WO2005001088A1 - Application of promoter capable of functioning by sugar deficiency in plant cultured cell to secretory production of useful protein - Google Patents

Application of promoter capable of functioning by sugar deficiency in plant cultured cell to secretory production of useful protein Download PDF

Info

Publication number
WO2005001088A1
WO2005001088A1 PCT/JP2004/009038 JP2004009038W WO2005001088A1 WO 2005001088 A1 WO2005001088 A1 WO 2005001088A1 JP 2004009038 W JP2004009038 W JP 2004009038W WO 2005001088 A1 WO2005001088 A1 WO 2005001088A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
nucleic acid
gene
acid molecule
nucleotide sequence
Prior art date
Application number
PCT/JP2004/009038
Other languages
French (fr)
Japanese (ja)
Inventor
Nozomu Koizumi
Hiroshi Sano
Eun Jeong Lee
Original Assignee
National University Corporation NARA Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation NARA Institute of Science and Technology filed Critical National University Corporation NARA Institute of Science and Technology
Priority to JP2005511066A priority Critical patent/JPWO2005001088A1/en
Publication of WO2005001088A1 publication Critical patent/WO2005001088A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8237Externally regulated expression systems
    • C12N15/8238Externally regulated expression systems chemically inducible, e.g. tetracycline
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/02Cells for production

Definitions

  • the present invention relates to a novel promoter whose expression is induced by sugar deficiency and a production method using the same.
  • the plant medium is composed of sugar and inorganic salts, and can be produced at low cost;
  • the target protein is secreted into the medium, which makes recovery and purification relatively easy;
  • Non-patent Document 1 For example, regarding the production of foreign proteins using cultured cells, see, for example, Terashima M. et al., Appl. Microbiol. Biotechnol., 52, 1999, 516-523 (Non-patent Document 1).
  • Non-Patent Document 2 states that-gnorecosidase (denoted as din2) is induced in the dark, and that the sugar-suppressed expression of the din gene is caused by phosphorylation of hexose by hexokinase. It is described to be transmitted and that plants are easily deficient in sugar in the dark. However, this document merely describes the sugar deficiency inducibility of the expression of / 3_darcosidase, and does not disclose or suggest that the promoter of this gene is used for the expression of a useful protein.
  • Patent Document 1 discloses that human amylase synthesis and their mRNA levels are greatly induced by sugar deficiency, and that a human amylase-derived vector and a vector containing a gene encoding a desired gene product are used. Methods for producing gene products in angiosperm host cells have been described. However, this document only confirms that expression is possible in rice using the promoter of rice hyperamylase, and it is unclear whether expression is possible in other plants.
  • Patent Documents 2 and 3 disclose that the promoter of a rice ⁇ -amylase-encoding gene is responsive to sugar deficiency, and that human ⁇ 1-antitrypsin linked to the ⁇ -amylase-encoding gene promoter It is described that the transformed rice cells containing (ii) are first maintained in a medium that maintains healthy cell growth, and then replaced or diluted with a sucrose-free ⁇ medium.
  • Patent Documents 2 and 3 describe in general descriptions that a plant of the family Poaceae can be used.
  • rice is produced by using a promoter of a gene encoding rice ⁇ -amylase. Has been confirmed to be capable of expression in other plants, and it is not known whether expression is possible in other plants.
  • Non-Patent Document l Terashima M. et al., Appl.Microbiol. Biotechnol., 52, 1999,
  • Patent Document 2 Fujiki, F. et al., Plant Physiol.Vol. 124, 2000, pp. 1139-1147 Disclosure of the invention
  • the present invention is intended to solve the above problems, and it is an object of the present invention to provide a promoter that can be easily controlled in a plant cell and a method for stably and mass-producing a protein using the promoter.
  • the present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, have found that the promoter power of secreted -3-xylosidase gene, / 3-galatatosidase gene and / 3-dal clonidase gene of Arabidopsis thaliana
  • the present inventors have found that the induction is significantly induced by sugar deficiency in cultured cells, and based on this, completed the present invention.
  • it has been found that the extracellular secretion of the product encoded by the heterologous gene sequence is efficiently performed when the sugar deficiency-inducible promoter and the signal peptide are linked to the heterologous gene sequence.
  • a nucleic acid molecule comprising a sugar deficiency-inducible promoter sequence and a heterologous gene sequence operably linked to the sugar deficiency-inducible promoter sequence.
  • the sugar deficiency-inducible promoter sequence is selected from the group consisting of a promoter sequence of a gene encoding galactosidase, a promoter sequence of a gene encoding ⁇ -xylosidase, and a promoter sequence of a gene encoding darcosidase.
  • the nucleic acid molecule according to the above item (1) is selected from the group consisting of a promoter sequence of a gene encoding galactosidase, a promoter sequence of a gene encoding ⁇ -xylosidase, and a promoter sequence of a gene encoding darcosidase.
  • nucleotide sequence containing one or more nucleotide substitutions, deletions or additions of nucleotides compared to the nucleotide sequence of (a), and having a sugar deficiency-inducible promoter activity Array;
  • the nucleic acid molecule according to the above item (1) which has an activity of promoting the sugar deficiency-induced expression of the heterologous gene when the heterologous gene sequence is operably linked to the nucleotide sequence.
  • nucleic acid molecule according to the above item (1), further comprising a signal peptide coding sequence.
  • the signal peptide coding sequence is selected from the group consisting of a ⁇ -galatatosidase signal peptide coding sequence, a ⁇ -xylosidase signal peptide coding sequence, and a ⁇ -dalcosidase signal peptide coding sequence.
  • the nucleic acid molecule according to the above item (4) is selected from the group consisting of a ⁇ -galatatosidase signal peptide coding sequence, a ⁇ -xylosidase signal peptide coding sequence, and a ⁇ -dalcosidase signal peptide coding sequence.
  • nucleotide sequence encoding the amino acid sequence shown at position 1 to position 27 of SEQ ID NO: 2, position 1 to position 28 of SEQ ID NO: 4, or position 1 to position 28 of SEQ ID NO: 6;
  • nucleotide sequence containing one or several nucleotide substitutions, deletions or additions as compared with the nucleotide sequence of (i), which encodes a peptide having extracellular secretory activity;
  • nucleotide system 1J that hybridizes with the nucleotide system ij of (i) or (ii) under stringent conditions and encodes a peptide having extracellular secretory activity
  • nucleic acid molecule according to item (4), wherein the operably linked heterologous gene sequence to the nucleotide sequence results in extracellular secretion of the product of the heterologous gene.
  • the heterologous gene sequence is a cytoforce or hormone gene sequence.
  • nucleic acid molecule according to the above item (1), further comprising a regulatory element.
  • nucleic acid molecule according to the above item (11), wherein the regulatory element includes at least one element selected from the group consisting of an intron, a terminator, and an enhancer.
  • a nucleic acid molecule comprising a promoter sequence of a gene encoding an exo-type glycolytic enzyme and a heterologous gene sequence operably linked to one sequence of the promoter.
  • the above promoter sequence is selected from the group consisting of a promoter sequence of a gene encoding one galactosidase, a promoter sequence of a gene encoding ⁇ -xylosidase, and a promoter sequence of a gene encoding ⁇ -gnorecosidase.
  • nucleotide sequence containing one or more nucleotide substitutions, deletions or additions of nucleotides compared to the nucleotide sequence of (a), and having a sugar deficiency-inducible promoter activity Array;
  • nucleotide sequence having at least 70% identity to the nucleotide sequence of (a) and having a sugar deficiency-inducible promoter activity; and (e) (a) a truncated sequence of any one of the nucleotide sequences of (d), wherein the nucleotide sequence has a sugar deficiency-inducible promoter activity.
  • nucleic acid molecule according to the above item (13), which has an activity of promoting sugar deficiency-induced expression of the heterologous gene when operably linked to the nucleotide sequence.
  • the signal peptide coding sequence is selected from the group consisting of a ⁇ -galatatosidase signal peptide code, a signal peptide coding sequence of ⁇ -xylosidase, and a signal peptide coding sequence of ⁇ -dalcosidase.
  • nucleotide sequence encoding the amino acid sequence shown at position 1 to position 27 of SEQ ID NO: 2, position 1 to position 28 of SEQ ID NO: 4, or position 1 to position 28 of SEQ ID NO: 6;
  • nucleotide sequence containing one or several nucleotide substitutions, deletions or additions as compared with the nucleotide sequence of (i), which encodes a peptide having extracellular secretory activity;
  • nucleotide system 1J that hybridizes with the nucleotide system ij of (i) or (ii) under stringent conditions and encodes a peptide having extracellular secretory activity
  • nucleic acid molecule according to item (16), wherein the operably linked heterologous gene sequence to the nucleotide sequence results in extracellular secretion of the product of the heterologous gene.
  • the nucleic acid molecule according to the above item (13), wherein the heterologous gene sequence is a gene sequence of cytoforce or hormone.
  • the heterologous gene sequence encodes a protein having a desired function when expressed in a plant.
  • nucleic acid molecule according to the above item (23), wherein the regulatory element includes at least one element selected from the group consisting of an intron, a terminator, and an enhancer.
  • a nucleic acid molecule comprising a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar, and a heterologous gene sequence operably linked to the promoter sequence.
  • a promoter sequence of a gene encoding an enzyme capable of degrading the metabolizable sugar a promoter sequence of a gene encoding galactosidase, a promoter sequence of a gene encoding xylosidase, and; encoding 3-dalcosidase
  • nucleotide sequence containing one or more nucleotide substitutions, deletions or additions of nucleotides compared to the nucleotide sequence of (a), and having a sugar deficiency-inducible promoter activity Array;
  • the signal peptide coding sequence is selected from the group consisting of a signal peptide coding sequence of ⁇ -galatatosidase, a signal peptide coding sequence of ⁇ -xylosidase and a signal peptide coding sequence of ⁇ -dalcosidase.
  • nucleotide sequence encoding the amino acid sequence shown at position 1 to position 27 of SEQ ID NO: 2, position 1 to position 28 of SEQ ID NO: 4, or position 1 to position 28 of SEQ ID NO: 6;
  • nucleotide sequence containing one or several nucleotide substitutions, deletions or additions as compared with the nucleotide sequence of (i), which encodes a peptide having extracellular secretory activity;
  • nucleotide system 1J that hybridizes with the nucleotide system ij of (i) or (ii) under stringent conditions and encodes a peptide having extracellular secretory activity
  • nucleic acid molecule according to item (28), wherein the operably linked heterologous gene sequence to the nucleotide sequence results in extracellular secretion of the product of the heterologous gene.
  • the above-mentioned heterologous gene sequence is a cytoforce in or hormone gene sequence.
  • nucleic acid molecule according to the above item (25), wherein the heterologous gene sequence is a gene sequence of interferon, antibody, human anti-trypsin or green fluorescent protein.
  • nucleic acid molecule according to the above item (25), further comprising a regulatory element.
  • nucleic acid molecule according to (35), wherein the regulatory element includes at least one element selected from the group consisting of an intron, a terminator, and an enhancer.
  • a nucleic acid molecule comprising a promoter sequence and a heterologous gene sequence operably linked to the promoter sequence, wherein the promoter sequence comprises:
  • nucleotide sequence containing one or more nucleotide substitutions, deletions or additions of nucleotides compared to the nucleotide sequence of (a), and having a sugar deficiency-inducible promoter activity Array;
  • the signal peptide coding sequence is selected from the group consisting of a ⁇ -galactosidase signal peptide code, a ⁇ -xylosidase signal peptide coding sequence, and a ⁇ -dalcosidase signal peptide coding sequence.
  • nucleotide sequence encoding the amino acid sequence shown at position 1 to position 27 of SEQ ID NO: 2, position 1 to position 28 of SEQ ID NO: 4, or position 1 to position 28 of SEQ ID NO: 6;
  • nucleotide sequence containing one or several nucleotide substitutions, deletions or additions as compared with the nucleotide sequence of (i), which encodes a peptide having extracellular secretory activity;
  • nucleotide system 1J that hybridizes with the nucleotide system ij of (i) or (ii) under stringent conditions and encodes a peptide having extracellular secretory activity
  • nucleic acid molecule of claim 38 wherein operatively linking the heterologous gene sequence to the nucleotide sequence results in extracellular secretion of the product of the heterologous gene.
  • nucleic acid molecule according to the above item (45), wherein the regulatory element includes at least one element selected from the group consisting of an intron, a terminator, and an enhancer.
  • a method for producing a protein comprising the following steps:
  • At least one promoter sequence selected from the group consisting of a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar.
  • nucleic acid molecule comprising the protein coding sequence operably linked to the selected promoter sequence into a cell to obtain a transformed cell;
  • a method comprising: (53) The method according to the above item (52), wherein the cell is a plant cell.
  • nucleic acid molecule further comprises a signal peptide coding sequence.
  • the signal peptide coding sequence is selected from the group consisting of a ⁇ -galatatosidase signal peptide code, a signal peptide coding sequence of ⁇ -xylosidase, and a signal peptide coding sequence of ⁇ -dalcosidase. The method described in the above item (57).
  • nucleotide sequence encoding the amino acid sequence shown at position 1 to position 27 of SEQ ID NO: 2, position 1 to position 28 of SEQ ID NO: 4, or position 1 to position 28 of SEQ ID NO: 6;
  • nucleotide sequence containing one or several nucleotide substitutions, deletions or additions as compared with the nucleotide sequence of (i), which encodes a peptide having extracellular secretory activity;
  • nucleotide system 1J that hybridizes with the nucleotide system ij of (i) or (ii) under stringent conditions and encodes a peptide having extracellular secretory activity
  • a method for producing a protein comprising the following steps:
  • At least one promoter sequence selected from the group consisting of a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar.
  • nucleic acid molecule comprising the protein coding sequence operably linked to the selected promoter sequence into a cell to obtain a transformed cell;
  • a method comprising:
  • the present invention provides an expression system that can easily control expression by controlling sugar deficiency.
  • the promoter sequence of the gene encoding secretory ⁇ -galactosidase (Gal), the promoter sequence of the gene encoding ⁇ -xylosidase (Xyl), and the promoter sequence of the gene encoding ⁇ -darcosidase (Glc) are as follows: The presence of sugars suppresses expression, and sugar deficiency significantly induces expression. Efficient expression of a heterologous gene sequence by culturing cells containing the heterologous gene sequence operably linked to the sequence in the presence of sugar and then reducing the sugar concentration in the medium when the cells have grown to some extent Can be induced.
  • the nucleic acid molecule of the present invention further comprises a signal peptide coding sequence.
  • FIG. 1 Figure la is a graph showing the change in signal intensity ratio due to sugar deficiency for about 13,000 Arabidopsis thaliana genes.
  • the horizontal axis indicates the signal intensity in the presence of 2% sucrose, and the vertical axis indicates the signal intensity in the absence of sucrose.
  • Figure lb is a graph showing the change in signal intensity ratio due to sugar deficiency for the 184 Arabidopsis genes initially obtained by screening.
  • the horizontal axis shows the signal intensity in the presence of 1% sucrose
  • the vertical axis shows the signal intensity in the absence of sucrose.
  • FIG. 2 is a photograph showing RNA gel plot analysis of nine genes identified in the subarray.
  • FIG. 3a is a graph showing sucrose or glucose levels when sucrose is supplied to detached leaves. At each time, the white bars on the left show the results under sucrose feeding conditions, the black bars in the middle show the results under sucrose deficient conditions, and the white bars on the left show the results when sucrose was fed again after 72 hours. The results are shown. Each error bar is also shown.
  • FIG. 3b is a photograph showing RNA gel plot analysis showing the time course of induced transcript accumulation of 12 genes during withdrawal leaves.
  • FIG. 4a is a graph showing the amount of soluble sugar in rosette leaves when the whole plant is shielded from light. White bars indicate the amount of sucrose and black bars indicate the amount of gnorecose. Error bars are also shown for each.
  • FIG. 4b is a photograph of an RNA gel plot showing a transcript of the AtSUG gene when the whole plant is shielded from light. [FIG. 5] FIG. 5a shows yellowing of detached rosette leaves in the upper photograph, and the amount of soluble sugar in detached leaves in the lower graph. White bars indicate the amount of sucrose and black bars indicate the amount of darcos. In each case, an error bar is also shown.
  • FIG. 5b is a photograph of an RNA gel plot showing the transcript of the AtSUG gene in the detached rosette leaves.
  • Fig. 6 is a photograph of an RNA gel plot showing transcripts of AtSUG when sucrose was depleted from a withdrawn leaf for 48 hours, and then sugar or an analog was fed for 24 hours. Each shows the results when the following were added: lane 1, no treatment; lane 2, sugar starvation (48 hours); lane 3, sucrose (24 hours); lane 4, glucose (24 hours); lanes 5, 2 -Deoxyglucose (24 hours); Lane 6, 3_0_ methyl glucose.
  • FIG. 7 is a photograph of an RNA gel plot showing transcripts of AtSUG due to the presence and absence of sucrose.
  • FIG. 8 is a schematic diagram showing a phylogenetic tree of a family of ⁇ -galatatosidase (also referred to as Gal) and ⁇ -xychidoxidase (also referred to as Xyl).
  • ⁇ -galatatosidase also referred to as Gal
  • Xyl ⁇ -xychidoxidase
  • Fig. 9 shows Gal-1, Gal-2, Gal-3, Gal_5 and Gal_6, and Xyl-1, Xyl- when Arabidopsis was grown in the absence of sucrose or under conditions containing 1% sucrose.
  • 3 is a photograph of an RNA gel plot showing RNA amounts of 2 and Xyl-3.
  • FIG. 10 is a photograph of an RNA gel blot showing the amount of Gal-1, Xyl-1, and Glc-1 RNA when Arabidopsis is grown in the absence of sucrose or under conditions containing 1% sucrose. It is.
  • Figure 11 is a schematic diagram comparing the structures of the gene products of Gal-1 (724 amino acids), Xyl-1 (774 amino acids) and Glc-1 (577 amino acids). is there.
  • FIG. 12 is a schematic diagram showing the advantages of using cultured cells.
  • FIG. 13 is a photograph of an RNA gel plot showing RNA amounts of Gal-1, Xyl-1, and Glc_l when cultured Arabidopsis cells were grown in the absence of sucrose or under conditions containing 1% sucrose. It is.
  • FIG. 14 is a graph showing the enzyme activities of Gal-1, Xyl-1 and Glc-1 when cultured Arabidopsis cells are grown in the absence of sucrose or under conditions containing 1% sucrose.
  • FIG. 15 is a schematic diagram of regulation by sugar starvation in plant cells.
  • Fig. 16 shows that Gal-1, Xyl_l, and Glc-
  • RNA gel plot showing the RNA amount of 1.
  • FIG. 17a is a schematic view showing a part of a method for constructing a plant-introducing construct.
  • FIG. 17b is a schematic view showing a part of a method for constructing a plant-introducing construct.
  • FIG. 17c is a schematic view showing a part of a method for constructing a plant-introducing construct.
  • FIG. 18 is a view showing that deficiency of sugar induces GFP secretion in BY-2 cells.
  • the graph shows the growth of transformed BY-2 cells.
  • the inset in the graph is
  • a nucleic acid molecule of the invention comprises a sugar deficiency-inducible promoter sequence and a heterologous gene sequence operably linked to the sugar deficiency-inducible promoter sequence.
  • the nucleic acid molecule of the present invention also includes a promoter sequence of a gene encoding an exoglycolytic enzyme, and a heterologous gene sequence operably linked to the promoter sequence.
  • the nucleic acid molecule of the present invention also comprises a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar, and a heterologous gene sequence operably linked to the promoter sequence. including.
  • the nucleic acid molecule of the present invention preferably contains a signal peptide coding sequence.
  • a signal peptide coding sequence By including the signal peptide coding sequence, extracellular secretion of the product encoded by the heterologous gene sequence can be performed more efficiently.
  • nucleic acid molecule is also used interchangeably with nucleic acids, oligonucleotides, and polynucleotides.
  • nucleic acid molecules include cDNA, mRNA, Nom DNA and the like.
  • nucleic acids and nucleic acid molecules are included in the concept of the term “gene”, such as when the nucleic acids and nucleic acid molecules encode proteins.
  • Nucleic acid molecules encoding a gene sequence also include "splice variants" and "splice variants.” A splice variant and a splice variant are synonymous.
  • a particular protein encoded by a nucleic acid includes any protein encoded by a splice variant of the nucleic acid.
  • splice variants are the products of alternative splicing of a gene. After transcription, the initial nucleic acid transcript may be spliced such that different (alternate) nucleic acid splice products encode different polypeptides. The mechanism of production of splice variants varies, but involves alternative splicing of exons. Another polypeptide derived from the same nucleic acid by read-through transcription is also included in this definition. Any product of a splicing reaction, including recombinant forms of the splice product, is included in this definition.
  • the sugar-deficiency-inducible promoter sequence refers to a promoter sequence whose expression is induced by sugar deficiency.
  • examples of the sugar deficiency-inducible promoter sequence include a promoter sequence of a gene encoding ⁇ -galactosidase (Gal), a promoter sequence of a gene encoding ⁇ -xylosidase (Xyl), and ⁇ -darcosidase (G1c).
  • Gal ⁇ -galactosidase
  • Xyl a promoter sequence of a gene encoding ⁇ -xylosidase
  • G1c ⁇ -darcosidase
  • the j3-galactosidase that can be used herein is preferably Gal_l.
  • Examples of j3-xylosidase that may be used herein include Xyl-1 or Xyl_3, preferably Xyl-1.
  • the j3-gnorecosidase that can be used herein is preferably Glc-1.
  • the sugar deficiency-inducible promoter sequence is not limited to these, and (b) A nucleotide sequence comprising one or more nucleotide substitutions, deletions or additions, compared to the nucleotide sequence of these promoter sequences, wherein the nucleotide sequence has one activity of a sugar deficiency-inducible promoter; (c) a nucleotide sequence IJ that hybridizes under stringent conditions to the nucleotide sequence of (a) or (b) and has a sugar deficiency-inducible promoter activity; (d) the nucleotide sequence of (a) A nucleotide sequence having at least 70% identity and a nucleotide sequence IJ having a sugar deficiency-inducible promoter activity; and (e) a shortened sequence of any one of the nucleotide sequences (a) and (d).
  • the nucleotide sequence may have a sugar deficiency-inducible promoter activity.
  • the truncated sequence may be a sequence shorter than the full length and longer than the minimum length having a sugar deficiency-inducible promoter activity.
  • the minimum length of the truncated sequence was determined by deleting the original promoter sequence little by little at the 5 'end or 3' end to obtain a truncated sequence, and determining whether this truncated sequence has a sugar deficiency-inducible promoter activity. Can be easily determined.
  • the length of the truncated sequence can be, for example, about 20 nucleotides or more and less than the full length.
  • the length of the truncated sequence can be preferably about 30 nucleotides or more, about 40 nucleotides or more, about 50 nucleotides or more, about 60 nucleotides or more, about 70 nucleotides or more, about 80 nucleotides or more, or about 90 nucleotides or more.
  • the length of the shortened sequence is preferably about 1200 nucleotides or less, more preferably about 1100 nucleotides or less, about 1000 nucleotides or less, about 900 nucleotides or less, about 800 nucleotides, about 700 nucleotides or less, about 600 nucleotides or less, about 500 nucleotides or less. In the following, it can be up to about 400 nucleotides, up to about 300 nucleotides, up to about 200 nucleotides, or up to about 100 nucleotides.
  • “having a sugar deficiency-inducible promoter activity” means that it has an effect of increasing the expression level under sugar-deficient conditions compared to the expression level under sugar-present conditions. Say. This effect is preferably greater than the expression level when the sugar concentration is about 15 mM or less, and more preferably twice the expression level when the sugar is present at about 50 mM or more. Above, 3 times or more, 4 times or more, 5 times or more, 10 times or more, 50 times or more, 100 times or more.
  • the sugar deficiency-inducible promoter activity includes a case where it is not expressed under saccharide-existing conditions but has an effect of being expressed under sugar-deficient conditions.
  • the term "promoter” determines the start point of transcription of a gene, and A region on DNA that directly regulates the frequency. It is a nucleotide sequence at which RNA polymerase starts binding and starts transcription.
  • the promoter region is usually within about 2 kbp upstream of the first exon of the putative protein coding region. One region of the promoter can be estimated.
  • the putative promoter region varies for each structural gene, but is usually, but not limited to, upstream of the structural gene, and may be downstream of the structural gene. Preferably, the putative promoter region is within about 2 kbp upstream of the first exon translation start site.
  • promoter sequence refers to a sequence having promoter activity. Promoter activity refers to the activity of transcribing DNA RNA. Therefore, “promoter system I” refers to a sequence capable of synthesizing RNA corresponding to DNA when the DNA is ligated downstream (3 'side) and introduced into cells.
  • the promoters of the Gal_l, Xyl_l, and Glu_l genes can be obtained from the upstream sequence of the coding region.
  • the specification of the promoter region can be performed based on a method well known in the art. Briefly, an expression cassette is constructed in which a candidate sequence for the promoter region and a reporter gene (eg, GUS gene) are operably linked. Using the constructed expression cassette, suitable plant cells are transformed, and the transformed cells are regenerated into plants. The expression of the reporter gene in the transformed plant is detected using an appropriate detection system (eg, dye staining). Based on the detection result, the promoter region and its expression characteristics can be confirmed.
  • a reporter gene eg, GUS gene
  • the sugar deficiency-inducible promoter sequence used in the present invention can be used.
  • Nucleic acid molecules comprising at least 50 (preferably at least 60, more preferably at least 80, even more preferably at least 100, even more preferably at least 150) nucleotide sequences are identified by these promoter sequences. They may have the same or similar activities.
  • Such activity can be confirmed by an assay using the beta-Darc mouth nidase (GUS) gene, luciferase gene, or GFP gene as a reporter gene, biochemical or cytohistological assay.
  • GUS beta-Darc mouth nidase
  • luciferase gene or GFP gene as a reporter gene
  • biochemical or cytohistological assay Such atsesses belong to well-known and conventional techniques in the art ( Maliga et al., Methods in Plant Molecular Biology: A laboratory course. Cold Spring Harbor Laboratory Press “995) Jefferson, Plant Molec. Biol. Reporter 5: 387 (1987); ⁇ w et al., Science 234: 856 (1986); Sheen et al. , Plant J.
  • the nucleic acid molecule comprising at least 10 contiguous nucleotide sequences of the sequence according to the invention may be used in the sugar deficiency used in the invention.
  • it is determined that the promoter activity is substantially equal to or greater than the promoter activity when it is determined that the promoter activity is within the range of the detection error in the above-mentioned assay. That.
  • the length of the promoter sequence used in the present invention is usually at least 10 nucleotides, but is preferably at least 20 nucleotides, at least 30 nucleotides, at least 40 nucleotides, at least 50 nucleotides, at least 60 nucleotides, at least 70 nucleotides. , 80 nucleotides or more, 90 nucleotides or more, 100 nucleotides or more, 150 nucleotides or more, 200 nucleotides or more, 300 nucleotides or more.
  • the promoter sequence used in the present invention may be a conventional promoter sequence (for example, a minimum promoter (a promoter consisting of about 80 base pairs derived from 35S promoter (Hatton et al., Plant J., 7: 859-876 (1995) Rouster et al., Plant J., 15: 435-440 (1998); Washida et al., Plant Mol. Biol., 40: 1-12 (1999))).
  • the promoter sequence used in the present invention or a fragment thereof may be added or replaced by a promoter sequence which does not show tissue specificity or shows weak specificity, or a promoter sequence showing another specificity.
  • a promoter sequence capable of inducing sugar deficiency can be produced (Hatton et al., Plant J., 7: 859-876 (1995); Rouster et al., Plant J., 15: 435-440 (1998) Washida et al., Plant Mol. Biol., 40: 1-12 (1999)).
  • the sugar deficiency-inducible promoter preferably has a sugar concentration of about 15 mM or less, more preferably about 10 mM, still more preferably about 5 mM or less, and most preferably a sugar present.
  • expression is induced is meant to include both an increase in the expression level and an expression that is not expressed at all under sugar-containing conditions but is expressed under sugar-deficient conditions.
  • the sugar acting on the sugar deficiency inducible promoter is preferably a metabolizable sugar.
  • “Metabolizable sugars” refers to sugars that, when taken up and degraded by plant cells, can at least partially enter the glycolysis system and be metabolized. Metabolizable sugars can be used interchangeably with sugars that can be metabolized by plants. Examples of metabolizable sugars include monosaccharides and disaccharides, which are capable of producing ATP via glycolysis via initial phosphorylation of the sugar. Examples of monosaccharides include glucose, fructose, xylose, galactose, maltose and arabinose. An example of a disaccharide is sucrose.
  • phosphorylatable sugars may also be metabolizable sugars.
  • Mannitol and sorbitol do not normally fall under the sugars of the present invention because they cannot produce ATP via initial phosphorylation and cannot enter glycolysis.
  • the metabolizable sugar varies depending on the organism targeted by the present invention, and when a specific sugar is confirmed to be a metabolizable sugar for the organism by the method described below, the Such sugars are also within the range of metabolizable sugars.
  • Metabolizable sugars are well known in the art. Whether a particular sugar is a metabolizable sugar depends on whether the number of plant cells increases when the target plant cells are cultured for one to four weeks using the sugar as the sole carbon source. If the number of plant cells increases, the sugar can be determined to be a metabolizable sugar.
  • the increase in the number of plant cells means that the number of plant cells after culturing for 1 to 4 weeks is preferably about 150% or more, more preferably about 200%, when the cell number before the start of culture is 100%. As mentioned above, more preferably about 250 ° / o or more, more preferably about 300% or more, more preferably about 400% or more, and more preferably about 500% or more.
  • the term "expression" of a gene, a polynucleotide, a polypeptide, or the like means that the gene or the like undergoes a certain action in vivo to take on another form.
  • a force S that means that a gene, a polynucleotide, or the like is transcribed and translated to form a polypeptide, and that mRNA is produced by being transcribed may also be a form of expression. More preferably, such polypeptide forms may be post-translationally processed.
  • decrease in "expression” of a gene, polynucleotide, polypeptide, or the like means that when the factor of the present invention is acted on, the expression is lower than when it is not acted on. Means a significant decrease in the amount of Preferably, the decrease in expression includes a decrease in the expression level of the polypeptide.
  • increase the expression includes increasing the expression level of the polypeptide.
  • polypeptide As used herein, the terms "polypeptide,” “protein,” and “peptide” are used interchangeably herein and refer to a polymer of amino acids of any length. This polymer may be linear, branched, or cyclic.
  • the amino acid may be a natural or non-natural amino acid or a modified amino acid.
  • the term can also be assembled into a complex of multiple polypeptide chains.
  • the term also includes naturally or artificially modified amino acid polymers. Such modifications include, for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation or any other manipulation or modification (eg, conjugation with a labeling component).
  • This definition also includes, for example, polypeptides containing one or more analogs of an amino acid (eg, including unnatural amino acids, etc.), peptidomimetic compounds (eg, peptoids) and those skilled in the art. And other modifications known.
  • polypeptides containing one or more analogs of an amino acid eg, including unnatural amino acids, etc.
  • peptidomimetic compounds eg, peptoids
  • one amino acid of a particular polypeptide sequence may be substituted for another amino acid without any apparent loss or loss of biological activity of the polypeptide. It is the interaction capacity and properties of a polypeptide that define the biological activity of a given polypeptide.
  • certain amino acid substitutions may be made in the amino acid sequence of the polypeptide, or at the level of the nucleotide sequence encoding the polypeptide, resulting in a polypeptide that retains its original properties after the substitution. obtain.
  • various modifications may be made in the polypeptide disclosed herein or the nucleotide having the nucleotide sequence encoding this polypeptide. Can be performed.
  • biological activity refers to an activity that a certain factor (eg, a polypeptide or a nucleic acid molecule) may have in a living body, and an activity that exhibits various functions. Included. For example, if a factor is an enzyme, its biological activity includes the enzymatic activity. In another example, where an agent is a ligand, the ligand involves binding to the corresponding receptor. For example, when a factor is an antisense molecule, its biological activity includes binding to the nucleic acid molecule of interest, thereby suppressing expression. Such biological activity can be measured by techniques well known in the art. When a factor is a promoter, its biological activity can be confirmed that the transcription of a target gene is changed (preferably increased) by a stimulus specific to the promoter. Such confirmation can be made using molecular biology techniques well known in the art.
  • amino acid substitutions, substitutions, deletions, or modifications can be made to produce a polypeptide.
  • Amino acid substitution refers to the replacement of one amino acid with another amino acid.
  • Amino acid addition refers to the addition of one or more, for example, 110, preferably 115, and more preferably 113 amino acids at any position in the original amino acid sequence.
  • Amino acid deletion refers to the removal of one or more amino acids from the original amino acid sequence, for example, 110 amino acids, preferably 115 amino acids, more preferably 113 amino acids.
  • amino acid modifications include forces S that include amidation, carboxylation, sulfation, halogenation, alkylation, glycosylation, phosphorylation, hydroxylation, acylation (eg, acetylation), and the like. Not limited.
  • the amino acid to be substituted or added may be a natural amino acid or an unnatural amino acid or amino acid analog. Natural amino acids are preferred.
  • fragments Nucleotides in which some nucleotides have been deleted from full-length nucleotides and polypeptides in which some amino acids have been deleted from full-length polypeptides are also referred to as fragments.
  • fragment refers to a polypeptide or polynucleotide having a sequence length of up to 11-1 relative to a full-length polypeptide or polynucleotide (length n). The length of the fragment can be appropriately changed depending on its purpose.
  • the lower limit of the length for polypeptides includes 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50 and more amino acids, where A length represented by an integer not specifically recited in (eg, 11 and the like) may also be appropriate as a lower limit.
  • the nucleotides include 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 75, 100 and more nucleotides.
  • a length represented by a non-integer integer eg, 11, etc. may also be appropriate as a lower limit.
  • the polypeptide may be a polypeptide analog having a biological activity specific to the polypeptide.
  • the polypeptide may be an enzyme analog, particularly if the polypeptide is an enzyme.
  • enzyme analog refers to an enzyme that is at least one chemical or biological function equivalent to a naturally occurring enzyme that is a different compound from the natural enzyme.
  • enzyme analogs include those in which one or more amino acid analogs have been added or replaced with the original natural enzyme.
  • Enzyme analogs may have such additions or substitutions such that their function (eg, ⁇ -phosphorylase activity or thermostability) is substantially similar to or better than the function of the original native enzyme. I have.
  • Such enzyme analogs can be made using techniques well known in the art.
  • an enzyme analog can be a polymer comprising an amino acid analog.
  • the term “enzyme” includes this enzyme analog unless otherwise specified.
  • amino acid may be a natural amino acid, an unnatural amino acid, a derivative amino acid, or an amino acid analog. Natural amino acids are preferred.
  • natural amino acid refers to the L-isomer of a natural amino acid. Natural amino acids include glycine, alanine, valine, leucine, isoleucine, serine, methionine, threonine, fenylalanine, tyrosine, tryptophan, cysteine, proline, histidine, aspartic acid, asparagine, gnoletamic acid, gnoletamine, and 7 — Carboxyglutamic acid, anoreginin, orditin, and lysine. Unless otherwise indicated, all amino acids referred to herein are L-forms, but forms using D-form amino acids are also within the scope of the present invention.
  • unnatural amino acid refers to an amino acid that is not normally found in nature in proteins.
  • unnatural amino acids include D- or L-forms of nonoleucine, para-nitrophenylalanine, homophenylalanine, para-fluorophenylalanine, 3-amino-2-benzylpropionic acid, homoarginine, and D- Phenylalanine.
  • Derivative amino acid refers to an amino acid obtained by derivatizing an amino acid.
  • Amino acid analog refers to a molecule that is not an amino acid, but that is similar in physical properties and Z or function of the amino acid.
  • Amino acid analogs include, for example, etyonin, canavanine, 2-methylglutamine and the like.
  • the modified polypeptide comprising a modification by substitution, addition or deletion of one or more amino acids or more to the amino acid sequence of the natural polypeptide is described in the present invention.
  • modified polypeptides containing one, several or more amino acid substitutions, additions or deletions are described in Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press “989), Currerrt Protocols. in Molecular Biology, Supplement 1-38, John Wiley & Sons (1987-1997), Nucleic Acids Research, 10, 6487 (1982), Proc. Natl. Acad.
  • Amino acid deletion, substitution, or addition of the target polypeptide can be performed by site-specific mutagenesis, which is a well-known technique. Techniques for site-directed mutagenesis are well known in the art. See, for example, Nucl. Acid Research, Vol. 10, pp. 6487-6500 (1982). [0119] In the present specification, "a substitution, addition or deletion of one or several or more amino acids” or “at least one amino acid” when used with respect to a specific polypeptide having a biological activity.
  • amino acid substitution, addition or deletion means that at least one of the biological activities possessed by the specific polypeptide is not lost, and preferably the activity is a reference (for example, , The number of substitutions, additions, or deletions to such an extent as to be equal to or greater than that of the specific polypeptide (natural polypeptide).
  • a reference for example, , The number of substitutions, additions, or deletions to such an extent as to be equal to or greater than that of the specific polypeptide (natural polypeptide).
  • One skilled in the art can easily select a modified polypeptide having the desired properties.
  • the specific modified polypeptide thus produced is preferably about 40%, more preferably about 45%, more preferably about 50%, based on the amino acid sequence of the polypeptide before modification. , more preferably about 55%, more preferably about 60%, more preferably about 65%, more preferably from about 70 o / o, more preferably f or about 75 0/0, more preferably ⁇ or about 80 o / o , more preferably ⁇ Maitoshaku 85 0/0, more preferably about 90%, more preferably about 95%, and most preferably about 99% identity.
  • the hydropathic index of amino acids can be considered.
  • the importance of the hydropathic index of amino acids for the biological function of polypeptides is generally recognized in the art (Kyte. J and Doolittle, RFJ Mol. Biol. 157 (1): 105-132, 1982).
  • the hydrophobic nature of amino acids contributes to the secondary structure of the resulting polypeptide, which in turn defines the interaction of that polypeptide with other molecules (eg, enzymes, substrates, receptors, DNA, antibodies, antigens, etc.) .
  • Each amino acid is assigned a hydrophobicity index based on its hydrophobicity and charge properties.
  • hydrophobicity index assigned to each amino acid is as follows: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); Cystine / cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (-0.4); threonine (-0.7); serine (-0.8); Tryptophan (-0.9); Tyrosine (_1.3); Proline (_1.6); Histidine (_3.2); Glutamic acid (_3.5); Glutamine (_3.5); Aspartic acid (_3.5) Asparagine (_3.5); lysine (_3.9); and arginine (_4.5)).
  • a polypeptide having a certain amino acid in a polypeptide replaced by another amino acid having a similar hydrophobicity index and still having a biological function similar to this polypeptide It is well known in the art that it can produce tides (eg, polypeptides with equivalent enzymatic activity).
  • the hydrophobicity index is preferably within ⁇ 2, more preferably within ⁇ 1, and even more preferably within ⁇ 0.5. It is understood in the art that such amino acid substitutions based on hydrophobicity are efficient.
  • hydrophilicity index may also be considered.
  • the following hydrophilicity indices have been assigned to amino acid residues: Arginine (+3.0); Lysine (+3.0); Aspartic acid Glutamic acid (+ 3.0 ⁇ 1); Serine (+0.3); Asparagine (+0.2); Glutamine (+0.2); Glycine (0); Threonine (+ 3.0 ⁇ 1); -0.4); Proline (-0.5 ⁇ 1); Alanine (-0.5); Histidine (-0.5); Cysteine (-1.0); Methionine (-1.3); Valine (1-1.5); leucine (1-1.8); isoloicin (1-1.8); tyrosine (1-2.3); pheninolealanine (12-5); and tryptophan (13-4).
  • the hydrophilic index is preferably within ⁇ 2, more preferably within ⁇ 1, and even more preferably within ⁇ 0.5.
  • the term "conservative substitution” refers to a substitution in which, in an amino acid substitution, the hydrophilicity index and / or the hydrophobicity index of the original amino acid and the amino acid to be substituted are similar as described above.
  • conservative substitution include, for example, those having a hydrophilicity index or a hydrophobicity index of two or less within soil 2, preferably within ⁇ 1 and more preferably within ⁇ 0.5. But not limited to them.
  • conservative substitutions are well known to those skilled in the art and include, for example, substitutions within each of the following groups: arginine and lysine; daltamic and aspartic acid; serine and threonine; glutamine and asparagine; Leucine, isoleucine, and the like, but are not limited thereto.
  • the sugar deficiency-inducible promoter sequence of the present invention is preferably a promoter encoding a gene encoding j3-galactosidase (Ga1), a gene encoding ⁇ -xylosidase (Xyl). Selected from the group consisting of a promoter sequence of a gene and a promoter sequence of a gene encoding ⁇ -dalcosidase (Glc), more preferably a promoter sequence of a gene encoding ⁇ -galactosidase or a promoter sequence of a gene encoding ⁇ -xylosidase. It is a data sequence.
  • the sugar deficiency-inducible promoter sequence of the present invention is preferably represented by (a) SEQ ID NO: 1 at positions 643 to 1799, SEQ ID NO: 3 at position 1 to 1763, or SEQ ID NO: 5 at position 1 to position 2058 Nucleotide sequence 1J; (b) a nucleotide sequence containing a substitution, deletion or addition of one or several nucleotides compared to the nucleotide sequence of (a), having a sugar deficiency-inducible promoter activity (C) a nucleotide sequence which hybridizes with the nucleotide sequence of (a) or (b) under stringent conditions and has a sugar deficiency-inducing promoter activity; a nucleotide sequence having at least 70% identity to the nucleotide sequence of a) and having a sugar deficiency-inducible promoter activity; and (e) (a)-(d).
  • Nucleotide sequence Is selected from the group consisting of nucleotide sequences having a sugar deficiency-inducible promoter activity, and operably linked to said heterologous gene sequence, whereby sugar deficiency-induced expression of said heterologous gene is obtained. Has the activity of promoting.
  • polynucleotide As used herein, the terms “polynucleotide”, “oligonucleotide” and “nucleic acid” are used interchangeably herein and refer to a polymer of nucleotides of any length. The term also includes “derivative oligonucleotides” or “derivative polynucleotides.” “Derivative oligonucleotide” or “derivative polynucleotide” refers to an oligonucleotide or polynucleotide that contains a derivative of a nucleotide or has an unusual linkage between nucleotides, and is used interchangeably.
  • oligonucleotide examples include, for example, 2,1-O-methyl-ribonucleotide, a derivative in which a phosphodiester bond in an oligonucleotide is converted to a phosphorothioate bond, and an oligonucleotide in a oligonucleotide.
  • oligonucleotide in which phosphodiester bond is converted to N3'_P5, phosphoramidate bond, derivative oligonucleotide in which ribose and phosphoric diester bond in oligonucleotide are converted to peptide nucleic acid bond, peracyl in oligonucleotide Is a derivative oligonucleotide in which is substituted with C-5 propynylperacyl, and peracyl in the oligonucleotide is substituted with C-5 thiazole peracyl
  • Derivative oligonucleotide a derivative oligonucleotide in which cytosine in the oligonucleotide is replaced with C_5 propynylcytosine, a derivative oligonucleotide in which cytosine in the oligonucleotide is replaced with phenoxazine-modified cytosine, DNA Derivative oligonucle
  • nucleic acid sequence also includes conservatively modified variants (eg, degenerate codon substitutions) and complementary sequences thereof, as well as explicitly stated sequences. It is intended to include Specifically, degenerate codon substitutions are those in which the third position of one or several, or a greater number of selected codons) is replaced by a mixed base and a Z or deoxyinosine residue. (Batzer et al., Nucleic Acid Res. 19: 5081 (1991); Ohtsuka et al., J. Biol. Chem. 260: 2605-2608 (1985); Rossolini et al., Mol. Cell. Probes 8: 91-98 (1994)).
  • degenerate codon substitutions are those in which the third position of one or several, or a greater number of selected codons) is replaced by a mixed base and a Z or deoxyinosine residue.
  • substitution, deletion or addition of a polypeptide sequence or nucleotide sequence refers to the amino acid or its substitute, or the nucleotide or its substitute for the original polypeptide or polynucleotide, respectively.
  • Replacement, removal or addition Techniques for such substitution, deletion or addition are well known in the art, and examples of such techniques include site-directed mutagenesis techniques.
  • the number of substitutions, deletions or additions may be any number as long as it is one or more. The amount can be increased as long as the sugar deficiency inducibility of the promoter and the promoter activity, and in the case of a heterologous gene sequence, the desired protein activity and the like are maintained.
  • such a number can be one or several, and preferably can be no more than 20%, no more than 10% of the total length, or no more than 100, no more than 50, no more than 25, and the like.
  • the sugar deficiency-inducible promoter sequence used in the present invention can be of any length as long as it retains the sugar deficiency-inducing promoter activity. Such a sequence can be easily prepared by, for example, deleting the nucleotide sequence of the original promoter sequence little by little on the 5 ′ side or the 3 ′ side and confirming that the sugar-deficiency-inducing promoter activity is retained. Determined to Can be Methods for shortening such promoter sequences are well known to those skilled in the art and can be easily implemented.
  • variant refers to a substance in which a substance such as an original polypeptide or polynucleotide is partially changed.
  • variants include substitutional variants, addition variants, deletion variants, truncated variants, allelic variants, glycosylation variants, lipidation variants, variants with complex molecules, etc. Is mentioned.
  • the variant retains at least one, and more preferably more than one, property (eg, biological properties) of the substance (eg, enzyme) from which the modification is made. And the like.
  • Alleles refer to genetic variants that belong to the same locus and are distinct from one another. Therefore, “allelic variant” refers to a variant that has an allelic relationship to a certain gene.
  • allelic variants usually have the same or very similar composition as their corresponding alleles, and usually have rarely different organisms with almost the same biological activity. May have biological activity.
  • “Species homolog or homolog” refers to homology (preferably 60% or more homology, more preferably 80% or more) of a certain gene at the amino acid or nucleotide level within a certain species. , 85% or more, 90% or more, 95% or more homology). Methods for obtaining such species homologs are well known in the art.
  • the term "ortholog” is also called an orthologous gene and refers to a gene derived from speciation from a common ancestor having two genes.
  • Constant (modified) variants applies to both polypeptide and nucleotide sequences.
  • a conservatively modified variant is one that encodes the same or essentially the same polypeptide sequence.
  • the nucleotide sequence does not encode a polypeptide sequence, such as an antisense coding sequence, a conservatively modified variant refers to essentially identical sequences. Due to the degeneracy of the genetic code, a number of functionally identical nucleotide sequences encode any given polypeptide. For example, the codons GCA, GCC, GCG, and GCT (GCU) all encode the amino acid alanine.
  • each codon in a nucleotide sequence (except for ATG (AUG), which is usually the only codon for methionine, and TGG, which is usually the only codon for tributophan) is used to identify functionally identical molecules. It is understood that it can be modified to produce.
  • each silent variation of a nucleotide sequence that encodes a polypeptide is implicit in each described sequence.
  • modifications can be made to avoid substitution of the amino acid cysteine, which greatly affects the conformation of the polypeptide.
  • Examples of such a nucleotide sequence modification method include cleavage with a restriction enzyme or the like, ligation treatment with a DNA polymerase, Klenow fragment, DNA ligase, or the like, site-specific base substitution using a synthetic oligonucleotide, or the like. (Site-directed mutagenesis; Mark Zoller and Michael Smith, Methods in Enzymology, 100, 468-500 (1983)). Modifications can also be made.
  • the signal peptide coding sequence and the heterologous gene sequence can be changed according to the codon usage in the organism to be introduced. Codon usage reflects the frequency of use of genes that are highly expressed in the organism. For example, if it is intended to be expressed in Escherichia coli, it may be used for expression in a large recruited bacterium according to a published codon usage table (eg, Sharp et al., Nucleic Acids Research 16, No. 17, page 8207 (1988)). Can be optimized for
  • identity refers to the identity of nucleotides in two or more nucleotide sequences (a polypeptide sequence). (When comparing polypeptide sequences, this refers to the degree to which amino acids appear.) Identity is generally determined by comparing the full lengths of the two or more nucleotide sequences or polypeptide acids (IJ) and aligning the two or more sequences in an optimal manner that may include additions or deletions. Determined by comparison.
  • Percent identity determines the number of positions where nucleotides (amino acids when comparing polypeptide sequences) are the same between two or more sequences, and divides the number of identical positions by the total number of positions compared. And to obtain the percent identity between these two sequences, calculated by multiplying the obtained result by 100.
  • the DNA sequences between the gene sequences are typically at least 50% identical, preferably at least 70% identical, more preferably less. Genes are identical if they are at least 80%, 90%, 95%, 96%, 97%, 98% or 99% identical.
  • similarity refers to a conservative substitution defined as positive in the above-mentioned identity.
  • identity and similarity will differ depending on the existence of the conservative substitution.
  • identity and similarity show the same numerical value.
  • identity 0/0 for example, can be force S to determine the NCBI BLAST 2. 2. 9 a (2004. 5.12 Issue) Te use Rere.
  • the value of identity usually refers to a value obtained by aligning the above BLAST using the default conditions. However, if a higher value comes out due to a parameter change, the highest value shall be the value of the identity. Multiple areas are assessed for identity In this case, the highest value is the value of identity.
  • the degree of identity or similarity between two or more nucleotide sequences can be confirmed by examining hybridization under stringent conditions other than direct comparison of sequences.
  • stringent conditions refers to conditions that hybridize to a specific sequence but do not hybridize to a non-specific sequence.
  • the setting of stringent conditions is well known to those skilled in the art and is described, for example, in Moleculer Cloning (Sambrook et al., Supra).
  • a 0.1- to 2-fold concentration of SSC (saline-sodium citrate) solution (the composition of the 1-fold concentration SSC solution is 150 mM saline). And 15 mM sodium citrate), and the polynucleotide can be identified by washing the filter at 65 ° C.
  • SSC saline-sodium citrate
  • the promoter sequence of a gene encoding an exo-type glycolytic enzyme refers to a promoter sequence of an exo-type glycolytic enzyme gene.
  • exo-type glycolytic enzyme refers to an enzyme that acts on a terminal portion of a sugar chain to sequentially release a terminal sugar residue.
  • exo-type glycolytic enzymes include, but are not limited to: i3-galactosidase, xylosidase, ⁇ -darcosidase, xylosidase and / 3-fucosidase.
  • the nucleotide sequence upstream of the nucleotide sequence encoding such an enzyme can be any nucleotide sequence that exhibits promoter activity in the target product. Monkey
  • the promoter sequence of the gene encoding the exo-type glycolytic enzyme of the present invention is preferably a promoter sequence of a gene encoding j3-galactosidase, a promoter sequence of a gene encoding ⁇ -xylosidase, and / 3-dalcosidase.
  • the promoter sequence is selected from the group consisting of gene promoter sequences, and is more preferably a promoter sequence of a gene encoding ⁇ -galactosidase, or a promoter sequence of a gene encoding ⁇ -xylosidase.
  • the sugar deficiency-inducible promoter sequence of the present invention preferably comprises (a) nucleotides shown at positions 641 to 1799 of SEQ ID NO: 1, positions 1 to 1763 of SEQ ID NO: 3, or positions 1 to 2058 of SEQ ID NO: 5 (B) a nucleotide sequence containing one or several nucleotide substitutions, deletions or additions compared to the nucleotide sequence of (a), wherein the nucleotide sequence has a sugar deficiency-inducible promoter activity; (c) at least the nucleotide sequence of ( d ) ( a ), which hybridizes with the nucleotide sequence of (a) or (b) under stringent conditions and has a sugar-deficiency-inducible promoter activity.
  • a nucleotide sequence having 70% identity and having a sugar deficiency-inducing promoter activity and (e) a nucleotide sequence of (a)-(d), A condensed sequence selected from the group consisting of nucleotide sequences having a sugar deficiency-inducible promoter activity, and operably linked to the nucleotide sequence, the above-described heterologous gene sequence, It has an activity to promote expression.
  • the promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar refers to a promoter sequence of a gene encoding an enzyme capable of hydrolyzing a metabolizable sugar.
  • the term "enzyme capable of decomposing metabolizable sugars” refers to an enzyme capable of decomposing metabolizable sugars as described above. Examples of such enzymes include, but are not limited to: _ galactosidase, _ xylosidase, _ darcosidase, ⁇ RTIgt; hyxyrosidase ⁇ / RTI> and _ fucosidase.
  • any nucleotide sequence upstream of the nucleotide sequence encoding such an enzyme as long as it exhibits promoter activity in the target organism, can be used.
  • the promoter sequence of the gene encoding the enzyme capable of degrading the metabolizable sugar of the present invention is preferably the promoter sequence of the gene encoding j3_galactosidase, the promoter sequence of the gene encoding ⁇ -xylosidase, and It is selected from the group consisting of a promoter sequence of a gene encoding ⁇ -dalcosidase, and more preferably a promoter sequence of a gene encoding ⁇ -galactosidase or encoding a ⁇ -xylosidase. This is the promoter sequence of the gene to be expressed.
  • nucleotide sequence IJ shown at positions 643 to 1799 of SEQ ID NO: 1, 1 to 1763 of SEQ ID NO: 3, or 1 to 2058 of SEQ ID NO: 5;
  • (b) (a (C) a nucleotide sequence comprising a substitution, deletion or addition of one or several nucleotides and having a sugar deficiency-inducible promoter activity, as compared to the nucleotide sequence IJ of (c); a nucleotide sequence IJ that hybridizes with the nucleotide sequence of (a) or (b) under stringent conditions and has a sugar-deficiency-inducible promoter activity; (d) at least 70% of the nucleotide sequence of (a).
  • Step I selected from the group consisting of nucleotide sequences that have a motor activity, when operably said heterologous gene sequence to said nucleotide sequence is connected, has an activity of promoting glucose deprivation induced expression of heterologous genes.
  • the present invention in addition to the promoter sequence of a gene encoding a sugar-deficiency inducible promoter, an exo-type glycolytic enzyme or a gene encoding an enzyme capable of degrading a metabolizable sugar, You can use a promoter together.
  • promoters include, but are not limited to, the CaMV35S promoter, the nopaline synthase promoter, the ubiquitin promoter, and the like, and their modified promoters.
  • any nucleotide sequence can be used as long as it exhibits promoter activity in the target organism.
  • Such other promoters may be site-specific promoters, stage-specific promoters, constitutive promoters, stress or stimulus responsive promoters,
  • the stress field may be a stimulatory) inducible promoter, or the stress field may be a stimulatory) inducible promoter.
  • constitutive promoters include the Ca MV35S promoter, the nopaline synthase promoter and the ubiquitin promoter.
  • specific promoters include tissue-specific and organ-specific promoters.
  • the deficiency-inducible promoter encodes an exo-type glycolytic enzyme.
  • the heterologous gene sequence linked to the promoter sequence of the gene or the promoter sequence of the gene encoding the enzyme capable of degrading a metabolizable sugar can be any nucleotide sequence that is heterologous to the linked promoter sequence. It can be a nucleotide sequence.
  • the heterologous gene sequence may be, for example, a protein coding system ij, an antisense coding system ij, a ribozyme coding sequence, a nucleotide sequence for analysis, or the like.
  • the heterologous gene sequence can preferably be a protein coding sequence or an antisense coding sequence.
  • a heterologous gene sequence can be a naturally occurring nucleotide sequence or a modified version of a naturally occurring nucleotide sequence or a complex thereof, whether an artificially synthesized gene or not. (For example, a fusion).
  • operably linked means that a desired nucleotide sequence (eg, a heterologous gene sequence) is a transcription regulatory sequence (eg, a gene) that results in expression (ie, operation). It means that it is placed under the control of a promoter, a terminator, an enhancer, etc.) or a translation control sequence (eg, an intron, a splice donor, a splice acceptor, etc.).
  • a promoter in order for a promoter to be operably linked to a gene, the promoter will usually be located immediately upstream of the gene, but need not necessarily be located adjacent thereto.
  • the heterologous gene sequence in the present specification may be any one that can be expressed in a target organism. Anything. For example, if it is intended to be expressed in a specific plant, if it can be expressed in that specific plant, then.
  • the heterologous gene sequence is a protein coding sequence.
  • Protein coding sequences include any useful protein that is intended to be expressed in large amounts, including any that are within the scope of the present invention. I will. Examples of protein coding sequences include, but are not limited to: pharmaceutically active peptides (eg, cytokins (interferons, interleukins, chemokines, granulocytes) Macrophage colony stimulating factor (GM-CSF), macrophage colony stimulating factor (M-CSF), granulocyte colony stimulating factor (G-CSF), multi-CSF (IL-3), erythropoietin (EPII), leukemia suppression Hematopoietic factors such as factor (LIF), c-kit ligand (SCF), tumor necrosis factor, platelet-derived growth factor (PDGF), epidermal growth factor (EGF), fibroblast growth factor (FGF), hepatocyte proliferation Factors (HGF), vascular endothelial growth factor (VEGF),
  • examples of nutritionally significant substances include, but are not limited to, casein, albumin and globulin of legumes, synthase of vitamins, saccharide synthase, and lipase.
  • proteins involved in the kakunje properties as raw materials for various processed foods include, for example, wheat glutenin (bread making), soy globulin group (tofu), and milk casein group (cheese).
  • Proteins that enhance the palatability or functionality of foods e.g., synthases of special sugars or amino acids such as cyclodextrins, oligosaccharides, and diaminoacetic acid, pigment synthases that improve appearance, and synthesis of taste components
  • Involved proteins include, but are not limited to, artificial proteins designed to excise physiologically active peptides (eg, angiotensin converting enzyme inhibitory peptides that have a blood pressure effect) by undergoing enzymatic digestion within What?
  • the heterologous gene sequence is preferably a cytodynamic or hormonal gene sequence.
  • the heterologous gene sequence more preferably encodes a protein having a desired function when expressed in a plant.
  • a protein having a desired function when expressed in a plant means that a gene product expressed in a plant has a desired function in an animal, a plant, or an in vitro mouth.
  • the glycosylation of a gene product expressed in a plant is the same as that expressed in an animal, or performs the intended function in vitro or when administered to an animal, or is harmful. Does not exert any significant effect.
  • the intended function refers to a function that is exhibited when the protein is produced by a conventional method.
  • the heterologous gene sequence encodes an antibody
  • the antibody may function as a protective antibody (i.e., as a therapeutic or prophylactic agent) when administered to an animal, or may be specific in the mouth.
  • the heterologous gene sequence is more preferably a gene sequence of interferon ( ⁇ ,; 3 or ⁇ ), an antibody, human ⁇ -antitrypsin ( ⁇ ) or green fluorescent protein (GFP). It is a green fluorescent protein, most preferably a green fluorescent protein.
  • the heterologous gene sequence can be a marker gene.
  • the marker one gene is synonymous with the selection gene, and refers to a nucleotide capable of distinguishing between a cell in which the selection marker is present and a cell in which the selection marker is not present, by expression of a product encoded by the selection marker.
  • the heterologous gene sequence can be an antisense coding sequence.
  • An antisense coding sequence encodes an antisense sequence of a specific gene intended to suppress or prevent expression and can have any antisense activity. Such is also included in the scope of the present invention.
  • the antisense sequence refers to a sequence complementary to a coding sequence (also referred to as a sense sequence).
  • antisense activity specifically refers to the expression of a target gene.
  • Methods include directly introducing RNA molecules complementary to mRNA produced from the target gene into cells, and introducing a construction vector capable of expressing RNA complementary to the target gene into cells. It is roughly divided. In plants, the latter is common.
  • Antisense activity is usually achieved by a nucleotide sequence at least about 8 nucleotides in length that is complementary to the coding sequence of the gene intended to suppress or prevent expression.
  • the antisense coding sequence is preferably at least about 9 nucleotides in length, more preferably about 10 nucleotides in length, more preferably about 11 nucleotides in length, even more preferably about 12 nucleotides in length, more preferably About 13 nucleotides in length, more preferably about 14 nucleotides in length, more preferably about 15 nucleotides in length, more preferably about 20 nucleotides in length, more preferably about 25 nucleotides in length, and still more preferably May be about 30 nucleotides in length, more preferably about 40 nucleotides in length, and more preferably about 50 nucleotides in length.
  • the sequence complementary to the coding sequence of the gene of interest is present in the antisense coding sequence rather than discretely.
  • the length of a nucleotide sequence or a polypeptide sequence is a force that can be represented by the number of nucleotides or amino acids, respectively.
  • the above-mentioned number is intended to include a few above and below (or, for example, 10% above and below) the number.
  • “about” may be used before the number. However, in this specification it should be reasoned that the presence or absence of “about” does not affect the interpretation of that number.
  • the antisense coding sequence is preferably at least about 70% identical to the sequence of the antisense strand (complementary strand of the coding strand) of the gene intended to suppress or prevent expression, more preferably Are at least about 80% identical, more preferably about 90% identical, and Most preferably contain nucleotide sequences that are about 95% identical.
  • the antisense coding sequence is preferably complementary to the sequence at the 5 'end of the nucleic acid sequence of the gene of interest.
  • Antisense coding sequences having one or several nucleotides, one or more nucleotide substitutions, additions and / or deletions with respect to the antisense coding sequence as described above are also included in the antisense coding sequence.
  • “antisense activity” includes, but is not limited to, a decrease in the expression level of a gene.
  • RNA interference RNA interference
  • RNAi RNA interference
  • RNAi RNA interference
  • RNAi Ribonucleic acid
  • a DNA sequence complementary to the nucleotide sequence of a target gene is linked to an appropriate promoter, and an expression vector that expresses artificial mRNA under the control of the promoter is constructed. It was made to be introduced within.
  • an expression vector designed to be capable of forming double-stranded RNA in a cell is often used.
  • RNAi-based antisense technology the basic structure of an antisense coding sequence is that one DNA sequence complementary to a certain target gene is ligated under a promoter, and the same one is inserted in the opposite direction. It is made by connecting two. In a single-stranded mRNA transcribed from an antisense coding sequence having this basic structure, the one nucleotide sequence portion connected in the reverse direction is in a complementary relationship, and this complementary portion is paired. As a result, a double-stranded RNA with a hairpin-like secondary structure is formed, which causes mRNA degradation of the target gene according to the mechanism of RNAi. In plants, an example used in Arabidopsis has been reported (Smith, NA et al., Nature 407. 319-320, 2000). In addition, RNAi in general (Morita and Yoshida, Protein 'Nucleic Acid' Enzyme 47, 1939–1945, 2002). The contents described in these documents are incorporated herein by reference in their entirety.
  • RNAi is an abbreviation for RNA interference.
  • Homologous mRNA is specifically expressed by introducing a factor that causes RNAi, such as double-stranded RNA (also referred to as ds RNA), into cells.
  • ds RNA double-stranded RNA
  • RNAi may also be used synonymously with factors that cause RNAi in some cases.
  • factor causing RNAi refers to any factor capable of causing RNAi.
  • factor that causes RNAi to bow I for “gene” refers to the factor that causes RNAi related to the gene and achieves the effect of RNAi (for example, suppression of expression of the gene).
  • Means Factors that cause such RNAi include, for example, at least a sequence that has at least about 70% homology to a portion of the nucleic acid sequence of the target gene or a sequence that hybridizes under stringent conditions. Examples include, but are not limited to, expression vectors designed to be able to construct RNA containing a double-stranded portion having a length of 10 nucleotides or a variant thereof.
  • heterologous gene sequence a sequence which is homologous to any of a naturally occurring protein coding sequence, a naturally occurring antisense coding sequence IJ, a naturally occurring ribozyme coding sequence, and the like can be used.
  • a nucleotide sequence having such an identity for example, when compared using the default parameters of Blast, at least about 30%, about 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% At least about 30%, about 35%, about 40%, about 45% of the amino acid sequence encoded by the nucleotide sequence 1J having about 99% identity or similarity, or the nucleotide sequence of the control.
  • % About 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 99% identity or Examples include, but are not limited to, nucleotide sequences encoding amino acid sequences with similarity.
  • the heterologous gene sequence encodes a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and an enzyme capable of degrading a metabolizable sugar.
  • the sequence is heterologous to at least one promoter sequence selected from the group consisting of promoter sequences of genes.
  • the heterologous gene sequence is also preferably heterologous to the signal sequence coding sequence. “Heterologous” with respect to two sequences refers to the fact that these two sequences are derived from different genes or from different species.
  • heterologous is selected from the group consisting of a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar.
  • One promoter sequence is heterologous to the Arabidopsis actin gene.
  • the group consisting of the Arabidopsis sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading metabolizable sugars are selected from the group consisting of an Arabidopsis sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading metabolizable sugars.
  • At least one promoter sequence selected is heterologous to the human interferon gene.
  • the heterologous gene sequence is derived from a heterologous organism, it is also called a foreign gene.
  • foreign gene refers to a gene in a certain organism that is not naturally present in the organism.
  • the nucleic acid of the present invention comprises, in addition to a sugar deficiency-inducible promoter, a promoter sequence of a gene encoding an exo-type glycolytic enzyme or a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar, a signal peptide encoding It may include a sequence.
  • signal peptide coding system refers to a nucleotide sequence that codes for a signal peptide.
  • signal peptide refers to an amino acid sequence mainly containing hydrophobic amino acid residues, which is useful for the attachment of the nascent polypeptide chain to the endoplasmic reticulum membrane and the passage of the membrane.
  • the length of the signal peptide is preferably about 10 to about 50, more preferably about 13 to about 40, and more preferably about 15 to about 30. Whether or not a signal peptide is included in a particular amino acid sequence can be determined according to methods well known in the art, but preferably, Kyte. J and Doolittle, RFJ Mol. Biol.
  • hydrophobicity index Analysis of hydrophobicity index according to the method described in 105-132, 1982.If about 10 amino acids and about 50 amino acids at the N-terminus are hydrophobic, the hydrophobic amino acid portion is a signal peptide peptide. It can be determined that there is.
  • the signal peptide preferably has a sequence that can be degraded by a signal peptidase.
  • the signal peptide coding sequence may be any nucleotide sequence as long as it encodes a signal peptide that binds to the signal peptide and causes extracellular secretion of the polypeptide.
  • Examples of signal peptide coding sequences include the signal / coding peptide sequence of ⁇ -galactosidase, the signal sequence of the signal peptide of ⁇ -xylosidase, and the signal peptide coding sequence of ⁇ -dalcosidase.
  • the signal peptide coding sequence is homologous to the promoter deficiency-inducible promoter, the promoter sequence of the gene encoding the exo-type glycolytic enzyme, or the promoter sequence of the gene encoding the enzyme capable of degrading metabolizable sugar. Or heterogeneous.
  • the signal peptide coding sequence is preferably: (i) position 1 to position 27 of SEQ ID NO: 2, SEQ ID NO:
  • nucleotide sequence encoding a peptide having an extracellular secretion activity a nucleotide sequence having at least 70% identity to the nucleotide sequence of and (i v) (i), and extracellular secretion activity Selected from the group consisting of nucleotide sequences encoding the peptide having When the heterologous gene sequence is operably linked, the extracellular secretion of the product of the heterologous gene is enhanced.
  • the nucleic acid of the present invention further comprises a sugar deficiency-inducible promoter, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, or a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar.
  • a regulatory element refers to an element that directly or indirectly affects the expression of a coding sequence. Examples of regulatory elements include, but are not limited to, promoters, introns, terminators, enhancers, silencers, transcription termination sequences, translation termination sequences, transcription origins, intron sequences, and the like.
  • the regulatory element may preferably include at least one element selected from the group consisting of a promoter, an intron, a terminator and an enhancer.
  • telomere As used herein, "specifically express" a gene means that the gene is at a different (preferably higher) level at a particular site or stage in a plant than at other sites or stages. It is expressed. To be specifically expressed may be expressed only at a certain site (specific site) or may be expressed at other sites. Preferably, specific expression means expression at a certain site only.
  • site specificity generally refers to a site of an organism (for example, a plant) (for example, in the case of a plant, protein body, root, stem, stem, Leaf, flower, seed, endosperm, germ, embryo, fruit, etc.).
  • Stage specificity refers to the stage of development of an organism (eg, a plant) (eg, if it is a plant, the stage of growth (eg, the specific time of formation of the protein body, the number of days of germination after germination)). It refers to the specificity of the expression of that gene. Such specificity can be introduced into a desired organism by selecting an appropriate promoter.
  • the expression of a promoter is "constitutive" in almost all tissues of an organism, whether in the juvenile or mature stages of growth of the organism.
  • the property expressed in a certain amount Specifically, when Northern blot analysis is performed under the same conditions as in the examples of the present specification, for example, at any time point (for example, two or more points (for example, in the case of a plant, germination on the 5th and 15th days) )) In either the same or corresponding sites
  • expression is constitutive by the definition of the present invention.
  • Constitutive promoters are thought to play a role in maintaining the homeostasis of organisms in their normal habitat.
  • the expression of the promoter as "responsive to stress or stimulus” means that the expression level of the promoter changes when at least one stimulus for stress is applied to an organism.
  • the property of increasing the expression level is called “stress (or stimulation) inducibility”
  • the property of decreasing the expression level is called “stress (or stimulation) reducing property”.
  • Stress (or stimulation) inducibility the property of increasing the expression level
  • stress (or stimulation) reducing property the property of decreasing the expression level.
  • Expression of “decrease in stress” is a concept that overlaps with “constitutive” expression because it is assumed that the expression is observed in normal times.
  • An organism eg, a plant or plant part (specific cells, tissues, etc.) transformed with a vector that incorporates a stress-inducible promoter along with a selectable marker and a heterologous gene sequence will be identified by its promoter.
  • a stimulating factor having an inducing activity of By using a stimulating factor having an inducing activity of, the expression of a selectable marker and a heterologous gene sequence can be performed only under certain conditions.
  • the term "intron” refers to a nucleotide sequence present between any two exons and is not found in RNA after force-maturation that is transcribed into RNA. Say. Introns, when present, may have the effect of increasing the expression level of the polypeptide.
  • the intron may be an intron from any organism. Preferably, the intron is from an organism into which the selectable marker is to be introduced. In the present invention, any nucleotide sequence can be used as long as it exhibits intron activity in the target organism.
  • exon refers to a nucleotide sequence that is transcribed into RNA and translated into a polypeptide.
  • terminatator is a sequence located downstream of a protein coding region and involved in termination of transcription when a nucleotide sequence is transcribed into mRNA and addition of a poly A sequence. It is. It is known that the terminator is involved in the stability of mRNA and affects the expression level of the gene. Terminator is a terminator derived from any organism Force that can be one Preferably, the terminator from the organism into which the selectable marker is to be introduced. Examples of the terminator that can be used in the present invention include CaMV35S terminator, nopaline synthase terminator (Tnos), tobacco PRla gene terminator, Tml terminator, lOKDa prolamin terminator and the like, and modifications thereof. Terminators include, but are not limited to, these. In the present invention, any nucleotide sequence can be used as long as it exhibits the activity of a terminator in a target organism.
  • enhancer can be used to enhance the expression efficiency of a target gene.
  • enhancers are well known in the art.
  • a plurality of forces that can be used may be used or one may not be used.
  • the enhancer is a force that can be an enhancer of any organism.
  • the enhancer is of an organism from which the selectable marker is to be introduced.
  • any nucleotide sequence can be used as long as it exhibits the activity of the enhancer in the target organism.
  • the enhancer is preferably, for example, an enhancer region containing an upstream sequence in the CaMV 35S promoter.
  • silencer refers to a sequence that has the function of suppressing gene expression and quiescing.
  • any type of silencer may be used as long as the silencer has the function.
  • the regulatory sequence is preferably operably linked to the promoter and the heterologous gene sequence.
  • "operably linked” means that the desired nucleotide sequence is a transcription regulatory sequence (eg, promoter, terminator, silencer, heterozygous gene) that results in expression (ie, operation). Or the like, or under the control of translation control sequences (eg, introns, splice donors, splice acceptors, etc.).
  • the promoter is usually, but not necessarily, positioned immediately upstream of the gene.
  • the promoter and the heterologous gene sequence may need to be processed. For example, if the distance between the promoter and the coding region is too long and transcription efficiency is expected to decrease, or For example, when the distance between the bososome binding site and the translation initiation codon is not appropriate.
  • processing methods include digestion with restriction enzymes, digestion with exonucleases such as Bal31 and ExoIII, or introduction of site-directed mutagenesis using single-stranded DNA or PCR such as M13.
  • the nucleic acid molecule of the present invention is preferably an isolated nucleotide.
  • an ⁇ isolated '' nucleotide is a nucleotide that means that the other nucleotide in the cell of the naturally occurring organism (e.g., a factor other than a nucleotide and a non-nucleotide of interest). Nucleotide) is substantially separated or purified. "Isolated" nucleotides include nucleotides purified by standard purification methods. Thus, an isolated nucleotide includes chemically synthesized nucleotides. In addition, nucleotides mixed with other substances and nucleotides dissolved in a buffer after purification by a standard purification method also correspond to the isolated nucleotides referred to herein.
  • the term "purified" nucleotide refers to a nucleotide from which at least a part of a factor naturally associated with the nucleotide has been removed. Thus, typically, the purity of the nucleotide in the purified nucleotide is higher (ie, more concentrated) than in the state in which the nucleotide is normally present.
  • nucleotide may be natural or non-natural.
  • “Derivative nucleotides” or “nucleotide analogs” are those that are different from naturally occurring nucleotides, but that have the same function as the original nucleotides. Such derivative nucleotides and nucleotide analogs are well known in the art. Examples of such derivative nucleotides and nucleotide analogs include, but are not limited to, phosphorothioate, phosphonoreamidate, methylphosphonate, chiral methylphosphonate, 2-0-methylribonucleotide, peptide mononucleic acid (PNA). Not done.
  • the nucleic acid molecule of the present invention comprises a sugar deficiency inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar.
  • Group strength as long as at least one promoter sequence selected has sugar deficiency inducibility and has the necessary promoter activity.
  • a part of the nucleotide sequence may be deleted, a part of the nucleotide sequence may be replaced by another nucleotide, or another nucleotide sequence may be partially inserted.
  • another nucleic acid may be bound to the 5 'end and / or the 3' end.
  • a natural sugar-deficiency-inducible promoter, a promoter sequence of a gene encoding an exo-type glycolytic enzyme and a metabolizable It may be a nucleotide sequence having substantially the same function as at least one promoter sequence selected from the group consisting of a promoter sequence of a gene encoding an enzyme capable of degrading sugar. Such nucleotide sequences are known in the art and can be used in the present invention.
  • Such a nucleic acid molecule can be prepared using a well-known PCR method, and can also be chemically synthesized. These methods may be combined with, for example, site-directed mutagenesis, hybridization, and the like.
  • the vector of the present invention is selected from the group consisting of a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar. At least one promoter sequence and a heterologous gene system IJ operably linked to the selected promoter sequence.
  • Glucose deficiency-inducible promoter sequence Glucose deficiency-inducible promoter sequence, promoter sequence of a gene encoding exo-type glycolytic enzyme, promoter sequence of gene encoding an enzyme capable of degrading metabolizable sugar, operably linked heterologous gene
  • the sequence and the like are as described in 1 above.
  • the term "vector” refers to a nucleic acid molecule capable of transferring a heterologous gene sequence to a target cell. Such a vector may be capable of autonomous replication in the target cell, or may be capable of integrating into the chromosome of the target cell and be modified. Those containing a promoter at a position suitable for transcription of the altered base sequence are exemplified.
  • the cells of interest can be host cells such as plant cells and plant individuals.
  • a vector can be a plasmid, an expression vector, a recombinant vector, and the like.
  • expression vector refers to a sugar deficiency-inducible promoter sequence IJ, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and an enzyme capable of degrading a metabolizable sugar.
  • the expression vector is selected from the group consisting of one sequence of a sugar deficiency-inducible promoter, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar.
  • various regulatory elements such as gene expression regulators that regulate its expression, and, if necessary, replication and recombinant production in the target cell. Includes factors required for selection (eg, origin of replication (ori), and selectable markers such as drug resistance genes).
  • the modified base sequence is operably linked so as to be transcribed and translated. Regulatory elements include promoters, terminators and enhancers.
  • the definition of the regulatory element is as described above. If the expressed enzyme is intended to be secreted out of the cell, it is linked in the correct reading frame upstream of the nucleotide sequence whose nucleotide sequence has been modified to encode a secretory signal peptide.
  • the type of expression vector used to introduce into a particular organism eg, a bacterium
  • the type of regulatory elements and other factors used in the expression vector and the ability to vary depending on the cell of interest. Is a matter well known to those skilled in the art.
  • examples of the vector include a vector that can be replicated and isolated and purified by common bacteria (typically, an Escherichia coli strain derived from Escherichia coli K12 strain) used in genetic experiments. This is necessary to construct the nucleic acid molecule of interest into the target organism (eg, a plant).
  • plasmids such as E. coli PBR322 plasmid, pUC18, pUC19, pBluescript, pGEM-T, and pGEM-T Easy.
  • the gene to be introduced may be constructed using such a commercially available general plasmid.
  • a vector when a plant cell is transformed using a gene transfer method mediated by agrobacterium, the replication origin of both Escherichia coli and agrobacterium, It is necessary to use a plasmid called a "binary vector" having a nucleotide sequence corresponding to the border sequence (Left border and Right Border) derived from T-DNA indicating the border region to be obtained.
  • pBIlOl commercially available from Clontech
  • pBIN Bevan, N., Nucleic Acid Research 12, 8711-8721, 1984
  • pBINPlus van Engelen, FA et al., Tranegenic Research 4, 288-290, 1995
  • pTN Or pTH Fukuoka H et al., Plant Cell Reports 19, 2000
  • pPZP Hajdukiewicz P et al., Plant Molecular Biology 25, 989-994, 1994
  • tobacco mosaic virus vector is also an example of a vector that can be used for plants. Since this type of vector does not introduce the target gene into the plant chromosome, it is necessary to propagate the transgenic plant with seeds. The use is limited in the absence of this, but can be used in the present invention.
  • the expression vector may contain the selection marker of the present invention in an expression cassette.
  • An "expression cassette" is defined as comprising a nucleotide sequence to be expressed (for example, a structural gene), a promoter sequence that regulates its expression, a terminator sequence that terminates mRNA transcription, and, if necessary, various other regulatory elements.
  • a nucleotide sequence to be expressed for example, a structural gene
  • a promoter sequence that regulates its expression
  • a terminator sequence that terminates mRNA transcription
  • One unit of an artificially constructed gene which is operably linked to a nucleotide sequence to be expressed in a target cell.
  • Representative examples of expression cassettes include a selection marker (for example, hygromycin resistance gene) expression cassette for selecting only transformed cells of the target cells, and a useful protein to be expressed in host cells.
  • An expression cassette for the coding sequence is included. The type, structure, and number of expression cassettes to be prepared should be appropriately used depending on the organism, host cell, and purpose,
  • An "expression vector” is also defined as a “vector” that may contain one or more of the above “expression cassettes”. Can be justified. Each expression cassette to be introduced into the target cell may be placed on a separate vector, or all expression cassettes may be ligated on one vector.
  • a selection marker coding sequence when a selection marker coding sequence is further used in the present invention, it encodes a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and an enzyme capable of degrading a metabolizable sugar.
  • An expression cassette containing at least one promoter sequence selected from the group consisting of a promoter sequence of a gene and a gene gene sequence operably linked to the promoter sequence, and an expression cassette containing a selection marker coding sequence It may be present on the same expression vector or on another expression vector. Preferably, they are on the same expression vector. More preferably, it is selected from the group consisting of a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar.
  • An expression cassette comprising a gene sequence operably linked to at least one promoter sequence and its promoter sequence and an expression cassette comprising a selectable marker coding sequence are included in the same expression cassette.
  • a binary vector-type expression vector can be used as an expression vector for plants.
  • the plant cell of the present invention is selected from the group consisting of a sugar deficiency inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar. At least one promoter sequence and a heterologous gene system IJ operably linked to the selected promoter sequence.
  • Glucose deficiency-inducible promoter sequence Glucose deficiency-inducible promoter sequence, promoter sequence of gene encoding exo-type glycolytic enzyme, promoter sequence of gene encoding enzyme capable of degrading metabolizable sugar, operably linked heterologous gene
  • the sequence and the like are as described in 1 above.
  • the plant cells used in the present invention may be cells derived from any plant (eg, monocotyledonous plants, dicotyledonous plants, etc.).
  • a plant cell preferably, a cell derived from a flowering plant (monocotyledon or dicotyledon) is used, more preferably, a dicotyledonous plant cell is used, and more preferably, Gramineae, Solanaceae, Cells derived from plants of the family Lamiaceae, Brassicaceae, Apiaceae, Rosaceae, Leguminosae, and Musaceae are used.
  • the plant cell may be a part of a plant, an organ, a tissue, a cultured cell, or the like. It is preferably a cultured cell. When aiming at high production of a protein using a plant, it is particularly preferable to use a cultured cell to secrete the target protein into a culture solution since the extraction and purification steps of the protein can be largely omitted.
  • the plant cells are preferably cultured cells having a high growth rate.
  • the fast growth rate means that, when the cultured cells are cultured under arbitrary culture conditions for one week, the number of cells at the start of culture is preferably about 10 times or more, more preferably about 20 times or more, and still more preferably.
  • Examples of such cultured cells having a high proliferation rate include, but are not limited to, cells (for example, tobacco BY-2 cells) that can grow 50 times or more in one week.
  • Tobacco BY-2 Itoda Tsukihachi is a well-established callus force induced by Nicotiana tabacum L. cv. Bright Yellow 2 from the moon-pig, and requires an auxin for growth.
  • Cultured cells having properties similar to BY-2 cells can be prepared according to the method described in Kato, A. et al., "Fermentation Technology Today", 1972, pp. 689-695; It can be distributed by Dr. Seiichiro Touzawa of the graduate School of Science.
  • Tobacco BY2 Itoda cells have the advantages of an unusually fast growth rate (about 100 times a week) as a plant cell culture, a uniform cell population, and easy transformation. BY—similar to 2 cells
  • a rapidly proliferating cell population was prepared according to the method described by Kato et al., Above, with 0.2 mg / l 2,4-dichlorophenoxyacetic acid, 0.4 mg / l thiamine hydrochloride and 30 g / l RM containing sucrose—Induced by inducing tobacco hypocotyl force callus in 1964 medium (Linsmaier and Skoog, Physiol. Plant. 18, 1965, p. 100) and further cultivating this callus in the same medium Can be done.
  • cultured cells derived from Arabidopsis thaliana cells capable of proliferating 50-fold or more in one week are known. Most preferably, cultured cells derived from Arabidopsis thaliana are used. Arabidopsis thaliana has a small genome and all the genetic information has been elucidated. This is because the operation is easy and various modifications can be made.
  • the cells of the present invention can be produced using these cells by a transformation method well known in the art.
  • the cell of the present invention is a cell obtained from a progeny obtained by redifferentiating a cell produced according to a transformation method well known in the art, obtaining a transformed individual, and crossing the individual. possible.
  • Transformant refers to all or a part of an organism such as a cell produced by transformation.
  • a plant cell is exemplified.
  • a transformant is also referred to as a transformed cell, a transformed tissue, a transformed host, and the like, depending on the subject, and includes all of these forms in the present specification. Can point.
  • the nucleic acid molecule of the present invention is provided on both sides of the plant of the present invention. Although introduced into the chromosome, those introduced into only one pair may also be useful.
  • any method for introducing DNA into a plant cell may be used elsewhere in this specification. As described in detail, any of them can be used.
  • the Agrobacterium method (Agrobacterium) (JP-A-59-140885, JP-A-60-70080, WO94 / 00977), the electoral-portion method (Special 60-251887), a method using a particle gun (gene gun) (Japanese Patent No. 2606856, Japanese Patent No. 2517813), and the like.
  • examples of the physical method include a polyethylene glycol method (PEG method), an electroporation (electroporation) method, a microinjection method, and a particle gun method.
  • PEG method polyethylene glycol method
  • electroporation electroporation
  • microinjection method a particle gun method.
  • PEG method polyethylene glycol method
  • electroporation electroporation
  • microinjection method particle gun method
  • particle gun method examples of the physical method.
  • methods for introducing an isolated gene using an organism include the agrobacterium terminus method, the Winorespecta method, and a recently developed method using pollen as a vector. .
  • These methods have the advantages of using a plant callus, tissue, or plant without using protoplasts, so that the culture is not extended over a long period of time and is less susceptible to somaclonal mutations and other disorders. I have.
  • the method using pollen as a vector has many unknowns as a method of transforming plants with few experimental examples.
  • the virus vector method has the advantage that the gene to be introduced into the whole plant infected with the virus is spread, it is only amplified and expressed in each cell and there is no guarantee that it will be transmitted to the next generation.
  • Agrobacterium method stains DNA larger than about 20 kbp without major rearrangement
  • Agrobacterium is out of the host range, and thus, foreign genes have been conventionally introduced into grasses by the physical method as described above.
  • the agrobacterium method has been applied to monocotyledonous plants, such as rice, for which a culture system has been established. It is used favorably.
  • the method for introducing a plant expression vector into a plant cell includes methods well known to those skilled in the art, for example, a method via agrobacterium and a method for direct introduction into cells. Can be used.
  • a method via the Agrobacterium terminus for example, the method of Nagel et al. (Nagel et al. (1990), Microbiol. Lett., 67, 325) can be used. This method involves first transforming an Agrobacterium terminus by, for example, electoporation with an expression vector suitable for a plant, and then transforming the transformed agrobacterium with Gelvin et al. (Ed.
  • the target nucleic acid molecule in the transformant, may or may not be introduced into a chromosome.
  • the nucleic acid molecule of interest (introduced gene) has been introduced into a chromosome, more preferably both chromosomes.
  • a selectable marker gene is used, if necessary.
  • an appropriate selection factor eg, an antibiotic, a dye, etc.
  • the cells into which the nucleic acid molecule of the present invention has been introduced can be selected from the transformed cells. Can be selected more efficiently. However, this step is not always essential in the present invention.
  • selection methods vary depending on the characteristics of the selectable marker possessed by the introduced nucleic acid molecule. For example, when a resistance gene to an antibiotic (eg, hygromycin, kanamycin, etc.) is introduced as a selectable marker, the Target cells can be selected using specific antibiotics.
  • a marker gene for example, a green fluorescent gene or the like
  • a target cell can be selected based on such a marker.
  • the transfected cells may be selected based on such a difference.
  • identifiable differences include, but are not limited to, for example, the presence or absence of the expression of a dye.
  • the thus obtained transformed cells can be redifferentiated into a plant tissue, a plant organ and Z or a plant by a method well known in the art.
  • Such a medium includes, for example, Murashige-Skoog (MS) medium, GaMborg B5 (B) medium, White medium, Nitsch & Nitsch (Nitsch) medium and the like. . These media are usually used after adding an appropriate amount of a plant growth regulator (plant hormone) or the like.
  • regenerating the plant refers to a part of an individual. Means the whole individual is restored.
  • redifferentiation forms an organ or plant from a piece of tissue such as a cell (leaf, root, etc.).
  • a method for redifferentiating a transformant into a plant is well known in the art. Such methods include Rogers et al., Methods in Enzymology 118: 627-640 (1986); Tabata III, Plant Cell Physiol., 28: 73-82 (1987); Shaw, Plant Molecular Biology: A practical approach. press (1988); Shimamoto et al., Nature 338: 274 (1989); Maliga III, Methods in Plant Molecular Biology: A laboratory course. Cold Spring Harbor Laboratory Press (1995). Not limited. Therefore, those skilled in the art can use the above-mentioned well-known methods as appropriate according to the transformed plant to be regenerated.
  • the transgenic plant thus obtained has a gene of interest introduced therein, and such gene introduction can be carried out by the methods described herein such as Northern blot, stamp lot analysis, or the like. It can be confirmed using other well-known conventional techniques.
  • seeds can be obtained from the obtained transformed plant.
  • the expression of the introduced gene can be detected by Northern blotting or PCR. If necessary, the expression of the protein as a gene product can be confirmed by, for example, Western blotting.
  • the present invention can also be used in other organisms that have been shown to be particularly useful in plants.
  • the molecular biology techniques used in the present invention are well known and commonly used in the art and are described, for example, in Ausubel FA et al. (1988), urrent Protocols m Molecular Biology, Wiley, New York ;, NY; Sambrook J et al. (1987) Molecular Cloning: A Laboratory Manual, 2nd JX and its 3rd half, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, Separate volume experimental medicine "Gene transfer & expression analysis experiment. Law ", Yodosha, 1997.
  • the tissue of the present invention comprises a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar.
  • One promoter A heterologous gene sequence operably linked to the selected promoter sequence.
  • Glucose deficiency-inducible promoter sequence Glucose deficiency-inducible promoter sequence, promoter sequence of gene encoding exo-type glycolytic enzyme, promoter sequence of gene encoding enzyme capable of degrading metabolizable sugar, operably linked heterologous gene
  • the sequence and the like are as described in 1 above.
  • tissue of an organism refers to a population of cells having a certain similar effect in the population.
  • tissue can be part of an organ. Organs often have cells with the same function, but sometimes have subtly different functions.Therefore, in this specification, various tissues are used as long as they share certain characteristics. May be present in a mixture.
  • a tissue can be referred to as a tissue, even if the cell populations have the same origin, but different origins, if they have the same function and Z or morphology.
  • tissues make up part of an organ. Plants are roughly classified into meristems and permanent tissues according to the stage of development of the constituent cells, and are classified into single tissues and composite tissues according to the type of the constituent cells.
  • the tissue of the present invention can be obtained by subjecting cells produced according to the following "8. Method for producing transformed cells” to tissue differentiation according to a method known in the art.
  • the tissue of the present invention may be a tissue obtained from offspring obtained by redifferentiating cells produced according to “8. Method for producing transformed cells”, obtaining a transformed individual, and crossing the individual.
  • 8. Method for producing transformed cells obtaining a transformed individual, and crossing the individual.
  • the organ of the present invention comprises a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar.
  • Glucose deficiency-inducible promoter sequence Glucose deficiency-inducible promoter sequence, promoter sequence of gene encoding exo-type glycolytic enzyme, promoter of gene encoding enzyme capable of degrading metabolizable sugar
  • the sequence, operably linked, heterologous gene sequence, etc. are as described in 1 above.
  • organ refers to one that has one independent form and forms a structure that performs a specific function by combining one or more tissues.
  • Plants include, but are not limited to, callus, roots, stems, stems, leaves, flowers, seeds, germs, embryos, fruits, endosperm, and the like.
  • the organ targeted by the present invention may be any organ, and the tissue or cell targeted by the present invention may be derived from any organ of an organism.
  • a multicellular organism eg, a plant
  • an organ is composed of several tissues having a specific spatial arrangement, and a tissue is composed of a large number of cells.
  • the organ of the present invention can be obtained by using a cell produced according to a transformation method well known in the art, performing tissue differentiation according to a method known in the art, and forming an organ.
  • the organ of the present invention may be an organ obtained from a progeny obtained by redifferentiating cells produced according to a method for producing transformed cells known in the art, obtaining a transformed individual, and crossing the individual.
  • the organism of the present invention is selected from the group consisting of a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar. At least one promoter sequence and a heterologous gene sequence operably linked to the selected promoter sequence.
  • Glucose deficiency-inducible promoter sequence Glucose deficiency-inducible promoter sequence, promoter sequence of gene encoding exo-type glycolytic enzyme, promoter sequence of gene encoding enzyme capable of degrading metabolizable sugar, operably linked heterologous gene
  • the sequence and the like are as described in 1 above.
  • organism As used herein, the term "organism” (or “plant” in the case of a plant) is used in the broadest sense in the art and refers to a plant that performs a biological phenomenon. Typically, there are various characteristics such as cell structure, proliferation (self-reproduction), growth, regulation, metabolism, and repair ability. It has the basic properties of growth, which involves the inheritance governed by nucleic acids and the metabolism regulated by proteins.
  • Organisms include prokaryotes, eukaryotes (eg, plants, animals).
  • the organism can be a plant.
  • such a plant may be fertile. More preferably, such plants are capable of producing seed.
  • the organism of the present invention can be obtained by using cells created according to a transformation method well known in the art and redifferentiating according to a method known in the art.
  • the organism of the present invention is obtained from a progeny obtained by redifferentiating cells produced according to a transformation method well known in the art, obtaining a transformed individual, and crossing the individual. It can be an organism.
  • plant is a generic term for organisms belonging to the plant kingdom, and lacks the ability to move, lack the ability to move, have a strong cell wall, abundant and persistent embryonic tissue Characterized by organisms.
  • plants are flowering plants that have cell wall formation and anabolism by chlorophyll.
  • Plants include both monocots and dicots.
  • Preferred plants include, for example, monocotyledonous plants belonging to the Poaceae family such as wheat, corn, rice, rye, and sorghum.
  • the plant is a food crop or a medicinal plant.
  • Other examples of preferred plants include tobacco, peppers, eggplants, melons, tomatoes, strawberries, sweet potatoes, cabbage, leeks, broccoli, carrots and peas.
  • a plant refers to any plant, plant organ, plant tissue, plant cell, and seed. Examples of plant organs include roots, leaves, stems, flowers, and the like. Examples of plant cells include callus and suspension culture cells.
  • Examples of plants of the Poaceae family include plants belonging to ⁇ ryza, Hordenum, Secale, Scccharum, Echino chloa, or Zea, and include, for example, rice, oats, rye, hee, sorghum, corn, and the like.
  • Plants containing a heterologous nucleotide sequence may express a gene product that is not naturally expressed.
  • the nucleic acid molecule of the present invention in the organism of the present invention, can be introduced into chromosomes on both sides, but those introduced into only one pair may also be useful.
  • the protein production method of the present invention is selected from the group consisting of a sugar deficiency inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar.
  • Glucose deficiency-inducible promoter sequence Glucose deficiency-inducible promoter sequence, promoter sequence of a gene encoding exo-type glycolytic enzyme, promoter sequence of gene encoding an enzyme capable of degrading metabolizable sugar, operably linked heterologous gene
  • the sequence and the like are as described in 1 above.
  • a group consisting of a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar can be used.
  • a nucleic acid molecule comprising at least one promoter sequence selected from and a protein coding sequence operably linked to the selected promoter sequence is introduced into a cell to obtain a transformed cell.
  • the cells used in the production method of the present invention may be any of plant cells, bacterial cells and animal cells, and are preferably plant cells.
  • a cell derived from a flowering plant is used, more preferably, a dicotyledonous plant cell is used, and more preferably, Gramineae, Solanaceae, and Cells derived from plants of the family Lamiaceae, Brassicaceae, Apiaceae, Rosaceae, Legumes, and Musaceae are used.
  • wheat, corn, rice, corn, sorghum, tobacco, pepper, eggplant, melon, tomato, strawberry, sweet potato, rape, cabbage, green onion, broccoli, soybean, alfalfa, ama, carrot, cricket, citrus, Chinese cabbage, lettuce, peach, ja Cells derived from potato, purple, ogle, poplar and apple are used.
  • cells from tobacco are used.
  • the plant cell may be a part of a plant body, an organ, a tissue, a cultured cell, or the like. It is preferably a cultured cell.
  • the plant cells are preferably cultured cells having a high growth rate.
  • the fast growth rate means that the number of cells at the start of culture is preferably about 10 times or more, more preferably about 20 times or more, and still more preferably, when the cultured cells are cultured under arbitrary culture conditions for one week. Is about 30 times or more, more preferably about 40 times or more, more preferably about 50 times or more, more preferably about 60 times or more, more preferably about 70 times or more, more preferably about 80 times or more, and particularly preferably about 80 times or more. It means that it can grow to a cell number of 90 times or more, most preferably about 100 times or more.
  • Examples of such cultured cells having a high growth rate include tobacco BY-2 cells. Even in cultured cells derived from Arabidopsis thaliana, a cell line having a high growth rate has been established and is known. Examples of such cell lines, James AH M urray Dr., Institute oi Biotechnology, University of Cambridge , Te nnis Court Road, Cambridge CB2 1QT, include United Kingdom force s established cell lines. Of course, a cell line having a high growth rate can also be obtained by culturing an Arabidopsis thaliana plant, growing the cultured cells, and repeatedly selecting cells at a high growth rate from the grown cells. These cells are as described above.
  • the cells of the present invention can be transformed using these cells as described in "3. Cells" above, using a well-known transformation method in the relevant field.
  • the transformed cell may be a cell obtained from a progeny obtained by redifferentiating a cell produced according to a transformation method well known in the art, obtaining a transformed individual, and crossing the individual. .
  • the nucleic acid molecule used to transform a cell may further include a signal peptide coding sequence.
  • the signal peptide coding sequence is as described in 1 above.
  • the transformed cell may be cultured as it is in the absence of sugar to secrete the protein.
  • the transformed cells are first grown in the presence of sugar. Thereafter, the cells may be transferred and cultured in the absence of sugar.
  • the "sugar” may be any sugar, but is preferably a metabolizable glycolytic sugar or a sugar that can be metabolized into this glycolytic sugar.
  • Glycolytic sugars are sugars that can be metabolized.
  • the metabolizable sugar is as described in “1. Nucleic acid molecule” above.
  • the metabolizable sugar is preferably glucose, fructose, xylose, galactose, sucrose, maltose and arabinose, more preferably sucrose. This is because sucrose is cheaper and easier to obtain than other monosaccharides.
  • the concentration of sugar at the time of culturing the transformant can be easily determined by a method known in the art.
  • Appropriate media compositions for the cells of interest are known in the art.
  • the medium may be liquid or solid, but is preferably liquid. Shaking culture in a liquid medium is preferred. Shaking culture in liquids results in faster cell growth
  • the sugar concentration under these conditions is preferably about 10 mM or more. It is preferably about 15 mM or more, and more preferably about 20 mM or more. There is no particular upper limit to the sugar concentration, but there is no particular lower limit if necessary. However, the concentration can be about 200 mM or less, about 150 mM or less, about 100 mM or less, or about 90 mM or less as necessary.
  • the sugar-deficient responsive promoter does not respond, resulting in the normal metabolism that cells normally have. In the presence of sugar, transformed cells preferably grow rapidly.
  • the transformed cells After culturing the transformed cells in the presence of sugar and then transferring them in the absence of sugar, for example, the transformed cells are cultured in the presence of a certain concentration of sugar, and cultured for a certain period of time. By feeding, the cells may be transferred by consuming sugar from the medium due to the growth of the transformed cells.
  • recovering the transformed cells according to methods known in the art, and placing the transformed cells in a fresh medium without sugar Can be achieved by:
  • a mesh of appropriate mesh size that does not allow the cells to pass through eg, a 20 zm mesh.
  • the mesh can be manufactured from any material. For example, a nylon mesh can be used. Cultured cells can also be harvested by centrifugation at 1, OOOg x 5 minutes. When cells are cultured on a solid medium, the clumps of cells can be picked up with tweezers or the like and replaced with fresh medium.
  • the condition in which a sugar is substantially absent refers to a condition in which a sugar deficiency-responsive promoter promotes expression.
  • the concentration of sugar under conditions substantially free of sugar is preferably less than 15 mM, more preferably less than about 10 mM, more preferably less than about 5 mM, and even more preferably less than about 3 mM. Yes, even more preferably less than about ImM, and particularly preferably less than about 0.1 ImM.
  • Conditions that are substantially free of sugar include conditions that are completely free of sugar.
  • the sugar-deficient inducible promoter in the transformed cell responds, and the expression of a heterologous gene sequence operably linked to the sugar-deficient inducible promoter is expressed. Occurs. Furthermore, operably linked to the heterologous gene sequence, the signal peptide coding sequence results in secretion of the gene product encoded by the heterologous gene sequence.
  • the secreted protein is recovered.
  • the protein can be recovered using methods well known in the art.
  • Techniques for separating proteins are well known in the art, and any technique that can separate proteins may be used.
  • a protein e.g., a useful protein
  • a purification method can be used.
  • the culture is treated by a method such as centrifugation to obtain a soluble fraction. .
  • an "isolated" polypeptide is defined as another biological factor (eg, a factor other than a polypeptide) within a cell of an organism in which the polypeptide naturally exists. And polypeptides other than the polypeptide of interest).
  • An “isolated” polypeptide includes a polypeptide that has been purified by standard purification methods. Thus, an isolated polypeptide includes chemically synthesized polypeptides.
  • polypeptides mixed with other substances and dissolved in a buffer after purification by a standard purification method also correspond to the isolated polypeptides referred to in the present specification.
  • the term "purified" refers to a polypeptide in which at least a part of a factor naturally associated with the polypeptide has been removed. Thus, typically, the purity of the polypeptide in the purified polypeptide will be higher (ie, more concentrated) than in the state in which the polypeptide is normally present.
  • the target protein accumulates in a state of lysis in the cells of the transformant of the present invention
  • the cells in the culture are collected by centrifuging the culture, and the cells are washed.
  • the cells are crushed by an ultrasonic crusher, French press, Mantongaulin homogenizer, Dynomill, etc. to obtain a cell-free extract.
  • the cells are similarly collected, crushed, and centrifuged to obtain a precipitate fraction obtained by a conventional method.
  • the insoluble form of the protein is solubilized with a protein denaturant.
  • This lysate is diluted or dialyzed to contain no protein denaturant, or diluted so that the protein denaturant concentration is low enough not to denature the protein.
  • a purified sample can be obtained by the same isolation and purification method as described above.
  • the target protein can be purified after separating the organelle.
  • the protein can be purified according to a conventional protein purification method (J. Evan. Sadler et al .: Methods in Enzymology, 83, 458).
  • the target protein can be produced as a fusion protein with other proteins, and purified using affinity chromatography using a substance having affinity for the fused protein [Yama J 11 Akio, Experimental Medicine, 13, 469-474 (1995)] 0
  • affinity chromatography using a substance having affinity for the fused protein
  • a protein of interest and a tag for purification for example, His tag (for example, 6 His residual 6X His tags), HA tag, protein A, IgG domain, or maltose binding protein
  • His tag for example, 6 His residual 6X His tags
  • HA tag for example, protein A, IgG domain, or maltose binding protein
  • affinity chromatography for the tag for purification can be performed by using affinity chromatography.
  • cells expressing the fusion protein are collected by centrifugation (eg, at about 6000 X g for 20 minutes) and the cell pellet is treated with a chaotropic agent. In 6M guanidine HC1 by stirring at 4 ° C for 3-4 hours. The cell debris is then removed by centrifugation, and the supernatant containing the polypeptide is applied to a Nickel nitrite triacetic acid (“Ni_NTA”) affinity resin column (available from QIAGEN, Inc. supra). To load.
  • Ni_NTA Nickel nitrite triacetic acid
  • Proteins with a 6 X His tag bind to Ni—NTA resin with high affinity and can be purified by a simple one-step procedure (see The QIA expressionist (1995) QIAGEN, Inc., supra). Out). Briefly, the supernatant was loaded onto a 6 ⁇ guanidine-HC1, pH 8 column, the column was first washed with 10 volumes of 6M guanidine-HC1, pH 8, then 10 volumes of 6M guanidine-HC1, pH 6 And finally elute the polypeptide with 6M guanidine-HCl, pH5. The purified protein is then regenerated by dialysis against phosphate buffered saline (PBS) or 50 mM sodium acetate, pH 6 buffer and 200 mM NaCl.
  • PBS phosphate buffered saline
  • the protein can be successfully refolded while immobilized on a Ni-NTA column.
  • the recommended conditions are as follows: regeneration using a linear gradient of 6M-1M urea in 500mM NaCl, 20% glycerolone, 20mM Tris / HCl pH 7.4, including protease inhibitors. Regeneration is preferably performed over a period of at least 1.5 hours.
  • the protein is eluted by adding 250 mM imidazole. The imidazole is removed by a final dialysis step against PBS or 50 mM sodium acetate pH 6 buffer and 200 mM NaCl. Thus, a purified protein is obtained.
  • the target protein can be produced as a fusion protein with a FLAG peptide and purified by affinity chromatography using an anti-FLAG antibody (Larsen et al., Proc. Natl. Acad. Sci., USA , 86, 8227 (1989), Kukowska-Latallo JF, Genes Dev., 4, 1288 (1990)).
  • the polypeptide can be purified by affinity mouth chromatography using an antibody against the target polypeptide itself.
  • the protein of the present invention can be transcribed in vitro according to a known method ⁇ . Biomolecular NMR, 6, 129-134, Science, 242, 1162-1164, ⁇ . Biochem., 110, 166-168 (1991)]. It can be produced using a translation system.
  • the present invention provides a composition produced by the method of the present invention, comprising a translation product of the nucleotide of interest.
  • the translation product contained in such a composition is Force that varies depending on the peptide Preferably it can be a protein.
  • Arabidopsis thaliana cDNA macroarrays were hybridized with probes prepared from seedlings cultured in the presence or absence of sucrose. Initial screening identified 36 affected cDNAs. Twelve of these cDNAs were identified as being induced under sugar-deficient conditions. Nine of these were new with a known sugar response. Based on the properties of the encoded proteins, they were divided into three groups involved in amino acid metabolism, carbohydrate metabolism and unknowns. Subsequently, the correlation between these expression profiles and sugar levels was analyzed using plants. Subjecting withdrawn leaves to sucrose deficiency for 36 hours resulted in a significant decrease in glucose, but not sucrose, and concomitantly induced all 12 genes.
  • Arabidopsis thaliana (Ecotype Columbia) in a 0.5 ⁇ MS liquid medium containing 2% sucrose (w / v) (Murashige and Skoog basic salt, pH 5.8), 16 hours light period / 8 hours photoperiod And grown at 21 ° C.
  • sucrose w / v
  • the sprouts were depleted of sugar by transplanting to a sucrose-free medium and further cultured in place for up to 79 hours.
  • the seedlings were resupplied with sucrose by transplanting the seedlings into medium supplemented with 2% sucrose (wZv) for 7 hours.
  • Arabidopsis thaliana cDNA macroarray was supplied by Kazusa DNA Research Institute.
  • One filter (8 X I 2 cm) contained approximately 13,000 PCR-amplified cDNA fragments prepared from four different tissues (aboveground organs, flower buds, roots and green siliques). Amplicon production and array production were performed as described in Asamizu et al., DNA Research 7, 2000, pp. 175-180 and Sasaki et al., DNA Research 8, 2001, pp. 153-161.
  • the filters were washed once with 2 ⁇ SSC containing 0.1% SDS and then twice in 0.5 ⁇ SSC containing 0.1% SDS for 30 minutes at 65 ° C. Each microarray filter was used sequentially for alternative hybridization with a 33 P-labeled cDNA probe prepared from treated and untreated plant material.
  • a subarray was constructed using 184 genes and 8 controls, and these adjacent overlapping genes totaled 384 Generates a cDNA subarray of elements (Gene-Lab Co. Ltd.). Hybridization was performed according to the protocol used for cDNA macroarray analysis. The reproducibility of the hybridization signal was evaluated from the mean of triplicate experiments.
  • RNA was extracted from total sprouting or detached leaf tissue as described in Suzuki et al., Plant Cell and Environment 24, 2001, pp. 1177-1188. 10 ⁇ g of each RNA sample was size fractionated by 1.2% formaldehyde-agarose gel electrophoresis, transferred to a nylon membrane, and cross-linked by UV irradiation. 42 of this membrane. C for 16 hours of hybridization, 0.1%
  • Soluble sugars were extracted sequentially with 4 mL of 80% (vZv) ethanol and 1 mL of 50% ethanol. The two layers were pooled and incubated at 80 ° C for 30 minutes. The solution was centrifuged at 9, OOO rpm for 10 minutes and the supernatant was dried in a Speed Vac Concentrator. The dried residue was resuspended in 400 ⁇ l of 80% ethanol, mixed with 400 ⁇ l of chloroform and centrifuged at 7,500 rpm for 10 minutes. Supernatants were analyzed for soluble sugars by the enzymatic method (Sigma Diagnostics Glucose reagent, USA).
  • Probe cDNA was prepared from hydroponic shoots that had been subjected to 79 hours of sugar deficiency or returned to a sucrose-rich medium after 72 hours of sucrose depletion for 7 hours. Hybridization was performed in duplicate for each sample to obtain high reproducibility. After scaling with Array Vision, the signal intensities were normalized to calculate the intensity ratio between the two probes. Initial screening yielded 184 genes whose signal ratios changed more than 3-fold or changed less than 0.3-fold (Fig. La). Subsequently, duplicate subarrays (each containing 192 genes) were prepared.
  • RNA gel plot analysis was performed on the 73 genes identified in the subarray (Fig. 2).
  • the expression patterns of the nine genes induced by sugar deficiency were analyzed by RNA blot hybridization ( Figure 2).
  • Figure 2 For all 9 genes, the RNA gel plot data was consistent with the subarray profiles, and we concluded that the quantitative results for these arrays were valid, and Atsug (Arabidopsis thaliana sugar up-regulated) 1-9 was named.
  • transcript accumulation profile was determined for the 73 genes identified to respond to glycosylation by RNA blot hybridization using detached leaf samples.
  • AtSUG6 2.27 At5g56870 ⁇ -galactosidase-
  • AtSUGl 0 2.49 At4g20260 Inner membrane binding protein of vomerula ⁇
  • AtSUGl 1 10.32 At5g48180 myrosinase binding protein S-like protein unknown AtSUGl 2 2.07 At2g33830 putative auxin regulatory protein
  • the detached leaves are known to age and visibly yellow (Fig. 5a).
  • the detached rosette leaves (which were aged) were used to examine the variation in sugar content and the transcription level of AtSUG.
  • the experimental system was set up with a Columbia Ecotype. In this experimental system, rosette leaves are fully spread approximately 25 days after germination, and inflorescences and flowers appear at 35 days. On day 50, rosette leaves lose chlorophyll, and on day 70 plants mature and reach an senescent state. Sucrose and glucose, which accumulated until day 25, declined rapidly during the next 10 days (Figure 5a). Again, the levels of both of these sugars then increased, reaching about the same level on day 70 as on day 25. This may indicate degradation of accumulated starch or cellular compounds (FIG. 5a).
  • AtSUG was variable (Figure 5b). It is the first time that not all transcripts have been induced, but that induction becomes evident after day 50. AtSUG3 and AtSUG5 transcripts were present in non-senescent leaves at day 25 and persisted at relatively constant levels during the senescence period (FIG. 5b). These results suggest that the expression system of AtSUG is different from artificial aging induced by location and sugar deficiency and natural aging associated with aging.
  • AtSUGl isolated in Example 1 in the presence and absence of sucrose from AtSUGl was 12.2.
  • RNA gel plot analysis was used.
  • Fig. 7 shows the results.
  • AtSUG6 and AtSUG7 were significantly induced in response to sugar deficiency. Therefore, the sequences of AtSUG6 and AtSUG7 were converted to the DNA sequencer (model 373, PE Biosystems, Foster City, (CA). Searches of the determined sequences for homology to other sequences indicated that AtSUG6 encodes ⁇ -galactosidase and AtSUG7 encodes ⁇ -xylotsidase.
  • Cultured cells are characterized in that the sugar source can be easily adjusted and that cell wall proteins are secreted into the culture solution (see FIG. 12). If expression of j3-galactosidase, j3-xylosidase and / 3-darcosidase is similarly induced in cultured cells by sugar deficiency, construct a sugar deficiency-inducible expression system using the promoters of these genes. Is possible. Therefore, Arabidopsis thaliana (ecotype Columbia) was placed in a 0.5X MS liquid medium (Murashige Chobi Skoog basic salt, pH 5.8) containing 2% sucrose (wZv) for 16 hours during the light period and 8 hours during the Z8 period.
  • a 0.5X MS liquid medium Murashige Chobi Skoog basic salt, pH 5.8
  • sucrose sucrose
  • the photoperiod was grown at 21 ° C.
  • a portion of the hypocotyl of Arabidopsis thaliana was cut out, and this portion was cut out with 3% sucrose and lmg / L 2,4-dichlorophenoxyacetic acid, 1 X B5 vitamin (0.4 mg / L myo-inositol, 0. 1 month on 1X MS solid medium containing 004 mg / L nicotinamide, 0.004 mg / L pyridoxine HC1, 0.04 mg / L thiamine HC1) and 0.8% agarose for 1 month at 21 ° C Callus was induced by culturing over a period of time.
  • the induced callus was replaced with agarose-free, 3% sucrose and lmg / L 2,4-dichlorophenoxyacetic acid, 1 X B5 vitamin (0.4 mg / L myo-inositol, 0.004 mg / L Planted in 1 XMS medium containing nicotinamide, 0.004 mg / L pyridoxine HC1, and 0.04 mg / L thiamine HC1) and cultivated in suspension in the dark with shaking at 100 rpm at 21 for 1 week. .
  • the Arabidopsis cultured cells were treated with 0, 10, 30 or 90 mM sucrose and lmg / L 2,4-dichlorophenoxyacetic acid, 1 X B5 vitamin (0.4 mg / L myo-inositol
  • the cells were subcultured at 21 ° C. for 36 hours in a 1 ⁇ MS medium containing 0.0004 mg / L nicotinamide, 0.004 mg / L pyridoxine HC1, and 0.004 mg / L thiamine HC1).
  • sugar starvation induces the expression of cell wall degrading enzyme genes, secretes cell wall degrading enzymes, and causes the sugar chains present in the cell wall by the cell wall degrading enzymes.
  • cell wall degrading enzyme genes secretes cell wall degrading enzymes, and causes the sugar chains present in the cell wall by the cell wall degrading enzymes.
  • monosaccharides such as galactose, xylose, and gnorecose
  • the released sugars are considered to be used as carbon sources by plants (Fig. 15).
  • Fig. 15 it is considered that when a plant becomes sugar-starved due to inhibition of photosynthesis or the like, it degrades cell wall polysaccharide and uses it as an energy source.
  • the GFP coding sequence is used as the gene sequence.
  • As the promoter region of Gal-1 a DNA sequence 1418 bp upstream from the start codon of Ga1 was used.
  • a similar result can be obtained even if a longer region is not necessarily used as the promoter sequence and the system J 'is used.
  • genomic DNA of Arabidopsis thaliana was prepared by cetyltrimethylammonium bromide precipitation method (Murray and Thompson, Nucleic Acids Res 8, 1980, pp. 4321-4325).
  • TAKARA BIO PCR was performed using pi-mouth best polymerase to amplify the sequence of the / 3_galactosidase promoter and the signal peptide coding sequence (Gal_P_SP) behind it.
  • Primer 2 is an amino acid 5 amino acids downstream from the putative cleavage site of the gal signal peptide. Having a sequence consisting of the sequence of the BamHI site to the PCR reaction conditions at this time, the reaction conditions are in accordance with the instructions attached, were as follows.:
  • PCR reaction conditions 30 cycles at 94 ° C for 30 seconds, 55 ° C for 30 seconds, 72 ° C for 1 minute, 30 cycles, and 72 ° C for 5 minutes.
  • the amplified DNA fragment 1 was ligated to pGEM-T (registered trademark) Easy vector (obtained from Promega) and cloned into E. coli. The cloned nucleotide sequence was determined, and it was confirmed that the target DNA fragment had been cloned. After culturing this E. coli in large quantities, vectors are extracted from this E. coli, the extracted vector is cut with restriction enzymes Hindlll and BamHI, electrophoresed, recovered from the gel, and purified.
  • pBI121 obtained from Clontech was cut with restriction enzymes EcoRI and Hindlll, Fragment 2, a vector without the CaMV 35S promoter, GUS gene and Nos terminator, was obtained. Also, CaMV35S_sGFP (S65T) _N ⁇ S3 '(Hiroho Fukuda, Mikio Nishimura, and Kenzo Nakamura, "Experimental protocol for observing plant cells: From gene expression to intracellular structure'function", Shujunsha, 1997, pp.
  • the DNA fragment 1 prepared above and the vector fragment 5 were ligated, and the Gal promoter, the Gal signal peptide coding system IJ, and the first of the Gal mature polypeptide sequence were placed downstream of the force namycin resistance gene.
  • a plasmid 6 construct for plant introduction; pBI-Gal-P-SP-GFP was obtained, in which the system IJ encoding 5 amino acids, the GFP gene sequence and the Nos terminator sequence were linked.
  • the infected BY-2 cells were transformed into a BY-2 solid medium containing 200 ⁇ g ZmL kanamycin and 500 ⁇ g / mL carbenicillin (Yuho Fukuda, Mikio Nishimura, Kenzo Nakamura, “ Experimental Protocol: From gene expression to intracellular structure * function ”, described in Shujunsha, 1997, pp. 187-191) to obtain transformed BY-2 cells. Transformation B obtained Y-2 cells in the presence of kanamycin (50 mg / L) in 3% sucrose in liquid BY-2 medium (Hiroki Fukuda, Mikio Nishimura, Kenzo Nakamura, "Experimental protocol for observing plant cells.
  • Liquid culture was performed at 27 ° C with shaking in “internal structure to function” (described in Shujunsha, 1997, pp. 187-191). Every week, 0.5 ml of cells were subcultured into 50 ml of fresh medium to maintain the cell line. The sucrose concentration in the medium used for subculture was 3%, and the sugar was sufficiently present.
  • the transformed BY-2 cells were removed on day 4 by removing the medium through a nylon mesh.
  • the removed transformed BY-2 cells were transferred to a liquid BY-2 medium having the same composition except that it did not contain sucrose, and cultured with shaking at 27 ° C.
  • Protein was extracted from the medium on days 3 and 4 after transplantation to a medium containing no sucrose, and the protein was fractionated by SDS-PAGE.
  • the inset in the graph of FIG. 18 shows the detection of GFP protein by Western blotting.
  • the GFP protein detected from the medium three days after transplantation to the medium without sucrose is indicated by the arrow on the left.
  • the GFP protein detected in the medium 4 days after transplantation to the medium without sucrose is indicated by the right arrow. As a result, it was confirmed that the GFP protein was secreted into the medium due to sugar deficiency, and the secreted GFP was accumulated in the medium.
  • the promoter of the secretory ⁇ -xylosidase gene was isolated, and a vector linked to / 3-glucuronidase (GUS) as a reporter gene was prepared.
  • GUS 3-glucuronidase
  • This vector was introduced into the Arabidopsis cultured cells prepared above and the tobacco BY-12 cultured cells distributed by Prof. Kazuyuki Hiratsuka by the Agrobacterium-mediated transformation method in the same manner as 3.1 above. did.
  • the GUS protein was remarkably induced by sugar deficiency, like the original / 3-xylosidase.
  • the xylosidase promoter it was possible to induce the expression of the target protein in cultured plant cells by sugar deficiency.
  • Example 6 Experiment in which GFP is secreted extracellularly in Arabidopsis thaliana cells (medium) by controlling Arabidopsis ⁇ -galactosidase promoter (Gal-II) and signal peptide (SP))
  • Transgenic Arabidopsis seeds were obtained by introducing the transgenic Arabidopsis thaliana. The seeds were allowed to germinate and grow, and the leaves of the fully grown transformed plant were cut off, floated in water (sugar-deficient conditions) or a 1% sucrose aqueous solution (sugar-existing conditions), and placed in a place overnight. The leaves were ground to extract proteins and subjected to Western blotting in the same manner as in Example 4.
  • Example 7 Arabidopsis thaliana ⁇ -galactosidase promoter (Gal- ⁇ ) and signa Of secretion of mouse antibodies to the extracellular (medium) of Arabidopsis thaliana cells by the control of peptide (SP)
  • a mouse antibody expression construct is prepared in the same manner as in Example 4 except that a mouse antibody gene is used instead of the GFP gene.
  • This expression construct is introduced into Arabidopsis cultured cells in the same manner as in Example 6 to obtain transformed Arabidopsis cells.
  • stamp lotting as in Example 4, it is confirmed that in this transformed Arabidopsis thaliana, expression of mouse antibody gene and accumulation of protein occur specifically in sugar deficiency. Further, by purifying the mouse antibody expressed in the medium and conducting an antibody specificity test, it can be confirmed that the expressed mouse antibody functions as an antibody.
  • Example 8 Experiment of secreting the interfacial protein out of the Arabidopsis thaliana cells (medium) by controlling the Arabidopsis ⁇ -galactosidase promoter (Gal-G) and the signal peptide (SP))
  • An expression construct for interferon ⁇ is prepared in the same manner as in Example 4 except that the interferon ⁇ gene is used instead of the GFP gene.
  • This expression construct is introduced into Arabidopsis cultured cells in the same manner as in Example 6 to obtain transformed Arabidopsis cells.
  • the protein (interferon) expressed in the plant has the desired function.
  • the present invention provides an expression system that can easily control expression by controlling sugar deficiency.
  • the use of the present invention can be expected to activate industries related to the production of pharmaceuticals such as interferons, antibodies, and vaccines using plant cells, which have not been developed and developed due to low productivity.
  • SEQ ID NO: 1 nucleotide sequence encoding Arabidopsis ⁇ -galactosidase (including the open motor region and the signal coding region);
  • SEQ ID NO: 2 amino acid sequence of Arabidopsis ⁇ -galactosidase
  • SEQ ID NO: 3 Nucleotide sequence encoding Arabidopsis ⁇ -xylosidase (including the open motor region and the signal coding region);
  • SEQ ID NO 4 Amino acid sequence of Arabidopsis ⁇ -xylosidase
  • SEQ ID NO: 5 nucleotide sequence encoding Arabidopsis ⁇ -dalcosidase (including the open motor region and the signal coding region);
  • SEQ ID NO: 6 amino acid sequence of Arabidopsis ⁇ -darcosidase
  • SEQ ID NO: 7 nucleotide sequence of primer 1;
  • SEQ ID NO: 8 nucleotide sequence of primer 2.

Abstract

Nucleic acid molecule comprising a sugar deficiency inducing promoter sequence and, linked in operable fashion thereto, a foreign gene sequence. This sugar deficiency inducing promoter sequence can be selected from the group consisting of a promoter sequence of β-galactosidase, a promoter sequence of β-xylosidase and a promoter sequence of β-glucosidase. The expression of foreign gene sequence can be easily controlled by regulating sugar deficiency by the use of the above nucleic acid molecule.

Description

明 細 書  Specification
植物培養細胞で糖欠乏により働くプロモーターの有用タンパク質の分泌 生産への適用  Secretion of useful proteins by promoters acting by sugar deficiency in cultured plant cells: Application to production
技術分野  Technical field
[0001] 本発明は、糖欠乏により発現が誘導される新規プロモーターおよびそれを利用する 生産方法に関する。  The present invention relates to a novel promoter whose expression is induced by sugar deficiency and a production method using the same.
背景技術  Background art
[0002] 有用タンパク質 (例えば、インターフェロン)を遺伝子組換え技術によって大量生産 する試みは大腸菌などを用いて 20年以上前からなされてきた。しかし、多くのタンパ ク質が、糖鎖付加という翻訳後修飾を活性に必須とするため、その生産には真核細 胞の利用が望まれる。  [0002] Attempts to mass-produce useful proteins (eg, interferons) by genetic recombination techniques have been made using Escherichia coli and the like for more than 20 years. However, since many proteins require post-translational modification such as glycosylation for activity, use of eukaryotic cells is desired for their production.
[0003] ヒト由来の有用タンパク質(例えば、インターフェロン等の治療用タンパク質)の植物 培養細胞による分泌生産には、以下のような利点がある:  [0003] Secretory production of useful human-derived proteins (eg, therapeutic proteins such as interferon) by cultured plant cells has the following advantages:
1.植物細胞は真核細胞なので、哺乳動物と同様のタンパク質のプロセッシングお よび翻訳後修飾が起こる;  1. Since plant cells are eukaryotic cells, protein processing and post-translational modifications occur similar to those of mammals;
2.動物細胞を用いた場合に懸念されるウィルス(HIVなど)およびプリオン (BSE) の汚染の心配が無い;  2. No fear of virus (such as HIV) and prion (BSE) contamination when using animal cells;
3.植物の培地は、糖および無機塩から構成されており、安価な生産が可能である; ならびに  3. The plant medium is composed of sugar and inorganic salts, and can be produced at low cost;
4.分泌生産をおこなう場合、 目的タンパク質は培地に分泌されるため、回収および 精製が比較的容易である;  4. In the case of secretory production, the target protein is secreted into the medium, which makes recovery and purification relatively easy;
5.遺伝子組換え植物を野外栽培することによる生産方法とは異なり、食糧作物へ の目的タンパク質の混入もなぐ環境へ遺伝子が流出するリスクもない。  5. Unlike the production method by cultivating genetically modified plants in the field, there is no risk of gene leakage into the environment where the target protein is not mixed into food crops.
[0004] 以上の点から、植物細胞による有用タンパク質の分泌生産は有効であると考えられ るが、収益性を考慮した場合、 目的タンパク質の生産性とともに精製コストの抑制が 重要なファクタ一となる。従って、 目的タンパク質を特異的に培地に分泌させる制御 方法が望まれている。 [0005] 植物はこのように、有用タンパク質の生産に多くの利点を有し、従来からその利用 が試みられている。植物で外来有用タンパク質を大量生産させる試みは 10年来なさ れてきたが、多くの場合、研究の力点は遺伝子の発現レベルの向上に注がれてきた 。しかし、遺伝子の高発現は必ずしもタンパク質の高蓄積に結びつかず、実用化に 至らないケースが多い。真核生物ではタンパク質の合成は複数の場で起こり、その蓄 積場所も様々である。また、イネなどの作物において栄養価の高いタンパク質を生産 し、食品の価値を向上させる試みもなされている力 この場合も目的タンパク質が高 蓄積しないという問題がある。そのため、企業あるいは公的研究機関の多くが様々な シーズを有しているにもかかわらず、植物による有用タンパク質生産は殆どの場合、 実用化、産業化に至ってない。 [0004] From the above points, it is thought that secretory production of useful proteins by plant cells is effective. However, considering profitability, suppression of purification cost as well as productivity of the target protein is one of the important factors. . Therefore, a control method for specifically secreting the target protein into the medium is desired. [0005] As described above, plants have many advantages in producing useful proteins, and their use has been conventionally attempted. Attempts to mass-produce foreign useful proteins in plants have been made for 10 years, but in many cases the emphasis of research has been on improving gene expression levels. However, high expression of genes does not always lead to high accumulation of proteins, and in many cases, does not lead to practical use. In eukaryotes, protein synthesis occurs in multiple places, and its storage locations vary. In addition, there is an attempt to increase the value of foods by producing nutritious proteins in crops such as rice. In this case, too, there is a problem that the target protein is not highly accumulated. Therefore, despite the fact that many companies or public research institutions have various seeds, the production of useful proteins by plants has not been commercialized or industrialized in most cases.
[0006] 例えば、培養細胞を用いた外来タンパク質の生産に関しては、例えば、 Terashim a M.ら、 Appl. Microbiol. Biotechnol., 52, 1999, 516— 523 (非特許文献 1 [0006] For example, regarding the production of foreign proteins using cultured cells, see, for example, Terashima M. et al., Appl. Microbiol. Biotechnol., 52, 1999, 516-523 (Non-patent Document 1).
)は、イネ培養細胞を用いてヒト α _アンチトリプシン (AAT)の分泌生産をおこなって おり、乾燥細胞重量 lgあたり 24mgの生産を可能としている。しかし、これは非常に 効率の良いケースであり、タンパク質によっては殆ど生産が認められないケースもあ ると報告している。 ) Uses human cultured cells to secrete and produce human α_antitrypsin (AAT), enabling production of 24 mg per gram of dry cell weight. However, this is a very efficient case, and there are cases where little production is observed for some proteins.
[0007] 日本国外では、主として米国で植物を用いた有用タンパク質の生産研究が活発で ある。米国では、遺伝子組換え植物の野外栽培が認められやすいことから、必ずしも 培養細胞を用いず、組換え植物を用いた生産が行われている。 ProdiGene社(米国 テキサス州)はすでに組換えトウモロコシにより生産した β—ダルクロニダーゼおよび アビジンを検査用試薬として販売している。 Ventria Bioscience社(米国カリフオル ユア州)は AATを遺伝子組換えイネにより生産し、 2004年までに臨床応用への承 認を取得しょうとしている。  [0007] Outside of Japan, research on the production of useful proteins using plants is active mainly in the United States. In the United States, because genetically modified plants are easily cultivated in the field, production is performed using transgenic plants instead of using cultured cells. ProdiGene (Texas, USA) already sells beta-dalcuronidase and avidin produced by recombinant corn as test reagents. Ventria Bioscience (California, U.S.A.) produces AAT from transgenic rice and is seeking approval for clinical application by 2004.
[0008] しかし、 日本国内では、このような遺伝子組換え植物の野外栽培がほとんど認めら れていないので、できる限り、培養細胞を用いて外来有用タンパク質を生産すること が好ましい。  [0008] However, in Japan, almost no field-cultivation of such transgenic plants has been observed, and it is therefore preferable to produce foreign useful proteins using cultured cells as much as possible.
[0009] これらのことから、遺伝子組換え植物において外来有用タンパク質を安定かつ大量 に生産する方法を確立することが望まれてレ、る。 [0010] 糖欠乏応答遺伝子に関しては、非特許文献 2に、 —グノレコシダーゼ(din2と表記 される)が暗所で誘導されること、 din遺伝子の糖抑制発現はへキソキナーゼによるへ キソースのリン酸化を通して媒介されること、および暗所で植物は容易に糖欠乏状態 に陥ることが記載されている。しかし、この文献は、単に /3 _ダルコシダーゼの発現の 糖欠乏誘導性を記載するのみであり、この遺伝子のプロモーターを有用タンパク質 の発現に利用することを開示も示唆もしない。 [0009] From these facts, it has been desired to establish a method for stably producing large amounts of foreign useful proteins in transgenic plants. [0010] Regarding the sugar deficiency response gene, Non-Patent Document 2 states that-gnorecosidase (denoted as din2) is induced in the dark, and that the sugar-suppressed expression of the din gene is caused by phosphorylation of hexose by hexokinase. It is described to be transmitted and that plants are easily deficient in sugar in the dark. However, this document merely describes the sugar deficiency inducibility of the expression of / 3_darcosidase, and does not disclose or suggest that the promoter of this gene is used for the expression of a useful protein.
[0011] 特許文献 1には、 ひ—アミラーゼの合成およびそれらの mRNAレベルが糖の欠乏 によって大いに誘導されることおよびひ—アミラーゼ由来のベクターと所望の遺伝子 産物をコードする遺伝子を含むベクターを用いて被子植物宿主細胞において遺伝 子産物を生産するための方法が記載されている。しかし、この文献では、イネのひ— アミラーゼのプロモーターを用いてイネにおいて発現が可能であることしか確認して おらず、他の植物において発現が可能であるかは不明である。  [0011] Patent Document 1 discloses that human amylase synthesis and their mRNA levels are greatly induced by sugar deficiency, and that a human amylase-derived vector and a vector containing a gene encoding a desired gene product are used. Methods for producing gene products in angiosperm host cells have been described. However, this document only confirms that expression is possible in rice using the promoter of rice hyperamylase, and it is unclear whether expression is possible in other plants.
[0012] 特許文献 2および 3には、イネの α—アミラーゼをコードする遺伝子のプロモーター が糖欠乏応答性であること、 α—アミラーゼをコードする遺伝子のプロモーターに連 結したヒト α 1—アンチトリプシン (ΑΑΤ)を含む形質転換イネ細胞を最初は健常な細 胞増殖を維持する培地で維持し、その後、スクロースを含まない ΑΑΤ培地に交換す るまたは希釈することが記載されている。しかし、特許文献 2および 3には、一般的な 説明において、イネ科の植物を用い得ることが記載されている力 実施例においては 、イネの α—アミラーゼをコードする遺伝子のプロモーターを用いてイネにおいて発現 が可能であることしか確認しておらず、他の植物において発現が可能であるか否か は不明である。  Patent Documents 2 and 3 disclose that the promoter of a rice α-amylase-encoding gene is responsive to sugar deficiency, and that human α1-antitrypsin linked to the α-amylase-encoding gene promoter It is described that the transformed rice cells containing (ii) are first maintained in a medium that maintains healthy cell growth, and then replaced or diluted with a sucrose-free ΑΑΤ medium. However, Patent Documents 2 and 3 describe in general descriptions that a plant of the family Poaceae can be used. In the working examples, rice is produced by using a promoter of a gene encoding rice α-amylase. Has been confirmed to be capable of expression in other plants, and it is not known whether expression is possible in other plants.
特許文献 1 :米国特許第 5, 712, 112号公報 (第 5欄、第 9欄、第 10欄、第 51欄) 特許文献 2 :米国特許第 6, 048, 973号公報 (第 1欄、第 9欄一第 12欄、第 51欄) 特許文献 3:国際公開 W098Z42853号パンフレット(第 1頁)  Patent document 1: U.S. Pat.No. 5,712,112 (column 5, column 9, column 10, column 51) Patent document 2: U.S. Pat.No. 6,048,973 (column 1, (Panel 9-1, Column 12, Column 51) Patent Document 3: International Publication W098Z42853 Pamphlet (Page 1)
非特許文献 l : Terashima M.ら、 Appl. Microbiol. Biotechnol. , 52, 1999, Non-Patent Document l: Terashima M. et al., Appl.Microbiol. Biotechnol., 52, 1999,
516-523 516-523
特許文献 2 : Fujiki、 F.ら、 Plant Physiol. Vol. 124、 2000、 pp. 1139-1147 (第 1139頁要約、本文第 1段落、第 1140頁表 I) 発明の開示 Patent Document 2: Fujiki, F. et al., Plant Physiol.Vol. 124, 2000, pp. 1139-1147 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] 本発明は、上記問題点の解決を意図するものであり、植物細胞において容易に制 御可能なプロモーターおよびこのプロモーターを用いてタンパク質を安定かつ大量 に生産する方法を提供することを目的とする。  [0013] The present invention is intended to solve the above problems, and it is an object of the present invention to provide a promoter that can be easily controlled in a plant cell and a method for stably and mass-producing a protein using the promoter. And
課題を解決するための手段  Means for solving the problem
[0014] 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、シロイヌナズ ナの分泌型 /3—キシロシダーゼ遺伝子、 /3—ガラタトシダーゼ遺伝子および /3—ダル クロニダーゼ遺伝子のプロモーター力 S、培養細胞において糖欠乏により顕著に誘導 されることを見出し、これに基づいて本発明を完成させた。特に、これらの糖欠乏誘 導性プロモーターとシグナルペプチドとを異種遺伝子配列に連結すれば、この異種 遺伝子配列によってコードされる産物の細胞外分泌が効率的に行われることを見出 した。  The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, have found that the promoter power of secreted -3-xylosidase gene, / 3-galatatosidase gene and / 3-dal clonidase gene of Arabidopsis thaliana The present inventors have found that the induction is significantly induced by sugar deficiency in cultured cells, and based on this, completed the present invention. In particular, it has been found that the extracellular secretion of the product encoded by the heterologous gene sequence is efficiently performed when the sugar deficiency-inducible promoter and the signal peptide are linked to the heterologous gene sequence.
[0015] (1)糖欠乏誘導性プロモーター配列と、該糖欠乏誘導性プロモーター配列に作動 可能に連結された異種遺伝子配列とを含む、核酸分子。  (1) A nucleic acid molecule comprising a sugar deficiency-inducible promoter sequence and a heterologous gene sequence operably linked to the sugar deficiency-inducible promoter sequence.
[0016] (2)上記糖欠乏誘導性プロモーター配列が、 ガラクトシダーゼをコードする遺伝 子のプロモーター配列、 βーキシロシダーゼをコードする遺伝子のプロモーター配列 および ダルコシダーゼをコードする遺伝子のプロモーター配列からなる群より選 択される、上記項目(1)に記載の核酸分子。 (2) The sugar deficiency-inducible promoter sequence is selected from the group consisting of a promoter sequence of a gene encoding galactosidase, a promoter sequence of a gene encoding β-xylosidase, and a promoter sequence of a gene encoding darcosidase. The nucleic acid molecule according to the above item (1).
[0017] (3)上記糖欠乏誘導性プロモーター配列が、 (3) The sugar deficiency inducible promoter sequence is
(a)配列番号 1の 643位一 1799位、配列番号 3の 1位一 1763位または配列番号 5 の 1位一 2058位に示されるヌクレオチド配列;  (a) the nucleotide sequence shown at positions 643 to 1799 of SEQ ID NO: 1, positions 1 to 1763 of SEQ ID NO: 3, or positions 1 to 2058 of SEQ ID NO: 5;
(b) (a)のヌクレオチド配列と比較して、 1もしくは数個のヌクレオチドの置換、欠失ま たは付カ卩を含むヌクレオチド配列であって、糖欠乏誘導性プロモーター活性を有す るヌクレオチド配列;  (b) a nucleotide sequence containing one or more nucleotide substitutions, deletions or additions of nucleotides compared to the nucleotide sequence of (a), and having a sugar deficiency-inducible promoter activity Array;
(c) (a)または(b)のヌクレオチド配列とストリンジェントな条件下でハイブリダィズし、 かつ糖欠乏誘導性プロモーター活性を有するヌクレオチド配列;  (c) a nucleotide sequence that hybridizes with the nucleotide sequence of (a) or (b) under stringent conditions and has a sugar deficiency-inducible promoter activity;
(d) (a)のヌクレオチド配列に対して少なくとも 70%の同一性を有するヌクレオチド 配列であって、かつ糖欠乏誘導性プロモーター活性を有するヌクレオチド配列;なら びに (d) nucleotides having at least 70% identity to the nucleotide sequence of (a) A nucleotide sequence having sugar deficiency-inducible promoter activity; and
(e) (a)一 (d)のいずれかのヌクレオチド配列の短縮配列であって、糖欠乏誘導性 プロモーター活性を有するヌクレオチド配列  (e) (a) a truncated sequence of any of the nucleotide sequences of (d), wherein the nucleotide sequence has a sugar deficiency-inducible promoter activity
からなる群より選択され、  Selected from the group consisting of
該ヌクレオチド配列に作動可能に上記異種遺伝子配列が連結されると、該異種遺 伝子の糖欠乏誘導性発現を促進する活性を有する、上記項目(1)に記載の核酸分 子。  The nucleic acid molecule according to the above item (1), which has an activity of promoting the sugar deficiency-induced expression of the heterologous gene when the heterologous gene sequence is operably linked to the nucleotide sequence.
[0018] (4)さらにシグナルペプチドコード配列を含む、上記項目(1)に記載の核酸分子。  (4) The nucleic acid molecule according to the above item (1), further comprising a signal peptide coding sequence.
[0019] (5)上記シグナルペプチドコード配列が、 β—ガラタトシダーゼのシグナルペプチド コード配歹 lj、 β—キシロシダーゼのシグナルペプチドコード配列および β—ダルコシダ ーゼのシグナルペプチドコード配列からなる群より選択される、上記項目(4)に記載 の核酸分子。 (5) The signal peptide coding sequence is selected from the group consisting of a β-galatatosidase signal peptide coding sequence, a β-xylosidase signal peptide coding sequence, and a β-dalcosidase signal peptide coding sequence. And the nucleic acid molecule according to the above item (4).
[0020] (6)上記シグナルペプチドコード配列が、  (6) The signal peptide coding sequence described above,
(i)配列番号 2の 1位一 27位、配列番号 4の 1位一 28位または配列番号 6の 1位一 28位に示されるアミノ酸配列をコードするヌクレオチド配列;  (i) a nucleotide sequence encoding the amino acid sequence shown at position 1 to position 27 of SEQ ID NO: 2, position 1 to position 28 of SEQ ID NO: 4, or position 1 to position 28 of SEQ ID NO: 6;
(ii) (i)のヌクレオチド配列と比較して、 1もしくは数個のヌクレオチドの置換、欠失ま たは付加を含むヌクレオチド配列であって、細胞外分泌活性を有するペプチドをコー ドするヌクレオチド配列;  (ii) a nucleotide sequence containing one or several nucleotide substitutions, deletions or additions as compared with the nucleotide sequence of (i), which encodes a peptide having extracellular secretory activity;
(iii) (i)または(ii)のヌクレオチド配歹 ijとストリンジェントな条件下でハイブリダィズし 、かつ細胞外分泌活性を有するペプチドをコードするヌクレオチド配歹 1J ;ならびに (iii) a nucleotide system 1J that hybridizes with the nucleotide system ij of (i) or (ii) under stringent conditions and encodes a peptide having extracellular secretory activity;
(iv) (i)のヌクレオチド配列に対して少なくとも 70%の同一性を有するヌクレオチド 配列であって、かつ細胞外分泌活性を有するペプチドをコードするヌクレオチド配列 からなる群より選択され、 (iv) a nucleotide sequence having at least 70% identity to the nucleotide sequence of (i) and is selected from the group consisting of a nucleotide sequence encoding a peptide having extracellular secretory activity;
該ヌクレオチド配列に作動可能に上記異種遺伝子配列が連結されると、該異種遺 伝子の産物の細胞外分泌がもたらされる、上記項目(4)に記載の核酸分子。  The nucleic acid molecule according to item (4), wherein the operably linked heterologous gene sequence to the nucleotide sequence results in extracellular secretion of the product of the heterologous gene.
[0021] (7)上記異種遺伝子配列が、サイト力インまたはホルモンの遺伝子配列である、上 記項目(1)に記載の核酸分子。 (7) The heterologous gene sequence is a cytoforce or hormone gene sequence. The nucleic acid molecule according to item (1).
[0022] (8)上記異種遺伝子配列が、植物中で発現された場合に目的の機能を有するタン パク質をコードする、上記項目(1)に記載の核酸分子。 (8) The nucleic acid molecule according to the above item (1), wherein the heterologous gene sequence encodes a protein having a desired function when expressed in a plant.
[0023] (9)上記異種遺伝子配列が、インターフェロン、抗体、ヒトひ—アンチトリプシンまた は緑色蛍光タンパク質の遺伝子配列である、上記項目(1)に記載の核酸分子。 (9) The nucleic acid molecule according to the above item (1), wherein the heterologous gene sequence is a gene sequence of interferon, antibody, human anti-trypsin or green fluorescent protein.
[0024] (10)上記異種遺伝子配列が、マーカー遺伝子配列である、上記項目(1)に記載 の核酸分子。 (10) The nucleic acid molecule according to the above item (1), wherein the heterologous gene sequence is a marker gene sequence.
[0025] (11)調節エレメントをさらに含む、上記項目(1)に記載の核酸分子。  (11) The nucleic acid molecule according to the above item (1), further comprising a regulatory element.
[0026] (12)上記調節エレメントが、イントロン、ターミネータ一およびェンハンサ一からなる 群より選択される少なくとも 1つのエレメントを含む、上記項目(11)に記載の核酸分 子。 (12) The nucleic acid molecule according to the above item (11), wherein the regulatory element includes at least one element selected from the group consisting of an intron, a terminator, and an enhancer.
[0027] (13)ェキソ型糖分解酵素をコードする遺伝子のプロモーター配列と、該プロモータ 一配列に作動可能に連結された異種遺伝子配列とを含む、核酸分子。  (13) A nucleic acid molecule comprising a promoter sequence of a gene encoding an exo-type glycolytic enzyme and a heterologous gene sequence operably linked to one sequence of the promoter.
[0028] (14)上記プロモーター配列が、 一ガラクトシダーゼをコードする遺伝子のプロモ 一ター配列、 βーキシロシダーゼをコードする遺伝子のプロモーター配列および β - グノレコシダーゼをコードする遺伝子のプロモーター配列からなる群より選択される、 上記項目(13)に記載の核酸分子。  (14) The above promoter sequence is selected from the group consisting of a promoter sequence of a gene encoding one galactosidase, a promoter sequence of a gene encoding β-xylosidase, and a promoter sequence of a gene encoding β-gnorecosidase. The nucleic acid molecule according to the above item (13).
[0029] (15)上記プロモーター配列が、 (15) The above promoter sequence is
(a)配列番号 1の 643位一 1799位、配列番号 3の 1位一 1763位または配列番号 5 の 1位一 2058位に示されるヌクレオチド配列;  (a) the nucleotide sequence shown at positions 643 to 1799 of SEQ ID NO: 1, positions 1 to 1763 of SEQ ID NO: 3, or positions 1 to 2058 of SEQ ID NO: 5;
(b) (a)のヌクレオチド配列と比較して、 1もしくは数個のヌクレオチドの置換、欠失ま たは付カ卩を含むヌクレオチド配列であって、糖欠乏誘導性プロモーター活性を有す るヌクレオチド配列;  (b) a nucleotide sequence containing one or more nucleotide substitutions, deletions or additions of nucleotides compared to the nucleotide sequence of (a), and having a sugar deficiency-inducible promoter activity Array;
(c) (a)または(b)のヌクレオチド配列とストリンジェントな条件下でハイブリダィズし、 かつ糖欠乏誘導性プロモーター活性を有するヌクレオチド配列;  (c) a nucleotide sequence that hybridizes with the nucleotide sequence of (a) or (b) under stringent conditions and has a sugar deficiency-inducible promoter activity;
(d) (a)のヌクレオチド配列に対して少なくとも 70%の同一性を有するヌクレオチド 配列であって、かつ糖欠乏誘導性プロモーター活性を有するヌクレオチド配列;なら びに (e) (a)一 (d)のいずれかのヌクレオチド配列の短縮配列であって、糖欠乏誘導性 プロモーター活性を有するヌクレオチド配列 (d) a nucleotide sequence having at least 70% identity to the nucleotide sequence of (a) and having a sugar deficiency-inducible promoter activity; and (e) (a) a truncated sequence of any one of the nucleotide sequences of (d), wherein the nucleotide sequence has a sugar deficiency-inducible promoter activity.
からなる群より選択され、  Selected from the group consisting of
該ヌクレオチド配列に作動可能に上記異種遺伝子配列が連結されると、該異種遺 伝子の糖欠乏誘導性発現を促進する活性を有する、上記項目(13)に記載の核酸 分子。  (13) The nucleic acid molecule according to the above item (13), which has an activity of promoting sugar deficiency-induced expression of the heterologous gene when operably linked to the nucleotide sequence.
[0030] (16)さらにシグナルペプチドコード配列を含む、上記項目(13)に記載の核酸分子  (16) The nucleic acid molecule according to the above item (13), further comprising a signal peptide coding sequence.
[0031] (17)上記シグナルペプチドコード配列が、 β—ガラタトシダーゼのシグナルぺプチ ドコード酉己歹 IJ、 β—キシロシダーゼのシグナルペプチドコード配列および β—ダルコシ ダーゼのシグナルペプチドコード配列からなる群より選択される、上記項目(16)に記 載の核酸分子。 (17) The signal peptide coding sequence is selected from the group consisting of a β-galatatosidase signal peptide code, a signal peptide coding sequence of β-xylosidase, and a signal peptide coding sequence of β-dalcosidase. The nucleic acid molecule according to item (16) above.
[0032] (18)上記シグナルペプチドコード配列が、  (18) The signal peptide coding sequence described above,
(i)配列番号 2の 1位一 27位、配列番号 4の 1位一 28位または配列番号 6の 1位一 28位に示されるアミノ酸配列をコードするヌクレオチド配列;  (i) a nucleotide sequence encoding the amino acid sequence shown at position 1 to position 27 of SEQ ID NO: 2, position 1 to position 28 of SEQ ID NO: 4, or position 1 to position 28 of SEQ ID NO: 6;
(ii) (i)のヌクレオチド配列と比較して、 1もしくは数個のヌクレオチドの置換、欠失ま たは付加を含むヌクレオチド配列であって、細胞外分泌活性を有するペプチドをコー ドするヌクレオチド配列;  (ii) a nucleotide sequence containing one or several nucleotide substitutions, deletions or additions as compared with the nucleotide sequence of (i), which encodes a peptide having extracellular secretory activity;
(iii) (i)または(ii)のヌクレオチド配歹 ijとストリンジェントな条件下でハイブリダィズし 、かつ細胞外分泌活性を有するペプチドをコードするヌクレオチド配歹 1J ;ならびに (iii) a nucleotide system 1J that hybridizes with the nucleotide system ij of (i) or (ii) under stringent conditions and encodes a peptide having extracellular secretory activity;
(iv) (i)のヌクレオチド配列に対して少なくとも 70%の同一性を有するヌクレオチド 配列であって、かつ細胞外分泌活性を有するペプチドをコードするヌクレオチド配列 からなる群より選択され、 (iv) a nucleotide sequence having at least 70% identity to the nucleotide sequence of (i) and is selected from the group consisting of a nucleotide sequence encoding a peptide having extracellular secretory activity;
該ヌクレオチド配列に作動可能に上記異種遺伝子配列が連結されると、該異種遺 伝子の産物の細胞外分泌がもたらされる、上記項目(16)に記載の核酸分子。  The nucleic acid molecule according to item (16), wherein the operably linked heterologous gene sequence to the nucleotide sequence results in extracellular secretion of the product of the heterologous gene.
[0033] (19)上記異種遺伝子配列が、サイト力インまたはホルモンの遺伝子配列である、上 記項目(13)に記載の核酸分子。 [0034] (20)上記異種遺伝子配列が、植物中で発現された場合に目的の機能を有するタ ンパク質をコードする、上記項目(13)に記載の核酸分子。 (19) The nucleic acid molecule according to the above item (13), wherein the heterologous gene sequence is a gene sequence of cytoforce or hormone. (20) The nucleic acid molecule according to the above item (13), wherein the heterologous gene sequence encodes a protein having a desired function when expressed in a plant.
[0035] (21)上記異種遺伝子配列が、インターフェロン、抗体、ヒト α -アンチトリプシンまた は緑色蛍光タンパク質の遺伝子配列である、上記項目(13)に記載の核酸分子。 (21) The nucleic acid molecule according to the above item (13), wherein the heterologous gene sequence is a gene sequence of interferon, antibody, human α-antitrypsin or green fluorescent protein.
[0036] (22)上記異種遺伝子配列が、マーカー遺伝子配列である、上記項目(13)に記載 の核酸分子。 (22) The nucleic acid molecule according to the above item (13), wherein the heterologous gene sequence is a marker gene sequence.
[0037] (23)調節エレメントをさらに含む、上記項目(13)に記載の核酸分子。  (23) The nucleic acid molecule according to the above item (13), further comprising a regulatory element.
[0038] (24)上記調節エレメントが、イントロン、ターミネータ一およびェンハンサ一からなる 群より選択される少なくとも 1つのエレメントを含む、上記項目(23)に記載の核酸分 子。 (24) The nucleic acid molecule according to the above item (23), wherein the regulatory element includes at least one element selected from the group consisting of an intron, a terminator, and an enhancer.
[0039] (25)代謝可能な糖を分解し得る酵素をコードする遺伝子のプロモーター配列と、 該プロモーター配列に作動可能に連結された異種遺伝子配列とを含む、核酸分子。  (25) A nucleic acid molecule comprising a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar, and a heterologous gene sequence operably linked to the promoter sequence.
[0040] (26)上記代謝可能な糖を分解し得る酵素をコードする遺伝子のプロモーター配列 、 ガラクトシダーゼをコードする遺伝子のプロモーター配列、 キシロシダー ゼをコードする遺伝子のプロモーター配列および ;3—ダルコシダーゼをコードする遺 伝子の口モーター配列からなる群より選択される、上記項目(25)に記載の核酸分子  (26) a promoter sequence of a gene encoding an enzyme capable of degrading the metabolizable sugar, a promoter sequence of a gene encoding galactosidase, a promoter sequence of a gene encoding xylosidase, and; encoding 3-dalcosidase The nucleic acid molecule according to the above item (25), which is selected from the group consisting of a gene's mouth motor sequence.
[0041] (27)上記代謝可能な糖を分解し得る酵素をコードする遺伝子のプロモーター配列 が、 (27) The promoter sequence of a gene encoding an enzyme capable of degrading the metabolizable sugar,
(a)配列番号 1の 643位一 1799位、配列番号 3の 1位一 1763位または配列番号 5 の 1位一 2058位に示されるヌクレオチド配列;  (a) the nucleotide sequence shown at positions 643 to 1799 of SEQ ID NO: 1, positions 1 to 1763 of SEQ ID NO: 3, or positions 1 to 2058 of SEQ ID NO: 5;
(b) (a)のヌクレオチド配列と比較して、 1もしくは数個のヌクレオチドの置換、欠失ま たは付カ卩を含むヌクレオチド配列であって、糖欠乏誘導性プロモーター活性を有す るヌクレオチド配列;  (b) a nucleotide sequence containing one or more nucleotide substitutions, deletions or additions of nucleotides compared to the nucleotide sequence of (a), and having a sugar deficiency-inducible promoter activity Array;
(c) (a)または(b)のヌクレオチド配列とストリンジェントな条件下でハイブリダィズし、 かつ糖欠乏誘導性プロモーター活性を有するヌクレオチド配列;  (c) a nucleotide sequence that hybridizes with the nucleotide sequence of (a) or (b) under stringent conditions and has a sugar deficiency-inducible promoter activity;
(d) (a)のヌクレオチド配列に対して少なくとも 70%の同一性を有するヌクレオチド 配列であって、かつ糖欠乏誘導性プロモーター活性を有するヌクレオチド配列;なら びに (d) a nucleotide sequence having at least 70% identity to the nucleotide sequence of (a) and having a sugar deficiency-inducible promoter activity; Bini
(e) (a)一 (d)のいずれかのヌクレオチド配列の短縮配列であって、糖欠乏誘導性 プロモーター活性を有するヌクレオチド配列  (e) (a) a truncated sequence of any of the nucleotide sequences of (d), wherein the nucleotide sequence has a sugar deficiency-inducible promoter activity
からなる群より選択され、  Selected from the group consisting of
該ヌクレオチド配列に作動可能に上記異種遺伝子配列が連結されると、該異種遺 伝子の糖欠乏誘導性発現を促進する活性を有する、上記項目(25)に記載の核酸 分子。  (25) The nucleic acid molecule according to the above item (25), which has an activity of promoting sugar deficiency-induced expression of the heterologous gene when operably linked to the nucleotide sequence.
[0042] (28)さらにシグナルペプチドコード配列を含む、上記項目(25)に記載の核酸分子  (28) The nucleic acid molecule according to the above item (25), further comprising a signal peptide coding sequence.
[0043] (29)上記シグナルペプチドコード配列が、 β—ガラタトシダーゼのシグナルぺプチ ドコード酉己歹 IJ、 β—キシロシダーゼのシグナルペプチドコード配列および β—ダルコシ ダーゼのシグナルペプチドコード配列からなる群より選択される、上記項目(28)に記 載の核酸分子。 (29) The signal peptide coding sequence is selected from the group consisting of a signal peptide coding sequence of β-galatatosidase, a signal peptide coding sequence of β-xylosidase and a signal peptide coding sequence of β-dalcosidase. The nucleic acid molecule according to the above item (28).
[0044] (30)上記シグナルペプチドコード配列が、  (30) The signal peptide coding sequence is
(i)配列番号 2の 1位一 27位、配列番号 4の 1位一 28位または配列番号 6の 1位一 28位に示されるアミノ酸配列をコードするヌクレオチド配列;  (i) a nucleotide sequence encoding the amino acid sequence shown at position 1 to position 27 of SEQ ID NO: 2, position 1 to position 28 of SEQ ID NO: 4, or position 1 to position 28 of SEQ ID NO: 6;
(ii) (i)のヌクレオチド配列と比較して、 1もしくは数個のヌクレオチドの置換、欠失ま たは付加を含むヌクレオチド配列であって、細胞外分泌活性を有するペプチドをコー ドするヌクレオチド配列;  (ii) a nucleotide sequence containing one or several nucleotide substitutions, deletions or additions as compared with the nucleotide sequence of (i), which encodes a peptide having extracellular secretory activity;
(iii) (i)または(ii)のヌクレオチド配歹 ijとストリンジェントな条件下でハイブリダィズし 、かつ細胞外分泌活性を有するペプチドをコードするヌクレオチド配歹 1J ;ならびに (iii) a nucleotide system 1J that hybridizes with the nucleotide system ij of (i) or (ii) under stringent conditions and encodes a peptide having extracellular secretory activity;
(iv) (i)のヌクレオチド配列に対して少なくとも 70%の同一性を有するヌクレオチド 配列であって、かつ細胞外分泌活性を有するペプチドをコードするヌクレオチド配列 からなる群より選択され、 (iv) a nucleotide sequence having at least 70% identity to the nucleotide sequence of (i) and is selected from the group consisting of a nucleotide sequence encoding a peptide having extracellular secretory activity;
該ヌクレオチド配列に作動可能に上記異種遺伝子配列が連結されると、該異種遺 伝子の産物の細胞外分泌がもたらされる、上記項目(28)に記載の核酸分子。  The nucleic acid molecule according to item (28), wherein the operably linked heterologous gene sequence to the nucleotide sequence results in extracellular secretion of the product of the heterologous gene.
[0045] (31)上記異種遺伝子配列が、サイト力インまたはホルモンの遺伝子配列である、上 記項目(25)に記載の核酸分子。 (31) The above-mentioned heterologous gene sequence is a cytoforce in or hormone gene sequence. The nucleic acid molecule according to item (25).
[0046] (32)上記異種遺伝子配列が、植物中で発現された場合に目的の機能を有するタ ンパク質をコードする、上記項目(25)に記載の核酸分子。 (32) The nucleic acid molecule according to the above item (25), wherein the heterologous gene sequence encodes a protein having a desired function when expressed in a plant.
[0047] (33)上記異種遺伝子配列が、インターフェロン、抗体、ヒトひ—アンチトリプシンまた は緑色蛍光タンパク質の遺伝子配列である、上記項目(25)に記載の核酸分子。 (33) The nucleic acid molecule according to the above item (25), wherein the heterologous gene sequence is a gene sequence of interferon, antibody, human anti-trypsin or green fluorescent protein.
[0048] (34)上記異種遺伝子配列が、マーカー遺伝子配列である、上記項目(25)に記載 の核酸分子。 (34) The nucleic acid molecule according to the above item (25), wherein the heterologous gene sequence is a marker gene sequence.
[0049] (35)調節エレメントをさらに含む、上記項目(25)に記載の核酸分子。  (35) The nucleic acid molecule according to the above item (25), further comprising a regulatory element.
[0050] (36)上記調節エレメントが、イントロン、ターミネータ一およびェンハンサ一からなる 群より選択される少なくとも 1つのエレメントを含む、上記項目(35)に記載の核酸分 子。 (36) The nucleic acid molecule according to (35), wherein the regulatory element includes at least one element selected from the group consisting of an intron, a terminator, and an enhancer.
[0051] (37)プロモーター配列と、該プロモーター配列に作動可能に連結された異種遺伝 子配列とを含む、核酸分子であって、該プロモーター配列は、  (37) A nucleic acid molecule comprising a promoter sequence and a heterologous gene sequence operably linked to the promoter sequence, wherein the promoter sequence comprises:
(a)配列番号 1の 643位一 1799位、配列番号 3の 1位一 1763位または配列番号 5 の 1位一 2058位に示されるヌクレオチド配列;  (a) the nucleotide sequence shown at positions 643 to 1799 of SEQ ID NO: 1, positions 1 to 1763 of SEQ ID NO: 3, or positions 1 to 2058 of SEQ ID NO: 5;
(b) (a)のヌクレオチド配列と比較して、 1もしくは数個のヌクレオチドの置換、欠失ま たは付カ卩を含むヌクレオチド配列であって、糖欠乏誘導性プロモーター活性を有す るヌクレオチド配列;  (b) a nucleotide sequence containing one or more nucleotide substitutions, deletions or additions of nucleotides compared to the nucleotide sequence of (a), and having a sugar deficiency-inducible promoter activity Array;
(c) (a)または(b)のヌクレオチド配列とストリンジェントな条件下でハイブリダィズし、 かつ糖欠乏誘導性プロモーター活性を有するヌクレオチド配列;  (c) a nucleotide sequence that hybridizes with the nucleotide sequence of (a) or (b) under stringent conditions and has a sugar deficiency-inducible promoter activity;
(d) (a)のヌクレオチド配列に対して少なくとも 70%の同一性を有するヌクレオチド 配列であって、かつ糖欠乏誘導性プロモーター活性を有するヌクレオチド配列;なら びに  (d) a nucleotide sequence having at least 70% identity to the nucleotide sequence of (a) and having a sugar deficiency-inducible promoter activity; and
(e) (a)一 (d)のいずれかのヌクレオチド配列の短縮配列であって、糖欠乏誘導性 プロモーター活性を有するヌクレオチド配列  (e) (a) a truncated sequence of any of the nucleotide sequences of (d), wherein the nucleotide sequence has a sugar deficiency-inducible promoter activity
からなる群より選択され、  Selected from the group consisting of
該ヌクレオチド配列に作動可能に上記異種遺伝子配列が連結されると、該異種遺 伝子の発現を促進する活性を有する、核酸分子。 [0052] (38)さらにシグナルペプチドコード配列を含む、上記項目(37)に記載の核酸分子 A nucleic acid molecule having an activity of promoting expression of the heterologous gene when the heterologous gene sequence is operably linked to the nucleotide sequence. (38) The nucleic acid molecule according to the above item (37), further comprising a signal peptide coding sequence.
[0053] (39)上記シグナルペプチドコード配列が、 β一ガラクトシダーゼのシグナルぺプチ ドコード酉己歹 lj、 β—キシロシダーゼのシグナルペプチドコード配列および β—ダルコシ ダーゼのシグナルペプチドコード配列からなる群より選択される、上記項目(38)に記 載の核酸分子。 [0053] (39) The signal peptide coding sequence is selected from the group consisting of a β-galactosidase signal peptide code, a β-xylosidase signal peptide coding sequence, and a β-dalcosidase signal peptide coding sequence. The nucleic acid molecule according to the above item (38).
[0054] (40)上記シグナルペプチドコード配列が、  (40) The signal peptide coding sequence,
(i)配列番号 2の 1位一 27位、配列番号 4の 1位一 28位または配列番号 6の 1位一 28位に示されるアミノ酸配列をコードするヌクレオチド配列;  (i) a nucleotide sequence encoding the amino acid sequence shown at position 1 to position 27 of SEQ ID NO: 2, position 1 to position 28 of SEQ ID NO: 4, or position 1 to position 28 of SEQ ID NO: 6;
(ii) (i)のヌクレオチド配列と比較して、 1もしくは数個のヌクレオチドの置換、欠失ま たは付加を含むヌクレオチド配列であって、細胞外分泌活性を有するペプチドをコー ドするヌクレオチド配列;  (ii) a nucleotide sequence containing one or several nucleotide substitutions, deletions or additions as compared with the nucleotide sequence of (i), which encodes a peptide having extracellular secretory activity;
(iii) (i)または(ii)のヌクレオチド配歹 ijとストリンジェントな条件下でハイブリダィズし 、かつ細胞外分泌活性を有するペプチドをコードするヌクレオチド配歹 1J ;ならびに (iii) a nucleotide system 1J that hybridizes with the nucleotide system ij of (i) or (ii) under stringent conditions and encodes a peptide having extracellular secretory activity;
(iv) (i)のヌクレオチド配列に対して少なくとも 70%の同一性を有するヌクレオチド 配列であって、かつ細胞外分泌活性を有するペプチドをコードするヌクレオチド配列 からなる群より選択され、 (iv) a nucleotide sequence having at least 70% identity to the nucleotide sequence of (i), and is selected from the group consisting of nucleotide sequences encoding a peptide having extracellular secretory activity;
該ヌクレオチド配列に作動可能に上記異種遺伝子配列が連結されると、該異種遺 伝子の産物の細胞外分泌がもたらされる、上記項目(38)に記載の核酸分子。  The nucleic acid molecule of claim 38, wherein operatively linking the heterologous gene sequence to the nucleotide sequence results in extracellular secretion of the product of the heterologous gene.
[0055] (41)上記異種遺伝子配列が、サイト力インまたはホルモンの遺伝子配列である、上 記項目(37)に記載の核酸分子。 (41) The nucleic acid molecule according to the above item (37), wherein the heterologous gene sequence is a gene sequence of cytoforce or hormone.
[0056] (42)上記異種遺伝子配列が、植物中で発現された場合に目的の機能を有するタ ンパク質をコードする、上記項目(37)に記載の核酸分子。 (42) The nucleic acid molecule according to the above item (37), wherein the heterologous gene sequence encodes a protein having a desired function when expressed in a plant.
[0057] (43)上記異種遺伝子配列が、インターフェロン、抗体、ヒトひ—アンチトリプシンまた は緑色蛍光タンパク質の遺伝子配列である、上記項目(37)に記載の核酸分子。 (43) The nucleic acid molecule according to the above item (37), wherein the heterologous gene sequence is a gene sequence of interferon, antibody, human anti-trypsin or green fluorescent protein.
[0058] (44)上記異種遺伝子配列が、マーカー遺伝子配列である、上記項目(37)に記載 の核酸分子。 [0059] (45)調節エレメントをさらに含む、上記項目(37)に記載の核酸分子。 (44) The nucleic acid molecule according to the above item (37), wherein the heterologous gene sequence is a marker gene sequence. (45) The nucleic acid molecule according to the above item (37), further comprising a regulatory element.
[0060] (46)上記調節エレメントが、イントロン、ターミネータ一およびェンハンサーからなる 群より選択される少なくとも 1つのエレメントを含む、上記項目(45)に記載の核酸分 子。 (46) The nucleic acid molecule according to the above item (45), wherein the regulatory element includes at least one element selected from the group consisting of an intron, a terminator, and an enhancer.
[0061] (47)糖欠乏誘導性プロモーター配列、ェキソ型糖分解酵素をコードする遺伝子の プロモーター配列および代謝可能な糖を分解し得る酵素をコードする遺伝子のプロ モーター配列力 なる群力 選択される少なくとも 1つのプロモーター配列と、 該選択されたプロモーター配列に作動可能に連結された異種遺伝子配列 とを含む、ベクター。  (47) Sugar deficiency-inducible promoter sequence, promoter sequence of gene encoding exo-type glycolytic enzyme, and promoter sequence of gene encoding enzyme capable of degrading metabolizable sugar A vector comprising at least one promoter sequence and a heterologous gene sequence operably linked to the selected promoter sequence.
[0062] (48)糖欠乏誘導性プロモーター配列、ェキソ型糖分解酵素をコードする遺伝子の プロモーター配列および代謝可能な糖を分解し得る酵素をコードする遺伝子のプロ モーター配列力 なる群力 選択される少なくとも 1つのプロモーター配列と、 該選択されたプロモーター配列に作動可能に連結された異種遺伝子配列 とを含む、植物細胞。  (48) Sugar deficiency inducible promoter sequence, promoter sequence of gene encoding exo-type glycolytic enzyme, and promoter sequence of gene encoding enzyme capable of degrading metabolizable sugar A plant cell comprising at least one promoter sequence and a heterologous gene sequence operably linked to the selected promoter sequence.
[0063] (49)双子葉植物細胞である、上記項目(48)に記載の植物細胞。 (49) The plant cell according to the above item (48), which is a dicotyledonous plant cell.
[0064] (50)培養細胞である、上記項目(48)に記載の植物細胞。 (50) The plant cell according to the above item (48), which is a cultured cell.
[0065] (51) 1週間で 50倍以上増殖し得る細胞である、上記項目(50)に記載の植物細胞  (51) The plant cell according to the above item (50), which is a cell capable of growing 50 times or more in one week.
[0066] (52)タンパク質の生産方法であって、該方法は、以下の工程: (52) A method for producing a protein, the method comprising the following steps:
糖欠乏誘導性プロモーター配列、ェキソ型糖分解酵素をコードする遺伝子のプロ モーター配列および代謝可能な糖を分解し得る酵素をコードする遺伝子のプロモー ター配列からなる群から選択される少なくとも 1つのプロモーター配列と、  At least one promoter sequence selected from the group consisting of a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar. When,
該選択されたプロモーター配列に作動可能に連結された該タンパク質コード配列 とを含む核酸分子を、細胞に導入して、形質転換細胞を得る工程;  Introducing a nucleic acid molecule comprising the protein coding sequence operably linked to the selected promoter sequence into a cell to obtain a transformed cell;
該形質転換細胞を糖の非存在下で培養して、該タンパク質を分泌させる工程;およ び  Culturing the transformed cells in the absence of sugar to secrete the protein; and
該タンパク質を回収する工程  Step of recovering the protein
を包含する、方法。 [0067] (53)上記細胞が、植物細胞である、上記項目(52)に記載の方法。 A method comprising: (53) The method according to the above item (52), wherein the cell is a plant cell.
[0068] (54)上記細胞が、双子葉植物細胞である、上記項目(52)に記載の方法。  (54) The method according to the above item (52), wherein the cell is a dicotyledonous plant cell.
[0069] (55)上記細胞が、培養細胞である、上記項目(52)に記載の方法。  (55) The method according to the above item (52), wherein the cell is a cultured cell.
[0070] (56)上記細胞が、 1週間で 50倍以上増殖し得る細胞である、上記項目(55)に記 載の方法。  [0070] (56) The method according to the above item (55), wherein the cells are cells capable of proliferating 50-fold or more in one week.
[0071] (57)上記核酸分子が、さらにシグナルペプチドコード配列を含む、上記項目(52) に記載の方法。  [0071] (57) The method according to the above item (52), wherein the nucleic acid molecule further comprises a signal peptide coding sequence.
[0072] (58)上記シグナルペプチドコード配列が、 β—ガラタトシダーゼのシグナルぺプチ ドコード酉己歹 IJ、 β—キシロシダーゼのシグナルペプチドコード配列および β—ダルコシ ダーゼのシグナルペプチドコード配列からなる群より選択される、上記項目(57)に記 載の方法。  [0072] (58) The signal peptide coding sequence is selected from the group consisting of a β-galatatosidase signal peptide code, a signal peptide coding sequence of β-xylosidase, and a signal peptide coding sequence of β-dalcosidase. The method described in the above item (57).
[0073] (59)上記シグナルペプチドコード配列が、  (59) The signal peptide coding sequence described above,
(i)配列番号 2の 1位一 27位、配列番号 4の 1位一 28位または配列番号 6の 1位一 28位に示されるアミノ酸配列をコードするヌクレオチド配列;  (i) a nucleotide sequence encoding the amino acid sequence shown at position 1 to position 27 of SEQ ID NO: 2, position 1 to position 28 of SEQ ID NO: 4, or position 1 to position 28 of SEQ ID NO: 6;
(ii) (i)のヌクレオチド配列と比較して、 1もしくは数個のヌクレオチドの置換、欠失ま たは付加を含むヌクレオチド配列であって、細胞外分泌活性を有するペプチドをコー ドするヌクレオチド配列;  (ii) a nucleotide sequence containing one or several nucleotide substitutions, deletions or additions as compared with the nucleotide sequence of (i), which encodes a peptide having extracellular secretory activity;
(iii) (i)または(ii)のヌクレオチド配歹 ijとストリンジェントな条件下でハイブリダィズし 、かつ細胞外分泌活性を有するペプチドをコードするヌクレオチド配歹 1J ;ならびに (iii) a nucleotide system 1J that hybridizes with the nucleotide system ij of (i) or (ii) under stringent conditions and encodes a peptide having extracellular secretory activity;
(iv) (i)のヌクレオチド配列に対して少なくとも 70%の同一性を有するヌクレオチド 配列であって、かつ細胞外分泌活性を有するペプチドをコードするヌクレオチド配列 からなる群より選択され、 (iv) a nucleotide sequence having at least 70% identity to the nucleotide sequence of (i) and is selected from the group consisting of a nucleotide sequence encoding a peptide having extracellular secretory activity;
該ヌクレオチド配列に作動可能に上記異種遺伝子配列が連結されると、該異種遺 伝子の産物の細胞外分泌がもたらされる、上記項目(57)に記載の方法。  The method of claim 57, wherein operably linking the heterologous gene sequence to the nucleotide sequence results in extracellular secretion of the product of the heterologous gene.
[0074] (60)上記タンパク質が、サイト力インまたはホルモンである、上記項目(52)に記載 の方法。 [0074] (60) The method according to the above item (52), wherein the protein is a cytokinin or a hormone.
[0075] (61)上記タンパク質が、植物中で発現された場合に目的の機能を有するタンパク 質である、上記項目(52)に記載の方法。 (61) A protein having a desired function when the above protein is expressed in a plant The method according to item (52), which is a quality.
[0076] (62)上記タンパク質が、インターフェロン、抗体、ヒト α—アンチトリプシンまたは緑 色蛍光タンパク質である、上記項目(52)に記載の方法。 (62) The method according to the above item (52), wherein the protein is an interferon, an antibody, human α-antitrypsin or a green fluorescent protein.
[0077] (63)上記糖が、代謝可能な解糖系糖または代謝されると該解糖系糖になり得る糖 である、上記項目(52)に記載の方法。 [0077] (63) The method according to the above item (52), wherein the sugar is a metabolizable glycolytic sugar or a sugar that can become the glycolytic sugar when metabolized.
[0078] (64)上記糖が、グルコース、ガラクトース、フルクトース、スクロースおよびキシロー スからなる群より選択される、上記項目(52)に記載の方法。 [0078] (64) The method according to the above item (52), wherein the sugar is selected from the group consisting of glucose, galactose, fructose, sucrose and xylose.
[0079] (65)タンパク質の生産方法であって、該方法は、以下の工程: (65) A method for producing a protein, the method comprising the following steps:
糖欠乏誘導性プロモーター配列、ェキソ型糖分解酵素をコードする遺伝子のプロ モーター配列および代謝可能な糖を分解し得る酵素をコードする遺伝子のプロモー ター配列からなる群から選択される少なくとも 1つのプロモーター配列と、  At least one promoter sequence selected from the group consisting of a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar. When,
該選択されたプロモーター配列に作動可能に連結された該タンパク質コード配列 とを含む核酸分子を、細胞に導入して、形質転換細胞を得る工程;  Introducing a nucleic acid molecule comprising the protein coding sequence operably linked to the selected promoter sequence into a cell to obtain a transformed cell;
該形質転換細胞を糖の存在下で培養する工程;  Culturing the transformed cells in the presence of sugar;
該形質転換細胞を糖の非存在下で培養して、該タンパク質を分泌させる工程;およ び  Culturing the transformed cells in the absence of sugar to secrete the protein; and
該タンパク質を回収する工程  Step of recovering the protein
を包含する、方法。  A method comprising:
[0080] (66)上記項目(52)に記載の方法によって得られるタンパク質。  (66) A protein obtained by the method according to the above item (52).
[0081] (67)異種遺伝子の糖欠乏誘導性発現のための、上記項目(1)に記載の核酸分子 の使用。  (67) Use of the nucleic acid molecule according to the above item (1) for sugar-deficiency-induced expression of a heterologous gene.
発明の効果  The invention's effect
[0082] 本発明により、糖欠乏を制御することによって容易に発現を制御し得る、発現系が 提供される。  [0082] The present invention provides an expression system that can easily control expression by controlling sugar deficiency.
[0083] 分泌型 β ガラクトシダーゼ(Gal)をコードする遺伝子のプロモーター配歹 lj、 β—キ シロシダーゼ(Xyl)をコードする遺伝子のプロモーター配列および β ダルコシダー ゼ (Glc)をコードする遺伝子のプロモーター配列は、糖が存在することによって発現 が抑制され、そして糖欠乏によって発現が顕著に誘導されるので、このプロモーター 配列に作動可能に連結された異種遺伝子配列を含む細胞を糖存在下で培養し、そ して細胞がある程度増殖した時点で培地の糖濃度を下げることによって、異種遺伝 子配列の発現を効率的に誘導し得る。 [0083] The promoter sequence of the gene encoding secretory β-galactosidase (Gal), the promoter sequence of the gene encoding β-xylosidase (Xyl), and the promoter sequence of the gene encoding β-darcosidase (Glc) are as follows: The presence of sugars suppresses expression, and sugar deficiency significantly induces expression. Efficient expression of a heterologous gene sequence by culturing cells containing the heterologous gene sequence operably linked to the sequence in the presence of sugar and then reducing the sugar concentration in the medium when the cells have grown to some extent Can be induced.
[0084] 本発明では特に、本発明の核酸分子にシグナルペプチドコード配列をさらに含むと [0084] In the present invention, particularly, the nucleic acid molecule of the present invention further comprises a signal peptide coding sequence.
、異種遺伝子配列によってコードされる産物のより効率的な発現をもたらし得る。 Can result in more efficient expression of the product encoded by the heterologous gene sequence.
[0085] 本発明を用いることにより、生産性が低いことから開発研究が進展してなレ、インター フエロン、抗体、ワクチンなどの医薬品の植物細胞による生産に関連する産業の活性 化が期待できる。 [0085] By using the present invention, activation of industries related to the production of pharmaceuticals such as interferons, antibodies, vaccines, and the like by plant cells can be expected due to the low productivity and the progress of development research.
図面の簡単な説明  Brief Description of Drawings
[0086] [図 1]図 laは、約 13, 000個のシロイヌナズナ遺伝子について、糖欠乏によるシグナ ル強度の比の変化を示すグラフである。横軸は、 2%スクロース存在下でのシグナル 強度を示し、そして縦軸は、スクロース非存在下でのシグナル強度を示す。図 lbは、 最初にスクリーニングによって得られた 184個のシロイヌナズナ遺伝子について、糖 欠乏によるシグナル強度の比の変化を示すグラフである。横軸は、 1%スクロース存 在下でのシグナル強度を示し、そして縦軸は、スクロース非存在下でのシグナル強度 を示す。  [0086] [Fig. 1] Figure la is a graph showing the change in signal intensity ratio due to sugar deficiency for about 13,000 Arabidopsis thaliana genes. The horizontal axis indicates the signal intensity in the presence of 2% sucrose, and the vertical axis indicates the signal intensity in the absence of sucrose. Figure lb is a graph showing the change in signal intensity ratio due to sugar deficiency for the 184 Arabidopsis genes initially obtained by screening. The horizontal axis shows the signal intensity in the presence of 1% sucrose, and the vertical axis shows the signal intensity in the absence of sucrose.
[図 2]図 2は、サブアレイで同定された 9個の遺伝子について RNAゲルプロット分析を 示す写真である。  [FIG. 2] FIG. 2 is a photograph showing RNA gel plot analysis of nine genes identified in the subarray.
[図 3]図 3aは、離脱葉にスクロースを供給した場合の、スクロースまたはグルコースの レベルを示すグラフである。各時間において、左側の白棒はスクロース供給条件下で の結果を示し、真ん中の黒棒はスクロース欠乏条件下での結果を示し、そして左端 の白棒は 72時間後に再度スクロースを供給した場合の結果を示す。それぞれ、エラ 一バーも同時に示す。図 3bは、離脱葉中の、誘導された 12個の遺伝子の転写産物 蓄積の時間経過を示す RNAゲルプロット分析を示す写真である。  FIG. 3a is a graph showing sucrose or glucose levels when sucrose is supplied to detached leaves. At each time, the white bars on the left show the results under sucrose feeding conditions, the black bars in the middle show the results under sucrose deficient conditions, and the white bars on the left show the results when sucrose was fed again after 72 hours. The results are shown. Each error bar is also shown. FIG. 3b is a photograph showing RNA gel plot analysis showing the time course of induced transcript accumulation of 12 genes during withdrawal leaves.
[図 4]図 4aは、植物全体を遮光した場合の、ロゼット葉における可溶性糖の量を示す グラフを示す。 白棒はスクロースの量を示し、そして黒棒はグノレコースの量を示す。そ れぞれ、エラーバーも同時に示す。図 4bは、植物全体を遮光した場合の、 AtSUG 遺伝子の転写産物を示す RNAゲルプロットの写真である。 [図 5]図 5aは、離脱したロゼット葉の黄化の様子を上の写真に、そして離脱葉中の可 溶性糖の量を下のグラフに示す。 白棒はスクロースの量を示し、そして黒棒はダルコ 一スの量を示す。それぞれ、エラーバーも同時に示す。図 5bは、離脱したロゼット葉 中の AtSUG遺伝子の転写産物を示す RNAゲルプロットの写真である。 FIG. 4a is a graph showing the amount of soluble sugar in rosette leaves when the whole plant is shielded from light. White bars indicate the amount of sucrose and black bars indicate the amount of gnorecose. Error bars are also shown for each. FIG. 4b is a photograph of an RNA gel plot showing a transcript of the AtSUG gene when the whole plant is shielded from light. [FIG. 5] FIG. 5a shows yellowing of detached rosette leaves in the upper photograph, and the amount of soluble sugar in detached leaves in the lower graph. White bars indicate the amount of sucrose and black bars indicate the amount of darcos. In each case, an error bar is also shown. FIG. 5b is a photograph of an RNA gel plot showing the transcript of the AtSUG gene in the detached rosette leaves.
[図 6]図 6は、離脱葉からスクロースを 48時間欠乏させ、次いで糖またはアナログを 2 4時間にわたって供給した場合の、 AtSUGの転写産物を示す RNAゲルプロットの 写真である。それぞれ、以下を添加した場合の結果を示す:レーン 1、無処理;レーン 2、糖飢餓(48時間);レーン 3、スクロース(24時間);レーン 4、グルコース(24時間) ;レーン 5、 2—デォキシグルコース(24時間);レーン 6、 3_0_メチルグルコース。 [Fig. 6] Fig. 6 is a photograph of an RNA gel plot showing transcripts of AtSUG when sucrose was depleted from a withdrawn leaf for 48 hours, and then sugar or an analog was fed for 24 hours. Each shows the results when the following were added: lane 1, no treatment; lane 2, sugar starvation (48 hours); lane 3, sucrose (24 hours); lane 4, glucose (24 hours); lanes 5, 2 -Deoxyglucose (24 hours); Lane 6, 3_0_ methyl glucose.
[図 7]図 7は、スクロースの存在および非存在による AtSUGの転写産物を示す RNA ゲルプロットの写真である。 FIG. 7 is a photograph of an RNA gel plot showing transcripts of AtSUG due to the presence and absence of sucrose.
[図 8]図 8は、 β -ガラタトシダーゼ(Galとも記載する)および β -キシ口キダーゼ (Xyl とも記載する)のファミリーの系統樹を示す模式図である。  FIG. 8 is a schematic diagram showing a phylogenetic tree of a family of β-galatatosidase (also referred to as Gal) and β-xychidoxidase (also referred to as Xyl).
[図 9]図 9は、スクロース非存在下またはスクロースを 1%含む条件でシロイヌナズナを 成長させた場合の Gal— 1、 Gal— 2、 Gal— 3、 Gal_5および Gal_6、ならびに Xyl— 1、 Xyl— 2および Xyl— 3の RNA量を示す RNAゲルプロットの写真である。  [Fig. 9] Fig. 9 shows Gal-1, Gal-2, Gal-3, Gal_5 and Gal_6, and Xyl-1, Xyl- when Arabidopsis was grown in the absence of sucrose or under conditions containing 1% sucrose. 3 is a photograph of an RNA gel plot showing RNA amounts of 2 and Xyl-3.
[図 10]図 10は、スクロース非存在下またはスクロースを 1%含む条件でシロイヌナズ ナを成長させた場合の Gal— 1、 Xyl— 1および Glc— 1の RNA量を示す RNAゲルブロ ットの写真である。 [FIG. 10] FIG. 10 is a photograph of an RNA gel blot showing the amount of Gal-1, Xyl-1, and Glc-1 RNA when Arabidopsis is grown in the absence of sucrose or under conditions containing 1% sucrose. It is.
[図 11]図 11は、 Gal— 1の遺伝子産物(724アミノ酸)、 Xyl— 1の遺伝子産物(774アミ ノ酸)および Glc— 1の遺伝子産物(577アミノ酸)の構造を比較する模式図である。 園 12]図 12は、培養細胞を利用することの利点を示す模式図である。  [Figure 11] Figure 11 is a schematic diagram comparing the structures of the gene products of Gal-1 (724 amino acids), Xyl-1 (774 amino acids) and Glc-1 (577 amino acids). is there. Garden 12] FIG. 12 is a schematic diagram showing the advantages of using cultured cells.
[図 13]図 13は、スクロース非存在下またはスクロースを 1%含む条件で培養シロイヌ ナズナ細胞を増殖させた場合の Gal— 1、 Xyl— 1および Glc_lの RNA量を示す RN Aゲルプロットの写真である。 [FIG. 13] FIG. 13 is a photograph of an RNA gel plot showing RNA amounts of Gal-1, Xyl-1, and Glc_l when cultured Arabidopsis cells were grown in the absence of sucrose or under conditions containing 1% sucrose. It is.
[図 14]図 14は、スクロース非存在下またはスクロースを 1%含む条件で培養シロイヌ ナズナ細胞を増殖させた場合の Gal— 1、 Xyl— 1および Glc— 1の酵素活性を示すダラ フである。 [図 15]図 15は、植物細胞内での糖飢餓による調節の模式図である。 [FIG. 14] FIG. 14 is a graph showing the enzyme activities of Gal-1, Xyl-1 and Glc-1 when cultured Arabidopsis cells are grown in the absence of sucrose or under conditions containing 1% sucrose. . FIG. 15 is a schematic diagram of regulation by sugar starvation in plant cells.
[図 16]図 16は、炭素源として種々の糖を添加した場合の Gal— 1、 Xyl_lおよび Glc— [Fig. 16] Fig. 16 shows that Gal-1, Xyl_l, and Glc-
1の RNA量を示す RNAゲルプロットの写真である。 3 is a photograph of an RNA gel plot showing the RNA amount of 1.
[図 17a]図 17aは、植物導入用構築物の構築法の一部を示す模式図である。  FIG. 17a is a schematic view showing a part of a method for constructing a plant-introducing construct.
[図 17b]図 17bは、植物導入用構築物の構築法の一部を示す模式図である。  FIG. 17b is a schematic view showing a part of a method for constructing a plant-introducing construct.
[図 17c]図 17cは、植物導入用構築物の構築法の一部を示す模式図である。  FIG. 17c is a schematic view showing a part of a method for constructing a plant-introducing construct.
[図 18]図 18は、 BY— 2細胞において、糖欠乏によって GFPの分泌が誘導されること を示す図である。グラフは、形質転換 BY— 2細胞の増殖を示す。グラフ中の挿入図は FIG. 18 is a view showing that deficiency of sugar induces GFP secretion in BY-2 cells. The graph shows the growth of transformed BY-2 cells. The inset in the graph is
、ウェスタンブロッテイングの結果を示す。 Shows the results of Western blotting.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0087] 以下、本発明を詳細に説明する。本明細書の全体にわたり、本明細書において使 用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられる ことが理解されるべきである。 Hereinafter, the present invention will be described in detail. It is to be understood that throughout this specification, the terms used herein are used in the meaning commonly used in the art, unless otherwise specified.
[0088] (1.核酸分子) (1. Nucleic acid molecule)
1つの実施形態では、本発明の核酸分子は、糖欠乏誘導性プロモーター配列と、 該糖欠乏誘導性プロモーター配列に作動可能に連結された異種遺伝子配列とを含 む。  In one embodiment, a nucleic acid molecule of the invention comprises a sugar deficiency-inducible promoter sequence and a heterologous gene sequence operably linked to the sugar deficiency-inducible promoter sequence.
[0089] 別の実施形態では、本発明の核酸分子はまた、ェキソ型糖分解酵素をコードする 遺伝子のプロモーター配列と、該プロモーター配列に作動可能に連結された異種遺 伝子配列とを含む。  [0089] In another embodiment, the nucleic acid molecule of the present invention also includes a promoter sequence of a gene encoding an exoglycolytic enzyme, and a heterologous gene sequence operably linked to the promoter sequence.
[0090] 別の実施形態では、本発明の核酸分子はまた、代謝可能な糖を分解し得る酵素を コードする遺伝子のプロモーター配列と、該プロモーター配列に作動可能に連結さ れた異種遺伝子配列とを含む。  [0090] In another embodiment, the nucleic acid molecule of the present invention also comprises a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar, and a heterologous gene sequence operably linked to the promoter sequence. including.
[0091] 本発明の核酸分子は特に、シグナルペプチドコード配列を含むことが好ましい。シ グナルペプチドコード配列を含むことにより、異種遺伝子配列によってコードされる産 物の細胞外分泌がより効率よく行われる。  [0091] In particular, the nucleic acid molecule of the present invention preferably contains a signal peptide coding sequence. By including the signal peptide coding sequence, extracellular secretion of the product encoded by the heterologous gene sequence can be performed more efficiently.
[0092] 本明細書において、用語「核酸分子」はまた、核酸、オリゴヌクレオチド、およびポリ ヌクレオチドと互換可能に使用される。核酸分子の例としては、 cDNA、 mRNA、ゲ ノム DNAなどが挙げられる。本明細書では、核酸および核酸分子は、その核酸およ び核酸分子がタンパク質をコードするときなどは、用語「遺伝子」の概念に含まれる。 ある遺伝子配列をコードする核酸分子はまた、「スプライス変異体」および「スプライス 改変体」を包含する。スプライス変異体とスプライス改変体とは同義である。同様に、 核酸によりコードされる特定のタンパク質は、その核酸のスプライス改変体によりコー ドされる任意のタンパク質を包含する。その名が示唆するように「スプライス変異体」は 、遺伝子のオルタナティブスプライシングの産物である。転写後、最初の核酸転写物 は、異なる(別の)核酸スプライス産物が異なるポリペプチドをコードするようにスプラ イスされる場合がある。スプライス変異体の産生機構は変化するが、ェキソンのオルタ ナティブスプライシングを含む。読み過し転写により同じ核酸に由来する別のポリぺ プチドもまた、この定義に包含される。スプライシング反応の任意の産物(組換え形態 のスプライス産物を含む)がこの定義に含まれる。 [0092] As used herein, the term "nucleic acid molecule" is also used interchangeably with nucleic acids, oligonucleotides, and polynucleotides. Examples of nucleic acid molecules include cDNA, mRNA, Nom DNA and the like. As used herein, nucleic acids and nucleic acid molecules are included in the concept of the term "gene", such as when the nucleic acids and nucleic acid molecules encode proteins. Nucleic acid molecules encoding a gene sequence also include "splice variants" and "splice variants." A splice variant and a splice variant are synonymous. Similarly, a particular protein encoded by a nucleic acid includes any protein encoded by a splice variant of the nucleic acid. As the name suggests, "splice variants" are the products of alternative splicing of a gene. After transcription, the initial nucleic acid transcript may be spliced such that different (alternate) nucleic acid splice products encode different polypeptides. The mechanism of production of splice variants varies, but involves alternative splicing of exons. Another polypeptide derived from the same nucleic acid by read-through transcription is also included in this definition. Any product of a splicing reaction, including recombinant forms of the splice product, is included in this definition.
本明細書において、糖欠乏誘導性プロモーター配列とは、糖の欠乏によって発現 が誘導されるプロモーター配列をレ、う。糖欠乏誘導性プロモーター配列の例としては 、 β一ガラクトシダーゼ(Gal)をコードする遺伝子のプロモーター配歹 lj、 βーキシロシ ダーゼ(Xyl)をコードする遺伝子のプロモーター配列および β—ダルコシダーゼ(G1 c)をコードする遺伝子のプロモーター配歹 U、ならびに表 1に列挙される糖応答性遺 伝子のプロモーター配列が挙げられる。これらのプロモーター配列は、表 1に記載の 遺伝子 IDの遺伝子をかずさ DNA研究所から入手し、この遺伝子を 5 '末端または 3 ' 末端から少しずつ欠失させて欠失配列を得て、この欠失配列が糖欠乏誘導性プロモ 一ター活性を有するか否かを確認することにより、容易に決定され得る。この欠失配 列が糖欠乏誘導性プロモーター活性を有するか否かは、例えば、この欠失配列をレ ポーター配列と連結し、ベクターと連結し、このベクターを適切な宿主細胞に導入し、 レポーター配列の発現が見られるか否力、を確認することによって決定され得る。本明 細書中で用いられ得る j3 -ガラクトシダーゼは、好ましくは Gal_lである。本明細書中 で用いられ得る j3—キシロシダーゼの例としては、 Xyl— 1または Xyl_3が挙げられる 力 好ましくは Xyl— 1である。本明細書中で用いられ得る j3—グノレコシダーゼは、好ま しくは Glc— 1である。糖欠乏誘導性プロモーター配列はこれらに限定されず、(b)こ れらのプロモーター配列のヌクレオチド配列と比較して、 1もしくは数個のヌクレオチド の置換、欠失または付カ卩を含むヌクレオチド配列であって、糖欠乏誘導性プロモータ 一活性を有するヌクレオチド配歹 IJ ; (c) (a)または(b)のヌクレオチド配列とストリンジェ ントな条件下でハイブリダィズし、かつ糖欠乏誘導性プロモーター活性を有するヌク レオチド配歹 IJ ; (d) (a)のヌクレオチド配列に対して少なくとも 70%の同一性を有する ヌクレオチド配列であって、かつ糖欠乏誘導性プロモーター活性を有するヌクレオチ ド配歹 IJ ;ならびに(e) (a)一 (d)のいずれかのヌクレオチド配列の短縮配列であって、 糖欠乏誘導性プロモーター活性を有するヌクレオチド配列であってもよい。短縮配列 は、全長未満の配列であって、かつ、糖欠乏誘導性プロモーター活性を有する最低 限の長さ以上であればよい。短縮配列の最低限の長さは、もとのプロモーター配列を 5'末端または 3'末端力 少しずつ欠失させて短縮配列を得て、この短縮配列が糖 欠乏誘導性プロモーター活性を有するか否かを確認することにより、容易に決定され 得る。短縮配列の長さは、例えば、約 20ヌクレオチド以上全長未満であり得る。短縮 配列の長さは、好ましくは約 30ヌクレオチド以上、約 40ヌクレオチド以上、約 50ヌク レオチド以上、約 60ヌクレオチド以上、約 70ヌクレオチド以上、約 80ヌクレオチド以 上、または約 90ヌクレオチド以上であり得る。短縮配列の長さは、好ましくは約 1200 ヌクレオチド以下、より好ましくは約 1100ヌクレオチド以下、約 1000ヌクレオチド以下 、約 900ヌクレオチド以下、約 800ヌクレオチド、約 700ヌクレオチド以下、約 600ヌク レオチド以下、約 500ヌクレオチド以下、約 400ヌクレオチド以下、約 300ヌクレオチ ド以下、約 200ヌクレオチド以下、または約 100ヌクレオチド以下であり得る。 As used herein, the sugar-deficiency-inducible promoter sequence refers to a promoter sequence whose expression is induced by sugar deficiency. Examples of the sugar deficiency-inducible promoter sequence include a promoter sequence of a gene encoding β-galactosidase (Gal), a promoter sequence of a gene encoding β-xylosidase (Xyl), and β-darcosidase (G1c). And the promoter sequences of the sugar-responsive genes listed in Table 1. These promoter sequences were obtained from the Kazusa DNA Research Institute for the gene with the gene ID shown in Table 1, and this gene was deleted little by little from the 5 'end or 3' end to obtain a deleted sequence. It can be readily determined by ascertaining whether the misarrangement has sugar deficiency inducible promoter activity. Whether this deletion sequence has a sugar deficiency-inducible promoter activity can be determined, for example, by ligating the deletion sequence with a reporter sequence, ligating it with a vector, introducing this vector into an appropriate host cell, It can be determined by checking whether expression of the sequence is seen. The j3-galactosidase that can be used herein is preferably Gal_l. Examples of j3-xylosidase that may be used herein include Xyl-1 or Xyl_3, preferably Xyl-1. The j3-gnorecosidase that can be used herein is preferably Glc-1. The sugar deficiency-inducible promoter sequence is not limited to these, and (b) A nucleotide sequence comprising one or more nucleotide substitutions, deletions or additions, compared to the nucleotide sequence of these promoter sequences, wherein the nucleotide sequence has one activity of a sugar deficiency-inducible promoter; (c) a nucleotide sequence IJ that hybridizes under stringent conditions to the nucleotide sequence of (a) or (b) and has a sugar deficiency-inducible promoter activity; (d) the nucleotide sequence of (a) A nucleotide sequence having at least 70% identity and a nucleotide sequence IJ having a sugar deficiency-inducible promoter activity; and (e) a shortened sequence of any one of the nucleotide sequences (a) and (d). In addition, the nucleotide sequence may have a sugar deficiency-inducible promoter activity. The truncated sequence may be a sequence shorter than the full length and longer than the minimum length having a sugar deficiency-inducible promoter activity. The minimum length of the truncated sequence was determined by deleting the original promoter sequence little by little at the 5 'end or 3' end to obtain a truncated sequence, and determining whether this truncated sequence has a sugar deficiency-inducible promoter activity. Can be easily determined. The length of the truncated sequence can be, for example, about 20 nucleotides or more and less than the full length. The length of the truncated sequence can be preferably about 30 nucleotides or more, about 40 nucleotides or more, about 50 nucleotides or more, about 60 nucleotides or more, about 70 nucleotides or more, about 80 nucleotides or more, or about 90 nucleotides or more. The length of the shortened sequence is preferably about 1200 nucleotides or less, more preferably about 1100 nucleotides or less, about 1000 nucleotides or less, about 900 nucleotides or less, about 800 nucleotides, about 700 nucleotides or less, about 600 nucleotides or less, about 500 nucleotides or less. In the following, it can be up to about 400 nucleotides, up to about 300 nucleotides, up to about 200 nucleotides, or up to about 100 nucleotides.
[0094] 本明細書中で「糖欠乏誘導性プロモーター活性を有する」とは、糖存在条件下での 発現量と比較して、糖欠乏条件下での発現量を多くさせる効果を有することをいう。こ の効果は好ましくは、糖濃度が約 15mM以下のときの発現量力 糖が約 50mM以上 存在する場合の発現量よりも多ぐより好ましくは糖が約 50mM以上存在する場合の 発現量の 2倍以上、 3倍以上、 4倍以上、 5倍以上、 10倍以上、 50倍以上、 100倍以 上であり得る。もちろん、糖欠乏誘導性プロモーター活性は、糖存在条件下で発現さ せず、糖欠乏条件下で発現させる効果を有する場合を含む。  [0094] As used herein, "having a sugar deficiency-inducible promoter activity" means that it has an effect of increasing the expression level under sugar-deficient conditions compared to the expression level under sugar-present conditions. Say. This effect is preferably greater than the expression level when the sugar concentration is about 15 mM or less, and more preferably twice the expression level when the sugar is present at about 50 mM or more. Above, 3 times or more, 4 times or more, 5 times or more, 10 times or more, 50 times or more, 100 times or more. Of course, the sugar deficiency-inducible promoter activity includes a case where it is not expressed under saccharide-existing conditions but has an effect of being expressed under sugar-deficient conditions.
[0095] 本明細書中では、「プロモーター」とは、遺伝子の転写の開始点を決定し、また転写 頻度を直接的に調節する DNA上の領域をいい、 RNAポリメラーゼが結合して転写 を始める塩基配列である。プロモーターの領域は、通常、推定タンパク質コード領域 の第 1ェキソンの上流約 2kbp以内の領域であることが多いので、 DNA解析用ソフト ウェアを用いてゲノム塩基配列中のタンパク質コード領域を予測すれば、プロモータ 一領域を推定することはできる。推定プロモーター領域は、構造遺伝子ごとに変動す るが、通常構造遺伝子の上流にあるが、これらに限定されず、構造遺伝子の下流に もあり得る。好ましくは、推定プロモーター領域は、第一ェキソン翻訳開始点から上流 約 2kbp以内に存在する。本明細書中で「プロモーター配列」とは、プロモーター活性 を有する配列を意味する。プロモーター活性とは、 DNA力 RNAを転写させる活性 をいう。したがって、「プロモーター配歹 I とは、その下流(3'側)に DNAを連結して細 胞に導入した場合にその DNAに対応する RNAを合成できる配列をいう。 [0095] As used herein, the term "promoter" determines the start point of transcription of a gene, and A region on DNA that directly regulates the frequency. It is a nucleotide sequence at which RNA polymerase starts binding and starts transcription. The promoter region is usually within about 2 kbp upstream of the first exon of the putative protein coding region. One region of the promoter can be estimated. The putative promoter region varies for each structural gene, but is usually, but not limited to, upstream of the structural gene, and may be downstream of the structural gene. Preferably, the putative promoter region is within about 2 kbp upstream of the first exon translation start site. As used herein, “promoter sequence” refers to a sequence having promoter activity. Promoter activity refers to the activity of transcribing DNA RNA. Therefore, "promoter system I" refers to a sequence capable of synthesizing RNA corresponding to DNA when the DNA is ligated downstream (3 'side) and introduced into cells.
[0096] 上記の Gal_l、 Xyl_lおよび Glu_lの各遺伝子のプロモーターは、周知のように、 コード領域の上流配列から取得することができる。プロモーター領域の特定は、当該 分野で周知の方法に基づいて実施され得る。簡単に述べると、プロモーター領域の 候補配列およびレポーター遺伝子 (例えば、 GUS遺伝子)を作動可能に連結した発 現カセットを構築する。構築した発現カセットを用いて適切な植物細胞を形質転換し 、形質転換細胞を植物に再生する。形質転換植物におけるレポーター遺伝子の発 現を、適切な検出系(例えば、色素染色)を利用して検出する。検出結果に基づいて 、プロモーター領域およびその発現特性を確認し得る。  [0096] As is well known, the promoters of the Gal_l, Xyl_l, and Glu_l genes can be obtained from the upstream sequence of the coding region. The specification of the promoter region can be performed based on a method well known in the art. Briefly, an expression cassette is constructed in which a candidate sequence for the promoter region and a reporter gene (eg, GUS gene) are operably linked. Using the constructed expression cassette, suitable plant cells are transformed, and the transformed cells are regenerated into plants. The expression of the reporter gene in the transformed plant is detected using an appropriate detection system (eg, dye staining). Based on the detection result, the promoter region and its expression characteristics can be confirmed.
[0097] 本発明で用いられる糖欠乏誘導性プロモーター配列、ェキソ型分解酵素をコード する遺伝子のプロモーター配歹 1Jまたは代謝可能な糖を分解し得る酵素をコードする 遺伝子のプロモーター配列のうちの連続する少なくとも 50個(好ましくは少なくとも 60 個、より好ましくは少なくとも 80個、さらにより好ましくは少なくとも 100個、さらにより好 ましくは少なくとも 150個)のヌクレオチド配列を含む核酸分子は、これらのプロモータ 一配列と同一または類似の活性を有し得る。そのような活性は、ベータダルク口ニダ ーゼ(GUS)遺伝子、ルシフェラーゼ遺伝子、または GFPの遺伝子をレポーター遺 伝子として使うアツセィ、生化学的あるいは細胞組織学的な検定により確認すること ができる。そのようなアツセィは、当該分野における周知慣用技術に属することから( Maligaら, Methods in Plant Molecular Biology : A laboratory course. Cold Spring Harbor Laboratory Press " 995) Jefferson, Plant Molec. Biol. Reporter 5 : 387 (1987) ;〇wら, Science 234 : 856 (1986) ; Sheenら, Plant J. 8 : 777—784 (1995) )、当業者は何ら困難を伴わずに、本発明の配列の 連続する少なくとも 10個のヌクレオチド配列を含む核酸分子が、本発明で用いられる 糖欠乏誘導性プロモーター配列、ェキソ型分解酵素をコードする遺伝子のプロモー ター配列または代謝可能な糖を分解し得る酵素をコードする遺伝子のプロモーター 配列と同一または類似のあるいは実質的に同等以上の活性を有することを確認する こと力 Sできる。本明細書では、上記アツセィにおいて、検出誤差範囲内で同じプロモ 一ター活性を有することが判定されたときに実質的に同等以上のプロモーター活性 を有するという。 [0097] The sugar deficiency-inducible promoter sequence used in the present invention, the promoter sequence 1J of a gene encoding an exo-type degrading enzyme, or the continuous promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar can be used. Nucleic acid molecules comprising at least 50 (preferably at least 60, more preferably at least 80, even more preferably at least 100, even more preferably at least 150) nucleotide sequences are identified by these promoter sequences. They may have the same or similar activities. Such activity can be confirmed by an assay using the beta-Darc mouth nidase (GUS) gene, luciferase gene, or GFP gene as a reporter gene, biochemical or cytohistological assay. Such atsesses belong to well-known and conventional techniques in the art ( Maliga et al., Methods in Plant Molecular Biology: A laboratory course. Cold Spring Harbor Laboratory Press "995) Jefferson, Plant Molec. Biol. Reporter 5: 387 (1987); 〇w et al., Science 234: 856 (1986); Sheen et al. , Plant J. 8: 777-784 (1995)), without any difficulty for those skilled in the art, the nucleic acid molecule comprising at least 10 contiguous nucleotide sequences of the sequence according to the invention may be used in the sugar deficiency used in the invention. Have the same, similar, or substantially equivalent activity to the promoter sequence of the inducible promoter sequence, the promoter sequence of the gene encoding the exo-type degrading enzyme, or the promoter sequence of the gene encoding the enzyme capable of degrading metabolizable sugars. In the present specification, it is determined that the promoter activity is substantially equal to or greater than the promoter activity when it is determined that the promoter activity is within the range of the detection error in the above-mentioned assay. That.
[0098] 本発明で用いられるプロモーター配列の長さは、通常 10ヌクレオチド以上であるが 、好ましくは、 20ヌクレオチド以上、 30ヌクレオチド以上、 40ヌクレオチド以上、 50ヌ クレオチド以上、 60ヌクレオチド以上、 70ヌクレオチド以上、 80ヌクレオチド以上、 90 ヌクレオチド以上、 100ヌクレオチド以上、 150ヌクレオチド以上、 200ヌクレオチド以 上、 300ヌクレオチド以上の長さであり得る。  [0098] The length of the promoter sequence used in the present invention is usually at least 10 nucleotides, but is preferably at least 20 nucleotides, at least 30 nucleotides, at least 40 nucleotides, at least 50 nucleotides, at least 60 nucleotides, at least 70 nucleotides. , 80 nucleotides or more, 90 nucleotides or more, 100 nucleotides or more, 150 nucleotides or more, 200 nucleotides or more, 300 nucleotides or more.
[0099] 本発明で用いられるプロモーター配列は、従来のプロモーター配列(例えば、ミニ マムプロモーター(35Sプロモーター由来の約 80塩基対からなるプロモーター(Hatt onら, Plant J. , 7: 859— 876 (1995) ; Rousterら, Plant J. , 15 : 435-440 ( 1998) ;Washidaら, Plant Mol. Biol. , 40 : 1—12 (1999) )など)につなげて禾 lj 用すること力 Sできる。この場合、従来組織特異性を示さないまたは弱い特異性を示す 、あるいは別の特異性を示すプロモーター配列であっても、本発明で用いられるプロ モーター配列またはその断片を付加することまたはそれにより置換することによって、 糖欠乏誘導性を有するプロモーター配列を作製することができる(Hattonら, Plant J. , 7 : 859— 876 (1995) ; Rousterら, Plant J. , 15 : 435-440 (1998); Was hidaら, Plant Mol. Biol. , 40 : 1—12 (1999) )。  [0099] The promoter sequence used in the present invention may be a conventional promoter sequence (for example, a minimum promoter (a promoter consisting of about 80 base pairs derived from 35S promoter (Hatton et al., Plant J., 7: 859-876 (1995) Rouster et al., Plant J., 15: 435-440 (1998); Washida et al., Plant Mol. Biol., 40: 1-12 (1999))). In this case, the promoter sequence used in the present invention or a fragment thereof may be added or replaced by a promoter sequence which does not show tissue specificity or shows weak specificity, or a promoter sequence showing another specificity. Thus, a promoter sequence capable of inducing sugar deficiency can be produced (Hatton et al., Plant J., 7: 859-876 (1995); Rouster et al., Plant J., 15: 435-440 (1998) Washida et al., Plant Mol. Biol., 40: 1-12 (1999)).
[0100] 糖欠乏誘導性プロモーターは、好ましくは糖濃度が約 15mM以下のとき、より好ま しくは約 10mMのとき、さらに好ましくは約 5mM以下のとき、最も好ましくは糖が存在 しない場合に発現が誘導されるプロモーターをいう。本明細書中では、「発現が誘導 される」とは、発現量が増加することおよび糖存在条件下では全く発現しないが糖欠 乏条件下では発現されることの両者を含む意味である。 [0100] The sugar deficiency-inducible promoter preferably has a sugar concentration of about 15 mM or less, more preferably about 10 mM, still more preferably about 5 mM or less, and most preferably a sugar present. A promoter whose expression is induced when not performed. As used herein, “expression is induced” is meant to include both an increase in the expression level and an expression that is not expressed at all under sugar-containing conditions but is expressed under sugar-deficient conditions.
[0101] 本明細書中では、糖欠乏誘導性プロモーターに作用する糖は、好ましくは、代謝可 能な糖である。 「代謝可能な糖」とは、植物細胞によって取り込まれて分解された場合 に、その少なくとも一部が解糖系に入って代謝され得る糖をいう。代謝可能な糖は、 植物によって代謝され得る糖と交換可能に使用され得る。代謝可能な糖の例として は、糖の最初のリン酸化を介して解糖系によって ATPを生産し得る、単糖および二 糖が挙げられる。単糖の例としては、グルコース、フルクトース、キシロース、ガラクトー ス、マルトースおよびァラビノースが挙げられる。二糖の例としては、スクロースが挙げ られる。他のリン酸化され得る糖もまた代謝可能な糖であり得る。マンニトールおよび ソルビトールは最初のリン酸化を介して ATPを生産できず、解糖系に入ることもでき ないので、通常本発明の糖には該当しない。ただし、代謝可能な糖は、本発明が対 象とする生物によって変動し、以下に説明するような方法によって、その生物にとって 特定の糖が代謝可能な糖であることが確認される場合、そのような糖もまた代謝可能 な糖の範囲内にある。  [0101] In the present specification, the sugar acting on the sugar deficiency inducible promoter is preferably a metabolizable sugar. “Metabolizable sugars” refers to sugars that, when taken up and degraded by plant cells, can at least partially enter the glycolysis system and be metabolized. Metabolizable sugars can be used interchangeably with sugars that can be metabolized by plants. Examples of metabolizable sugars include monosaccharides and disaccharides, which are capable of producing ATP via glycolysis via initial phosphorylation of the sugar. Examples of monosaccharides include glucose, fructose, xylose, galactose, maltose and arabinose. An example of a disaccharide is sucrose. Other phosphorylatable sugars may also be metabolizable sugars. Mannitol and sorbitol do not normally fall under the sugars of the present invention because they cannot produce ATP via initial phosphorylation and cannot enter glycolysis. However, the metabolizable sugar varies depending on the organism targeted by the present invention, and when a specific sugar is confirmed to be a metabolizable sugar for the organism by the method described below, the Such sugars are also within the range of metabolizable sugars.
[0102] 代謝可能な糖は、当該分野で周知である。ある特定の糖が代謝可能な糖であるか 否かは、その糖を唯一の炭素源として目的の植物細胞を 1週間ないし 4週間培養し た場合に、その植物細胞の数が増加するか否かを調べ、植物細胞の数が増加したら 、その糖は代謝可能な糖であると決定され得る。植物細胞の数が増加するとは、培養 開始前の細胞数を 100%としたときに、 1週間ないし 4週間培養した後の植物細胞の 数力 好ましくは約 150%以上、より好ましくは約 200%以上、さらに好ましくは約 25 0°/o以上、さらに好ましくは約 300%以上、さらに好ましくは約 400%以上、さらに好 ましくは約 500%以上増加することをいう。  [0102] Metabolizable sugars are well known in the art. Whether a particular sugar is a metabolizable sugar depends on whether the number of plant cells increases when the target plant cells are cultured for one to four weeks using the sugar as the sole carbon source. If the number of plant cells increases, the sugar can be determined to be a metabolizable sugar. The increase in the number of plant cells means that the number of plant cells after culturing for 1 to 4 weeks is preferably about 150% or more, more preferably about 200%, when the cell number before the start of culture is 100%. As mentioned above, more preferably about 250 ° / o or more, more preferably about 300% or more, more preferably about 400% or more, and more preferably about 500% or more.
[0103] 本明細書にぉレ、て遺伝子、ポリヌクレオチド、ポリペプチドなどの「発現」とは、その 遺伝子などがインビボで一定の作用を受けて、別の形態になることをいう。好ましくは 、遺伝子、ポリヌクレオチドなどが、転写および翻訳されて、ポリペプチドの形態にな ることをいう力 S、転写されて mRNAが作製されることもまた発現の一形態であり得る。 より好ましくは、そのようなポリペプチドの形態は、翻訳後プロセシングを受けたもので あり得る。 [0103] As used herein, the term "expression" of a gene, a polynucleotide, a polypeptide, or the like means that the gene or the like undergoes a certain action in vivo to take on another form. Preferably, a force S that means that a gene, a polynucleotide, or the like is transcribed and translated to form a polypeptide, and that mRNA is produced by being transcribed may also be a form of expression. More preferably, such polypeptide forms may be post-translationally processed.
[0104] 従って、本明細書にぉレ、て遺伝子、ポリヌクレオチド、ポリペプチドなどの「発現」の 「減少」とは、本発明の因子を作用させたときに、作用させないときよりも、発現の量が 有意に減少することをいう。好ましくは、発現の減少は、ポリペプチドの発現量の減少 を含む。本明細書において遺伝子、ポリヌクレオチド、ポリペプチドなどの「発現」の「 増加」とは、本発明の因子を作用させたときに、作用させないときよりも、発現の量が 有意に増加することをいう。好ましくは、発現の増加は、ポリペプチドの発現量の増加 を含む。  [0104] Therefore, as used herein, "decrease" in "expression" of a gene, polynucleotide, polypeptide, or the like, means that when the factor of the present invention is acted on, the expression is lower than when it is not acted on. Means a significant decrease in the amount of Preferably, the decrease in expression includes a decrease in the expression level of the polypeptide. As used herein, the term "increase" in "expression" of a gene, polynucleotide, polypeptide, or the like means that the amount of expression is significantly increased when the factor of the present invention is acted on as compared to when it is not acted on. Say. Preferably, increasing the expression includes increasing the expression level of the polypeptide.
[0105] 本明細書において使用される用語「ポリペプチド」、「タンパク質」、および「ペプチド 」は、本明細書において同じ意味で使用され、任意の長さのアミノ酸のポリマーをいう 。このポリマーは、直鎖であっても分岐していてもよぐ環状であってもよレ、。アミノ酸 は、天然のものであっても非天然のものであってもよぐ改変されたアミノ酸であっても よレ、。この用語はまた、複数のポリペプチド鎖の複合体へとアセンブルされ得る。この 用語はまた、天然または人工的に改変されたアミノ酸ポリマーも包含する。そのような 改変としては、例えば、ジスルフイド結合形成、グリコシル化、脂質化、ァセチル化、リ ン酸化または任意の他の操作もしくは改変(例えば、標識成分との結合体化)。この 定義にはまた、例えば、アミノ酸の 1または 2以上のアナログを含むポリペプチド (例え ば、非天然のアミノ酸などを含む)、ペプチド様化合物(例えば、ぺプトイド)および当 該分野にぉレ、て公知の他の改変が包含される。  [0105] As used herein, the terms "polypeptide," "protein," and "peptide" are used interchangeably herein and refer to a polymer of amino acids of any length. This polymer may be linear, branched, or cyclic. The amino acid may be a natural or non-natural amino acid or a modified amino acid. The term can also be assembled into a complex of multiple polypeptide chains. The term also includes naturally or artificially modified amino acid polymers. Such modifications include, for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation or any other manipulation or modification (eg, conjugation with a labeling component). This definition also includes, for example, polypeptides containing one or more analogs of an amino acid (eg, including unnatural amino acids, etc.), peptidomimetic compounds (eg, peptoids) and those skilled in the art. And other modifications known.
[0106] 一般に、特定のポリペプチド配列のうちのあるアミノ酸は、そのポリペプチドが有す る生物学的活性の明らかな低下または消失なしに、他のアミノ酸に置換され得る。あ るポリペプチドの生物学的活性を規定するのは、ポリペプチドの相互作用能力およ び性質である。従って、特定のアミノ酸の置換がそのポリペプチドのアミノ酸配列にお いて、またはそのポリペプチドをコードするヌクレオチド配列のレベルにおいて行われ 得、置換後もなお、もとの性質を維持するポリペプチドが生じ得る。従って、生物学的 活性の明らかな損失なしに、種々の改変が、本明細書において開示されたポリぺプ チドまたはこのポリペプチドをコードするヌクレオチド配列を有するヌクレオチドにおい て行われ得る。 [0106] In general, one amino acid of a particular polypeptide sequence may be substituted for another amino acid without any apparent loss or loss of biological activity of the polypeptide. It is the interaction capacity and properties of a polypeptide that define the biological activity of a given polypeptide. Thus, certain amino acid substitutions may be made in the amino acid sequence of the polypeptide, or at the level of the nucleotide sequence encoding the polypeptide, resulting in a polypeptide that retains its original properties after the substitution. obtain. Thus, without obvious loss of biological activity, various modifications may be made in the polypeptide disclosed herein or the nucleotide having the nucleotide sequence encoding this polypeptide. Can be performed.
[0107] 本明細書において「生物学的活性」とは、ある因子(例えば、ポリペプチドまたは核 酸分子)が、生体内において有し得る活性のことをいい、種々の機能を発揮する活性 が包含される。例えば、ある因子が酵素である場合、その生物学的活性は、その酵 素活性を包含する。別の例では、ある因子がリガンドである場合、そのリガンドが対応 するレセプターへの結合を包含する。例えば、ある因子がアンチセンス分子である場 合、その生物学的活性は、対象となる核酸分子への結合、それによる発現抑制など を包含する。そのような生物学的活性は、当該分野において周知の技術によって測 定すること力 Sできる。ある因子がプロモーターである場合、その生物学的活性は、標 的となる遺伝子の転写がそのプロモーターに特異的な刺激によって変動(好ましくは 上昇)することを確認することができる。そのような確認は、当該分野において周知の 分子生物学的手法を用いて行うことができる。  [0107] As used herein, "biological activity" refers to an activity that a certain factor (eg, a polypeptide or a nucleic acid molecule) may have in a living body, and an activity that exhibits various functions. Included. For example, if a factor is an enzyme, its biological activity includes the enzymatic activity. In another example, where an agent is a ligand, the ligand involves binding to the corresponding receptor. For example, when a factor is an antisense molecule, its biological activity includes binding to the nucleic acid molecule of interest, thereby suppressing expression. Such biological activity can be measured by techniques well known in the art. When a factor is a promoter, its biological activity can be confirmed that the transcription of a target gene is changed (preferably increased) by a stimulus specific to the promoter. Such confirmation can be made using molecular biology techniques well known in the art.
[0108] 本明細書中では一般に、ポリペプチドを作製するために、アミノ酸の置換、付カロ、欠 失または修飾を行うことができる。アミノ酸の置換とは、 1つのアミノ酸を別の 1つのアミ ノ酸に置き換えることをいう。アミノ酸の付加とは、もとのアミノ酸配列中のどこかの位 置に、 1つ以上、例えば、 1一 10個、好ましくは 1一 5個、より好ましくは 1一 3個のアミ ノ酸を挿入することをいう。アミノ酸の欠失とは、もとのアミノ酸配列から 1つ以上、例え ば、 1一 10個、好ましくは 1一 5個、より好ましくは 1一 3個のアミノ酸を除去することを いう。アミノ酸修飾の例としては、アミド化、カルボキシル化、硫酸化、ハロゲン化、ァ ルキル化、グリコシル化、リン酸化、水酸化、ァシル化(例えば、ァセチル化)などが挙 げられる力 S、これらに限定されなレ、。置換または付加されるアミノ酸は、天然のァミノ 酸であってもよぐ非天然のアミノ酸またはアミノ酸アナログであってもよレ、。天然のァ ミノ酸が好ましい。  [0108] As used herein, in general, amino acid substitutions, substitutions, deletions, or modifications can be made to produce a polypeptide. Amino acid substitution refers to the replacement of one amino acid with another amino acid. Amino acid addition refers to the addition of one or more, for example, 110, preferably 115, and more preferably 113 amino acids at any position in the original amino acid sequence. Refers to insertion. Amino acid deletion refers to the removal of one or more amino acids from the original amino acid sequence, for example, 110 amino acids, preferably 115 amino acids, more preferably 113 amino acids. Examples of amino acid modifications include forces S that include amidation, carboxylation, sulfation, halogenation, alkylation, glycosylation, phosphorylation, hydroxylation, acylation (eg, acetylation), and the like. Not limited. The amino acid to be substituted or added may be a natural amino acid or an unnatural amino acid or amino acid analog. Natural amino acids are preferred.
[0109] 全長ヌクレオチドから一部のヌクレオチドが欠失したヌクレオチドおよび全長ポリべ プチドから一部のアミノ酸が欠失したポリペプチドは、フラグメントとも呼ばれる。本明 細書において、「フラグメント」とは、全長のポリペプチドまたはポリヌクレオチド(長さが n)に対して、 1一 n— 1までの配列長さを有するポリペプチドまたはポリヌクレオチドを いう。フラグメントの長さは、その目的に応じて、適宜変更することができ、例えば、そ の長さの下限としては、ポリペプチドの場合、 3、 4、 5、 6、 7、 8、 9、 10、 15、 20、 25 、 30、 40、 50およびそれ以上のアミノ酸が挙げられ、ここの具体的に列挙していない 整数で表される長さ(例えば、 11など)もまた、下限として適切であり得る。また、ポリヌ クレオチドの場合、 5、 6、 7、 8、 9、 10、 15、 20、 25、 30、 40、 50、 75、 100および それ以上のヌクレオチドが挙げられ、ここに具体的に列挙していない整数で表される 長さ(例えば、 11など)もまた、下限として適切であり得る。 [0109] Nucleotides in which some nucleotides have been deleted from full-length nucleotides and polypeptides in which some amino acids have been deleted from full-length polypeptides are also referred to as fragments. As used herein, the term "fragment" refers to a polypeptide or polynucleotide having a sequence length of up to 11-1 relative to a full-length polypeptide or polynucleotide (length n). The length of the fragment can be appropriately changed depending on its purpose. The lower limit of the length for polypeptides includes 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50 and more amino acids, where A length represented by an integer not specifically recited in (eg, 11 and the like) may also be appropriate as a lower limit. In the case of polynucleotides, the nucleotides include 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 75, 100 and more nucleotides. A length represented by a non-integer integer (eg, 11, etc.) may also be appropriate as a lower limit.
[0110] ポリペプチドは、そのポリペプチド特有の生物学的活性を有する、ポリペプチドアナ ログであってもよレ、。特にそのポリペプチドが酵素である場合、ポリペプチドは、酵素 アナログであってもよい。本明細書において使用される用語「酵素アナログ」とは、天 然の酵素とは異なる化合物である力 天然の酵素と少なくとも 1つの化学的機能また は生物学的機能が等価であるものをいう。したがって、酵素アナログには、もとの天然 の酵素に対して、 1つ以上のアミノ酸アナログが付加または置換されているものが含 まれる。酵素アナログは、その機能(例えば、 α -ホスホリラーゼ活性または耐熱性) 、もとの天然の酵素の機能と実質的に同様またはそれよりも良好であるように、この ような付加または置換がされている。そのような酵素アナログは、当該分野において 周知の技術を用いて作製することができる。したがって、酵素アナログは、アミノ酸ァ ナログを含むポリマーであり得る。本明細書において「酵素」は、特に言及しない限り 、この酵素アナログを包含する。 [0110] The polypeptide may be a polypeptide analog having a biological activity specific to the polypeptide. The polypeptide may be an enzyme analog, particularly if the polypeptide is an enzyme. As used herein, the term "enzyme analog" refers to an enzyme that is at least one chemical or biological function equivalent to a naturally occurring enzyme that is a different compound from the natural enzyme. Thus, enzyme analogs include those in which one or more amino acid analogs have been added or replaced with the original natural enzyme. Enzyme analogs may have such additions or substitutions such that their function (eg, α-phosphorylase activity or thermostability) is substantially similar to or better than the function of the original native enzyme. I have. Such enzyme analogs can be made using techniques well known in the art. Thus, an enzyme analog can be a polymer comprising an amino acid analog. As used herein, the term “enzyme” includes this enzyme analog unless otherwise specified.
[0111] 本明細書において、「アミノ酸」は、天然のアミノ酸であっても、非天然アミノ酸であ つても、誘導体アミノ酸であっても、アミノ酸アナログであってもよレ、。天然のアミノ酸が 好ましい。 [0111] In the present specification, "amino acid" may be a natural amino acid, an unnatural amino acid, a derivative amino acid, or an amino acid analog. Natural amino acids are preferred.
[0112] 用語「天然のアミノ酸」とは、天然のアミノ酸の L一異性体を意味する。天然のァミノ 酸は、グリシン、ァラニン、バリン、ロイシン、イソロイシン、セリン、メチォニン、トレオニ ン、フエ二ルァラニン、チロシン、トリプトファン、システィン、プロリン、ヒスチジン、ァス パラギン酸、ァスパラギン、グノレタミン酸、グノレタミン、 7—カルボキシグルタミン酸、ァ ノレギニン、オル二チン、およびリジンである。特に示されない限り、本明細書でいう全 てのアミノ酸は L体であるが、 D体のアミノ酸を用いた形態もまた本発明の範囲内にあ る。 [0113] 用語「非天然アミノ酸」とは、タンパク質中で通常は天然に見出されないアミノ酸を 意味する。非天然アミノ酸の例として、ノノレロイシン、パラ—ニトロフエ二ルァラニン、ホ モフエ二ルァラニン、パラ—フルオロフェニルァラニン、 3—ァミノ— 2_ベンジルプロピオ ン酸、ホモアルギニンの D体または L体および D—フエ二ルァラニンが挙げられる。 [0112] The term "natural amino acid" refers to the L-isomer of a natural amino acid. Natural amino acids include glycine, alanine, valine, leucine, isoleucine, serine, methionine, threonine, fenylalanine, tyrosine, tryptophan, cysteine, proline, histidine, aspartic acid, asparagine, gnoletamic acid, gnoletamine, and 7 — Carboxyglutamic acid, anoreginin, orditin, and lysine. Unless otherwise indicated, all amino acids referred to herein are L-forms, but forms using D-form amino acids are also within the scope of the present invention. [0113] The term "unnatural amino acid" refers to an amino acid that is not normally found in nature in proteins. Examples of unnatural amino acids include D- or L-forms of nonoleucine, para-nitrophenylalanine, homophenylalanine, para-fluorophenylalanine, 3-amino-2-benzylpropionic acid, homoarginine, and D- Phenylalanine.
[0114] 「誘導体アミノ酸」とは、アミノ酸を誘導体化することによって得られるアミノ酸をいう。  [0114] "Derivative amino acid" refers to an amino acid obtained by derivatizing an amino acid.
[0115] 「アミノ酸アナログ」とは、アミノ酸ではないが、アミノ酸の物性および Zまたは機能に 類似する分子をいう。アミノ酸アナログとしては、例えば、ェチォニン、カナバニン、 2 —メチルグルタミンなどが挙げられる。  [0115] "Amino acid analog" refers to a molecule that is not an amino acid, but that is similar in physical properties and Z or function of the amino acid. Amino acid analogs include, for example, etyonin, canavanine, 2-methylglutamine and the like.
[0116] アミノ酸は、その一般に公知の 3文字記号か、または IUPAC—IUB Biochemical  [0116] Amino acids are represented by their commonly known three-letter symbols or by IUPAC-IUB Biochemical
Nomenclature Commissionにより推奨される 1文字記号のいずれかにより、本 明細書中で言及され得る。ヌクレオチドも同様に、一般に受け入れられた 1文字コー ドにより言及され得る。  It may be referred to herein by any of the single letter symbols recommended by the Nomenclature Commission. Nucleotides may also be referred to by the generally accepted single letter code.
[0117] 目的の改変に加えて、天然のポリペプチドのアミノ酸配列に対して 1もしくは数個ま たはそれを超える複数のアミノ酸の置換、付加または欠失による改変を含む改変ポリ ペプチドは、本発明の範囲内にある。そのような 1もしくは数個またはそれを超えるァ ミノ酸の置換、付加または欠失を含む改変ポリペプチドは、 Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laborator y Press " 989)、 Currerrt Protocols in Molecular Biology, Supplement 1一 38, JohnWiley & Sons (1987— 1997)、 Nucleic Acids Research, 10 , 6487 (1982)、 Proc. Natl. Acad. Sci. , USA, 79, 6409 (1982)、 Gene, 34 , 315 (1985)、 Nucleic Acids Research, 13, 4431 (1985)、 Proc. Natl. Ac ad. Sci USA, 82, 488 (1985)、 Pro Natl. Acad. Sci., USA, 81 , 5662 (1 984)、 Science, 224, 1431 (1984)、 PCT WO85/00817 (1985)、 Nature, 316, 601 (1985)等に記載の方法に準じて調製することができる。  [0117] In addition to the desired modification, the modified polypeptide comprising a modification by substitution, addition or deletion of one or more amino acids or more to the amino acid sequence of the natural polypeptide is described in the present invention. Within the scope of the invention. Such modified polypeptides containing one, several or more amino acid substitutions, additions or deletions are described in Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press "989), Currerrt Protocols. in Molecular Biology, Supplement 1-38, John Wiley & Sons (1987-1997), Nucleic Acids Research, 10, 6487 (1982), Proc. Natl. Acad. Sci., USA, 79, 6409 (1982), Gene, 34 315 (1985), Nucleic Acids Research, 13, 4431 (1985), Proc. Natl. Acad. Sci USA, 82, 488 (1985), Pro Natl. Acad. Sci., USA, 81, 5662 (1 984) ), Science, 224, 1431 (1984), PCT WO85 / 00817 (1985), Nature, 316, 601 (1985), and the like.
[0118] 目的のポリペプチドのアミノ酸の欠失、置換もしくは付加は、周知技術である部位特 異的変異誘発法により実施することができる。部位特異的変異誘発の手法は、当該 分野では周知である。例えば、 Nucl. Acid Research, Vol. 10, pp. 6487-650 0 (1982)を参照のこと。 [0119] 本明細書において、生物学的活性を有する特定のポリペプチドに関して用いられ るとき「1もしくは数個またはそれを超える複数のアミノ酸の置換、付加または欠失」ま たは「少なくとも 1つのアミノ酸の置換、付加または欠失」とは、この特定のポリべプチ ドが有する生物学的活性のうちの少なくとも 1つの活性が喪失しなレ、、好ましくはその 活性が基準となるもの(例えば、天然のその特定のポリペプチド)と同等以上となるよ うな程度の数の置換、付加または欠失をいう。当業者は、所望の性質を有する改変 ポリペプチドを容易に選択することができる。 [0118] Amino acid deletion, substitution, or addition of the target polypeptide can be performed by site-specific mutagenesis, which is a well-known technique. Techniques for site-directed mutagenesis are well known in the art. See, for example, Nucl. Acid Research, Vol. 10, pp. 6487-6500 (1982). [0119] In the present specification, "a substitution, addition or deletion of one or several or more amino acids" or "at least one amino acid" when used with respect to a specific polypeptide having a biological activity. "Amino acid substitution, addition or deletion" means that at least one of the biological activities possessed by the specific polypeptide is not lost, and preferably the activity is a reference (for example, , The number of substitutions, additions, or deletions to such an extent as to be equal to or greater than that of the specific polypeptide (natural polypeptide). One skilled in the art can easily select a modified polypeptide having the desired properties.
[0120] このようにして作製された特定の改変ポリペプチドは、改変前のポリペプチドのアミ ノ酸配列に対して、好ましくは約 40%、より好ましくは約 45%、より好ましくは約 50% 、より好ましくは約 55%、より好ましくは約 60%、より好ましくは約 65%、より好ましくは 約 70ο/ο、より好ましく fま約 750/0、より好ましく ίま約 80ο/ο、より好ましく ίま糸勺 850/0、より 好ましくは約 90%、より好ましくは約 95%、そして最も好ましくは約 99%の同一性を 有する。 [0120] The specific modified polypeptide thus produced is preferably about 40%, more preferably about 45%, more preferably about 50%, based on the amino acid sequence of the polypeptide before modification. , more preferably about 55%, more preferably about 60%, more preferably about 65%, more preferably from about 70 o / o, more preferably f or about 75 0/0, more preferably ί or about 80 o / o , more preferably ί Maitoshaku 85 0/0, more preferably about 90%, more preferably about 95%, and most preferably about 99% identity.
[0121] 上記のような改変を設計する際に、アミノ酸の疎水性指数が考慮され得る。ポリぺプ チドの生物学的機能に関するアミノ酸の疎水性指数の重要性は、一般に当該分野 で認められている(Kyte. Jおよび Doolittle, R. F. J. Mol. Biol. 157 (1) : 105—1 32, 1982)。アミノ酸の疎水的性質は、生成したポリペプチドの二次構造に寄与し、 次いでそのポリペプチドと他の分子(例えば、酵素、基質、レセプター、 DNA、抗体、 抗原など)との相互作用を規定する。各アミノ酸は、それらの疎水性および電荷の性 質に基づく疎水性指数を割り当てられる。各アミノ酸に割り当てられた疎水性指数は 以下の通りである:イソロイシン( + 4· 5) ;バリン( + 4· 2) ;ロイシン( + 3· 8) ;フエ二 ルァラニン( + 2. 8);システィン/シスチン( + 2. 5);メチォニン( + 1. 9);ァラニン( + 1. 8);グリシン(—0. 4);スレオニン(—0. 7);セリン(—0. 8);トリプトファン(—0. 9) ;チロシン(_1. 3);プロリン(_1. 6);ヒスチジン(_3. 2);グルタミン酸(_3. 5);グル タミン (_3. 5);ァスパラギン酸 (_3. 5);ァスパラギン (_3. 5);リジン (_3. 9);およ びアルギニン(_4. 5) )。  [0121] In designing such modifications, the hydropathic index of amino acids can be considered. The importance of the hydropathic index of amino acids for the biological function of polypeptides is generally recognized in the art (Kyte. J and Doolittle, RFJ Mol. Biol. 157 (1): 105-132, 1982). The hydrophobic nature of amino acids contributes to the secondary structure of the resulting polypeptide, which in turn defines the interaction of that polypeptide with other molecules (eg, enzymes, substrates, receptors, DNA, antibodies, antigens, etc.) . Each amino acid is assigned a hydrophobicity index based on its hydrophobicity and charge properties. The hydrophobicity index assigned to each amino acid is as follows: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); Cystine / cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (-0.4); threonine (-0.7); serine (-0.8); Tryptophan (-0.9); Tyrosine (_1.3); Proline (_1.6); Histidine (_3.2); Glutamic acid (_3.5); Glutamine (_3.5); Aspartic acid (_3.5) Asparagine (_3.5); lysine (_3.9); and arginine (_4.5)).
[0122] あるポリペプチド中のあるアミノ酸を、同様の疎水性指数を有する他のアミノ酸により 置換して、そして依然としてこのポリペプチドと同様の生物学的機能を有するポリぺプ チド(例えば、酵素活性が等価なポリペプチド)を生じさせ得ることが当該分野で周知 である。このようなアミノ酸置換において、疎水性指数が ± 2以内であることが好ましく 、 ± 1以内であることがより好ましぐそして ± 0. 5以内であることがさらにより好ましい 。疎水性に基づくこのようなアミノ酸の置換は効率的であることが当該分野において 理解される。 [0122] A polypeptide having a certain amino acid in a polypeptide replaced by another amino acid having a similar hydrophobicity index and still having a biological function similar to this polypeptide It is well known in the art that it can produce tides (eg, polypeptides with equivalent enzymatic activity). In such amino acid substitutions, the hydrophobicity index is preferably within ± 2, more preferably within ± 1, and even more preferably within ± 0.5. It is understood in the art that such amino acid substitutions based on hydrophobicity are efficient.
[0123] 本明細書においては、タンパク質の設計および性質の検討の際には、親水性指数 もまた考慮され得る。米国特許第 4, 554, 101号に記載されるように、以下の親水性 指数がアミノ酸残基に割り当てられている:アルギニン( + 3. 0);リジン( + 3. 0);ァ スパラギン酸( + 3. 0± 1);グルタミン酸( + 3. 0± 1);セリン( + 0. 3) ;ァスパラギン ( + 0. 2);グルタミン( + 0. 2);グリシン(0);スレオニン(—0. 4);プロリン(—0. 5 ± 1 );ァラニン(—0. 5);ヒスチジン (—0. 5);システィン (—1. 0);メチォニン (—1. 3);バ リン(一1. 5);ロイシン(一1. 8);ィソロイシン(一1. 8);チロシン(一2. 3);フエニノレアラ ニン (一 2· 5);およびトリプトファン (一 3· 4)。あるポリペプチド中のあるアミノ酸力 こ のアミノ酸と同様の親水性指数を有しかつ依然として生物学的活性を与え得る別の アミノ酸に置換され得ることが理解される。このようなアミノ酸置換において、親水性指 数が ± 2以内であることが好ましぐ ± 1以内であることがより好ましぐそして ± 0· 5 以内であることがさらにより好ましい。  [0123] In the present specification, in studying the design and properties of a protein, the hydrophilicity index may also be considered. As described in US Pat. No. 4,554,101, the following hydrophilicity indices have been assigned to amino acid residues: Arginine (+3.0); Lysine (+3.0); Aspartic acid Glutamic acid (+ 3.0 ± 1); Serine (+0.3); Asparagine (+0.2); Glutamine (+0.2); Glycine (0); Threonine (+ 3.0 ± 1); -0.4); Proline (-0.5 ± 1); Alanine (-0.5); Histidine (-0.5); Cysteine (-1.0); Methionine (-1.3); Valine (1-1.5); leucine (1-1.8); isoloicin (1-1.8); tyrosine (1-2.3); pheninolealanine (12-5); and tryptophan (13-4). It is understood that certain amino acid forces in certain polypeptides can be substituted for another amino acid that has a similar hydrophilicity index to this amino acid and still confer biological activity. In such amino acid substitutions, the hydrophilic index is preferably within ± 2, more preferably within ± 1, and even more preferably within ± 0.5.
[0124] 本発明において、「保存的置換」とは、アミノ酸置換において、元のアミノ酸と置換さ れるアミノ酸との親水性指数または/および疎水性指数が上記のように類似してレ、る 置換をいう。保存的置換の例としては、例えば、親水性指数または疎水性指数が、土 2以内のもの同士、好ましくは ± 1以内のもの同士、より好ましくは ± 0. 5以内のもの 同士のものが挙げられるがそれらに限定されない。従って、保存的置換の例は、当業 者に周知であり、例えば、次の各グループ内での置換:アルギニンおよびリジン;ダル タミン酸およびァスパラギン酸;セリンおよびスレオニン;グルタミンおよびァスパラギン ;ならびにバリン、ロイシン、およびイソロイシン、などが挙げられるがこれらに限定され ない。  [0124] In the present invention, the term "conservative substitution" refers to a substitution in which, in an amino acid substitution, the hydrophilicity index and / or the hydrophobicity index of the original amino acid and the amino acid to be substituted are similar as described above. Say. Examples of the conservative substitution include, for example, those having a hydrophilicity index or a hydrophobicity index of two or less within soil 2, preferably within ± 1 and more preferably within ± 0.5. But not limited to them. Thus, examples of conservative substitutions are well known to those skilled in the art and include, for example, substitutions within each of the following groups: arginine and lysine; daltamic and aspartic acid; serine and threonine; glutamine and asparagine; Leucine, isoleucine, and the like, but are not limited thereto.
[0125] 本発明の糖欠乏誘導性プロモーター配列は、好ましくは、 j3—ガラクトシダーゼ(Ga 1)をコードする遺伝子のプロモーター配歹 IJ、 β—キシロシダーゼ(Xyl)をコードする遺 伝子のプロモーター配列および β ダルコシダーゼ(Glc)をコードする遺伝子のプロ モーター配列からなる群より選択され、より好ましくは β ガラクトシダーゼをコードす る遺伝子のプロモーター配列または βーキシロシダーゼをコードする遺伝子のプロモ 一ター配列である。本発明の糖欠乏誘導性プロモーター配列は、好ましくは、(a)配 列番号 1の 643位一 1799位、配列番号 3の 1位一 1763位または配列番号 5の 1位 一 2058位に示されるヌクレオチド配歹 1J ; (b) (a)のヌクレオチド配列と比較して、 1もし くは数個のヌクレオチドの置換、欠失または付加を含むヌクレオチド配列であって、糖 欠乏誘導性プロモーター活性を有するヌクレオチド配歹' J; (c) (a)または (b)のヌクレ ォチド配列とストリンジェントな条件下でハイブリダィズし、かつ糖欠乏誘導性プロモ 一ター活性を有するヌクレオチド配歹 IJ ; (d) (a)のヌクレオチド配列に対して少なくとも 70%の同一性を有するヌクレオチド配列であって、かつ糖欠乏誘導性プロモーター 活性を有するヌクレオチド配列;ならびに(e) (a)一 (d)のレ、ずれかのヌクレオチド配 列の短縮配列であって、糖欠乏誘導性プロモーター活性を有するヌクレオチド配列 からなる群より選択され、該ヌクレオチド配列に作動可能に上記異種遺伝子配列が 連結されると、該異種遺伝子の糖欠乏誘導性発現を促進する活性を有する。 [0125] The sugar deficiency-inducible promoter sequence of the present invention is preferably a promoter encoding a gene encoding j3-galactosidase (Ga1), a gene encoding β-xylosidase (Xyl). Selected from the group consisting of a promoter sequence of a gene and a promoter sequence of a gene encoding β-dalcosidase (Glc), more preferably a promoter sequence of a gene encoding β-galactosidase or a promoter sequence of a gene encoding β-xylosidase. It is a data sequence. The sugar deficiency-inducible promoter sequence of the present invention is preferably represented by (a) SEQ ID NO: 1 at positions 643 to 1799, SEQ ID NO: 3 at position 1 to 1763, or SEQ ID NO: 5 at position 1 to position 2058 Nucleotide sequence 1J; (b) a nucleotide sequence containing a substitution, deletion or addition of one or several nucleotides compared to the nucleotide sequence of (a), having a sugar deficiency-inducible promoter activity (C) a nucleotide sequence which hybridizes with the nucleotide sequence of (a) or (b) under stringent conditions and has a sugar deficiency-inducing promoter activity; a nucleotide sequence having at least 70% identity to the nucleotide sequence of a) and having a sugar deficiency-inducible promoter activity; and (e) (a)-(d). Nucleotide sequence Is selected from the group consisting of nucleotide sequences having a sugar deficiency-inducible promoter activity, and operably linked to said heterologous gene sequence, whereby sugar deficiency-induced expression of said heterologous gene is obtained. Has the activity of promoting.
本明細書において使用される用語「ポリヌクレオチド」、「オリゴヌクレオチド」および「 核酸」は、本明細書において同じ意味で使用され、任意の長さのヌクレオチドのポリ マーをいう。この用語はまた、「誘導体オリゴヌクレオチド」または「誘導体ポリヌクレオ チド」を含む。 「誘導体オリゴヌクレオチド」または「誘導体ポリヌクレオチド」とは、ヌク レオチドの誘導体を含むか、またはヌクレオチド間の結合が通常とは異なるオリゴヌク レオチドもしくはポリヌクレオチドをいい、互換的に使用される。そのようなオリゴヌタレ ォチドとして具体的には、例えば、 2,一 O—メチルーリボヌクレオチド、オリゴヌクレオチ ド中のリン酸ジエステル結合がホスホロチォエート結合に変換された誘導体オリゴヌ クレオチド、オリゴヌクレオチド中のリン酸ジエステル結合が N3 ' _P5,ホスホロアミデ ート結合に変換された誘導体オリゴヌクレオチド、オリゴヌクレオチド中のリボースとリ ン酸ジエステル結合とがペプチド核酸結合に変換された誘導体オリゴヌクレオチド、 オリゴヌクレオチド中のゥラシルが C—5プロピニルゥラシルで置換された誘導体オリゴ ヌクレオチド、オリゴヌクレオチド中のゥラシルが C—5チアゾールゥラシルで置換され た誘導体オリゴヌクレオチド、オリゴヌクレオチド中のシトシンが C_5プロピニルシトシ ンで置換された誘導体オリゴヌクレオチド、オリゴヌクレオチド中のシトシンがフエノキ サジン修飾シトシン(phenoxazine—modif ied cytosine)で置換された誘導体オリ ゴヌクレオチド、 DNA中のリボースが 2,_0_プロピルリボースで置換された誘導体ォ リゴヌクレオチドおよびオリゴヌクレオチド中のリボースが 2,_メトキシェトキシリボース で置換された誘導体オリゴヌクレオチドなどが例示される。他にそうではないと示され なければ、特定の核酸配列はまた、明示的に示された配列と同様に、その保存的に 改変された改変体 (例えば、縮重コドン置換体)および相補配列を包含することが意 図される。具体的には、縮重コドン置換体は、 1もしくは数個、またはより多数の選択 されたほたは、すべての)コドンの 3番目の位置が混合塩基および Zまたはデォキシ イノシン残基で置換された配列を作成することにより達成され得る(Batzerら、 Nucle ic Acid Res. 19 : 5081 (1991) ; Ohtsukaら、 J. Biol. Chem. 260 : 2605-260 8 (1985); Rossoliniら、 Mol. Cell. Probes 8 : 91—98 (1994) )。 As used herein, the terms “polynucleotide”, “oligonucleotide” and “nucleic acid” are used interchangeably herein and refer to a polymer of nucleotides of any length. The term also includes "derivative oligonucleotides" or "derivative polynucleotides." “Derivative oligonucleotide” or “derivative polynucleotide” refers to an oligonucleotide or polynucleotide that contains a derivative of a nucleotide or has an unusual linkage between nucleotides, and is used interchangeably. Specific examples of such an oligonucleotide include, for example, 2,1-O-methyl-ribonucleotide, a derivative in which a phosphodiester bond in an oligonucleotide is converted to a phosphorothioate bond, and an oligonucleotide in a oligonucleotide. Derivative oligonucleotide in which phosphodiester bond is converted to N3'_P5, phosphoramidate bond, derivative oligonucleotide in which ribose and phosphoric diester bond in oligonucleotide are converted to peptide nucleic acid bond, peracyl in oligonucleotide Is a derivative oligonucleotide in which is substituted with C-5 propynylperacyl, and peracyl in the oligonucleotide is substituted with C-5 thiazole peracyl Derivative oligonucleotide, a derivative oligonucleotide in which cytosine in the oligonucleotide is replaced with C_5 propynylcytosine, a derivative oligonucleotide in which cytosine in the oligonucleotide is replaced with phenoxazine-modified cytosine, DNA Derivative oligonucleotides in which ribose is substituted with 2, _0-propylribose and derivative oligonucleotides in which ribose in oligonucleotides are substituted with 2, _methoxyethoxyribose are exemplified. Unless otherwise indicated, a particular nucleic acid sequence also includes conservatively modified variants (eg, degenerate codon substitutions) and complementary sequences thereof, as well as explicitly stated sequences. It is intended to include Specifically, degenerate codon substitutions are those in which the third position of one or several, or a greater number of selected codons) is replaced by a mixed base and a Z or deoxyinosine residue. (Batzer et al., Nucleic Acid Res. 19: 5081 (1991); Ohtsuka et al., J. Biol. Chem. 260: 2605-2608 (1985); Rossolini et al., Mol. Cell. Probes 8: 91-98 (1994)).
本明細書において、ポリペプチド配列またはヌクレオチド配列の「置換、欠失または 付加」とは、もとのポリペプチドまたはポリヌクレオチドに対して、それぞれアミノ酸もし くはその代替物、またはヌクレオチドもしくはその代替物力 置き換わること、取り除か れることまたは付け加わることをいう。このような置換、欠失または付加の技術は、当 該分野において周知であり、そのような技術の例としては、部位特異的変異誘発技 術などが挙げられる。置換、欠失または付加は、 1つ以上であれば任意の数でよぐ そのような数は、その置換、欠失または付加を有する改変体において目的とする機 能 (例えば、糖欠乏誘導性プロモーターの糖欠乏誘導性およびプロモーター活性、 異種遺伝子配列の場合、所望のタンパク質活性など)が保持される限り、多くすること ができる。例えば、そのような数は、 1または数個であり得、そして好ましくは、全体の 長さの 20%以内、 10%以内、または 100個以下、 50個以下、 25個以下などであり 得る。本発明で用いられる糖欠乏誘導性プロモーター配列は、糖欠乏誘導性プロモ 一ター活性を保持する限り、任意の長さであり得る。このような配列は、例えば、もと のプロモーター配列のヌクレオチド配列を 5 '側または 3 '側力、ら少しずつ欠失させ、 糖欠乏誘導プロモーター活性を保持しているかを確認することにより、容易に決定さ れ得る。このようなプロモーター配列を短縮させる方法は、当業者に周知であり、容 易に実施され得る。 As used herein, the term "substitution, deletion or addition" of a polypeptide sequence or nucleotide sequence refers to the amino acid or its substitute, or the nucleotide or its substitute for the original polypeptide or polynucleotide, respectively. Replacement, removal or addition. Techniques for such substitution, deletion or addition are well known in the art, and examples of such techniques include site-directed mutagenesis techniques. The number of substitutions, deletions or additions may be any number as long as it is one or more. The amount can be increased as long as the sugar deficiency inducibility of the promoter and the promoter activity, and in the case of a heterologous gene sequence, the desired protein activity and the like are maintained. For example, such a number can be one or several, and preferably can be no more than 20%, no more than 10% of the total length, or no more than 100, no more than 50, no more than 25, and the like. The sugar deficiency-inducible promoter sequence used in the present invention can be of any length as long as it retains the sugar deficiency-inducing promoter activity. Such a sequence can be easily prepared by, for example, deleting the nucleotide sequence of the original promoter sequence little by little on the 5 ′ side or the 3 ′ side and confirming that the sugar-deficiency-inducing promoter activity is retained. Determined to Can be Methods for shortening such promoter sequences are well known to those skilled in the art and can be easily implemented.
本明細書において、「改変体」とは、もとのポリペプチドまたはポリヌクレオチドなどの 物質に対して、一部が変更されているものをいう。そのような改変体としては、置換改 変体、付加改変体、欠失改変体、短縮 (truncated)改変体、対立遺伝子変異体、グ リコシル化改変体、脂質化改変体、複合分子による改変体などが挙げられる。好まし くは、改変体は、改変のもととなる物質 (例えば、酵素)の特性 (例えば、生物学的特 性)を少なくとも 1つ、より好ましくは複数保持している。などが挙げられる。対立遺伝 子(allele)とは、同一遺伝子座に属し、互いに区別される遺伝的改変体のことをいう 。従って、「対立遺伝子変異体」とは、ある遺伝子に対して、対立遺伝子の関係にある 改変体をいう。そのような対立遺伝子変異体は、通常その対応する対立遺伝子と同 一または非常に類似性の高い配歹 ljを有し、通常はほぼ同一の生物学的活性を有す る力 まれに異なる生物学的活性を有することもある。「種相同体またはホモログ (ho molog)」とは、ある種の中で、ある遺伝子とアミノ酸レベルまたはヌクレオチドレベル で、相同性 (好ましくは、 60%以上の相同性、より好ましくは、 80%以上、 85%以上、 90%以上、 95%以上の相同性)を有するものをいう。そのような種相同体を取得する 方法は、当該分野で周知である。「オルソログ(ortholog)」とは、オルソロガス遺伝子 (orthologous gene)ともいい、二つの遺伝子がある共通祖先からの種分化に由来 する遺伝子をいう。例えば、多重遺伝子構造をもつヘモグロビン遺伝子ファミリーを 例にとると、ヒトおよびマウスの αヘモグロビン遺伝子はオルソログである力 ヒトの α ヘモグロビン遺伝子および βヘモグロビン遺伝子はパラログ (遺伝子重複で生じた遺 伝子)である。また、システィンプロテアーゼインヒビターである、ヒトのシスタチン Αと、 イネのオリザシスタチンとを比較すると、標的となるプロテアーゼとの相互作用に重要 と考えられる 3箇所の短いアミノ酸モチーフが保存されているだけで、他の部分のアミ ノ酸の共通性は非常に低レ、。しかし、両者はともにシスタチン遺伝子スーパーファミリ 一に属し、共通祖先遺伝子を持つとされていることから、単に全体的なアミノ酸の相 同性に限らず、局所的に高い相同性を持つアミノ酸配列が共通して存在する場合も 、オノレソログたり得る。このように、オルソログは、通常別の種においてもとの種と同様 の機能を果たしていることがあり得ることから、本発明において用いられる糖欠乏誘 導性プロモーター、代謝可能な糖を分解し得る酵素をコードする遺伝子のプロモー タ一のオルソログもまた、本発明において有用であり得る。 As used herein, the term “variant” refers to a substance in which a substance such as an original polypeptide or polynucleotide is partially changed. Such variants include substitutional variants, addition variants, deletion variants, truncated variants, allelic variants, glycosylation variants, lipidation variants, variants with complex molecules, etc. Is mentioned. Preferably, the variant retains at least one, and more preferably more than one, property (eg, biological properties) of the substance (eg, enzyme) from which the modification is made. And the like. Alleles refer to genetic variants that belong to the same locus and are distinct from one another. Therefore, “allelic variant” refers to a variant that has an allelic relationship to a certain gene. Such allelic variants usually have the same or very similar composition as their corresponding alleles, and usually have rarely different organisms with almost the same biological activity. May have biological activity. “Species homolog or homolog” refers to homology (preferably 60% or more homology, more preferably 80% or more) of a certain gene at the amino acid or nucleotide level within a certain species. , 85% or more, 90% or more, 95% or more homology). Methods for obtaining such species homologs are well known in the art. The term "ortholog" is also called an orthologous gene and refers to a gene derived from speciation from a common ancestor having two genes. For example, taking the hemoglobin gene family with a multigene structure as an example, human and mouse α-hemoglobin genes are orthologs. is there. In addition, comparing human cystatin 、, a cysteine protease inhibitor, with rice oryzacytin, only three conserved short amino acid motifs, which are considered important for the interaction with the target protease, are conserved. The commonality of amino acids in other parts is very low. However, since both belong to the cystatin gene superfamily and are said to have a common ancestral gene, they share not only amino acid homology overall but also amino acid sequences with locally high homology. Even if it exists, it can be an onoresolog. Thus, orthologs are usually similar to the original species in another species. The ortholog of the sugar deficiency-inducible promoter used in the present invention and the promoter of a gene encoding an enzyme capable of degrading a metabolizable sugar can also be useful in the present invention. Can be
「保存的(に改変された)改変体」は、ポリペプチド配列およびヌクレオチド配列の両 方に適用される。特定のヌクレオチド配列に関して、保存的に改変された改変体とは 、同一のまたは本質的に同一のポリペプチド配列をコードするヌクレオチド配列をレ、う 。アンチセンスコード配列のように、ヌクレオチド配列がポリペプチド配列をコードしな い場合には、保存的に改変された改変体とは、本質的に同一な配列をいう。遺伝コ 一ドの縮重のため、多数の機能的に同一なヌクレオチド配列が任意の所定のポリべ プチドをコードする。例えば、コドン GCA、 GCC、 GCG、および GCT (GCU)はすべ て、アミノ酸ァラニンをコードする。したがって、ァラニンがコドンにより特定される全て の位置で、そのコドンは、コードされたポリペプチドを変更することなぐ記載された対 応するコドンの任意のものに変更され得る。このようなヌクレオチド配列の変動は、保 存的に改変された変異の 1つの種である「サイレント改変(変異)」である。ポリべプチ ドをコードする本明細書中のすべてのヌクレオチド配列はまた、そのヌクレオチド配列 の可能なすべてのサイレント変異を記載する。当該分野において、ヌクレオチド配列 中の各コドン(通常メチォニンのための唯一のコドンである ATG (AUG)、および通 常トリブトファンのための唯一のコドンである TGGを除く)力 機能的に同一な分子を 産生するために改変され得ることが理解される。したがって、ポリペプチドをコードす るヌクレオチド配列の各サイレント変異は、記載された各配列において暗黙に含まれ る。好ましくは、そのような改変は、ポリペプチドの高次構造に多大な影響を与えるァ ミノ酸であるシスティンの置換を回避するようになされ得る。このような塩基配列の改 変法としては、制限酵素などによる切断、 DNAポリメラーゼ、 Klenowフラグメント、 D NAリガーゼなどによる処理等による連結等の処理、合成オリゴヌクレオチドなどを用 いた部位特異的塩基置換法(特定部位指向突然変異法; Mark Zoller and Mic hael Smith, Methods in Enzymology, 100, 468— 500 (1983) )力 S挙げられ るが、この他にも通常分子生物学の分野で用いられる方法によって改変を行うことも できる。 [0130] シグナルペプチドコード配列および異種遺伝子配列は、導入される生物におけるコ ドンの使用頻度にあわせて変更され得る。コドン使用頻度は、その生物において高 度に発現される遺伝子での使用頻度を反映する。例えば、大腸菌において発現させ ることを意図する場合、公開されたコドン使用頻度表(例えば、 Sharpら, Nucleic Acids Research 16 第 17号, 8207頁(1988) )に従って大募菌での発現のた めに最適にすることができる。 “Conservative (modified) variants” applies to both polypeptide and nucleotide sequences. With respect to a particular nucleotide sequence, a conservatively modified variant is one that encodes the same or essentially the same polypeptide sequence. Where the nucleotide sequence does not encode a polypeptide sequence, such as an antisense coding sequence, a conservatively modified variant refers to essentially identical sequences. Due to the degeneracy of the genetic code, a number of functionally identical nucleotide sequences encode any given polypeptide. For example, the codons GCA, GCC, GCG, and GCT (GCU) all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, that codon can be changed to any of the corresponding codons described without altering the encoded polypeptide. Such variations in the nucleotide sequence are "silent alterations (mutations)," which are one species of conservatively altered mutations. Every nucleotide sequence herein which encodes a polypeptide also describes every possible silent variation of the nucleotide sequence. In the art, each codon in a nucleotide sequence (except for ATG (AUG), which is usually the only codon for methionine, and TGG, which is usually the only codon for tributophan) is used to identify functionally identical molecules. It is understood that it can be modified to produce. Accordingly, each silent variation of a nucleotide sequence that encodes a polypeptide is implicit in each described sequence. Preferably, such modifications can be made to avoid substitution of the amino acid cysteine, which greatly affects the conformation of the polypeptide. Examples of such a nucleotide sequence modification method include cleavage with a restriction enzyme or the like, ligation treatment with a DNA polymerase, Klenow fragment, DNA ligase, or the like, site-specific base substitution using a synthetic oligonucleotide, or the like. (Site-directed mutagenesis; Mark Zoller and Michael Smith, Methods in Enzymology, 100, 468-500 (1983)). Modifications can also be made. [0130] The signal peptide coding sequence and the heterologous gene sequence can be changed according to the codon usage in the organism to be introduced. Codon usage reflects the frequency of use of genes that are highly expressed in the organism. For example, if it is intended to be expressed in Escherichia coli, it may be used for expression in a large recruited bacterium according to a published codon usage table (eg, Sharp et al., Nucleic Acids Research 16, No. 17, page 8207 (1988)). Can be optimized for
[0131] 本明細書にぉレ、てヌクレオチド配列ほたはポリペプチド酉己列)の「同一性」とは、 2 以上のヌクレオチド配列ほたはポリペプチド酉己列)の間で同一のヌクレオチド(ポリべ プチド配列を比較する場合はアミノ酸)の出現する程度をいう。同一性は一般に、 2 以上のヌクレオチド配列ほたはポリペプチド酸配歹 IJ)の全長を比較して、付加または 欠失を含み得る最適な様式で整列(ァライン)されたこれら 2以上の配列を比較するこ とによって決定される。同一性パーセントは、ヌクレオチド(ポリペプチド配列を比較す る場合はアミノ酸)がこの 2以上の配列間で同一である位置の数を決定し、比較した 位置の総数で同一の位置の数を除算し、そしてこれら 2つの配列間の同一性パーセ ントを得るために、得られた結果に 100を掛けることによって算出される。 2以上の遺 伝子配列を直接比較する場合、その遺伝子配列間で DNA配列が、代表的には少 なくとも 50%同一である場合、好ましくは少なくとも 70%同一である場合、より好ましく は少ヽなくとも 80%、 90%、 95%、 96%、 97%、 98%または 99%同一である場合、そ れらの遺伝子は同一性を有する。  [0131] As used herein, the term "identity" of a nucleotide sequence (a polypeptide sequence) refers to the identity of nucleotides in two or more nucleotide sequences (a polypeptide sequence). (When comparing polypeptide sequences, this refers to the degree to which amino acids appear.) Identity is generally determined by comparing the full lengths of the two or more nucleotide sequences or polypeptide acids (IJ) and aligning the two or more sequences in an optimal manner that may include additions or deletions. Determined by comparison. Percent identity determines the number of positions where nucleotides (amino acids when comparing polypeptide sequences) are the same between two or more sequences, and divides the number of identical positions by the total number of positions compared. And to obtain the percent identity between these two sequences, calculated by multiplying the obtained result by 100. When two or more gene sequences are directly compared, the DNA sequences between the gene sequences are typically at least 50% identical, preferably at least 70% identical, more preferably less. Genes are identical if they are at least 80%, 90%, 95%, 96%, 97%, 98% or 99% identical.
[0132] 本明細書にぉレ、て、ヌクレオチド配列ほたはポリペプチド配歹 1J)の「類似性」とは、 上記同一性において、保存的置換をポジティブ(同一)とみなした場合の、 2以上のヌ クレオチド配列(またはポリペプチド配歹 1J)の、互いに対する同一性の程度をいう。従 つて、保存的置換がある場合は、その保存的置換の存在に応じて同一性と類似性と は異なる。また、保存的置換がない場合は、同一性と類似性とは同じ数値を示す。  [0132] As used herein, the term "similarity" of a nucleotide sequence or a polypeptide sequence 1J) refers to a conservative substitution defined as positive in the above-mentioned identity. The degree of identity between two or more nucleotide sequences (or polypeptide system 1J) relative to each other. Thus, if there are conservative substitutions, identity and similarity will differ depending on the existence of the conservative substitution. When there is no conservative substitution, identity and similarity show the same numerical value.
[0133] 同一性0 /0は例えば、 NCBIの BLAST 2. 2. 9 (2004. 5. 12発行)を用レヽて決定 すること力 Sできる。本明細書における同一性の値は通常は上記 BLASTを用レ、、デフ オルトの条件でァラインした際の値をいう。ただし、パラメーターの変更により、より高 い値が出る場合は、最も高い値を同一性の値とする。複数の領域で同一性が評価さ れる場合はそのうちの最も高い値を同一性の値とする。 [0133] identity 0/0, for example, can be force S to determine the NCBI BLAST 2. 2. 9 a (2004. 5.12 Issue) Te use Rere. In the present specification, the value of identity usually refers to a value obtained by aligning the above BLAST using the default conditions. However, if a higher value comes out due to a parameter change, the highest value shall be the value of the identity. Multiple areas are assessed for identity In this case, the highest value is the value of identity.
[0134] 2以上のヌクレオチド配列の同一性または類似性の程度に関しては、配列の直接 比較以外にも、ストリンジェントな条件下でのハイブリダィゼーシヨンを調べることによ つて確認され得る。  [0134] The degree of identity or similarity between two or more nucleotide sequences can be confirmed by examining hybridization under stringent conditions other than direct comparison of sequences.
[0135] 本明細書中で使用する用語「ストリンジェントな条件」とは、特異的な配列にはハイ ブリダィズするが、非特異的な配列にはハイブリダィズしない条件をいう。ストリンジェ ントな条件の設定は、当業者に周知であり、例えば、 Moleculer Cloning (Sambro okら、前出)に記載される。具体的には、例えば、コロニーあるいはプラーク由来の D NAを固定化したフィルターを用いて、 50%ホノレムアミド、 5 X SSC (750mM NaCl 、 75mM クェン酸三ナトリウム)、 50mM リン酸ナトリウム(pH7. 6)、 5 Xデンハル ト溶液(0. 2% BSA、 0. 2% Ficoll 400および 0. 2%ポリビニノレピロリドン)、 10 %硫酸デキストラン、および 20 μ gZml変性剪断サケ精子 DNAを含む溶液中での 65°Cで 6時間ないし 24時間ハイブリダィゼーシヨンを行った後、 0. 1— 2倍濃度の S SC (saline-sodium citrate)溶液(1倍濃度の SSC溶液の組成は、 150mM 塩 ィ匕ナトリウム、 15mM クェン酸ナトリウムである)を用い、 65°C条件下でフィルターを 洗浄するという条件を用いることにより同定できるポリヌクレオチドを意味する。  [0135] As used herein, the term "stringent conditions" refers to conditions that hybridize to a specific sequence but do not hybridize to a non-specific sequence. The setting of stringent conditions is well known to those skilled in the art and is described, for example, in Moleculer Cloning (Sambrook et al., Supra). Specifically, for example, using a filter on which DNA derived from colonies or plaques is immobilized, 50% honolemamide, 5 × SSC (750 mM NaCl, 75 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6) 5X Denhardt's solution (0.2% BSA, 0.2% Ficoll 400 and 0.2% polyvinylinolepyrrolidone), 10% dextran sulfate, and 20 μg Zml denatured sheared salmon sperm DNA. After hybridization at 65 ° C for 6 to 24 hours, a 0.1- to 2-fold concentration of SSC (saline-sodium citrate) solution (the composition of the 1-fold concentration SSC solution is 150 mM saline). And 15 mM sodium citrate), and the polynucleotide can be identified by washing the filter at 65 ° C.
[0136] 本明細書において、ェキソ型糖分解酵素をコードする遺伝子のプロモーター配列 とは、ェキソ型糖分解酵素遺伝子が有するプロモーター配列をいう。  [0136] In the present specification, the promoter sequence of a gene encoding an exo-type glycolytic enzyme refers to a promoter sequence of an exo-type glycolytic enzyme gene.
[0137] 本明細書において、「ェキソ型糖分解酵素」とは、糖鎖の末端部分に作用して、末 端の糖残基を逐次遊離する酵素をいう。ェキソ型糖分解酵素の例としては、以下が 挙げられるがこれらに限定されなレ、: i3—ガラクトシダーゼ、 ーキシロシダーゼ、 β— ダルコシダーゼ、 ひ—キシロシダーゼおよび /3—フコシダーゼ。本発明では、このよう な酵素をコードするヌクレオチド配列の上流のヌクレオチド配列であって、 目的の生 物においてプロモーターの活性を示すものであれば、どのようなヌクレオチド配列で あ使用すること力 Sでさる。  [0137] In the present specification, the "exo-type glycolytic enzyme" refers to an enzyme that acts on a terminal portion of a sugar chain to sequentially release a terminal sugar residue. Examples of exo-type glycolytic enzymes include, but are not limited to: i3-galactosidase, xylosidase, β-darcosidase, xylosidase and / 3-fucosidase. In the present invention, the nucleotide sequence upstream of the nucleotide sequence encoding such an enzyme can be any nucleotide sequence that exhibits promoter activity in the target product. Monkey
[0138] 本発明のェキソ型糖分解酵素をコードする遺伝子のプロモーター配列は、好ましく は、 j3—ガラクトシダーゼをコードする遺伝子のプロモーター配列、 β—キシロシダー ゼをコードする遺伝子のプロモーター配列および /3—ダルコシダーゼをコードする遺 伝子のプロモーター配列からなる群より選択され、より好ましくは β一ガラクトシダーゼ をコードする遺伝子のプロモーター配歹 IJ、 βーキシロシダーゼをコードする遺伝子の プロモーター配列である。本発明の糖欠乏誘導性プロモーター配列は、好ましくは、 (a)配列番号 1の 643位一 1799位、配列番号 3の 1位一 1763位または配列番号 5 の 1位一 2058位に示されるヌクレオチド酉己列; (b) (a)のヌクレオチド配列と比較して 、 1もしくは数個のヌクレオチドの置換、欠失または付加を含むヌクレオチド配列であ つて、糖欠乏誘導性プロモーター活性を有するヌクレオチド配歹 (c) (a)または (b) のヌクレオチド配列とストリンジェントな条件下でハイブリダィズし、かつ糖欠乏誘導性 プロモーター活性を有するヌクレオチド配歹 (d) (a)のヌクレオチド配列に対して少 なくとも 70%の同一性を有するヌクレオチド配列であって、かつ糖欠乏誘導性プロモ 一ター活性を有するヌクレオチド配列;ならびに(e) (a)一 (d)のレ、ずれかのヌクレオ チド配列の短縮配列であって、糖欠乏誘導性プロモーター活性を有するヌクレオチ ド配列からなる群より選択され、該ヌクレオチド配列に作動可能に上記異種遺伝子配 列が連結されると、該異種遺伝子の糖欠乏誘導性発現を促進する活性を有する。 [0138] The promoter sequence of the gene encoding the exo-type glycolytic enzyme of the present invention is preferably a promoter sequence of a gene encoding j3-galactosidase, a promoter sequence of a gene encoding β-xylosidase, and / 3-dalcosidase. To code The promoter sequence is selected from the group consisting of gene promoter sequences, and is more preferably a promoter sequence of a gene encoding β-galactosidase, or a promoter sequence of a gene encoding β-xylosidase. The sugar deficiency-inducible promoter sequence of the present invention preferably comprises (a) nucleotides shown at positions 641 to 1799 of SEQ ID NO: 1, positions 1 to 1763 of SEQ ID NO: 3, or positions 1 to 2058 of SEQ ID NO: 5 (B) a nucleotide sequence containing one or several nucleotide substitutions, deletions or additions compared to the nucleotide sequence of (a), wherein the nucleotide sequence has a sugar deficiency-inducible promoter activity; (c) at least the nucleotide sequence of ( d ) ( a ), which hybridizes with the nucleotide sequence of (a) or (b) under stringent conditions and has a sugar-deficiency-inducible promoter activity. A nucleotide sequence having 70% identity and having a sugar deficiency-inducing promoter activity; and (e) a nucleotide sequence of (a)-(d), A condensed sequence selected from the group consisting of nucleotide sequences having a sugar deficiency-inducible promoter activity, and operably linked to the nucleotide sequence, the above-described heterologous gene sequence, It has an activity to promote expression.
[0139] 本明細書において、代謝可能な糖を分解し得る酵素をコードする遺伝子のプロモ 一ター配列とは、代謝可能な糖を加水分解し得る酵素をコードする遺伝子のプロモ 一ター配列をいう。本明細書において、「代謝可能な糖を分解し得る酵素」とは、上 記のような、代謝可能な糖を分解し得る酵素である。このような酵素の例としては、以 下が挙げられるがこれらに限定されない: _ガラクトシダーゼ、 _キシロシダーゼ、 _ダルコシダーゼ、 ひーキシロシダーゼおよび _フコシダーゼ。本発明では、この ような酵素をコードするヌクレオチド配列の上流のヌクレオチド配列であって、 目的の 生物においてプロモーターの活性を示すものであれば、どのようなヌクレオチド配列 であ使用すること力 Sできる。 [0139] In the present specification, the promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar refers to a promoter sequence of a gene encoding an enzyme capable of hydrolyzing a metabolizable sugar. . As used herein, the term "enzyme capable of decomposing metabolizable sugars" refers to an enzyme capable of decomposing metabolizable sugars as described above. Examples of such enzymes include, but are not limited to: _ galactosidase, _ xylosidase, _ darcosidase, <RTIgt; hyxyrosidase </ RTI> and _ fucosidase. In the present invention, any nucleotide sequence upstream of the nucleotide sequence encoding such an enzyme, as long as it exhibits promoter activity in the target organism, can be used.
[0140] 本発明の代謝可能な糖を分解し得る酵素をコードする遺伝子のプロモーター配列 は、好ましくは、 j3 _ガラクトシダーゼをコードする遺伝子のプロモーター配列、 β—キ シロシダーゼをコードする遺伝子のプロモーター配列および β—ダルコシダーゼをコ ードする遺伝子のプロモーター配列からなる群より選択され、より好ましくは β一ガラク トシダーゼをコードする遺伝子のプロモーター配列または β—キシロシダーゼをコード する遺伝子のプロモーター配列である。本発明の糖欠乏誘導性プロモーター配列は[0140] The promoter sequence of the gene encoding the enzyme capable of degrading the metabolizable sugar of the present invention is preferably the promoter sequence of the gene encoding j3_galactosidase, the promoter sequence of the gene encoding β-xylosidase, and It is selected from the group consisting of a promoter sequence of a gene encoding β-dalcosidase, and more preferably a promoter sequence of a gene encoding β-galactosidase or encoding a β-xylosidase. This is the promoter sequence of the gene to be expressed. The sugar deficiency-inducible promoter sequence of the present invention
、好ましくは、 (a)配列番号 1の 643位一 1799位、配列番号 3の 1位一 1763位また は配列番号 5の 1位一 2058位に示されるヌクレオチド配歹 IJ ; (b) (a)のヌクレオチド配 歹 IJと比較して、 1もしくは数個のヌクレオチドの置換、欠失または付加を含むヌクレオ チド配列であって、糖欠乏誘導性プロモーター活性を有するヌクレオチド配歹' J; (c) ( a)または(b)のヌクレオチド配列とストリンジェントな条件下でハイブリダィズし、かつ 糖欠乏誘導性プロモーター活性を有するヌクレオチド配歹 IJ ; (d) (a)のヌクレオチド配 列に対して少なくとも 70%の同一性を有するヌクレオチド配列であって、かつ糖欠乏 誘導性プロモーター活性を有するヌクレオチド配列ならびに(e) (a)一 (d)のいずれ かのヌクレオチド配列の短縮配列であって、糖欠乏誘導性プロモーター活性を有す るヌクレオチド配列からなる群より選択され、該ヌクレオチド配列に作動可能に上記異 種遺伝子配列が連結されると、該異種遺伝子の糖欠乏誘導性発現を促進する活性 を有する。 Preferably, (a) the nucleotide sequence IJ shown at positions 643 to 1799 of SEQ ID NO: 1, 1 to 1763 of SEQ ID NO: 3, or 1 to 2058 of SEQ ID NO: 5; (b) (a (C) a nucleotide sequence comprising a substitution, deletion or addition of one or several nucleotides and having a sugar deficiency-inducible promoter activity, as compared to the nucleotide sequence IJ of (c); a nucleotide sequence IJ that hybridizes with the nucleotide sequence of (a) or (b) under stringent conditions and has a sugar-deficiency-inducible promoter activity; (d) at least 70% of the nucleotide sequence of (a). ( E ) a nucleotide sequence having a sugar deficiency-inducible promoter activity and ( e ) a shortened sequence of any one of the nucleotide sequences ( a ) to (d), Step Is selected from the group consisting of nucleotide sequences that have a motor activity, when operably said heterologous gene sequence to said nucleotide sequence is connected, has an activity of promoting glucose deprivation induced expression of heterologous genes.
[0141] 本発明で糖欠乏誘導性プロモーター、ェキソ型糖分解酵素をコードする遺伝子の プロモーター配歹 ljまたは代謝可能な糖を分解し得る酵素をコードする遺伝子のプロ モーター配列に加えて、他のプロモーターを併用してもよレ、。このような用いられ得る 他のプロモーターの例としては、 CaMV35Sプロモーター、ノパリンシンターゼプロモ 一ター、ュビキチンプロモーターなど、およびそれらの改変プロモーターが挙げられ るがこれらに限定されない。本発明では、 目的の生物においてプロモーターの活性 を示すものであれば、どのようなヌクレオチド配列でも使用することができる。このよう な他のプロモーターは、部位特異的プロモーターであっても、時期特異的プロモータ 一であっても、構成的プロモーターであっても、ストレスほたは刺激)応答性プロモー ターであっても、ストレスほたは刺激)誘導性プロモーターであっても、ストレスほた は刺激)減少性プロモーターであってもよレ、。構成的プロモーターの例としては、 Ca MV35Sプロモーター、ノパリンシンターゼプロモーターおよびュビキチンプロモータ 一が挙げられる。特異的プロモーターの例としては、組織特異的プロモーターおよび 器官特異的プロモーターが挙げられる。  [0141] In the present invention, in addition to the promoter sequence of a gene encoding a sugar-deficiency inducible promoter, an exo-type glycolytic enzyme or a gene encoding an enzyme capable of degrading a metabolizable sugar, You can use a promoter together. Examples of such other promoters that can be used include, but are not limited to, the CaMV35S promoter, the nopaline synthase promoter, the ubiquitin promoter, and the like, and their modified promoters. In the present invention, any nucleotide sequence can be used as long as it exhibits promoter activity in the target organism. Such other promoters may be site-specific promoters, stage-specific promoters, constitutive promoters, stress or stimulus responsive promoters, The stress field may be a stimulatory) inducible promoter, or the stress field may be a stimulatory) inducible promoter. Examples of constitutive promoters include the Ca MV35S promoter, the nopaline synthase promoter and the ubiquitin promoter. Examples of specific promoters include tissue-specific and organ-specific promoters.
[0142] 本発明において、糖欠乏誘導性プロモーター、ェキソ型糖分解酵素をコードする 遺伝子のプロモーター配列または代謝可能な糖を分解し得る酵素をコードする遺伝 子のプロモーター配列に連結される異種遺伝子配列は、連結されるプロモーター配 列に対して異種のヌクレオチド配列であれば、任意のヌクレオチド配列であり得る。異 種遺伝子配列は、例えば、タンパク質コード配歹 ij、アンチセンスコード配歹 ij、リボザィ ムコード配列、解析を目的とするヌクレオチド配列などであり得る。異種遺伝子配列 は好ましくは、タンパク質コード配列またはアンチセンスコード配列であり得る。異種 遺伝子配列は、天然に存在するヌクレオチド配列であってもよぐ天然に存在するヌ クレオチド配列を改変したものであってもよぐ人工的に合成した遺伝子であってもよ ぐそれらの複合体 (例えば、融合体)であってもよい。 [0142] In the present invention, the deficiency-inducible promoter encodes an exo-type glycolytic enzyme. The heterologous gene sequence linked to the promoter sequence of the gene or the promoter sequence of the gene encoding the enzyme capable of degrading a metabolizable sugar can be any nucleotide sequence that is heterologous to the linked promoter sequence. It can be a nucleotide sequence. The heterologous gene sequence may be, for example, a protein coding system ij, an antisense coding system ij, a ribozyme coding sequence, a nucleotide sequence for analysis, or the like. The heterologous gene sequence can preferably be a protein coding sequence or an antisense coding sequence. A heterologous gene sequence can be a naturally occurring nucleotide sequence or a modified version of a naturally occurring nucleotide sequence or a complex thereof, whether an artificially synthesized gene or not. (For example, a fusion).
[0143] 本明細書中では「作動可能に連結される(た)」とは、所望のヌクレオチド配列(例え ば、異種遺伝子配列)が、発現 (すなわち、作動)をもたらす転写調節配列 (例えば、 プロモーター、ターミネータ一、ェンハンサーなど)または翻訳調節配列(例えば、ィ ントロン、スプライスドナー、スプライスァクセプターなど)の制御下に配置されることを いう。例えば、プロモーターが遺伝子に作動可能に連結されるためには、通常、その 遺伝子のすぐ上流にプロモーターが配置されるが、必ずしも隣接して配置される必 要はない。 [0143] As used herein, "operably linked" means that a desired nucleotide sequence (eg, a heterologous gene sequence) is a transcription regulatory sequence (eg, a gene) that results in expression (ie, operation). It means that it is placed under the control of a promoter, a terminator, an enhancer, etc.) or a translation control sequence (eg, an intron, a splice donor, a splice acceptor, etc.). For example, in order for a promoter to be operably linked to a gene, the promoter will usually be located immediately upstream of the gene, but need not necessarily be located adjacent thereto.
[0144] 人工的に合成したヌクレオチド配列を作製するための DNA合成技術および核酸 化学については、例えば、 Gait, M. J. (1985) . Oligonucleotide Synthesis : A Practical Approach, IRLPress ; Gait, M. J. (1990) . Oligonucleotide Sy nthesis : A Practical Approach, IRL Press ; Eckstein, F. (1991) . Oligon ucleotides and Analogues : A Practical Approac, IRL Press ; Adams, R . L. etal. (1992) . The Biochemistry of the Nucleic Acids, Chapman &Hall ; Shabarova, Z. et al. (1994) . Advanced Organic Chemistry of Nucleic Acids, Weinheim; Blackburn, G. M. et al. (1996) . Nucleic Aci ds in Chemistry and Biology, Oxford University Press; Hermanson, G. T. (1996) . Bioconjugate Techniques, Academic Pressなど ίこ目己載され ており、これらは本明細書において関連する部分が参考として援用される。  For DNA synthesis techniques and nucleic acid chemistry for producing artificially synthesized nucleotide sequences, see, for example, Gait, MJ (1985). Oligonucleotide Synthesis: A Practical Approach, IRLPress; Gait, MJ (1990). Oligonucleotide. Synthesis: A Practical Approach, IRL Press; Eckstein, F. (1991) .Oligon ucleotides and Analogues: A Practical Approac, IRL Press; Adams, R. L. etal. (1992) .The Biochemistry of the Nucleic Acids, Chapman &Hall; Shabarova, Z. et al. (1994) .Advanced Organic Chemistry of Nucleic Acids, Weinheim; Blackburn, GM et al. (1996) .Nucleic Acids in Chemistry and Biology, Oxford University Press; Hermanson, GT (1996) Bioconjugate Techniques, Academic Press, etc., which are incorporated herein by reference, the relevant portions of which are incorporated herein by reference.
[0145] 本明細書中の異種遺伝子配列は、 目的の生物において発現し得るものであれば、 どのようなものでもよレ、。例えば、特定の植物において発現させることを目的とするの であれば、その特定の植物にぉレ、て発現し得るのであればょレ、。 [0145] The heterologous gene sequence in the present specification may be any one that can be expressed in a target organism. Anything. For example, if it is intended to be expressed in a specific plant, if it can be expressed in that specific plant, then.
1つの実施形態において、異種遺伝子配列は、タンパク質コード配列である。タン パク質コード配列は、大量に発現されることが意図される有用なタンパク質をコードす るものであれば、どのようなものでもよぐそのようなものもまた、本発明の範囲内に含 まれる。タンパク質コード配列の例としては、例えば、以下が挙げられるがこれらに限 定されなレ、:医薬活性のあるペプチド(例えば、サイト力イン類 (インターフェロン類、ィ ンターロイキン類、ケモカイン類、顆粒球マクロファージコロニー刺激因子(GM—CS F)、マクロファージコロニー刺激因子(M—CSF)、顆粒球コロニー刺激因子(G—CS F)、 multi-CSF (IL-3)、エリスロポエチン(EP〇)、白血病抑制因子(LIF)、 c-kit リガンド(SCF)のような造血因子、腫瘍壊死因子、血小板由来増殖因子(PDGF)、 上皮増殖因子 (EGF)、線維芽細胞増殖因子 (FGF)、肝実質細胞増殖因子 (HGF )、血管内皮増殖因子 (VEGF)など);ホルモン類 (インスリン、成長ホルモン、甲状 腺ホルモンなど));ワクチン抗原;抗原 (例えば、ヒト抗体 (好ましくは完全ヒト抗体)、ヒ ト化抗体、多重特異性抗体、キメラ抗体、単鎖抗体、 Fabフラグメント、 F (ab' )フラグ メント、 Fab発現ライブラリーによって産生されたフラグメント、抗イディォタイプ (抗 Id) 抗体、ェピトープ結合フラグメント);血液製剤;農業生産上有用なペプチド (例えば、 抗菌タンパク質);生理作用または薬理作用を持つ 2次代謝産物を合成する様々な 酵素および加水分解酵素;酵素反応を調節するインヒビター;血圧効果作用を持つと されるダイズグリシニン;あるいは消化管内で酵素分解を受けることで生理活性ぺプ チドが切り出されるようにデザインされた人工タンパク質。また栄養学的に意義のある 物質としては、カゼイン、マメ類のアルブミンおよびグロブリン、ビタミン類の合成酵素 、糖合成酵素、脂質合成酵素などがあげられるがそれらに限定されない。さらに様々 な加ェ食品の原料としてカ卩ェ特性に関与するタンパク質として、例えばコムギグルテ ニン (製パン)、ダイズグロブリン群(豆腐)、ミルクカゼイン群(チーズ)などが挙げられ る。食品の嗜好性または機能性を強化するタンパク質 (例えば、シクロデキストリン、 オリゴ糖、 Ύァミノ酢酸などの特殊な糖またはアミノ酸類の合成酵素群、外観を良くす る色素合成酵素、および味覚成分合成に関与するタンパク質群)、あるいは、消化管 内で酵素消化を受けることによって生理作用をもつペプチド (例えば血圧効果作用を もつ、アンジォテンシン変換酵素阻害ペプチドなど)が切り出されるようにデザインさ れた人工タンパク質などが挙げられるがこれらに限定されなレ、。異種遺伝子配列は、 好ましくは、サイト力インまたはホルモンの遺伝子配列である。異種遺伝子配列は、よ り好ましくは、植物中で発現された場合に目的の機能を有するタンパク質をコードす る。本明細書中で、「植物中で発現された場合に目的の機能を有するタンパク質」と は、植物中で発現された遺伝子産物が、動物中、植物中またはインビト口において、 目的とする機能を果たすことをいう。例えば、植物中で発現された遺伝子産物の糖鎖 修飾が、動物において発現された場合と同じであるカ またはインビトロで、もしくは 動物に投与された場合に、 目的とする機能を果たすこと、または有害な作用を発揮し ないことをいう。 目的とする機能とは、そのタンパク質が、従来の方法で製造された場 合に発揮される機能をいう。例えば、異種遺伝子配列が、抗体をコードする場合、こ の抗体は、動物中に投与した場合に防御抗体として (すなわち、治療薬または予防 薬として)機能してもよぐあるいは、インビト口で特異的な抗原に結合してもよい(すな わち、診断薬として機能してもよい)。異種遺伝子配列は、さらに好ましくは、インター フエロン(α、 ;3または γ )、抗体、ヒト α—アンチトリプシン (ΑΑΤ)または緑色蛍光タ ンパク質 (GFP)の遺伝子配列であり、さらに好ましくは抗体または緑色蛍光タンパク 質であり、最も好ましくは緑色蛍光タンパク質である。 In one embodiment, the heterologous gene sequence is a protein coding sequence. Protein coding sequences include any useful protein that is intended to be expressed in large amounts, including any that are within the scope of the present invention. I will. Examples of protein coding sequences include, but are not limited to: pharmaceutically active peptides (eg, cytokins (interferons, interleukins, chemokines, granulocytes) Macrophage colony stimulating factor (GM-CSF), macrophage colony stimulating factor (M-CSF), granulocyte colony stimulating factor (G-CSF), multi-CSF (IL-3), erythropoietin (EPII), leukemia suppression Hematopoietic factors such as factor (LIF), c-kit ligand (SCF), tumor necrosis factor, platelet-derived growth factor (PDGF), epidermal growth factor (EGF), fibroblast growth factor (FGF), hepatocyte proliferation Factors (HGF), vascular endothelial growth factor (VEGF), etc.); hormones (insulin, growth hormone, thyroid hormone, etc.)); vaccine antigens; antigens (eg, human antibodies (preferably fully human antibodies), humanized Body, multispecific antibody, chimeric antibody, single chain antibody, Fab fragment, F (ab ') fragment, fragment produced by Fab expression library, anti-idiotype (anti-Id) antibody, epitope binding fragment); blood products Peptides useful for agricultural production (eg, antibacterial proteins); Various enzymes and hydrolases that synthesize physiologically or pharmacologically active secondary metabolites; Inhibitors that regulate enzymatic reactions; Soybean glycinin; or an artificial protein designed to cleave bioactive peptides by enzymatic degradation in the digestive tract. In addition, examples of nutritionally significant substances include, but are not limited to, casein, albumin and globulin of legumes, synthase of vitamins, saccharide synthase, and lipase. In addition, proteins involved in the kakunje properties as raw materials for various processed foods include, for example, wheat glutenin (bread making), soy globulin group (tofu), and milk casein group (cheese). Proteins that enhance the palatability or functionality of foods (e.g., synthases of special sugars or amino acids such as cyclodextrins, oligosaccharides, and diaminoacetic acid, pigment synthases that improve appearance, and synthesis of taste components) Involved proteins) or gastrointestinal tract These include, but are not limited to, artificial proteins designed to excise physiologically active peptides (eg, angiotensin converting enzyme inhibitory peptides that have a blood pressure effect) by undergoing enzymatic digestion within What? The heterologous gene sequence is preferably a cytodynamic or hormonal gene sequence. The heterologous gene sequence more preferably encodes a protein having a desired function when expressed in a plant. As used herein, "a protein having a desired function when expressed in a plant" means that a gene product expressed in a plant has a desired function in an animal, a plant, or an in vitro mouth. To fulfill. For example, the glycosylation of a gene product expressed in a plant is the same as that expressed in an animal, or performs the intended function in vitro or when administered to an animal, or is harmful. Does not exert any significant effect. The intended function refers to a function that is exhibited when the protein is produced by a conventional method. For example, if the heterologous gene sequence encodes an antibody, the antibody may function as a protective antibody (i.e., as a therapeutic or prophylactic agent) when administered to an animal, or may be specific in the mouth. May bind to a specific antigen (ie, may function as a diagnostic). The heterologous gene sequence is more preferably a gene sequence of interferon ( α ,; 3 or γ), an antibody, human α-antitrypsin (ΑΑΤ) or green fluorescent protein (GFP). It is a green fluorescent protein, most preferably a green fluorescent protein.
[0147] 1つの実施形態において、異種遺伝子配列は、マーカー遺伝子であり得る。マーカ 一遺伝子とは、選択遺伝子と同義であり、その選択マーカーがコードする産物の発 現によつて、選択マーカーが存在する細胞と存在しない細胞とを識別することができ る、ヌクレオチドをいう。 [0147] In one embodiment, the heterologous gene sequence can be a marker gene. The marker one gene is synonymous with the selection gene, and refers to a nucleotide capable of distinguishing between a cell in which the selection marker is present and a cell in which the selection marker is not present, by expression of a product encoded by the selection marker.
[0148] 1つの実施形態において、異種遺伝子配列は、アンチセンスコード配列であり得る 。アンチセンスコード配列は、発現を抑制または阻止することが意図される特定の遺 伝子のアンチセンス配列をコードし、かつ、アンチセンス活性を有するものであれば、 どのようなものでもよぐそのようなものもまた、本発明の範囲内に含まれる。アンチセ ンス配列とは、コード配列(センス配列ともいう)に相補的な配列をいう。  [0148] In one embodiment, the heterologous gene sequence can be an antisense coding sequence. An antisense coding sequence encodes an antisense sequence of a specific gene intended to suppress or prevent expression and can have any antisense activity. Such is also included in the scope of the present invention. The antisense sequence refers to a sequence complementary to a coding sequence (also referred to as a sense sequence).
[0149] 本明細書において「アンチセンス活性」とは、標的となる遺伝子の発現を特異的に 抑制または減少させることができる活性をいう。より具体的には細胞内に導入したある ヌクレオチド配列に依存して、その配列と相補的なヌクレオチド配列領域をもつ遺伝 子の mRNA量を特異的に低下させることで、タンパク発現量を減少させ得る活性を いう。手法としては、標的となる遺伝子からつくられる mRNAに相補的な RNA分子を 直接的に細胞に導入する方法と、細胞内に目的遺伝子と相補的な RNAを発現させ 得る構築ベクターを導入する方法に大別される。植物においては、後者が一般的で ある。 [0149] As used herein, "antisense activity" specifically refers to the expression of a target gene. An activity that can be suppressed or reduced. More specifically, protein expression can be reduced by specifically reducing the mRNA level of a gene having a nucleotide sequence region complementary to a certain nucleotide sequence introduced into a cell, depending on the nucleotide sequence. Activity. Methods include directly introducing RNA molecules complementary to mRNA produced from the target gene into cells, and introducing a construction vector capable of expressing RNA complementary to the target gene into cells. It is roughly divided. In plants, the latter is common.
[0150] アンチセンス活性は、通常、発現を抑制または阻止することが意図される遺伝子の コード配列と相補的な、少なくとも約 8ヌクレオチド長のヌクレオチド配列によって達成 される。アンチセンスコード配列は、好ましくは少なくとも約 9ヌクレオチド長であり、よ り好ましく約 10ヌクレオチド長であり、さらに好ましくは約 11ヌクレオチド長であり、さら に好ましくは約 12ヌクレオチド長であり、さらに好ましくは約 13ヌクレオチド長であり、 さらに好ましくは約 14ヌクレオチド長であり、さらに好ましくは約 15ヌクレオチド長であ り、さらに好ましくは約 20ヌクレオチド長であり、さらに好ましくは約 25ヌクレオチド長 であり、さらに好ましくは約 30ヌクレオチド長であり、さらに好ましくは約 40ヌクレオチ ド長であり、さらに好ましくは約 50ヌクレオチド長であり得る。好ましくは、 目的とする 遺伝子のコード配列と相補的な配列は、アンチセンスコード配列中にとびとびに存在 するのではなぐ連続して存在する。  [0150] Antisense activity is usually achieved by a nucleotide sequence at least about 8 nucleotides in length that is complementary to the coding sequence of the gene intended to suppress or prevent expression. The antisense coding sequence is preferably at least about 9 nucleotides in length, more preferably about 10 nucleotides in length, more preferably about 11 nucleotides in length, even more preferably about 12 nucleotides in length, more preferably About 13 nucleotides in length, more preferably about 14 nucleotides in length, more preferably about 15 nucleotides in length, more preferably about 20 nucleotides in length, more preferably about 25 nucleotides in length, and still more preferably May be about 30 nucleotides in length, more preferably about 40 nucleotides in length, and more preferably about 50 nucleotides in length. Preferably, the sequence complementary to the coding sequence of the gene of interest is present in the antisense coding sequence rather than discretely.
[0151] 本明細書において、ヌクレオチド配列およびポリペプチド配列の長さは、それぞれ ヌクレオチドまたはアミノ酸の個数で表すことができる力 上述の個数は絶対的なもの ではなぐ同じ機能を有する限り、上限または加減としての上述の個数は、その個数 の上下数個(または例えば上下 10%)のものも含むことが意図される。そのような意 図を表現するために、本明細書では、個数の前に「約」を付けて表現することがある。 しかし、本明細書では、「約」のあるなしはその数値の解釈に影響を与えないことが理 角军されるべきである。  [0151] In the present specification, the length of a nucleotide sequence or a polypeptide sequence is a force that can be represented by the number of nucleotides or amino acids, respectively. The above-mentioned number is intended to include a few above and below (or, for example, 10% above and below) the number. In order to express such an intention, in this specification, “about” may be used before the number. However, in this specification it should be reasoned that the presence or absence of “about” does not affect the interpretation of that number.
[0152] アンチセンスコード配列は、発現を抑制または阻止することが意図される遺伝子の アンチセンス鎖(コード鎖の相補鎖)の配列に対して、好ましくは少なくとも約 70%同 一な、より好ましくは少なくとも約 80%同一な、さらに好ましくは約 90%同一な、そし て最も好ましくは約 95%同一なヌクレオチド配列を含む。アンチセンスコード配列は 、 目的とする遺伝子の核酸配列の 5 '末端の配列に対して相補的であることが好まし レ、。上述のようなアンチセンスコード配列に対して、 1つまたは数個あるいは 1つ以上 のヌクレオチドの置換、付カ卩および/または欠失を有するものもまた、アンチセンスコ ード配列に含まれる。本明細書において、「アンチセンス活性」には、遺伝子の発現 量の減少が含まれるがそれらに限定されない。 [0152] The antisense coding sequence is preferably at least about 70% identical to the sequence of the antisense strand (complementary strand of the coding strand) of the gene intended to suppress or prevent expression, more preferably Are at least about 80% identical, more preferably about 90% identical, and Most preferably contain nucleotide sequences that are about 95% identical. The antisense coding sequence is preferably complementary to the sequence at the 5 'end of the nucleic acid sequence of the gene of interest. Antisense coding sequences having one or several nucleotides, one or more nucleotide substitutions, additions and / or deletions with respect to the antisense coding sequence as described above are also included in the antisense coding sequence. As used herein, “antisense activity” includes, but is not limited to, a decrease in the expression level of a gene.
一般的なアンチセンス技術については、教科書に記載されている(Murray, J AH eds. , Antisense RNA and DNA, Wiley-Liss Inc, 1992)。さらに最新の 研究で RNA干渉(RNA interference ;RNAi)と呼ばれる現象が明らかになり、ァ ンチセンス技術の発展をもたらした。 RNAiは、標的遺伝子に相同な配列をもつ短い 長さの 2本鎖 RNA (20ベース程度)を細胞内に導入すると、その RNA配列に相同な 標的遺伝子の mRNAが特異的に分解されて発現レベルが低下する現象である。当 初線虫において発見されたこの現象は、植物を含めて生物に普遍的な現象であるこ とがわかってきている。アンチセンス技術で標的遺伝子の発現が抑制される分子レべ ルのメカニズムは、この RNAiと同様のプロセスを経ることが解明された。従来のアン チセンス技術では、標的遺伝子のヌクレオチド配列に相補的である 1つの DNA配列 を適切なプロモーターに連結して、その制御下に人工 mRNAを発現させるような発 現ベクターを構築して、細胞内に導入することが行われた。 RNAiを利用した最近の アンチセンス技術においては、細胞内に 2本鎖 RNAを構成できるようにデザインされ た発現ベクターが用いられる場合が多い。 RNAiを利用したアンチセンス技術では、 アンチセンスコード配列の基本構造は、ある標的遺伝子に相補的な 1種の DNA配列 をプロモーター下に 1つを連結し、それと同じ物をさらに逆向きにもう 1つ連結してつく られる。この基本構造を有するアンチセンスコード配列から転写された 1本鎖の mRN Aでは、逆向きにつながれた 1種類のヌクレオチド配列部分が相補的な関係にあるた め、この相補的な部分が対合してヘアピン様の 2次構造を持つ 2本鎖 RNA状態をと り、これが RNAiのメカニズムに従って標的遺伝子の mRNA分解を引き起こすわけで ある。植物においてはシロイヌナズナで用いられた例が報告されている(Smith, N. A.ら, Nature 407. 319—320, 2000)。また RNAi全般 (こつレヽて fま、最近の糸忿説 にまとめられている(森田と吉田、蛋白質 '核酸'酵素 47、 1939— 1945、 2002)。こ れらの文献に記載された内容は、本明細書おいてその全体を参考として援用する。 General antisense technology is described in textbooks (Murray, JAHeds., Antisense RNA and DNA, Wiley-Liss Inc, 1992). The latest research has revealed a phenomenon called RNA interference (RNAi), which has led to the development of antisense technology. In RNAi, when a short-length double-stranded RNA (about 20 bases) having a sequence homologous to the target gene is introduced into cells, the mRNA of the target gene homologous to the RNA sequence is specifically degraded and the expression level is reduced. Is a phenomenon that decreases. This phenomenon found in the first nematode has been found to be a universal phenomenon in living organisms, including plants. It has been elucidated that the mechanism of the molecular level at which target gene expression is suppressed by antisense technology goes through a process similar to that of RNAi. In the conventional antisense technology, a DNA sequence complementary to the nucleotide sequence of a target gene is linked to an appropriate promoter, and an expression vector that expresses artificial mRNA under the control of the promoter is constructed. It was made to be introduced within. In recent antisense technology using RNAi, an expression vector designed to be capable of forming double-stranded RNA in a cell is often used. In RNAi-based antisense technology, the basic structure of an antisense coding sequence is that one DNA sequence complementary to a certain target gene is ligated under a promoter, and the same one is inserted in the opposite direction. It is made by connecting two. In a single-stranded mRNA transcribed from an antisense coding sequence having this basic structure, the one nucleotide sequence portion connected in the reverse direction is in a complementary relationship, and this complementary portion is paired. As a result, a double-stranded RNA with a hairpin-like secondary structure is formed, which causes mRNA degradation of the target gene according to the mechanism of RNAi. In plants, an example used in Arabidopsis has been reported (Smith, NA et al., Nature 407. 319-320, 2000). In addition, RNAi in general (Morita and Yoshida, Protein 'Nucleic Acid' Enzyme 47, 1939–1945, 2002). The contents described in these documents are incorporated herein by reference in their entirety.
[0154] 本明細書において「RNAi」とは、 RNA interferenceの略称で、二本鎖 RNA (ds RNAともいう)のような RNAiを引き起こす因子を細胞に導入することにより、相同な mRNAが特異的に分解され、遺伝子産物の合成が抑制される現象およびそれに用 レ、られる技術をいう。本明細書において RNAiはまた、場合によっては、 RNAiを引き 起こす因子と同義に用いられ得る。  [0154] In the present specification, "RNAi" is an abbreviation for RNA interference. Homologous mRNA is specifically expressed by introducing a factor that causes RNAi, such as double-stranded RNA (also referred to as ds RNA), into cells. Refers to the phenomenon in which the synthesis of gene products is suppressed and the technology used for it. As used herein, RNAi may also be used synonymously with factors that cause RNAi in some cases.
[0155] 本明細書において「RNAiを引き起こす因子」とは、 RNAiを引き起こすことができる ような任意の因子をレ、う。本明細書にぉレ、て「遺伝子」に対して「RNAiを弓 Iき起こす 因子」とは、その遺伝子に関する RNAiを引き起こし、 RNAiがもたらす効果 (例えば 、その遺伝子の発現抑制など)が達成されることをいう。そのような RNAiを引き起こ す因子としては、例えば、標的遺伝子の核酸配列の一部に対して少なくとも約 70% の相同性を有する配列またはストリンジェントな条件下でハイブリダィズする配列を含 む、少なくとも 10ヌクレオチド長の二本鎖部分を含む RNAまたはその改変体を構成 できるようにデザインされた発現ベクターが挙げられるがそれに限定されない。  [0155] As used herein, the term "factor causing RNAi" refers to any factor capable of causing RNAi. As used herein, the term “factor that causes RNAi to bow I” for “gene” refers to the factor that causes RNAi related to the gene and achieves the effect of RNAi (for example, suppression of expression of the gene). Means Factors that cause such RNAi include, for example, at least a sequence that has at least about 70% homology to a portion of the nucleic acid sequence of the target gene or a sequence that hybridizes under stringent conditions. Examples include, but are not limited to, expression vectors designed to be able to construct RNA containing a double-stranded portion having a length of 10 nucleotides or a variant thereof.
[0156] 異種遺伝子配列としては、天然に存在するタンパク質コード配列、天然に存在する アンチセンスコード配歹 IJ、天然に存在するリボザィムコード配列などのいずれかと同 一性のある配列が使用され得る。そのような同一性を有するヌクレオチド配列としては 、例えば、 Blastのデフォルトパラメータを用いて比較した場合に、比較対照のヌクレ 才チド酉己歹 1Jに対して、少ヽなくとち約 30%、約 35%、約 40%、約 45%、約 50%、約 55 %、約 60%、約 65%、約 70%、約 75%、約 80%、約 85%、約 90%、約 95%、約 9 9%の同一性または類似性を有するヌクレオチド配歹 1J、または比較対照のヌクレオチ ド配列によってコードされるアミノ酸配列に対して、少なくとも約 30%、約 35%、約 40 %、約 45%、約 50%、約 55%、約 60%、約 65%、約 70%、約 75%、約 80%、約 8 5%、約 90%、約 95%、約 99%の同一性または類似性を有するアミノ酸配列をコー ドするヌクレオチド配列が挙げられるがそれらに限定されない。  [0156] As the heterologous gene sequence, a sequence which is homologous to any of a naturally occurring protein coding sequence, a naturally occurring antisense coding sequence IJ, a naturally occurring ribozyme coding sequence, and the like can be used. As a nucleotide sequence having such an identity, for example, when compared using the default parameters of Blast, at least about 30%, about 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% At least about 30%, about 35%, about 40%, about 45% of the amino acid sequence encoded by the nucleotide sequence 1J having about 99% identity or similarity, or the nucleotide sequence of the control. %, About 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 99% identity or Examples include, but are not limited to, nucleotide sequences encoding amino acid sequences with similarity.
[0157] 異種遺伝子配列は、糖欠乏誘導性プロモーター配列、ェキソ型糖分解酵素をコー ドする遺伝子のプロモーター配列および代謝可能な糖を分解し得る酵素をコードす る遺伝子のプロモーター配列からなる群から選択される少なくとも 1つのプロモーター 配列に対して異種の配列である。異種遺伝子配列は好ましくは、シグナル配列コード 配列に対しても異種である。 2つの配列に関して「異種」とは、これらの 2つの配列が、 異なる遺伝子に由来する力 または異なる種に由来することをいう。異種との用語は 、糖欠乏誘導性プロモーター配列、ェキソ型糖分解酵素をコードする遺伝子のプロ モーター配列および代謝可能な糖を分解し得る酵素をコードする遺伝子のプロモー ター配列からなる群から選択される少なくとも 1つのプロモーター配列と異種遺伝子 配列との関係、糖欠乏誘導性プロモーター配列、ェキソ型糖分解酵素をコードする 遺伝子のプロモーター配列および代謝可能な糖を分解し得る酵素をコードする遺伝 子のプロモーター配列力 なる群力 選択される少なくとも 1つのプロモーター配列と 他の調節配列との間の関係、糖欠乏誘導性プロモーター配列、ェキソ型糖分解酵素 をコードする遺伝子のプロモーター配列および代謝可能な糖を分解し得る酵素をコ ードする遺伝子のプロモーター配列からなる群から選択される少なくとも 1つのプロモ 一ター配列とシグナルコード配列との関係、本発明で用いられるプロモーター配列以 外の複数の調節配列間の関係、調節配列と異種遺伝子配列との関係との関係など に適用される。例えば、シロイヌナズナの糖欠乏誘導性プロモーター配列、ェキソ型 糖分解酵素をコードする遺伝子のプロモーター配列および代謝可能な糖を分解し得 る酵素をコードする遺伝子のプロモーター配列からなる群から選択される少なくとも 1 つのプロモーター配列は、シロイヌナズナのァクチン遺伝子に対して異種である。同 様に、シロイヌナズナの糖欠乏誘導性プロモーター配歹 lj、ェキソ型糖分解酵素をコ ードする遺伝子のプロモーター配列および代謝可能な糖を分解し得る酵素をコード する遺伝子のプロモーター配列からなる群力、ら選択される少なくとも 1つのプロモータ 一配列は、ヒトのインターフェロン遺伝子に対して異種である。異種遺伝子配列が異 種生物に由来する場合、外来遺伝子とも呼ばれる。この場合において、「外来遺伝 子」とは、ある生物において、その生物には天然には存在しない遺伝子をいう。 [0157] The heterologous gene sequence encodes a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and an enzyme capable of degrading a metabolizable sugar. The sequence is heterologous to at least one promoter sequence selected from the group consisting of promoter sequences of genes. The heterologous gene sequence is also preferably heterologous to the signal sequence coding sequence. “Heterologous” with respect to two sequences refers to the fact that these two sequences are derived from different genes or from different species. The term heterologous is selected from the group consisting of a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar. Relationship between at least one promoter sequence and a heterologous gene sequence, a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter of a gene encoding an enzyme capable of degrading metabolizable sugars Sequence strength Relationship between at least one selected promoter sequence and other regulatory sequences, sugar deficiency-inducible promoter sequence, promoter sequence of exo-type glycolytic enzyme-encoding gene and degradation of metabolizable sugar Selected from the group consisting of promoter sequences for genes that encode Applied to at least one promoter sequence and a signal coding sequence, a relationship between a plurality of regulatory sequences other than the promoter sequence used in the present invention, and a relationship between a regulatory sequence and a heterologous gene sequence. You. For example, at least one selected from the group consisting of an Arabidopsis sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading metabolizable sugars. One promoter sequence is heterologous to the Arabidopsis actin gene. Similarly, the group consisting of the Arabidopsis sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading metabolizable sugars. At least one promoter sequence selected is heterologous to the human interferon gene. When the heterologous gene sequence is derived from a heterologous organism, it is also called a foreign gene. In this case, "foreign gene" refers to a gene in a certain organism that is not naturally present in the organism.
本発明の核酸は、糖欠乏誘導性プロモーター、ェキソ型糖分解酵素をコードする 遺伝子のプロモーター配列または代謝可能な糖を分解し得る酵素をコードする遺伝 子のプロモーター配列に加えて、さらにシグナルペプチドコード配列を含み得る。 [0159] 本明細書中では、「シグナルペプチドコード配歹 lj」とは、シグナルペプチドをコード するヌクレオチド配列をいう。本明細書中では、「シグナルペプチド」とは、主に疎水 性アミノ酸残基を含む、新生ポリペプチド鎖の小胞体膜への付着および膜通過に役 立つアミノ酸配列をいう。シグナルペプチドの長さは、好ましくは、約 10 約 50であり 、より好ましくは約 13—約 40であり、より好ましくは約 15 約 30である。特定のァミノ 酸配列中にシグナルペプチドが含まれるか否かは、当該分野で周知の方法に従つ て決定され得るが、好ましくは、 Kyte. Jおよび Doolittle, R. F. J. Mol. Biol. 157 (1) : 105-132, 1982に記載の方法に従って疎水性指数の分析を行レ、、 N末端の 約 10アミノ酸一約 50アミノ酸が疎水性である場合、この疎水性アミノ酸部分は、シグ ナルペプチドペプチドであると判断され得る。シグナルペプチドは、シグナルぺプチ ダーゼによって分解され得る配列を有することが好ましい。 The nucleic acid of the present invention comprises, in addition to a sugar deficiency-inducible promoter, a promoter sequence of a gene encoding an exo-type glycolytic enzyme or a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar, a signal peptide encoding It may include a sequence. [0159] In the present specification, "signal peptide coding system" refers to a nucleotide sequence that codes for a signal peptide. As used herein, the term "signal peptide" refers to an amino acid sequence mainly containing hydrophobic amino acid residues, which is useful for the attachment of the nascent polypeptide chain to the endoplasmic reticulum membrane and the passage of the membrane. The length of the signal peptide is preferably about 10 to about 50, more preferably about 13 to about 40, and more preferably about 15 to about 30. Whether or not a signal peptide is included in a particular amino acid sequence can be determined according to methods well known in the art, but preferably, Kyte. J and Doolittle, RFJ Mol. Biol. 157 (1) Analysis of hydrophobicity index according to the method described in 105-132, 1982.If about 10 amino acids and about 50 amino acids at the N-terminus are hydrophobic, the hydrophobic amino acid portion is a signal peptide peptide. It can be determined that there is. The signal peptide preferably has a sequence that can be degraded by a signal peptidase.
[0160] シグナルペプチドコード配列は、そのシグナルペプチドに結合してレ、るポリペプチド の細胞外への分泌をもたらすシグナルペプチドをコードするのであれば、任意のヌク レオチド配列であり得る。シグナルペプチドコード配列の例としては、 β ガラクトシダ 一ゼのシグナ/レペプチドコード配列、 βーキシロシダーゼのシグナノレペプチドコード 配列および β ダルコシダーゼのシグナルペプチドコード配列が挙げられる。シグナ ルペプチドコード配列は、糖欠乏誘導性プロモーター、ェキソ型糖分解酵素をコード する遺伝子のプロモーター配歹 1Jまたは代謝可能な糖を分解し得る酵素をコードする 遺伝子のプロモーター配列に対して同種であっても、異種であってもよい。  [0160] The signal peptide coding sequence may be any nucleotide sequence as long as it encodes a signal peptide that binds to the signal peptide and causes extracellular secretion of the polypeptide. Examples of signal peptide coding sequences include the signal / coding peptide sequence of β-galactosidase, the signal sequence of the signal peptide of β-xylosidase, and the signal peptide coding sequence of β-dalcosidase. The signal peptide coding sequence is homologous to the promoter deficiency-inducible promoter, the promoter sequence of the gene encoding the exo-type glycolytic enzyme, or the promoter sequence of the gene encoding the enzyme capable of degrading metabolizable sugar. Or heterogeneous.
[0161] シグナルペプチドコード配列は好ましくは、 (i)配列番号 2の 1位一 27位、配列番号  [0161] The signal peptide coding sequence is preferably: (i) position 1 to position 27 of SEQ ID NO: 2, SEQ ID NO:
4の 1位一 28位または配列番号 6の 1位一 28位に示されるアミノ酸配列をコードする ヌクレオチド配歹 1J ; (ii) (i)のヌクレオチド配列と比較して、 1もしくは数個のヌクレオチ ドの置換、欠失または付加を含むヌクレオチド配列であって、細胞外分泌活性を有 するペプチドをコードするヌクレオチド酉己列; (iii) (i)または(ii)のヌクレオチド配列と ストリンジェントな条件下でハイブリダィズし、かつ細胞外分泌活性を有するペプチド をコードするヌクレオチド配列;ならびに(iv) (i)のヌクレオチド配列に対して少なくとも 70%の同一性を有するヌクレオチド配列であって、かつ細胞外分泌活性を有するぺ プチドをコードするヌクレオチド配列からなる群より選択され、該ヌクレオチド配列に作 動可能に上記異種遺伝子配列が連結されると、該異種遺伝子の産物の細胞外分泌 力あたらされる。 A nucleotide sequence encoding the amino acid sequence shown at position 1 to position 28 of SEQ ID NO: 4 or position 1 to position 28 of SEQ ID NO: 6; (ii) one or several nucleotides compared to the nucleotide sequence of (i). (Iii) a nucleotide sequence containing a substitution, deletion or addition of a nucleotide, which encodes a peptide having extracellular secretory activity; and (iii) the nucleotide sequence of (i) or (ii) under stringent conditions. in and Haiburidizu, and the nucleotide sequence encoding a peptide having an extracellular secretion activity; a nucleotide sequence having at least 70% identity to the nucleotide sequence of and (i v) (i), and extracellular secretion activity Selected from the group consisting of nucleotide sequences encoding the peptide having When the heterologous gene sequence is operably linked, the extracellular secretion of the product of the heterologous gene is enhanced.
[0162] 本発明の核酸は、糖欠乏誘導性プロモーター、ェキソ型糖分解酵素をコードする 遺伝子のプロモーター配列または代謝可能な糖を分解し得る酵素をコードする遺伝 子のプロモーター配列に加えて、さらに調節エレメントを含み得る。本明細書中では 、「調節エレメント」とは、コード配列の発現に直接的または間接的に影響を与えるェ レメントをいう。調節エレメントの例としては、例えば、プロモーター、イントロン、ターミ ネーター、ェンハンサー、サイレンサー、転写終止配列、翻訳終止配列、転写起点、 イントロン配列などが挙げられるがそれらに限定されない。調節エレメントは好ましく は、プロモーター、イントロン、ターミネータ一およびェンハンサ一からなる群より選択 される少なくとも 1つのエレメントを含み得る。  [0162] The nucleic acid of the present invention further comprises a sugar deficiency-inducible promoter, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, or a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar. It may include a regulatory element. As used herein, "regulatory element" refers to an element that directly or indirectly affects the expression of a coding sequence. Examples of regulatory elements include, but are not limited to, promoters, introns, terminators, enhancers, silencers, transcription termination sequences, translation termination sequences, transcription origins, intron sequences, and the like. The regulatory element may preferably include at least one element selected from the group consisting of a promoter, an intron, a terminator and an enhancer.
[0163] 本明細書において、遺伝子が「特異的に発現する」とは、その遺伝子が、植物の特 定の部位または時期において他の部位または時期とは異なる(好ましくは高い)レべ ルで発現されることをいう。特異的に発現するとは、ある部位(特異的部位)にのみ発 現してもよぐそれ以外の部位においても発現していてもよい。好ましくは特異的に発 現するとは、ある部位にぉレ、てのみ発現することをレ、う。  [0163] As used herein, "specifically express" a gene means that the gene is at a different (preferably higher) level at a particular site or stage in a plant than at other sites or stages. It is expressed. To be specifically expressed may be expressed only at a certain site (specific site) or may be expressed at other sites. Preferably, specific expression means expression at a certain site only.
[0164] 本明細書において、遺伝子の発現について用いられる場合、一般に、「部位特異 性」とは、生物(例えば、植物)の部位 (例えば、植物の場合、プロテインボディー、根 、茎、幹、葉、花、種子、胚乳、胚芽、胚、果実など)におけるその遺伝子の発現の特 異性をいう。 「時期特異性」とは、生物(例えば、植物)の発達段階 (例えば、植物であ れば生長段階 (例えば、プロテインボディの形成の特定の時期、発芽後の芽生えの 日数))に応じたその遺伝子の発現の特異性をいう。そのような特異性は、適切なプロ モーターを選択することによって、所望の生物に導入することができる。  [0164] In the present specification, when used for gene expression, "site specificity" generally refers to a site of an organism (for example, a plant) (for example, in the case of a plant, protein body, root, stem, stem, Leaf, flower, seed, endosperm, germ, embryo, fruit, etc.). “Stage specificity” refers to the stage of development of an organism (eg, a plant) (eg, if it is a plant, the stage of growth (eg, the specific time of formation of the protein body, the number of days of germination after germination)). It refers to the specificity of the expression of that gene. Such specificity can be introduced into a desired organism by selecting an appropriate promoter.
[0165] 本明細書にぉレ、て、プロモーターの発現が「構成的」であるとは、生物のすべての 組織において、その生物の生長の幼若期または成熟期のいずれにあってもほぼ一 定の量で発現される性質をいう。具体的には、本明細書の実施例と同様の条件でノ 一ザンブロット分析したとき、例えば、任意の時点で (例えば、 2点以上 (例えば、植物 の場合、発芽 5日目および 15日目))の同一または対応する部位のいずれにおいて も発現がみられるとき、本発明の定義上、発現が構成的であるという。構成的プロモ 一ターは、通常の生育環境にある生物の恒常性維持に役割を果たしていると考えら れる。 [0165] As described herein, the expression of a promoter is "constitutive" in almost all tissues of an organism, whether in the juvenile or mature stages of growth of the organism. The property expressed in a certain amount. Specifically, when Northern blot analysis is performed under the same conditions as in the examples of the present specification, for example, at any time point (for example, two or more points (for example, in the case of a plant, germination on the 5th and 15th days) )) In either the same or corresponding sites When expression is also observed, expression is constitutive by the definition of the present invention. Constitutive promoters are thought to play a role in maintaining the homeostasis of organisms in their normal habitat.
[0166] プロモーターの発現が「ストレスほたは刺激)応答性」であるとは、少なくとも 1つの ストレスほたは刺激)が生物体に与えられたとき、その発現量が変化する性質をレ、う 。特に、発現量が増加する性質を「ストレス (または刺激)誘導性」といい、発現量が減 少する性質を「ストレス(または刺激)減少性」とレ、う。 「ストレスほたは刺激)減少性」 の発現は、正常時において、発現が見られることを前提としているので、「構成的」な 発現と重複する概念である。これらの性質は、生物の任意の部分から RNAを抽出し てノーザンプロット分析で発現量を分析することまたは発現されたポリペプチドをゥェ スタンプロットにより定量することにより決定することができる。ストレスほたは刺激)誘 導性のプロモーターを選択マーカーおよび異種遺伝子配列とともに組み込んだベタ ターで形質転換された生物(例えば、植物または植物の部分(特定の細胞、組織など ) )は、そのプロモーターの誘導活性をもつ刺激因子を用いることにより、ある条件下 でのみ選択マーカーおよび異種遺伝子配列の発現を行うことができる。  [0166] The expression of the promoter as "responsive to stress or stimulus" means that the expression level of the promoter changes when at least one stimulus for stress is applied to an organism. U. In particular, the property of increasing the expression level is called "stress (or stimulation) inducibility", and the property of decreasing the expression level is called "stress (or stimulation) reducing property". Expression of “decrease in stress” is a concept that overlaps with “constitutive” expression because it is assumed that the expression is observed in normal times. These properties can be determined by extracting RNA from any part of the organism and analyzing the expression level by Northern blot analysis, or by quantifying the expressed polypeptide by a paste lot. An organism (eg, a plant or plant part (specific cells, tissues, etc.)) transformed with a vector that incorporates a stress-inducible promoter along with a selectable marker and a heterologous gene sequence will be identified by its promoter. By using a stimulating factor having an inducing activity of, the expression of a selectable marker and a heterologous gene sequence can be performed only under certain conditions.
[0167] 本明細書中では、「イントロン」とは、任意の 2つのェキソンの間に存在するヌクレオ チド配列であって、 RNAに転写される力 成熟後の RNAには見られないヌクレオチ ド配列をいう。イントロンは、存在することによって、ポリペプチドの発現量を増大させ る作用を有する場合がある。イントロンは、任意の生物由来のイントロンであり得る力 好ましくは、選択マーカーが導入されるべき生物由来のイントロンである。本発明で は、 目的の生物においてイントロンの活性を示すものであれば、どのようなヌクレオチ ド配列でも使用することができる。  [0167] As used herein, the term "intron" refers to a nucleotide sequence present between any two exons and is not found in RNA after force-maturation that is transcribed into RNA. Say. Introns, when present, may have the effect of increasing the expression level of the polypeptide. The intron may be an intron from any organism. Preferably, the intron is from an organism into which the selectable marker is to be introduced. In the present invention, any nucleotide sequence can be used as long as it exhibits intron activity in the target organism.
[0168] 本明細書中では、「ェキソン」とは、 RNAに転写され、かつポリペプチドへと翻訳さ れるヌクレオチド配列をレ、う。  [0168] As used herein, "exon" refers to a nucleotide sequence that is transcribed into RNA and translated into a polypeptide.
[0169] 本明細書中では、「ターミネータ一」とは、タンパク質コード領域の下流に位置し、ヌ クレオチド配列が mRNAに転写される際の転写の終結、ポリ A配列の付加に関与す る配列である。ターミネータ一は、 mRNAの安定性に関与して遺伝子の発現量に影 響を及ぼすことが知られている。ターミネータ一は、任意の生物由来のターミネータ 一であり得る力 好ましくは、選択マーカーが導入されるべき生物由来のターミネータ 一である。本発明で用いられ得るターミネータ一の例としては、 CaMV35Sターミネ 一ター、ノパリンシンターゼのターミネータ一(Tnos)、タバコ PRla遺伝子のターミネ 一ター、 Tmlターミネータ一、 lOKDaプロラミンターミネータ一など、およびそれらの 改変ターミネータ一が挙げられるが、これらに限定されなレ、。本発明では、 目的の生 物においてターミネータ一の活性を示すものであれば、どのようなヌクレオチド配列で あ使用すること力 Sでさる。 [0169] In the present specification, the term "terminator" is a sequence located downstream of a protein coding region and involved in termination of transcription when a nucleotide sequence is transcribed into mRNA and addition of a poly A sequence. It is. It is known that the terminator is involved in the stability of mRNA and affects the expression level of the gene. Terminator is a terminator derived from any organism Force that can be one Preferably, the terminator from the organism into which the selectable marker is to be introduced. Examples of the terminator that can be used in the present invention include CaMV35S terminator, nopaline synthase terminator (Tnos), tobacco PRla gene terminator, Tml terminator, lOKDa prolamin terminator and the like, and modifications thereof. Terminators include, but are not limited to, these. In the present invention, any nucleotide sequence can be used as long as it exhibits the activity of a terminator in a target organism.
[0170] 本明細書において使用される「ェンハンサー」は、 目的遺伝子の発現効率を高める ために用いられ得る。そのようなェンハンサ一は当該分野において周知である。ェン ハンサ一は複数個用いられ得る力 S1個用いられてもよいし、用いなくともよい。ェンハ ンサ一は、任意の生物由来のェンハンサーであり得る力 好ましくは、選択マーカー が導入されるべき生物由来のェンハンサーである。本発明では、 目的の生物におい てェンハンサ一の活性を示すものであれば、どのようなヌクレオチド配列でも使用す ること力 Sできる。植物において使用する場合、ェンハンサーとしては、例えば、 CaMV 35Sプロモーター内の上流側の配列を含むェンハンサー領域が好ましい。  [0170] As used herein, "enhancer" can be used to enhance the expression efficiency of a target gene. Such enhancers are well known in the art. A plurality of forces that can be used may be used or one may not be used. The enhancer is a force that can be an enhancer of any organism. Preferably, the enhancer is of an organism from which the selectable marker is to be introduced. In the present invention, any nucleotide sequence can be used as long as it exhibits the activity of the enhancer in the target organism. When used in plants, the enhancer is preferably, for example, an enhancer region containing an upstream sequence in the CaMV 35S promoter.
[0171] 本明細書において「サイレンサー」とは、遺伝子発現を抑制し静止する機能を有す る配列をいう。本発明では、サイレンサーとしてはその機能を有する限り、どのようなも のを用いてもよぐサイレンサーを用いなくてもよい。  [0171] As used herein, the term "silencer" refers to a sequence that has the function of suppressing gene expression and quiescing. In the present invention, any type of silencer may be used as long as the silencer has the function.
[0172] 調節配列は、好ましくは、プロモーターおよび異種遺伝子配列と作動可能に連結さ れる。本明細書中では「作動可能に連結される(た)」とは、所望のヌクレオチド配列が 、発現 (すなわち、作動)をもたらす転写調節配列(例えば、プロモーター、ターミネ一 ター、サイレンサー、ェンノヽンサ一など)または翻訳調節配列(例えば、イントロン、ス プライスドナー、スプライスァクセプターなど)の制御下に配置されることをいう。例え ば、プロモーターが遺伝子に作動可能に連結されるためには、通常、その遺伝子の すぐ上流にプロモーターが配置される力 必ずしも隣接して配置される必要はない。  [0172] The regulatory sequence is preferably operably linked to the promoter and the heterologous gene sequence. As used herein, "operably linked" means that the desired nucleotide sequence is a transcription regulatory sequence (eg, promoter, terminator, silencer, heterozygous gene) that results in expression (ie, operation). Or the like, or under the control of translation control sequences (eg, introns, splice donors, splice acceptors, etc.). For example, in order for a promoter to be operably linked to a gene, the promoter is usually, but not necessarily, positioned immediately upstream of the gene.
[0173] プロモーターおよび異種遺伝子配列を、上記調節配列に作動可能に連結するた めに、プロモーターおよび異種遺伝子配列を加工すべき場合がある。例えば、プロ モーターとコード領域との間が長すぎて転写効率の低下が予想される場合、またはリ ボゾーム結合部位と翻訳開始コドンとの間隔が適切でない場合などである。加工の 手段としては、制限酵素による消化、 Bal31、 ExoIIIなどのェキソヌクレアーゼによる 消化、あるいは Ml 3などの一本鎖 DNAまたは PCRを使用した部位特異的変異誘 発の導入が挙げられる。 [0173] In order to operably link a promoter and a heterologous gene sequence to the above regulatory sequence, the promoter and the heterologous gene sequence may need to be processed. For example, if the distance between the promoter and the coding region is too long and transcription efficiency is expected to decrease, or For example, when the distance between the bososome binding site and the translation initiation codon is not appropriate. Examples of processing methods include digestion with restriction enzymes, digestion with exonucleases such as Bal31 and ExoIII, or introduction of site-directed mutagenesis using single-stranded DNA or PCR such as M13.
[0174] 本発明の核酸分子は、単離されたヌクレオチドであることが好ましい。本明細書中 では「単離された」ヌクレオチドとは、そのヌクレオチドが、天然に存在する生物体の 細胞内の他の生物学的因子 (例えば、ヌクレオチド以外の因子および目的とするヌク レオチド以外のヌクレオチド)から実質的に分離または精製されたものをいう。 「単離さ れた」ヌクレオチドには、標準的な精製方法によって精製されたヌクレオチドが含まれ る。したがって、単離されたヌクレオチドは、化学的に合成したヌクレオチドを包含す る。また、標準的な精製方法によって精製した後に、他の物質と混合したヌクレオチド および緩衝液中に溶解したヌクレオチドなども、本明細書でいう単離されたヌクレオ チドに該当する。 [0174] The nucleic acid molecule of the present invention is preferably an isolated nucleotide. As used herein, an `` isolated '' nucleotide is a nucleotide that means that the other nucleotide in the cell of the naturally occurring organism (e.g., a factor other than a nucleotide and a non-nucleotide of interest). Nucleotide) is substantially separated or purified. "Isolated" nucleotides include nucleotides purified by standard purification methods. Thus, an isolated nucleotide includes chemically synthesized nucleotides. In addition, nucleotides mixed with other substances and nucleotides dissolved in a buffer after purification by a standard purification method also correspond to the isolated nucleotides referred to herein.
[0175] 本明細書において「精製された」ヌクレオチドとは、そのヌクレオチドに天然に随伴 する因子の少なくとも一部が除去されたものをいう。したがって、通常、精製されたヌ クレオチドにおけるそのヌクレオチドの純度は、そのヌクレオチドが通常存在する状態 よりも高レヽ(すなわち濃縮されてレ、る)。  [0175] As used herein, the term "purified" nucleotide refers to a nucleotide from which at least a part of a factor naturally associated with the nucleotide has been removed. Thus, typically, the purity of the nucleotide in the purified nucleotide is higher (ie, more concentrated) than in the state in which the nucleotide is normally present.
[0176] 本明細書において「ヌクレオチド」は、天然のものでも非天然のものでもよレ、。 「誘導 体ヌクレオチド」または「ヌクレオチドアナログ」とは、天然に存在するヌクレオチドとは 異なるがもとのヌクレオチドと同様の機能を有するものをいう。そのような誘導体ヌクレ ォチドおよびヌクレオチドアナログは、当該分野において周知である。そのような誘導 体ヌクレオチドおよびヌクレオチドアナログの例としては、ホスホロチォエート、ホスホ ノレアミデート、メチルホスホネート、キラルメチルホスホネート、 2—0—メチルリボヌタレ ォチド、ペプチド一核酸 (PNA)が含まれるが、これらに限定されない。  [0176] In the present specification, "nucleotide" may be natural or non-natural. "Derivative nucleotides" or "nucleotide analogs" are those that are different from naturally occurring nucleotides, but that have the same function as the original nucleotides. Such derivative nucleotides and nucleotide analogs are well known in the art. Examples of such derivative nucleotides and nucleotide analogs include, but are not limited to, phosphorothioate, phosphonoreamidate, methylphosphonate, chiral methylphosphonate, 2-0-methylribonucleotide, peptide mononucleic acid (PNA). Not done.
[0177] 本発明の核酸分子は、糖欠乏誘導性プロモーター配列、ェキソ型糖分解酵素をコ ードする遺伝子のプロモーター配列および代謝可能な糖を分解し得る酵素をコード する遺伝子のプロモーター配列からなる群力、ら選択される少なくとも 1つのプロモータ 一配列が、糖欠乏誘導性を有し、そして必要なプロモーター活性を有する限り、上述 のようにそのヌクレオチド配列の一部が欠失していても、一部が他のヌクレオチドによ り置換されていてもよぐまたは他のヌクレオチド配列が一部挿入されていてもよい。 あるいは、 5'末端および/または 3'末端に他の核酸が結合していてもよい。また、天 然の糖欠乏誘導性プロモーター配歹 IJ、ェキソ型糖分解酵素をコードする遺伝子のプ 口モーター配列および代謝可能な糖を分解し得る酵素をコードする遺伝子のプロモ 一ター配列からなる群から選択される少なくとも 1つのプロモーター配列を含む核酸 分子とストリンジェントな条件下でハイブリダィズし、天然の糖欠乏誘導性プロモータ 一配列、ェキソ型糖分解酵素をコードする遺伝子のプロモーター配列および代謝可 能な糖を分解し得る酵素をコードする遺伝子のプロモーター配列からなる群から選 択される少なくとも 1つのプロモーター配列と実質的に同一の機能を有するヌクレオ チド配列でもよレ、。このようなヌクレオチド配列は、当該分野において公知であり、本 発明において利用することができる。 The nucleic acid molecule of the present invention comprises a sugar deficiency inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar. Group strength, as long as at least one promoter sequence selected has sugar deficiency inducibility and has the necessary promoter activity. As shown in the above, a part of the nucleotide sequence may be deleted, a part of the nucleotide sequence may be replaced by another nucleotide, or another nucleotide sequence may be partially inserted. Alternatively, another nucleic acid may be bound to the 5 'end and / or the 3' end. Also, a group consisting of a natural sugar deficiency-inducible promoter sequence IJ, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar. A natural sugar-deficiency-inducible promoter, a promoter sequence of a gene encoding an exo-type glycolytic enzyme and a metabolizable It may be a nucleotide sequence having substantially the same function as at least one promoter sequence selected from the group consisting of a promoter sequence of a gene encoding an enzyme capable of degrading sugar. Such nucleotide sequences are known in the art and can be used in the present invention.
[0178] このような核酸分子は、周知の PCR法を利用して調製することができ、化学的に合 成することもできる。これらの方法に、例えば、部位特異的変異誘発法、ハイブリダィ ゼーシヨン法などを組み合わせてもよレ、。  [0178] Such a nucleic acid molecule can be prepared using a well-known PCR method, and can also be chemically synthesized. These methods may be combined with, for example, site-directed mutagenesis, hybridization, and the like.
[0179] (2.ベクター)  [0179] (2. Vector)
本発明のベクターは、糖欠乏誘導性プロモーター配列、ェキソ型糖分解酵素をコ ードする遺伝子のプロモーター配列および代謝可能な糖を分解し得る酵素をコード する遺伝子のプロモーター配列からなる群から選択される少なくとも 1つのプロモータ 一配列と、該選択されたプロモーター配列に作動可能に連結された異種遺伝子配 歹 IJとを含む。  The vector of the present invention is selected from the group consisting of a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar. At least one promoter sequence and a heterologous gene system IJ operably linked to the selected promoter sequence.
[0180] 糖欠乏誘導性プロモーター配列、ェキソ型糖分解酵素をコードする遺伝子のプロ モーター配列、代謝可能な糖を分解し得る酵素をコードする遺伝子のプロモーター 配列、作動可能に連結された、異種遺伝子配列などについては、上記の 1に記載し たとおりである。  [0180] Glucose deficiency-inducible promoter sequence, promoter sequence of a gene encoding exo-type glycolytic enzyme, promoter sequence of gene encoding an enzyme capable of degrading metabolizable sugar, operably linked heterologous gene The sequence and the like are as described in 1 above.
[0181] 本明細書にぉレ、て「ベクター」とは、異種遺伝子配列を目的の細胞へと移入させる ことができる核酸分子をいう。そのようなベクターとしては、 目的の細胞において自律 複製が可能である力、、または目的の細胞の染色体中への組込みが可能で、かつ改 変された塩基配列の転写に適した位置にプロモーターを含有しているものが例示さ れる。 目的の細胞は、植物細胞および植物個体等の宿主細胞であり得る。本明細書 において、ベクターはプラスミド、発現ベクター、組換えベクターなどであり得る。 [0181] As used herein, the term "vector" refers to a nucleic acid molecule capable of transferring a heterologous gene sequence to a target cell. Such a vector may be capable of autonomous replication in the target cell, or may be capable of integrating into the chromosome of the target cell and be modified. Those containing a promoter at a position suitable for transcription of the altered base sequence are exemplified. The cells of interest can be host cells such as plant cells and plant individuals. As used herein, a vector can be a plasmid, an expression vector, a recombinant vector, and the like.
[0182] 本明細書において使用される「発現ベクター」とは、糖欠乏誘導性プロモーター配 歹 IJ、ェキソ型糖分解酵素をコードする遺伝子のプロモーター配列および代謝可能な 糖を分解し得る酵素をコードする遺伝子のプロモーター配列からなる群から選択され る少なくとも 1つのプロモーター配列に作動可能に連結された異種遺伝子配列を目 的の細胞中で発現し得るベクターをいう。発現ベクターは、糖欠乏誘導性プロモータ 一配列、ェキソ型糖分解酵素をコードする遺伝子のプロモーター配列および代謝可 能な糖を分解し得る酵素をコードする遺伝子のプロモーター配列からなる群から選 択される少なくとも 1つのプロモーター配列および異種遺伝子配列に加えて、その発 現を調節するェンノヽンサ一のような種々の調節エレメント、および必要に応じて、 目 的の細胞中での複製および組換え体の選択に必要な因子 (例えば、複製起点(ori) 、および薬剤抵抗性遺伝子のような選択マーカー)を含む。発現ベクター中では、改 変された塩基配列は、転写および翻訳されるように作動可能に連結されている。調節 エレメントとしては、プロモーター、ターミネータ一およびェンハンサ一が挙げられる。 調節エレメントの定義は、上記の通りである。また、発現された酵素を細胞外へ分泌 させることが意図される場合は、分泌シグナルペプチドをコードする塩基配列力 改 変された塩基配列の上流に正しいリーディングフレームで結合される。特定の生物( 例えば、細菌)に導入するために使用される発現ベクターのタイプ、その発現べクタ 一中で使用される調節エレメントおよび他の因子の種類力 目的の細胞に応じて変 わり得ることは、当業者に周知の事項である。 [0182] As used herein, the term "expression vector" refers to a sugar deficiency-inducible promoter sequence IJ, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and an enzyme capable of degrading a metabolizable sugar. Refers to a vector capable of expressing a heterologous gene sequence operably linked to at least one promoter sequence selected from the group consisting of the promoter sequence of a target gene in a target cell. The expression vector is selected from the group consisting of one sequence of a sugar deficiency-inducible promoter, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar. In addition to at least one promoter sequence and the heterologous gene sequence, various regulatory elements such as gene expression regulators that regulate its expression, and, if necessary, replication and recombinant production in the target cell. Includes factors required for selection (eg, origin of replication (ori), and selectable markers such as drug resistance genes). In an expression vector, the modified base sequence is operably linked so as to be transcribed and translated. Regulatory elements include promoters, terminators and enhancers. The definition of the regulatory element is as described above. If the expressed enzyme is intended to be secreted out of the cell, it is linked in the correct reading frame upstream of the nucleotide sequence whose nucleotide sequence has been modified to encode a secretory signal peptide. The type of expression vector used to introduce into a particular organism (eg, a bacterium), the type of regulatory elements and other factors used in the expression vector, and the ability to vary depending on the cell of interest. Is a matter well known to those skilled in the art.
[0183] 本明細書においてベクターの例としては、遺伝子実験に用いられる一般的な細菌( 代表的なものとして大腸菌 K12株由来の大腸菌株)で複製可能かつ単離精製可能 なベクターがあげられる。これは、 目的の生物(例えば、植物)に導入する目的の核 酸分子を構築するために必要である。具体的には、例えば大腸菌の PBR322プラス ミド、 pUC18、 pUC19、 pBluescript, pGEM— T、 pGEM— T Easyといった巿販 の構築プラスミドがある。エレクト口ポレーシヨン法、ポリエチレングリコール法、パーテ ィクルガン法といった直接的に遺伝子断片を植物細胞に導入して形質転換する場合 には、このような市販されている一般的なプラスミドを用いて、導入する遺伝子の構築 を行えばよい。また、ベクターの特殊な例として、ァグロバタテリゥムを介した遺伝子 導入法を用いて植物細胞を形質転換する場合は、大腸菌とァグロバタテリゥム双方 の複製開始点、および植物に導入され得る境界領域を示す T一 DNA由来の境界配 列(Left borderおよび Right Border)に相当するヌクレオチド配列を有する「バ イナリーベクター」と呼ばれるプラスミドを用いる必要がある。例えば pBIlOl (Clonte ch社より市販)、 pBIN (Bevan, N. , Nucleic Acid Research 12, 8711-872 1 , 1984)、 pBINPlus (van Engelen, FAら, Tranegenic Research 4, 288- 290、 1995)、 pTNまたは pTH (Fukuoka Hら, Plant Cell Reports 19, 200 0) , pPZP (Hajdukiewicz Pら, Plant Molecular Biology 25, 989—994, 1 994)などが挙げられるがそれらに限定されなレ、。このほか、植物に利用され得るベタ ターとしては、タバコモザイクウィルスベクターも例示される力 このタイプのベクター は目的遺伝子を植物染色体に導入するわけではないので、遺伝子導入した植物を 種子により増殖させる必要がない場合に用途が限定されるが、本発明に使用され得 る。 [0183] In the present specification, examples of the vector include a vector that can be replicated and isolated and purified by common bacteria (typically, an Escherichia coli strain derived from Escherichia coli K12 strain) used in genetic experiments. This is necessary to construct the nucleic acid molecule of interest into the target organism (eg, a plant). Specifically, there are commercially available plasmids such as E. coli PBR322 plasmid, pUC18, pUC19, pBluescript, pGEM-T, and pGEM-T Easy. Elect opening method, polyethylene glycol method, parte When a gene fragment is directly introduced into a plant cell for transformation, such as by the Picklegun method, the gene to be introduced may be constructed using such a commercially available general plasmid. As a special example of a vector, when a plant cell is transformed using a gene transfer method mediated by agrobacterium, the replication origin of both Escherichia coli and agrobacterium, It is necessary to use a plasmid called a "binary vector" having a nucleotide sequence corresponding to the border sequence (Left border and Right Border) derived from T-DNA indicating the border region to be obtained. For example, pBIlOl (commercially available from Clontech), pBIN (Bevan, N., Nucleic Acid Research 12, 8711-8721, 1984), pBINPlus (van Engelen, FA et al., Tranegenic Research 4, 288-290, 1995), pTN Or pTH (Fukuoka H et al., Plant Cell Reports 19, 2000), pPZP (Hajdukiewicz P et al., Plant Molecular Biology 25, 989-994, 1994) and the like, but are not limited thereto. In addition, tobacco mosaic virus vector is also an example of a vector that can be used for plants. Since this type of vector does not introduce the target gene into the plant chromosome, it is necessary to propagate the transgenic plant with seeds. The use is limited in the absence of this, but can be used in the present invention.
[0184] 発現ベクターは、発現カセットの中に、本発明の選択マーカーを含み得る。 「発現 カセット」とは、ある発現すべきヌクレオチド配列(例えば、構造遺伝子)と、その発現 を調節するプロモーター配列、 mRNA転写を終結させるターミネータ一配列および 必要に応じて他の種々の調節エレメントとを、 目的の細胞中でその発現すべきヌクレ ォチド配列が作動し得る状態で連結してある、人工構築遺伝子の 1単位を示す。発 現カセットの代表例としては、 目的の細胞のうちの形質転換された細胞のみを選択す るための選択マーカー(例えばハイグロマイシン抵抗性遺伝子)発現カセット、および 宿主細胞内に発現させたい有用タンパク質コード配列の発現カセットが挙げられる。 準備するべき発現カセットの種類、構造および数については、生物、宿主細胞およ び目的に応じて使い分けられるべきであり、その組み合わせは当業者には周知であ る。  [0184] The expression vector may contain the selection marker of the present invention in an expression cassette. An "expression cassette" is defined as comprising a nucleotide sequence to be expressed (for example, a structural gene), a promoter sequence that regulates its expression, a terminator sequence that terminates mRNA transcription, and, if necessary, various other regulatory elements. One unit of an artificially constructed gene, which is operably linked to a nucleotide sequence to be expressed in a target cell. Representative examples of expression cassettes include a selection marker (for example, hygromycin resistance gene) expression cassette for selecting only transformed cells of the target cells, and a useful protein to be expressed in host cells. An expression cassette for the coding sequence is included. The type, structure, and number of expression cassettes to be prepared should be appropriately used depending on the organism, host cell, and purpose, and combinations thereof are well known to those skilled in the art.
[0185] 「発現ベクター」は、上記の「発現カセット」を 1つ以上含み得る「ベクター」としても定 義され得る。 目的の細胞に導入をすべき発現カセットごとに別々のベクター上に配置 してもょレ、し、 1つのベクター上に全ての発現カセットを連結してもよレ、。例えば、本発 明において、選択マーカーコード配列がさらに用いられる場合、糖欠乏誘導性プロ モーター配列、ェキソ型糖分解酵素をコードする遺伝子のプロモーター配列および 代謝可能な糖を分解し得る酵素をコードする遺伝子のプロモーター配列からなる群 力、ら選択される少なくとも 1つのプロモーター配列およびそのプロモーター配列に作 動可能に連結された遺伝子遺伝子配列を含む発現カセットと、選択マーカーコード 配列を含む発現カセットとは、同じ発現ベクター上に存在しても別の発現ベクター上 に存在してもよレ、。同じ発現ベクター上に存在することが好ましい。より好ましくは、糖 欠乏誘導性プロモーター配列、ェキソ型糖分解酵素をコードする遺伝子のプロモー ター配列および代謝可能な糖を分解し得る酵素をコードする遺伝子のプロモーター 酉己列からなる群から選択される少なくとも 1つのプロモーター配列およびそのプロモ 一ター配列に作動可能に連結された遺伝子遺伝子配列を含む発現カセットと、選択 マーカーコード配列を含む発現カセットとは、同じ発現カセット中に含まれる。本発明 においては、植物用の発現ベクターとして、バイナリーベクタータイプの発現ベクター を用い得る。 [0185] An "expression vector" is also defined as a "vector" that may contain one or more of the above "expression cassettes". Can be justified. Each expression cassette to be introduced into the target cell may be placed on a separate vector, or all expression cassettes may be ligated on one vector. For example, when a selection marker coding sequence is further used in the present invention, it encodes a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and an enzyme capable of degrading a metabolizable sugar. An expression cassette containing at least one promoter sequence selected from the group consisting of a promoter sequence of a gene and a gene gene sequence operably linked to the promoter sequence, and an expression cassette containing a selection marker coding sequence, It may be present on the same expression vector or on another expression vector. Preferably, they are on the same expression vector. More preferably, it is selected from the group consisting of a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar. An expression cassette comprising a gene sequence operably linked to at least one promoter sequence and its promoter sequence and an expression cassette comprising a selectable marker coding sequence are included in the same expression cassette. In the present invention, a binary vector-type expression vector can be used as an expression vector for plants.
[0186] (3.植物細胞)  [0186] (3. Plant cells)
本発明の植物細胞は、糖欠乏誘導性プロモーター配列、ェキソ型糖分解酵素をコ ードする遺伝子のプロモーター配列および代謝可能な糖を分解し得る酵素をコード する遺伝子のプロモーター配列からなる群から選択される少なくとも 1つのプロモータ 一配列と、該選択されたプロモーター配列に作動可能に連結された異種遺伝子配 歹 IJとを含む。  The plant cell of the present invention is selected from the group consisting of a sugar deficiency inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar. At least one promoter sequence and a heterologous gene system IJ operably linked to the selected promoter sequence.
[0187] 糖欠乏誘導性プロモーター配列、ェキソ型糖分解酵素をコードする遺伝子のプロ モーター配列、代謝可能な糖を分解し得る酵素をコードする遺伝子のプロモーター 配列、作動可能に連結された、異種遺伝子配列などについては、上記の 1に記載し たとおりである。  [0187] Glucose deficiency-inducible promoter sequence, promoter sequence of gene encoding exo-type glycolytic enzyme, promoter sequence of gene encoding enzyme capable of degrading metabolizable sugar, operably linked heterologous gene The sequence and the like are as described in 1 above.
[0188] 本発明で用いられる植物細胞は、どの植物由来の細胞(例えば、単子葉植物、双 子葉植物など)でもよい。 [0189] 植物細胞としては、好ましくは、顕花植物(単子葉または双子葉)由来の細胞が用 いられ、より好ましくは双子葉植物細胞が用いられ、より好ましくはイネ科、ナス科、ゥ リ科、アブラナ科、セリ科、バラ科、マメ科、ムラサキ科の植物由来の細胞が用いられ る。さらに好ましくは、コムギ、トウモロコシ、イネ、ォォムギ、ソルガム、タバコ、ピーマ ン、ナス、メロン、トマト、イチゴ、サツマィモ、シロイヌナズナ、アブラナ、キャベツ、ネ ギ、ブロッコリ一、ダイズ、アルフアルファ、アマ、ニンジン、キゥリ、柑橘類、ハクサイ、 レタス、モモ、ジャガイモ、ムラサキ、ォゥレン、ポプラおよびリンゴ由来の細胞が用い られる。さらにより好ましくはタバコまたはシロイヌナズナ由来の細胞が用いられる。最 も好ましくは、シロイヌナズナ由来の細胞が用いられる。 [0188] The plant cells used in the present invention may be cells derived from any plant (eg, monocotyledonous plants, dicotyledonous plants, etc.). [0189] As the plant cell, preferably, a cell derived from a flowering plant (monocotyledon or dicotyledon) is used, more preferably, a dicotyledonous plant cell is used, and more preferably, Gramineae, Solanaceae, Cells derived from plants of the family Lamiaceae, Brassicaceae, Apiaceae, Rosaceae, Leguminosae, and Musaceae are used. More preferably, wheat, corn, rice, rye, sorghum, tobacco, pepper, eggplant, melon, tomato, strawberry, sweet potato, Arabidopsis, oilseed rape, cabbage, green onion, broccoli, soybean, alfalpha, flax, carrot, Cells derived from cedar, citrus, Chinese cabbage, lettuce, peach, potato, purple, purple, poplar, and apple are used. Even more preferably, cells derived from tobacco or Arabidopsis are used. Most preferably, Arabidopsis-derived cells are used.
[0190] 植物細胞は、植物体の一部、器官、組織、培養細胞などであり得る。培養細胞であ ることが好ましい。植物を用いてタンパク質の高生産を目指す場合、タンパク質の抽 出工程および精製過程を大幅に省略できることから、培養細胞を用いて培養液中に 目的タンパク質を分泌させることが特に好ましい。植物細胞は好ましくは、増殖速度 が速い培養細胞である。増殖速度が速いとは、その培養細胞を任意の培養条件下 で 1週間培養した場合に、培養開始時の細胞数の好ましくは約 10倍以上、より好まし くは約 20倍以上、さらに好ましくは約 30倍以上、さらに好ましくは約 40倍以上、さら に好ましくは約 50倍以上、さらに好ましくは約 60倍以上、さらに好ましくは約 70倍以 上、さらに好ましくは約 80倍以上、特に好ましくは約 90倍以上、最も好ましくは約 10 0倍以上細胞数に増殖し得ることをレ、う。  [0190] The plant cell may be a part of a plant, an organ, a tissue, a cultured cell, or the like. It is preferably a cultured cell. When aiming at high production of a protein using a plant, it is particularly preferable to use a cultured cell to secrete the target protein into a culture solution since the extraction and purification steps of the protein can be largely omitted. The plant cells are preferably cultured cells having a high growth rate. The fast growth rate means that, when the cultured cells are cultured under arbitrary culture conditions for one week, the number of cells at the start of culture is preferably about 10 times or more, more preferably about 20 times or more, and still more preferably. Is about 30 times or more, more preferably about 40 times or more, further preferably about 50 times or more, more preferably about 60 times or more, further preferably about 70 times or more, further preferably about 80 times or more, and particularly preferably Can grow to a cell number of about 90-fold or more, most preferably about 100-fold or more.
[0191] このような増殖速度の速い培養細胞の例としては、 1週間で 50倍以上増殖し得る細 胞(例えば、タバコ BY— 2細胞)が挙げられるがこれに限定されない。タバコ BY— 2糸田 月包は、もともと、 Nicotiana tabacum L. cv. Bright Yellow 2の月丕車由に誘導し たカルス力 確立された株であり、増殖のためにオーキシンを必要とする。 BY— 2細 胞と同様の性状を有する培養細胞は、 Kato, A.ら、 "Fermentation Technolog y Today" , 1972, pp. 689—695に記載の方法に従って作製され得る;東京大学 大学院新領域創成科学研究科の馳澤盛一郎先生より分与され得る。タバコ BY2糸田 胞は、植物の培養細胞としては異例に速い増殖速度(一週間で約 100倍)を持ち、 均一な細胞集団であり、形質転換も容易であるという利点を持つ。 BY— 2細胞と同様 に、迅速に増殖し得る細胞集団は、上記 Katoらの文献に記載の方法に従って、 0. 2mg/lの 2, 4—ジクロロフエノキシ酢酸、 0. 4mg/lチアミン塩酸塩および 30g/lス クロースを含む RM— 1964培地(Linsmaierおよび Skoog、 Physiol. Plant. 18, 1 965, p. 100)でタバコの胚軸力 カルスを誘導し、このカルスを同じ培地でさらに培 養することによって入手され得る。シロイヌナズナ由来の培養細胞についても、 1週間 で 50倍以上増殖し得る細胞が公知である。シロイヌナズナ由来の培養細胞を用いる ことが最も好ましい。シロイヌナズナはゲノムサイズが小さぐ遺伝情報が全て解明さ れており、細胞生理学的な基礎的知見が豊富であり、誘導生産に利用し得るプロモ 一ターなどのツールに関する情報も充実しており、遺伝子操作が容易であり、かつ様 々な改変を行レ、得るからである。 [0191] Examples of such cultured cells having a high proliferation rate include, but are not limited to, cells (for example, tobacco BY-2 cells) that can grow 50 times or more in one week. Tobacco BY-2 Itoda Tsukihachi is a well-established callus force induced by Nicotiana tabacum L. cv. Bright Yellow 2 from the moon-pig, and requires an auxin for growth. Cultured cells having properties similar to BY-2 cells can be prepared according to the method described in Kato, A. et al., "Fermentation Technology Today", 1972, pp. 689-695; It can be distributed by Dr. Seiichiro Touzawa of the Graduate School of Science. Tobacco BY2 Itoda cells have the advantages of an unusually fast growth rate (about 100 times a week) as a plant cell culture, a uniform cell population, and easy transformation. BY—similar to 2 cells In addition, a rapidly proliferating cell population was prepared according to the method described by Kato et al., Above, with 0.2 mg / l 2,4-dichlorophenoxyacetic acid, 0.4 mg / l thiamine hydrochloride and 30 g / l RM containing sucrose—Induced by inducing tobacco hypocotyl force callus in 1964 medium (Linsmaier and Skoog, Physiol. Plant. 18, 1965, p. 100) and further cultivating this callus in the same medium Can be done. Regarding cultured cells derived from Arabidopsis thaliana, cells capable of proliferating 50-fold or more in one week are known. Most preferably, cultured cells derived from Arabidopsis thaliana are used. Arabidopsis thaliana has a small genome and all the genetic information has been elucidated. This is because the operation is easy and various modifications can be made.
[0192] 本発明の細胞は、これらの細胞を用いて、当該分野で周知の形質転換方法を用い て作出され得る。あるいは、本発明の細胞は、当該分野で周知の形質転換方法に従 つて作出された細胞を再分化させ、形質転換個体を得て、その個体を交配すること によって得た子孫から得られる細胞であり得る。  [0192] The cells of the present invention can be produced using these cells by a transformation method well known in the art. Alternatively, the cell of the present invention is a cell obtained from a progeny obtained by redifferentiating a cell produced according to a transformation method well known in the art, obtaining a transformed individual, and crossing the individual. possible.
[0193] 細胞、組織、器官または個体の形質転換法は、当該分野で周知である。そのような 技術は、本発明において引用した文献などに十分記載されている。核酸分子の生物 細胞への導入は、一過的であっても恒常的であってもよい。一過性または恒常性の 遺伝子導入の技術はそれぞれ当該分野にぉレ、て周知である。本発明におレ、て用い られる細胞を分化させて形質転換植物を作出する技術もまた当該分野において周 知であり、そのような技術は、本発明において引用した文献などに十分記載されてい ることが理解される。形質転換植物から種子を得る技術もまた、当該分野において周 知であり、そのような技術は、本発明において引用した文献などに記載されている。  [0193] Methods for transforming cells, tissues, organs or individuals are well known in the art. Such techniques are fully described in the references cited in the present invention and the like. The introduction of the nucleic acid molecule into a biological cell may be transient or permanent. Techniques for transient or homeostatic gene transfer are well known in the art, respectively. Techniques for producing transformed plants by differentiating cells used in the present invention are also known in the art, and such techniques are well described in the literature cited in the present invention and the like. It is understood that. Techniques for obtaining seeds from transformed plants are also well known in the art, and such techniques are described in the literature cited in the present invention and the like.
[0194] 「形質転換体」とは、形質転換によって作製された細胞などの生命体の全部または 一部をいう。形質転換体としては、植物細胞が例示される。形質転換体は、その対象 に依存して、形質転換細胞、形質転換組織、形質転換宿主などともいわれ、本明細 書においてそれらの形態をすベて包含するが、特定の文脈において特定の形態を 指し得る。 [0194] "Transformant" refers to all or a part of an organism such as a cell produced by transformation. As the transformant, a plant cell is exemplified. A transformant is also referred to as a transformed cell, a transformed tissue, a transformed host, and the like, depending on the subject, and includes all of these forms in the present specification. Can point.
[0195] 好ましい実施形態において、本発明の植物体には、本発明の核酸分子は、両側の 染色体に導入され得るが、一対のみに導入されたものもまた有用であり得る。 [0195] In a preferred embodiment, the nucleic acid molecule of the present invention is provided on both sides of the plant of the present invention. Although introduced into the chromosome, those introduced into only one pair may also be useful.
[0196] 核酸分子と、 目的細胞とを、該核酸分子による形質転換が生じ得る条件下に配置 する方法としては、植物細胞に DNAを導入する方法であれば、本明細書において 他の場所で詳述したように、いずれも用いることができ、例えば、ァグロバタテリゥム法 (Agrobacterium) (特開昭 59— 140885、特開昭 60— 70080、 WO94/00977) , エレクト口ポレーシヨン法(特開昭 60—251887)、パーティクルガン(遺伝子銃)を用 レ、る方法(特許第 2606856、特許第 2517813)等が例示される。これらの方法のう ち、物理的手法の例としては、ポリエチレングリコール法(PEG法)、電子穿孔(エレク トロポレーシヨン)法、マイクロインジヱクシヨン法、パーティクルガン法が挙げられる。こ れらの方法は、単子葉、双子葉の両植物体に適用できる点で有用性が高い。しかし 、ポリエチレングリコール法とエレクト口ポレーシヨン法では、細胞壁が障害となるため 、プロトプラストを用いなければならない上、導入された遺伝子の植物細胞の染色体 DNAへの組込み頻度が低いことが問題である。また、プロトプラストを用いずに、力 ノレスゃ組織を用いたマイクロインジェクション法では、針の太さや組織の固定等に関 して困難が多い。組織を用いたパーティクルガン法でも、変異がキメラの形で出現し てくる等の問題がある。また、これら物理的手法では、一般に、導入された外来遺伝 子が核ゲノムに不完全な状態で多コピーの遺伝子として組込まれやすレ、。外来遺伝 子が多コピー導入されると、その遺伝子が不活化されやすレ、ことが知られてレ、る。  [0196] As a method for arranging a nucleic acid molecule and a target cell under conditions where transformation with the nucleic acid molecule can occur, any method for introducing DNA into a plant cell may be used elsewhere in this specification. As described in detail, any of them can be used. For example, the Agrobacterium method (Agrobacterium) (JP-A-59-140885, JP-A-60-70080, WO94 / 00977), the electoral-portion method (Special 60-251887), a method using a particle gun (gene gun) (Japanese Patent No. 2606856, Japanese Patent No. 2517813), and the like. Among these methods, examples of the physical method include a polyethylene glycol method (PEG method), an electroporation (electroporation) method, a microinjection method, and a particle gun method. These methods are highly useful in that they can be applied to both monocotyledonous and dicotyledonous plants. However, in the polyethylene glycol method and the electoporation method, since the cell wall becomes an obstacle, protoplasts must be used, and the frequency of integration of the introduced gene into chromosomal DNA of plant cells is low. In addition, the microinjection method using forceless tissue without using protoplasts has many difficulties with regard to the thickness of the needle and the fixation of the tissue. Even with the particle gun method using tissues, there are problems such as the emergence of mutations in the form of chimeras. In addition, these physical methods generally allow the introduced foreign gene to be easily integrated into the nuclear genome as a multicopy gene in an incomplete state. It has been known that when multiple copies of a foreign gene are introduced, the gene is likely to be inactivated.
[0197] 他方、生物を利用して単離遺伝子を導入する方法には、ァグロバタテリゥム法、ウイ ノレスべクタ一法、および近年開発されている、花粉をベクターとして用いる方法があ る。これらの方法は、プロトプラストを用いず植物のカルス、組織または植物体を用い て遺伝子導入を行うため、培養が長期間に及ぶことがなぐまたソマクローナル変異 等の障害を受けにくいという長所を有している。これらのうち花粉をベクターとして用 いる方法は、まだ実験例も少なぐ植物の形質転換法としては未知数の部分が多い。 ウィルスベクター法は、ウィルスに感染した植物体全体に導入すべき遺伝子が広が るという利点はあるものの、各細胞内で増幅されて発現されるだけで、次世代に伝え られるという保証がないという点、および長い DNA断片を導入できないという点に問 題がある。ァグロバタテリゥム法は、約 20kbp以上の DNAを大きな再編成なしに染色 体に導入できること、導入される遺伝子のコピー数が、数コピーと少ないこと、および 再現性が高いこと等、多くの利点がある。イネ科植物等の単子葉植物にとってァグロ バタテリゥムは宿主範囲外であるため、イネ科植物への外来遺伝子導入は、従来は、 先に述べたような物理的手法により行われてきた。し力 ながら、近年、単子葉植物 でもイネ等、培養系が確立されている植物においては、ァグロバタテリゥム法が適用 されるようになつており、むしろ現在ではァグロバタテリゥム法が好んで用いられてい る。 [0197] On the other hand, methods for introducing an isolated gene using an organism include the agrobacterium terminus method, the Winorespecta method, and a recently developed method using pollen as a vector. . These methods have the advantages of using a plant callus, tissue, or plant without using protoplasts, so that the culture is not extended over a long period of time and is less susceptible to somaclonal mutations and other disorders. I have. Among them, the method using pollen as a vector has many unknowns as a method of transforming plants with few experimental examples. Although the virus vector method has the advantage that the gene to be introduced into the whole plant infected with the virus is spread, it is only amplified and expressed in each cell and there is no guarantee that it will be transmitted to the next generation. The problem is that it cannot introduce long DNA fragments. Agrobacterium method stains DNA larger than about 20 kbp without major rearrangement There are many advantages, such as being able to be introduced into the body, the number of copies of the introduced gene being as small as a few copies, and high reproducibility. For monocotyledonous plants such as grasses, Agrobacterium is out of the host range, and thus, foreign genes have been conventionally introduced into grasses by the physical method as described above. In recent years, however, the agrobacterium method has been applied to monocotyledonous plants, such as rice, for which a culture system has been established. It is used favorably.
[0198] ァグロバタテリゥム法による外来遺伝子の導入では、 Tiプラスミド Vir領域に植物が 合成するァセトシリンゴン等の低分子フヱノールイ匕合物が作用すると、 Tiプラスミドか ら T一 DNA領域が切り出され、幾つかの過程を経て植物細胞の核染色体 DNAに組 み込まれる。双子葉植物では、植物自身がそのようなフヱノール化合物の合成機構 を備えているため、リーフディスク法等により容易に外来遺伝子を導入することができ 、再現性も高レ、。これに対し、単子葉植物では、そのようなフエノールイ匕合物を植物 自身が合成しないため、ァグロバタテリゥムによる形質転換植物の作出は困難であつ た。しかし、ァグロバタテリゥムの感染時にァセトシリンゴンを添加することで、単子葉 植物への外来遺伝子導入も現在では可能となっている。  [0198] In the introduction of a foreign gene by the agrobacterium method, when a low-molecular-weight phenolic conjugate such as acetociringone synthesized by a plant acts on the Ti plasmid Vir region, a T-DNA region is cut out from the Ti plasmid, It is integrated into the nuclear chromosomal DNA of plant cells through several processes. In dicotyledonous plants, since the plant itself has a mechanism for synthesizing such a phenol compound, a foreign gene can be easily introduced by a leaf disk method or the like, and the reproducibility is high. On the other hand, in monocotyledonous plants, since the plants themselves do not synthesize such a phenolic conjugate, it has been difficult to produce a transformed plant with agrobacterium. However, it is now possible to introduce foreign genes into monocotyledonous plants by adding acetosyringone during infection with agrobacterium.
[0199] 本発明を植物において利用する場合、植物細胞への植物発現ベクターの導入に は、当業者に周知の方法、例えば、ァグロバタテリゥムを介する方法および直接細胞 に導入する方法、が用いられ得る。ァグロバタテリゥムを介する方法としては、例えば 、 Nagelらの方法(Nagelら(1990)、 Microbiol. Lett. , 67, 325)が用いられ得る 。この方法は、まず、例えば植物に適切な発現ベクターでエレクト口ポレーシヨンによ つてァグロバタテリゥムを形質転換し、次いで、形質転換されたァグロバクテリゥムを G elvinら (Gelvinら編 (1994)、 Plant Molecular Biology Manual (Kluwer Ac ademic Press Publishers) )に記載の方法で植物細胞に導入する方法である。 植物発現ベクターを直接細胞に導入する方法としては、エレクト口ポレーシヨン法(Sh imamotoら(1989)、 Nature, 338 : 274— 276 ;および Rhodesら(1989)、 Scienc e、 240 : 204—207を参照のこと)、パーティクルガン法(Christouら(1991)、 BioZ Technology 9: 957—962を参照のこと)ならびにポリエチレングリコール(PEG)法 (Dattaら(1990)、 Bio/Technology 8 : 736—740を参照のこと)が挙げられる。 これらの方法は、当該分野において周知であり、形質転換する植物に適した方法が 、当業者により適宜選択され得る。 [0199] When the present invention is used in plants, the method for introducing a plant expression vector into a plant cell includes methods well known to those skilled in the art, for example, a method via agrobacterium and a method for direct introduction into cells. Can be used. As a method via the Agrobacterium terminus, for example, the method of Nagel et al. (Nagel et al. (1990), Microbiol. Lett., 67, 325) can be used. This method involves first transforming an Agrobacterium terminus by, for example, electoporation with an expression vector suitable for a plant, and then transforming the transformed agrobacterium with Gelvin et al. (Ed. 1994), Plant Molecular Biology Manual (Kluwer Ademic Press Publishers)). For a method of directly introducing a plant expression vector into cells, refer to the elect-mouth poration method (Shimamoto et al. (1989), Nature, 338: 274-276; and Rhodes et al. (1989), Science, 240: 204-207). ), Particle gun method (see Christou et al. (1991), BioZ Technology 9: 957-962) and polyethylene glycol (PEG) method. (See Datta et al. (1990), Bio / Technology 8: 736-740). These methods are well known in the art, and a method suitable for a plant to be transformed can be appropriately selected by those skilled in the art.
[0200] 本発明において、形質転換体では、 目的とする核酸分子(導入遺伝子)は、染色体 に導入されていても導入されていなくてもよい。好ましくは、 目的とする核酸分子(導 入遺伝子)は、染色体に導入されており、より好ましくは、 2つの染色体の両方に導入 されている。 [0200] In the present invention, in the transformant, the target nucleic acid molecule (transgene) may or may not be introduced into a chromosome. Preferably, the nucleic acid molecule of interest (introduced gene) has been introduced into a chromosome, more preferably both chromosomes.
[0201] 形質転換処理をする際には、必要により、選択マーカー遺伝子が使用される。選択 マーカーとその選択マーカーに適切な選択因子(例えば、抗生物質、色素など)とを 組合せて用いることにより、形質転換処理が施された細胞の中から、本発明の核酸 分子が導入された細胞をより効率よく選択することができる。しかし、この工程は、本 発明において必ずしも必須というわけではなレ、。このような選択方法は、導入された 核酸分子が有する選択マーカーの特性によって変動し、例えば、抗生物質 (例えば 、ハイグロマイシン、カナマイシンなど)に対する耐性遺伝子が選択マーカーとして導 入された場合は、その特定の抗生物質を用いて目的の細胞を選択することができる 。あるいは、選択マーカーとして標識遺伝子(例えば、グリーン蛍光遺伝子など)を用 いれば、そのような標識を目安に目的の細胞を選択することができる。あるいは、外 来遺伝子そのものが表現型に識別可能な差異を生じさせる場合は、そのような差異 を目安に遺伝子導入細胞を選択してもよい。そのような識別可能な差異としては、例 えば、色素の発現の有無などがあるがそれに限定されなレ、。  [0201] When performing the transformation treatment, a selectable marker gene is used, if necessary. By using a selection marker in combination with an appropriate selection factor (eg, an antibiotic, a dye, etc.) for the selection marker, the cells into which the nucleic acid molecule of the present invention has been introduced can be selected from the transformed cells. Can be selected more efficiently. However, this step is not always essential in the present invention. Such selection methods vary depending on the characteristics of the selectable marker possessed by the introduced nucleic acid molecule. For example, when a resistance gene to an antibiotic (eg, hygromycin, kanamycin, etc.) is introduced as a selectable marker, the Target cells can be selected using specific antibiotics. Alternatively, if a marker gene (for example, a green fluorescent gene or the like) is used as a selection marker, a target cell can be selected based on such a marker. Alternatively, when the foreign gene itself causes a discernible difference in phenotype, the transfected cells may be selected based on such a difference. Such identifiable differences include, but are not limited to, for example, the presence or absence of the expression of a dye.
[0202] 次いで、このようにして得られた、形質転換細胞は、当該分野で周知の方法により、 植物組織、植物器官および Zまたは植物体に再分化され得る。  [0202] Next, the thus obtained transformed cells can be redifferentiated into a plant tissue, a plant organ and Z or a plant by a method well known in the art.
[0203] 植物細胞、植物組織および植物体の培養、分化および再生のためには、当該分野 で公知の手法および培地が用いられる。このような培地には、例えば、 Murashige- Skoog (MS)培地、 GaMborg B5 (B)培地、 White培地、 Nitsch & Nitsch (Ni tsch)培地などが含まれる力 これらに限定されるわけではなレ、。これらの培地は、通 常、植物生長調節物質 (植物ホルモン)などが適当量添加されて用レ、られる。  [0203] For culturing, differentiating and regenerating plant cells, plant tissues and plants, techniques and media known in the art are used. Such a medium includes, for example, Murashige-Skoog (MS) medium, GaMborg B5 (B) medium, White medium, Nitsch & Nitsch (Nitsch) medium and the like. . These media are usually used after adding an appropriate amount of a plant growth regulator (plant hormone) or the like.
[0204] 本明細書において、植物の場合、その植物を「再分化」するとは、個体の一部分か ら個体全体が復元される現象を意味する。例えば、再分化により、細胞 (葉、根など) のような組織片から器官または植物体が形成される。 [0204] In the present specification, in the case of a plant, "regenerating" the plant refers to a part of an individual. Means the whole individual is restored. For example, redifferentiation forms an organ or plant from a piece of tissue such as a cell (leaf, root, etc.).
[0205] 形質転換体を植物体へと再分化する方法は当該分野において周知である。そのよ うな方法としては、 Rogersら, Methods in Enzymology 118 : 627-640 (1986 ); Tabata¾, Plant Cell Physiol. , 28 : 73-82 (1987) ; Shaw, Plant Molec ular Biology : A practical approach. IRL press (1988) ; Shimamotoら, Na ture 338 : 274 (1989); Maliga¾, Methods in Plant Molecular Biology : A laboratory course. Cold Spring Harbor Laboratory Press (1995) ¾ どに記載されるものが挙げられるがそれらに限定されない。従って、当業者は、上記 周知方法を目的とする形質転換植物に応じて適宜使用して、再分化させることがで きる。このようにして得られた形質転換植物には、 目的の遺伝子が導入されており、 そのような遺伝子の導入は、ノーザンブロット、ゥヱスタンプロット分析のような本明細 書に記載される方法または他の周知慣用技術を用いて確認することができる。  [0205] A method for redifferentiating a transformant into a plant is well known in the art. Such methods include Rogers et al., Methods in Enzymology 118: 627-640 (1986); Tabata III, Plant Cell Physiol., 28: 73-82 (1987); Shaw, Plant Molecular Biology: A practical approach. press (1988); Shimamoto et al., Nature 338: 274 (1989); Maliga III, Methods in Plant Molecular Biology: A laboratory course. Cold Spring Harbor Laboratory Press (1995). Not limited. Therefore, those skilled in the art can use the above-mentioned well-known methods as appropriate according to the transformed plant to be regenerated. The transgenic plant thus obtained has a gene of interest introduced therein, and such gene introduction can be carried out by the methods described herein such as Northern blot, stamp lot analysis, or the like. It can be confirmed using other well-known conventional techniques.
[0206] さらに、得られた形質転換植物体から種子が取得され得る。導入した遺伝子の発現 は、ノーザンプロット法または PCR法により、検出し得る。必要に応じて、遺伝子産物 たるタンパク質の発現を、例えば、ウェスタンプロット法により確認し得る。  [0206] Further, seeds can be obtained from the obtained transformed plant. The expression of the introduced gene can be detected by Northern blotting or PCR. If necessary, the expression of the protein as a gene product can be confirmed by, for example, Western blotting.
[0207] 本発明は、植物において特に有用であることが示されている力 他の生物において も利用することができる。本発明において使用される分子生物学技術は、当該分野 において周知であり、かつ、慣用されるものであり、例えば、 Ausubel F. A.ら編(1 988)、し urrent Protocols m Molecular Biology、 Wiley、 New York;、 NY ; Sambrook Jら (1987) Molecular Cloning: A Laboratory Manual,第 2 片 JXおよびその第 3片反, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY、別冊実験医学「遺伝子導入 &発現解析実験法」羊土社、 1997など に記載される。  [0207] The present invention can also be used in other organisms that have been shown to be particularly useful in plants. The molecular biology techniques used in the present invention are well known and commonly used in the art and are described, for example, in Ausubel FA et al. (1988), urrent Protocols m Molecular Biology, Wiley, New York ;, NY; Sambrook J et al. (1987) Molecular Cloning: A Laboratory Manual, 2nd JX and its 3rd half, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, Separate volume experimental medicine "Gene transfer & expression analysis experiment. Law ", Yodosha, 1997.
[0208] (4.組織)  [0208] (4. Organization)
本発明の組織は、糖欠乏誘導性プロモーター配列、ェキソ型糖分解酵素をコード する遺伝子のプロモーター配列および代謝可能な糖を分解し得る酵素をコードする 遺伝子のプロモーター配列力 なる群力 選択される少なくとも 1つのプロモーター 配列と、該選択されたプロモーター配列に作動可能に連結された異種遺伝子配列と を含む。 The tissue of the present invention comprises a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar. One promoter A heterologous gene sequence operably linked to the selected promoter sequence.
[0209] 糖欠乏誘導性プロモーター配列、ェキソ型糖分解酵素をコードする遺伝子のプロ モーター配列、代謝可能な糖を分解し得る酵素をコードする遺伝子のプロモーター 配列、作動可能に連結された、異種遺伝子配列などについては、上記の 1に記載し たとおりである。  [0209] Glucose deficiency-inducible promoter sequence, promoter sequence of gene encoding exo-type glycolytic enzyme, promoter sequence of gene encoding enzyme capable of degrading metabolizable sugar, operably linked heterologous gene The sequence and the like are as described in 1 above.
[0210] 本明細書において、生物の「組織」とは、細胞の集団であって、その集団において 一定の同様の作用を有するものをいう。従って、組織は、器官の一部であり得る。器 官内では、同じ働きを有する細胞を有することが多いが、微妙に異なる働きを有する ものが混在することもあることから、本明細書において組織は、一定の特性を共有す る限り、種々の細胞を混在して有していてもよい。通常「組織」は、同じ起源を有する が、異なる起源を持つ細胞集団であっても、同一の機能および Zまたは形態を有す るのであれば、組織と呼ばれ得る。通常、組織は、器官の一部を構成する。植物では 、構成細胞の発達段階によって分裂組織と永久組織とに大別され、また構成細胞の 種類によって単一組織と複合組織とに分けるなど、レ、ろいろな分類が行われている。  [0210] As used herein, the term "tissue" of an organism refers to a population of cells having a certain similar effect in the population. Thus, tissue can be part of an organ. Organs often have cells with the same function, but sometimes have subtly different functions.Therefore, in this specification, various tissues are used as long as they share certain characteristics. May be present in a mixture. Generally, a "tissue" can be referred to as a tissue, even if the cell populations have the same origin, but different origins, if they have the same function and Z or morphology. Normally, tissues make up part of an organ. Plants are roughly classified into meristems and permanent tissues according to the stage of development of the constituent cells, and are classified into single tissues and composite tissues according to the type of the constituent cells.
[0211] 本発明の組織は、以下の「8.形質転換細胞の作出方法」に従って作出された細胞 を用いて、当該分野で公知の方法に従って組織分化させることによって入手され得 る。あるいは、本発明の組織は、「8.形質転換細胞の作出方法」に従って作出された 細胞を再分化させ、形質転換個体を得て、その個体を交配することによって得た子 孫から得られる組織であり得る。  [0211] The tissue of the present invention can be obtained by subjecting cells produced according to the following "8. Method for producing transformed cells" to tissue differentiation according to a method known in the art. Alternatively, the tissue of the present invention may be a tissue obtained from offspring obtained by redifferentiating cells produced according to “8. Method for producing transformed cells”, obtaining a transformed individual, and crossing the individual. Can be
[0212] (5.器官)  [0212] (5. Organs)
本発明の器官は、糖欠乏誘導性プロモーター配列、ェキソ型糖分解酵素をコード する遺伝子のプロモーター配列および代謝可能な糖を分解し得る酵素をコードする 遺伝子のプロモーター配列力 なる群力 選択される少なくとも 1つのプロモーター 配列と、該選択されたプロモーター配列に作動可能に連結された異種遺伝子配列と を含む。  The organ of the present invention comprises a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar. A promoter sequence and a heterologous gene sequence operably linked to the selected promoter sequence.
[0213] 糖欠乏誘導性プロモーター配列、ェキソ型糖分解酵素をコードする遺伝子のプロ モーター配列、代謝可能な糖を分解し得る酵素をコードする遺伝子のプロモーター 配列、作動可能に連結された、異種遺伝子配列などについては、上記の 1に記載し たとおりである。 [0213] Glucose deficiency-inducible promoter sequence, promoter sequence of gene encoding exo-type glycolytic enzyme, promoter of gene encoding enzyme capable of degrading metabolizable sugar The sequence, operably linked, heterologous gene sequence, etc. are as described in 1 above.
[0214] 本明細書において、「器官」とは、 1つ独立した形態をもち、 1種以上の組織が組み 合わさって特定の機能を営む構造体を形成したものをいう。植物では、カルス、根、 茎、幹、葉、花、種子、胚芽、胚、果実、胚乳などが挙げられるがそれらに限定されな レ、。  [0214] In the present specification, the term "organ" refers to one that has one independent form and forms a structure that performs a specific function by combining one or more tissues. Plants include, but are not limited to, callus, roots, stems, stems, leaves, flowers, seeds, germs, embryos, fruits, endosperm, and the like.
[0215] 本発明が対象とする器官はどのような器官でもよぐまた本発明が対象とする組織 または細胞は、生物のどの器官に由来するものでもよい。一般に多細胞生物(例え ば、植物)では器官は特定の空間的配置をもついくつかの組織からなり、組織は多 数の細胞からなる。  [0215] The organ targeted by the present invention may be any organ, and the tissue or cell targeted by the present invention may be derived from any organ of an organism. Generally, in a multicellular organism (eg, a plant), an organ is composed of several tissues having a specific spatial arrangement, and a tissue is composed of a large number of cells.
[0216] 本発明の器官は、当該分野で周知の形質転換方法に従って作出された細胞を用 いて、当該分野で公知の方法に従って組織分化させ、そして器官を形成させることに よって入手され得る。あるいは、本発明の器官は、当該分野で公知の形質転換細胞 の作出方法に従って作出された細胞を再分化させ、形質転換個体を得て、その個体 を交配することによって得た子孫から得られる器官であり得る。  [0216] The organ of the present invention can be obtained by using a cell produced according to a transformation method well known in the art, performing tissue differentiation according to a method known in the art, and forming an organ. Alternatively, the organ of the present invention may be an organ obtained from a progeny obtained by redifferentiating cells produced according to a method for producing transformed cells known in the art, obtaining a transformed individual, and crossing the individual. Can be
[0217] (6.生物体)  [0217] (6. Organisms)
本発明の生物体は、糖欠乏誘導性プロモーター配列、ェキソ型糖分解酵素をコー ドする遺伝子のプロモーター配列および代謝可能な糖を分解し得る酵素をコードす る遺伝子のプロモーター配列からなる群から選択される少なくとも 1つのプロモーター 配列と、該選択されたプロモーター配列に作動可能に連結された異種遺伝子配列と を含む。  The organism of the present invention is selected from the group consisting of a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar. At least one promoter sequence and a heterologous gene sequence operably linked to the selected promoter sequence.
[0218] 糖欠乏誘導性プロモーター配列、ェキソ型糖分解酵素をコードする遺伝子のプロ モーター配列、代謝可能な糖を分解し得る酵素をコードする遺伝子のプロモーター 配列、作動可能に連結された、異種遺伝子配列などについては、上記の 1に記載し たとおりである。  [0218] Glucose deficiency-inducible promoter sequence, promoter sequence of gene encoding exo-type glycolytic enzyme, promoter sequence of gene encoding enzyme capable of degrading metabolizable sugar, operably linked heterologous gene The sequence and the like are as described in 1 above.
[0219] 本明細書において「生物体」(または、植物の場合「植物体」)とは、当該分野にお ける最も広義に用いられ、生命現象を営むものほたは植物)をレ、い、代表的には、 細胞構造、増殖(自己再生産)、成長、調節性、物質代謝、修復能力など種々の特 性を有し、通常、核酸のつかさどる遺伝と、タンパク質のつ力さどる代謝の関与する 増殖を基本的な属性として有する。生物には、原核生物、真核生物 (植物、動物など )などが包含される。好ましくは、本発明では、生物は、植物であり得る。本明細書で は、好ましくは、そのような植物体は稔性であり得る。より好ましくは、そのような植物 体は、種子を生産し得る。 [0219] As used herein, the term "organism" (or "plant" in the case of a plant) is used in the broadest sense in the art and refers to a plant that performs a biological phenomenon. Typically, there are various characteristics such as cell structure, proliferation (self-reproduction), growth, regulation, metabolism, and repair ability. It has the basic properties of growth, which involves the inheritance governed by nucleic acids and the metabolism regulated by proteins. Organisms include prokaryotes, eukaryotes (eg, plants, animals). Preferably, in the present invention, the organism can be a plant. As used herein, preferably, such a plant may be fertile. More preferably, such plants are capable of producing seed.
[0220] 本発明の生物体は、当該分野で周知の形質転換方法に従って作出された細胞を 用いて、当該分野で公知の方法に従って再分化させることによって入手され得る。あ るいは、本発明の生物体は、当該分野で周知の形質転換方法に従って作出された 細胞を再分化させ、形質転換個体を得て、その個体を交配することによって得た子 孫から得られる生物体であり得る。  [0220] The organism of the present invention can be obtained by using cells created according to a transformation method well known in the art and redifferentiating according to a method known in the art. Alternatively, the organism of the present invention is obtained from a progeny obtained by redifferentiating cells produced according to a transformation method well known in the art, obtaining a transformed individual, and crossing the individual. It can be an organism.
[0221] 本明細書において用いられる「植物」とは、植物界に属する生物の総称であり、クロ ロフィノレ、力、たい細胞壁、豊富な永続性の胚的組織の存在、および運動する能力が ない生物により特徴付けられる。代表的には、植物とは、細胞壁の形成'クロロフィル による同化作用をもつ顕花植物をいう。植物は、単子葉植物および双子葉植物のい ずれも含む。好ましい植物としては、例えば、コムギ、トウモロコシ、イネ、ォォムギ、ソ ルガムなどのイネ科に属する単子葉植物が挙げられる。植物は、食用作物または薬 用植物であることが好ましい。好ましい植物の他の例としては、タバコ、ピーマン、ナ ス、メロン、トマト、イチゴ、サッマイモ、キャベツ、ネギ、ブロッコリ一、ニンジン、キゥリ [0221] As used herein, "plant" is a generic term for organisms belonging to the plant kingdom, and lacks the ability to move, lack the ability to move, have a strong cell wall, abundant and persistent embryonic tissue Characterized by organisms. Typically, plants are flowering plants that have cell wall formation and anabolism by chlorophyll. Plants include both monocots and dicots. Preferred plants include, for example, monocotyledonous plants belonging to the Poaceae family such as wheat, corn, rice, rye, and sorghum. Preferably, the plant is a food crop or a medicinal plant. Other examples of preferred plants include tobacco, peppers, eggplants, melons, tomatoes, strawberries, sweet potatoes, cabbage, leeks, broccoli, carrots and peas.
、柑橘類、ハクサイ、レタス、モモ、ジャガイモ、ムラサキ、ォゥレンおよびリンゴが挙げ られる。より好ましくは、植物は、タバコ、イネ、トマト、イチゴ、ムラサキまたはォゥレン であり得る。好ましい植物は作物に限られず、花、樹木、芝生、雑草なども含まれる。 特に他で示さない限り、植物は、植物体、植物器官、植物組織、植物細胞、および種 子のいずれをも意味する。植物器官の例としては、根、葉、茎、および花などが挙げ られる。植物細胞の例としては、カルスおよび懸濁培養細胞が挙げられる。 , Citrus, Chinese cabbage, lettuce, peach, potato, murasaki, olive and apple. More preferably, the plant may be tobacco, rice, tomato, strawberry, purple or olive. Preferred plants are not limited to crops, and include flowers, trees, lawns, weeds and the like. Unless otherwise indicated, a plant refers to any plant, plant organ, plant tissue, plant cell, and seed. Examples of plant organs include roots, leaves, stems, flowers, and the like. Examples of plant cells include callus and suspension culture cells.
[0222] イネ科の植物の例としては、〇ryza、 Hordenum, Secale、 Scccharum, Echino chloa、または Zeaに属する植物が挙げられ、例えば、イネ、ォォムギ、ライムギ、ヒェ 、モロコシ、トウモロコシなどを含む。  [0222] Examples of plants of the Poaceae family include plants belonging to 〇ryza, Hordenum, Secale, Scccharum, Echino chloa, or Zea, and include, for example, rice, oats, rye, hee, sorghum, corn, and the like.
[0223] 異種ヌクレオチド配列を含む植物は、天然では発現しない遺伝子産物を発現し得 る。 [0223] Plants containing a heterologous nucleotide sequence may express a gene product that is not naturally expressed. The
[0224] 好ましい実施形態において、本発明の生物体には、本発明の核酸分子は、両側の 染色体に導入され得るが、一対のみに導入されたものもまた有用であり得る。  [0224] In a preferred embodiment, in the organism of the present invention, the nucleic acid molecule of the present invention can be introduced into chromosomes on both sides, but those introduced into only one pair may also be useful.
[0225] (7.タンパク質の生産方法) [0225] (7. Method for producing protein)
本発明のタンパク質の生産方法は、糖欠乏誘導性プロモーター配列、ェキソ型糖 分解酵素をコードする遺伝子のプロモーター配列および代謝可能な糖を分解し得る 酵素をコードする遺伝子のプロモーター配列からなる群から選択される少なくとも 1つ のプロモーター配列と、該選択されたプロモーター配列に作動可能に連結された該 タンパク質コード配列とを含む核酸分子を、細胞に導入して、形質転換細胞を得るェ 程;該形質転換細胞を糖の非存在下で培養して、該タンパク質を分泌させる工程;お よび該タンパク質を回収する工程を包含する。  The protein production method of the present invention is selected from the group consisting of a sugar deficiency inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar. Introducing a nucleic acid molecule comprising at least one promoter sequence to be transformed and the protein coding sequence operably linked to the selected promoter sequence into a cell to obtain a transformed cell; Culturing the transformed cells in the absence of sugar to secrete the protein; and recovering the protein.
[0226] 糖欠乏誘導性プロモーター配列、ェキソ型糖分解酵素をコードする遺伝子のプロ モーター配列、代謝可能な糖を分解し得る酵素をコードする遺伝子のプロモーター 配列、作動可能に連結された、異種遺伝子配列などについては、上記の 1に記載し たとおりである。 [0226] Glucose deficiency-inducible promoter sequence, promoter sequence of a gene encoding exo-type glycolytic enzyme, promoter sequence of gene encoding an enzyme capable of degrading metabolizable sugar, operably linked heterologous gene The sequence and the like are as described in 1 above.
[0227] 本発明の方法ではまず、糖欠乏誘導性プロモーター配列、ェキソ型糖分解酵素を コードする遺伝子のプロモーター配列および代謝可能な糖を分解し得る酵素をコー ドする遺伝子のプロモーター配列からなる群から選択される少なくとも 1つのプロモー ター配列と、該選択されたプロモーター配列に作動可能に連結された該タンパク質コ ード配列とを含む核酸分子を、細胞に導入して、形質転換細胞を得る。  In the method of the present invention, first, a group consisting of a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar can be used. A nucleic acid molecule comprising at least one promoter sequence selected from and a protein coding sequence operably linked to the selected promoter sequence is introduced into a cell to obtain a transformed cell.
[0228] 本発明の生産方法で用いられる細胞は、植物細胞、細菌細胞および動物細胞のう ちの任意の細胞であり得る力 好ましくは植物細胞である。  [0228] The cells used in the production method of the present invention may be any of plant cells, bacterial cells and animal cells, and are preferably plant cells.
[0229] 植物細胞としては、好ましくは、顕花植物(単子葉または双子葉)由来の細胞が用 いられ、より好ましくは双子葉植物細胞が用いられ、より好ましくはイネ科、ナス科、ゥ リ科、アブラナ科、セリ科、バラ科、マメ科、ムラサキ科の植物由来の細胞が用いられ る。さらに好ましくは、コムギ、トウモロコシ、イネ、ォォムギ、ソルガム、タバコ、ピーマ ン、ナス、メロン、トマト、イチゴ、サツマィモ、アブラナ、キャベツ、ネギ、ブロッコリ一、 ダイズ、アルファルファ、アマ、ニンジン、キゥリ、柑橘類、ハクサイ、レタス、モモ、ジャ ガイモ、ムラサキ、ォゥレン、ポプラおよびリンゴ由来の細胞が用いられる。最も好まし くはタバコ由来の細胞が用いられる。 [0229] As the plant cell, preferably, a cell derived from a flowering plant (monocotyledon or dicotyledon) is used, more preferably, a dicotyledonous plant cell is used, and more preferably, Gramineae, Solanaceae, and Cells derived from plants of the family Lamiaceae, Brassicaceae, Apiaceae, Rosaceae, Legumes, and Musaceae are used. More preferably, wheat, corn, rice, corn, sorghum, tobacco, pepper, eggplant, melon, tomato, strawberry, sweet potato, rape, cabbage, green onion, broccoli, soybean, alfalfa, ama, carrot, cricket, citrus, Chinese cabbage, lettuce, peach, ja Cells derived from potato, purple, ogle, poplar and apple are used. Most preferably, cells from tobacco are used.
[0230] 植物細胞は、植物体の一部、器官、組織、培養細胞などであり得る。培養細胞であ ることが好ましい。植物細胞は好ましくは、増殖速度が速い培養細胞である。増殖速 度が速いとは、その培養細胞を任意の培養条件下で 1週間培養した場合に、培養開 始時の細胞数の好ましくは約 10倍以上、より好ましくは約 20倍以上、さらに好ましく は約 30倍以上、さらに好ましくは約 40倍以上、さらに好ましくは約 50倍以上、さらに 好ましくは約 60倍以上、さらに好ましくは約 70倍以上、さらに好ましくは約 80倍以上 、特に好ましくは約 90倍以上、最も好ましくは約 100倍以上細胞数に増殖し得ること をいう。  [0230] The plant cell may be a part of a plant body, an organ, a tissue, a cultured cell, or the like. It is preferably a cultured cell. The plant cells are preferably cultured cells having a high growth rate. The fast growth rate means that the number of cells at the start of culture is preferably about 10 times or more, more preferably about 20 times or more, and still more preferably, when the cultured cells are cultured under arbitrary culture conditions for one week. Is about 30 times or more, more preferably about 40 times or more, more preferably about 50 times or more, more preferably about 60 times or more, more preferably about 70 times or more, more preferably about 80 times or more, and particularly preferably about 80 times or more. It means that it can grow to a cell number of 90 times or more, most preferably about 100 times or more.
[0231] このような増殖速度の速い培養細胞の例としては、タバコ BY— 2細胞が挙げられる 力これに限定されない。シロイヌナズナ由来の培養細胞でも、増殖速度が速い細胞 株が樹立されており、公知である。このような細胞株の例としては、 James A. H. M urray博士, Institute oi Biotechnology, University of Cambridge, Te nnis Court Road, Cambridge CB2 1QT, United Kingdom力 s樹立した 細胞株が挙げられる。もちろん、増殖速度が速い細胞株は、シロイヌナズナ植物体を 培養して培養細胞を増殖させ、増殖した細胞から増殖速度の速レ、細胞を繰り返し選 択することによつても入手され得る。これらの細胞については上記のとおりである。 [0231] Examples of such cultured cells having a high growth rate include tobacco BY-2 cells. Even in cultured cells derived from Arabidopsis thaliana, a cell line having a high growth rate has been established and is known. Examples of such cell lines, James AH M urray Dr., Institute oi Biotechnology, University of Cambridge , Te nnis Court Road, Cambridge CB2 1QT, include United Kingdom force s established cell lines. Of course, a cell line having a high growth rate can also be obtained by culturing an Arabidopsis thaliana plant, growing the cultured cells, and repeatedly selecting cells at a high growth rate from the grown cells. These cells are as described above.
[0232] 本発明の細胞は、これらの細胞を用いて、上記「3.細胞」に記載のように、当該分 野で周知の形質転換方法を用いて形質転換され得る。あるいは、この形質転換細胞 は、当該分野で周知の形質転換方法に従って作出された細胞を再分化させ、形質 転換個体を得て、その個体を交配することによって得た子孫から得られる細胞であり 得る。  [0232] The cells of the present invention can be transformed using these cells as described in "3. Cells" above, using a well-known transformation method in the relevant field. Alternatively, the transformed cell may be a cell obtained from a progeny obtained by redifferentiating a cell produced according to a transformation method well known in the art, obtaining a transformed individual, and crossing the individual. .
[0233] 細胞を形質転換するために用いられる核酸分子は、さらにシグナルペプチドコード 配列を含み得る。シグナルペプチドコード配列については、上記の 1に記載したとお りである。  [0233] The nucleic acid molecule used to transform a cell may further include a signal peptide coding sequence. The signal peptide coding sequence is as described in 1 above.
[0234] 次いで、この形質転換細胞は、そのまま、糖の非存在下で培養して、該タンパク質 を分泌させてもよい。あるいは、この形質転換細胞を、まず、糖の存在下で増殖させ てから、糖の非存在下に移して培養してもよい。 [0234] Next, the transformed cell may be cultured as it is in the absence of sugar to secrete the protein. Alternatively, the transformed cells are first grown in the presence of sugar. Thereafter, the cells may be transferred and cultured in the absence of sugar.
[0235] 本明細書中で用いられる「糖」は、任意の糖であり得るが、好ましくは代謝可能な解 糖系糖または代謝されるとこの解糖系糖になり得る糖である。解糖系糖とは、代謝可 能な糖をいう。代謝可能な糖は、上記「1.核酸分子」に記載のとおりである。代謝可 能な糖は好ましくは、グルコース、フルクトース、キシロース、ガラクトース、スクロース、 マルトースおよびァラビノースであり、より好ましくはスクロースである。スクロースは、 他の単糖と比較して、安価でかつ入手が容易であるからである。  [0235] As used herein, the "sugar" may be any sugar, but is preferably a metabolizable glycolytic sugar or a sugar that can be metabolized into this glycolytic sugar. Glycolytic sugars are sugars that can be metabolized. The metabolizable sugar is as described in “1. Nucleic acid molecule” above. The metabolizable sugar is preferably glucose, fructose, xylose, galactose, sucrose, maltose and arabinose, more preferably sucrose. This is because sucrose is cheaper and easier to obtain than other monosaccharides.
[0236] 形質転換体を培養するときの糖の濃度は、当該分野で公知の方法によって容易に 決定され得る。 目的の細胞に適切な培地組成は、当該分野で公知である。培地は、 液体であっても固体であってもよいが、液体であることが好ましい。液体培地中で振 盪培養することが好ましい。液体中で振盪培養すると、細胞の増殖が早いからである  [0236] The concentration of sugar at the time of culturing the transformant can be easily determined by a method known in the art. Appropriate media compositions for the cells of interest are known in the art. The medium may be liquid or solid, but is preferably liquid. Shaking culture in a liquid medium is preferred. Shaking culture in liquids results in faster cell growth
[0237] 形質転換細胞を糖の非存在下で培養する前に、形質転換細胞を糖の存在下で培 養する場合、この条件での糖の濃度は、好ましくは約 10mM以上であり、より好ましく は約 15mM以上であり、さらに好ましくは約 20mM以上である。糖濃度に特に上限 はないが、必要に応じて約特に下限はなレ、が、必要に応じて約 200mM以下、約 15 OmM以下、約 lOOmM以下または約 90mM以下の濃度とすることができる。糖の存 在下で形質転換細胞を培養すると、糖欠乏応答性プロモーターは応答せず、その細 胞が通常有する通常の代謝が生じる。糖の存在下では、形質転換細胞は、好ましく は、迅速に増殖する。 [0237] When the transformed cells are cultured in the presence of sugar before the transformed cells are cultured in the absence of sugar, the sugar concentration under these conditions is preferably about 10 mM or more. It is preferably about 15 mM or more, and more preferably about 20 mM or more. There is no particular upper limit to the sugar concentration, but there is no particular lower limit if necessary. However, the concentration can be about 200 mM or less, about 150 mM or less, about 100 mM or less, or about 90 mM or less as necessary. When transformed cells are cultured in the presence of sugar, the sugar-deficient responsive promoter does not respond, resulting in the normal metabolism that cells normally have. In the presence of sugar, transformed cells preferably grow rapidly.
[0238] 形質転換細胞を糖の存在下で培養した後、糖の非存在下に移すことは、例えば、 ある特定の濃度の糖の存在下で形質転換細胞を培養し始め、ある期間にわたって培 養することによって、この形質転換細胞の増殖により、培地中から糖が消費されること によって移されてもよい。しかし、好ましくは、形質転換細胞をある期間にわたって糖 の存在下で培養した後、当該分野で公知の方法に従って形質転換細胞を回収し、 そして糖を含まない新たな培地にこの形質転換細胞を置くことによって達成され得る 。細胞を液体培地中で培養した場合、例えば、その細胞を通過させない適切なメッシ ュサイズのメッシュ(例えば、 20 z mメッシュ)を通すことによって回収することが好まし レ、。メッシュは、任意の素材から製造され得る。例えば、ナイロンメッシュが用いられ得 る。培養細胞はまた、 1 , OOOg X 5分間の遠心分離によって回収することも可能であ る。細胞を固体培地上で培養した場合、細胞の塊を、ピンセットなどで摘まんで新た な培地上に置き換え得る。 [0238] After culturing the transformed cells in the presence of sugar and then transferring them in the absence of sugar, for example, the transformed cells are cultured in the presence of a certain concentration of sugar, and cultured for a certain period of time. By feeding, the cells may be transferred by consuming sugar from the medium due to the growth of the transformed cells. Preferably, however, after culturing the transformed cells in the presence of sugar for a period of time, recovering the transformed cells according to methods known in the art, and placing the transformed cells in a fresh medium without sugar Can be achieved by: When cells are cultured in liquid media, it is preferable to recover them, for example, by passage through a mesh of appropriate mesh size that does not allow the cells to pass through (eg, a 20 zm mesh). Les ,. The mesh can be manufactured from any material. For example, a nylon mesh can be used. Cultured cells can also be harvested by centrifugation at 1, OOOg x 5 minutes. When cells are cultured on a solid medium, the clumps of cells can be picked up with tweezers or the like and replaced with fresh medium.
[0239] 「糖の非存在下」とは、主に、糖が実質的に存在しない条件をいう。糖が実質的に 存在しない条件とは、糖欠乏応答性プロモーターが発現を促進する条件をいう。糖 が実質的に存在しない条件下での糖の濃度は、好ましくは焼く 15mM未満であり、よ り好ましくは約 10mM未満であり、さらに好ましくは約 5mM未満であり、なお好ましく は約 3mM未満であり、なおさらに好ましくは約 ImM未満であり、特に好ましくは約 0 . ImM未満である。糖が実質的に存在しない条件は、糖が全く存在しない条件を包 含する。 [0239] "In the absence of sugar" mainly refers to conditions in which sugar is substantially absent. The condition in which a sugar is substantially absent refers to a condition in which a sugar deficiency-responsive promoter promotes expression. The concentration of sugar under conditions substantially free of sugar is preferably less than 15 mM, more preferably less than about 10 mM, more preferably less than about 5 mM, and even more preferably less than about 3 mM. Yes, even more preferably less than about ImM, and particularly preferably less than about 0.1 ImM. Conditions that are substantially free of sugar include conditions that are completely free of sugar.
[0240] 適切な濃度の糖を含む培地の調製方法は、当業者に周知である。  [0240] Methods for preparing a medium containing an appropriate concentration of sugar are well known to those skilled in the art.
[0241] 糖の非存在下で形質転換細胞を培養すると、形質転換細胞内の糖欠乏誘導性プ 口モーターが応答し、この糖欠乏誘導性プロモーターに作動可能に連結された異種 遺伝子配列の発現が生じる。さらに、この異種遺伝子配列にシグナルペプチドコード 配列が、作動可能に連結されていると、この異種遺伝子配列によってコードされる遺 伝子産物の分泌がもたらされる。 [0241] When a transformed cell is cultured in the absence of sugar, the sugar-deficient inducible promoter in the transformed cell responds, and the expression of a heterologous gene sequence operably linked to the sugar-deficient inducible promoter is expressed. Occurs. Furthermore, operably linked to the heterologous gene sequence, the signal peptide coding sequence results in secretion of the gene product encoded by the heterologous gene sequence.
[0242] 次いで、分泌されたタンパク質は、回収される。タンパク質は、当該分野で周知の方 法を用いて回収され得る。  [0242] Next, the secreted protein is recovered. The protein can be recovered using methods well known in the art.
[0243] タンパク質の分離技術は当該分野において周知であり、タンパク質を分離すること ができる技術であれば、どのような技術を用いてもよい。本発明の形質転換細胞の培 養物から、タンパク質コード配列によってコードされるタンパク質 (例えば、有用タンパ ク質)を単離または精製するためには、当該分野で周知慣用の通常のタンパク質の 単離または精製法を用いることができる。例えば、本発明のポリペプチドが本発明の 形質転換体の細胞外に本発明のポリペプチドが分泌される場合には、その培養物を 遠心分離等の手法により処理し、可溶性画分を取得する。その可溶性画分から、溶 媒抽出法、硫安等による塩析法脱塩法、有機溶媒による沈澱法、ジェチルアミノエチ ノレ(DEAE)—セファロース、 DIAION HPA—75 (三菱化学)等レジンを用いた陰ィ オン交換クロマトグラフィー法、 S— Sepharose FF (Pharmacia)等のレジンを用レヽ た陽イオン交換クロマトグラフィー法、ブチルセファロース、フエ二ルセファロース等の レジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、ァフィニテ ィークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動 法等の手法を用い、精製標品を得ることができる。 [0243] Techniques for separating proteins are well known in the art, and any technique that can separate proteins may be used. In order to isolate or purify a protein (e.g., a useful protein) encoded by a protein coding sequence from a culture of the transformed cell of the present invention, a conventional protein known and commonly used in the art can be used. Alternatively, a purification method can be used. For example, when the polypeptide of the present invention is secreted extracellularly from the transformant of the present invention, the culture is treated by a method such as centrifugation to obtain a soluble fraction. . From the soluble fraction, solvents such as solvent extraction, salting out with ammonium sulfate, etc., precipitation with organic solvents, resins such as getylaminoethylene (DEAE) -Sepharose and DIAION HPA-75 (Mitsubishi Chemical) were used. Shade On-exchange chromatography, cation exchange chromatography using a resin such as S-Sepharose FF (Pharmacia), hydrophobic chromatography using a resin such as butyl sepharose, phenyl sepharose, and molecular sieve A purified sample can be obtained using a method such as gel filtration, affinity chromatography, chromatofocusing, or electrophoresis such as isoelectric focusing.
[0244] 本明細書にぉレ、て「単離された」ポリペプチドとは、そのポリペプチドが天然に存在 する生物体の細胞内の他の生物学的因子 (例えば、ポリペプチド以外の因子および 目的とするポリペプチド以外のポリペプチドなど)から実質的に分離または精製され たものをいう。 「単離された」ポリペプチドには、標準的な精製方法によって精製され たポリペプチドが含まれる。したがって、単離されたポリペプチドは、化学的に合成し たポリペプチドを包含する。また、標準的な精製方法によって精製した後に、他の物 質と混合したポリペプチドおよび緩衝液中に溶解したポリペプチドなども、本明細書 でいう単離されたポリペプチドに該当する。  [0244] As used herein, an "isolated" polypeptide is defined as another biological factor (eg, a factor other than a polypeptide) within a cell of an organism in which the polypeptide naturally exists. And polypeptides other than the polypeptide of interest). An “isolated” polypeptide includes a polypeptide that has been purified by standard purification methods. Thus, an isolated polypeptide includes chemically synthesized polypeptides. In addition, polypeptides mixed with other substances and dissolved in a buffer after purification by a standard purification method also correspond to the isolated polypeptides referred to in the present specification.
[0245] 本明細書にぉレ、て「精製された」ポリペプチドとは、そのポリペプチドに天然に随伴 する因子の少なくとも一部が除去されたものをいう。したがって、通常、精製されたポ リペプチドにおけるそのポリペプチドの純度は、そのポリペプチドが通常存在する状 態よりも高レヽ (すなわち濃縮されてレ、る)。  [0245] As used herein, the term "purified" refers to a polypeptide in which at least a part of a factor naturally associated with the polypeptide has been removed. Thus, typically, the purity of the polypeptide in the purified polypeptide will be higher (ie, more concentrated) than in the state in which the polypeptide is normally present.
[0246] 目的のタンパク質が本発明の形質転換体の細胞内に溶解状態で蓄積する場合に は、培養物を遠心分離することにより、培養物中の細胞を集め、その細胞を洗浄した 後に、超音波破碎機、フレンチプレス、マントンガウリンホモジナイザー、ダイノミル等 により細胞を破砕し、無細胞抽出液を得る。その無細胞抽出液を遠心分離することに より得られた上清から、溶媒抽出法、硫安等による塩析法脱塩法、有機溶媒による沈 澱法、ジェチルァミノェチル(DEAE)—セファロース(Sepharose)、 DIAION HP A— 75 (三菱化学)等レジンを用いた陰イオン交換クロマトグラフィー法、 S— Sepharo se FF (Pharmacia)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチル セファロース、フエ二ルセファロース等のレジンを用いた疎水性クロマトグラフィー法、 分子篩を用いたゲルろ過法、ァフィ二ティークロマトグラフィー法、クロマトフォーカシ ング法、等電点電気泳動等の電気泳動法等の手法を用いることによって、精製標品 を得ること力 Sできる。 [0246] When the target protein accumulates in a state of lysis in the cells of the transformant of the present invention, the cells in the culture are collected by centrifuging the culture, and the cells are washed. The cells are crushed by an ultrasonic crusher, French press, Mantongaulin homogenizer, Dynomill, etc. to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a solvent extraction method, a salting-out method using ammonium sulfate, a desalting method, a precipitation method using an organic solvent, getylaminoethyl (DEAE) — Anion exchange chromatography using a resin such as Sepharose, DIAION HP A-75 (Mitsubishi Chemical), cation exchange chromatography using a resin such as S-Sepharo se FF (Pharmacia), butyl sepharose, Hydrophobic chromatography using resin such as phenyl sepharose, gel filtration using molecular sieve, affinity chromatography, chromatofocusing, and electrophoresis such as isoelectric focusing By using The ability to gain S.
[0247] 目的のタンパク質が細胞内に不溶体を形成して発現した場合は、同様に細胞を回 収後破砕し、遠心分離を行うことにより得られた沈澱画分より、通常の方法によりその タンパク質を回収後、そのタンパク質の不溶体をタンパク質変性剤で可溶化する。こ の可溶化液を、タンパク質変性剤を含まなレ、か、あるいはタンパク質が変性しない程 度にタンパク質変性剤濃度が希薄な溶液になるように希釈あるいは透析し、 目的のタ ンパク質を正常な立体構造に構成させた後、上記と同様の単離精製法により精製標 品を得ることができる。また、細胞内の特定のオルガネラ、例えば、プロテインボディ に蓄積され得る場合には、そのオルガネラを分離後、 目的のタンパク質を精製するこ とあできる。  [0247] When the protein of interest is expressed by forming an insoluble substance in the cells, the cells are similarly collected, crushed, and centrifuged to obtain a precipitate fraction obtained by a conventional method. After recovering the protein, the insoluble form of the protein is solubilized with a protein denaturant. This lysate is diluted or dialyzed to contain no protein denaturant, or diluted so that the protein denaturant concentration is low enough not to denature the protein. After being formed into a three-dimensional structure, a purified sample can be obtained by the same isolation and purification method as described above. In addition, when it can be accumulated in a specific organelle in a cell, for example, in a protein body, the target protein can be purified after separating the organelle.
[0248] 通常のタンパク質の精製方法 (J. Evan. Sadlerら: Methods in Enzymology, 83, 458)に準じて精製できる。例えば、 目的のタン質を他のタンパク質との融合タン パク質として生産し、融合したタンパク質に親和性をもつ物質を用いたァフィ二ティー クロマトグラフィーを利用して精製することもできる [山 J 11彰夫,実験医学 (Experime ntal Medicine) , 13, 469-474 (1995) ] 0例えば、 Loweらの方法(Larsenら, P roc. Natl. Acad. Sci. , USA, 86, 8227 (1989)、 Kukowska—Latallo JF、 G enes Dev. , 4, 1288 (1990) )に記載の方法に準じて、 目的のタンパク質をプロテ イン Aとの融合タンパク質として生産し、ィムノグロブリン Gを用いるァフィ二ティーク口 マトグラフィ一により精製することができる。 [0248] The protein can be purified according to a conventional protein purification method (J. Evan. Sadler et al .: Methods in Enzymology, 83, 458). For example, the target protein can be produced as a fusion protein with other proteins, and purified using affinity chromatography using a substance having affinity for the fused protein [Yama J 11 Akio, Experimental Medicine, 13, 469-474 (1995)] 0 For example, the method of Lowe et al. (Larsen et al., Proc. Natl. Acad. Sci., USA, 86, 8227 (1989), Kukowska —Latallo JF, Genes Dev., 4, 1288 (1990)), producing a target protein as a fusion protein with protein A, and affinity chromatography using immunoglobulin G. Can be further purified.
[0249] 例えば、 目的のタンパク質と精製用のタグ(例えば、 Hisタグ(例えば、 6つの His残 基力 なる 6 X Hisタグ)、 HAタグ、プロテイン A、 IgGドメイン、またはマルトース結合 タンパク質)とを融合し、 目的のタンパク質と精製用のタグとの間に、例えばプロテア ーゼによる切断部位を付加するように設計した融合タンパク質を生産すれば、精製 用のタグに対するァフィ二ティークロマトグラフィーを用いて融合タンパク質を精製し、 その後、例えばプロテアーゼを用いて目的のタンパク質を融合タンパク質から切断す ることによって、 目的のタンパク質の精製を容易に行うことができる。  [0249] For example, a protein of interest and a tag for purification (for example, His tag (for example, 6 His residual 6X His tags), HA tag, protein A, IgG domain, or maltose binding protein) If a fusion protein designed to be fused to add a cleavage site by a protease, for example, between the target protein and the tag for purification, is produced, affinity chromatography for the tag for purification can be performed by using affinity chromatography. By purifying the fusion protein and thereafter cleaving the protein of interest from the fusion protein using, for example, a protease, the protein of interest can be easily purified.
[0250] 例えば、 6 X Hisタグを用いる場合、融合タンパク質を発現する細胞を遠心分離 (例 えば、約 6000 X gで 20分間)によって収集し、細胞ペレットを、カオトロピック剤であ る 6Mグァニジン HC1中に、 4°Cで 3— 4時間攪拌することによって可溶化させる。次 いで、細胞細片を遠心分離によって取り除き、そしてポリペプチドを含む上清を、ニッ ケルー二トリ口三酢酸(「Ni_NTA」)ァフィ二ティー樹脂カラム(QIAGEN, Inc.前出 より入手可能)にロードする。 6 X Hisタグを有するタンパク質は、 Ni— NTA樹脂に高 レ、親和性で結合し、そして単純な 1工程手順で精製され得る(詳細には、 The QIA expressionist (1995) QIAGEN, Inc. ,前出を参照のこと)。手短に言えば、上清 を、 6Μグァニジン一 HC1、 pH8のカラムにローデイングし、カラムを、最初に 10容量 の 6Mグァニジン— HC1、 pH8で洗浄し、次いで 10容量の 6Mグァニジン— HC1、 pH 6で洗浄し、最後にポリペプチドを、 6Mグァニジン一 HC1、 pH5で溶出する。次いで、 精製したタンパク質を、リン酸緩衝化生理食塩水(PBS)または 50mM 酢酸ナトリウ ム、 pH6の緩衝液および 200mM NaClに対して透析することにより再生させる。あ るいは、タンパク質は Ni— NTAカラムに固定化している間に、首尾よく再折畳みされ 得る。推奨条件は以下の通りである:プロテアーゼインヒビターを含む、 500mM Na Cl、 20%グリセローノレ、 20mM Tris/HCl pH7. 4中の 6M— 1M尿素の直線勾 配を使用する再生。再生は 1. 5時間以上の時間をかけて行うことが好ましい。再生 後、タンパク質を 250mMイミダゾールの添加によって溶出させる。イミダゾールを、 P BSまたは 50mM酢酸ナトリウム pH6の緩衝液および 200mM NaClに対する最 終の透析工程によって除去する。このようにして、精製したタンパク質が得られる。 [0250] For example, when using a 6X His tag, cells expressing the fusion protein are collected by centrifugation (eg, at about 6000 X g for 20 minutes) and the cell pellet is treated with a chaotropic agent. In 6M guanidine HC1 by stirring at 4 ° C for 3-4 hours. The cell debris is then removed by centrifugation, and the supernatant containing the polypeptide is applied to a Nickel nitrite triacetic acid (“Ni_NTA”) affinity resin column (available from QIAGEN, Inc. supra). To load. Proteins with a 6 X His tag bind to Ni—NTA resin with high affinity and can be purified by a simple one-step procedure (see The QIA expressionist (1995) QIAGEN, Inc., supra). Out). Briefly, the supernatant was loaded onto a 6Μ guanidine-HC1, pH 8 column, the column was first washed with 10 volumes of 6M guanidine-HC1, pH 8, then 10 volumes of 6M guanidine-HC1, pH 6 And finally elute the polypeptide with 6M guanidine-HCl, pH5. The purified protein is then regenerated by dialysis against phosphate buffered saline (PBS) or 50 mM sodium acetate, pH 6 buffer and 200 mM NaCl. Alternatively, the protein can be successfully refolded while immobilized on a Ni-NTA column. The recommended conditions are as follows: regeneration using a linear gradient of 6M-1M urea in 500mM NaCl, 20% glycerolone, 20mM Tris / HCl pH 7.4, including protease inhibitors. Regeneration is preferably performed over a period of at least 1.5 hours. After regeneration, the protein is eluted by adding 250 mM imidazole. The imidazole is removed by a final dialysis step against PBS or 50 mM sodium acetate pH 6 buffer and 200 mM NaCl. Thus, a purified protein is obtained.
[0251] また、 目的のタンパク質を FLAGペプチドとの融合タンパク質として生産し、抗 FLA G抗体を用いるァフィ二ティークロマトグラフィーにより精製することができる(Larsen ら, Proc. Natl. Acad. Sci. , USA, 86, 8227 (1989) , Kukowska-Latallo J F、 Genes Dev. , 4, 1288 (1990) )。  [0251] Alternatively, the target protein can be produced as a fusion protein with a FLAG peptide and purified by affinity chromatography using an anti-FLAG antibody (Larsen et al., Proc. Natl. Acad. Sci., USA , 86, 8227 (1989), Kukowska-Latallo JF, Genes Dev., 4, 1288 (1990)).
[0252] さらに、 目的のポリペプチド自身に対する抗体を用いたァフィ二ティーク口マトグラフ ィ一で精製することもできる。本発明のタンパク質は、公知の方法 ϋ. Biomolecular NMR, 6, 129—134、 Science, 242, 1162—1164、』. Biochem. , 110, 166 —168 (1991) ]に準じて、 in vitro転写'翻訳系を用いて生産することができる。  [0252] Further, the polypeptide can be purified by affinity mouth chromatography using an antibody against the target polypeptide itself. The protein of the present invention can be transcribed in vitro according to a known method ϋ. Biomolecular NMR, 6, 129-134, Science, 242, 1162-1164, 』. Biochem., 110, 166-168 (1991)]. It can be produced using a translation system.
[0253] 本発明は、本発明の方法によって生産された、 目的のヌクレオチドの翻訳産物を含 む組成物を提供する。そのような組成物が含む翻訳産物は、使用される目的のヌクレ ォチドに応じて変動する力 好ましくはタンパク質であり得る。 [0253] The present invention provides a composition produced by the method of the present invention, comprising a translation product of the nucleotide of interest. The translation product contained in such a composition is Force that varies depending on the peptide Preferably it can be a protein.
[0254] 以下に、本発明の好ましい実施形態である実施例に基づいて本発明を説明するが 、以下の実施例は、例示の目的のみに提供される。従って、本発明の範囲は、上記 発明の詳細な説明にも下記実施例にも限定されるものではなぐ特許請求の範囲に よってのみ限定される。本明細書において引用した特許、特許出願および文献は、 その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細 書に対する参考として援用されるべきであることが理解される。  [0254] Hereinafter, the present invention will be described based on examples which are preferable embodiments of the present invention. However, the following examples are provided for illustrative purposes only. Accordingly, the scope of the present invention is not limited to the detailed description of the invention nor the examples below, but is limited only by the appended claims. Patents, patent applications, and references cited in this specification should be incorporated by reference into this specification as if the content itself were specifically described in this specification. Understood.
実施例  Example
[0255] (実施例 1:糖欠乏応答性遺伝子の単離)  (Example 1: Isolation of sugar deficiency responsive gene)
(実施例 1の概略)  (Outline of Example 1)
糖応答性遺伝子を同定するために、シロイヌナズナ cDNAマクロアレイを、スクロー スの存在下または非存在下で培養した芽生えから調製したプローブとハイブリダィズ した。最初のスクリーニングによって、影響を受ける 36個の cDNAが同定された。こ れらの cDNAのうちの 12個を、糖欠乏条件下で誘導されると同定した。これらのうち の 9個は、既知の糖応答に関して新規であった。コードされるタンパク質の特性に基 づいて、これらを、アミノ酸代謝、糖質代謝および未知に関与する 3つの群に分類し た。続いて、これらの発現プロファイルと糖レベルとの間の相関を、植物を用いて分 析した。離脱葉を 36時間にわたるスクロース欠乏に供した場合、グルコースの顕著な 減少が生じたが、スクロースの減少は生じず、そして付随して、 12個全ての遺伝子が 誘導された。しかし、これらの転写産物は、サンプルにスクロースを再供給したところ、 7時間以内に迅速に低下した。誘導および抑制の同様のパターンが、植物体全体の 喑所処理によって観察されたが、成熟葉の自然老化の間には観察されなかった。グ ルコースアナログを用いた阻害分析は、これらの遺伝子のうちの 9個が、へキソキナ ーゼシグナル伝達経路に関連し得ることを示した。本観察は、植物が、糖欠乏の間、 物質の再利用に関与する 1セットの遺伝子を活性化することおよびこれらの遺伝子が 、機能的に多様であるにもかかわらず、同時にそして協調して調節されることを示唆 する。  To identify sugar-responsive genes, Arabidopsis thaliana cDNA macroarrays were hybridized with probes prepared from seedlings cultured in the presence or absence of sucrose. Initial screening identified 36 affected cDNAs. Twelve of these cDNAs were identified as being induced under sugar-deficient conditions. Nine of these were new with a known sugar response. Based on the properties of the encoded proteins, they were divided into three groups involved in amino acid metabolism, carbohydrate metabolism and unknowns. Subsequently, the correlation between these expression profiles and sugar levels was analyzed using plants. Subjecting withdrawn leaves to sucrose deficiency for 36 hours resulted in a significant decrease in glucose, but not sucrose, and concomitantly induced all 12 genes. However, these transcripts declined rapidly within 7 hours when the sample was resupplied with sucrose. A similar pattern of induction and suppression was observed by in-situ treatment of whole plants, but not during natural senescence of mature leaves. Inhibition analysis using glucose analogs showed that nine of these genes could be involved in the hexokinase signaling pathway. This observation suggests that plants activate a set of genes involved in substance recycling during sugar deficiency, and that these genes are simultaneously and coordinated, despite their functional diversity. Implies that it is regulated.
[0256] この方法および結果の詳細を以下に記載する。 [0257] ( 1. 1 材料および方法) [0256] Details of this method and the results are described below. [0257] (1.1 Materials and methods)
( 1. 1. 1 植物材料および成長条件)  (1.1.1 Plant material and growth conditions)
シロイヌナズナ(ェコタイプ Columbia)を、 2%スクロース(w/v)を含む 0· 5 X MS 液体培地(Murashigeおよび Skoog基本塩、 pH5. 8)中で、 16時間明期 /8時間 喑期の光周期で 21°Cで成長させた。播種 3週間後、芽生えを、スクロース非含有培 地に移植することによって糖を欠乏させ、そして喑所にて 79時間までさらに培養した 。スクロース非含有培地での 72時間の培養後、芽生えを、 2%スクロース (wZv)を 補充した培地に 7時間にわたって移植することによって、芽生えにスクロースを再度 供給した。  Arabidopsis thaliana (Ecotype Columbia) in a 0.5 × MS liquid medium containing 2% sucrose (w / v) (Murashige and Skoog basic salt, pH 5.8), 16 hours light period / 8 hours photoperiod And grown at 21 ° C. Three weeks after sowing, the sprouts were depleted of sugar by transplanting to a sucrose-free medium and further cultured in place for up to 79 hours. After 72 hours of culture in sucrose-free medium, the seedlings were resupplied with sucrose by transplanting the seedlings into medium supplemented with 2% sucrose (wZv) for 7 hours.
[0258] ( 1. 1. 2 cDNAマクロアレイの調製)  [0258] (1.1.2 Preparation of cDNA macroarray)
シロイヌナズナ cDNAマクロアレイは、かずさ DNA研究所から供給された。フィルタ 一(8 X I 2cm)は、 4つの異なる組織 (地上部器官、花芽、根および緑色の長角果) から調製された約 13, 000個の PCR増幅 cDNAフラグメントを含んでいた。アンプリ コン作製およびアレイ作製を、 Asamizuら、 DNA Research 7, 2000, pp. 175— 180および Sasakiら、 DNA Research 8, 2001 , pp. 153— 161に記載されると おりに行った。  Arabidopsis thaliana cDNA macroarray was supplied by Kazusa DNA Research Institute. One filter (8 X I 2 cm) contained approximately 13,000 PCR-amplified cDNA fragments prepared from four different tissues (aboveground organs, flower buds, roots and green siliques). Amplicon production and array production were performed as described in Asamizu et al., DNA Research 7, 2000, pp. 175-180 and Sasaki et al., DNA Research 8, 2001, pp. 153-161.
[0259] ( 1. 1. 3 RNA抽出およびマクロアレイハイブリダィゼーシヨン)  [1259] RNA extraction and macroarray hybridization
総 RNAを、 AGPC (酸性グァニジ二ゥム一フエノーノレークロロホルム)法(Suzukiら、 Plant Cell and Environment 24、 2001、 pp. 1 177— 1 188)を用いて芽生え から単離した。ポリ(A) +RNAを、 PolyATract mRNA Isolation System (Pro mega)を用レ、て、 600 /i gの総 RNA力ら精製した。 12 μ 1溶 ί夜中の 0· 3 /i gのポリ(A ) +RNAおよび 1 μ gのオリゴ(dT)を、 70。Cで 10分間変性させ、そして氷上で 3分間 冷却し、そして 28 μ 1の総容積(3 μ 1の緩衝液、 3 μ 1の 25mM MgCl、 1. 5 μ 1の Total RNA was isolated from seedlings using the AGPC (acidic guanidinium-phenol-chloroform) method (Suzuki et al., Plant Cell and Environment 24, 2001, pp. 1177-1188). Poly (A) + RNA was purified using a PolyATract mRNA Isolation System (Promega) from 600 / ig total RNA. 12 μl solution of 0.3 μg / ig poly (A) + RNA and 1 μg oligo (dT) at night. Denature for 10 min in C, chill on ice for 3 min, and add 28 μl total volume (3 μl buffer, 3 μl 25 mM MgCl, 1.5 μl
2  2
各 10mMの dNTP、 1 μ 1(7)0. 1Μ DTT、 6 μ 1の [ひ—33 P] dCTPおよび 1. 5 μ 1の 逆転写酵素)で、 37°Cで 90分間逆転写に供した。得られた33 P標識 cDNAプローブ 、 Quant G—50 Microカフム、 Amersham Pharmacia Biotech) (こよって 精製した。 10 μ ΐのオリゴ(dA)を補充した Church—リン酸緩衝液(pH7. 2) (0. 5M Na HP〇、 ImM EDTAおよび 7% SDS)中での 65。Cで 1時間にわたるプレハ イブリダィゼーシヨン後、マイクロアレイフィルターを、 65°Cで 16— 20時間にわたる、 10mlの総容積でのプローブを用いたハイブリダィゼーシヨンに供した。フィルターを 、それぞれ 65°Cで 30分間にわたって、 0. 1% SDSを含む 2 X SSCで 1回洗浄し、 そして 0. 1 % SDSを含む 0. 5 X SSC中で 2回洗浄した。各マイクロアレイフィルタ 一を、処理した植物材料および未処理の植物材料から調製した33 P標識 cDNAプロ ーブでの代替ハイブリダィゼーシヨンのために順次用いた。 . Each 10mM of dNTP, 1 μ 1 (7) 0 1Μ DTT, of 6 mu 1 [shed - 33 P] with dCTP and 1. 5 mu 1 reverse transcriptase), subjected to 90 minutes reverse transcription at 37 ° C for did. The resulting 33 P-labeled cDNA probe, Quant G-50 Micro Kahum, Amersham Pharmacia Biotech) (purified. Church-phosphate buffer (pH 7.2) supplemented with 10 μΐ oligo (dA) (pH 7.2) 65 hours in 5M NaHP〇, ImM EDTA and 7% SDS). After hybridization, the microarray filters were subjected to hybridization using probes in a total volume of 10 ml at 65 ° C for 16-20 hours. The filters were washed once with 2 × SSC containing 0.1% SDS and then twice in 0.5 × SSC containing 0.1% SDS for 30 minutes at 65 ° C. Each microarray filter was used sequentially for alternative hybridization with a 33 P-labeled cDNA probe prepared from treated and untreated plant material.
[0260] (1. 1. 4 データ分析) [0260] (1.1.4 Data analysis)
フィルターを、 BAS 5000を用いてスキャンし、そしてシグナル強度を、ノ ックグラ ゥン卜 し引きして、 Array Vision (Amersham Pharmacia Biotech)によつ て分析した。ノ ックグラウンドよりも低い値を示すスポットを、さらなる分析から除外した 。異なるハイブリダィゼーシヨン間の比較を改善するために、定量したシグナル強度 を、フィルターあたりの積分値に関して標準化した。誘導または抑制された糖応答遺 伝子を、未処理レベルの 3倍を超えるかまたは未処理レベルの 0. 3倍を下回るという 基準を用いて同定した。  Filters were scanned using a BAS 5000 and signal intensities were knocked down and analyzed by Array Vision (Amersham Pharmacia Biotech). Spots showing values below the knock ground were excluded from further analysis. To improve the comparison between the different hybridizations, the quantified signal intensities were normalized with respect to the integral per filter. Induced or repressed sugar response genes were identified using criteria of more than 3 times untreated levels or less than 0.3 times untreated levels.
[0261] (1. 1. 5 サブアレイ作製、ハイブリダィゼーシヨンおよびデータ分析) [0261] (1.1.5 Subarray preparation, hybridization and data analysis)
最初のアレイスクリーニングによって同定された遺伝子間で矛盾したクローンを排除 するために、 184個の遺伝子および 8個のコントロールを用いてサブアレイを構築し、 これらの隣接する重複する遺伝子は、合計 384個のエレメントの cDNAサブアレイを 生じる(Gene—Lab Co. Ltd. )。 cDNAマクロアレイ分析のために用いたプロトコル に従って、ハイブリダィゼーシヨンを行った。ハイブリダィゼーシヨンシグナルの再現性 を、三連の実験の平均値から評価した。  To eliminate conflicting clones between the genes identified by the initial array screening, a subarray was constructed using 184 genes and 8 controls, and these adjacent overlapping genes totaled 384 Generates a cDNA subarray of elements (Gene-Lab Co. Ltd.). Hybridization was performed according to the protocol used for cDNA macroarray analysis. The reproducibility of the hybridization signal was evaluated from the mean of triplicate experiments.
[0262] (1. 1. 6 RNAゲルプロット分析) [0262] (1.1.6 RNA gel plot analysis)
総 RNAを、 Suzukiら、 Plant Cell and Environment 24、 2001、 pp. 1177 —1188に記載されるとおりに総芽生えまたは離脱葉組織から抽出した。 10 μ gの各 RNAサンプルを、 1. 2%ホルムアルデヒド—ァガロースゲル電気泳動によってサイズ 分画し、ナイロンメンブレンにトランスファーし、そして UV照射によって架橋した。この メンブレンを、 42。Cで 16時間にわたるハイブリダィゼーシヨンに供し、 0. 1 %  Total RNA was extracted from total sprouting or detached leaf tissue as described in Suzuki et al., Plant Cell and Environment 24, 2001, pp. 1177-1188. 10 μg of each RNA sample was size fractionated by 1.2% formaldehyde-agarose gel electrophoresis, transferred to a nylon membrane, and cross-linked by UV irradiation. 42 of this membrane. C for 16 hours of hybridization, 0.1%
SDSを含む 0. 5 X SSC中で 65°Cで 2回洗浄し、そして Suzukiら、 Plant Cell a nd Environment 24、 2001、 pp. 1177—1188に記載されるとおりに Χϋフィノレ ムに接触させた。 Wash twice at 65 ° C. in 0.5 × SSC containing SDS, and use Suzuki et al., Plant Cell a Contact with @finolene as described in nd Environment 24, 2001, pp. 1177-1188.
[0263] (1. 1. 7 可溶性の糖の決定)  [0263] (1.1.7 Determination of soluble sugar)
可溶性の糖を、 4mLの 80% (vZv)エタノールおよび lmLの 50%エタノールで順 次抽出した。 2つの層をプールし、そして 80°Cにて 30分間インキュベートした。溶液 を 9, OOOrpmで 10分間遠心分離し、そして上清を Speed Vac Concentrator中 で乾燥した。乾燥した残渣を、 400 μ 1の 80%エタノール中に再懸濁し、 400 μ 1のク ロロホルムと混合し、そして 7, 500rpmで 10分間遠心分離した。上清を、酵素法(Si gma Diagnostics Glucose試薬, USA)によって可溶性の糖について分析した。  Soluble sugars were extracted sequentially with 4 mL of 80% (vZv) ethanol and 1 mL of 50% ethanol. The two layers were pooled and incubated at 80 ° C for 30 minutes. The solution was centrifuged at 9, OOO rpm for 10 minutes and the supernatant was dried in a Speed Vac Concentrator. The dried residue was resuspended in 400 μl of 80% ethanol, mixed with 400 μl of chloroform and centrifuged at 7,500 rpm for 10 minutes. Supernatants were analyzed for soluble sugars by the enzymatic method (Sigma Diagnostics Glucose reagent, USA).
[0264] (1. 2 結果)  [0264] (1.2 results)
(1. 2. 1 糖応答性遺伝子の同定)  (1.2.1 Identification of sugar-responsive genes)
約 13. 000個のシロイヌナズナ遺伝子についての cDNAマクロアレイを用いて、本 発明者らは、糖の欠乏に応答して転写産物レベルが変化した cDNAをスクリーニン グした。プローブの cDNAを、 79時間の糖欠乏に供した水耕栽培芽生え、または 72 時間のスクロース欠乏後にスクロースを豊富に含む培地に 7時間にわたって戻した後 の水耕栽培芽生えから調製した。ハイブリダィゼーシヨンを、各サンプルについて二 連で行って、高い再現性を得た。 Array Visionでのスケーリング後、シグナル強度 を正規化して、 2つのプローブの間の強度の比を算出した。最初のスクリーニングに よって、シグナルの比が 3倍を超えて変化した力、または 0. 3倍未満で変化した 184 個の遺伝子が得られた(図 la)。続いて、二連のサブアレイ(各々 192遺伝子を含む) を調製した。このうち、 184個が最初に同定された遺伝子であり、そして 8個がポジテ イブコントロール遺伝子であった。常に喑所で 1。/0スクロースの非存在下または存在 下で培養した、播種後 3週間目の芽生えから調製したプローブでのサブアレイのディ ファレンシャルハイブリダィゼーシヨンによって、 73個の遺伝子の転写産物レベルが コントロールと比較して 1. 5倍の増加または減少を示すことを示した(図 lb)。 Using a cDNA macroarray for approximately 13.000 Arabidopsis genes, we screened cDNAs whose transcript levels changed in response to sugar deficiency. Probe cDNA was prepared from hydroponic shoots that had been subjected to 79 hours of sugar deficiency or returned to a sucrose-rich medium after 72 hours of sucrose depletion for 7 hours. Hybridization was performed in duplicate for each sample to obtain high reproducibility. After scaling with Array Vision, the signal intensities were normalized to calculate the intensity ratio between the two probes. Initial screening yielded 184 genes whose signal ratios changed more than 3-fold or changed less than 0.3-fold (Fig. La). Subsequently, duplicate subarrays (each containing 192 genes) were prepared. Of these, 184 were the first identified genes and 8 were positive control genes. Always in place 1 Differential hybridization of subarrays with probes prepared from seedlings 3 weeks after seeding, cultured in the absence or presence of / 0 sucrose, resulted in control of 73 gene transcript levels. It showed a 1.5-fold increase or decrease in comparison (Figure lb).
[0265] (1. 2. 2 転写産物の蓄積) [0265] (1.2.2 accumulation of transcript)
1。/0スクロースを含む培養培地で成長させた芽生えを、スクロースを含まない新鮮な 培地に移植し、そして 12時間、 36時間および 79時間にわたってインキュベートし、 そしてサブアレイで同定された 73個の遺伝子について RNAゲルプロット分析を行つ た(図 2)。糖の欠乏によって誘導された 9個の遺伝子の発現パターンを、 RNAブロッ トハイブリダィゼーシヨンによって分析した(図 2)。 9個全ての遺伝子について、 RNA ゲルプロットアツセィデータは、サブアレイプロファイルと一貫しており、そして本発明 者らは、これらのアレイについての定量的結果に妥当性があると結論し、そしてこの 単離し 7こ遺 1Z5子 、 AtSUG (Arabidopsis thaliana sugar up— regulated) 1— 9と命名した。 1. The seedlings grown in the culture medium containing / 0 sucrose are transferred to fresh medium without sucrose and incubated for 12, 36 and 79 hours, Then, RNA gel plot analysis was performed on the 73 genes identified in the subarray (Fig. 2). The expression patterns of the nine genes induced by sugar deficiency were analyzed by RNA blot hybridization (Figure 2). For all 9 genes, the RNA gel plot data was consistent with the subarray profiles, and we concluded that the quantitative results for these arrays were valid, and Atsug (Arabidopsis thaliana sugar up-regulated) 1-9 was named.
[0266] (1. 2. 3 離脱葉の応答)  [0266] (1.2.3 Response to leaving leaf)
播種後 25日目の植物から脱離した展開した葉のサンプノレにスクロースを供給した ところ、スクロースおよびグノレコースのレベルが比較的一定に維持されることが見出さ れた(図 3a)。対照的に、サンプルからスクロースを欠乏させると、スクロースのレべノレ は徐々に低下し、そしてグノレコースのレベルは迅速に低下した(図 3a)。特に、グノレコ ースは、 79時間後には、開始レベルの 10%未満まで減少した(図 3a)。サンプルか らスクロースを 72時間にわたって欠乏させ、次いで 7時間にわたって 30mMスクロー スを供給した場合、スクロースおよびグノレコースは両方とも、糖が供給されたサンプル におけるレベルと等しいレベルを示した(図 3a)。  When sucrose was fed to the developed leaves of Sampnole, detached from the plant 25 days after sowing, it was found that the levels of sucrose and gnorecose remained relatively constant (Figure 3a). In contrast, when sucrose was depleted from the sample, the sucrose level decreased gradually, and the level of gnorecose declined rapidly (Figure 3a). In particular, gnorecoc decreased to less than 10% of the starting level after 79 hours (Figure 3a). When sucrose was depleted from the sample for 72 hours, and then fed 30 mM sucrose for 7 hours, both sucrose and gnorecose showed levels equal to those in the sugar-fed sample (Figure 3a).
[0267] 転写産物の蓄積プロファイルを、 RNAブロットハイブリダィゼーシヨンによって糖結 合に応答することが同定された 73個の遺伝子について、脱離葉サンプルを用いて調 ベ 7こ  [0267] The transcript accumulation profile was determined for the 73 genes identified to respond to glycosylation by RNA blot hybridization using detached leaf samples.
場合、 12個の遺伝子が誘導された。次いで、誘導された 12個の遺伝子の転写産物 蓄積の時間経過を、スクロースが供給された脱離葉およびスクロースが欠乏した脱離 葉において調べた(図 3b)。これらの転写産物は全て、スクロースを供給したサンプ ルにおいて存在しな力、つた力 これらは、スクロースが欠乏したら迅速に蓄積した。顕 著なことに、スクロース誘導性転写産物は、スクロースを再供給してから 7時間以内に 減少した(図 3b)。これらのパターンは、一般に共有されているようである力 2つ(At SUG4および AtSUGlO)は、レ、くらかの相違を示した。コードされるタンパク質の推 定機能に基づいて、誘導された 12個の遺伝子を、 3つの群 (アミノ酸代謝、糖質代謝 および未知)に分類した (表 1)。 [0268] [表 1] In each case, 12 genes were induced. The time course of the induced transcript accumulation of the 12 genes was then examined in detached leaves supplied with sucrose and detached leaves lacking sucrose (FIG. 3b). All of these transcripts were absent in the sucrose-fed sample, and they were rapidly accumulated when sucrose was depleted. Remarkably, sucrose-induced transcripts decreased within 7 hours of resupplying sucrose (Fig. 3b). These patterns seem to be commonly shared. The two forces (At SUG4 and AtSUGlO) showed some differences. Based on the predicted function of the encoded protein, the twelve induced genes were classified into three groups (amino acid metabolism, carbohydrate metabolism and unknown) (Table 1). [0268] [Table 1]
表 1.糖応答性遗伝子の機能分類  Table 1. Sugar-responsive genes
遺伝子 フ ヒレド 遺伝子 ID 説明 推定機能 Gene filed Gene ID Description Estimation function
AtSUGl 11.72 At3g30775 AtSUGl 11.72 At3g30775
AtSUG2 4.44 At3g47340  AtSUG2 4.44 At3g47340
AISUG3 6.24 At2gl3360 アミノ酸代謝 AISUG3 6.24 At2gl3360 Amino acid metabolism
AtSUG4 2.66 At5g07440 AtSUG4 2.66 At5g07440
AtSUGS 2.33 At5g43060
Figure imgf000075_0001
AtSUGS 2.33 At5g43060
Figure imgf000075_0001
AtSUG6 2.27 At5g56870 β~ガラク トシダ一ゼ ―  AtSUG6 2.27 At5g56870 β-galactosidase-
AtSUG7 7.7 At5g49360 ~キジロシダーゼ  AtSUG7 7.7 At5g49360 ~ pheasant
糖質代謝 AtSUG8 3.55 At5g20250 種子同化タンパク質  Carbohydrate metabolism AtSUG8 3.55 At5g20250 Seed assimilation protein
AtSUG9 3.70 At3g57520 同化タンパク質ホモログ 一  AtSUG9 3.70 At3g57520 Anabolic protein homolog 1
AtSUGl 0 2.49 At4g20260 鋤胞内膜結合タンパク質 ―  AtSUGl 0 2.49 At4g20260 Inner membrane binding protein of vomerula ―
AtSUGl 1 10.32 At5g48180 ミロシナ一ゼ結合タンパク S様タンパク質 未知 AtSUGl 2 2.07 At2g33830 推定オーキシン調節タンパク質 一  AtSUGl 1 10.32 At5g48180 myrosinase binding protein S-like protein unknown AtSUGl 2 2.07 At2g33830 putative auxin regulatory protein
(1. 2. 4 喑所の影響)  (1.2.4 Effect of location)
植物全体を遮光した場合、ロゼット葉におけるスクロース含量およびグルコース含 量は両方とも、 3日後、最初のレベルの 25%まで有意に減少した(図 4a)。この低下 は、グルコースに関して、スクロースよりも明確であり、 1日の処置後に 70%の減少を 示した(図 4a)。脱離葉における全ての AtSUGの転写産物は、喑所へ移して 1日以 内に非常に誘導され、そしてこのレベルは、 3日間まで維持された(図 4b)。  When the whole plant was shaded, both sucrose and glucose content in rosette leaves were significantly reduced after 3 days to 25% of the original level (Figure 4a). This reduction was more pronounced for glucose than for sucrose, showing a 70% reduction after one day of treatment (FIG. 4a). All AtSUG transcripts in detached leaves were highly induced within 1 day of transfer to location and this level was maintained for up to 3 days (FIG. 4b).
[0270] (1. 2. 5 老化の影響)  [0270] (1.2.5 Effect of aging)
脱離葉は、老化することが公知であり、 目に見えて黄化する(図 5a)。脱離したロゼ ット葉(これを老化させた)を用いて、糖含量の変動および AtSUGの転写レベルを調 ベた。実験系を、 Columbiaェコタイプで設定した。この実験系では、ロゼット葉は、 発芽約 25日後に充分に広がり、そして花序および花は、 35日目に現れる。 50日目 に、ロゼット葉は、クロロフィルを失レ、、そして 70日目の植物は、成熟して老化状態に 到達する。スクロースおよびグルコース(これは、 25日目まで蓄積した)は、その次の 10日間の間に迅速に減少した(図 5a)。し力し、これらの両方の糖の量は、その後増 加し、 70日目には 25日目とほぼ同じレベルに到達した。これは、蓄積した澱粉また は細胞化合物の分解を示し得る(図 5a)。 [0271] 驚くべきことに、 AtSUGの応答は、変動性であった(図 5b)。全ての転写産物が誘 導されたわけではなぐ次いで 50日目より後に誘導が明確になることを初めて示す。 AtSUG3および AtSUG5の転写産物は、 25日目に非老化葉において存在し、そし て老化期間の間、比較的一定のレベルで持続した(図 5b)。これらの結果は、 AtSU Gの発現系が、喑所および糖の欠乏によって誘導される人工老化と、加齢に関連す る天然の老化とは異なることを示唆する。 The detached leaves are known to age and visibly yellow (Fig. 5a). The detached rosette leaves (which were aged) were used to examine the variation in sugar content and the transcription level of AtSUG. The experimental system was set up with a Columbia Ecotype. In this experimental system, rosette leaves are fully spread approximately 25 days after germination, and inflorescences and flowers appear at 35 days. On day 50, rosette leaves lose chlorophyll, and on day 70 plants mature and reach an senescent state. Sucrose and glucose, which accumulated until day 25, declined rapidly during the next 10 days (Figure 5a). Again, the levels of both of these sugars then increased, reaching about the same level on day 70 as on day 25. This may indicate degradation of accumulated starch or cellular compounds (FIG. 5a). [0271] Surprisingly, the response of AtSUG was variable (Figure 5b). It is the first time that not all transcripts have been induced, but that induction becomes evident after day 50. AtSUG3 and AtSUG5 transcripts were present in non-senescent leaves at day 25 and persisted at relatively constant levels during the senescence period (FIG. 5b). These results suggest that the expression system of AtSUG is different from artificial aging induced by location and sugar deficiency and natural aging associated with aging.
[0272] (1. 2. 6 グルコースアナログの影響)  [0272] (1.2.6 Effect of glucose analog)
へキソキナーゼによってリン酸化される力 その後、グルコース一 6_リン酸には代謝 されなレ、、 2—デォキシグルコースの影響は、へキソキナーゼシグナル伝達経路の関 与を示すと考えられる。 3_〇_メチルグルコースは、へキソキナーゼの基質ではなく、 そしてその影響は、へキソキナーゼ依存性シグナル伝達を示す。離脱葉からスクロー スを 48時間欠乏させ、次いで糖またはアナログを 24時間にわたって供給した場合、 全ての AtSUGは、欠乏によって最初に抑制解除された(図 6)。スクロースおよびグ ルコースの再供給は、これらの発現を抑制した力 S、後者は、レ、くつかの遺伝子に関し ては有効であるには不充分であった。 2—デォキシグルコースもまた、大多数の AtS UGの発現を抑制した力 全てを抑制したわけではなぐ AtSUG5、 AtSUG7およ び AtSUGlOを抑制しなかった。 3— O メチルグルコースは、 AtSUGに対して何の 影響も示さな力 た。これらの結果は、 12個の AtSUGのうちの 9個力 おそらぐへ キソキナーゼシグナル伝達経路の制御下にあり、一方、 3個は明らかに独立している ことを指摘する。  The ability to be phosphorylated by hexokinase The glucose is not metabolized to 16-phosphate, and the effects of 2-dexoxyglucose are thought to indicate the involvement of the hexokinase signaling pathway. 3_〇_methylglucose is not a substrate for hexokinase, and its effects indicate hexokinase-dependent signaling. When sucrose was depleted from the withdrawn leaves for 48 hours and then sugar or analogs were fed for 24 hours, all AtSUGs were first derepressed by the deficiency (FIG. 6). Resupply of sucrose and glucose was not sufficient to be effective with respect to the forces S that suppressed their expression, the latter with respect to some genes. 2-Deoxyglucose also did not suppress AtSUG5, AtSUG7, and AtSUGlO, which did not suppress all of the forces that suppressed the expression of AtSUG. 3-O-methylglucose had no effect on AtSUG. These results indicate that nine of the twelve AtSUGs are under the control of the suspicious hexokinase signaling pathway, while three are clearly independent.
[0273] (実施例 2 : ガラクトシダーゼ、 ーキシロシダーゼおよび ダルコシダーゼの、 植物体での糖欠乏応答性発現の確認)  (Example 2: Confirmation of sugar deficiency-responsive expression of galactosidase, xylosidase and dalcosidase in plants)
実施例 1で単離した AtSUGlから 12の、スクロース存在下およびスクロース非存在 下での発現を、スクロース存在下の条件ではスクロースを 1 %含む条件で成長させた こと以外は上記 1. 2. 2に記載と同様の方法で、 RNAゲルプロット分析によって調べ た。結果を図 7に示す。この結果、 AtSUG6および AtSUG7が、糖欠乏に特に敏感 に応答して、顕著に誘導されることがわかった。それゆえ、 AtSUG6および AtSUG 7の配列を、 DNAシークェンサ一(モデル 373、 PE Biosystems, Foster City, CA)を用いて配列決定した。決定された配列を他の配列との相同性について検索し た結果、 AtSUG6は、 β一ガラクトシダーゼをコードし、そして AtSUG7は β—キシ口 シダーゼをコードすることがわ力 た。 The expression of AtSUGl isolated in Example 1 in the presence and absence of sucrose from AtSUGl was 12.2. In the same manner as described above, RNA gel plot analysis was used. Fig. 7 shows the results. As a result, it was found that AtSUG6 and AtSUG7 were significantly induced in response to sugar deficiency. Therefore, the sequences of AtSUG6 and AtSUG7 were converted to the DNA sequencer (model 373, PE Biosystems, Foster City, (CA). Searches of the determined sequences for homology to other sequences indicated that AtSUG6 encodes β-galactosidase and AtSUG7 encodes β-xylotsidase.
[0274] 得られた配列を用いて、 日本 DNAデータバンクの Webサイト(http : www. ddbj. nig. ac. jp/Welcome-j. html)の ClustalWとレ、う解析ソフトで配列分析を行うこ とによって、 /3 -ガラタトシダーゼ(Galとも記載する)および β -キシ口キダーゼ (Xylと も記載する)のファミリーの系統樹を作成した。結果を図 8に示す。 j3—ガラクトシダー ゼファミリーには、 Gal_l Gal_6が存在する。 /3—キシロシダーゼファミリーには、 X yl_l— Xyl— 3が存在する。  [0274] Using the obtained sequence, perform sequence analysis using the ClustalW and DNA analysis software on the website of the Japan DNA Data Bank (http: www.ddbj.nig.ac.jp/Welcome-j.html). This created a phylogenetic tree of the family of 3 / 3-galatatosidase (also described as Gal) and β-xychididase (also described as Xyl). Fig. 8 shows the results. Gal_l Gal_6 is present in the j3-galactosidase family. Xyl_l—Xyl—3 exists in the / 3—xylosidase family.
[0275] これらの類似の遺伝子の発現パターンを見るために、 Gal— 1一 Ga卜 6および Xyl— 1一 Xyl— 3のスクロース存在下およびスクロース非存在下での発現を、プローブとし てそれぞれの遺伝子を用いることおよびスクロース存在下の条件ではスクロースを 1 %含む条件で成長させたこと以外は、上記 1. 2. 2に記載と同様の方法で、 RNAゲ ルブロット分析によって調べた。結果を図 9に示す。この結果、 Gal— 1および Xyl— 1 、糖欠乏に敏感に応答し、糖欠乏によって顕著に発現が誘導されることがわかった 。 Xyl— 3は、糖欠乏によって発現が促進された。  [0275] In order to observe the expression patterns of these similar genes, the expression of Gal-1-Gato 6 and Xyl-1-Xyl-3 in the presence and absence of sucrose was determined using the respective probes as probes. RNA gel blot analysis was performed in the same manner as described in 1.2.2 above, except that the gene was used and that the cells were grown under conditions containing 1% sucrose in the presence of sucrose. The results are shown in FIG. As a result, it was found that Gal-1 and Xyl-1 responded sensitively to sugar deficiency, and expression was significantly induced by sugar deficiency. Xyl-3 expression was enhanced by sugar deficiency.
[0276] これらの糖分解関連遺伝子が糖欠乏に敏感に応答することから、他の糖分解関連 遺伝子も同様に応答するのではないかと考え、 —ダルコシダーゼ(Glc— 1)につい てプローブとして Glc_lを用いることおよびスクロース存在下の条件ではスクロースを 1 %含む条件で成長させたこと以外は、上記 1. 2. 2に記載と同様の方法で、 RNA ゲルプロット分析によって調べた。結果を図 10に示す。この結果、 β—ダルコシダー ゼもまた、糖欠乏に応答して発現が顕著に誘導されることがわかった。  [0276] Since these glycolysis-related genes respond sensitively to sugar deficiency, we suspect that other glycolysis-related genes might respond similarly. —Using Glc_l as a probe for dalcosidase (Glc-1) RNA gel plot analysis was performed in the same manner as described in 1.2.2 above, except that the cells were used and grown under conditions containing 1% sucrose in the presence of sucrose. The results are shown in FIG. As a result, it was found that the expression of β-dalcosidase was also significantly induced in response to sugar deficiency.
[0277] Gal— 1の遺伝子産物(724アミノ酸)、 Xyl_lの遺伝子産物(774アミノ酸)および G lc-1の遺伝子産物(531アミノ酸)の構造を比較したところ、いずれも、 N末端にシグ ナルペプチドを有することがわかった(図 11)。それゆえ、これらの遺伝子産物は、細 胞外へ分泌されると予想される。また、これらは全て糖鎖付加シグナルを持ち、糖タ ンパク質であると考えられた。他の部分についてはこれらの 3つの遺伝子産物間での 相同性は低かった。 (実施例 3 : ーガラクトシダーゼ、 ーキシロシダーゼおよび ーダルコシダーゼの、 培養細胞での糖欠乏応答性発現の確認) [0277] The structures of the Gal-1 gene product (724 amino acids), the Xyl_l gene product (774 amino acids), and the Glc-1 gene product (531 amino acids) were compared. (FIG. 11). Therefore, these gene products are expected to be secreted out of the cell. In addition, all of them had a sugar chain addition signal and were considered to be glycoproteins. In other parts, the homology among these three gene products was low. (Example 3: Confirmation of glucose deficiency-responsive expression of -galactosidase, -xylosidase and -dalcosidase in cultured cells)
培養細胞は、容易に糖源を調整し得、かつ細胞壁タンパク質が培養液中に分泌さ れるという特徴を有する(図 12を参照)。 j3—ガラクトシダーゼ、 j3—キシロシダーゼぉ よび /3—ダルコシダーゼの発現が培養細胞中でも同様に糖欠乏によって誘導される のであれば、これらの遺伝子の有するプロモーターを用いて糖欠乏誘導性発現系を 構築することが可能である。そこで、シロイヌナズナ(ェコタイプ Columbia)を、 2%ス クロース(wZv)を含む 0. 5 X MS液体培地(MurashigeぉょびSkoog基本塩、 pH 5. 8)中で、 16時間明期 Z8時間喑期の光周期で 21°Cで成長させた。播種 1週間後 のシロイヌナズナの胚軸の部分を切り出し、この部分を、 3%スクロースおよび lmg/ L 2, 4—ジクロロフエノキシ酢酸、 1 X B5ビタミン(0. 4mg/L ミオイノシトール、 0. 004mg/L ニコチンアミド、 0. 004mg/L ピリドキシン HC1、 0. 04mg/L チア ミン HC1)および 0. 8%ァガロースを含む 1 X MS固形培地上にのせて喑所で 21°C で 1ヶ月間にわたって培養することによってカルスを誘導した。 1力月後、誘導された カルスを、ァガロースを含まなレ、 3%スクロースおよび lmg/L 2, 4—ジクロロフエノ キシ酢酸、 1 X B5ビタミン(0. 4mg/L ミオイノシトール、 0. 004mg/L ニコチン アミド、 0. 004mg/L ピリドキシン HC1、 0. 04mg/L チアミン HC1)を含む 1 X M S培地に植えて、暗黒下で 21でで 1 OOrpmで振盪しながら 1週間にわたつて懸濁培 養した。 1週間の懸濁培養後、このシロイヌナズナ培養細胞を、 0、 10、 30または 90 mMのスクロースおよび lmg/L 2, 4—ジクロロフエノキシ酢酸、 1 X B5ビタミン(0. 4mg/L ミオイノシトール、 0. 004mg/L ニコチンアミド、 0. 004mg/L ピリドキ シン HC1、 0. 04mg/L チアミン HC1)を含む 1 X MS培地中で 21°Cで 36時間にわ たって継代培養した。継代培養開始時 (0時間)、継代培養 12時間後、 24時間後お よび 36時間後に培養細胞の一部を取り出し、この細胞中での Gal— 1、 Xyl— 1および Glc— 1の発現を、各遺伝子についてプローブとしてそれぞれの遺伝子を用いること 以外は、上記 1. 2. 2に記載と同様の方法で、 RNAゲルプロット分析によって調べた 。結果を図 13に示す。この結果、 Gal— 1、 Xyl_lおよび Glc_lが、培養細胞中でも 糖欠乏による顕著に mRNA発現が誘導され、そしてスクロースが存在するとこれらの 遺伝子の mRNAの発現はほぼ完全に抑制されることがわかった。 Cultured cells are characterized in that the sugar source can be easily adjusted and that cell wall proteins are secreted into the culture solution (see FIG. 12). If expression of j3-galactosidase, j3-xylosidase and / 3-darcosidase is similarly induced in cultured cells by sugar deficiency, construct a sugar deficiency-inducible expression system using the promoters of these genes. Is possible. Therefore, Arabidopsis thaliana (ecotype Columbia) was placed in a 0.5X MS liquid medium (Murashige Chobi Skoog basic salt, pH 5.8) containing 2% sucrose (wZv) for 16 hours during the light period and 8 hours during the Z8 period. The photoperiod was grown at 21 ° C. One week after seeding, a portion of the hypocotyl of Arabidopsis thaliana was cut out, and this portion was cut out with 3% sucrose and lmg / L 2,4-dichlorophenoxyacetic acid, 1 X B5 vitamin (0.4 mg / L myo-inositol, 0. 1 month on 1X MS solid medium containing 004 mg / L nicotinamide, 0.004 mg / L pyridoxine HC1, 0.04 mg / L thiamine HC1) and 0.8% agarose for 1 month at 21 ° C Callus was induced by culturing over a period of time. One month later, the induced callus was replaced with agarose-free, 3% sucrose and lmg / L 2,4-dichlorophenoxyacetic acid, 1 X B5 vitamin (0.4 mg / L myo-inositol, 0.004 mg / L Planted in 1 XMS medium containing nicotinamide, 0.004 mg / L pyridoxine HC1, and 0.04 mg / L thiamine HC1) and cultivated in suspension in the dark with shaking at 100 rpm at 21 for 1 week. . After one week of suspension culture, the Arabidopsis cultured cells were treated with 0, 10, 30 or 90 mM sucrose and lmg / L 2,4-dichlorophenoxyacetic acid, 1 X B5 vitamin (0.4 mg / L myo-inositol The cells were subcultured at 21 ° C. for 36 hours in a 1 × MS medium containing 0.0004 mg / L nicotinamide, 0.004 mg / L pyridoxine HC1, and 0.004 mg / L thiamine HC1). At the start of the subculture (0 hours), 12 hours, 24 hours, and 36 hours after the subculture, a portion of the cultured cells is removed, and Gal-1, Xyl-1, and Glc-1 in the cells are removed. Expression was examined by RNA gel plot analysis in the same manner as described in 1.2.2 above, except that each gene was used as a probe for each gene. The results are shown in FIG. As a result, Gal-1, Xyl_l and Glc_l were remarkably induced in mRNA expression in cultured cells due to sugar deficiency, and in the presence of sucrose, It was found that the expression of gene mRNA was almost completely suppressed.
[0279] 培養液中の Gal— 1、 Xyl— 1および Glc— 1の実際の酵素活性も同様に糖欠乏誘導 性で増加するか否かを決定するために、 3%スクロースおよび lmg/L 2, 4—ジクロ 口フエノキシ酢酸、 1 X B5ヒ、、タミン(0. 4mg/L ミ才イノシトーノレ、 0. 004mg/:L 二 コチンアミド、 0. 004mg/L ピリドキシン HC1、 0. 04mg/L チアミン HC1)を含む 1 X MS培地で前培養し、次いで、培養細胞を、 3%スクロースを含むかまたはスクロ ースを含まない同じ培地に移植して継代培養した後、 10時間後、 20時間後、 30時 間後または 40時間後に培養上清を 0. 1ml採取し、人工基質 (それぞれ、メチルゥン ベリフエロン— Gal、メチルゥンベリフエロン— Xylおよびメチルゥンベリフエロン— Glu) を用レ、、 365nmの励起波長および 455nmの吸収波長で蛍光顕微鏡を用いて、この 上清中の遊離した 4ーメチルゥンベリフヱロン(4—MU)の蛍光を測定することによって 、この上清中の β一ガラクトシダーゼ活性、 β—キシロシダーゼ活性および β—ダルコ シダーゼ活性を測定した。結果を図 14に示す。この結果、 一ガラクトシダーゼ、 β— キシロシダーゼおよび _ダルコシダーゼのいずれも、糖欠乏によって、タンパク質レ ベルで発現が顕著に誘導されて培養液中に分泌されることが確認された。 [0279] To determine whether the actual enzymatic activity of Gal-1, Xyl-1, and Glc-1 in the culture was also increased in a glucose-deficient manner, 3% sucrose and lmg / L 2 , 4-dichloro mouth phenoxyacetic acid, 1 X B5 arsenic, Tamine (0.4 mg / L genuine inositol), 0.004 mg /: L nicotinamide, 0.004 mg / L pyridoxine HC1, 0.04 mg / L thiamine HC1 Precultured in 1X MS medium containing, and then subcultured by transplanting the cultured cells to the same medium containing 3% sucrose or without sucrose, and after 10 hours and 20 hours, After 30 hours or 40 hours, collect 0.1 ml of the culture supernatant and use artificial substrates (Methyl-Bennveriferon-Gal, Methyl-Bembelliferone-Xyl and Methyl-Bembelliferone-Glu, respectively), 365 nm Using a fluorescence microscope at an excitation wavelength of 455 nm and an absorption wavelength of 455 nm. By measuring the fluorescence of 4-methyl © Nbe Rif We Ron (4-MU), beta one-galactosidase activity of this supernatant was measured β- xylosidase activity and β- Darco oxidase activity. The results are shown in FIG. As a result, it was confirmed that the expression of all of galactosidase, β-xylosidase and _darcosidase was significantly induced at the protein level due to sugar deficiency and was secreted into the culture medium.
[0280] これらの結果から、糖欠乏(糖飢餓)時には、糖飢餓によって細胞壁分解酵素遺伝 子の発現が誘導され、細胞壁分解酵素が分泌され、この細胞壁分解酵素によって細 胞壁に存在する糖鎖が分解されて、ガラクトース、キシロース、グノレコースといった単 糖が遊離され、この遊離した糖を植物が炭素源として利用していると考えられる(図 1 5)。つまり、植物は光合成阻害などにより、糖飢餓状態に陥ると細胞壁多糖を分解し 、エネルギー源として利用すると考えられる。 [0280] From these results, during sugar deficiency (sugar starvation), sugar starvation induces the expression of cell wall degrading enzyme genes, secretes cell wall degrading enzymes, and causes the sugar chains present in the cell wall by the cell wall degrading enzymes. Is decomposed to release monosaccharides such as galactose, xylose, and gnorecose, and the released sugars are considered to be used as carbon sources by plants (Fig. 15). In other words, it is considered that when a plant becomes sugar-starved due to inhibition of photosynthesis or the like, it degrades cell wall polysaccharide and uses it as an energy source.
[0281] Gal— 1、 Xyl— 1および Glc— 1が、どのような糖によって糖欠乏誘導性発現の制御を 受けているかを確認するために、上記のシロイヌナズナ培養細胞を、 3。/0スクロース および lmg/L 2, 4—ジクロロフエノキシ酢酸、 1 X B5ビタミン(0. 4mgZL ミオイ ノシトーノレ、 0. 004mg/L ニコチンアミド、 0. 004mg/L ピリドキシン HC1、 0. 0 4mg/L チアミン HC1)を含む I X MS培地で前培養し、次いで、 3%スクロースの 代わりにそれぞれ、炭素源としてスクロース、グルコース、ガラクトース、フルクトース、 キシロース、マンノース、マンニトール、またはグルコースアナログである 2—デォキシ —グルコース(2_d_gluc)もしくは 3_〇一メチルグルコース(3_oM_gluc)を 3%含む 同じ培地中で、暗黒下で 21°Cで 24時間培養した。 24時間培養後、培養細胞を採取 し、 mRNAを単離し、 RNAゲルプロット分析によって調べた。結果を図 16に示す。こ の結果、スクロース、グルコース、ガラクトース、フルクトースおよびキシロースとレ、う代 謝可能な糖によって Gal— 1、 Xyl_lおよび Glc_lの mRNA発現は抑制され、一方、 2—デォキシ—グルコース、マンノース、 3_0_メチルグルコースおよびマンニトールと レ、う植物によって代謝されなレ、 (解糖系に入らなレ、)糖によっては、 Gal— 1、 Xyl— 1お よび Glc_lの mRNA発現が抑制されないことがわかった。このこと力ら、 Gal— 1、 Xyl _1および Glc_lの mRNA発現は、代謝可能な糖の存在の有無によって制御されて レ、ることがわかった(図 15)。これにより、糖による発現制御は、解糖系以降の物質に より制御されていると予想される。 [0281] In order to confirm what kind of sugar controls the sugar-deficiency-induced expression by Gal-1, Xyl-1 and Glc-1, the cultured Arabidopsis thaliana cells were used. / 0 sucrose and lmg / L 2,4-dichlorophenoxyacetic acid, 1 X B5 vitamin (0.4 mg ZL myo-inosito-nore, 0.004 mg / L nicotinamide, 0.004 mg / L pyridoxine HC1, 0.0 4 mg / L Preculture in IX MS medium containing thiamine HC1), then 2-doxy, instead of 3% sucrose, each of which is sucrose, glucose, galactose, fructose, xylose, mannose, mannitol, or a glucose analog as the carbon source —Cultured in the same medium containing 3% glucose (2_d_gluc) or 3_-methylglucose (3_oM_gluc) at 21 ° C in the dark for 24 hours. After culturing for 24 hours, cultured cells were collected, mRNA was isolated, and examined by RNA gel plot analysis. The results are shown in FIG. As a result, mRNA expression of Gal-1, Xyl_l and Glc_l was suppressed by sucrose, glucose, galactose, fructose and xylose, and metabolizable sugars, while 2-deoxy-glucose, mannose and 3_0_methyl It was found that the expression of Gal-1, Xyl-1, and Glc_l mRNAs was not suppressed by glucose, mannitol, and sugars that were not metabolized by plants and that did not enter glycolysis. These results indicate that mRNA expression of Gal-1, Xyl_1 and Glc_l is controlled by the presence or absence of metabolizable sugars (Fig. 15). Thus, it is expected that the expression control by sugar is controlled by substances in and after the glycolysis system.
[0282] (実施例 4 :タバコ BY— 2細胞における β一ガラクトシダーゼプロモーターまたは β - キシロシダーゼプロモーターによる異種遺伝子配列の発現) (Example 4: Expression of heterologous gene sequence by β-galactosidase promoter or β-xylosidase promoter in tobacco BY-2 cells)
目的タンパク質の遺伝子の発現量および発現させるタイミングを制御することは、効 率的なタンパク質生産を目指す場合に重要なファクターである。また、培養細胞の増 殖性もタンパク質の高生産のためには重要である。例えば、タバコ BY— 2細胞(Kato , A. ら、 Fermentation Technology Today 、 1972、 pp. 689— 695に 己載の 方法に従って作製され得る;東京大学大学院新領域創成科学研究科の馳澤盛一郎 先生より分与され得る)は、 1週間で約 100倍に増殖する、非常に増殖の速い培養細 胞株である。このような増殖の速い培養細胞を用いれば、糖欠乏誘導性プロモータ 一を用いた有用タンパク質生産がより効率的に行われると考えられる。そこで、シロイ ヌナズナから単離した糖欠乏誘導性遺伝子のプロモーターが、異種植物であるタバ コにおレ、ても糖欠乏誘導性に発現可能であるか否かを調べた。  Controlling the expression level and timing of gene expression of the target protein is an important factor when aiming for efficient protein production. Proliferation of cultured cells is also important for high protein production. For example, tobacco BY-2 cells (Kato, A. et al., Fermentation Technology Today, 1972, pp. 689-695, can be prepared according to the method described in myself; Dr. Seiichiro Tosawa of the Graduate School of Frontier Sciences, The University of Tokyo ) Are very fast growing cell lines that grow about 100-fold in one week. Use of such fast-growing cultured cells would allow more efficient production of useful proteins using the sugar deficiency-inducible promoter. Therefore, it was examined whether the promoter of the sugar deficiency-inducible gene isolated from Arabidopsis thaliana could be expressed in a sugar deficiency-inducing manner even in a heterologous plant, Tabaco.
[0283] (4. 1 j3 _ガラクトシダーゼ遺伝子のプロモーターに異種遺伝子配列を連結した 構築物の作製)  (4.1 Preparation of Construct in Which Heterologous Gene Sequence Is Linked to Promoter of j3_galactosidase Gene)
プロモーターおよびシグナルペプチドとして β一ガラクトシダーゼ(Gal— 1)遺伝子( MIPの ID #: At5g56870)由来の 1418bpのプロモーター(Ga卜 P)および 27ァミノ 酸配列のシグナルペプチド(SP)コード配列を含む領域(Gal_P_SP)を用レ、、異種 遺伝子配列として GFPコード配列を用いる。 Gal— 1のプロモーター領域としては、 G a卜 1の開始コドンより 1418bp上流の DNA配列を用いた。もちろん、当業者に公知 のように、プロモーター配列としてこれほど長い領域が必須というわけではなぐより短 レ、配歹' Jを用レ、ても同様の結果が獲得され得る。 A region containing a 1418 bp promoter (GaP) derived from the β-galactosidase (Gal-1) gene (MIP ID: At5g56870) and a signal peptide (SP) coding sequence of 27 amino acid sequence (Gal_P_SP) as a promoter and a signal peptide ) The GFP coding sequence is used as the gene sequence. As the promoter region of Gal-1, a DNA sequence 1418 bp upstream from the start codon of Ga1 was used. Of course, as is known to those skilled in the art, a similar result can be obtained even if a longer region is not necessarily used as the promoter sequence and the system J 'is used.
[0284] 詳細には、シロイヌナズナ(ェコタイプ:コロンビア)のゲノム DNAを、臭化セチルトリ メチルアンモニゥム沈殿法(Murrayおよび Thompson, Nucleic Acids Res 8、 1980、 pp. 4321-4325) (こよって調製した。調製されたゲノム DNAをテンプレート とし、プライマー 1 (Gaト P— Hind) (AAGCTTATATGGACTAGCTAGACGTA AGC;配列番号 7)およびプライマー 2 (Gal-SP-Bam) (GGATCCATAAGAGA CTGATGCTTTTACTATACAAC ;配列番号 8)を用い、タカラバイオのパイ口べ ストポリメラーゼを用いて PCRを行うことによって、 /3 _ガラクトシダーゼのプロモータ 一配列およびその後ろのシグナルペプチドコード配列(Gal_P_SP)を増幅した。プ ライマー 1は、 Hindlll配列と galプロモーターの上流の配列と力 なる配列を有する 。プライマー 2は、 galのシグナルペプチドの推定切断部位から 5アミノ酸下流のァミノ 酸までと BamHI部位の配列とからなる配列を有する。このときの PCR反応条件は、 反応条件は添付の使用説明書に則っており、以下のとおりであった:  [0284] In detail, genomic DNA of Arabidopsis thaliana (ecotype: Colombia) was prepared by cetyltrimethylammonium bromide precipitation method (Murray and Thompson, Nucleic Acids Res 8, 1980, pp. 4321-4325). Using the prepared genomic DNA as a template, TAKARA BIO PCR was performed using pi-mouth best polymerase to amplify the sequence of the / 3_galactosidase promoter and the signal peptide coding sequence (Gal_P_SP) behind it. Primer 2 is an amino acid 5 amino acids downstream from the putative cleavage site of the gal signal peptide. Having a sequence consisting of the sequence of the BamHI site to the PCR reaction conditions at this time, the reaction conditions are in accordance with the instructions attached, were as follows.:
94°Cで 30秒間、 55°Cで 30秒間、 72°Cで 1分間を 1サイクルとして、 30サイクノレ行 つた後、 72°Cで 5分間の PCR反応条件。  PCR reaction conditions: 30 cycles at 94 ° C for 30 seconds, 55 ° C for 30 seconds, 72 ° C for 1 minute, 30 cycles, and 72 ° C for 5 minutes.
[0285] PCR産物の増幅を電気泳動で確認した後、増幅された DNAフラグメント 1を、 pGE M— T (登録商標) Easyベクター(Promegaより入手)に連結し、 Ε· coliにクローニン グした。クローニングされた塩基配列の決定をおこない、 目的の DNA断片がクローン 化されていることを確認した。この E. coliを大量培養した後、この E. coliからべクタ 一を抽出し、抽出されたベクターを制限酵素 Hindlllおよび BamHIで切断し、電気 泳動し、ゲルから回収して精製することにより、 j3—ガラクトシダーゼをコードする遺伝 子のプロモーター配列およびその後ろのシグナルペプチドコード配列を含む DNAフ ラグメント 1 (Gal_P— SP; Gaト P— Gal_SPとも記載する)を得た(図 17aを参照のこと [0285] After confirming the amplification of the PCR product by electrophoresis, the amplified DNA fragment 1 was ligated to pGEM-T (registered trademark) Easy vector (obtained from Promega) and cloned into E. coli. The cloned nucleotide sequence was determined, and it was confirmed that the target DNA fragment had been cloned. After culturing this E. coli in large quantities, vectors are extracted from this E. coli, the extracted vector is cut with restriction enzymes Hindlll and BamHI, electrophoresed, recovered from the gel, and purified. A DNA fragment 1 (Gal_P—SP; also described as Ga to P—Gal_SP) containing the promoter sequence of the gene encoding j3-galactosidase and the signal peptide coding sequence following it was obtained (see FIG. 17a).
) o ) o
[0286] 一方、 pBI121 (Clontechより入手)を制限酵素 EcoRIおよび Hindlllで切断して、 CaMV 35Sプロモーター、 GUS遺伝子および Nosターミネータ一を有さないベクタ 一フラグメント 2を得た。また、 CaMV35S_sGFP (S65T) _N〇S3 ' (福田裕穂、西 村幹夫、中村研三監修、「植物の細胞を観る 実験プロトコール 遺伝子発現から細 胞内構造'機能まで」、秀潤社、 1997、 pp. 196-199に記載される;丹羽康夫氏より 分与された)を制限酵素 EcoRIおよび Hindlllで切断し、電気泳動し、ゲルから回収 して精製することによって、 CaMV35Sプロモーター、 sGFP遺伝子および NOSター ミネーターを含むフラグメント 2を得た。ベクターフラグメント 2とフラグメント 2とを連結し て、カナマイシン抵抗性遺伝子の下流に CaMV35Sプロモーター、 sGFP遺伝子お よび NOSターミネータ一を含むベクター 4を得た。このベクターを E. coli中にクロー ユングし、この E. coliを大量培養した後、この E. coliからベクター 4を抽出し、抽出さ れたベクター 4を Hindlllおよび BamHIで切断して、カナマイシン抵抗性遺伝子の 下流にプロモーター揷入用部位、 sGFP遺伝子および NOSターミネータ一を含むベ クタ一フラグメント 5を得た(図 17bを参照のこと)。 [0286] On the other hand, pBI121 (obtained from Clontech) was cut with restriction enzymes EcoRI and Hindlll, Fragment 2, a vector without the CaMV 35S promoter, GUS gene and Nos terminator, was obtained. Also, CaMV35S_sGFP (S65T) _N〇S3 '(Hiroho Fukuda, Mikio Nishimura, and Kenzo Nakamura, "Experimental protocol for observing plant cells: From gene expression to intracellular structure'function", Shujunsha, 1997, pp. Described in 196-199; donated by Yasuo Niwa), digested with the restriction enzymes EcoRI and Hindlll, electrophoresed, recovered from the gel and purified to obtain the CaMV35S promoter, sGFP gene and NOS gene. Fragment 2 containing the minator was obtained. The vector fragment 2 and the fragment 2 were ligated to obtain a vector 4 containing the CaMV35S promoter, the sGFP gene and the NOS terminator downstream of the kanamycin resistance gene. After cloning this vector into E. coli and culturing this E. coli in large quantities, extract vector 4 from this E. coli, cut the extracted vector 4 with Hindlll and BamHI, A vector fragment 5 containing the promoter insertion site, the sGFP gene and the NOS terminator was obtained downstream of the sex gene (see FIG. 17b).
[0287] 次いで、上記で調製した DNAフラグメント 1とベクターフラグメント 5とを連結して、力 ナマイシン抵抗性遺伝子の下流に Galプロモーター、 Galシグナルペプチドコード配 歹 IJ、 Galの成熟ポリペプチド配列の最初の 5アミノ酸をコードする配歹 IJ、 GFP遺伝子 配列および Nosターミネータ一配列が連結されたプラスミド 6 (植物導入用構築物; p BI-Gal-P-SP-GFP)を得た。  [0287] Next, the DNA fragment 1 prepared above and the vector fragment 5 were ligated, and the Gal promoter, the Gal signal peptide coding system IJ, and the first of the Gal mature polypeptide sequence were placed downstream of the force namycin resistance gene. A plasmid 6 (construct for plant introduction; pBI-Gal-P-SP-GFP) was obtained, in which the system IJ encoding 5 amino acids, the GFP gene sequence and the Nos terminator sequence were linked.
[0288] (4. 2 形質転換 BY2細胞の確立)  (4.2 Establishment of Transformed BY2 Cells)
この植物導入用構築物(pBI— Gal— P-SP— GFP)を、福田裕穂、西村幹夫、中村 研三監修、「植物の細胞を観る 実験プロトコール 遺伝子発現から細胞内構造'機 能まで」、秀潤社、 1997、 pp. 125— 129に記載のァグロバタテリゥム法に従って Agr obacterium tumefaciens (EHA105株)に導入し、 pBI_Gal_P_SP_GFPが導 入された Agrobacterium tumefaciensをタバコ培養細胞 BY—2株に感染させ、感 染後の BY—2細胞を、 200 μ gZmLカナマイシンおよび 500 μ g/mLカルべニシリ ンを含む BY— 2固形培地 (福田裕穂、西村幹夫、中村研三監修、「植物の細胞を観 る 実験プロトコール 遺伝子発現から細胞内構造 *機能まで」、秀潤社、 1997、 pp . 187— 191に記載)で選択して、形質転換 BY - 2細胞を得た。得られた形質転換 B Y— 2細胞をカナマイシン存在下(50mg/L)で 3%スクロースを含む液体 BY— 2培地 (福田裕穂、西村幹夫、中村研三監修、「植物の細胞を観る 実験プロトコール 遺 伝子発現から細胞内構造'機能まで」、秀潤社、 1997、 pp. 187— 191に記載)中で 27°Cで振盪しながら液体培養した。 1週間ごとに、 0. 5mlの細胞を 50mlの新しい培 地に継代培養して、細胞株を維持した。継代培養に用いた培地中のスクロース濃度 は 3%であり、糖は充分に存在していた。 This construct for plant introduction (pBI-Gal-P-SP-GFP) was supervised by Hiroho Fukuda, Mikio Nishimura and Kenzo Nakamura, "Experimental protocol for observing plant cells: From gene expression to intracellular structure 'function," Junsha, 1997, pp. 125-129, introduced into Agrobacterium tumefaciens (EHA105 strain) according to the agrobacterium terminus method described in p. 125-129. The infected BY-2 cells were transformed into a BY-2 solid medium containing 200 μg ZmL kanamycin and 500 μg / mL carbenicillin (Yuho Fukuda, Mikio Nishimura, Kenzo Nakamura, “ Experimental Protocol: From gene expression to intracellular structure * function ”, described in Shujunsha, 1997, pp. 187-191) to obtain transformed BY-2 cells. Transformation B obtained Y-2 cells in the presence of kanamycin (50 mg / L) in 3% sucrose in liquid BY-2 medium (Hiroki Fukuda, Mikio Nishimura, Kenzo Nakamura, "Experimental protocol for observing plant cells. Liquid culture was performed at 27 ° C with shaking in “internal structure to function” (described in Shujunsha, 1997, pp. 187-191). Every week, 0.5 ml of cells were subcultured into 50 ml of fresh medium to maintain the cell line. The sucrose concentration in the medium used for subculture was 3%, and the sugar was sufficiently present.
[0289] (4. 3 GFPの分泌誘導および分泌の確認) (4.3 Confirmation of secretion induction and secretion of GFP)
この形質転換 BY— 2細胞を、継代 4日目に、ナイロンメッシュを通して培地を除去す ることによって取り出した。取り出された形質転換 BY— 2細胞を、スクロースを含まな レ、こと以外は組成が同じである液体 BY-2培地に移し、 27°Cで振盪培養した。スクロ ースを含まない培地に移植してから 3日目および 4日目の培地からタンパク質を抽出 し、 SDS—P AGEによりタンパク質を分画した。その後、 GFPに特異的な抗体である 、抗 GFP抗体(ロシュ'ダイァグノスティック社)を用い、中村研三ら監修、秀潤社、細 胞工学別冊、「植物のタンパク質実験プロトコール 遺伝子と組織から迫るタンパク質 の機能と構造」、 164— 172頁に記載の方法に従ってウェスタンブロッテイングをおこ なった。結果を図 18に示す。本実施例においては、形質転換 BY— 2細胞の増殖を、 600nmでの光学密度(OD )によって測定した。図 18のグラフにおいては、 OD  The transformed BY-2 cells were removed on day 4 by removing the medium through a nylon mesh. The removed transformed BY-2 cells were transferred to a liquid BY-2 medium having the same composition except that it did not contain sucrose, and cultured with shaking at 27 ° C. Protein was extracted from the medium on days 3 and 4 after transplantation to a medium containing no sucrose, and the protein was fractionated by SDS-PAGE. Then, using an anti-GFP antibody (Roche's Diagnostics), an antibody specific to GFP, supervised by Kenzo Nakamura et al., Shujunsha, Cell Engineering Separate Volume, “Plant Protein Experiment Protocol Genes and Tissues” Western Blotting was performed according to the method described in “Functions and Structures of Proteins Approaching”, pp. 164-172. The results are shown in FIG. In this example, the growth of transformed BY-2 cells was measured by optical density (OD) at 600 nm. In the graph of Fig. 18, OD
600 600 を縦軸に示し、スクロース含有培地での継代時点を 0日目とした培養日数を横軸に 示す。スクロース含有培地での培養を続けた場合、細胞は 7日目まで増殖し続けた。 培養 4日目にスクロースを含まない培地に継代した場合、細胞はほとんど増殖しなか つたが、 GFPタンパク質を分泌した。図 18のグラフ中の挿入図は、ウェスタンブロッテ イングによる、 GFPタンパク質の検出を示す。スクロースを含まない培地に移植してか ら 3日目の培地から検出された GFPタンパク質を左側の矢印で示す。スクロースを含 まない培地に移植してから 4日目の培地から検出された GFPタンパク質を右側の矢 印で示す。この結果、糖欠乏により培地に GFPタンパク質が分泌され、分泌された G FPは培地中で蓄積されることが確認された。  600 600 is shown on the vertical axis and the number of days of culture with the passage time in the sucrose-containing medium as day 0 is shown on the horizontal axis. When culturing in sucrose-containing medium was continued, the cells continued to grow until day 7. When passaged to culture medium without sucrose on day 4 of culture, the cells hardly grew, but secreted GFP protein. The inset in the graph of FIG. 18 shows the detection of GFP protein by Western blotting. The GFP protein detected from the medium three days after transplantation to the medium without sucrose is indicated by the arrow on the left. The GFP protein detected in the medium 4 days after transplantation to the medium without sucrose is indicated by the right arrow. As a result, it was confirmed that the GFP protein was secreted into the medium due to sugar deficiency, and the secreted GFP was accumulated in the medium.
[0290] それゆえ、シロイヌナズナとは異種であるタバコ細胞においても、 Gal— 1が糖欠乏 性で誘導され、そして GFPが培養液中に分泌されることがわかる。このことから、糖欠 乏誘導性プロモーターおよびシグナルペプチド配列を用いることによって、異種遺伝 子配列を制御可能に、効率的に発現させ、分泌させ得ることがわかる。 [0290] Therefore, even in tobacco cells heterologous to Arabidopsis thaliana, Gal-1 is induced in a sugar-deficient manner, and GFP is secreted into the culture medium. From this, sugar deficiency It can be seen that by using a poorly inducible promoter and a signal peptide sequence, a heterologous gene sequence can be controllably and efficiently expressed and secreted.
[0291] (実施例 5 ーキシロシダーゼ遺伝子のプロモーターによる異種遺伝子配列の発 現)  Example 5 Expression of Heterologous Gene Sequence Using Xylosidase Gene Promoter
分泌型 β—キシロシダーゼ遺伝子のプロモーターを単離し、レポーター遺伝子とし て /3—グルクロニダーゼ(GUS)に連結したベクターを作製した。このベクターを、上 記 3. 1と同様にして、 Agrobacterium媒介形質転換法によって、上記で作製したシ ロイヌナズナ培養細胞および横浜国立大学平塚和之教授から分与されたタバコ BY 一 2培養細胞に導入した。  The promoter of the secretory β-xylosidase gene was isolated, and a vector linked to / 3-glucuronidase (GUS) as a reporter gene was prepared. This vector was introduced into the Arabidopsis cultured cells prepared above and the tobacco BY-12 cultured cells distributed by Prof. Kazuyuki Hiratsuka by the Agrobacterium-mediated transformation method in the same manner as 3.1 above. did.
[0292] その結果、 GUSタンパク質は本来の /3—キシロシダーゼ同様、糖欠乏により顕著に 誘導された。つまり、 —キシロシダーゼプロモーターを用いることにより、 目的タンパ ク質を植物培養細胞において糖欠乏により発現誘導させることが可能であった。  [0292] As a result, the GUS protein was remarkably induced by sugar deficiency, like the original / 3-xylosidase. In other words, by using the xylosidase promoter, it was possible to induce the expression of the target protein in cultured plant cells by sugar deficiency.
[0293] この発現系を用いることで、効率的な有用タンパク質の植物細胞での分泌生産が 可能となる。  [0293] By using this expression system, efficient secretory production of useful proteins in plant cells becomes possible.
[0294] (実施例 6:シロイヌナズナ β一ガラクトシダーゼプロモーター(Gal— Ρ)およびシグナ ルペプチド(SP)の制御により、シロイヌナズナ細胞の細胞外 (培地)に GFPを分泌さ せる実験)  (Example 6: Experiment in which GFP is secreted extracellularly in Arabidopsis thaliana cells (medium) by controlling Arabidopsis β-galactosidase promoter (Gal-II) and signal peptide (SP))
上記実施例 4で作製した構築物 (植物導入用構築物; pBI - Gal - P - SP - GFP)を 、秀潤社、細胞工学別冊、「モデル植物の実験プロトコール」、 109— 113ページ)に 従って、シロイヌナズナ植物体に導入して、形質転換シロイヌナズナ種子を得た。こ の種子を発芽させ、成長させ、充分に成長した形質転換植物体力 葉を切り取り、水 (糖欠乏条件)または 1 %スクロース水溶液 (糖存在条件)に浮かべ、喑所に一晩置い た。この葉を磨り潰してタンパク質を抽出し、実施例 4と同様にウェスタンブロッテイン グを行った。その結果、水に浮かべた葉についてのみ、 GFP遺伝子の発現および G FPタンパク質の蓄積が確認された。このこと力、ら、この形質転換シロイヌナズナ植物 の葉では、 GFP遺伝子の発現および GFPタンパク質の蓄積が糖欠乏特異的に起こ ることが確認された。  According to the construct prepared in Example 4 above (construct for plant introduction; pBI-Gal-P-SP-GFP), according to Shujunsha, Cell Engineering Supplement, "Model Plant Experimental Protocol", pp. 109-113) Transgenic Arabidopsis seeds were obtained by introducing the transgenic Arabidopsis thaliana. The seeds were allowed to germinate and grow, and the leaves of the fully grown transformed plant were cut off, floated in water (sugar-deficient conditions) or a 1% sucrose aqueous solution (sugar-existing conditions), and placed in a place overnight. The leaves were ground to extract proteins and subjected to Western blotting in the same manner as in Example 4. As a result, expression of the GFP gene and accumulation of the GFP protein were confirmed only in the leaves floating on the water. It was confirmed that in the leaves of the transgenic Arabidopsis thaliana plants, the expression of the GFP gene and the accumulation of the GFP protein occurred specifically in sugar deficiency.
[0295] (実施例 7:シロイヌナズナ β一ガラクトシダーゼプロモーター(Gal— Ρ)およびシグナ ルペプチド(SP)の制御により、シロイヌナズナ細胞の細胞外 (培地)にマウス抗体を 分泌させる実験) (Example 7: Arabidopsis thaliana β-galactosidase promoter (Gal-Ρ) and signa Of secretion of mouse antibodies to the extracellular (medium) of Arabidopsis thaliana cells by the control of peptide (SP)
GFP遺伝子の代わりにマウス抗体遺伝子を用いること以外は実施例 4と同様にして 、マウス抗体用発現構築物を作製する。この発現構築物を、実施例 6と同様にしてシ ロイヌナズナ培養細胞に導入して、形質転換シロイヌナズナ細胞を得る。実施例 4と 同様にゥヱスタンプロッテイングにより確認することにより、この形質転換シロイヌナズ ナ細胞では、マウス抗体遺伝子の発現およびタンパク質の蓄積が糖欠乏特異的に 起こること力確認される。また、培地中に発現されたマウス抗体を精製し、抗体特異 性試験を行うことにより、発現されたマウス抗体が抗体として機能することを確認し得 る。  A mouse antibody expression construct is prepared in the same manner as in Example 4 except that a mouse antibody gene is used instead of the GFP gene. This expression construct is introduced into Arabidopsis cultured cells in the same manner as in Example 6 to obtain transformed Arabidopsis cells. By confirming by stamp lotting as in Example 4, it is confirmed that in this transformed Arabidopsis thaliana, expression of mouse antibody gene and accumulation of protein occur specifically in sugar deficiency. Further, by purifying the mouse antibody expressed in the medium and conducting an antibody specificity test, it can be confirmed that the expressed mouse antibody functions as an antibody.
[0296] (実施例 8:シロイヌナズナ β一ガラクトシダーゼプロモーター(Gal— Ρ)およびシグナ ルペプチド(SP)の制御により、シロイヌナズナ細胞の細胞外(培地)にインターフエ口 ンを分泌させる実験)  (Example 8: Experiment of secreting the interfacial protein out of the Arabidopsis thaliana cells (medium) by controlling the Arabidopsis β-galactosidase promoter (Gal-G) and the signal peptide (SP))
GFP遺伝子の代わりにインターフェロン α遺伝子を用いること以外は実施例 4と同 様にして、インターフェロン α用発現構築物を作製する。この発現構築物を、実施例 6と同様にしてシロイヌナズナ培養細胞に導入して、形質転換シロイヌナズナ細胞を 得る。実施例 4と同様にウェスタンブロッテイングにより確認することにより、この形質転 換シロイヌナズナ細胞では、インターフェロン α遺伝子の発現およびタンパク質の蓄 積が糖欠乏特異的に起こることが確認される。また、培地中に発現されたインターフ ェロン αを精製し、マウスに投与することにより、植物中で発現されたタンパク質 (イン ターフェロンひ)が目的の機能を有することを確認し得る。 An expression construct for interferon α is prepared in the same manner as in Example 4 except that the interferon α gene is used instead of the GFP gene. This expression construct is introduced into Arabidopsis cultured cells in the same manner as in Example 6 to obtain transformed Arabidopsis cells. By confirming by Western blotting in the same manner as in Example 4, it is confirmed that in the transformed Arabidopsis thaliana, the expression of interferon α gene and the accumulation of protein occur specifically in sugar deficiency. Further, by purifying the interferon α expressed in the medium and administering it to mice, it can be confirmed that the protein (interferon) expressed in the plant has the desired function.
[0297] 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発 明は、この実施形態に限定して解釈されるべきものではない。本発明は、特許請求 の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、 本発明の具体的な好ましい実施形態の記載から、本発明の記載および技術常識に 基づいて等価な範囲を実施することができることが理解される。本明細書において引 用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載さ れているのと同様にその内容が本明細書に対する参考として援用されるべきであるこ とが理解される。 [0297] As described above, the present invention has been described using the preferred embodiment of the present invention. However, the present invention should not be construed as being limited to this embodiment. It is understood that the scope of the present invention should be construed only by the appended claims. It is understood that those skilled in the art can implement equivalent ranges based on the description of the present invention and common general knowledge from the description of the specific preferred embodiments of the present invention. Patents, patent applications, and references cited herein should be incorporated by reference in their entirety, as though the content itself was specifically described herein. Is understood.
産業上の利用可能性  Industrial applicability
[0298] 本発明により、糖欠乏を制御することによって容易に発現を制御し得る、発現系が 提供される。  [0298] The present invention provides an expression system that can easily control expression by controlling sugar deficiency.
[0299] 本発明を用いることにより、生産性が低いことから開発研究が進展してなレ、インター フエロン、抗体、ワクチンなどの医薬品の植物細胞による生産に関連する産業の活性 化が期待できる。  [0299] The use of the present invention can be expected to activate industries related to the production of pharmaceuticals such as interferons, antibodies, and vaccines using plant cells, which have not been developed and developed due to low productivity.
[0300] (配列表の説明) [0300] (Description of Sequence Listing)
配列番号 1:シロイヌナズナの β一ガラクトシダーゼをコードするヌクレオチド配列(プ 口モーター領域およびシグナルコード領域を含む);  SEQ ID NO: 1: nucleotide sequence encoding Arabidopsis β-galactosidase (including the open motor region and the signal coding region);
配列番号 2:シロイヌナズナの β一ガラクトシダーゼのアミノ酸配列;  SEQ ID NO: 2: amino acid sequence of Arabidopsis β-galactosidase;
配列番号 3:シロイヌナズナの βーキシロシダーゼをコードするヌクレオチド配列(プ 口モーター領域およびシグナルコード領域を含む);  SEQ ID NO: 3: Nucleotide sequence encoding Arabidopsis β-xylosidase (including the open motor region and the signal coding region);
配列番号 4:シロイヌナズナの βーキシロシダーゼのアミノ酸配列;  SEQ ID NO 4: Amino acid sequence of Arabidopsis β-xylosidase;
配列番号 5:シロイヌナズナの β一ダルコシダーゼをコードするヌクレオチド配列(プ 口モーター領域およびシグナルコード領域を含む);  SEQ ID NO: 5: nucleotide sequence encoding Arabidopsis β-dalcosidase (including the open motor region and the signal coding region);
配列番号 6:シロイヌナズナの β—ダルコシダーゼのアミノ酸配列;  SEQ ID NO: 6: amino acid sequence of Arabidopsis β-darcosidase;
配列番号 7:プライマー 1のヌクレオチド配列;  SEQ ID NO: 7: nucleotide sequence of primer 1;
配列番号 8:プライマー 2のヌクレオチド配列。  SEQ ID NO: 8: nucleotide sequence of primer 2.

Claims

請求の範囲 The scope of the claims
[1] 糖欠乏誘導性プロモーター配列と、該糖欠乏誘導性プロモーター配列に作動可能 に連結された異種遺伝子配列とを含む、核酸分子。  [1] A nucleic acid molecule comprising a sugar deficiency-inducible promoter sequence and a heterologous gene sequence operably linked to the sugar deficiency-inducible promoter sequence.
[2] 前記糖欠乏誘導性プロモーター配列が、 j3 ガラクトシダーゼをコードする遺伝子 のプロモーター配列、 βーキシロシダーゼをコードする遺伝子のプロモーター配列お よび /3—ダルコシダーゼをコードする遺伝子のプロモーター配列からなる群より選択 される、請求項 1に記載の核酸分子。  [2] The sugar deficiency-inducible promoter sequence is selected from the group consisting of a promoter sequence of a gene encoding j3 galactosidase, a promoter sequence of a gene encoding β-xylosidase, and a promoter sequence of a gene encoding / 3-Darcosidase. The nucleic acid molecule of claim 1, wherein
[3] 前記糖欠乏誘導性プロモーター配列が、  [3] the sugar deficiency inducible promoter sequence is
(a)配列番号 1の 643位一 1799位、配列番号 3の 1位一 1763位または配列番号 5 の 1位一 2058位に示されるヌクレオチド配列;  (a) the nucleotide sequence shown at positions 643 to 1799 of SEQ ID NO: 1, positions 1 to 1763 of SEQ ID NO: 3, or positions 1 to 2058 of SEQ ID NO: 5;
(b) (a)のヌクレオチド配列と比較して、 1もしくは数個のヌクレオチドの置換、欠失ま たは付カ卩を含むヌクレオチド配列であって、糖欠乏誘導性プロモーター活性を有す るヌクレオチド配列;  (b) a nucleotide sequence containing one or more nucleotide substitutions, deletions or additions of nucleotides compared to the nucleotide sequence of (a), and having a sugar deficiency-inducible promoter activity Array;
(c) (a)または(b)のヌクレオチド配列とストリンジェントな条件下でハイブリダィズし、 かつ糖欠乏誘導性プロモーター活性を有するヌクレオチド配列;  (c) a nucleotide sequence that hybridizes with the nucleotide sequence of (a) or (b) under stringent conditions and has a sugar deficiency-inducible promoter activity;
(d) (a)のヌクレオチド配列に対して少なくとも 70%の同一性を有するヌクレオチド 配列であって、かつ糖欠乏誘導性プロモーター活性を有するヌクレオチド配列;なら びに  (d) a nucleotide sequence having at least 70% identity to the nucleotide sequence of (a) and having a sugar deficiency-inducible promoter activity; and
(e) (a)一 (d)のいずれかのヌクレオチド配列の短縮配列であって、糖欠乏誘導性 プロモーター活性を有するヌクレオチド配列  (e) (a) a truncated sequence of any of the nucleotide sequences of (d), wherein the nucleotide sequence has a sugar deficiency-inducible promoter activity
からなる群より選択され、  Selected from the group consisting of
該ヌクレオチド配列に作動可能に前記異種遺伝子配列が連結されると、該異種遺 伝子の糖欠乏誘導性発現を促進する活性を有する、請求項 1に記載の核酸分子。  The nucleic acid molecule according to claim 1, wherein the nucleic acid molecule has an activity of promoting sugar deficiency-induced expression of the heterologous gene when the heterologous gene sequence is operably linked to the nucleotide sequence.
[4] さらにシグナルペプチドコード配列を含む、請求項 1に記載の核酸分子。 [4] The nucleic acid molecule according to claim 1, further comprising a signal peptide coding sequence.
[5] 前記シグナルペプチドコード配列が、 ガラクトシダーゼをコードする遺伝子のシ グナルペプチドコード配歹 IJ、 βーキシロシダーゼをコードする遺伝子のシグナルぺプ チドコード配列および β ダルコシダーゼをコードする遺伝子のシグナルペプチドコ ード配列からなる群より選択される、請求項 4に記載の核酸分子。 [6] 前記シグナルペプチドコード配列が、 [5] The signal peptide coding sequence is a signal peptide coding sequence of a gene encoding galactosidase, a signal peptide coding sequence of a gene encoding β-xylosidase, and a signal peptide coding sequence of a gene encoding β-darcosidase. 5. The nucleic acid molecule of claim 4, wherein the nucleic acid molecule is selected from the group consisting of a sequence. [6] the signal peptide coding sequence,
(i)配列番号 2の 1位一 27位、配列番号 4の 1位一 28位または配列番号 6の 1位一 28位に示されるアミノ酸配列をコードするヌクレオチド配列;  (i) a nucleotide sequence encoding the amino acid sequence shown at position 1 to position 27 of SEQ ID NO: 2, position 1 to position 28 of SEQ ID NO: 4, or position 1 to position 28 of SEQ ID NO: 6;
(ii) (i)のヌクレオチド配列と比較して、 1もしくは数個のヌクレオチドの置換、欠失ま たは付加を含むヌクレオチド配列であって、細胞外分泌活性を有するペプチドをコー ドするヌクレオチド配列;  (ii) a nucleotide sequence containing one or several nucleotide substitutions, deletions or additions as compared with the nucleotide sequence of (i), which encodes a peptide having extracellular secretory activity;
(iii) (i)または(ii)のヌクレオチド配列とストリンジェントな条件下でハイブリダィズし 、かつ細胞外分泌活性を有するペプチドをコードするヌクレオチド配列;ならびに (iii) a nucleotide sequence that hybridizes with the nucleotide sequence of (i) or (ii) under stringent conditions and encodes a peptide having extracellular secretory activity;
(iv) (i)のヌクレオチド配列に対して少なくとも 70%の同一性を有するヌクレオチド 配列であって、かつ細胞外分泌活性を有するペプチドをコードするヌクレオチド配列 からなる群より選択され、 (iv) a nucleotide sequence having at least 70% identity to the nucleotide sequence of (i), and is selected from the group consisting of nucleotide sequences encoding a peptide having extracellular secretory activity;
該ヌクレオチド配列に作動可能に前記異種遺伝子配列が連結されると、該異種遺 伝子の産物の細胞外分泌がもたらされる、請求項 4に記載の核酸分子。  5. The nucleic acid molecule of claim 4, wherein operably linking said heterologous gene sequence to said nucleotide sequence results in extracellular secretion of said heterologous gene product.
[7] 前記異種遺伝子配列が、サイト力インまたはホルモンの遺伝子配列である、請求項 1に記載の核酸分子。 [7] The nucleic acid molecule according to claim 1, wherein the heterologous gene sequence is a cytoforce or hormone gene sequence.
[8] 前記異種遺伝子配列が、植物中で発現された場合に目的の機能を有するタンパク 質をコードする、請求項 1に記載の核酸分子。  [8] The nucleic acid molecule according to claim 1, wherein the heterologous gene sequence encodes a protein having a desired function when expressed in a plant.
[9] 前記異種遺伝子配列が、インターフェロン、抗体、ヒト α -アンチトリプシンまたは緑 色蛍光タンパク質の遺伝子配列である、請求項 1に記載の核酸分子。 [9] The nucleic acid molecule according to claim 1, wherein the heterologous gene sequence is a gene sequence of interferon, antibody, human α-antitrypsin or green fluorescent protein.
[10] 前記異種遺伝子配列が、マーカー遺伝子配列である、請求項 1に記載の核酸分子 [10] The nucleic acid molecule according to claim 1, wherein the heterologous gene sequence is a marker gene sequence.
[11] 調節エレメントをさらに含む、請求項 1に記載の核酸分子。 [11] The nucleic acid molecule according to claim 1, further comprising a regulatory element.
[12] 前記調節エレメントが、イントロン、ターミネータ一およびェンハンサーからなる群よ り選択される少なくとも 1つのエレメントを含む、請求項 11に記載の核酸分子。  [12] The nucleic acid molecule according to claim 11, wherein the regulatory element includes at least one element selected from the group consisting of an intron, a terminator, and an enhancer.
[13] ェキソ型糖分解酵素をコードする遺伝子のプロモーター配列と、該プロモーター配 列に作動可能に連結された異種遺伝子配列とを含む、核酸分子。  [13] A nucleic acid molecule comprising a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a heterologous gene sequence operably linked to the promoter sequence.
[14] 前記プロモーター配列が、 j3—ガラクトシダーゼをコードする遺伝子のプロモーター 配列、 βーキシロシダーゼをコードする遺伝子のプロモーター配列および β ダルコ シダーゼをコードする遺伝子のプロモーター配列からなる群より選択される、請求項 1 3に記載の核酸分子。 [14] The promoter sequence is a promoter of a gene encoding j3-galactosidase. 14. The nucleic acid molecule according to claim 13, wherein the nucleic acid molecule is selected from the group consisting of a sequence, a promoter sequence of a gene encoding β-xylosidase, and a promoter sequence of a gene encoding β-darcosidase.
[15] 前記プロモーター配列が、 [15] the promoter sequence is
(a)配列番号 1の 643位一 1799位、配列番号 3の 1位一 1763位または配列番号 5 の 1位一 2058位に示されるヌクレオチド配列;  (a) the nucleotide sequence shown at positions 643 to 1799 of SEQ ID NO: 1, positions 1 to 1763 of SEQ ID NO: 3, or positions 1 to 2058 of SEQ ID NO: 5;
(b) (a)のヌクレオチド配列と比較して、 1もしくは数個のヌクレオチドの置換、欠失ま たは付カ卩を含むヌクレオチド配列であって、糖欠乏誘導性プロモーター活性を有す るヌクレオチド配列;  (b) a nucleotide sequence containing one or more nucleotide substitutions, deletions or additions of nucleotides compared to the nucleotide sequence of (a), and having a sugar deficiency-inducible promoter activity Array;
(c) (a)または(b)のヌクレオチド配列とストリンジェントな条件下でハイブリダィズし、 かつ糖欠乏誘導性プロモーター活性を有するヌクレオチド配列;  (c) a nucleotide sequence that hybridizes with the nucleotide sequence of (a) or (b) under stringent conditions and has a sugar deficiency-inducible promoter activity;
(d) (a)のヌクレオチド配列に対して少なくとも 70%の同一性を有するヌクレオチド 配列であって、かつ糖欠乏誘導性プロモーター活性を有するヌクレオチド配列;なら びに  (d) a nucleotide sequence having at least 70% identity to the nucleotide sequence of (a) and having a sugar deficiency-inducible promoter activity; and
(e) (a)一 (d)のいずれかのヌクレオチド配列の短縮配列であって、糖欠乏誘導性 プロモーター活性を有するヌクレオチド配列  (e) (a) a truncated sequence of any of the nucleotide sequences of (d), wherein the nucleotide sequence has a sugar deficiency-inducible promoter activity
からなる群より選択され、  Selected from the group consisting of
該ヌクレオチド配列に作動可能に前記異種遺伝子配列が連結されると、該異種遺 伝子の糖欠乏誘導性発現を促進する活性を有する、請求項 13に記載の核酸分子。  14. The nucleic acid molecule according to claim 13, wherein the nucleic acid molecule has an activity of promoting sugar deficiency-induced expression of the heterologous gene when the heterologous gene sequence is operably linked to the nucleotide sequence.
[16] さらにシグナルペプチドコード配列を含む、請求項 13に記載の核酸分子。 [16] The nucleic acid molecule according to claim 13, further comprising a signal peptide coding sequence.
[17] 前記シグナルペプチドコード配列が、 ガラクトシダーゼをコードする遺伝子のシ グナルペプチドコード配歹 ij、 β—キシロシダーゼをコードする遺伝子のシグナルぺプ チドコード配列および β—ダルコシダーゼをコードする遺伝子のシグナルペプチドコ ード配列からなる群より選択される、請求項 16に記載の核酸分子。 [17] The signal peptide coding sequence is a signal peptide coding sequence of a gene encoding galactosidase, a signal peptide coding sequence of a gene encoding β-xylosidase, and a signal peptide coding sequence of a gene encoding β-darcosidase. 17. The nucleic acid molecule of claim 16, wherein the nucleic acid molecule is selected from the group consisting of:
[18] 前記シグナルペプチドコード配列が、 [18] the signal peptide coding sequence,
(i)配列番号 2の 1位一 27位、配列番号 4の 1位一 28位または配列番号 6の 1位一 28位に示されるアミノ酸配列をコードするヌクレオチド配列;  (i) a nucleotide sequence encoding the amino acid sequence shown at position 1 to position 27 of SEQ ID NO: 2, position 1 to position 28 of SEQ ID NO: 4, or position 1 to position 28 of SEQ ID NO: 6;
(ii) (i)のヌクレオチド配列と比較して、 1もしくは数個のヌクレオチドの置換、欠失ま たは付加を含むヌクレオチド配列であって、細胞外分泌活性を有するペプチドをコー ドするヌクレオチド配列; (ii) Compared to the nucleotide sequence of (i), substitution or deletion of one or several nucleotides Or a nucleotide sequence containing an addition, which codes for a peptide having extracellular secretory activity;
(iii) (i)または(ii)のヌクレオチド配歹 ijとストリンジェントな条件下でハイブリダィズし 、かつ細胞外分泌活性を有するペプチドをコードするヌクレオチド配列;ならびに (iii) a nucleotide sequence that hybridizes with the nucleotide system ij of (i) or (ii) under stringent conditions and encodes a peptide having extracellular secretory activity;
(iv) (i)のヌクレオチド配列に対して少なくとも 70%の同一性を有するヌクレオチド 配列であって、かつ細胞外分泌活性を有するペプチドをコードするヌクレオチド配列 からなる群より選択され、 (iv) a nucleotide sequence having at least 70% identity to the nucleotide sequence of (i), and is selected from the group consisting of nucleotide sequences encoding a peptide having extracellular secretory activity;
該ヌクレオチド配列に作動可能に前記異種遺伝子配列が連結されると、該異種遺 伝子の産物の細胞外分泌がもたらされる、請求項 16に記載の核酸分子。  17. The nucleic acid molecule of claim 16, wherein operably linking said heterologous gene sequence to said nucleotide sequence results in extracellular secretion of said heterologous gene product.
[19] 前記異種遺伝子配列が、サイト力インまたはホルモンの遺伝子配列である、請求項 [19] The heterologous gene sequence is a cytoforce or hormone gene sequence.
13に記載の核酸分子。  14. The nucleic acid molecule according to 13.
[20] 前記異種遺伝子配列が、植物中で発現された場合に目的の機能を有するタンパク 質をコードする、請求項 13に記載の核酸分子。  [20] The nucleic acid molecule according to claim 13, wherein the heterologous gene sequence encodes a protein having a desired function when expressed in a plant.
[21] 前記異種遺伝子配列が、インターフェロン、抗体、ヒト α -アンチトリプシンまたは緑 色蛍光タンパク質の遺伝子配列である、請求項 13に記載の核酸分子。 [21] The nucleic acid molecule according to claim 13, wherein the heterologous gene sequence is a gene sequence of interferon, antibody, human α-antitrypsin or green fluorescent protein.
[22] 前記異種遺伝子配列が、マーカー遺伝子配列である、請求項 13に記載の核酸分 子。 [22] The nucleic acid molecule according to claim 13, wherein the heterologous gene sequence is a marker gene sequence.
[23] 調節エレメントをさらに含む、請求項 13に記載の核酸分子。  [23] The nucleic acid molecule according to claim 13, further comprising a regulatory element.
[24] 前記調節エレメントが、イントロン、ターミネータ一およびェンハンサーからなる群よ り選択される少なくとも 1つのエレメントを含む、請求項 23に記載の核酸分子。  [24] The nucleic acid molecule according to claim 23, wherein the regulatory element includes at least one element selected from the group consisting of an intron, a terminator, and an enhancer.
[25] 代謝可能な糖を分解し得る酵素をコードする遺伝子のプロモーター配列と、該プロ モーター配列に作動可能に連結された異種遺伝子配列とを含む、核酸分子。  [25] A nucleic acid molecule comprising a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar, and a heterologous gene sequence operably linked to the promoter sequence.
[26] 前記代謝可能な糖を分解し得る酵素をコードする遺伝子のプロモーター配列が、 β一ガラクトシダーゼをコードする遺伝子のプロモーター配列、 β—キシロシダーゼを コードする遺伝子のプロモーター配列および /3—ダルコシダーゼをコードする遺伝子 のプロモーター配列からなる群より選択される、請求項 25に記載の核酸分子。  [26] The promoter sequence of a gene encoding an enzyme capable of degrading the metabolizable sugar is a promoter sequence of a gene encoding β-galactosidase, a promoter sequence of a gene encoding β-xylosidase, and encoding a / 3-dalcosidase. 26. The nucleic acid molecule according to claim 25, wherein the nucleic acid molecule is selected from the group consisting of a promoter sequence of a gene to be expressed.
[27] 前記代謝可能な糖を分解し得る酵素をコードする遺伝子のプロモーター配列が、 (a)配列番号 1の 643位一 1799位、配列番号 3の 1位一 1763位または配列番号 5 の 1位一 2058位に示されるヌクレオチド配列; [27] The promoter sequence of a gene encoding an enzyme capable of degrading the metabolizable sugar, (a) the nucleotide sequence shown at positions 641 to 1799 of SEQ ID NO: 1, positions 1 to 1763 of SEQ ID NO: 3, or positions 1 to 2058 of SEQ ID NO: 5;
(b) (a)のヌクレオチド配列と比較して、 1もしくは数個のヌクレオチドの置換、欠失ま たは付カ卩を含むヌクレオチド配列であって、糖欠乏誘導性プロモーター活性を有す るヌクレオチド配列;  (b) a nucleotide sequence containing one or more nucleotide substitutions, deletions or additions of nucleotides compared to the nucleotide sequence of (a), and having a sugar deficiency-inducible promoter activity Array;
(c) (a)または(b)のヌクレオチド配列とストリンジェントな条件下でハイブリダィズし、 かつ糖欠乏誘導性プロモーター活性を有するヌクレオチド配列;  (c) a nucleotide sequence that hybridizes with the nucleotide sequence of (a) or (b) under stringent conditions and has a sugar deficiency-inducible promoter activity;
(d) (a)のヌクレオチド配列に対して少なくとも 70%の同一性を有するヌクレオチド 配列であって、かつ糖欠乏誘導性プロモーター活性を有するヌクレオチド配列;なら びに  (d) a nucleotide sequence having at least 70% identity to the nucleotide sequence of (a) and having a sugar deficiency-inducible promoter activity; and
(e) (a)一 (d)のいずれかのヌクレオチド配列の短縮配列であって、糖欠乏誘導性 プロモーター活性を有するヌクレオチド配列  (e) (a) a truncated sequence of any of the nucleotide sequences of (d), wherein the nucleotide sequence has a sugar deficiency-inducible promoter activity
からなる群より選択され、  Selected from the group consisting of
該ヌクレオチド配列に作動可能に前記異種遺伝子配列が連結されると、該異種遺 伝子の糖欠乏誘導性発現を促進する活性を有する、請求項 25に記載の核酸分子。  26. The nucleic acid molecule of claim 25, wherein said nucleic acid molecule has an activity to promote sugar deficiency-induced expression of said heterologous gene when operably linked to said nucleotide sequence.
[28] さらにシグナルペプチドコード配列を含む、請求項 25に記載の核酸分子。 [28] The nucleic acid molecule according to claim 25, further comprising a signal peptide coding sequence.
[29] 前記シグナルペプチドコード配列が、 ガラクトシダーゼをコードする遺伝子のシ グナルペプチドコード配歹 IJ、 βーキシロシダーゼをコードする遺伝子のシグナルぺプ チドコード配列および β ダルコシダーゼをコードする遺伝子のシグナルペプチドコ ード配列からなる群より選択される、請求項 28に記載の核酸分子。 [29] The signal peptide coding sequence is a signal peptide coding sequence of a gene encoding galactosidase, a signal peptide coding sequence of a gene encoding β-xylosidase, and a signal peptide coding sequence of a gene encoding β-darcosidase. 29. The nucleic acid molecule according to claim 28, which is selected from the group consisting of sequences.
[30] 前記シグナルペプチドコード配列が、 [30] the signal peptide coding sequence,
(i)配列番号 2の 1位一 27位、配列番号 4の 1位一 28位または配列番号 6の 1位一 28位に示されるアミノ酸配列をコードするヌクレオチド配列;  (i) a nucleotide sequence encoding the amino acid sequence shown at position 1 to position 27 of SEQ ID NO: 2, position 1 to position 28 of SEQ ID NO: 4, or position 1 to position 28 of SEQ ID NO: 6;
(ii) (i)のヌクレオチド配列と比較して、 1もしくは数個のヌクレオチドの置換、欠失ま たは付加を含むヌクレオチド配列であって、細胞外分泌活性を有するペプチドをコー ドするヌクレオチド配列;  (ii) a nucleotide sequence containing one or several nucleotide substitutions, deletions or additions as compared with the nucleotide sequence of (i), which encodes a peptide having extracellular secretory activity;
(iii) (i)または(ii)のヌクレオチド配列とストリンジェントな条件下でハイブリダィズし 、かつ細胞外分泌活性を有するペプチドをコードするヌクレオチド配列;ならびに (iv) (i)のヌクレオチド配列に対して少なくとも 70%の同一性を有するヌクレオチド 配列であって、かつ細胞外分泌活性を有するペプチドをコードするヌクレオチド配列 からなる群より選択され、 (iii) a nucleotide sequence that hybridizes with the nucleotide sequence of (i) or (ii) under stringent conditions and encodes a peptide having extracellular secretory activity; (iv) a nucleotide sequence having at least 70% identity to the nucleotide sequence of (i), and is selected from the group consisting of a nucleotide sequence encoding a peptide having extracellular secretory activity;
該ヌクレオチド配列に作動可能に前記異種遺伝子配列が連結されると、該異種遺 伝子の産物の細胞外分泌がもたらされる、請求項 28に記載の核酸分子。  29. The nucleic acid molecule of claim 28, wherein operably linking said heterologous gene sequence to said nucleotide sequence results in extracellular secretion of said heterologous gene product.
[31] 前記異種遺伝子配列が、サイト力インまたはホルモンの遺伝子配列である、請求項 [31] The claim, wherein the heterologous gene sequence is a cytoforce or hormone gene sequence.
25に記載の核酸分子。  26. The nucleic acid molecule according to 25.
[32] 前記異種遺伝子配列が、植物中で発現された場合に目的の機能を有するタンパク 質をコードする、請求項 25に記載の核酸分子。  32. The nucleic acid molecule according to claim 25, wherein the heterologous gene sequence encodes a protein having a desired function when expressed in a plant.
[33] 前記異種遺伝子配列が、インターフェロン、抗体、ヒトひ—アンチトリプシンまたは緑 色蛍光タンパク質の遺伝子配列である、請求項 25に記載の核酸分子。 [33] The nucleic acid molecule according to claim 25, wherein the heterologous gene sequence is a gene sequence of interferon, antibody, human anti-trypsin or green fluorescent protein.
[34] 前記異種遺伝子配列が、マーカー遺伝子配列である、請求項 25に記載の核酸分 子。 [34] The nucleic acid molecule according to claim 25, wherein the heterologous gene sequence is a marker gene sequence.
[35] 調節エレメントをさらに含む、請求項 25に記載の核酸分子。  [35] The nucleic acid molecule of claim 25, further comprising a regulatory element.
[36] 前記調節エレメントが、イントロン、ターミネータ一およびェンハンサーからなる群よ り選択される少なくとも 1つのエレメントを含む、請求項 35に記載の核酸分子。  [36] The nucleic acid molecule according to claim 35, wherein the regulatory element includes at least one element selected from the group consisting of an intron, a terminator, and an enhancer.
[37] プロモーター配列と、該プロモーター配列に作動可能に連結された異種遺伝子配 歹 IJとを含む、核酸分子であって、該プロモーター配列は、 [37] A nucleic acid molecule comprising a promoter sequence and a heterologous gene system IJ operably linked to the promoter sequence, wherein the promoter sequence comprises
(a)配列番号 1の 643位一 1799位、配列番号 3の 1位一 1763位または配列番号 5 の 1位一 2058位に示されるヌクレオチド配列;  (a) the nucleotide sequence shown at positions 643 to 1799 of SEQ ID NO: 1, positions 1 to 1763 of SEQ ID NO: 3, or positions 1 to 2058 of SEQ ID NO: 5;
(b) (a)のヌクレオチド配列と比較して、 1もしくは数個のヌクレオチドの置換、欠失ま たは付カ卩を含むヌクレオチド配列であって、糖欠乏誘導性プロモーター活性を有す るヌクレオチド配列;  (b) a nucleotide sequence containing one or more nucleotide substitutions, deletions or additions of nucleotides compared to the nucleotide sequence of (a), and having a sugar deficiency-inducible promoter activity Array;
(c) (a)または(b)のヌクレオチド配列とストリンジェントな条件下でハイブリダィズし、 かつ糖欠乏誘導性プロモーター活性を有するヌクレオチド配列;  (c) a nucleotide sequence that hybridizes with the nucleotide sequence of (a) or (b) under stringent conditions and has a sugar deficiency-inducible promoter activity;
(d) (a)のヌクレオチド配列に対して少なくとも 70%の同一性を有するヌクレオチド 配列であって、かつ糖欠乏誘導性プロモーター活性を有するヌクレオチド配列;なら びに (d) a nucleotide sequence having at least 70% identity to the nucleotide sequence of (a) and having a sugar deficiency-inducible promoter activity; Bini
(e) (a)一 (d)のいずれかのヌクレオチド配列の短縮配列であって、糖欠乏誘導性 プロモーター活性を有するヌクレオチド配列  (e) (a) a truncated sequence of any of the nucleotide sequences of (d), wherein the nucleotide sequence has a sugar deficiency-inducible promoter activity
からなる群より選択され、  Selected from the group consisting of
該ヌクレオチド配列に作動可能に前記異種遺伝子配列が連結されると、該異種遺 伝子の発現を促進する活性を有する、核酸分子。  A nucleic acid molecule having an activity of promoting expression of the heterologous gene when the heterologous gene sequence is operably linked to the nucleotide sequence.
[38] さらにシグナルペプチドコード配列を含む、請求項 37に記載の核酸分子。 [38] The nucleic acid molecule of claim 37, further comprising a signal peptide coding sequence.
[39] 前記シグナルペプチドコード配列が、 /3 _ガラクトシダーゼをコードする遺伝子のシ グナルペプチドコード配歹 1J、 β—キシロシダーゼをコードする遺伝子のシグナルぺプ チドコード配列および β—ダルコシダーゼをコードする遺伝子のシグナルペプチドコ ード配列からなる群より選択される、請求項 38に記載の核酸分子。 [39] The signal peptide coding sequence is a signal peptide coding sequence of a gene encoding / 3_galactosidase, a signal peptide coding sequence of a gene encoding β-xylosidase, and a signal of a gene encoding β-dalcosidase. 39. The nucleic acid molecule of claim 38, wherein the nucleic acid molecule is selected from the group consisting of a peptide code sequence.
[40] 前記シグナルペプチドコード配列が、 [40] the signal peptide coding sequence,
(i)配列番号 2の 1位一 27位、配列番号 4の 1位一 28位または配列番号 6の 1位一 28位に示されるアミノ酸配列をコードするヌクレオチド配列;  (i) a nucleotide sequence encoding the amino acid sequence shown at position 1 to position 27 of SEQ ID NO: 2, position 1 to position 28 of SEQ ID NO: 4, or position 1 to position 28 of SEQ ID NO: 6;
(ii) (i)のヌクレオチド配列と比較して、 1もしくは数個のヌクレオチドの置換、欠失ま たは付加を含むヌクレオチド配列であって、細胞外分泌活性を有するペプチドをコー ドするヌクレオチド配列;  (ii) a nucleotide sequence containing one or several nucleotide substitutions, deletions or additions as compared with the nucleotide sequence of (i), which encodes a peptide having extracellular secretory activity;
(iii) (i)または(ii)のヌクレオチド配歹 ijとストリンジェントな条件下でハイブリダィズし 、かつ細胞外分泌活性を有するペプチドをコードするヌクレオチド配歹 1J ;ならびに (iii) a nucleotide system 1J that hybridizes with the nucleotide system ij of (i) or (ii) under stringent conditions and encodes a peptide having extracellular secretory activity;
(iv) (i)のヌクレオチド配列に対して少なくとも 70%の同一性を有するヌクレオチド 配列であって、かつ細胞外分泌活性を有するペプチドをコードするヌクレオチド配列 からなる群より選択され、 (iv) a nucleotide sequence having at least 70% identity to the nucleotide sequence of (i), and is selected from the group consisting of nucleotide sequences encoding a peptide having extracellular secretory activity;
該ヌクレオチド配列に作動可能に前記異種遺伝子配列が連結されると、該異種遺 伝子の産物の細胞外分泌がもたらされる、請求項 38に記載の核酸分子。  39. The nucleic acid molecule of claim 38, wherein operably linking said heterologous gene sequence to said nucleotide sequence results in extracellular secretion of a product of said heterologous gene.
[41] 前記異種遺伝子配列が、サイト力インまたはホルモンの遺伝子配列である、請求項 [41] The heterologous gene sequence is a cytoforce or hormone gene sequence.
37に記載の核酸分子。  38. The nucleic acid molecule according to 37.
[42] 前記異種遺伝子配列が、植物中で発現された場合に目的の機能を有するタンパク 質をコードする、請求項 37に記載の核酸分子。 [42] a protein having a desired function when the heterologous gene sequence is expressed in a plant; 38. The nucleic acid molecule of claim 37, encoding a quality.
[43] 前記異種遺伝子配列が、インターフェロン、抗体、ヒト α -アンチトリプシンまたは緑 色蛍光タンパク質の遺伝子配列である、請求項 37に記載の核酸分子。 [43] The nucleic acid molecule according to claim 37, wherein the heterologous gene sequence is a gene sequence of interferon, antibody, human α-antitrypsin or green fluorescent protein.
[44] 前記異種遺伝子配列が、マーカー遺伝子配列である、請求項 37に記載の核酸分 子。 [44] The nucleic acid molecule according to claim 37, wherein the heterologous gene sequence is a marker gene sequence.
[45] 調節エレメントをさらに含む、請求項 37に記載の核酸分子。  [45] The nucleic acid molecule of claim 37, further comprising a regulatory element.
[46] 前記調節エレメントが、イントロン、ターミネータ一およびェンハンサーからなる群よ り選択される少なくとも 1つのエレメントを含む、請求項 45に記載の核酸分子。  [46] The nucleic acid molecule according to claim 45, wherein the regulatory element includes at least one element selected from the group consisting of an intron, a terminator, and an enhancer.
[47] 糖欠乏誘導性プロモーター配列、ェキソ型糖分解酵素をコードする遺伝子のプロ モーター配列および代謝可能な糖を分解し得る酵素をコードする遺伝子のプロモー ター配列からなる群から選択される少なくとも 1つのプロモーター配列と、  [47] At least one selected from the group consisting of a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar. Two promoter sequences,
該選択されたプロモーター配列に作動可能に連結された異種遺伝子配列 とを含む、ベクター。  A heterologous gene sequence operably linked to the selected promoter sequence.
[48] 糖欠乏誘導性プロモーター配列、ェキソ型糖分解酵素をコードする遺伝子のプロ モーター配列および代謝可能な糖を分解し得る酵素をコードする遺伝子のプロモー ター配列からなる群から選択される少なくとも 1つのプロモーター配列と、  [48] At least one selected from the group consisting of a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar. Two promoter sequences,
該選択されたプロモーター配列に作動可能に連結された異種遺伝子配列 とを含む、植物細胞。  A heterologous gene sequence operably linked to the selected promoter sequence.
[49] 双子葉植物細胞である、請求項 48に記載の植物細胞。  [49] The plant cell according to claim 48, which is a dicotyledonous plant cell.
[50] 培養細胞である、請求項 48に記載の植物細胞。  [50] The plant cell according to claim 48, which is a cultured cell.
[51] 1週間で 50倍以上増殖し得る細胞である、請求項 50に記載の植物細胞。  [51] The plant cell according to claim 50, which is a cell that can grow 50 times or more in one week.
[52] タンパク質の生産方法であって、該方法は、以下の工程: [52] A method for producing a protein, comprising the following steps:
糖欠乏誘導性プロモーター配列、ェキソ型糖分解酵素をコードする遺伝子のプロ モーター配列および代謝可能な糖を分解し得る酵素をコードする遺伝子のプロモー ター配列からなる群から選択される少なくとも 1つのプロモーター配列と、  At least one promoter sequence selected from the group consisting of a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar. When,
該選択されたプロモーター配列に作動可能に連結された該タンパク質コード配列 とを含む核酸分子を、細胞に導入して、形質転換細胞を得る工程;  Introducing a nucleic acid molecule comprising the protein coding sequence operably linked to the selected promoter sequence into a cell to obtain a transformed cell;
該形質転換細胞を糖の非存在下で培養して、該タンパク質を分泌させる工程;およ び Culturing the transformed cells in the absence of sugar to secrete the protein; and And
該タンパク質を回収する工程  Step of recovering the protein
を包含する、方法。 A method comprising:
前記細胞が、植物細胞である、請求項 52に記載の方法。  53. The method of claim 52, wherein said cells are plant cells.
前記細胞が、双子葉植物細胞である、請求項 52に記載の方法。  53. The method of claim 52, wherein said cells are dicot cells.
前記細胞が、培養細胞である、請求項 52に記載の方法。  53. The method of claim 52, wherein said cells are cultured cells.
前記細胞が、 1週間で 50倍以上増殖し得る細胞である、請求項 55に記載の方法。 前記核酸分子が、さらにシグナルペプチドコード配列を含む、請求項 52に記載の 方法。  56. The method of claim 55, wherein said cells are cells capable of growing 50-fold or more in one week. 53. The method of claim 52, wherein said nucleic acid molecule further comprises a signal peptide coding sequence.
前記シグナルペプチドコード配列が、 /3—ガラタトシダーゼをコードする遺伝子のシ グナルペプチドコード配歹 1J、 β—キシロシダーゼをコードする遺伝子のシグナルぺプ チドコード配列および β—ダルコシダーゼをコードする遺伝子のシグナルペプチドコ ード配列からなる群より選択される、請求項 57に記載の方法。  The signal peptide coding sequence is a signal peptide coding sequence of a gene coding for / 3-galatatosidase, a signal peptide coding sequence of a gene coding for β-xylosidase, and a signal peptide coding sequence of a gene coding for β-dalcosidase. 58. The method of claim 57, wherein the method is selected from the group consisting of:
前記シグナルペプチドコード配列が、  The signal peptide coding sequence,
(i)配列番号 2の 1位一 27位、配列番号 4の 1位一 28位または配列番号 6の 1位一 28位に示されるアミノ酸配列をコードするヌクレオチド配列;  (i) a nucleotide sequence encoding the amino acid sequence shown at position 1 to position 27 of SEQ ID NO: 2, position 1 to position 28 of SEQ ID NO: 4, or position 1 to position 28 of SEQ ID NO: 6;
(ii) (i)のヌクレオチド配列と比較して、 1もしくは数個のヌクレオチドの置換、欠失ま たは付加を含むヌクレオチド配列であって、細胞外分泌活性を有するペプチドをコー ドするヌクレオチド配列;  (ii) a nucleotide sequence containing one or several nucleotide substitutions, deletions or additions as compared with the nucleotide sequence of (i), which encodes a peptide having extracellular secretory activity;
(iii) (i)または(ii)のヌクレオチド配歹 ijとストリンジェントな条件下でハイブリダィズし 、かつ細胞外分泌活性を有するペプチドをコードするヌクレオチド配歹 1J ;ならびに (iii) a nucleotide system 1J that hybridizes with the nucleotide system ij of (i) or (ii) under stringent conditions and encodes a peptide having extracellular secretory activity;
(iv) (i)のヌクレオチド配列に対して少なくとも 70%の同一性を有するヌクレオチド 配列であって、かつ細胞外分泌活性を有するペプチドをコードするヌクレオチド配列 からなる群より選択され、 (iv) a nucleotide sequence having at least 70% identity to the nucleotide sequence of (i), and is selected from the group consisting of nucleotide sequences encoding a peptide having extracellular secretory activity;
該ヌクレオチド配列に作動可能に前記異種遺伝子配列が連結されると、該異種遺 伝子の産物の細胞外分泌がもたらされる、請求項 57に記載の方法。  58. The method of claim 57, wherein operably linking said heterologous gene sequence to said nucleotide sequence results in extracellular secretion of a product of said heterologous gene.
前記タンパク質が、サイト力インまたはホルモンである、請求項 52に記載の方法。 [61] 前記タンパク質が、植物中で発現された場合に目的の機能を有するタンパク質で ある、請求項 52に記載の方法。 53. The method of claim 52, wherein the protein is a cytoforce or a hormone. [61] The method according to claim 52, wherein the protein is a protein having a desired function when expressed in a plant.
[62] 前記タンパク質が、インターフェロン、抗体、ヒト α—アンチトリプシンまたは緑色蛍光 タンパク質である、請求項 52に記載の方法。 [62] The method according to claim 52, wherein the protein is an interferon, an antibody, human α-antitrypsin or a green fluorescent protein.
[63] 前記糖が、代謝可能な解糖系糖または代謝されると該解糖系糖になり得る糖であ る、請求項 52に記載の方法。 63. The method according to claim 52, wherein the sugar is a metabolizable glycolytic sugar or a sugar that can become the glycolytic sugar when metabolized.
[64] 前記糖が、グルコース、ガラクトース、フノレクトース、スクロースおよびキシロースから なる群より選択される、請求項 52に記載の方法。 [64] The method according to claim 52, wherein the sugar is selected from the group consisting of glucose, galactose, funolectose, sucrose, and xylose.
[65] タンパク質の生産方法であって、該方法は、以下の工程: [65] A method for producing a protein, comprising the following steps:
糖欠乏誘導性プロモーター配列、ェキソ型糖分解酵素をコードする遺伝子のプロ モーター配列および代謝可能な糖を分解し得る酵素をコードする遺伝子のプロモー ター配列からなる群から選択される少なくとも 1つのプロモーター配列と、  At least one promoter sequence selected from the group consisting of a sugar deficiency-inducible promoter sequence, a promoter sequence of a gene encoding an exo-type glycolytic enzyme, and a promoter sequence of a gene encoding an enzyme capable of degrading a metabolizable sugar. When,
該選択されたプロモーター配列に作動可能に連結された該タンパク質コード配列 とを含む核酸分子を、細胞に導入して、形質転換細胞を得る工程;  Introducing a nucleic acid molecule comprising the protein coding sequence operably linked to the selected promoter sequence into a cell to obtain a transformed cell;
該形質転換細胞を糖の存在下で培養する工程;  Culturing the transformed cells in the presence of sugar;
該形質転換細胞を糖の非存在下で培養して、該タンパク質を分泌させる工程;およ び  Culturing the transformed cells in the absence of sugar to secrete the protein; and
該タンパク質を回収する工程  Step of recovering the protein
を包含する、方法。  A method comprising:
[66] 請求項 52に記載の方法によって得られるタンパク質。 [66] A protein obtained by the method according to claim 52.
[67] 異種遺伝子の糖欠乏誘導性発現のための、請求項 1に記載の核酸分子の使用。  [67] Use of the nucleic acid molecule according to claim 1, for sugar deficiency-induced expression of a heterologous gene.
PCT/JP2004/009038 2003-06-30 2004-06-25 Application of promoter capable of functioning by sugar deficiency in plant cultured cell to secretory production of useful protein WO2005001088A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005511066A JPWO2005001088A1 (en) 2003-06-30 2004-06-25 Application of a promoter that works by sugar deficiency in cultured plant cells to secretory production of useful proteins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003189001 2003-06-30
JP2003-189001 2003-06-30

Publications (1)

Publication Number Publication Date
WO2005001088A1 true WO2005001088A1 (en) 2005-01-06

Family

ID=33549771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009038 WO2005001088A1 (en) 2003-06-30 2004-06-25 Application of promoter capable of functioning by sugar deficiency in plant cultured cell to secretory production of useful protein

Country Status (2)

Country Link
JP (1) JPWO2005001088A1 (en)
WO (1) WO2005001088A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332584A (en) * 1998-03-12 1999-12-07 Natl Sci Council Saccharide-responsive enhancer in alpha-amylase gene
JP2000287685A (en) * 1999-03-16 2000-10-17 Univ Tokyo Dna fragment, recombinant dna, transformed plant cell and transformed plant
WO2003100067A1 (en) * 2002-05-29 2003-12-04 Genoplante-Valor Plant tissue-specific promoter forming secondary walls

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332584A (en) * 1998-03-12 1999-12-07 Natl Sci Council Saccharide-responsive enhancer in alpha-amylase gene
JP2000287685A (en) * 1999-03-16 2000-10-17 Univ Tokyo Dna fragment, recombinant dna, transformed plant cell and transformed plant
WO2003100067A1 (en) * 2002-05-29 2003-12-04 Genoplante-Valor Plant tissue-specific promoter forming secondary walls

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FLORES M.E. ET AL: "Physiological studies on induction and catabolite repression of beta-xylosidase and endoxylanase in Streptomyces sp. CH-M-1035", JOURNAL OF BIOTECHNOLOGY, vol. 49, 1996, pages 179 - 187, XP004037106 *
FUJIKI Y, ET AL: "Multiple signaling pathways in gene expression during sugar starvation. Pharmacological analysis of din gene expression in suspension-cultured cells of arabidopsis", PLANT PHYSIOL., vol. 124, no. 3, 2000, pages 1139 - 1148, XP002980297 *
TERASHIMA M. ET AL: "Utilization of an alternative carbon source for efficient production of human Alpha 1-antitrypsin by genetically engineerd rice cell culture", BIOTECHNOL. PROG., vol. 17, no. 3, 2001, pages 403 - 406, XP002980296 *

Also Published As

Publication number Publication date
JPWO2005001088A1 (en) 2006-10-19

Similar Documents

Publication Publication Date Title
US7728191B2 (en) Nucleic acid for reducing protein content in rice seed
CA2695929C (en) A plant height regulatory gene and uses thereof
KR20130137620A (en) Heavy metal reduction in planta
BR112012012563A2 (en) GENE EXPRESSION IN PLANTS
CN110857316B (en) Anthocyanin synthesis related protein and application thereof in regulating and controlling plant anthocyanin content
TWI534265B (en) Method, genetic construct and transgenic p;ant cell for manipulating fructan biosynthesis in photosynthetic cells of a plant
WO2014062036A1 (en) Gene delivery system for transformation of plant using plant virus and uses thereof
WO2010024269A1 (en) Dwarf transgenic plant, and gene for induction of dwarfing
CN110294795B (en) Application of soybean protein GmDISS2 and coding gene thereof in regulation and control of plant stress tolerance
WO2005001088A1 (en) Application of promoter capable of functioning by sugar deficiency in plant cultured cell to secretory production of useful protein
JP2004522420A (en) Transgenic plants producing isomalt
CN113122566B (en) Role of HAK gene in regulating and controlling plant traits
CN107513532B (en) Pear constitutive expression promoter PbTMT4P and application thereof
KR101825219B1 (en) NtROS2a gene involved in demethylation from Nicotiana tabacum and uses thereof
KR101784162B1 (en) Novel gene promoting early flowering or maturity in plant and use thereof
WO2024028859A1 (en) Compositions and methods for increasing the amino acid and protein content in storage organs of plants
AU2008205931B2 (en) Convenient method for inhibition of gene expression using RSIS
KR20210062588A (en) Antibody produced by using afucosylated n.benthamiana and uses thereof
CN114230649A (en) Tn1 protein related to tillering force of rice and related biological material and application thereof
JP2014042516A (en) Transformed plant having high phytic acid synthesizing ability and high phosphorous absorbing ability
JP2010029102A (en) alpha1,3-FUCOSYLTRANSFERASE
WO2009104181A1 (en) Plants having genetically modified lignin content and methods of producing same
CN111448206A (en) Ibor-R96H variants derived from sweet potatoes and uses thereof
WO2000011197A1 (en) Nucleic acids having promoter activity and transgenic plants containing the same
JP2005027599A (en) Method for selecting transgenic plant using gene derived from plant

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005511066

Country of ref document: JP

122 Ep: pct application non-entry in european phase