WO2005001106A1 - 高グルタミン・グルタミン酸含有ポリペプチド混合物及びその製造法 - Google Patents

高グルタミン・グルタミン酸含有ポリペプチド混合物及びその製造法 Download PDF

Info

Publication number
WO2005001106A1
WO2005001106A1 PCT/JP2004/008863 JP2004008863W WO2005001106A1 WO 2005001106 A1 WO2005001106 A1 WO 2005001106A1 JP 2004008863 W JP2004008863 W JP 2004008863W WO 2005001106 A1 WO2005001106 A1 WO 2005001106A1
Authority
WO
WIPO (PCT)
Prior art keywords
fraction
molecular weight
polypeptide
content
precipitate
Prior art date
Application number
PCT/JP2004/008863
Other languages
English (en)
French (fr)
Inventor
Gunki Funatsu
Wataru Kugimiya
Yasue Nagao
Tadahisa Shimoda
Original Assignee
Fuji Oil Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Company, Limited filed Critical Fuji Oil Company, Limited
Priority to JP2005511029A priority Critical patent/JP4548339B2/ja
Publication of WO2005001106A1 publication Critical patent/WO2005001106A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/06Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/12General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by hydrolysis, i.e. solvolysis in general
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants

Definitions

  • the present invention provides a polypeptide mixture containing a soybean seed storage protein to a high Glx-containing polypeptide and a polypeptide mixture containing a Lys- and Arg-rich peptide.
  • Non-Patent Document 1 Regarding the production of high Glx-containing peptides using plant seeds as raw materials, only those produced from wheat gnoretene have been reported (Non-Patent Document 1), and no attempt at production from soybean protein has been made.
  • the Glx contained in wheat dalton is almost glutamine, a water-soluble high Glx-containing polypeptide having a large molecular weight cannot be obtained, and therefore, a water-soluble high Glx-containing peptide cannot be obtained.
  • protease degradation was mainly in the neutral monoacid region, 37-50 ° C, 5-6 hours, so the degradation was incomplete and mixed. Due to the action of exopeptidase, no attempt has been made to distinguish it from other peptides that have low accumulation of high Glx-containing polypeptides.
  • Patent Document 1 JP-A-10-101576
  • Non-Patent Document 1 Midori Suzue: "Protein 'amino acid', Clinical Nutrition, Vol. 80, No. 3, 289-294 (1992).
  • Non-Patent Document 2 F.L.Sabastiani, et al .: Plant Mol. Bio., 15, 197-201 (1990).
  • Non-Patent Document 3 N.C.Nielsen et al .: Plant cell, 1, 313-328 (1989).
  • An object of the present invention was to obtain a water-soluble, high-molecular-weight polypeptide rich in glutamine and glutamic acid in high yield and yield.
  • Soybean seed storage protein is a water-soluble protein with good amino acid balance as a food, and glycinin consisting of an acidic subunit consisting of 292 amino acid residues and a basic subunit consisting of 185 amino acid residues, and 626
  • glycinin consisting of an acidic subunit consisting of 292 amino acid residues and a basic subunit consisting of 185 amino acid residues
  • 626 We focused on the fact that in the conglycinin aggregate consisting of amino acid residues, a continuous sequence of gnoretamine 'gnoretamic acid and hydrophobic amino acids were present in various places, and that there was a characteristic amino acid sequence in which Lys and Arg were interspersed.
  • the present inventors have found that a peptide bond in a Gk-rich region is cleaved from the amino acid sequence characteristic of this soybean protein in order to easily produce a high-Gk-containing polypeptide mixture having a large molecular weight in good yield.
  • the present inventors have found that a target polypeptide can be obtained by removing a large amount of a low-molecular-weight peptide, thereby completing the present invention.
  • the present invention provides a first step in which a soybean protein raw material is treated with a protease to remove the undegraded high molecular fraction rich in hydrophobic amino acids as a precipitate, and ethanol is added to the remaining solution.
  • the protease treatment it is preferable to carry out hydrolysis with a protease having low substrate specificity while maintaining an alkaline region.
  • the precipitation of the undegraded polymer fraction in the first step is preferably removed by adjusting the acidic pH and / or by adding ethanol.
  • After the second step it is preferable to remove the low molecular weight peptide by gel filtration.
  • the present invention also relates to a soybean protein-derived protein having a molecular weight of 113 kDa, a Glx content of 27.4 to 27.8 mol%, and an Asx, Lys and Arg content of 11 to 13 and 9 to 1 respectively. It is a high Glx-containing polypeptide mixture (11, 11-15 mol%) (abbreviated as Asx when it is unknown whether it is asparagine or aspartic acid). Further, the present invention is derived from soy protein, has a molecular weight of 6 to 13 kDa, and a Gk content of 37 to 39 ⁇ 1. /. The content of Asx is 15.4 16.2mol. /. Is a high Glx-containing polypeptide mixture.
  • the polypeptide mixture according to the present invention comprises a soybean protein-derived gnoretamine 'gunoletamic acid A rich mixture of polypeptides with many -COOH groups and amphipathic solubility in both water and 50% ethanol, so it can be expected to be developed as a new functional material.
  • the preparation obtained by the ethanol precipitation method contains a large amount of Asx, Lys, and Arg, which are important for human physiological actions, in addition to Glx. Effective use as an acid supplement can be expected.
  • the soybean protein raw material used in the present invention is preferably isolated soybean protein or defatted soymilk, but defatted soybean can also be used. However, in the latter case, since it contains a large amount of components other than proteins, the degree of degradation by the protease is poor, and the precipitation of the undegraded high-molecular fraction from the protease degradation product is not sufficient only by adjusting the acidic pH. I needed a caroline. Water is added to the soybean protein material and the mixture is stirred. The pH is adjusted to the alkaline range, and then the protease is added to initiate the enzymatic degradation. In this case, the protein does not need to be completely dissolved (the The amount of water to be added should be 5-20 times, preferably 9-10 times the amount of protein material.
  • protease used in the present invention a protease having an optimum pH on the alkaline side, being stable at high temperatures, and capable of decomposing most peptide bonds, and having low substrate specificity is preferred, for example, Bacillus
  • Piobrase which is an alkaline protease derived from subutilis, can be used.
  • the protease treatment is hydrolyzed with a protease having low substrate specificity while maintaining an alkaline region.
  • a protease having low substrate specificity it is preferable that the protease treatment is hydrolyzed with a protease having low substrate specificity while maintaining an alkaline region.
  • the pH decreases as the hydrolysis proceeds, and the protein shifts to a slightly acidic region.
  • the desired glutamic acid-rich high molecular polypeptide can be obtained by enzymatic decomposition while maintaining the alkaline region.
  • alkaline region ⁇ 7.5-10, preferably ⁇ 8-9.5, more preferably ⁇ 8.5-9.0 is suitable.
  • alkali metal hydroxide such as caustic soda solution can be used.
  • Organic alkali such as ammonia solution (for example, 5% solution) Can be used.
  • ammonia solution for example, 5% solution
  • a high concentration can be used, so that the buffer capacity is large and the frequency of pH adjustment is low. Can be avoided.
  • the protease decomposition temperature is preferably higher in order to avoid contamination by various bacteria in the decomposition process.
  • the decomposition time can be set to 15-20 hours when 1Z100 weight of the enzyme is used for the soybean protein raw material, which is preferably performed until the decrease in pH due to the decomposition is eliminated.
  • the undegraded polymer fraction rich in hydrophobic amino acids can be removed as a precipitate.
  • Precipitating and removing the undecomposed polymer fraction can be carried out by the addition of acid P H regulatory and / or ethanol.
  • the undegraded hydrophobic high-molecular polypeptide is precipitated S, and the high Gk-containing polypeptide rich in gnoretamic acid remains in the solution, so that both can be separated.
  • Adjustment of the acidic pH for precipitating undegraded hydrophobic high-molecular polypeptide is carried out by adjusting the isoelectric point of soybean protein to a value close to the isoelectric point, preferably, ⁇ 3.5-5.5, preferably ⁇ 4. ⁇ 0—5.0 force S is appropriate.
  • the degree of precipitation differs depending on the protein material used (for example, separated soy protein, concentrated soy protein, soy milk, defatted soybeans, etc.). Is preferred.
  • the concentration of ethanol for precipitating undegraded hydrophobic high molecular weight polypeptide varies depending on the pH. Concentration is required, but when ethanol is added to the neutralized decomposed solution, the ethanol concentration can be reduced to 50% or less because it is almost precipitated at a concentration as low as 50% ethanol.
  • isolated soy protein with a high percentage of soy protein Almost no alcohol is needed near the isoelectric point. In addition to the isoelectric point, when using isolated soybean protein having a high soybean protein ratio, the ethanol concentration is 20% -50% and undegraded hydrophobic high molecular weight polymer. The peptide can be precipitated.
  • the remaining solution is further supplemented with ethanol to precipitate the high Glx-containing polypeptide.
  • the amount of ethanol added is preferably such that the ethanol concentration of the solution is 70-80%. If the concentration of ethanol is low, the yield of the desired high Glx-containing polypeptide is reduced. If the concentration is high, the low molecular weight peptide is precipitated and the purity of the desired high Glx-containing polypeptide is reduced.
  • the high Glx-containing polypeptide thus obtained has a molecular weight of 113 kDa and a Glx content of 27.4 to 27.8 mol% (about 8% higher than the Glx content of soybean protein, ), And a high Glx-containing polypeptide mixture having Asx, Lys and Arg contents of 11-13, 9-11 and 11-15 mol%, respectively.
  • the low-molecular peptide can be removed by gel filtration.
  • Any gel filtration agent can be used as long as it can fractionate a molecular weight of 3,000-15,000.
  • Bio Gel P-10 and S-marked hadex can be used as long as it can fractionate a molecular weight of 3,000-15,000.
  • G-50 or the like can be used.
  • the high Glx-containing polypeptide precipitated by ethanol is removed by evaporating ethanol, etc., and the peptides having different molecular weights contained in the high Gk-containing polypeptide are fractionated by gel filtration to have a molecular weight of 6-13 kDa.
  • a high Gk-containing polypeptide mixture having a Glx content of 37-39 mol% and an aspartic acid.asparagine (Asx) content of 15.4-16.2 mol% can be obtained.
  • the higher molecular weight fraction contains more Glx, and its Glx content can be increased to 39 mol%.
  • the Glx content of the high molecular weight fraction (inner solution) and the low molecular weight fraction (outer solution) are almost the same, and no effect such as gel filtration is observed.
  • the high Glx-containing polypeptide mixture from which the low molecular fraction was removed by gel filtration contained 3739 mol% of Glx, and Asx also showed a high value of 15.4.16.2 mol%.
  • the content of Lys and Arg was reduced by gel filtration to 4.34–4.71 and 4.67–5.77 mol%, respectively, in fact, the fraction containing high Lys (23.37% 111 0 1%) And Takahachi 13 ⁇ 4 (27.93mol%) containing fraction Is obtained in the low molecular weight region.
  • Amino acid composition (mol%) of high Glx-containing polypeptide mixture from isolated soybean protein piobrase hydrolyzate
  • Deionized water was added to 200 g of isolated soybean protein to make 21, the pH was adjusted to 9 with an ammonia solution, 4 g of piobrase was added, and the mixture was incubated at 50 ° C for 20 hours. After concentrating the digested solution by vacuum concentration, acetic acid was added to adjust the pH to 5 and the mixture was cooled with ice, and the resulting precipitate was removed by centrifugation. First, an equal volume of ethanol was added to the obtained supernatant, cooled, and the resulting precipitate was centrifuged as a pH5 / 0-50% EtOH_Ppt fraction from SPI, and then the supernatant was concentrated to 70% concentration.
  • 300 g of hexane-defatted soybean powder was homogenized with deionized water (approximately 31), adjusted to pH 9 with a 5% ammonia solution, and then treated with 3 g of piobrase and decomposed at 50 ° C. for 20 hours.
  • the filtrate obtained by centrifugal filtration was concentrated under reduced pressure, and then freeze-dried to obtain 188 g of a defatted soybean-biolabase degradation product.
  • 100 ml of deionized water was added to 10 g of the decomposed product, the pH was adjusted to 5 with acetic acid, and the mixture was cooled. The resulting precipitate was removed by centrifugation.
  • the low molecular fractions (fraction 3 and fraction 4) showed high Lys and Arg contents, respectively, indicating that the peptide containing them had a large molecular weight and coexisted with a high Glx-containing polypeptide. .
  • FIG. 1 shows the gel filtration pattern of a 50-70% EtOH_Ppt fractionated by Bio Gel P-10 [1.8 ⁇ 20 cm] of fractionated soybean protein hydrolyzate of soybean protein.
  • the developing solvent is deionized water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 本発明は、水に溶解する蛋白原料を用いて、グルタミン酸などの酸性アミノ酸だけでなくリジンなどの塩基性アミノ酸も豊富に含みアミノ酸バランスがとれ、比較的高分子でありながら水溶性でアルコールにも溶ける両親媒性のポリペプチドを得ることを目的とした。  本発明は、大豆蛋白原料を水系下に特異性の少ないエンドプロテアーゼを用いてアルカリ性域を保ちながら酵素分解し、次いで疎水性アミノ酸が豊富なポリペプチドを沈殿として除去した後、アルコールを添加して沈殿画分を得ることを特徴とする酸性および塩基性アミノ酸の豊富なポリペプチド混合物の製造法である。

Description

明 細 書
高グルタミン 'グルタミン酸含有ポリペプチド混合物及びその製造法 技術分野
[0001] 本発明は大豆種子貯蔵蛋白質から高 Glx含有ポリペプチド混合物と、これに Lysと Argの豊富なペプチドが含まれるポリペプチド混合物を提供するものである。
背景技術
[0002] 植物種子を原料とした高 Glx含有ペプチドの製造については、小麦グノレテンからの ものが報告されているに過ぎず(非特許文献 1)、大豆蛋白からの製造の試みは全く なされていなかった。しかしながら、小麦ダルテンからのものについても、これに含ま れる Glxが殆どグルタミンであるため、分子量の大きい水可溶性の高 Glx含有ポリぺプ チドは得られず、従って、水可溶性の高 Glx含有ペプチドは分子量の小さいオリゴぺ プチドで、 Asx, Lys, Argを豊富に含むものではなかった。一方、大豆蛋白質からの ペプチドの製造については、プロテアーゼ分解が主に中性一酸性領域、 37— 50°C 、 5— 6時間であったため、分解が不完全であつたのに加え、混在するェキソぺプチ ダーゼの作用もあって、高 Glx含有ポリペプチドの集積が少なぐ他のペプチドとの分 別の試みもなされていなかった。
[0003] 特許文献 1 :特開平 10— 101576号公報
非特許文献 1 :鈴江 緑衣朗:「たんぱく質 'アミノ酸」,臨床栄養, Vol. 80, No.3, 289-294(1992).
非特許文献 2 : F.L. Sabastiani, et al. : Plant Mol. Bio., 15, 197-201 (1990).
非特許文献 3 : N.C. Nielsen et al. : Plant cell, 1, 313-328 (1989).
発明の開示
発明が解決しょうとする課題
[0004] 本発明はグルタミンとグルタミン酸の豊富な水溶性の高分子量ポリペプチドを高レ、 収量で得ることを目的とした。
課題を解決するための手段
[0005] 本発明者らはこれらの問題を解決するために種々検討を行った。本発明者等は、 大豆種子の貯蔵蛋白質は食品としてアミノ酸バランスのよい水溶性蛋白質で、 292 個のアミノ酸残基からなる酸性サブユニットと 185個のアミノ酸残基からなる塩基性サ ブユニットから構成されるグリシニンと 626個のアミノ酸残基から成るコングリシニンの 会合体でグノレタミン'グノレタミン酸及び疎水性アミノ酸の連続した配列が随所に存在 し、これらの間に Lysと Argが点在する特徴あるアミノ酸配列を有することに着眼した。
[0006] 本発明者らは、この大豆蛋白質の特徴あるアミノ酸配列より、分子量の大きい高 Gk 含有ポリペプチド混合物を簡便に収量よく製造するために、 Gkを多く含む領域のぺ プチド結合は切断せず、他のペプチド結合を切断するようなプロテアーゼと、それに よる分解の条件を選定することが重要で、さらに不完全分解によって残存する分子量 の大きい画分を高 Gk含有ポリペプチド混合物から分別し、さらに多量に存在する低 分子量のペプチドを除去することにより目的のポリペプチドを得ることが出来る知見を 得て本発明を完成するに到った。
[0007] 即ち、本発明は、大豆蛋白原料をプロテアーゼで処理し、疎水性アミノ酸の豊富な 未分解の高分子画分を沈殿として除去する第 1工程、残りの溶液にエタノールを添 加して沈殿画分を得る第 2工程を経て、該沈殿画分を乾燥することを特徴とする高グ ルタミン ·グルタミン酸(Glx)含有ポリペプチド混合物の製造法である。
[0008] プロテアーゼ処理はアルカリ域を保持しながら基質特異性の低レ、プロテアーゼで 加水分解することが好ましい。第 1工程における未分解高分子画分の沈殿除去は酸 性 pH調節及び/又はエタノールの添カ卩によることが好ましい。第 2工程の後にゲル 濾過により低分子ペプチドを除去することが好ましい。
[0009] また、本発明は、大豆蛋白由来であって、分子量が 1一 13kDa、 Glxの含有量が 27.4 一 27.8mol%であり, Asx, Lys, Argの含量がそれぞれ 11一 13, 9一 11 , 11— 15mol% である高 Glx含有ポリペプチド混合物(ァスパラギンかァスパラギン酸か不明の際は Asxと略する)である。また、本発明は、大豆蛋白由来であって、分子量が 6— 13kDa、 Gkの含量が 37— 39πιο1。/。、 Asxの含量が 15.4 16.2mol。 /。である高 Glx含有ポリぺプ チド混合物である。
発明の効果
[0010] 本発明に係わるポリペプチド混合物は、大豆蛋白質由来のグノレタミン 'グノレタミン酸 の豊富なポリペプチド混合物で、多くの- COOH基を有し、水にも 50%エタノールに も可溶な両親媒性であるため、新しい機能素材としての開発が期待できる。またエタ ノール沈殿法で得られた標品は、 Glxに加え、人の生理作用に重要な働きをもつ Asx , Lys, Argを多く含み、更なる酵素分解による生理機能性ペプチドの作出や、ァミノ 酸サプリメントとしての有効利用が期待できる。
発明を実施するための最良の形態
[0011] 本発明に用いる大豆蛋白原料としては分離大豆蛋白質や脱脂豆乳が好ましいが、 脱脂大豆でも用いることが出来る。しかしながら、後者の場合は蛋白質以外の成分を 多量に含むため、プロテアーゼによる分解度が悪ぐまたプロテアーゼ分解物からの 未分解高分子画分の沈殿除去が酸性 pH調節のみでは不充分で、エタノールの添 カロを必要とした。大豆蛋白原料に水をカ卩えて攪拌し、 pHをアルカリ領域に調節した 後、プロテアーゼをカ卩えて酵素分解を開始するが、この場合、蛋白質は完全に溶解 させる必要はなく(分解中に溶解する)、加える水の量は蛋白原料の 5— 20倍、好ま しくは 9一 10倍がよい。
[0012] 本発明に用いるプロテアーゼとしては、アルカリ側に最適 pHを持ち、高温で安定で あり、ほとんどのペプチド結合を分解できる、基質特異性の低いプロテアーゼが好ま しぐ例えば Bacillus
subutilis由来のアルカリプロテアーゼであるピオブラーゼなどを用いることが出来る。
[0013] 大豆蛋白原料をプロテアーゼで処理する態様として、プロテアーゼ処理をアルカリ 域を保持しながら基質特異性の低いプロテアーゼで加水分解することが好ましい。 通常、大豆蛋白をアルカリ域で酵素分解すると加水分解が進むにつれて pHが低下 し微酸性域に移行してしまう。本発明においてはアルカリ域を保ちながら酵素分解す ることによって目的のグルタミン酸の豊富な高分子のポリペプチドを得ることが出来る 。微酸性域に移行したままで酵素分解を続けると低分子のオリゴペプチドにまで加水 分解されるだけでなぐグノレタミン酸の豊富なペプチド画分を得ることが困難となる。
[0014] かかるアルカリ域としては ρΗ7· 5— 10、好ましくは ρΗ8— 9. 5、より好ましくは ρΗ8 . 5— 9. 0が適当である。この pH調節には苛性ソーダ溶液などのアルカリ金属水酸 化物を用いることも出来る力 アンモニア溶液 (例えば 5%溶液)などの有機アルカリ を用いることが出来る。例えば、アンモニア溶液を用いると高濃度を使用できるので 緩衝能が大きぐ pH調節の頻度が少なくて済むことに加え、分解後の減圧濃縮によ り分解液から容易に除去でき、中和による塩の生成を避けることが出来る。
[0015] プロテアーゼ分解の温度は、分解過程における雑菌による汚染を避けるために高 い方が望ましぐ例えば、ピオブラーゼの場合、 pH9で安定である 45 55°Cを用い ること力 S好適である。分解時間としては分解による pHの低下が無くなるまで行うことが 好ましぐ大豆蛋白原料に対して 1Z100重量の酵素を用いた場合 15— 20時間とす ることが出来る。
[0016] この酵素分解によって、大部分の蛋白質が小さいペプチドにまで分解されるが、大 豆蛋白質中に存在する疎水性アミノ酸に富む固い高次構造部分は分解されにくく、 分子量の大きいポリペプチドとして残存するので、 目的とする高 Gk含有ポリペプチド と分別することが出来る。
即ち、第 1工程において、疎水性アミノ酸の豊富な未分解の高分子画分を沈殿とし て除去することが出来る。この未分解高分子画分の沈殿除去は酸性 PH調節及び/ 又はエタノールの添加によって行うことが出来る。
このようにすると未分解の疎水性高分子ポリペプチドは沈殿する力 S、グノレタミン酸の 豊富な高 Gk含有ポリペプチドは溶液中に残るため、両者を分別できる。
[0017] 未分解の疎水性高分子ポリペプチドを沈殿させる酸性 pH調節は、大豆蛋白の等 電点、近傍にすること力 S好ましく、 ί列えば、 ρΗ3. 5— 5. 5、好ましくは ρΗ4· 0— 5. 0力 S 適当である。
沈殿の程度は用いる蛋白原料 (例えば分離大豆蛋白、濃縮大豆蛋白、豆乳、脱脂 大豆など)により異なり、大豆蛋白の割合が低くなるほど沈殿度が悪くなるため、この 場合はさらにエタノール添カ卩をすることが好ましい。
[0018] エタノール添カ卩により沈殿物と溶液を分別する場合、未分解の疎水性高分子ポリべ プチドを沈殿させるエタノール濃度は、 pHによって異なり、中性の場合は酸性の場 合より高いエタノール濃度を必要とするが、中和した分解液にエタノールをカ卩える場 合、 50%エタノール濃度までの低い濃度で殆ど沈殿するので、エタノール濃度は 50 %以下とすることが出来る。大豆蛋白の割合が高い分離大豆蛋白を用いる場合でか つ等電点付近であればアルコールはほとんど必要とせず、等電点以外でも、大豆蛋 白割合の高い分離大豆蛋白を用いる場合エタノール濃度は 20%— 50%で未分解 の疎水性高分子ポリペプチドを沈殿させることが出来る。
[0019] 未分解の疎水性高分子ポリペプチドを沈殿として除去した第 1工程の後、残りの溶 液にさらにエタノールをカ卩えると高 Glx含有ポリペプチドを沈殿させることが出来る。加 えるエタノールの量は溶液のエタノール濃度が 70 80%となるように加えることが好 ましレ、。エタノールの濃度が低いと目的の高 Glx含有ポリペプチドの収率が低下し、 高いと低分子ペプチドまで沈殿してしまい目的の高 Glx含有ポリペプチドの純度が低 下する。
[0020] このようにして得られた高 Glx含有ポリペプチドは、分子量が 1一 13kDaで Glxの含 有が 27. 4-27. 8mol% (大豆蛋白質の Glx含有量より約 8%高レ、)であり, Asx, Lys , Argの含量がそれぞれ 11一 13, 9— 11 , 11一 15mol%である高 Glx含有ポリぺプ チド混合物とすることができる。
[0021] 第 2工程の後にゲル濾過により低分子ペプチドを除去することが出来る。ゲル濾過 剤としては、分子量 3,000— 15,000を分画できるものであればよぐ例えば Bio Gel P-10や S印 hadex
G-50などを用いることが出来る。エタノールによって沈殿した高 Glx含有ポリペプチド はエタノールを蒸散するなどして除去した後、該高 Gk含有ポリペプチドに含まれる分 子量の異なるペプチドをゲル濾過によって分画した場合分子量が 6— 13kDaで Glxの 含量が 37— 39mol%、ァスパラギン酸.ァスパラギン (Asx)の含量が 15· 4— 16. 2 mol%である高 Gk含有ポリペプチド混合物とすることが出来る。分子量の大きい画分 ほど Glxを多く含み、その Glx含量は 39mol%まで上昇させることができる。なお、透析 による分画では、高分子量画分(内液)と低分子量画分 (外液)の Glx含量は殆ど同じ で、ゲル濾過のような効果は認められない。
[0022] 以上のように、ゲル濾過によって低分子画分を除去した高 Glx含有ポリペプチド混 合物は 37 39mol%の Glxを含み、 Asxも 15. 4 16. 2mol%と高い値を示したが、 Lysと Argの含量はゲル濾過によって、それぞれ 4. 34—4. 71と 4. 67—5. 77mol% に減少し、事実、高 Lys (23. 37%11101%)含有画分と高八1¾ (27. 93mol%)含有画分 が低分子量領域に得られる。
実施例
[0023] 以下、実施例ににより本発明の実施態様を説明する。
[実施例 1]
分離大豆蛋白質 (SPI) (不二製油(株)製「フジプロ- R」 ) 300gに脱イオン水をカロえ て 31とし、 5%アンモニア溶液で pH9に調整した後ピオブラーゼ 6gをカ卩え、攪拌しな 力 Sら 50°C恒温槽中、同アンモニア溶液で pH9に調節しながら 20時間インキュベート した。遠心分離して得られた上清をロータリーエバポレーターを用いて減圧濃縮した 後、凍結乾燥し、 241g (収量 = 80· 1%)の SPトビオプラーゼ分解物を得た。
[0024] SPI—ピオブラーゼ分解物 50gを含む水溶液 250mlに 250mlのエタノールを加え、 生じた沈殿を遠心分離によって除去した後、上清に 70%濃度にまでエタノールを添 加した。生じた沈殿を 50— 70%EtOH_Ppt画分として遠心分離により分離し、さらに 上清に 80%濃度にまでエタノールを加え、生じた沈殿を 70— 80%EtOH-Ppt画分と て遠心分離した。これらを脱イオン水に溶解して凍結乾燥した結果それぞれ 15. lg〔 収量 = 31 · 6%〕と 6. lg (収量 = 12· 2%)でいずれも Asx, Lys, Argを多く含む高 Glx含有ポリペプチドであった。それらのアミノ酸組成を表 1に示す。
[0025] (表 1)
分離大豆蛋白質ピオブラ一ゼ分解物からの高 Glx含有ポリペプチド混合物の アミノ酸組成 (mol%)
酸性 pH調節無し 酸性 pH調節 (pH5)
アミノ酸 SPI 50-70¾EtOHPpt 70- 80議 H 0-50画 H 50- 70議 H
全体 画分 1 rp I r l r l
Asp 12.20 12.29 16.20 14.31 12.08 12.95
Thr 3.74 2.69 2.51 3.38 2.27 3.01
Ser 5.50 4.77 3.63 4.93 4.45 4.91
Glu 20.03 27.88 38.58 25.41 26.52 27.84
Gly 4.42 3.65 3.32 3.88 3.02 3.31
Ala 4.50 2.55 2.09 3.15 1.88 2.58
Cys 1. 2 1.22 1.91 1.23 1.68 1.63
Val 3.31 2.59 2.89 3.66 2.36 2.64
Met 1.79 1.23 1.55 0.92 1.11 0.57 lie 2.96 2.47 2.46 3.78 2.53 2.47
Leu 7.44 2.85 2.70 4.58 3.16 2.95
Tyr 4.00 2.29 2.31 2.84 1.61 1.69
Phe 4.90 3.53 3.44 3.79 4.12 3.51
Lys 6.13 8.98 4.71 7.10 9.50 8.97
His 3.87 3.57 1.95 2.84 5.20 4.18
Arg 7.68 11.50 4.67 9.47 12.50 11.26
Pro 5.70 5.95 5.07 4.72 6.00 5.53
[0026] 得られた 50— 70%EtOH_Ppt画分 20mgを脱イオン水に溶解して遠心分離後、上 清を Bio Gel P-10カラム(1.8 X 20cm)に供し、脱イオン水で展開した結果、図 1に示 すように、 2つの画分に分かれた。最初に溶出される分子量の大きい画分 (画分 1)の アミノ酸組成を表 1に示す力 S、ゲル濾過により低分子成分が除去された結果、 Gkの 含量が著しく高い高 Gk含有ポリペプチド混合物が得られた。
[0027] [実施例 2]
分離大豆蛋白質 200gに脱イオン水をカ卩えて 21とし、アンモニア溶液で pHを 9にし た後、ピオブラーゼ 4gを加え、 50°Cで 20時間インキュベートした。分解液を減圧濃 縮により 1ほで濃縮した後、酢酸をカ卩えて pHを 5に調節して氷冷し、生じた沈殿を遠 心分離によって除去した。先ず、得られた上清に同容量のエタノールをカ卩えて冷却し 、生じた沈殿を SPIからの pH5/0— 50%EtOH_Ppt画分とし遠心分離し、次いで上 清に 70%濃度になるまでエタノールを加え、生じた沈殿を SPIからの pH5Z50 70 %EtOH_Ppt画分として分離した。脱イオン水に溶解後、凍結乾燥した結果 18. 9g〔 収量 = 9. 5%〕の pH5/0— 50%EtOH- Ppt画分と 47. 4g (収量 = 23. 7%)の pH5 /50— 70%EtOH_Ppt画分が得られ、表 1に示すように、いずれも Lysと Argを多く含 む高 Gk含有ポリペプチド混合物であった。
[0028] [実施例 3]
へキサン脱脂大豆粉末 300gに脱イオン水をカ卩ぇホモゲナイズし (約 31)、 5%アン モニァ溶液で pH9に調節した後、 3gピオブラーゼをカ卩え、 50°Cで 20時間分解した。 遠心濾過して得られた濾液を減圧濃縮した後、凍結乾燥し 188gの脱脂大豆一ビォブ ラーゼ分解物を得た。 10gの分解物に脱ィオンス水 100mlを加え、酢酸にて pHを 5 に調節して冷却した後、生じた沈殿を遠心分離によって除去した。得られた上清に同 容量のエタノールを加え、生じた沈殿を脱脂大豆からの pH5/0— 50%EtOH-Ppt 画分とし、さらに 70%濃度までエタノールをカ卩え、生じた沈殿を脱脂大豆からの pH5 /50— 70%EtOH_Ppt画分として分離した。
[0029] 両画分を Bio Gel P-10カラムを用いたゲル濾過に供し、 0. 1 %アンモニア溶液で展 開した結果、図 2に示すような 2— 4個のピークが得られた。それらのアミノ酸組成を調 ベた結果、表 2に示すように、高 Glx含有ポリペプチドは pH5/0— 50%EtOH-Ppt画 分には含まれず、 pH5/50— 70%EtOH_Ppt画分の高分子画分(画分 1)に含まれ ることがわかった。またその低分子画分 (画分 3と画分 4)はそれぞれ高い Lysと Arg含 量を示し、これらを含むペプチドが分子量の大きレ、高 Glx含有ポリペプチドと共存して いたことがわかった。
[0030] (表 2)
脱脂大豆蛋白質ピオブラ一ゼ分解物 pH5/EtOH Pptからのゲル濾過画分の
アミノ酸組成 (mol%)
アミノ酸 SPI 0-50¾EtOHPpt 50- 70%EtOH
画分 1 画分 1 画分 2 画分 3 画分 4
Asp 12.20 13.47 17.20 9.54 6.89 5.33
Thr 3.74 4.07 2.13 3.49 3.63 2.85
Ser 5.90 6.50 4.99 4.30 7.84 6.81
Glu 20.90 19.26 34.20 11.48 10.23 11.97
Gly 4.42 6.56 4.43 8.54 7.70 7.74
Ala 4.50 5.01 1.94 6.29 4.23 2.79
Cys 1.42 1.32 2.22 1.15 0.61 0.42
Val 3.31 4.69 1.78 3.55 3.13 2.71
Met 1.79 1.55 1.17 1.52 1.29 1.11
lie 2.96 4.34 1.56 2.73 2.47 3.12
Leu 7.44 6.92 1.36 4.24 2.49 1.90
Tyr 4.00 1.92 0.92 4.57 0.00 0.00
Phe 4.90 4.57 2.23 3.96 3.75 4.95
Lys 6.13 6.33 5.56 14.37 26.75 5.74
His 3.87 2.84 2.71 7.41 6.19 7.20
Arg 7.68 4.03 6.00 7.50 7.45 25.68
Pro 5.70 6.64 9.57 5.41 5.35 9.95
図面の簡単な説明
[図 1]分離大豆蛋白質のピオブラーゼ分解物力 分画した 50— 70%EtOH_Pptの Bio Gel P-10 [1.8 X 20cm]によるゲル濾過パターンを示す。展開溶媒は脱イオン水。
[図 2]脱脂大豆のピオブラーゼ分解物を pH5に調節し、生じた沈殿を除去した上清 力、ら分画した 0 50%EtOH- Ppt画分 (A)と 50 70%EtOH- Ppt画分(B)の Bio Gel P-10〔2 X35cm〕によるゲル濾過パターンを示す。展開溶媒は 0.1%アンモニア溶 液。

Claims

請求の範囲
[1] 大豆蛋白原料をプロテアーゼで処理し、疎水性アミノ酸の豊富な未分解の高分子画 分を沈殿として除去する第 1工程、残りの溶液にエタノールを添加して沈殿画分を得 る第 2工程を経て、該沈殿画分を乾燥することを特徴とする高グルタミン'グノレタミン 酸 (Gk)含有ポリペプチド混合物の製造法。
[2] プロテアーゼ処理がアルカリ域を保持しながら基質特異性の低レ、プロテアーゼでカロ 水分解する請求項 1の製造法。
[3] 第 1工程における未分解高分子画分の沈殿除去が酸性 pH調節及び/又はェタノ ールの添加による請求項 1又は 2の製造法。
[4] 第 2工程の後にゲル濾過により低分子ペプチドを除去する請求項 1一 3のいずれか の製造法。
[5] 大豆蛋白由来であって、分子量が 1一 13kDa、 Gkの含有量が 27.4— 27.8mol%であり , Asx, Lys, Argの含量がそれぞれ 11一 13, 9— 11 , 11一 15mol%である高 Gk含有ポ リペプチド混合物(ァスパラギンかァスパラギン酸か不明の際は Asxと略する)。
[6] 大豆蛋白由来であって、分子量が 6— 13kDa、 Gkの含量が 37— 39mol%、 Asxの含 量が 15.4 16.2mol%である高 Gk含有ポリペプチド混合物。
PCT/JP2004/008863 2003-06-25 2004-06-24 高グルタミン・グルタミン酸含有ポリペプチド混合物及びその製造法 WO2005001106A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005511029A JP4548339B2 (ja) 2003-06-25 2004-06-24 高グルタミン・グルタミン酸含有ポリペプチド混合物及びその製造法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-181111 2003-06-25
JP2003181111 2003-06-25

Publications (1)

Publication Number Publication Date
WO2005001106A1 true WO2005001106A1 (ja) 2005-01-06

Family

ID=33549517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008863 WO2005001106A1 (ja) 2003-06-25 2004-06-24 高グルタミン・グルタミン酸含有ポリペプチド混合物及びその製造法

Country Status (2)

Country Link
JP (1) JP4548339B2 (ja)
WO (1) WO2005001106A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248134A (ja) * 2009-04-16 2010-11-04 Rheology Kino Shokuhin Kenkyusho:Kk ペプチド組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05236909A (ja) * 1992-02-28 1993-09-17 Snow Brand Milk Prod Co Ltd グルタミン含量の高いペプチド組成物、その製造方法及び経腸栄養剤
JPH09121807A (ja) * 1995-09-01 1997-05-13 Ajinomoto Co Inc 高グルタミン酸含有汎用調味料
JP2000287698A (ja) * 1999-04-08 2000-10-17 Univ Tokyo Gakugei 高グルタミンオリゴペプチドを生産する方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287462A (ja) * 1987-05-21 1988-11-24 Fuji Oil Co Ltd ペプチド栄養剤

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05236909A (ja) * 1992-02-28 1993-09-17 Snow Brand Milk Prod Co Ltd グルタミン含量の高いペプチド組成物、その製造方法及び経腸栄養剤
JPH09121807A (ja) * 1995-09-01 1997-05-13 Ajinomoto Co Inc 高グルタミン酸含有汎用調味料
JP2000287698A (ja) * 1999-04-08 2000-10-17 Univ Tokyo Gakugei 高グルタミンオリゴペプチドを生産する方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248134A (ja) * 2009-04-16 2010-11-04 Rheology Kino Shokuhin Kenkyusho:Kk ペプチド組成物

Also Published As

Publication number Publication date
JPWO2005001106A1 (ja) 2006-10-26
JP4548339B2 (ja) 2010-09-22

Similar Documents

Publication Publication Date Title
TWI341866B (en) Casein hydrolysate, method of preparing the same, and use of the same
US20100087629A1 (en) Method of producing a cidic-soluble soybean protein
WO1996011584A1 (fr) Melange de peptides et leurs produits_________________
WO2010092778A1 (ja) 酸性可溶大豆たん白素材およびその製造方法
CN1304592C (zh) 乳蛋白的脱酰胺化方法和乳蛋白的变性方法
WO2004104036A1 (ja) 大豆ホエー蛋白及び大豆ホエー蛋白分解物の製造法
WO1993017581A1 (en) A method for removing phenylalanine from proteinaceous compositions, a product so obtained and use thereof
JPH0556753A (ja) 塩酸ガスを使用して加水分解された植物タンパク質を製造する方法および該方法で得られた生成物
Cheison et al. Comparison of a modified spectrophotometric and the pH-stat methods for determination of the degree of hydrolysis of whey proteins hydrolysed in a tangential-flow filter membrane reactor
Pedroche et al. Utilisation of rapeseed protein isolates for production of peptides with angiotensin I-converting enzyme (ACE)-inhibitory activity
JP2737790B2 (ja) 絹タンパク質加水分解物含有食物およびその製造方法
US6514941B1 (en) Method of preparing a casein hydrolysate enriched in anti-hypertensive peptides
WO2005001106A1 (ja) 高グルタミン・グルタミン酸含有ポリペプチド混合物及びその製造法
EP0487619B1 (fr) Procede d'obtention, a partir de la caseine beta, de fractions enrichies en peptides a activite biologique et les fractions peptidiques obtenues
US6555336B1 (en) Method for preparing albumin hydrolysates
NZ528518A (en) A process for the preparation of a high protein hydrolysate
JP4797627B2 (ja) アンジオテンシン変換酵素阻害ペプチド含有組成物
JPH07115912A (ja) 乳清蛋白の酵素分解物
JPS60192599A (ja) オリゴペプチド混合物の製造法
RU2529707C2 (ru) Способ производства гидролизата сывороточных белков с высокой степенью гидролиза и низкой остаточной антигенностью
JPH06245790A (ja) オリゴペプチド混合物およびその製造方法
JPH0236127A (ja) アンジオテンシン変換酵素阻害剤
JPH05209000A (ja) 低アレルゲン化ペプチド組成物
JP3383461B2 (ja) カゼイン加水分解物及びその製造方法
CN114457137B (zh) 一种连续循环水解并精准筛选肽分子量的深度水解乳清蛋白的制备方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005511029

Country of ref document: JP

122 Ep: pct application non-entry in european phase