WO2005001543A1 - Projection optical system, exposure system, and device production method - Google Patents

Projection optical system, exposure system, and device production method Download PDF

Info

Publication number
WO2005001543A1
WO2005001543A1 PCT/JP2004/008732 JP2004008732W WO2005001543A1 WO 2005001543 A1 WO2005001543 A1 WO 2005001543A1 JP 2004008732 W JP2004008732 W JP 2004008732W WO 2005001543 A1 WO2005001543 A1 WO 2005001543A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
projection optical
optical system
optical
refractive power
Prior art date
Application number
PCT/JP2004/008732
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Omura
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Publication of WO2005001543A1 publication Critical patent/WO2005001543A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/24Optical objectives specially designed for the purposes specified below for reproducing or copying at short object distances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the present invention relates to a projection optical system, an exposure apparatus, and a device manufacturing method, and more particularly to a projection apparatus suitable for an exposure apparatus used when manufacturing a micro device such as a semiconductor element or a liquid crystal display element by a photolithographic process. It relates to an optical system.
  • an exposure apparatus that transfers a pattern image of a reticle as a mask onto a photosensitive substrate such as a resist-coated wafer or a glass plate via a projection optical system is used.
  • a photosensitive substrate such as a resist-coated wafer or a glass plate
  • a projection optical system As the pattern of a semiconductor integrated circuit or the like becomes finer, it is desired to improve the resolving power of a projection optical system. In order to improve the resolution of the projection optical system, it is necessary to shorten the wavelength of the exposure light and increase the number of apertures on the image side.
  • the present invention has been made in view of the above-described problems, and has a small size in which various aberrations are satisfactorily corrected while securing a sufficiently large image-side numerical aperture and a sufficiently large effective imaging area. High answer It is an object to provide an image projection optical system.
  • the present invention uses a high-resolution projection optical system having a sufficiently wide effective imaging area.
  • Another object of the present invention is to provide a device manufacturing method capable of manufacturing a good microdevice using an exposure apparatus that performs good projection exposure with high throughput and high resolution.
  • a projection optical system that forms a reduced image of a first surface on a second surface includes:
  • a first relay system including at least one aspheric optical surface
  • a second lens group including at least two negative lenses and having a negative refractive power; a second relay system including at least one aspheric optical surface;
  • a third lens group including at least two positive lenses and having a positive refractive power; a third relay system including at least one aspheric optical surface;
  • a fourth lens group including at least two negative lenses and having a negative refractive power
  • a fourth relay system including at least one aspheric optical surface
  • a fifth lens group including at least two positive lenses and having a positive refractive power; a fifth relay system including at least one aspheric optical surface;
  • a sixth lens group having a positive refractive power or a negative refractive power.
  • a first lens group disposed in an optical path between the first surface and the second surface and having a positive refractive power
  • At least one aspherical lens disposed in an optical path between the first lens group and the second surface;
  • a first relay system including a surface-shaped optical surface,
  • a second lens group disposed in an optical path between the first relay system and the second surface and including at least two negative lenses and having a negative refractive power;
  • a second relay system disposed in an optical path between the second lens group and the second surface, the second relay system including at least one aspherical optical surface;
  • a third lens group disposed in an optical path between the second relay system and the second surface and including at least two positive lenses and having a positive refractive power;
  • a third relay system disposed in an optical path between the third lens group and the second surface, the third relay system including at least one aspherical optical surface;
  • a fourth lens group disposed in an optical path between the third relay system and the second surface and including at least two negative lenses and having a negative refractive power;
  • a fourth relay system disposed in an optical path between the fourth lens group and the second surface, the fourth relay system including at least one aspherical optical surface;
  • a fifth lens group disposed in an optical path between the fourth relay system and the second surface, including at least two positive lenses, and having a positive refractive power;
  • a fifth relay system disposed in an optical path between the fifth lens group and the second surface, the fifth relay system including at least one aspheric optical surface;
  • a projection optical system comprising: a sixth lens group disposed in an optical path between the fifth relay system and the second surface and having a positive refractive power or a negative refractive power.
  • the numerical aperture on the image side is A
  • the maximum image height is Ym
  • the maximum effective radius of the optical surface having the largest effective radius among the optical surfaces in the projection optical system is M
  • the total length of the projection optical system is When L
  • an illumination system for illuminating a mask set on the first surface, and a photosensitive substrate set on the second surface with an image of a pattern formed on the mask there is provided an exposure apparatus comprising: a projection optical system according to the first mode and the third mode to be formed thereon.
  • the illumination step of illuminating the mask set on the first surface, and the illumination step illuminated by the illumination step via the projection optical system of the first and third aspects comprising: an exposure step of exposing a pattern of a mask on a photosensitive substrate set on the second surface; and a development step of developing the photosensitive substrate exposed in the exposure step. Provide a way.
  • the present invention it is possible to realize a small, high-resolution projection optical system in which various aberrations are satisfactorily corrected, while securing a sufficiently large image-side numerical aperture and a sufficiently wide effective imaging area. You. Therefore, in the exposure apparatus equipped with the projection optical system of the present invention, good projection exposure can be performed with high throughput and high resolution, and fine microdevices with high throughput and high resolution can be obtained. Can be manufactured.
  • FIG. 1 is a view schematically showing a configuration of an exposure apparatus including a projection optical system according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a lens configuration of a projection optical system according to a first embodiment.
  • FIG. 3 is a diagram showing lateral aberration in the first example.
  • FIG. 4 is a diagram illustrating a lens configuration of a projection optical system according to a second embodiment.
  • FIG. 5 is a diagram showing lateral aberration in a second example.
  • FIG. 6 is a diagram illustrating a lens configuration of a projection optical system according to a third embodiment.
  • FIG. 7 is a diagram showing lateral aberration in a third example.
  • FIG. 8 is a flowchart of a method for obtaining a semiconductor device as a micro device.
  • FIG. 9 is a flowchart of a method for obtaining a liquid crystal display element as a micro device.
  • the first lens group having a positive refractive power, the second lens group having a negative refractive power, the third lens group having a positive refractive power, the fourth lens group having a negative refractive power, and the positive refractive power A six-group configuration including a fifth lens group having a positive refractive power or a sixth lens group having a negative refractive power is employed. With this configuration, it is possible to disperse the refractive power necessary to satisfy the Petzval condition, and to avoid a situation where the refractive power is concentrated on a specific lens group and large aberration occurs.
  • the projection optical system of the present invention five relay systems are arranged between each lens group, and at least one aspherical optical surface is introduced into each relay system.
  • the occurrence of various aberrations such as spherical aberration, coma, and distortion (distortion) is efficiently reduced, while maintaining a sufficiently large image-side numerical aperture and a sufficiently wide effective imaging area.
  • the size of the projection optical system can be reduced.
  • the F-number in the fourth lens group tends to increase, it is preferable to arrange at least three negative lenses in the fourth lens group to suppress the occurrence of aberration.
  • the present invention when the present invention is applied to an exposure apparatus, even when a mask to be set on the object plane or a photosensitive substrate to be set on the image plane is slightly displaced in the optical axis direction, the magnification is not changed. It is desirable that both sides of the object side and the image side be substantially telecentric so that they do not substantially change. In this case, by arranging the variable aperture stop in the fifth lens group, it is possible to maintain the telecentricity on both sides even when the numerical aperture is changed according to the form of the device pattern.
  • the second lens group is constituted only by the negative lens, it becomes possible to efficiently obtain the refractive power required for the lens group, thereby realizing the miniaturization of the projection optical system.
  • the ability to do S Similarly, by configuring the third lens group only with the positive lens, it becomes possible to efficiently obtain the refracting power required for the lens group, and to reduce the size of the projection optical system.
  • R is the radius of curvature of each optical surface (vertical radius of curvature for an aspherical optical surface)
  • D is the effective radius of each optical surface
  • Ni is Nr is the exit side refractive index of each optical surface.
  • conditional force (1) and the force S that requires a large-diameter lens by satisfying conditional force (1) and the force S that requires a large-diameter lens, the tolerance allowed in the manufacture of the lens that constitutes the fifth lens group increases. For example, the stability of the optical system after being mounted on the exposure apparatus is improved. In order to further exert the above-described effects of the present invention, it is more preferable to set the upper limit of conditional expression (1) to 0.52.
  • all aspheric optical surfaces included in the projection optical system satisfy the following conditional expression (2).
  • S is the effective radius of the aspherical optical surface included in the projection optical system
  • Ym is the maximum image height.
  • conditional expression (2) When all the aspherical optical surfaces included in the projection optical system satisfy the conditional expression (2), the difficulty of manufacturing the aspherical surface and the difficulty of guaranteeing the accuracy of the aspherical surface are relatively low. As a result, an optical system having good high resolution can be stably supplied. It is more preferable to set the upper limit of conditional expression (2) to 10.0 in order to achieve the above effects of the present invention more favorably.
  • conditional expressions (3) and (4) A is the numerical aperture on the image side, Ym is the maximum image height, and M is the maximum of the optical surface having the largest effective radius among the optical surfaces in the projection optical system. It is a large effective radius, and L is the total length of the projection optical system (the distance between the object plane and the image plane).
  • conditional expression (3) a good image-side numerical aperture A and a maximum image height Ym (fin, wide, effective image forming area) are ensured, It is possible to maintain a 2M aperture that can produce quality lens materials.
  • conditional expression (4) it is possible to keep the overall length L of the optical system relatively small while securing a large maximum image height Ym (and thus a large effective imaging area).
  • all aspheric optical surfaces constituting the projection optical system satisfy the following conditional expression (5).
  • S is the effective radius of each aspherical optical surface
  • M is the maximum effective radius of the optical surface having the largest effective radius among the optical surfaces in the projection optical system as described above. It is.
  • the present invention provides a small, high-resolution projection optical system in which various aberrations are well corrected while securing a sufficiently large image-side numerical aperture and a sufficiently wide effective imaging area.
  • Realization ability S can. Therefore, with the exposure apparatus equipped with the projection optical system of the present invention, it is possible to perform good projection exposure at high throughput and high resolution, and to manufacture good microdevices at high throughput and high resolution. it can.
  • FIG. 1 is a diagram schematically showing a configuration of an exposure apparatus including a projection optical system according to an embodiment of the present invention.
  • the Z axis is parallel to the optical axis AX of the projection optical system PL
  • the Y axis is parallel to the plane of FIG. 1 in a plane perpendicular to the optical axis AX
  • the Y axis is in a plane perpendicular to the optical axis AX.
  • the exposure apparatus shown in FIG. 1 includes a KrF excimer laser light source as a light source LS for supplying illumination light.
  • the light emitted from the light source LS illuminates a reticle (mask) R as a projection master on which a predetermined pattern is formed, via an illumination optical system IL.
  • the illumination optical system IL includes a fly-eye lens, an illumination aperture stop, a variable field stop (reticle blind), a condenser lens system, and the like for uniformizing the illuminance distribution of the exposure light.
  • the reticle R is held in parallel with the XY plane on the reticle stage RS via the reticle holder RH.
  • the reticle stage RS can be moved two-dimensionally along the reticle plane (that is, the XY plane) by the action of a drive system (not shown), and its position coordinates are determined by an interferometer RIF using a reticle moving mirror RM. It is configured to be measured and position controlled.
  • Light from the pattern formed on the reticle R forms a reticle pattern image on the photoresist-coated wafer W (photosensitive substrate) via the projection optical system PL.
  • the projection optical system PL has a variable aperture stop AS (not shown in FIG. 1) arranged near the pupil position, and is substantially telecentric on both the reticle R side and the wafer W side. Is configured. Then, at the pupil position of the projection optical system PL, an image of the secondary light source on the illumination pupil plane of the illumination optical system is formed, and the light passing through the projection optical system PL illuminates the lens W in a Keller manner.
  • the wafer W is held on a wafer stage WS via a wafer table (wafer holder) WT in parallel with the XY plane.
  • the wafer stage WS can be moved two-dimensionally along the wafer surface (that is, the XY plane) by the action of a drive system (not shown), and its position coordinates are determined by an interferometer WIF using a wafer moving mirror WM. And the position is controlled.
  • the pattern of the reticle R is collectively exposed to each exposure area while the wafer W is two-dimensionally driven and controlled in a plane orthogonal to the optical axis AX of the projection optical system PL.
  • the pattern of the reticle R is sequentially exposed on each exposure area of the wafer W by repeating the operation, that is, by a step-and-repeat method.
  • all the optical members (the lens component and the plane-parallel plate) constituting the projection optical system PL are formed of quartz (Si ⁇ ). Also, the light source LS
  • the center wavelength of the laser beam supplied from the KrF excimer laser light source is 248. Onm, and the refractive index of quartz with respect to this center wavelength is 1.50839.
  • the projection optical system PL of each embodiment includes, in order from the reticle side, a first lens group G1 having a positive refractive power, a first relay system R12, a second lens group G2 having a negative refractive power, 2 relay system R23, third lens group G3 with positive refractive power, third relay system R34, fourth lens group G4 with negative refractive power, Equipped with a relay system R45, a fifth lens group G5 having a positive refractive power, a fifth relay system R56, and a sixth lens group G6 having a positive or negative refractive power.
  • the height of the aspheric surface in the direction perpendicular to the optical axis is defined as y, and along the optical axis from the tangent plane at the vertex of the aspheric surface to a position on the aspheric surface at height y.
  • the distance (sag amount) is z
  • the vertex radius of curvature is r
  • the conic coefficient is ⁇
  • the nth order aspheric coefficient is C and n
  • FIG. 2 is a diagram showing a lens configuration of a projection optical system according to the first embodiment.
  • the first lens group G1 includes, in order from the reticle side, a biconvex lens L1 and a positive meniscus lens L2 having a convex surface facing the reticle side.
  • the first relay system R12 is composed of a negative meniscus lens L3 having an aspherical concave surface facing the wafer side.
  • the second lens group G2 is composed of, in order from the reticle side, a biconcave lens L4 having an aspherical concave surface facing the wafer side, and a biconcave lens L5.
  • the second relay system R23 includes a positive meniscus lens L6 having an aspherical concave surface facing the reticle side.
  • the third lens group G3 includes, in order from the reticle side, a biconvex lens L7, a biconvex lens L8, a biconvex lens L9, and a positive meniscus lens L10 having a convex surface facing the reticle side.
  • the third relay system R34 is composed of a positive meniscus lens L11 having an aspherical concave surface facing the wafer side.
  • the fourth lens group G4 includes, in order from the reticle side, a plano-concave lens L12 having a flat surface facing the reticle side, a biconcave lens L13, a biconcave lens L14 having an aspherical concave surface facing the wafer side, and a concave surface on the reticle side. And a positive meniscus lens L15.
  • the fourth relay system R45 includes a positive meniscus lens L16 having an aspherical concave surface facing the reticle side.
  • the fifth lens group G5 includes, in order from the reticle side, a positive meniscus lens L17 having a concave surface facing the reticle side, a biconvex lens L18, an aperture stop AS, and a reticle side.
  • the fifth relay system R56 is composed of a positive meniscus lens L22 having an aspherical concave surface facing the wafer side.
  • the sixth lens group G6 includes, in order from the reticle side, a positive meniscus lens L23 having an aspherical concave surface facing the wafer side, and a biconcave lens L24.
  • a first plane-parallel plate P1 is disposed in the optical path between the reticle R and the first lens group G1
  • a second plane-parallel plate is disposed in the optical path between the sixth lens group G6 and the wafer W.
  • P2 is located.
  • Table (1) lists values of specifications of the projection optical system according to the first example.
  • is the center wavelength of the exposure light
  • / 3 is the projection magnification
  • is the number of apertures on the image side (wafer side)
  • Ym is the maximum image height (image field radius)
  • L represents the total length of the optical system.
  • the surface number indicates the order of the surface from the reticle side
  • r indicates the radius of curvature of each optical surface (vertical radius of curvature: mm for an aspheric surface)
  • d indicates The on-axis spacing of each optical surface, that is, the surface spacing (mm), and D (S) indicates the effective radius (mm) of each optical surface.
  • the above notation is also applied to the following tables (2) and (3).
  • FIG. 3 is a diagram illustrating the lateral aberration in the first example.
  • Y indicates the image height (mm).
  • A 0.74
  • FIG. 4 is a diagram illustrating a lens configuration of a projection optical system according to a second embodiment.
  • the first lens group G1 includes, in order from the reticle side, a biconvex lens L1 and a negative meniscus lens L2 having a convex surface facing the reticle side.
  • the first relay system R12 is composed of a negative meniscus lens L3 having an aspherical concave surface facing the wafer side.
  • the second lens group G2 includes, in order from the reticle side, a biconcave lens L4 having an aspherical concave surface facing the wafer side, and a negative meniscus lens L5 having a concave surface facing the reticle side.
  • the second relay system R23 includes a positive meniscus lens L6 having an aspherical concave surface facing the reticle side.
  • the third lens group G3 includes, in order from the reticle side, a biconvex lens L7, a biconvex lens L8, a biconvex lens L9, and a positive meniscus lens L10 having a convex surface facing the reticle side.
  • the third relay system R34 has an aspherical concave surface facing the wafer side. It consists of a positive meniscus lens LI1.
  • the fourth lens group G4 includes, in order from the reticle side, a plano-concave lens L12 having a flat surface facing the reticle side, a biconcave lens L13, a biconcave lens L14 having an aspheric concave surface facing the wafer side, and a concave surface on the reticle side. And a positive meniscus lens L15.
  • the fourth relay system R45 includes a positive meniscus lens L16 having an aspherical concave surface facing the reticle side.
  • the fifth lens group G5 includes, in order from the reticle side, a biconvex lens L17, a positive meniscus lens L18 having a convex surface facing the reticle side, an aperture stop AS, a positive meniscus lens L19 having a convex surface facing the reticle side, and a biconvex lens. L20.
  • the fifth relay system R56 is composed of, in order from the reticle side, a positive meniscus lens L21 having a convex surface facing the reticle side, and a positive meniscus lens L22 having a non-spherical concave surface facing the wafer side.
  • the sixth lens group G6 includes, in order from the reticle side, a positive meniscus lens L23 having an aspherical concave surface facing the wafer side, and a biconcave lens L24.
  • a first plane-parallel plate P1 is disposed in the optical path between the reticle R and the first lens group G1
  • a second plane-parallel plate is disposed in the optical path between the sixth lens group G6 and the wafer W.
  • P2 is located. Table 2 below summarizes the data values of the projection optical system of the second embodiment.
  • FIG. 5 is a diagram showing the lateral aberration in the second example.
  • Y indicates the image height (mm).
  • A 0.76
  • FIG. 6 is a diagram illustrating a lens configuration of a projection optical system according to a third embodiment.
  • the first lens group G1 includes, in order from the reticle side, a biconvex lens L1 and a negative meniscus lens L2 having a convex surface facing the reticle side.
  • the first relay system R12 is composed of a negative meniscus lens L3 having an aspherical concave surface facing the wafer side.
  • the second lens group G2 includes, in order from the reticle side, a biconcave lens L4 having an aspherical concave surface facing the wafer side, and a negative meniscus lens L5 having a concave surface facing the reticle side.
  • the second relay system R23 includes a positive meniscus lens L6 having an aspherical concave surface facing the reticle side.
  • the third lens group G3 includes, in order from the reticle side, a biconvex lens L7, a biconvex lens L8, a biconvex lens L9, and a positive meniscus lens L10 having a convex surface facing the reticle side.
  • the third relay system R34 is composed of a positive meniscus lens L11 with the aspherical concave surface facing the wafer side.
  • the fourth lens group G4 includes, in order from the reticle side, a biconcave lens L12, a biconcave lens L13, and a biconcave lens L14 having an aspherical concave surface facing the wafer side.
  • the fourth relay system R45 includes a positive meniscus lens L15 having an aspherical concave surface facing the reticle side.
  • the fifth lens group G5 includes, in order from the reticle side, a positive meniscus lens L16 having a concave surface facing the reticle side, a positive meniscus lens L17 having a concave surface facing the reticle side, a biconvex lens L18, an aperture stop AS, It comprises a convex lens L19, a biconvex lens L20, and a positive meniscus lens L21 with the convex surface facing the reticle side.
  • the fifth relay system R56 includes, in order from the reticle side, a positive meniscus lens L22 having an aspheric concave surface facing the wafer side, and a negative meniscus lens L23 having an aspheric concave surface facing the wafer side. Being done.
  • the sixth lens group G6 includes, in order from the reticle side, a positive meniscus lens L24 having a convex surface facing the reticle side, and a negative meniscus lens L25 having a concave surface facing the reticle side.
  • a first plane-parallel plate P1 is disposed in the optical path between the reticle R and the first lens group G1, and a second plane-parallel plate P2 is disposed in the optical path between the sixth lens group G6 and the wafer W. Is arranged.
  • Table 3 shows values of specifications of the projection optical system according to the third example.
  • FIG. 7 is a diagram illustrating the lateral aberration in the third example.
  • Y indicates the image height (mm).
  • A 0.78
  • a circuit pattern can be exposed at a high resolution according to the step-and-repeat method in a rectangular exposure area of, for example, 33 mm ⁇ 26 mm. .
  • a circuit pattern can be exposed at a high resolution in a rectangular exposure area of, for example, 32 mm ⁇ 25 mm in accordance with a step-and-repeat method.
  • the reticle (mask) is illuminated by the illumination system (illumination step), and the transfer pattern formed on the mask is exposed on the photosensitive substrate using the projection optical system ( Exposure process) allows micro devices (semiconductor devices, image sensors, liquid crystal displays Element, thin-film magnetic head, etc.).
  • micro devices semiconductor devices, image sensors, liquid crystal displays Element, thin-film magnetic head, etc.
  • FIG. 8 an example of a method for obtaining a semiconductor device as a micro device by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate using the exposure apparatus of the present embodiment. Will be explained.
  • a metal film is deposited on one lot of wafers.
  • a photoresist is applied on the metal film on the one lot wafer.
  • an image of the pattern on the mask is sequentially exposed and transferred to each shot area on the wafer of the lot through the projection optical system.
  • the photo resist on the one lot of wafers is developed, and in step 305, the pattern on the mask is etched by etching the one lot of wafers using the resist pattern as a mask. A corresponding circuit pattern is formed in each shot area on each wafer.
  • a device such as a semiconductor element is manufactured by forming a circuit pattern of an upper layer and the like.
  • a semiconductor device manufacturing method a semiconductor device having an extremely fine circuit pattern can be obtained with good throughput.
  • a metal is vapor-deposited on the wafer, a resist is applied on the metal film, and the force of performing each of the steps of exposure, development, and etching is performed on the wafer prior to these steps.
  • a resist may be applied on the silicon oxide film, and the respective steps such as exposure, development, and etching may be performed.
  • a liquid crystal display element as a microdevice can be obtained by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate).
  • a predetermined pattern circuit pattern, electrode pattern, etc.
  • a plate glass substrate
  • FIG. 9 in a pattern forming step 401, a so-called optical lithography process of transferring and exposing a mask pattern onto a photosensitive substrate (eg, a glass substrate coated with a resist) using the exposure apparatus of the present embodiment is performed. .
  • a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate.
  • the exposed substrate is subjected to various steps such as a developing step, an etching step, and a resist removing step. As a result, a predetermined pattern is formed on the substrate, and the process proceeds to the next color filter forming step 402.
  • a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix, or R, G, A color filter is formed by arranging a plurality of sets of filters of three stripes B in the horizontal scanning line direction.
  • a cell assembling step 403 is performed.
  • a liquid crystal panel liquid crystal cell
  • a liquid crystal is assembled using the substrate having the predetermined pattern obtained in the pattern forming step 401, the color filter obtained in the color filter forming step 402, and the like.
  • a liquid crystal is injected between the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402, and a liquid crystal panel ( Liquid crystal cell).
  • a module assembling step 404 components such as an electric circuit and a backlight for performing a display operation of the assembled liquid crystal panel (liquid crystal cell) are attached to complete a liquid crystal display element.
  • components such as an electric circuit and a backlight for performing a display operation of the assembled liquid crystal panel (liquid crystal cell) are attached to complete a liquid crystal display element.
  • the present invention is applied to the step-and-repeat type exposure apparatus that collectively exposes the pattern of the reticle R to each exposure area of the wafer W.
  • the scanning and exposing of the pattern of the reticle R on each exposure area of the wafer W while moving the wafer W and the reticle R relatively to the projection optical system PL are not limited to this.
  • the present invention can also be applied to a scanning type exposure apparatus.
  • a KrF excimer laser light source that supplies 248. Onm wavelength light is used, but light having a predetermined wavelength that is not limited to this (for example, light from an ArF excimer laser) is used.
  • the present invention can be applied to any other suitable light source that supplies light having a wavelength of 193 nm and i-line (365 nm) from a mercury lamp. Further, in the above-described embodiment, the present invention is applied to the projection optical system mounted on the exposure apparatus. Applying I don't know

Abstract

A small, high-resolution projection optical system which ensures a sufficiently large image-side numerical aperture and a sufficiently large effective imaging area with various aberrations favorably corrected, and which comprises a positive-refractive-power first lens group (G1), a negative-refractive-power second lens group (G2), a positive-refractive-power third lens group (G3), a negative-refractive-power fourth lens group (G4), a positive-refractive-power fifth lens group (G5), and a negative-refractive-power sixth lens group (G6). A first relay system (R12) through a fifth relay system (R56) are disposed respectively between respective lens groups, each relay system including at least one aspherical optical plane.

Description

明 細 書  Specification
投影光学系、露光装置、およびデバイス製造方法  Projection optical system, exposure apparatus, and device manufacturing method
技術分野  Technical field
[0001] 本発明は、投影光学系、露光装置、およびデバイス製造方法に関し、特に半導体 素子や液晶表示素子などのマイクロデバイスをフォトリソグラフイエ程で製造する際に 使用される露光装置に好適な投影光学系に関するものである。  The present invention relates to a projection optical system, an exposure apparatus, and a device manufacturing method, and more particularly to a projection apparatus suitable for an exposure apparatus used when manufacturing a micro device such as a semiconductor element or a liquid crystal display element by a photolithographic process. It relates to an optical system.
背景技術  Background art
[0002] 半導体素子等を製造する際に、マスクとしてのレチクルのパターン像を、投影光学 系を介して、レジストの塗布されたウェハまたはガラスプレート等の感光性基板上に 転写する露光装置が使用されている。この種の露光装置では、半導体集積回路等 のパターンの微細化が進むに従って、投影光学系に対する解像力の向上が望まれ ている。投影光学系の解像力を向上させるには、露光光の波長をより短くし、像側開 口数をより大きくする必要がある。  [0002] When manufacturing semiconductor elements and the like, an exposure apparatus that transfers a pattern image of a reticle as a mask onto a photosensitive substrate such as a resist-coated wafer or a glass plate via a projection optical system is used. Have been. In this type of exposure apparatus, as the pattern of a semiconductor integrated circuit or the like becomes finer, it is desired to improve the resolving power of a projection optical system. In order to improve the resolution of the projection optical system, it is necessary to shorten the wavelength of the exposure light and increase the number of apertures on the image side.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 従来技術では、高解像力を有する投影光学系について種々の提案がなされている 、十分に広レ、実効露光領域 (イメージフィールド:実効結像領域)が確保されてレ、 なレ、。このため、マスクとウェハとを投影光学系に対して相対移動させつつウェハの 各露光領域にマスクパターンを走査露光する、レ、わゆるステップ ·アンド'スキャン方 式の投影露光を行っており、十分に高いスループットを実現することができなかった。  [0003] In the prior art, various proposals have been made for a projection optical system having a high resolving power. A sufficiently wide and effective exposure area (image field: effective image forming area) is secured. For this reason, the projection exposure of the so-called step-and-scan method, in which the mask pattern is scanned and exposed on each exposure area of the wafer while moving the mask and the wafer relative to the projection optical system, is performed. Sufficiently high throughput could not be achieved.
[0004] このように、高スループットな露光装置を実現するために、ウェハ上においてより広 レ、イメージフィールドを確保すること、すなわち広フィールド化が望まれている。なお、 広フィールド化および高解像化を図るには収差の良好な補正が必要であるが、大き な像側開口数を確保しつつ広い露光領域の全体に亘つて収差を良好に補正するこ とは困難である。  As described above, in order to realize a high-throughput exposure apparatus, it is desired to secure a wider image field on a wafer, that is, to increase the field. In order to achieve a wide field and high resolution, good correction of aberrations is required.However, aberrations should be corrected satisfactorily over a wide exposure area while securing a large image-side numerical aperture. And it is difficult.
[0005] 本発明は、前述の課題に鑑みてなされたものであり、十分に大きな像側開口数およ び十分に広い実効結像領域を確保しつつ、諸収差が良好に補正された小型で高解 像の投影光学系を提供することを目的とする。 The present invention has been made in view of the above-described problems, and has a small size in which various aberrations are satisfactorily corrected while securing a sufficiently large image-side numerical aperture and a sufficiently large effective imaging area. High answer It is an object to provide an image projection optical system.
[0006] また、本発明は、十分に広い実効結像領域を有する高解像の投影光学系を用いて [0006] The present invention uses a high-resolution projection optical system having a sufficiently wide effective imaging area.
、高スループットおよび高解像力で良好な投影露光を行うことのできる露光装置を提 供することを目的とする。 It is another object of the present invention to provide an exposure apparatus capable of performing good projection exposure with high throughput and high resolution.
[0007] また、本発明は、高スループットおよび高解像力で良好な投影露光を行う露光装置 を用いて、良好なマイクロデバイスを製造することのできるデバイス製造方法を提供 することを目的とする。 [0007] Another object of the present invention is to provide a device manufacturing method capable of manufacturing a good microdevice using an exposure apparatus that performs good projection exposure with high throughput and high resolution.
課題を解決するための手段  Means for solving the problem
[0008] 前記課題を解決するために、本発明の第 1形態では、第 1面の縮小像を第 2面上に 形成する投影光学系におレ、て、 [0008] In order to solve the above-described problems, in a first embodiment of the present invention, a projection optical system that forms a reduced image of a first surface on a second surface includes:
前記第 1面側から光の入射順に、  From the first surface side in the order of light incidence,
正の屈折力を有する第 1レンズ群と、  A first lens group having a positive refractive power,
少なくとも 1つの非球面形状の光学面を含む第 1リレー系と、  A first relay system including at least one aspheric optical surface;
少なくとも 2つの負レンズを含み、負の屈折力を有する第 2レンズ群と、 少なくとも 1つの非球面形状の光学面を含む第 2リレー系と、  A second lens group including at least two negative lenses and having a negative refractive power; a second relay system including at least one aspheric optical surface;
少なくとも 2つの正レンズを含み、正の屈折力を有する第 3レンズ群と、 少なくとも 1つの非球面形状の光学面を含む第 3リレー系と、  A third lens group including at least two positive lenses and having a positive refractive power; a third relay system including at least one aspheric optical surface;
少なくとも 2つの負レンズを含み、負の屈折力を有する第 4レンズ群と、 少なくとも 1つの非球面形状の光学面を含む第 4リレー系と、  A fourth lens group including at least two negative lenses and having a negative refractive power, a fourth relay system including at least one aspheric optical surface,
少なくとも 2つの正レンズを含み、正の屈折力を有する第 5レンズ群と、 少なくとも 1つの非球面形状の光学面を含む第 5リレー系と、  A fifth lens group including at least two positive lenses and having a positive refractive power; a fifth relay system including at least one aspheric optical surface;
正の屈折力または負の屈折力を有する第 6レンズ群とを備えていることを特徴とす る投影光学系を提供する。  And a sixth lens group having a positive refractive power or a negative refractive power.
[0009] 本発明の第 2形態では、第 1面の縮小像を第 2面上に形成する投影光学系におい て、 In a second embodiment of the present invention, in a projection optical system that forms a reduced image of a first surface on a second surface,
前記第 1面と前記第 2面との間の光路中に配置されて、正の屈折力を有する第 1レ ンズ群と、  A first lens group disposed in an optical path between the first surface and the second surface and having a positive refractive power;
前記第 1レンズ群と前記第 2面との間の光路中に配置されて、少なくとも 1つの非球 面形状の光学面を含む第 1リレー系と、 At least one aspherical lens disposed in an optical path between the first lens group and the second surface; A first relay system including a surface-shaped optical surface,
前記第 1リレー系と前記第 2面との間の光路中に配置されて、少なくとも 2つの負レ ンズを含み、負の屈折力を有する第 2レンズ群と、  A second lens group disposed in an optical path between the first relay system and the second surface and including at least two negative lenses and having a negative refractive power;
前記第 2レンズ群と前記第 2面との間の光路中に配置されて、少なくとも 1つの非球 面形状の光学面を含む第 2リレー系と、  A second relay system disposed in an optical path between the second lens group and the second surface, the second relay system including at least one aspherical optical surface;
前記第 2リレー系と前記第 2面との間の光路中に配置されて、少なくとも 2つの正レ ンズを含み、正の屈折力を有する第 3レンズ群と、  A third lens group disposed in an optical path between the second relay system and the second surface and including at least two positive lenses and having a positive refractive power;
前記第 3レンズ群と前記第 2面との間の光路中に配置されて、少なくとも 1つの非球 面形状の光学面を含む第 3リレー系と、  A third relay system disposed in an optical path between the third lens group and the second surface, the third relay system including at least one aspherical optical surface;
前記第 3リレー系と前記第 2面との間の光路中に配置されて、少なくとも 2つの負レ ンズを含み、負の屈折力を有する第 4レンズ群と、  A fourth lens group disposed in an optical path between the third relay system and the second surface and including at least two negative lenses and having a negative refractive power;
前記第 4レンズ群と前記第 2面との間の光路中に配置されて、少なくとも 1つの非球 面形状の光学面を含む第 4リレー系と、  A fourth relay system disposed in an optical path between the fourth lens group and the second surface, the fourth relay system including at least one aspherical optical surface;
前記第 4リレー系と前記第 2面との間の光路中に配置されて、少なくとも 2つの正レ ンズを含み、正の屈折力を有する第 5レンズ群と、  A fifth lens group disposed in an optical path between the fourth relay system and the second surface, including at least two positive lenses, and having a positive refractive power;
前記第 5レンズ群と前記第 2面との間との間の光路中に配置されて、少なくとも 1つ の非球面形状の光学面を含む第 5リレー系と、  A fifth relay system disposed in an optical path between the fifth lens group and the second surface, the fifth relay system including at least one aspheric optical surface;
前記第 5リレー系と前記第 2面との間の光路中に配置されて、正の屈折力または負 の屈折力を有する第 6レンズ群とを備えていることを特徴とする投影光学系を提供す る。  A projection optical system, comprising: a sixth lens group disposed in an optical path between the fifth relay system and the second surface and having a positive refractive power or a negative refractive power. provide.
本発明の第 3形態では、第 1面の縮小像を第 2面上に形成する投影光学系におい て、  According to a third aspect of the present invention, in a projection optical system that forms a reduced image of a first surface on a second surface,
像側の開口数を Aとし、最大像高を Ymとし、前記投影光学系中の光学面のうち最 大の有効半径を有する光学面の最大有効半径を Mとし、前記投影光学系の全長を Lとするとき、  The numerical aperture on the image side is A, the maximum image height is Ym, the maximum effective radius of the optical surface having the largest effective radius among the optical surfaces in the projection optical system is M, and the total length of the projection optical system is When L
32< 2 X M/ (A3 X Ym) < 39 32 <2 XM / (A 3 X Ym) <39
38く L/Ymく 80  38 L / Ym 80
の条件を満足することを特徴とする投影光学系を提供する。 [0011] 本発明の第 4形態では、前記第 1面に設定されたマスクを照明するための照明系と 、前記マスクに形成されたパターンの像を前記第 2面に設定された感光性基板上に 形成するための第 1形態一第 3形態の投影光学系とを備えていることを特徴とする露 光装置を提供する。 And a projection optical system characterized by satisfying the following condition: [0011] In a fourth embodiment of the present invention, an illumination system for illuminating a mask set on the first surface, and a photosensitive substrate set on the second surface with an image of a pattern formed on the mask There is provided an exposure apparatus comprising: a projection optical system according to the first mode and the third mode to be formed thereon.
[0012] 本発明の第 5形態では、前記第 1面に設定されたマスクを照明する照明工程と、第 1形態一第 3形態の投影光学系を介して、前記照明工程により照明された前記マスク のパターンを前記第 2面に設定された感光性基板上に露光する露光工程と、前記露 光工程により露光された前記感光性基板を現像する現像工程とを含むことを特徴と するデバイス製造方法を提供する。  [0012] In a fifth aspect of the present invention, the illumination step of illuminating the mask set on the first surface, and the illumination step illuminated by the illumination step via the projection optical system of the first and third aspects. A device manufacturing method, comprising: an exposure step of exposing a pattern of a mask on a photosensitive substrate set on the second surface; and a development step of developing the photosensitive substrate exposed in the exposure step. Provide a way.
発明の効果  The invention's effect
[0013] 本発明では、十分に大きな像側開口数および十分に広い実効結像領域を確保し つつ、諸収差が良好に補正された小型で高解像の投影光学系を実現することができ る。したがって、本発明の投影光学系を搭載した露光装置では、高スループットおよ び高解像力で良好な投影露光を行うことができ、ひレ、ては高スループットおよび高解 像力で良好なマイクロデバイスを製造することができる。  According to the present invention, it is possible to realize a small, high-resolution projection optical system in which various aberrations are satisfactorily corrected, while securing a sufficiently large image-side numerical aperture and a sufficiently wide effective imaging area. You. Therefore, in the exposure apparatus equipped with the projection optical system of the present invention, good projection exposure can be performed with high throughput and high resolution, and fine microdevices with high throughput and high resolution can be obtained. Can be manufactured.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]本発明の実施形態にかかる投影光学系を備えた露光装置の構成を概略的に 示す図である。  FIG. 1 is a view schematically showing a configuration of an exposure apparatus including a projection optical system according to an embodiment of the present invention.
[図 2]第 1実施例に力かる投影光学系のレンズ構成を示す図である。  FIG. 2 is a diagram illustrating a lens configuration of a projection optical system according to a first embodiment.
[図 3]第 1実施例における横収差を示す図である。  FIG. 3 is a diagram showing lateral aberration in the first example.
[図 4]第 2実施例に力かる投影光学系のレンズ構成を示す図である。  FIG. 4 is a diagram illustrating a lens configuration of a projection optical system according to a second embodiment.
[図 5]第 2実施例における横収差を示す図である。  FIG. 5 is a diagram showing lateral aberration in a second example.
[図 6]第 3実施例に力かる投影光学系のレンズ構成を示す図である。  FIG. 6 is a diagram illustrating a lens configuration of a projection optical system according to a third embodiment.
[図 7]第 3実施例における横収差を示す図である。  FIG. 7 is a diagram showing lateral aberration in a third example.
[図 8]マイクロデバイスとしての半導体デバイスを得る際の手法のフローチャートであ る。  FIG. 8 is a flowchart of a method for obtaining a semiconductor device as a micro device.
[図 9]マイクロデバイスとしての液晶表示素子を得る際の手法のフローチャートである 発明を実施するための最良の形態 FIG. 9 is a flowchart of a method for obtaining a liquid crystal display element as a micro device. BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 本発明の投影光学系では、正屈折力の第 1レンズ群と負屈折力の第 2レンズ群と正 屈折力の第 3レンズ群と負屈折力の第 4レンズ群と正屈折力の第 5レンズ群と正屈折 力または負屈折力の第 6レンズ群とを備えた 6群構成を採用している。この構成により 、ペッツバール条件を満足するために必要となる屈折力を分散し、特定のレンズ群に 屈折力が集中して収差が大きく発生することを回避することができる。  In the projection optical system of the present invention, the first lens group having a positive refractive power, the second lens group having a negative refractive power, the third lens group having a positive refractive power, the fourth lens group having a negative refractive power, and the positive refractive power A six-group configuration including a fifth lens group having a positive refractive power or a sixth lens group having a negative refractive power is employed. With this configuration, it is possible to disperse the refractive power necessary to satisfy the Petzval condition, and to avoid a situation where the refractive power is concentrated on a specific lens group and large aberration occurs.
[0016] また、本発明の投影光学系では、各レンズ群の間に 5つのリレー系を配置するととも に、各リレー系に少なくとも 1つの非球面形状の光学面をそれぞれ導入している。こ の構成により、球面収差、コマ収差、ディストーション (歪曲収差)等の諸収差の発生 を効率的に低減し、十分に大きな像側開口数および十分に広い実効結像領域を確 保しつつ、投影光学系の小型化を実現することができる。  Further, in the projection optical system of the present invention, five relay systems are arranged between each lens group, and at least one aspherical optical surface is introduced into each relay system. With this configuration, the occurrence of various aberrations such as spherical aberration, coma, and distortion (distortion) is efficiently reduced, while maintaining a sufficiently large image-side numerical aperture and a sufficiently wide effective imaging area. The size of the projection optical system can be reduced.
[0017] なお、本発明では、第 4レンズ群における Fナンバーが大きくなる傾向があるため、 第 4レンズ群中に少なくとも 3つの負レンズを配置することにより収差の発生を抑える ことが好ましい。  In the present invention, since the F-number in the fourth lens group tends to increase, it is preferable to arrange at least three negative lenses in the fourth lens group to suppress the occurrence of aberration.
[0018] また、本発明では、たとえば露光装置に適用した場合に、物体面に設定すべきマス クまたは像面に設定すべき感光性基板が光軸方向に僅かに位置ずれしても倍率が 実質的に変化しないように、物体側および像側の両側にほぼテレセントリックであるこ とが望ましい。この場合、第 5レンズ群中に可変開口絞りを配置することにより、デバイ スパターンの形態に応じて開口数を変化させても、両側テレセントリック性を維持する こと力 Sできる。  Further, according to the present invention, for example, when the present invention is applied to an exposure apparatus, even when a mask to be set on the object plane or a photosensitive substrate to be set on the image plane is slightly displaced in the optical axis direction, the magnification is not changed. It is desirable that both sides of the object side and the image side be substantially telecentric so that they do not substantially change. In this case, by arranging the variable aperture stop in the fifth lens group, it is possible to maintain the telecentricity on both sides even when the numerical aperture is changed according to the form of the device pattern.
[0019] また、本発明では、第 2レンズ群を負レンズのみにより構成することにより、当該レン ズ群に必要な屈折力を効率的に得ることが可能となり、投影光学系の小型化を実現 すること力 Sできる。同様に、第 3レンズ群を正レンズのみにより構成することにより、当 該レンズ群に必要な屈折力を効率的に得ることが可能となり、投影光学系の小型化 を実現すること力 Sできる。  Further, according to the present invention, since the second lens group is constituted only by the negative lens, it becomes possible to efficiently obtain the refractive power required for the lens group, thereby realizing the miniaturization of the projection optical system. The ability to do S. Similarly, by configuring the third lens group only with the positive lens, it becomes possible to efficiently obtain the refracting power required for the lens group, and to reduce the size of the projection optical system.
[0020] また、本発明では、第 5レンズ群を構成するすべての光学面が以下の条件式(1)を 満足することが好ましい。条件式(1)において、 Rは各光学面の曲率半径(非球面形 状の光学面の場合は頂点曲率半径)であり、 Dは各光学面の有効半径であり、 Niは 各光学面の入射側屈折率であり、 Nrは各光学面の射出側屈折率である。 In the present invention, it is preferable that all the optical surfaces constituting the fifth lens group satisfy the following conditional expression (1). In the conditional expression (1), R is the radius of curvature of each optical surface (vertical radius of curvature for an aspherical optical surface), D is the effective radius of each optical surface, and Ni is Nr is the exit side refractive index of each optical surface.
I (Ni-Nr) X 2 X D/R | < 0. 62 (1)  I (Ni-Nr) X 2 X D / R | <0.62 (1)
[0021] 第 5レンズ群では大きな径のレンズが必要になる力 S、条件式(1)を満足することによ り、第 5レンズ群を構成するレンズの製造に際して許容される公差が大きくなり、たと えば露光装置に搭載された後の光学系の安定性が良好になる。なお、本発明の上 述の効果をさらに良好に発揮するには、条件式(1)の上限値を 0. 52に設定すること 力 Sさらに好ましい。 [0021] In the fifth lens group, by satisfying conditional force (1) and the force S that requires a large-diameter lens, the tolerance allowed in the manufacture of the lens that constitutes the fifth lens group increases. For example, the stability of the optical system after being mounted on the exposure apparatus is improved. In order to further exert the above-described effects of the present invention, it is more preferable to set the upper limit of conditional expression (1) to 0.52.
[0022] また、本発明では、投影光学系に含まれるすべての非球面形状の光学面が次の条 件式(2)を満足することが好ましい。条件式(2)において、 Sは投影光学系に含まれ る非球面形状の光学面の有効半径であり、 Ymは最大像高である。  In the present invention, it is preferable that all aspheric optical surfaces included in the projection optical system satisfy the following conditional expression (2). In the conditional expression (2), S is the effective radius of the aspherical optical surface included in the projection optical system, and Ym is the maximum image height.
S/Ym< 10. 8 (2)  S / Ym <10.8 (2)
[0023] 投影光学系に含まれるすべての非球面形状の光学面が条件式 (2)を満足すること により、非球面の製造の難易度および非球面の精度保障の難易度を比較的低く抑 えることができ、ひいては良好な高解像力を有する光学系を安定的に供給することが できる。なお、本発明の上述の効果をさらに良好に発揮するには、条件式(2)の上限 値を 10. 0に設定することがさらに好ましい。  [0023] When all the aspherical optical surfaces included in the projection optical system satisfy the conditional expression (2), the difficulty of manufacturing the aspherical surface and the difficulty of guaranteeing the accuracy of the aspherical surface are relatively low. As a result, an optical system having good high resolution can be stably supplied. It is more preferable to set the upper limit of conditional expression (2) to 10.0 in order to achieve the above effects of the present invention more favorably.
[0024] また、本発明の別の態様にした力 投影光学系では、次の条件式(3)および (4)を 満足する。条件式(3)および (4)において、 Aは像側の開口数であり、 Ymは最大像 高であり、 Mは投影光学系中の光学面のうち最大の有効半径を有する光学面の最 大有効半径であり、 Lは投影光学系の全長 (物体面と像面との距離)である。  Further, the force projection optical system according to another aspect of the present invention satisfies the following conditional expressions (3) and (4). In conditional expressions (3) and (4), A is the numerical aperture on the image side, Ym is the maximum image height, and M is the maximum of the optical surface having the largest effective radius among the optical surfaces in the projection optical system. It is a large effective radius, and L is the total length of the projection optical system (the distance between the object plane and the image plane).
32< 2 X M/ (A3 X Ym) < 39 (3) 32 <2 XM / (A 3 X Ym) <39 (3)
38く L/Ymく 80 (4)  38 L / Ym 80 (4)
[0025] 本発明では、条件式(3)を満足することにより、大きな像側開口数 Aおよび最大像 高 Ym (ひレ、ては広レ、実効結像領域)を確保しつつ、良好な品質のレンズ材料を製 造可能な口径 2Mを維持することができる。また、条件式 (4)を満足することにより、大 きな最大像高 Ym (ひいては広い実効結像領域)を確保しつつ、光学系の全長 Lを比 較的小さく抑えることができる。  In the present invention, by satisfying the conditional expression (3), a good image-side numerical aperture A and a maximum image height Ym (fin, wide, effective image forming area) are ensured, It is possible to maintain a 2M aperture that can produce quality lens materials. By satisfying conditional expression (4), it is possible to keep the overall length L of the optical system relatively small while securing a large maximum image height Ym (and thus a large effective imaging area).
[0026] その結果、十分に大きな解像力を実現し、従来技術では走査露光により得られた 露光領域を一括的に露光するステップ'アンド'リピート方式にしたがう高スループット な露光を実現することができる。なお、本発明の上述の効果をさらに良好に発揮する には、条件式(3)の上限値を 38. 5に設定し、下限値を 34に設定することがさらに好 ましレ、。また、本発明の上述の効果をさらに良好に発揮するには、条件式 (4)の上限 値を 70に設定し、下限値を 60に設定することがさらに好ましい。 [0026] As a result, a sufficiently large resolving power was realized, and in the prior art, it was obtained by scanning exposure. High-throughput exposure can be realized according to the step-and-repeat method of exposing the exposure area collectively. In order to further exert the above-mentioned effects of the present invention, it is more preferable to set the upper limit of conditional expression (3) to 38.5 and set the lower limit to 34. In order to further exert the above effects of the present invention, it is more preferable to set the upper limit of conditional expression (4) to 70 and the lower limit thereof to 60.
[0027] また、本発明では、投影光学系を構成するすべての非球面形状の光学面が次の 条件式(5)を満足することが好ましい。条件式(5)において、 Sは非球面形状の各光 学面の有効半径を、 Mは上述したように投影光学系中の光学面のうち最大の有効半 径を有する光学面の最大有効半径である。 In the present invention, it is preferable that all aspheric optical surfaces constituting the projection optical system satisfy the following conditional expression (5). In the conditional expression (5), S is the effective radius of each aspherical optical surface, and M is the maximum effective radius of the optical surface having the largest effective radius among the optical surfaces in the projection optical system as described above. It is.
S/M< 0. 90 (5)  S / M <0.90 (5)
[0028] 投影光学系を構成するすべての非球面形状の光学面が条件式 (5)を満足すること により、非球面の製造の難易度および非球面の精度保障の難易度を比較的低く抑 え、ひいては良好な高解像力を有する光学系を安定的に供給することができる。  [0028] When all the aspherical optical surfaces constituting the projection optical system satisfy the conditional expression (5), the difficulty in manufacturing the aspherical surface and the difficulty in guaranteeing the accuracy of the aspherical surface are relatively low. In addition, an optical system having good high resolution can be stably supplied.
[0029] 以上のように、本発明では、十分に大きな像側開口数および十分に広い実効結像 領域を確保しつつ、諸収差が良好に補正された小型で高解像の投影光学系を実現 すること力 Sできる。したがって、本発明の投影光学系を搭載した露光装置では、高ス ループットおよび高解像力で良好な投影露光を行うことができ、ひいては高スループ ットおよび高解像力で良好なマイクロデバイスを製造することができる。  As described above, the present invention provides a small, high-resolution projection optical system in which various aberrations are well corrected while securing a sufficiently large image-side numerical aperture and a sufficiently wide effective imaging area. Realization ability S can. Therefore, with the exposure apparatus equipped with the projection optical system of the present invention, it is possible to perform good projection exposure at high throughput and high resolution, and to manufacture good microdevices at high throughput and high resolution. it can.
[0030] 本発明の実施形態を、添付図面に基づいて説明する。  An embodiment of the present invention will be described with reference to the accompanying drawings.
図 1は、本発明の実施形態にかかる投影光学系を備えた露光装置の構成を概略的 に示す図である。なお、図 1において、投影光学系 PLの光軸 AXに平行に Z軸を、光 軸 AXに垂直な面内において図 1の紙面に平行に Y軸を、光軸 AXに垂直な面内に ぉレヽて図 1の紙面に垂直に X軸を設定してレ、る。  FIG. 1 is a diagram schematically showing a configuration of an exposure apparatus including a projection optical system according to an embodiment of the present invention. In FIG. 1, the Z axis is parallel to the optical axis AX of the projection optical system PL, the Y axis is parallel to the plane of FIG. 1 in a plane perpendicular to the optical axis AX, and the Y axis is in a plane perpendicular to the optical axis AX. Set the X-axis perpendicular to the paper surface in Fig. 1 and check.
[0031] 図 1に示す露光装置は、照明光を供給するための光源 LSとして、 KrFエキシマレ 一ザ光源を備えている。光源 LSから射出された光は、照明光学系 ILを介して、所定 のパターンが形成された投影原版としてのレチクル (マスク) Rを照明する。照明光学 系 ILは、露光光の照度分布を均一化するためのフライアイレンズ、照明開口絞り、可 変視野絞り(レチクルブラインド)、コンデンサレンズ系等から構成されている。 [0032] レチクル Rは、レチクルホルダ RHを介して、レチクルステージ RS上において XY平 面に平行に保持されている。レチクルステージ RSは、図示を省略した駆動系の作用 により、レチクル面(すなわち XY平面)に沿って二次元的に移動可能であり、その位 置座標はレチクル移動鏡 RMを用いた干渉計 RIFによって計測され且つ位置制御さ れるように構成されている。レチクル Rに形成されたパターンからの光は、投影光学系 PLを介して、フォトレジストの塗布されたウェハ W (感光性基板)上にレチクルパター ン像を形成する。 The exposure apparatus shown in FIG. 1 includes a KrF excimer laser light source as a light source LS for supplying illumination light. The light emitted from the light source LS illuminates a reticle (mask) R as a projection master on which a predetermined pattern is formed, via an illumination optical system IL. The illumination optical system IL includes a fly-eye lens, an illumination aperture stop, a variable field stop (reticle blind), a condenser lens system, and the like for uniformizing the illuminance distribution of the exposure light. [0032] The reticle R is held in parallel with the XY plane on the reticle stage RS via the reticle holder RH. The reticle stage RS can be moved two-dimensionally along the reticle plane (that is, the XY plane) by the action of a drive system (not shown), and its position coordinates are determined by an interferometer RIF using a reticle moving mirror RM. It is configured to be measured and position controlled. Light from the pattern formed on the reticle R forms a reticle pattern image on the photoresist-coated wafer W (photosensitive substrate) via the projection optical system PL.
[0033] 投影光学系 PLは、その瞳位置の近傍に配置された可変の開口絞り AS (図 1では 不図示)を有し、レチクル R側およびウェハ W側の双方において実質的にテレセントリ ックに構成されている。そして、投影光学系 PLの瞳位置には照明光学系の照明瞳面 における二次光源の像が形成され、投影光学系 PLを介した光によってゥヱハ Wがケ 一ラー照明される。ウェハ Wは、ウェハテーブル(ウェハホルダ) WTを介して、ウェハ ステージ WS上にぉレ、て XY平面に平行に保持されてレ、る。  The projection optical system PL has a variable aperture stop AS (not shown in FIG. 1) arranged near the pupil position, and is substantially telecentric on both the reticle R side and the wafer W side. Is configured. Then, at the pupil position of the projection optical system PL, an image of the secondary light source on the illumination pupil plane of the illumination optical system is formed, and the light passing through the projection optical system PL illuminates the lens W in a Keller manner. The wafer W is held on a wafer stage WS via a wafer table (wafer holder) WT in parallel with the XY plane.
[0034] ウェハステージ WSは、図示を省略した駆動系の作用によりウェハ面(すなわち XY 平面)に沿って二次元的に移動可能であり、その位置座標はウェハ移動鏡 WMを用 いた干渉計 WIFによって計測され且つ位置制御されるように構成されている。こうし て、本実施形態では、投影光学系 PLの光軸 AXと直交する平面内においてウェハ W を二次元的に駆動制御しながら各露光領域に対してレチクル Rのパターンを一括的 に露光する動作を繰り返すことにより、すなわちステップ ·アンド'リピート方式により、 ウェハ Wの各露光領域にはレチクル Rのパターンが逐次露光される。  The wafer stage WS can be moved two-dimensionally along the wafer surface (that is, the XY plane) by the action of a drive system (not shown), and its position coordinates are determined by an interferometer WIF using a wafer moving mirror WM. And the position is controlled. Thus, in the present embodiment, the pattern of the reticle R is collectively exposed to each exposure area while the wafer W is two-dimensionally driven and controlled in a plane orthogonal to the optical axis AX of the projection optical system PL. The pattern of the reticle R is sequentially exposed on each exposure area of the wafer W by repeating the operation, that is, by a step-and-repeat method.
[0035] 以下、具体的な数値例に基づいて、本実施形態の投影光学系 PLの各実施例を説 明する。各実施例において、投影光学系 PLを構成するすべての光学部材 (レンズ成 分および平行平面板)は、石英(Si〇)により形成されている。また、光源 LSとしての  Hereinafter, each example of the projection optical system PL of the present embodiment will be described based on specific numerical examples. In each embodiment, all the optical members (the lens component and the plane-parallel plate) constituting the projection optical system PL are formed of quartz (Si〇). Also, the light source LS
2  2
KrFエキシマレーザ光源から供給されるレーザ光の中心波長は 248. Onmであり、こ の中心波長に対する石英の屈折率は 1. 50839である。  The center wavelength of the laser beam supplied from the KrF excimer laser light source is 248. Onm, and the refractive index of quartz with respect to this center wavelength is 1.50839.
[0036] また、各実施例の投影光学系 PLは、レチクル側から順に、正屈折力の第 1レンズ 群 G1と、第 1リレー系 R12と、負屈折力の第 2レンズ群 G2と、第 2リレー系 R23と、正 屈折力の第 3レンズ群 G3と、第 3リレー系 R34と、負屈折力の第 4レンズ群 G4と、第 4 リレー系 R45と、正屈折力の第 5レンズ群 G5と、第 5リレー系 R56と、正屈折力または 負屈折力の第 6レンズ群 G6とを備えている The projection optical system PL of each embodiment includes, in order from the reticle side, a first lens group G1 having a positive refractive power, a first relay system R12, a second lens group G2 having a negative refractive power, 2 relay system R23, third lens group G3 with positive refractive power, third relay system R34, fourth lens group G4 with negative refractive power, Equipped with a relay system R45, a fifth lens group G5 having a positive refractive power, a fifth relay system R56, and a sixth lens group G6 having a positive or negative refractive power.
[0037] また、各実施例において、非球面は、光軸に垂直な方向の高さを yとし、非球面の 頂点における接平面から高さ yにおける非球面上の位置までの光軸に沿った距離( サグ量)を zとし、頂点曲率半径を rとし、円錐係数を κとし、 n次の非球面係数を Cと n したとき、以下の数式 (a)で表される。後述の表(1 )一(3)において、非球面形状に 形成されたレンズ面には面番号の右側に *印を付している。In each embodiment, the height of the aspheric surface in the direction perpendicular to the optical axis is defined as y, and along the optical axis from the tangent plane at the vertex of the aspheric surface to a position on the aspheric surface at height y. When the distance (sag amount) is z, the vertex radius of curvature is r, the conic coefficient is κ, and the nth order aspheric coefficient is C and n, it is expressed by the following equation (a). In Tables (1) and (3) described below, asterisks (*) are attached to the right side of the surface numbers for lens surfaces formed in an aspherical shape.
Figure imgf000011_0001
Figure imgf000011_0001
+ C - y4 + C -y6 + C -y8 + C ·ν10 + · · · (a) + C - y 4 + C -y 6 + C -y 8 + C · ν 10 + · · · (a)
4 6 8 10  4 6 8 10
[0038] [第 1実施例]  [First Example]
図 2は、第 1実施例に力、かる投影光学系のレンズ構成を示す図である。図 2を参照 すると、第 1実施例の投影光学系 PLにおいて、第 1レンズ群 G1は、レチクル側から 順に、両凸レンズ L1と、レチクル側に凸面を向けた正メニスカスレンズ L2とにより構 成されている。第 1リレー系 R12は、ウェハ側に非球面形状の凹面を向けた負メニス カスレンズ L3により構成されている。第 2レンズ群 G2は、レチクル側から順に、ウェハ 側に非球面形状の凹面を向けた両凹レンズ L4と、両凹レンズ L5とにより構成されて いる。  FIG. 2 is a diagram showing a lens configuration of a projection optical system according to the first embodiment. Referring to FIG. 2, in the projection optical system PL of the first embodiment, the first lens group G1 includes, in order from the reticle side, a biconvex lens L1 and a positive meniscus lens L2 having a convex surface facing the reticle side. ing. The first relay system R12 is composed of a negative meniscus lens L3 having an aspherical concave surface facing the wafer side. The second lens group G2 is composed of, in order from the reticle side, a biconcave lens L4 having an aspherical concave surface facing the wafer side, and a biconcave lens L5.
[0039] 第 2リレー系 R23は、レチクル側に非球面形状の凹面を向けた正メニスカスレンズ L 6により構成されている。第 3レンズ群 G3は、レチクル側から順に、両凸レンズ L7と、 両凸レンズ L8と、両凸レンズ L9と、レチクル側に凸面を向けた正メニスカスレンズ L1 0とにより構成されている。第 3リレー系 R34は、ウェハ側に非球面形状の凹面を向け た正メニスカスレンズ L1 1により構成されている。第 4レンズ群 G4は、レチクル側から 順に、レチクル側に平面を向けた平凹レンズ L12と、両凹レンズ L13と、ウェハ側に 非球面形状の凹面を向けた両凹レンズ L14と、レチクル側に凹面を向けた正メニスカ スレンズ L15とにより構成されている。  [0039] The second relay system R23 includes a positive meniscus lens L6 having an aspherical concave surface facing the reticle side. The third lens group G3 includes, in order from the reticle side, a biconvex lens L7, a biconvex lens L8, a biconvex lens L9, and a positive meniscus lens L10 having a convex surface facing the reticle side. The third relay system R34 is composed of a positive meniscus lens L11 having an aspherical concave surface facing the wafer side. The fourth lens group G4 includes, in order from the reticle side, a plano-concave lens L12 having a flat surface facing the reticle side, a biconcave lens L13, a biconcave lens L14 having an aspherical concave surface facing the wafer side, and a concave surface on the reticle side. And a positive meniscus lens L15.
[0040] 第 4リレー系 R45は、レチクル側に非球面形状の凹面を向けた正メニスカスレンズ L 16により構成されている。第 5レンズ群 G5は、レチクル側から順に、レチクル側に凹 面を向けた正メニスカスレンズ L17と、両凸レンズ L18と、開口絞り ASと、レチクル側 に凸面を向けた正メニスカスレンズ L19と、両凸レンズ L20と、レチクル側に凸面を向 けた正メニスカスレンズ L21とにより構成されている。 [0040] The fourth relay system R45 includes a positive meniscus lens L16 having an aspherical concave surface facing the reticle side. The fifth lens group G5 includes, in order from the reticle side, a positive meniscus lens L17 having a concave surface facing the reticle side, a biconvex lens L18, an aperture stop AS, and a reticle side. A positive meniscus lens L19 having a convex surface facing the lens, a biconvex lens L20, and a positive meniscus lens L21 having a convex surface facing the reticle side.
[0041] 第 5リレー系 R56は、ウェハ側に非球面形状の凹面を向けた正メニスカスレンズ L2 2により構成されている。第 6レンズ群 G6は、レチクル側から順に、ウェハ側に非球面 形状の凹面を向けた正メニスカスレンズ L23と、両凹レンズ L24とにより構成されてい る。なお、レチクル Rと第 1レンズ群 G1との間の光路中には第 1平行平面板 P1が配 置され、第 6レンズ群 G6とウェハ Wとの間の光路中には第 2平行平面板 P2が配置さ れている。 The fifth relay system R56 is composed of a positive meniscus lens L22 having an aspherical concave surface facing the wafer side. The sixth lens group G6 includes, in order from the reticle side, a positive meniscus lens L23 having an aspherical concave surface facing the wafer side, and a biconcave lens L24. A first plane-parallel plate P1 is disposed in the optical path between the reticle R and the first lens group G1, and a second plane-parallel plate is disposed in the optical path between the sixth lens group G6 and the wafer W. P2 is located.
[0042] 次の表(1)に、第 1実施例にかかる投影光学系の諸元の値を掲げる。表(1)の主要 諸元において、 λは露光光の中心波長を、 /3は投影倍率を、 Αは像側(ウェハ側)開 口数を、 Ymは最大像高 (イメージフィールド半径)を、 Lは光学系の全長をそれぞれ 表している。また、表(1)の光学部材諸元において、面番号はレチクル側からの面の 順序を、 rは各光学面の曲率半径 (非球面の場合には頂点曲率半径: mm)を、 dは 各光学面の軸上間隔すなわち面間隔 (mm)を、 D (S)は各光学面の有効半径 (mm )をそれぞれ示している。上述の表記は、以降の表(2)および(3)においても同様で ある。  [0042] The following Table (1) lists values of specifications of the projection optical system according to the first example. In the main specifications of Table (1), λ is the center wavelength of the exposure light, / 3 is the projection magnification, Α is the number of apertures on the image side (wafer side), Ym is the maximum image height (image field radius), L represents the total length of the optical system. In the optical member specifications in Table (1), the surface number indicates the order of the surface from the reticle side, r indicates the radius of curvature of each optical surface (vertical radius of curvature: mm for an aspheric surface), and d indicates The on-axis spacing of each optical surface, that is, the surface spacing (mm), and D (S) indicates the effective radius (mm) of each optical surface. The above notation is also applied to the following tables (2) and (3).
[0043] 表(1)  [0043] Table (1)
(主要諸元)  (Main specifications)
λ = 248. Onm  λ = 248. Onm
β =-1/4  β = -1/4
Α=0. 74  Α = 0.74
Ym= 21. lmm  Ym = 21. lmm
L= 1350mm  L = 1350mm
(光学部材諸元)  (Optical component specifications)
面番号 r d D (S) 光学材料  Surface number r d D (S) Optical material
(レチクル面) 35.0000  (Reticle surface) 35.0000
1 ∞ 8.0000 90.99 石英 (P1)  1 ∞ 8.0000 90.99 Quartz (P1)
2 ∞ 3.0000 91.98 ZG'96 6 Z 'l 9SL'LfL *0G 2 ∞ 3.0000 91.98 ZG'96 6 Z 'l 9 SL'LfL * 0G
0ΖΊ8 OOOO'SI 6S6.9 ト 62 0ΖΊ8 OOOO'SI 6S6.9 G 62
Ϊ9Ί8 IZ69"6^ 9Ζ8Ι8Έ9Ι 82Ϊ9Ί8 IZ69 "6 ^ 9Ζ8Ι8Έ9Ι 82
(εη) S0'88 OOOO'SI 90869·0ΐε- LZ (εη) S0'88 OOOO'SI 90869
99Έ8 SZIZ"6G 11089'891 92 99Έ8 SZIZ "6G 11089'891 92
S6'90I OOOO'QI o 92S6'90I OOOO'QI o 92
OVLZl Ζ9999·999Ι ^ ZOVLZl Ζ9999999Ι ^ Z
(in) 0880'S Ζΐ999"9Ζ2 ZZ οοοο'τ 88 S'968S ZZ(in) 0880'S Ζΐ999 "9Ζ2 ZZ οοοο'τ 88 S'968S ZZ
(0X1) sws IZ (0X1) sws IZ
98 9Ϊ οοοο'τ 60866Έ ΐΐ- oz 98 9Ϊ οοοο'τ 60866Έ ΐΐ- oz
(61) 06·ΐ9ΐ 9 61 (61) 06
Ϊ8·ΐ9ΐ οοοο'τ 0UZVZ0 - SI Ϊ8 · ΐ9ΐ οοοο'τ 0UZVZ0-SI
(81) ΐ ·09ΐ 0SS6'8 SO ' 862ΐ LI ε'6 τ οοοο'τ %S69'0 ε- 91 (81) ΐ09ΐ 0SS6'8 SO '862ΐ LI ε'6 τ οοοο'τ% S69'0 ε-91
ST  ST
68H ΟΟΟΟ'ΐ l m) LV6U 9GGF2G SI008'6S - 68H ΟΟΟΟ'ΐ l m) LV6U 9GGF2G SI008'6S-
98'ZOI ZL£ 8'0£K Z\98'ZOI ZL £ 8'0 £ K Z \
(si) 6678 OOOO'SI S 096'ZZZ- Π (si) 6678 OOOO'SI S 096'ZZZ- Π
0978 9 6·2£ 6LZZ '0££ *0ΐ m) 98 8 0000'9ΐ 8 98H- 6
Figure imgf000013_0001
0978 9 6 2 £ 6 LZZ '0 £ £ * 0ΐ m) 98 8 0000'9ΐ 8 98H-6
Figure imgf000013_0001
(ει) G9'68 0000'9ΐ 8988ΖΌ06 L  (ει) G9'68 0000'9ΐ 8988ΖΌ06 L
06Ό6 ΟΟΟΟ'ΐ 6 8U 9 06Ό6 ΟΟΟΟ'ΐ 6 8U 9
(s ) 'S6 82 81' S (s) 'S6 82 81' S
ΟΟΟΟΊ 699Z9'I29- f ΟΟΟΟΊ 699Z9'I29- f
(Π) εθ" 6 ο 'ε ε (Π) εθ "6 ο 'ε ε
Z£L800/ 00ZdT/13d C^SIOO/SOOZ OAV ZI_0IXS6Z^I ·!-= O 8_0IX 10X68 ' -= O Z £ L800 / 00ZdT / 13d C ^ SIOO / SOOZ OAV ZI _0IXS6Z ^ I!-= O 8 _0IX 10X68 '-= O
0= y 0 = y
鹿 8  Deer 8
( 一^鹿靠^) orzs OOOO'OI o G9 (I ^^^^) orzs OOOO'OI o G9
(Sd) 0000' o 29 (Sd) 0000 'o 29
9 'ss ½S%'S9I TS 9 'ss ½S%' S9I TS
OS'6 0000· S SS00 ' 0 - OS w/os SZW9 *6OS'6 0000S SS00 '0-OS w / os SZW9 * 6
8Γ65 9SI6"6T 9ΐε 6 ^ΐ 88Γ65 9SI6 "6T 9ΐε 6 ^ ΐ 8
02"98 9986Γ9Ζ2 02 "98 9986Γ9Ζ2
(SSI) 5Γ90Ϊ 0000 9 6SS2S'9 τ 9f sr %9 ·8ε 2 S9S'226 f (SSI) 5Γ90Ϊ 0000 9 6SS2S'9 τ 9f sr% 9 · 8 S 2 S9S'226 f
(xsi) S6'9 τ ff ε-89ΐ οοοο'τ 96ΐ96 Ζ8^- £f(xsi) S6'9 τ ff ε-89ΐ οοοο'τ 96ΐ96 Ζ8 ^-£ f
(OS!) 00'091 0Z89'9^ Zf (OS!) 00'091 0Z89'9 ^ Zf
I66S' οτ m s's 6ε If I66S 'οτ m s's 6ε If
(6Π) £6'091 ε 60· 2 ιοοεο'θζ Of(6Π) £ 6'091 ε 602 ιοοεο'θζ Of
(sv) Ι0Ό9Τ 0000'91 o 6G (sv) Ι0Ό9Τ 0000'91 o 6G
9ΓΙ9Ι 0000'2 8SZ6Z'S - 8G 9ΓΙ9Ι 0000'2 8SZ6Z'S-8G
(8Π) 96Έ9Ι 90G'8^ ZG (8Π) 96Έ9Ι 90G'8 ^ ZG
68Έ9Ι 0000'ΐ 0L 8VL f- 9G 68Έ9Ι 0000'ΐ 0L 8VL f-9G
06Ό9Ι ΐ626·8ε 99I66'6ZG0Z- ■ 9G 06Ό9Ι ΐ626 · 8ε 99I66'6ZG0Z- ■ 9G
0000'ΐ 9fSZS'fl£- 0000'ΐ 9fSZS'fl £-
(9Π) 1680"9S 00000 000Ϊ-(9Π) 1680 "9S 00000 000Ϊ-
LV6U οοοο'τ LV6U οοοο'τ
(en) ·96 ¾S0'6 266Z0"802-  (en) 96 ¾S0'6 266Z0 "802-
Z£L800/ 00ZdT/13d ZY C^SIOO/SOOZ OAV
Figure imgf000015_0001
Z £ L800 / 00ZdT / 13d ZY C ^ SIOO / SOOZ OAV
Figure imgf000015_0001
εζ 0Ι Χ89Β8Ζ 'S_= Ο 0I XS6IS9 'ε_= ο oxxgzxo^ ·χ-= ο 6_0Ι ΧΖ9996 '9-= 0 εζ 0Ι Χ89Β8Ζ 'S_ = Ο 0I XS6IS9' ε_ = ο oxxgzxo ^ χ- = ο 6 _0Ι ΧΖ9996 '9- = 0
0= ass 0 = ass
Ιΐ 0I X6Z8SS '3= Ο ; 0ΧΧ6εΖ99 'Ζ-= ο oxxxs8ez ·ζ- -- 〇 Ζ1_0Χ Χ 68^X1^ "S= Ο ζι- 0Χ Χ9303Τ 〇 Ιΐ 0I X6Z8SS '3 = Ο; 0ΧΧ6εΖ99' Ζ- = ο oxxxs8ez · ζ--〇 Ζ1 _0Χ Χ 68 ^ X1 ^ "S = Ο ζι- 0Χ Χ9303Τ 〇
0=  0 =
0I X^0SX9 '9- 01 X88959 Έ一 = 〇 εζ 0I XSSS9I '8= 〇 _0I XS60^9 -= O ,T_0X X X^8XS -Z= D 6_οχχεχεε6 '8_= o 0I X ^ 0SX9 '9- 01 X88959 Έone = ζεζ 0I XSSS9I' 8 = 〇 _0I XS60 ^ 9-= O, T _0X XX ^ 8XS -Z = D 6 _οχχεχεε6 '8_ = o
0= y 0 = y
Π Π
'!= O 0I XS9S6S '8_= O
Figure imgf000015_0002
'! = O 0I XS9S6S' 8_ = O
Figure imgf000015_0002
0XX968e0 'Z= D c 01 X 18690 Έ= O0XX968e0 'Z = D c 01 X 18690 Έ = O
0=0 =
SexSex
Π Π
0I X6IIZZ '6_= O 01 X88Z96 "S= O 0I X6IIZZ '6_ = O 01 X88Z96 "S = O
!^01 X868X9 'ΐ— : 〇 0I XZSI06 Ί-= O ! ^ 01 X868X9 'ΐ—: 〇 0I XZSI06 Ί- = O
' = D 。 Οΐ Χ SS 0 'S= O  '= D. Οΐ Χ SS 0 'S = O
0=  0 =
Π ZlΠ Zl
01 X69^98 "I- D D 01 X69 ^ 98 "I- D D
〇 0I XZ0880 Έ-  〇 0I XZ0880 Έ-
Z£L800/ 00Zdr/13d :0
Figure imgf000016_0001
Z £ L800 / 00Zdr / 13d : 0
Figure imgf000016_0001
26 -29  26 -29
C =-1.05080X10 C =1.08829X10  C = -1.05080X10 C = 1.08829X10
12  12
49面  49 faces
κ =0 κ = 0
C =-5. 62532X 10 c =― 1.08187X10  C = -5.662532X 10 c =-1.08187X10
4 6  4 6
16  16
C =-9. 60476 X 10 c = 5. 14790X10  C = -9.60476 X 10 c = 5.14790X10
10  Ten
-24  -twenty four
C =9. 21431X10 C =] . 11743X10—2  C = 9.21431X10 C =]. 11743X10-2
(条件式対応値)  (Values for conditional expressions)
M=161. 90mm  M = 161.90mm
(1) I (Ni-Nr) X 2 X D/R :0. 002 (L17のレチクノレ側) (1) I (Ni-Nr) X 2 X D / R: 0.002 (L17 reticule side)
(N -Nr) X 2 X D/R =0. 342 (L17のウエノ、側) (N -Nr) X 2 X D/R =0.070(L18のレチクノレ彻 J) (N -Nr) X 2 X D/R =0. 368 (L18のウエノヽ側) (N - Nr) X 2 X D/R =0. 225 (L19のレチクノレ佃」) (N - Nr) X 2 X D/R =0.041(L19のウエノ、側) (N: =0. 385(L20のレチクノレ佃 J) (N: - Nr) X 2 X D/R =0.033 (L20のウエノヽ側) (N: =0. 615 (L21のレチクノレ佃」)(N -Nr) X 2 XD / R = 0.342 (U-side of L17, side) (N -Nr) X 2 XD / R = 0.070 (L18 of L18) (N -Nr) X 2 XD / R = 0.368 (L18 Ueno side) (N-Nr) X 2 XD / R = 0.225 (L19 reticule) (N-Nr) X 2 XD / R = 0.041 (L19 Ueno side) ) (N: = 0.385 (L20 reticule J) (N:-Nr) X 2 XD / R = 0.033 (L20 Ueno side) (N: = 0.615 (L21 reticule)
(Ni-Nr) X 2 X D/R =0. 157 (L21のウエノヽ側) (2)S/Ym=3. 88 (第 8面) (Ni-Nr) X 2 X D / R = 0.157 (Leno side of L21) (2) S / Ym = 3.88 (8th surface)
S/Ym =4. 15 (第 10面)  S / Ym = 4.15 (Stage 10)
S/Ym =5. 65 (第 13面)  S / Ym = 5.65 (Section 13)
S/Ym =6. 04 (第 24面)  S / Ym = 6.04 (Section 24)
S/Ym =4. 52 (第 30面)  S / Ym = 4.52 (Stage 30)
S/Ym =6. 43 (第 33面)  S / Ym = 6.43 (Section 33)
S/Ym =4. 04 (第 47面) S/Ym = 2. 40 (第 49面) S / Ym = 4.04 (Section 47) S / Ym = 2.40 (Stage 49)
(3) 2 X M/ (A X Ym) = 37. 870  (3) 2 X M / (A X Ym) = 37.870
(4) L/Ym = 63. 981  (4) L / Ym = 63. 981
(5) S/M = 0. 506 (第 8面)  (5) S / M = 0.506 (Stage 8)
S/M = 0. 540 (第 10面)  S / M = 0.540 (Stage 10)
S/M = 0. 736 (第 13面)  S / M = 0.736 (Section 13)
S/M = 0. 787 (第 24面)  S / M = 0.787 (Section 24)
S/M = 0. 589 (第 30面)  S / M = 0.589 (Stage 30)
S/M = 0. 838 (第 33面)  S / M = 0.838 (Surface 33)
S/M = 0. 526 (第 47面)  S / M = 0.526 (Surface 47)
S/M = 0. 313 (第 49面)  S / M = 0.313 (Stage 49)
[0044] 図 3は、第 1実施例における横収差を示す図である。収差図において、 Yは像高 (m m)を示している。収差図から明らかなように、第 1実施例では、 A=0. 74という大き な像側開口数および Ym= 21. 1mmという大きな最大像高(ひいては大きなイメージ フィールド)を確保しているにもかかわらず、諸収差が良好に補正されていることがわ かる。  FIG. 3 is a diagram illustrating the lateral aberration in the first example. In the aberration diagram, Y indicates the image height (mm). As is clear from the aberration diagrams, in the first embodiment, a large image-side numerical aperture of A = 0.74 and a large maximum image height (and a large image field) of Ym = 21.1 mm are secured. Regardless, it can be seen that various aberrations are satisfactorily corrected.
[0045] [第 2実施例]  [Second Example]
図 4は、第 2実施例に力かる投影光学系のレンズ構成を示す図である。図 4を参照 すると、第 2実施例の投影光学系 PLにおいて、第 1レンズ群 G1は、レチクル側から 順に、両凸レンズ L1と、レチクル側に凸面を向けた負メニスカスレンズ L2とにより構 成されている。第 1リレー系 R12は、ウェハ側に非球面形状の凹面を向けた負メニス カスレンズ L3により構成されている。第 2レンズ群 G2は、レチクル側から順に、ウェハ 側に非球面形状の凹面を向けた両凹レンズ L4と、レチクル側に凹面を向けた負メニ スカスレンズ L5とにより構成されている。  FIG. 4 is a diagram illustrating a lens configuration of a projection optical system according to a second embodiment. Referring to FIG. 4, in the projection optical system PL of the second embodiment, the first lens group G1 includes, in order from the reticle side, a biconvex lens L1 and a negative meniscus lens L2 having a convex surface facing the reticle side. ing. The first relay system R12 is composed of a negative meniscus lens L3 having an aspherical concave surface facing the wafer side. The second lens group G2 includes, in order from the reticle side, a biconcave lens L4 having an aspherical concave surface facing the wafer side, and a negative meniscus lens L5 having a concave surface facing the reticle side.
[0046] 第 2リレー系 R23は、レチクル側に非球面形状の凹面を向けた正メニスカスレンズ L 6により構成されている。第 3レンズ群 G3は、レチクル側から順に、両凸レンズ L7と、 両凸レンズ L8と、両凸レンズ L9と、レチクル側に凸面を向けた正メニスカスレンズ L1 0とにより構成されている。第 3リレー系 R34は、ウェハ側に非球面形状の凹面を向け た正メニスカスレンズ LI 1により構成されている。第 4レンズ群 G4は、レチクル側から 順に、レチクル側に平面を向けた平凹レンズ L12と、両凹レンズ L13と、ウェハ側に 非球面形状の凹面を向けた両凹レンズ L14と、レチクル側に凹面を向けた正メニスカ スレンズ L15とにより構成されている。 The second relay system R23 includes a positive meniscus lens L6 having an aspherical concave surface facing the reticle side. The third lens group G3 includes, in order from the reticle side, a biconvex lens L7, a biconvex lens L8, a biconvex lens L9, and a positive meniscus lens L10 having a convex surface facing the reticle side. The third relay system R34 has an aspherical concave surface facing the wafer side. It consists of a positive meniscus lens LI1. The fourth lens group G4 includes, in order from the reticle side, a plano-concave lens L12 having a flat surface facing the reticle side, a biconcave lens L13, a biconcave lens L14 having an aspheric concave surface facing the wafer side, and a concave surface on the reticle side. And a positive meniscus lens L15.
[0047] 第 4リレー系 R45は、レチクル側に非球面形状の凹面を向けた正メニスカスレンズ L 16により構成されている。第 5レンズ群 G5は、レチクル側から順に、両凸レンズ L17 と、レチクル側に凸面を向けた正メニスカスレンズ L18と、開口絞り ASと、レチクル側 に凸面を向けた正メニスカスレンズ L19と、両凸レンズ L20とにより構成されている。  The fourth relay system R45 includes a positive meniscus lens L16 having an aspherical concave surface facing the reticle side. The fifth lens group G5 includes, in order from the reticle side, a biconvex lens L17, a positive meniscus lens L18 having a convex surface facing the reticle side, an aperture stop AS, a positive meniscus lens L19 having a convex surface facing the reticle side, and a biconvex lens. L20.
[0048] 第 5リレー系 R56は、レチクル側から順に、レチクル側に凸面を向けた正メニスカス レンズ L21と、ウェハ側に非球面形状の凹面を向けた正メニスカスレンズ L22とにより 構成されている。第 6レンズ群 G6は、レチクル側から順に、ウェハ側に非球面形状の 凹面を向けた正メニスカスレンズ L23と、両凹レンズ L24とにより構成されている。な お、レチクル Rと第 1レンズ群 G1との間の光路中には第 1平行平面板 P1が配置され 、第 6レンズ群 G6とウェハ Wとの間の光路中には第 2平行平面板 P2が配置されてい る。次の表(2)に、第 2実施例に力かる投影光学系の諸元の値を掲げる。  The fifth relay system R56 is composed of, in order from the reticle side, a positive meniscus lens L21 having a convex surface facing the reticle side, and a positive meniscus lens L22 having a non-spherical concave surface facing the wafer side. The sixth lens group G6 includes, in order from the reticle side, a positive meniscus lens L23 having an aspherical concave surface facing the wafer side, and a biconcave lens L24. A first plane-parallel plate P1 is disposed in the optical path between the reticle R and the first lens group G1, and a second plane-parallel plate is disposed in the optical path between the sixth lens group G6 and the wafer W. P2 is located. Table 2 below summarizes the data values of the projection optical system of the second embodiment.
[0049] 表(2)  [0049] Table (2)
(主要諸元)  (Main specifications)
λ = 248. Onm  λ = 248. Onm
β =-1/4  β = -1/4
Α=0. 76  Α = 0.76
Ym= 21. lmm  Ym = 21. lmm
L= 1400mm  L = 1400mm
(光学部材諸元)  (Optical component specifications)
面番号 r d D (S) 光学材料  Surface number r d D (S) Optical material
(レチクル面) 35.0000  (Reticle surface) 35.0000
1 ∞ 8.0000 91.17 石英 (P1)  1 ∞ 8.0000 91.17 Quartz (P1)
2 ∞ 3.0000 92.19  2 ∞ 3.0000 92.19
3 207.15731 41.7507 97.49 石英 (L1) (sn) 99Έ0Ι 969 ^ ιζοοθ'ΐζε- IG 3 207.15731 41.7507 97.49 Quartz (L1) (sn) 99Έ0Ι 969 ^ ιζοοθ'ΐζε- IG
96Ό0Ι GIZZ'GG ^ βδ'ΟΙΟΙ *0G 96Ό0Ι GIZZ'GG ^ βδ'ΟΙΟΙ * 0G
IVZS OOOO'SI 9S8Sr8SI- 62IVZS OOOO'SI 9S8Sr8SI- 62
ZO'28 00968'991 82ZO'28 00968'991 82
(εη) Γ98 OOOO'SI 6Ζΐε9·86Ι- LZ (εη) Γ98 OOOO'SI 6Ζΐε9 · 86Ι- LZ
09·98 sis zf 88 89'Ζ8ΐ 92 0998 sis zf 88 89'Ζ8ΐ 92
9ε'£0ΐ OOOO'QI o 929ε '£ 0ΐ OOOO'QI o 92
%· 2ΐ T092"68 090H6S ^fZ% · 2ΐ T092 "68 090H6S ^ fZ
(in) es-τετ 69 ε'ο ZZ wi οοοο'τ 90689-82SI ZZ(in) es-τετ 69 ε'ο ZZ wi οοοο'τ 90689-82SI ZZ
(on) 0 9'9 6 εε9'062 IZ οε·ε9τ 0000Ί εε ΐ2'682τ- OZ(on) 0 9'9 6 εε9'062 IZ οεε9τ 0000Ί εε ΐ2'682τ- OZ
(61) 6 ' 9ΐ S920'9 εε 61 (61) 6 '9ΐ S920'9 εε 61
IS ' 9ΐ 0000Ί S6W0'09 - SI IS '9ΐ 0000Ί S6W0'09-SI
(81) %·29ΐ s 8S ·εοπ LI οτ·8 τ οοοο'τ LLlWf6Z- 91(81)% 29 s 8Sεεπ LI οτ8 τ οοοο'τ LLlWf6Z- 91
( Ί) 6 H 80 8S Z9 089I 91
Figure imgf000019_0001
(Ί) 6H80 8S Z9 089I 91
Figure imgf000019_0001
(9¾ ¾a 6ΖΈΙΙ OOOO'SI 8606  (9¾ ¾a 6ΖΈΙΙ OOOO'SI 8606
16'ZU 068 SI ΙΙ699·ε96- Z\ 16'ZU 068 SI ΙΙ699
(31) 6976 OOOO'SI SL9WKZ- Π (31) 6976 OOOO'SI SL9WKZ- Π
0VL6 ZZZ\U ZZ\ *0ΐ 0VL6 ZZZ \ U ZZ \ * 0ΐ
6 ' 8 OOOO'SI 6Ζ0ΙΓ00Ζ- 66 '8 OOOO'SI 6Ζ0ΙΓ00Ζ- 6
0 ' 8 90' *80 '8 90' * 8
(ει) ZV6S 0000'9ΐ 899S6'60S L (ει) ZV6S 0000'9ΐ 899S6'60S L
6S'68 66S0"2T S 6LZ'LLl 9 6S'68 66S0 "2T S 6LZ'LLl 9
(s ) SS' 6 0000"5ΐ UZ6'6 S (s) SS '6 0000 "5ΐ UZ6'6 S
ZZ"96 ooocn 89S99"S88- f  ZZ "96 ooocn 89S99" S88- f
Z£L800/ 00ZdT/13d LY C^SIOO/SOOZ OAV IZ_0IX06SS9 = D 0IXSSS6 'ΐ= O Z £ L800 / 00ZdT / 13d LY C ^ SIOO / SOOZ OAV IZ _0IX06SS9 = D 0IXSSS6 'ΐ = O
εΐ_οχχζζζ8θ
Figure imgf000020_0001
Ο
ε ΐ _οχχζζζ8θ
Figure imgf000020_0001
Ο
0= y 鹿 8 0 = y deer 8
6L'Z£ ΟΟΟΟ'ΟΙ ο G96L'Z £ ΟΟΟΟ'ΟΙ ο G9
(Sd) SF9S 0000· οο (Sd) SF9S 0000
οε'9ε mv\ 989ΖΓ809^ TS οε'9ε mv \ 989ΖΓ809 ^ TS
6 9 0000· S ^ZWLZLZ- OS6 9 0000 S ^ ZWLZLZ- OS
IYZ ZLWL εεο 'so2 *6 εο-ΐ9 S60S"6T οεοζ9·9 τ 8IYZ ZLWL εεο 'so2 * 6 εο-ΐ9 S60S "6T οεοζ9 · 9 τ 8
Ϊ9Έ8 SSO'SS Ϊ9Έ8 SSO'SS
(SSI) 62"90I 0000 9 τ9ζε6'6 τ 9f θ9·οετ lf06L'fLZ f (SSI) 62 "90I 0000 9 τ9ζε6'6 τ 9f θ9οετ lf06L'fLZ f
(xsi) 26·τ τ ZI66" S 06 9 ' 66ΐ ff (xsi) 26 · τ τ ZI66 "S 06 9 '66 ΐ ff
8ε·ΐ9ΐ 0000'ΐ £f 8εΐ9ΐ 0000'ΐ £ f
(OS!) fl'£9l Ζ0Ζ9Έ9 εοζεο'ζζε Zf l£'£9l 088 IS 6 ·οεεε If(OS!) Fl '£ 9l Ζ0Ζ9Έ9 εοζεο'ζζε Zf l £' £ 9l 088 IS 6
(6Π) 99Έ9Ι 0000'OG 6SZWL S Of(6Π) 99Έ9Ι 0000'OG 6SZWL S Of
(sv) 8·09ΐ 9669Ί8 o 6G ε 9ΐ 0 89·2£ 8Ζ98Ζ·Ζ88Ι 8G(sv) 809ΐ 9669Ί8 o 6G ε9ΐ 0 892 £ 8Ζ98Ζ88Ι 8G
(8Π) ΪΖΈ9Ι OOOO'OG 9WZ89 ZG (8Π) ΪΖΈ9Ι OOOO'OG 9WZ89 ZG
8 Έ9ΐ ΙΖ0Ζ£'61Ζ- 9G 8 Έ9ΐ ΙΖ0Ζ £ '61 Ζ- 9G
Un) 6 ·09ΐ 9G Un) 609ΐ 9G
20·8 τ οοοο'τ 682'Z6S- ε 20 · 8 τ οοοο'τ 682'Z6S- ε
(9Π) ιζ η οπ9-ζε 00000 000Ϊ- *εε οοοο'τ \fzn- (9Π) ιζ η οπ9-ζε 00000 000Ϊ- * εε οοοο'τ \ fzn-
ZC.800/l700Zdf/X3d 81· C^SIOO/SOOZ OAV
Figure imgf000021_0001
ZC.800 / l700Zdf / X3d 81C ^ SIOO / SOOZ OAV
Figure imgf000021_0001
01 C9X = o / H 01 C9X = o / H
-8-8
8X10 c -12 8X10 c -12
C =2. 4258 15813X10 C = 2.425815813X10
4  Four
-18 21  -18 21
C =5. 40360X10 C =4. 18934X10  C = 5.40360X10 C = 4. 18934X10
8 10  8 10
c -29 c -29
-2. 15463X10 C =2. 91598X10  -2. 15463X10 C = 2.91598X10
12  12
49面  49 faces
κ =0 κ = 0
- 12  -12
C =-5. 49900X10 C =-9. 27298X10  C = -5. 49900X10 C = -9. 27298X10
-16 - 21 -16-21
C =-9. 50711X10 C =-9. 41177X10 C = -9. 50711X10 C = -9. 41177X10
10  Ten
c -24 -27 c -24 -27
59880X 10 C =2. 30786X10  59880X 10 C = 2.30786X10
14  14
(条件式対応値)  (Values for conditional expressions)
M=164. 51mm  M = 164.51mm
(1) I (Ni-Nr) X 2 X D/R | =0. 034 (LI 7のレチクル側) (1) I (Ni-Nr) X 2 X D / R | = 0.034 (LI 7 reticle side)
(N — Nr) X 2 X D/R | =0. 595 (LI 7のウエノヽ側) (N -Nr) X 2 X D/R :0. 244 (L18のレチクル側) (N -Nr) X 2 X D/R :0· 087 (L18のウエノヽ側) (N -Nr) X 2 X D/R :0. 194 (L19のレチクル側) (N - Nr) X 2 X D/R :0. 050 (L 19のウエノヽ側) (N - Nr) X 2 X D/R =0. 509 (L20のレチクル側) (N: =0. 037(L20のウエノ、側)(N — Nr) X 2 XD / R | = 0.595 (Wrench side of LI 7) (N -Nr) X 2 XD / R: 0.244 (L18 reticle side) (N -Nr) X 2 XD / R: 087 (L18 Ueno side) (N -Nr) X 2 XD / R: 0.194 (L19 reticle side) (N-Nr) X 2 XD / R: 0.050 (L (N-Nr) X 2 XD / R = 0.509 (L20 reticle side) (N: = 0.37 (L20 eno side)
(2)S/Ym= =4. 16 (第 8面) (2) S / Ym = = 4.16 (Stage 8)
S/Ym =4 60 (第 10面)  S / Ym = 4 60 (Surface 10)
S/Ym =5 39 (第 13面)  S / Ym = 5 39 (Section 13)
S/Ym =5 92 (第 24面)  S / Ym = 5 92 (Surface 24)
S/Ym =4 78 (第 30面)  S / Ym = 4 78 (Surface 30)
S/Ym =6 79 (第 33面)  S / Ym = 6 79 (Section 33)
S/Ym =3 96 (第 47面)  S / Ym = 3 96 (Surface 47)
S/Ym =2 47 (第 49面)  S / Ym = 2 47 (Stage 49)
(3)2XM/ (A3 XYm) =35. (3) 2XM / (A 3 XYm) = 35.
(4)L/Ym = 66. 351 (5) S/M = = 0· 533 (第 8面) (4) L / Ym = 66.351 (5) S / M = = 0 · 533 (Side 8)
S/M =0. 590 (第 10面)  S / M = 0.590 (Stage 10)
S/M =0. 692 (第 13面)  S / M = 0.692 (Stage 13)
S/M =0. 760 (第 24面)  S / M = 0.760 (Section 24)
S/M =0. 614 (第 30面)  S / M = 0.614 (Stage 30)
S/M =0. 871 (第 33面)  S / M = 0.871 (Section 33)
S/M =0. 508 (第 47面)  S / M = 0.508 (Surface 47)
S/M =0. 317 (第 49面)  S / M = 0.317 (Stage 49)
[0050] 図 5は、第 2実施例における横収差を示す図である。収差図において、 Yは像高 (m m)を示している。収差図から明らかなように、第 2実施例では、 A=0. 76という大き な像側開口数および Ym= 21. 1mmという大きな最大像高(ひいては大きなイメージ フィールド)を確保しているにもかかわらず、諸収差が良好に補正されていることがわ かる。  FIG. 5 is a diagram showing the lateral aberration in the second example. In the aberration diagram, Y indicates the image height (mm). As is clear from the aberration diagrams, in the second embodiment, a large image-side numerical aperture of A = 0.76 and a large maximum image height of Ym = 21.1 mm (and a large image field) are secured. Regardless, it can be seen that various aberrations are satisfactorily corrected.
[0051] [第 3実施例]  [Third embodiment]
図 6は、第 3実施例に力かる投影光学系のレンズ構成を示す図である。図 6を参照 すると、第 3実施例の投影光学系 PLにおいて、第 1レンズ群 G1は、レチクル側から 順に、両凸レンズ L1と、レチクル側に凸面を向けた負メニスカスレンズ L2とにより構 成されている。第 1リレー系 R12は、ウェハ側に非球面形状の凹面を向けた負メニス カスレンズ L3により構成されている。第 2レンズ群 G2は、レチクル側から順に、ウェハ 側に非球面形状の凹面を向けた両凹レンズ L4と、レチクル側に凹面を向けた負メニ スカスレンズ L5とにより構成されている。  FIG. 6 is a diagram illustrating a lens configuration of a projection optical system according to a third embodiment. Referring to FIG. 6, in the projection optical system PL of the third embodiment, the first lens group G1 includes, in order from the reticle side, a biconvex lens L1 and a negative meniscus lens L2 having a convex surface facing the reticle side. ing. The first relay system R12 is composed of a negative meniscus lens L3 having an aspherical concave surface facing the wafer side. The second lens group G2 includes, in order from the reticle side, a biconcave lens L4 having an aspherical concave surface facing the wafer side, and a negative meniscus lens L5 having a concave surface facing the reticle side.
[0052] 第 2リレー系 R23は、レチクル側に非球面形状の凹面を向けた正メニスカスレンズ L 6により構成されている。第 3レンズ群 G3は、レチクル側から順に、両凸レンズ L7と、 両凸レンズ L8と、両凸レンズ L9と、レチクル側に凸面を向けた正メニスカスレンズ L1 0とにより構成されている。第 3リレー系 R34は、ウェハ側に非球面形状の凹面を向け た正メニスカスレンズ L11により構成されている。第 4レンズ群 G4は、レチクル側から 順に、両凹レンズ L12と、両凹レンズ L13と、ウェハ側に非球面形状の凹面を向けた 両凹レンズ L14ととにより構成されている。 [0053] 第 4リレー系 R45は、レチクル側に非球面形状の凹面を向けた正メニスカスレンズ L 15により構成されている。第 5レンズ群 G5は、レチクル側から順に、レチクル側に凹 面を向けた正メニスカスレンズ L16と、レチクル側に凹面を向けた正メニスカスレンズ L17と、両凸レンズ L18と、開口絞り ASと、両凸レンズ L19と、両凸レンズ L20と、レ チクル側に凸面を向けた正メニスカスレンズ L21とにより構成されている。 [0052] The second relay system R23 includes a positive meniscus lens L6 having an aspherical concave surface facing the reticle side. The third lens group G3 includes, in order from the reticle side, a biconvex lens L7, a biconvex lens L8, a biconvex lens L9, and a positive meniscus lens L10 having a convex surface facing the reticle side. The third relay system R34 is composed of a positive meniscus lens L11 with the aspherical concave surface facing the wafer side. The fourth lens group G4 includes, in order from the reticle side, a biconcave lens L12, a biconcave lens L13, and a biconcave lens L14 having an aspherical concave surface facing the wafer side. [0053] The fourth relay system R45 includes a positive meniscus lens L15 having an aspherical concave surface facing the reticle side. The fifth lens group G5 includes, in order from the reticle side, a positive meniscus lens L16 having a concave surface facing the reticle side, a positive meniscus lens L17 having a concave surface facing the reticle side, a biconvex lens L18, an aperture stop AS, It comprises a convex lens L19, a biconvex lens L20, and a positive meniscus lens L21 with the convex surface facing the reticle side.
[0054] 第 5リレー系 R56は、レチクル側から順に、ウェハ側に非球面形状の凹面を向けた 正メニスカスレンズ L22と、ウェハ側に非球面形状の凹面を向けた負メニスカスレンズ L23とにより構成されてレ、る。第 6レンズ群 G6は、レチクル側から順に、レチクル側に 凸面を向けた正メニスカスレンズ L24と、レチクル側に凹面を向けた負メニスカスレン ズ L25とにより構成されてレ、る。なお、レチクル Rと第 1レンズ群 G1との間の光路中に は第 1平行平面板 P1が配置され、第 6レンズ群 G6とウェハ Wとの間の光路中には第 2平行平面板 P2が配置されている。次の表(3)に、第 3実施例にかかる投影光学系 の諸元の値を掲げる。  The fifth relay system R56 includes, in order from the reticle side, a positive meniscus lens L22 having an aspheric concave surface facing the wafer side, and a negative meniscus lens L23 having an aspheric concave surface facing the wafer side. Being done. The sixth lens group G6 includes, in order from the reticle side, a positive meniscus lens L24 having a convex surface facing the reticle side, and a negative meniscus lens L25 having a concave surface facing the reticle side. A first plane-parallel plate P1 is disposed in the optical path between the reticle R and the first lens group G1, and a second plane-parallel plate P2 is disposed in the optical path between the sixth lens group G6 and the wafer W. Is arranged. The following Table 3 shows values of specifications of the projection optical system according to the third example.
[0055] 表(3)  [0055] Table (3)
(主要諸元)  (Main specifications)
λ = 248. Onm  λ = 248. Onm
β =-1/4  β = -1/4
Α=0. 78  Α = 0.78
Ym= 20. 4mm  Ym = 20.4 mm
L= 1350mm  L = 1350mm
(光学部材諸元)  (Optical component specifications)
面番号 r d D (S) 光学材料  Surface number r d D (S) Optical material
(レチクル面) 35.0000  (Reticle surface) 35.0000
1 ∞ 8.0000 88.55 石英 (P1)  1 ∞ 8.0000 88.55 Quartz (P1)
2 ∞ 3.0000 89.59  2 ∞ 3.0000 89.59
3 221.92198 37.6789 94.37 石英 (L1)  3 221.92198 37.6789 94.37 Quartz (L1)
4 -801.14546 1.0000 93.99  4 -801.14546 1.0000 93.99
5 240.90313 18.4939 91.20 石英 (L2) /vD/ O S/-800さ oifcId ssiiAV οΐδεεζ ssrsl 9, 5 240.90313 18.4939 91.20 Quartz (L2) / vD / OS / -800saoifcId ssiiAV οΐδεεζ ssrsl 9,
()2  () 2
()3 δ9∞·
Figure imgf000025_0001
() 3 δ9∞
Figure imgf000025_0001
CO CM ) CO CM)
言)(Word)
Figure imgf000025_0002
Figure imgf000025_0002
()ョ  ()
(3S 9∞ (3S 9∞
() ()
(3S 0∞6000000oooov £·-(3S 0∞6000000oooov £
00001rzzz S£-00001rzzz S £-
(395½ ££ ΐΖ_οχχζο698
Figure imgf000026_0001
ο
(395½ ££ ΐΖ _οχχζο698
Figure imgf000026_0001
ο
εΐ_0ΧΧ88Ι^ 'S_=90 8_0IXZI9S0 '6-= 0 ε ΐ _0ΧΧ88Ι ^ 'S_ = 9 0 8 _0IXZI9S0' 6- = 0
0= y 鹿 8
Figure imgf000026_0002
0 = y deer 8
Figure imgf000026_0002
(Sd) 0000' οο S  (Sd) 0000 'οο S
99"9S οοοο'τ 8ΐ·οεο6ε- es 99 "9S οοοο'τ 8ΐ · οεο6ε-es
(esi) 0000' (esi) 0000 '
ZYZ οε s's L0LLV6 ZI TS ZYZ οε s's L0LLV6 ZI TS
( si) ^ 98'6ΐΐ OS (si) ^ 98'6ΐΐ OS
WZ9 οοοο'τ 6666·6δΐ *6 WZ9 οοοο'τ 6666 · 6δΐ * 6
(8S1) 96 0660 9802ΓΠ9Ϊ 8 (8S1) 96 0660 9802ΓΠ9Ϊ 8
ZZSZ"9T 968sr sn  ZZSZ "9T 968sr sn
(SSI) 0000 9 9f  (SSI) 0000 9 9f
6 '9W 0000'ΐ ε6ε'9ΐ8τ 9 6 '9W 0000'ΐ ε6ε'9ΐ8τ 9
ZV0 1 ΐ6εε·½ ffZV0 1 ΐ6εε½ ff
6S 91 0000'ΐ ΖΙΖΙ9·990ε- £f6S 91 0000'ΐ ΖΙΖΙ9990ε- £ f
(OS!) 89Έ9Ι ^ Sf 'flf Zf (OS!) 89Έ9Ι ^ Sf 'flf Zf
92^91 9Ζ9ΖΈΖ 9Z698'SW8- If 92 ^ 91 9Ζ9ΖΈΖ 9Z698'SW8- If
(6Π) £Vf9l 0000'OG 099Sr60ZI Of(6Π) £ Vf9l 0000'OG 099Sr60ZI Of
(sv) )· 9ΐ 996Ζ'99 ο 6G (sv)) 9ΐ 996Ζ'99 ο 6G
£Vf9l 9009'ΐ 6 W90(H- 8G £ Vf9l 9009'ΐ 6 W90 (H-8G
(8Π) 90' 91
Figure imgf000026_0003
ZG
(8Π) 90 '91
Figure imgf000026_0003
ZG
9Γ69Ϊ οοοο'τ 06 ' 0 - 98 an) WL 1 9886Ό ^0Z8S"80Z9- se  9Γ69Ϊ οοοο'τ 06 '0-98 an) WL 1 9886Ό ^ 0Z8S "80Z9- se
9δ·8 τ οοοο'τ LL£0Z'fL£- ε  9δ8 τ οοοο'τ LL £ 0Z'fL £-ε
Z£L800/ 00ZdT/13d C^SIOO/SOOZ OAV -29Z £ L800 / 00ZdT / 13d C ^ SIOO / SOOZ OAV -29
C =ー1.88209X10 C 3. 20083X10C = -1.88209X10 C 3. 20083X10
12 14 12 14
10面  10 faces
κ =0  κ = 0
—8 -13 —8 -13
C =4.09576X10 C =3. 89039X10 C = 4.09576X10 C = 3.89039X10
21 twenty one
C =-3.48755 X 10 C -- =— 1. 18440X10 C = -3.48755 X 10 C-= — 1. 18440X10
-25  -twenty five
C =1.41439X10 C =-4. 60674X10 C = 1.41439X10 C = -4.60674X10
12 12
13面  13 faces
K =0  K = 0
—9  —9
C =2. 86051X10 C =2. 93148X10  C = 2.86051X10 C = 2. 93148X10
4 6  4 6
-18 22 -18 22
C =2. 22094X10 C =] 60840X10 C = 2.22094X10 C =] 60840X10
-27 -31 -27 -31
C =-1. 39318X10 C =5. 19200X10C = -1.39318X10 C = 5.19200X10
12 12
24面  24 faces
K 0  K 0
c -8.53333X10 C =-2. 10086X10 c - 8.25947X10 C -4. -23 c -8.53333X10 C = -2.10086X10 c-8.25947X10 C -4. -23
76942X10 76942X10
-27 - 2 =4. 31-27-2 = 4.31
C 61828X10 C = - 1. 30652X10C 61828X10 C =-1. 30652X10
1 1
30面  30 faces
0  0
-8  -8
C =2. 37553X10 c ■12 C = 2.37553X10 c ■ 12
X10
Figure imgf000027_0001
X10
Figure imgf000027_0001
c = -26 32 c = -26 32
83271X10 C =7.65773X10 83271X10 C = 7.65773X10
12 -12-
31面 31 faces
κ =0  κ = 0
—9  —9
C =ー5. 85776X10 c 13  C = -5.85776X10 c 13
-1. 51928X 10 -1. 51928X 10
6 = - 18 6 =-18
C =5. 20453X10 c = - - 22  C = 5.20453X10 c =--22
-2. 85614X 10  -2. 85614X 10
31 31
C =8.51498X10 C =-2. 10437X10C = 8.51498X10 C = -2.10437X10
12 12
47面  47 faces
κ =0 -8 κ = 0 -8
C =2.55977X10 c -- -4.87831X10  C = 2.55977X10 c--4.87831X10
4 6  4 6
-17 -21  -17 -21
C =3.11699X10 c -1.10597X10  C = 3.11699X10 c -1.10597X10
8 10  8 10
-26 -31  -26 -31
C =4.39420X10 C -3.82427X10  C = 4.39420X10 C -3.82427X10
12  12
49面  49 faces
K =0  K = 0
C =-9.20918X10 C =-7.21894X10  C = -9.20918X10 C = -7.21894X10
4 6  4 6
16 0 16 0
C =-5.45385X10 c -2 C = -5.45385X10 c -2
=_5.70530X 10  = _5.70530X 10
10  Ten
-24  -twenty four
C =8. 17862X10', C =-2.72052X10  C = 8.17862X10 ', C = -2.72052X10
12  12
(条件式対応値)  (Values for conditional expressions)
M=164.43mm  M = 164.43mm
(1) I (Ni-Nr) X2XD/R =0.093 (LI 6のレチクノレ側)(1) I (Ni-Nr) X2XD / R = 0.093 (Reticole side of LI 6)
(Ni-Nr; X 1 =0. 403 CLl 6のウェハ側) (Ni-Nr 2XD/R 1 =o. 028 (L17のレチクル側) (Ni-Nr 2XD/R 1 =o. 400 (L17のウエノ、側) (Ni-Nr 1 =o. 180 (L18のレチクル側) (Ni-Nr 1 =o. 166 (L18のウェハ側) (Ni-Nr 2XD/R 1 =o. 098 (L19のレチクル側) (Ni-Nr 2XD/R 1 =o. 021 (L19のウエノヽ側) (Ni-Nr 1 =o. 351(L20のレチクノレ佃 J) (Ni-Nr 1 =o. 054(L20のウェハ側) (Ni-Nr X 2 X D/R 1 =o. 608 (L21のレチクル側) (Ni-Nr X2XD/R 1 =o. 082 (L21のウエノヽ側)(Ni-Nr; X 1 = 0.403 CLl 6 wafer side) (Ni-Nr 2XD / R 1 = o. 028 (L17 reticle side) (Ni-Nr 2XD / R 1 = o. 400 (L17 Ueno, side) (Ni-Nr 1 = o. 180 (L18 reticle side) (Ni-Nr 1 = o. 166 (L18 wafer side) (Ni-Nr 2XD / R 1 = o. 098 (L19 reticle Side) (Ni-Nr 2XD / R 1 = o.021 (Lenovo side of L19) (Ni-Nr 1 = o.351 (Ni-Nr X2 XD / R 1 = o. 608 (L21 reticle side) (Ni-Nr X2XD / R 1 = o. 082 (L21 Ueno side)
(2)S/Ym = 4.03 (第 8面) (2) S / Ym = 4.03 (Side 8)
S/Ym = 4.58 (第 10面)  S / Ym = 4.58 (Stage 10)
S/Ym = 5.58 (第 13面)  S / Ym = 5.58 (Stage 13)
S/Ym = 5.62 (第 24面)  S / Ym = 5.62 (Surface 24)
S/Ym = 4.93 (第 30面)  S / Ym = 4.93 (Surface 30)
S/Ym = 5.97(第 31面) S/Ym = 5. 14 (第 47面) S / Ym = 5.97 (Stage 31) S / Ym = 5.14 (Section 47)
S/Ym = 2. 96 (第 49面)  S / Ym = 2.96 (Stage 49)
(3) 2 X M/ (A3 X Ym) = 33. 970 (3) 2 XM / (A 3 X Ym) = 33.970
(4) L/Ym = 66. 176  (4) L / Ym = 66.176
(5) S/M = 0. 517 (第 8面)  (5) S / M = 0.517 (Side 8)
S/M = 0. 588 (第 10面)  S / M = 0.588 (Stage 10)
S/M = 0. 716 (第 13面)  S / M = 0.716 (Section 13)
S/M = 0. 722 (第 24面)  S / M = 0.722 (Section 24)
S/M = 0. 633 (第 30面)  S / M = 0.633 (Stage 30)
S/M = 0. 767 (第 31面)  S / M = 0.767 (Stage 31)
S/M = 0. 659 (第 47面)  S / M = 0.659 (Surface 47)
S/M = 0. 380 (第 49面)  S / M = 0.380 (Stage 49)
[0056] 図 7は、第 3実施例における横収差を示す図である。収差図において、 Yは像高 (m m)を示している。収差図から明らかなように、第 3実施例では、 A=0. 78という大き な像側開口数および Ym= 20. 4mmという大きな最大像高(ひいては大きなイメージ フィールド)を確保しているにもかかわらず、諸収差が良好に補正されていることがわ かる。  FIG. 7 is a diagram illustrating the lateral aberration in the third example. In the aberration diagram, Y indicates the image height (mm). As is clear from the aberration diagrams, in the third embodiment, a large image-side numerical aperture of A = 0.78 and a large maximum image height of Ym = 20.4 mm (and a large image field) are secured. Regardless, it can be seen that various aberrations are satisfactorily corrected.
[0057] 以上のように、各実施例では、波長が 248. Onmの KrFエキシマレーザ光に対して 、Α=0· 74-0. 78の大きな像側開口数を確保するとともに、 Ym= 21. 1mmまた は 20· 4mmの大きなイメージフィールドを確保することができる。その結果、第 1実施 例および第 2実施例では、たとえば 33mm X 26mmの矩形状の露光領域内に、ステ ップ'アンド'リピート方式にしたがって回路パターンを高解像で一括露光することが できる。また、第 3実施例では、たとえば 32mm X 25mmの矩形状の露光領域内に、 ステップ'アンド'リピート方式にしたがって回路パターンを高解像で一括露光すること ができる。  As described above, in each embodiment, for the KrF excimer laser light having a wavelength of 248. Onm, a large image-side numerical aperture of Α = 0.74-0.78 is secured, and Ym = 21. A large image field of 1 mm or 20.4 mm can be secured. As a result, in the first embodiment and the second embodiment, a circuit pattern can be exposed at a high resolution according to the step-and-repeat method in a rectangular exposure area of, for example, 33 mm × 26 mm. . In the third embodiment, a circuit pattern can be exposed at a high resolution in a rectangular exposure area of, for example, 32 mm × 25 mm in accordance with a step-and-repeat method.
[0058] 上述の実施形態の露光装置では、照明系によってレチクル (マスク)を照明し (照明 工程)、投影光学系を用いてマスクに形成された転写用のパターンを感光性基板に 露光する(露光工程)ことにより、マイクロデバイス(半導体素子、撮像素子、液晶表示 素子、薄膜磁気ヘッド等)を製造することができる。以下、本実施形態の露光装置を 用いて感光性基板としてのウェハ等に所定の回路パターンを形成することによって、 マイクロデバイスとしての半導体デバイスを得る際の手法の一例につき図 8のフロー チャートを参照して説明する。 In the exposure apparatus of the above-described embodiment, the reticle (mask) is illuminated by the illumination system (illumination step), and the transfer pattern formed on the mask is exposed on the photosensitive substrate using the projection optical system ( Exposure process) allows micro devices (semiconductor devices, image sensors, liquid crystal displays Element, thin-film magnetic head, etc.). Hereinafter, with reference to the flow chart of FIG. 8, an example of a method for obtaining a semiconductor device as a micro device by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate using the exposure apparatus of the present embodiment. Will be explained.
[0059] 先ず、図 8のステップ 301において、 1ロットのウェハ上に金属膜が蒸着される。次の ステップ 302において、その 1ロットのウェハ上の金属膜上にフォトレジストが塗布され る。その後、ステップ 303において、本実施形態の露光装置を用いて、マスク上のパ ターンの像がその投影光学系を介して、その 1ロットのウェハ上の各ショット領域に順 次露光転写される。その後、ステップ 304において、その 1ロットのウェハ上のフォトレ ジストの現像が行われた後、ステップ 305において、その 1ロットのウェハ上でレジスト パターンをマスクとしてエッチングを行うことによって、マスク上のパターンに対応する 回路パターンが、各ウェハ上の各ショット領域に形成される。  First, in step 301 of FIG. 8, a metal film is deposited on one lot of wafers. In the next step 302, a photoresist is applied on the metal film on the one lot wafer. Thereafter, in step 303, using the exposure apparatus of the present embodiment, an image of the pattern on the mask is sequentially exposed and transferred to each shot area on the wafer of the lot through the projection optical system. Then, in step 304, the photo resist on the one lot of wafers is developed, and in step 305, the pattern on the mask is etched by etching the one lot of wafers using the resist pattern as a mask. A corresponding circuit pattern is formed in each shot area on each wafer.
[0060] その後、更に上のレイヤの回路パターンの形成等を行うことによって、半導体素子 等のデバイスが製造される。上述の半導体デバイス製造方法によれば、極めて微細 な回路パターンを有する半導体デバイスをスループット良く得ることができる。なお、 ステップ 301—ステップ 305では、ウェハ上に金属を蒸着し、その金属膜上にレジスト を塗布、そして露光、現像、エッチングの各工程を行っている力 これらの工程に先 立って、ウェハ上にシリコンの酸化膜を形成後、そのシリコンの酸化膜上にレジストを 塗布、そして露光、現像、エッチング等の各工程を行っても良いことはいうまでもない  Thereafter, a device such as a semiconductor element is manufactured by forming a circuit pattern of an upper layer and the like. According to the above-described semiconductor device manufacturing method, a semiconductor device having an extremely fine circuit pattern can be obtained with good throughput. In step 301-step 305, a metal is vapor-deposited on the wafer, a resist is applied on the metal film, and the force of performing each of the steps of exposure, development, and etching is performed on the wafer prior to these steps. After the silicon oxide film is formed on the silicon oxide film, it is needless to say that a resist may be applied on the silicon oxide film, and the respective steps such as exposure, development, and etching may be performed.
[0061] また、本実施形態の露光装置では、プレート (ガラス基板)上に所定のパターン(回 路パターン、電極パターン等)を形成することによって、マイクロデバイスとしての液晶 表示素子を得ることもできる。以下、図 9のフローチャートを参照して、このときの手法 の一例につき説明する。図 9において、パターン形成工程 401では、本実施形態の 露光装置を用いてマスクのパターンを感光性基板(レジストが塗布されたガラス基板 等)に転写露光する、所謂光リソグラフイエ程が実行される。この光リソグラフィー工程 によって、感光性基板上には多数の電極等を含む所定パターンが形成される。その 後、露光された基板は、現像工程、エッチング工程、レジスト剥離工程等の各工程を 経ることによって、基板上に所定のパターンが形成され、次のカラーフィルター形成 工程 402へ移行する。 In the exposure apparatus of the present embodiment, a liquid crystal display element as a microdevice can be obtained by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate). . Hereinafter, an example of the technique at this time will be described with reference to the flowchart in FIG. In FIG. 9, in a pattern forming step 401, a so-called optical lithography process of transferring and exposing a mask pattern onto a photosensitive substrate (eg, a glass substrate coated with a resist) using the exposure apparatus of the present embodiment is performed. . By this photolithography process, a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate. After that, the exposed substrate is subjected to various steps such as a developing step, an etching step, and a resist removing step. As a result, a predetermined pattern is formed on the substrate, and the process proceeds to the next color filter forming step 402.
[0062] 次に、カラーフィルター形成工程 402では、 R (Red)、 G (Green)、 B (Blue)に対応し た 3つのドットの組がマトリックス状に多数配列されたり、または R、 G、 Bの 3本のストラ イブのフィルターの組を複数水平走査線方向に配列されたりしたカラーフィルターを 形成する。そして、カラーフィルター形成工程 402の後に、セル組み立て工程 403が 実行される。セル組み立て工程 403では、パターン形成工程 401にて得られた所定 パターンを有する基板、およびカラーフィルター形成工程 402にて得られたカラーフ ィルター等を用いて液晶パネル (液晶セル)を組み立てる。セル組み立て工程 403で は、例えば、パターン形成工程 401にて得られた所定パターンを有する基板とカラー フィルター形成工程 402にて得られたカラーフィルターとの間に液晶を注入して、液 晶パネル (液晶セル)を製造する。  [0062] Next, in the color filter forming step 402, a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix, or R, G, A color filter is formed by arranging a plurality of sets of filters of three stripes B in the horizontal scanning line direction. Then, after the color filter forming step 402, a cell assembling step 403 is performed. In a cell assembling step 403, a liquid crystal panel (liquid crystal cell) is assembled using the substrate having the predetermined pattern obtained in the pattern forming step 401, the color filter obtained in the color filter forming step 402, and the like. In the cell assembling step 403, for example, a liquid crystal is injected between the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402, and a liquid crystal panel ( Liquid crystal cell).
[0063] その後、モジュール組み立て工程 404にて、組み立てられた液晶パネル(液晶セル )の表示動作を行わせる電気回路、バックライト等の各部品を取り付けて液晶表示素 子として完成させる。上述の液晶表示素子の製造方法によれば、極めて微細な回路 パターンを有する液晶表示素子をスループット良く得ることができる。  Thereafter, in a module assembling step 404, components such as an electric circuit and a backlight for performing a display operation of the assembled liquid crystal panel (liquid crystal cell) are attached to complete a liquid crystal display element. According to the above-described method for manufacturing a liquid crystal display device, a liquid crystal display device having an extremely fine circuit pattern can be obtained with high throughput.
[0064] なお、上述の実施形態では、ウェハ Wの各露光領域に対してレチクル Rのパターン を一括的に露光するステップ'アンド'リピート方式の露光装置に本発明を適用してい る。し力 ながら、これに限定されることなぐウェハ Wとレチクル Rとを投影光学系 PL に対して相対移動させつつウェハ Wの各露光領域に対してレチクル Rのパターンを 走査露光するステップ ·アンド'スキャン方式の露光装置に本発明を適用することもで きる。  In the above-described embodiment, the present invention is applied to the step-and-repeat type exposure apparatus that collectively exposes the pattern of the reticle R to each exposure area of the wafer W. However, the scanning and exposing of the pattern of the reticle R on each exposure area of the wafer W while moving the wafer W and the reticle R relatively to the projection optical system PL are not limited to this. The present invention can also be applied to a scanning type exposure apparatus.
[0065] また、上述の実施形態では、 248. Onmの波長光を供給する KrFエキシマレーザ 光源を用いているが、これに限定されることなぐ所定の波長を有する光(例えば ArF エキシマレーザからの 193nmの波長光、水銀ランプからの i線(365nm)の波長光) を供給する他の適当な光源に対して本発明を適用することもできる。また、上述の実 施形態では、露光装置に搭載される投影光学系に対して本発明を適用しているが、 これに限定されることなぐ他の一般的な投影光学系に対して本発明を適用すること ちでさる。 In the above-described embodiment, a KrF excimer laser light source that supplies 248. Onm wavelength light is used, but light having a predetermined wavelength that is not limited to this (for example, light from an ArF excimer laser) is used. The present invention can be applied to any other suitable light source that supplies light having a wavelength of 193 nm and i-line (365 nm) from a mercury lamp. Further, in the above-described embodiment, the present invention is applied to the projection optical system mounted on the exposure apparatus. Applying I don't know
符号の説明 Explanation of symbols
LS 光源 LS light source
IL 照明光学系  IL illumination optical system
R レチクノレ R Rechikunore
RS レチクルステージ PL 投影光学系 W ウェハ RS Reticle stage PL Projection optical system W Wafer
WS ウェハステージ G1 第 1レンズ群 G2 第 2レンズ群 G3 第 3レンズ群 G4 第 4レンズ群 G5 第 5レンズ群 G6 第 6レンズ群 R12 第 1リレー系 R23 第 2リレー系 R34 第 3リレー系 R45 第 4リレー系 R56 第 5リレー系 Li レンズ成分  WS Wafer stage G1 First lens group G2 Second lens group G3 Third lens group G4 Fourth lens group G5 Fifth lens group G6 Sixth lens group R12 First relay system R23 Second relay system R34 Third relay system R45 4 relay system R56 5th relay system Li lens component
AS 開口絞り AS aperture stop
PI , P2 平行平面板 PI, P2 Parallel flat plate

Claims

請求の範囲 The scope of the claims
[1] 第 1面の縮小像を第 2面上に形成する投影光学系において、  [1] In a projection optical system that forms a reduced image of the first surface on the second surface,
前記第 1面側から光の入射順に、  From the first surface side in the order of light incidence,
正の屈折力を有する第 1レンズ群と、  A first lens group having a positive refractive power,
少なくとも 1つの非球面形状の光学面を含む第 1リレー系と、  A first relay system including at least one aspheric optical surface;
少なくとも 2つの負レンズを含み、負の屈折力を有する第 2レンズ群と、 少なくとも 1つの非球面形状の光学面を含む第 2リレー系と、  A second lens group including at least two negative lenses and having a negative refractive power; a second relay system including at least one aspheric optical surface;
少なくとも 2つの正レンズを含み、正の屈折力を有する第 3レンズ群と、 少なくとも 1つの非球面形状の光学面を含む第 3リレー系と、  A third lens group including at least two positive lenses and having a positive refractive power; a third relay system including at least one aspheric optical surface;
少なくとも 2つの負レンズを含み、負の屈折力を有する第 4レンズ群と、 少なくとも 1つの非球面形状の光学面を含む第 4リレー系と、  A fourth lens group including at least two negative lenses and having a negative refractive power, a fourth relay system including at least one aspheric optical surface,
少なくとも 2つの正レンズを含み、正の屈折力を有する第 5レンズ群と、 少なくとも 1つの非球面形状の光学面を含む第 5リレー系と、  A fifth lens group including at least two positive lenses and having a positive refractive power; a fifth relay system including at least one aspheric optical surface;
正の屈折力または負の屈折力を有する第 6レンズ群とを備えていることを特徴とす る投影光学系。  A projection optical system, comprising: a sixth lens group having a positive refractive power or a negative refractive power.
[2] 第 1面の縮小像を第 2面上に形成する投影光学系において、  [2] In a projection optical system that forms a reduced image of the first surface on the second surface,
前記第 1面と前記第 2面との間の光路中に配置されて、正の屈折力を有する第 1レ ンズ群と、  A first lens group disposed in an optical path between the first surface and the second surface and having a positive refractive power;
前記第 1レンズ群と前記第 2面との間の光路中に配置されて、少なくとも 1つの非球 面形状の光学面を含む第 1リレー系と、  A first relay system disposed in an optical path between the first lens group and the second surface, the first relay system including at least one aspherical optical surface;
前記第 1リレー系と前記第 2面との間の光路中に配置されて、少なくとも 2つの負レ ンズを含み、負の屈折力を有する第 2レンズ群と、  A second lens group disposed in an optical path between the first relay system and the second surface and including at least two negative lenses and having a negative refractive power;
前記第 2レンズ群と前記第 2面との間の光路中に配置されて、少なくとも 1つの非球 面形状の光学面を含む第 2リレー系と、  A second relay system disposed in an optical path between the second lens group and the second surface, the second relay system including at least one aspherical optical surface;
前記第 2リレー系と前記第 2面との間の光路中に配置されて、少なくとも 2つの正レ ンズを含み、正の屈折力を有する第 3レンズ群と、  A third lens group disposed in an optical path between the second relay system and the second surface and including at least two positive lenses and having a positive refractive power;
前記第 3レンズ群と前記第 2面との間の光路中に配置されて、少なくとも 1つの非球 面形状の光学面を含む第 3リレー系と、 前記第 3リレー系と前記第 2面との間の光路中に配置されて、少なくとも 2つの負レ ンズを含み、負の屈折力を有する第 4レンズ群と、 A third relay system disposed in an optical path between the third lens group and the second surface, the third relay system including at least one aspherical optical surface; A fourth lens group disposed in an optical path between the third relay system and the second surface and including at least two negative lenses and having a negative refractive power;
前記第 4レンズ群と前記第 2面との間の光路中に配置されて、少なくとも 1つの非球 面形状の光学面を含む第 4リレー系と、  A fourth relay system disposed in an optical path between the fourth lens group and the second surface, the fourth relay system including at least one aspherical optical surface;
前記第 4リレー系と前記第 2面との間の光路中に配置されて、少なくとも 2つの正レ ンズを含み、正の屈折力を有する第 5レンズ群と、  A fifth lens group disposed in an optical path between the fourth relay system and the second surface, including at least two positive lenses, and having a positive refractive power;
前記第 5レンズ群と前記第 2面との間との間の光路中に配置されて、少なくとも 1つ の非球面形状の光学面を含む第 5リレー系と、  A fifth relay system disposed in an optical path between the fifth lens group and the second surface, the fifth relay system including at least one aspheric optical surface;
前記第 5リレー系と前記第 2面との間の光路中に配置されて、正の屈折力または負 の屈折力を有する第 6レンズ群とを備えていることを特徴とする投影光学系。  A projection optical system, comprising: a sixth lens group disposed in an optical path between the fifth relay system and the second surface and having a positive refractive power or a negative refractive power.
[3] 前記第 4レンズ群は、少なくとも 3つの負レンズを含むことを特徴とする請求項 1また は 2に記載の投影光学系。 3. The projection optical system according to claim 1, wherein the fourth lens group includes at least three negative lenses.
[4] 前記投影光学系は、前記第 1面側および前記第 2面側の双方にほぼテレセントリック であり、 [4] The projection optical system is substantially telecentric on both the first surface side and the second surface side,
前記第 5レンズ群の光路中には、可変開口部を有する開口絞りが配置されているこ とを特徴とする請求項 1乃至 3のいずれ力 1項に記載の投影光学系。  4. The projection optical system according to claim 1, wherein an aperture stop having a variable aperture is disposed in an optical path of the fifth lens group.
[5] 前記第 2レンズ群は負レンズのみにより構成されていることを特徴とする請求項 1乃至 5. The second lens group according to claim 1, wherein the second lens group includes only a negative lens.
4のレ、ずれか 1項に記載の投影光学系。  4. The projection optical system according to item 1.
[6] 前記第 3レンズ群は正レンズのみにより構成されていることを特徴とする請求項 1乃至 6. The third lens group according to claim 1, wherein the third lens group includes only a positive lens.
5のレ、ずれか 1項に記載の投影光学系。  5. The projection optical system according to item 1.
[7] 前記第 5レンズ群を構成するすべての光学面は、各光学面の曲率半径を Rとし、各 光学面の有効半径を Dとし、各光学面の入射側屈折率を Niとし、各光学面の射出側 屈折率を Nrとするとき、 [7] For all the optical surfaces constituting the fifth lens group, the radius of curvature of each optical surface is R, the effective radius of each optical surface is D, the refractive index on the incident side of each optical surface is Ni, and When the refractive index on the exit side of the optical surface is Nr,
I (Ni-Nr) X 2 X D/R | < 0. 62  I (Ni-Nr) X 2 X D / R | <0.62
の条件を満足することを特徴とする請求項 1乃至 6のいずれか 1項に記載の投影光 学系。  The projection optical system according to any one of claims 1 to 6, wherein the following condition is satisfied.
[8] 前記投影光学系に含まれる非球面形状の光学面の有効半径を Sとし、最大像高を Y mとするとき、前記投影光学系に含まれるすべての非球面形状の光学面が、 S/Ym< 10. 8 [8] When the effective radius of the aspherical optical surface included in the projection optical system is S and the maximum image height is Ym, all the aspheric optical surfaces included in the projection optical system are S / Ym <10.8
の条件を満足することを特徴とする請求項 1乃至 7のいずれか 1項に記載の投影光 学系。  The projection optical system according to any one of claims 1 to 7, wherein the following condition is satisfied.
[9] 第 1面の縮小像を第 2面上に形成する投影光学系において、  [9] In a projection optical system that forms a reduced image of the first surface on the second surface,
像側の開口数を Aとし、最大像高を Ymとし、前記投影光学系中の光学面のうち最 大の有効半径を有する光学面の最大有効半径を Mとし、前記投影光学系の全長を The numerical aperture on the image side is A, the maximum image height is Ym, the maximum effective radius of the optical surface having the largest effective radius among the optical surfaces in the projection optical system is M, and the total length of the projection optical system is
Lとするとき、 When L
32< 2 X M/ (A3 X Ym) < 39 32 <2 XM / (A 3 X Ym) <39
38く L/Ymく 80  38 L / Ym 80
の条件を満足することを特徴とする投影光学系。  A projection optical system that satisfies the following condition:
[10] 前記投影光学系は少なくとも 1つの非球面形状の光学面を含み、 [10] The projection optical system includes at least one aspherical optical surface,
前記投影光学系中のすべての非球面形状の光学面は、非球面形状の各光学面の 有効半径を sとし、前記投影光学系中の光学面のうち最大の有効半径を有する光学 面の最大有効半径を Mとするとき、  All the aspherical optical surfaces in the projection optical system have the effective radius of each aspherical optical surface as s, and the maximum of the optical surfaces having the largest effective radius among the optical surfaces in the projection optical system. When the effective radius is M,
S/Mく 0. 90  S / M-ku 0.90
の条件を満足することを特徴とする請求項 1乃至 9のいずれか 1項に記載の投影光 学系。  The projection optical system according to any one of claims 1 to 9, wherein the following condition is satisfied.
[11] 前記第 1面側から光の入射順に、  [11] From the first surface side, in the order of incidence of light,
正の屈折力を有する第 1レンズ群と、  A first lens group having a positive refractive power,
少なくとも 1つの非球面形状の光学面を含む第 1リレー系と、  A first relay system including at least one aspheric optical surface;
少なくとも 2つの負レンズを含み、負の屈折力を有する第 2レンズ群と、 少なくとも 1つの非球面形状の光学面を含む第 2リレー系と、  A second lens group including at least two negative lenses and having a negative refractive power; a second relay system including at least one aspheric optical surface;
少なくとも 2つの正レンズを含み、正の屈折力を有する第 3レンズ群と、 少なくとも 1つの非球面形状の光学面を含む第 3リレー系と、  A third lens group including at least two positive lenses and having a positive refractive power; a third relay system including at least one aspheric optical surface;
少なくとも 2つの負レンズを含み、負の屈折力を有する第 4レンズ群と、 少なくとも 1つの非球面形状の光学面を含む第 4リレー系と、  A fourth lens group including at least two negative lenses and having a negative refractive power, a fourth relay system including at least one aspheric optical surface,
少なくとも 2つの正レンズを含み、正の屈折力を有する第 5レンズ群と、 少なくとも 1つの非球面形状の光学面を含む第 5リレー系と、 正の屈折力または負の屈折力を有する第 6レンズ群とを備えていることを特徴とす る請求項 9に記載の投影光学系。 A fifth lens group including at least two positive lenses and having a positive refractive power; a fifth relay system including at least one aspheric optical surface; 10. The projection optical system according to claim 9, further comprising: a sixth lens group having a positive refractive power or a negative refractive power.
[12] 前記第 4レンズ群は、少なくとも 3つの負レンズを含むことを特徴とする請求項 11に記 載の投影光学系。 12. The projection optical system according to claim 11, wherein the fourth lens group includes at least three negative lenses.
[13] 前記投影光学系は、前記第 1面側および前記第 2面側の双方にほぼテレセントリック であり、  [13] The projection optical system is substantially telecentric on both the first surface side and the second surface side,
前記第 5レンズ群の光路中には、可変開口部を有する開口絞りが配置されているこ とを特徴とする請求項 11または 12に記載の投影光学系。  13. The projection optical system according to claim 11, wherein an aperture stop having a variable aperture is arranged in an optical path of the fifth lens group.
[14] 前記第 2レンズ群は負レンズのみにより構成されていることを特徴とする請求項 11乃 至 13のいずれか 1項に記載の投影光学系。 14. The projection optical system according to claim 11, wherein the second lens group includes only a negative lens.
[15] 前記第 3レンズ群は正レンズのみにより構成されていることを特徴とする請求項 11乃 至 14のいずれか 1項に記載の投影光学系。 15. The projection optical system according to claim 11, wherein the third lens group includes only a positive lens.
[16] 前記第 5レンズ群を構成するすべての光学面は、各光学面の曲率半径を Rとし、各 光学面の有効半径を Dとし、各光学面の入射側屈折率を Niとし、各光学面の射出側 屈折率を Nrとするとき、 [16] For all the optical surfaces constituting the fifth lens group, the radius of curvature of each optical surface is R, the effective radius of each optical surface is D, the refractive index on the incident side of each optical surface is Ni, and When the refractive index on the exit side of the optical surface is Nr,
I (Ni-Nr) X 2 X D/R | < 0. 62  I (Ni-Nr) X 2 X D / R | <0.62
の条件を満足することを特徴とする請求項 11乃至 15のいずれか 1項に記載の投影 光学系。  The projection optical system according to any one of claims 11 to 15, wherein the following condition is satisfied.
[17] 前記投影光学系に含まれる非球面形状の光学面の有効半径を Sとし、最大像高を Y mとするとき、前記投影光学系に含まれるすべての非球面形状の光学面が、  [17] When the effective radius of the aspherical optical surface included in the projection optical system is S and the maximum image height is Ym, all the aspheric optical surfaces included in the projection optical system are
S/Ym< 10. 8  S / Ym <10.8
の条件を満足することを特徴とする請求項 11乃至 16のいずれか 1項に記載の投影 光学系。  17. The projection optical system according to claim 11, wherein the following condition is satisfied.
[18] 前記投影光学系中のすべての非球面形状の光学面は、非球面形状の各光学面の 有効半径を Sとし、前記投影光学系中の光学面のうち最大の有効半径を有する光学 面の最大有効半径を Mとするとき、  [18] All the aspherical optical surfaces in the projection optical system have an effective radius of each aspherical optical surface as S, and an optical surface having the largest effective radius among the optical surfaces in the projection optical system. When the maximum effective radius of the surface is M,
S/M< 0. 90  S / M <0.90
の条件を満足することを特徴とする請求項 11乃至 17のいずれか 1項に記載の投影 光学系。 The projection according to any one of claims 11 to 17, wherein the following condition is satisfied. Optical system.
[19] 前記第 1面に設定されたマスクを照明するための照明系と、前記マスクに形成された パターンの像を前記第 2面に設定された感光性基板上に形成するための請求項 1乃 至 18のいずれ力 4項に記載の投影光学系とを備えていることを特徴とする露光装置  [19] An illumination system for illuminating the mask set on the first surface, and an image of a pattern formed on the mask on a photosensitive substrate set on the second surface. An exposure apparatus comprising: the projection optical system according to Item 4;
[20] 前記投影光学系に対して前記マスクおよび前記感光性基板を相対的に静止させた 状態で露光を行うことを特徴とする請求項 19に記載の露光装置。 20. The exposure apparatus according to claim 19, wherein the exposure is performed with the mask and the photosensitive substrate relatively stationary with respect to the projection optical system.
[21] 前記第 1面に設定されたマスクを照明する照明工程と、請求項 1乃至 18のいずれか 1項に記載の投影光学系を介して、前記照明工程により照明された前記マスクのパタ ーンを前記第 2面に設定された感光性基板上に露光する露光工程と、前記露光ェ 程により露光された前記感光性基板を現像する現像工程とを含むことを特徴とする デバイス製造方法。  [21] An illumination step of illuminating the mask set on the first surface, and a pattern of the mask illuminated by the illumination step via the projection optical system according to any one of claims 1 to 18. A method of exposing the photosensitive substrate set on the second surface to a photosensitive substrate, and a developing step of developing the photosensitive substrate exposed by the exposing step. .
[22] 前記露光工程では、前記投影光学系に対して前記マスクおよび前記感光性基板を 相対的に静止させた状態で露光を行うことを特徴とする請求項 21に記載のデバイス 製造方法。  22. The device manufacturing method according to claim 21, wherein, in the exposing step, the exposure is performed with the mask and the photosensitive substrate relatively stationary with respect to the projection optical system.
PCT/JP2004/008732 2003-06-26 2004-06-22 Projection optical system, exposure system, and device production method WO2005001543A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-182885 2003-06-26
JP2003182885A JP2005017734A (en) 2003-06-26 2003-06-26 Projecting optical system, exposure unit, and device manufacturing method

Publications (1)

Publication Number Publication Date
WO2005001543A1 true WO2005001543A1 (en) 2005-01-06

Family

ID=33549564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008732 WO2005001543A1 (en) 2003-06-26 2004-06-22 Projection optical system, exposure system, and device production method

Country Status (2)

Country Link
JP (1) JP2005017734A (en)
WO (1) WO2005001543A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8908269B2 (en) 2004-01-14 2014-12-09 Carl Zeiss Smt Gmbh Immersion catadioptric projection objective having two intermediate images
US8913316B2 (en) 2004-05-17 2014-12-16 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9772478B2 (en) 2004-01-14 2017-09-26 Carl Zeiss Smt Gmbh Catadioptric projection objective with parallel, offset optical axes
WO2018141713A1 (en) 2017-02-03 2018-08-09 Asml Netherlands B.V. Exposure apparatus
CN109856915A (en) * 2017-11-30 2019-06-07 上海微电子装备(集团)股份有限公司 Photoetching projection objective lens, edge exposure system and edge exposure device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499876B (en) * 2013-10-10 2015-07-29 中国科学院光电技术研究所 A kind of pure refractive projection optics system of large-numerical aperture
CN104035187B (en) * 2014-06-06 2017-04-26 中国科学院光电技术研究所 Pure reflecting dry type projection optical system with large numerical aperture

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231058A (en) * 1999-02-12 2000-08-22 Nikon Corp Projection optical system, projection exposure device equipped with the system and production of device
WO2001050171A1 (en) * 1999-12-29 2001-07-12 Carl Zeiss Projection lens comprising adjacent aspheric lens surfaces
WO2002052346A1 (en) * 2000-12-22 2002-07-04 Carl Zeiss Smt Ag Objective with at least one aspherical lens
WO2002052303A2 (en) * 2000-12-22 2002-07-04 Carl Zeiss Smt Ag Projection lens
JP2002244036A (en) * 2000-12-22 2002-08-28 Carl Zeiss:Fa Projection lens and method of manufacturing part having very fine structure
JP2002244035A (en) * 2000-12-11 2002-08-28 Nikon Corp Projection optical system and exposure device provided with it
JP2002365538A (en) * 2001-06-13 2002-12-18 Nikon Corp Projection optical system and exposure device provided with the same
JP2002544569A (en) * 1999-05-14 2002-12-24 カール−ツアイス−スチフツング Projection lens for microlithography
EP1304594A2 (en) * 2001-10-17 2003-04-23 Carl Zeiss Semiconductor Manufacturing Technologies Ag Projection exposure device for microlithography at 200 nm
CN1417610A (en) * 2001-11-05 2003-05-14 尼康株式会社 Projection optical system, explosure device and making process of equipment

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231058A (en) * 1999-02-12 2000-08-22 Nikon Corp Projection optical system, projection exposure device equipped with the system and production of device
JP2002544569A (en) * 1999-05-14 2002-12-24 カール−ツアイス−スチフツング Projection lens for microlithography
WO2001050171A1 (en) * 1999-12-29 2001-07-12 Carl Zeiss Projection lens comprising adjacent aspheric lens surfaces
JP2002244035A (en) * 2000-12-11 2002-08-28 Nikon Corp Projection optical system and exposure device provided with it
WO2002052346A1 (en) * 2000-12-22 2002-07-04 Carl Zeiss Smt Ag Objective with at least one aspherical lens
WO2002052303A2 (en) * 2000-12-22 2002-07-04 Carl Zeiss Smt Ag Projection lens
JP2002244036A (en) * 2000-12-22 2002-08-28 Carl Zeiss:Fa Projection lens and method of manufacturing part having very fine structure
JP2002365538A (en) * 2001-06-13 2002-12-18 Nikon Corp Projection optical system and exposure device provided with the same
EP1304594A2 (en) * 2001-10-17 2003-04-23 Carl Zeiss Semiconductor Manufacturing Technologies Ag Projection exposure device for microlithography at 200 nm
CN1417610A (en) * 2001-11-05 2003-05-14 尼康株式会社 Projection optical system, explosure device and making process of equipment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8908269B2 (en) 2004-01-14 2014-12-09 Carl Zeiss Smt Gmbh Immersion catadioptric projection objective having two intermediate images
US9772478B2 (en) 2004-01-14 2017-09-26 Carl Zeiss Smt Gmbh Catadioptric projection objective with parallel, offset optical axes
US8913316B2 (en) 2004-05-17 2014-12-16 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9019596B2 (en) 2004-05-17 2015-04-28 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9134618B2 (en) 2004-05-17 2015-09-15 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9726979B2 (en) 2004-05-17 2017-08-08 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
WO2018141713A1 (en) 2017-02-03 2018-08-09 Asml Netherlands B.V. Exposure apparatus
US11092903B2 (en) 2017-02-03 2021-08-17 Asml Netherlands B.V. Exposure apparatus
CN109856915A (en) * 2017-11-30 2019-06-07 上海微电子装备(集团)股份有限公司 Photoetching projection objective lens, edge exposure system and edge exposure device

Also Published As

Publication number Publication date
JP2005017734A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
KR100866818B1 (en) Projection optical system and exposure apparatus comprising the same
JP3819048B2 (en) Projection optical system, exposure apparatus including the same, and exposure method
JP4779394B2 (en) Projection optical system, exposure apparatus, and exposure method
WO2007086220A1 (en) Cata-dioptric imaging system, exposure device, and device manufacturing method
TW536735B (en) Optical condenser system, optical illumination system provided with the same, and exposure system
WO2005001543A1 (en) Projection optical system, exposure system, and device production method
JP4706171B2 (en) Catadioptric projection optical system, exposure apparatus and exposure method
JP2007206319A (en) Reflective/refractive optical system, exposure apparatus and method of manufacturing micro device
WO2007114024A1 (en) Projection optical system, aligner, and method for fabricating device
JP2005003982A (en) Projection optical system, and device and method of exposure
JP2002244035A (en) Projection optical system and exposure device provided with it
JP2005115127A (en) Catadioptric projection optical system, exposure device and exposing method
JP4228130B2 (en) Projection optical system, exposure apparatus, and device manufacturing method
KR100989606B1 (en) Projection optical system, exposure apparatus, and method of manufacturing a device
JP4300509B2 (en) Projection optical system, exposure apparatus, and exposure method
JPWO2004084281A1 (en) Projection optical system, exposure apparatus, and exposure method
JP4328940B2 (en) Projection optical system, exposure apparatus, and exposure method
JP4482874B2 (en) Projection optical system, exposure apparatus, and exposure method
JP2002365538A (en) Projection optical system and exposure device provided with the same
JP2004086110A (en) Projection optical system, aligner, and exposure method
JP2006078592A (en) Projection optical system and exposure apparatus having same
JP5786919B2 (en) Projection optical system, exposure apparatus and exposure method
JP2002023055A (en) Image-formation optical system and exposure device equipped therewith
JP2004354555A (en) Reflection refraction type projection optical system, exposing device and exposing method
JP2011049571A (en) Catadioptric projection optical system, exposure device and exposure method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase