
3
[73] 前記エッチングガスは Fを含むことを特徴とする請求項 70記載の基板処理方法。
2
[74] 前記希釈ガスは、 Ar, Kr, Xeのいずれかより選ばれることを特徴とする請求項 70 記載の基板処理方法。
[75] 前記プラズマ発生装置は、トロイダル型プラズマ発生装置であることを特徴とする請 求項 70記載の基板処理方法。
[76] 前記プラズマ発生装置は、平行平板型プラズマ発生装置、誘導結合型プラズマ発 生装置、 ECR型プラズマ発生装置、へリコン波型プラズマ発生装置、マイクロ波共振 器型プラズマ発生装置のいずれかであることを特徴とする請求項 70記載の基板処 理方法。
PCT/JP2004/009026 2003-06-27 2004-06-25 プラズマ発生方法、クリーニング方法および基板処理方法 WO2005001920A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/562,400 US20060226119A1 (en) 2003-06-27 2004-06-25 Method for generating plasma method for cleaning and method for treating substrate
US12/752,813 US8574448B2 (en) 2003-06-27 2010-04-01 Plasma generation method, cleaning method, and substrate processing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-185160 2003-06-27
JP2003-185161 2003-06-27
JP2003185160A JP4558284B2 (ja) 2003-06-27 2003-06-27 プラズマ発生方法、クリーニング方法、基板処理方法、およびプラズマ発生装置
JP2003185161A JP4558285B2 (ja) 2003-06-27 2003-06-27 プラズマクリーニング方法および基板処理方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/562,400 A-371-Of-International US20060226119A1 (en) 2003-06-27 2004-06-25 Method for generating plasma method for cleaning and method for treating substrate
US12/752,813 Continuation US8574448B2 (en) 2003-06-27 2010-04-01 Plasma generation method, cleaning method, and substrate processing method

Publications (1)

Publication Number Publication Date
WO2005001920A1 true WO2005001920A1 (ja) 2005-01-06

Family

ID=33554471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009026 WO2005001920A1 (ja) 2003-06-27 2004-06-25 プラズマ発生方法、クリーニング方法および基板処理方法

Country Status (3)

Country Link
US (2) US20060226119A1 (ja)
KR (2) KR100853388B1 (ja)
WO (1) WO2005001920A1 (ja)

Families Citing this family (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7488689B2 (en) * 2004-12-07 2009-02-10 Tokyo Electron Limited Plasma etching method
US20070117396A1 (en) * 2005-11-22 2007-05-24 Dingjun Wu Selective etching of titanium nitride with xenon difluoride
US8278222B2 (en) * 2005-11-22 2012-10-02 Air Products And Chemicals, Inc. Selective etching and formation of xenon difluoride
US20090242386A1 (en) * 2008-03-27 2009-10-01 Renato Amaral Minamisawa System and Method of Fabricating Pores in Polymer Membranes
US20110106798A1 (en) * 2009-11-02 2011-05-05 Microsoft Corporation Search Result Enhancement Through Image Duplicate Detection
US9710491B2 (en) * 2009-11-02 2017-07-18 Microsoft Technology Licensing, Llc Content-based image search
US8433140B2 (en) * 2009-11-02 2013-04-30 Microsoft Corporation Image metadata propagation
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
WO2012112187A1 (en) * 2011-02-15 2012-08-23 Applied Materials, Inc. Method and apparatus for multizone plasma generation
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
JP5525504B2 (ja) * 2011-11-08 2014-06-18 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
US10115565B2 (en) * 2012-03-02 2018-10-30 Panasonic Intellectual Property Management Co., Ltd. Plasma processing apparatus and plasma processing method
US9267739B2 (en) 2012-07-18 2016-02-23 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US20140099794A1 (en) * 2012-09-21 2014-04-10 Applied Materials, Inc. Radical chemistry modulation and control using multiple flow pathways
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US20150167160A1 (en) * 2013-12-16 2015-06-18 Applied Materials, Inc. Enabling radical-based deposition of dielectric films
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
JP6499835B2 (ja) * 2014-07-24 2019-04-10 株式会社日立ハイテクノロジーズ プラズマ処理装置およびプラズマ処理方法
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10224210B2 (en) * 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US9761488B2 (en) * 2015-07-17 2017-09-12 Taiwan Semiconductor Manufacturing Company, Ltd. Method for cleaning via of interconnect structure of semiconductor device structure
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
TWI716818B (zh) 2018-02-28 2021-01-21 美商應用材料股份有限公司 形成氣隙的系統及方法
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845736A (ja) * 1981-09-01 1983-03-17 ラム・リサーチ・コーポレイション プラズマエツチング装置
JPH03170678A (ja) * 1989-11-29 1991-07-24 Fujitsu Ltd 反応容器のクリーニング方法
JPH07153739A (ja) * 1993-07-08 1995-06-16 Air Prod And Chem Inc 半導体材料のプラズマ除去法
JPH07283140A (ja) * 1994-04-05 1995-10-27 Nippon Telegr & Teleph Corp <Ntt> 活性原子の供給制御方法
JPH08288223A (ja) * 1995-04-13 1996-11-01 Toshiba Corp 薄膜の製造方法
JPH09251935A (ja) * 1996-03-18 1997-09-22 Applied Materials Inc プラズマ点火装置、プラズマを用いる半導体製造装置及び半導体装置のプラズマ点火方法
JP2001085418A (ja) * 1999-07-02 2001-03-30 Applied Materials Inc 処理チャンバのための遠隔式プラズマクリーニング方法
JP2002075973A (ja) * 2000-06-13 2002-03-15 Applied Materials Inc 半導体処理中のガスの利用効率を向上させるための方法及び装置
JP2002343600A (ja) * 2001-05-21 2002-11-29 Tokyo Ohka Kogyo Co Ltd 誘導結合プラズマ着火方法
JP2003151971A (ja) * 2001-11-14 2003-05-23 Mitsubishi Heavy Ind Ltd チャンバークリーニング方法、成膜装置、及び半導体装置の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4662977A (en) * 1986-05-05 1987-05-05 University Patents, Inc. Neutral particle surface alteration
US5288971A (en) * 1991-08-09 1994-02-22 Advanced Energy Industries, Inc. System for igniting a plasma for thin film processing
US5413870A (en) * 1994-01-03 1995-05-09 Flood; Christopher J. Decorative bathroom panel including embedded fabric
US5460689A (en) * 1994-02-28 1995-10-24 Applied Materials, Inc. High pressure plasma treatment method and apparatus
DE19513250C2 (de) * 1995-04-07 1999-06-10 Dornier Gmbh Verfahren und Vorrichtung zur kontinuierlichen Entfernung von Stickoxiden in Abgasen von Verbrennungsmaschinen
US6286451B1 (en) * 1997-05-29 2001-09-11 Applied Materials, Inc. Dome: shape and temperature controlled surfaces
JPH11319545A (ja) * 1997-12-15 1999-11-24 Canon Inc プラズマ処理方法及び基体の処理方法
US6374831B1 (en) * 1999-02-04 2002-04-23 Applied Materials, Inc. Accelerated plasma clean
JP2001020076A (ja) 1999-07-06 2001-01-23 Hitachi Kokusai Electric Inc 反応室のクリーニング方法及び装置
JP2001020078A (ja) 1999-07-08 2001-01-23 Kawasaki Steel Corp 耐穴あき性に優れた亜鉛めっき鋼板及びその製造方法
US6835278B2 (en) * 2000-07-07 2004-12-28 Mattson Technology Inc. Systems and methods for remote plasma clean
JP4432235B2 (ja) * 2000-08-30 2010-03-17 パナソニック株式会社 チャネル選択フィルタおよび受信機
KR20030002465A (ko) * 2001-06-29 2003-01-09 삼성전자 주식회사 챔버 플라즈마 클리닝 방법
WO2003018867A1 (en) * 2001-08-29 2003-03-06 Applied Materials, Inc. Semiconductor processing using an efficiently coupled gas source
US6855906B2 (en) * 2001-10-16 2005-02-15 Adam Alexander Brailove Induction plasma reactor
KR20030042494A (ko) * 2001-11-22 2003-06-02 삼성전자주식회사 반도체 공정챔버 세정방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845736A (ja) * 1981-09-01 1983-03-17 ラム・リサーチ・コーポレイション プラズマエツチング装置
JPH03170678A (ja) * 1989-11-29 1991-07-24 Fujitsu Ltd 反応容器のクリーニング方法
JPH07153739A (ja) * 1993-07-08 1995-06-16 Air Prod And Chem Inc 半導体材料のプラズマ除去法
JPH07283140A (ja) * 1994-04-05 1995-10-27 Nippon Telegr & Teleph Corp <Ntt> 活性原子の供給制御方法
JPH08288223A (ja) * 1995-04-13 1996-11-01 Toshiba Corp 薄膜の製造方法
JPH09251935A (ja) * 1996-03-18 1997-09-22 Applied Materials Inc プラズマ点火装置、プラズマを用いる半導体製造装置及び半導体装置のプラズマ点火方法
JP2001085418A (ja) * 1999-07-02 2001-03-30 Applied Materials Inc 処理チャンバのための遠隔式プラズマクリーニング方法
JP2002075973A (ja) * 2000-06-13 2002-03-15 Applied Materials Inc 半導体処理中のガスの利用効率を向上させるための方法及び装置
JP2002343600A (ja) * 2001-05-21 2002-11-29 Tokyo Ohka Kogyo Co Ltd 誘導結合プラズマ着火方法
JP2003151971A (ja) * 2001-11-14 2003-05-23 Mitsubishi Heavy Ind Ltd チャンバークリーニング方法、成膜装置、及び半導体装置の製造方法

Also Published As

Publication number Publication date
KR20070037658A (ko) 2007-04-05
KR100797498B1 (ko) 2008-01-24
US20100252068A1 (en) 2010-10-07
KR20060064569A (ko) 2006-06-13
US8574448B2 (en) 2013-11-05
US20060226119A1 (en) 2006-10-12
KR100853388B1 (ko) 2008-08-21

Similar Documents

Publication Publication Date Title
WO2005001920A1 (ja) プラズマ発生方法、クリーニング方法および基板処理方法
US10566209B2 (en) Etching method and workpiece processing method
US9659791B2 (en) Metal removal with reduced surface roughness
KR102669793B1 (ko) 원자층 식각을 포함하는 연속 공정
US10424485B2 (en) Enhanced etching processes using remote plasma sources
JP4889138B2 (ja) 処理チャンバのための遠隔式プラズマクリーニング方法
US9190290B2 (en) Halogen-free gas-phase silicon etch
US8895449B1 (en) Delicate dry clean
TWI665726B (zh) 電漿蝕刻方法及電漿蝕刻裝置
US20140342569A1 (en) Near surface etch selectivity enhancement
JP2014057057A (ja) 増強プラズマ処理システム内でのプラズマ強化エッチング
KR20080050402A (ko) Nf₃를 사용한 표면 적층물 제거 방법
TW201717276A (zh) 蝕刻方法
WO2004107430A1 (ja) プラズマ処理装置およびプラズマ処理方法
US10854470B2 (en) Plasma etching method
US20160358784A1 (en) Plasma-enhanced etching in an augmented plasma processing system
TWI405260B (zh) A plasma etching treatment method and a plasma etching processing apparatus
JP4558285B2 (ja) プラズマクリーニング方法および基板処理方法
WO2003056617A1 (fr) Procede de gravure et dispositif de gravure au plasma
CN115943481A (zh) 基板处理方法以及基板处理装置
JP4558284B2 (ja) プラズマ発生方法、クリーニング方法、基板処理方法、およびプラズマ発生装置
JP2013541187A (ja) 分子状フッ素を用いる化学気相成長チャンバのクリーニング
JP4958658B2 (ja) プラズマ処理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057024535

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048181730

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006226119

Country of ref document: US

Ref document number: 10562400

Country of ref document: US

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10562400

Country of ref document: US