WO2010024269A1 - Dwarf transgenic plant, and gene for induction of dwarfing - Google Patents

Dwarf transgenic plant, and gene for induction of dwarfing Download PDF

Info

Publication number
WO2010024269A1
WO2010024269A1 PCT/JP2009/064824 JP2009064824W WO2010024269A1 WO 2010024269 A1 WO2010024269 A1 WO 2010024269A1 JP 2009064824 W JP2009064824 W JP 2009064824W WO 2010024269 A1 WO2010024269 A1 WO 2010024269A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
amino acid
protein
gene
acid sequence
Prior art date
Application number
PCT/JP2009/064824
Other languages
French (fr)
Japanese (ja)
Inventor
優 高木
美穂 池田
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Publication of WO2010024269A1 publication Critical patent/WO2010024269A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the present invention relates to a gene encoding a transcriptional regulatory factor involved in dwarfing by suppressing cell elongation of a plant and dwarfing a plant transformed using the gene.
  • fertile traits are very important traits for preventing lodging due to storm and flood damage and improving convenience of work, and so far, fertile varieties have been actively produced by conventional breeding methods.
  • enormous time is required to produce a new variety in the conventional breeding method.
  • the number of types of plants that human beings cultivate and use as edible or other raw materials has grown enormously even from those that have been cultivated continuously since ancient times, and among these, dwarfing is required. It is very difficult to produce fertile varieties for all varieties that do so.
  • the types of crops that humans need and the traits they need for crops are constantly changing.
  • Patent Documents 1 to 7 methods for suppressing genes related to biosynthesis of plant hormones and other substances important for growth by antisense
  • Patent Documents 8 to 10 methods for introducing mutations into these genes
  • Patent Document 11 a method using a promoter that specifically works in the rice node
  • Patent Document 12 a method of causing metabolic abnormality in the cell wall using a microorganism-derived enzyme
  • An object of the present invention is to find a factor that controls cell elongation between nodes of a plant, and by manipulating this factor, the plant height of the plant is lowered, it is resistant to lodging, is easy to farm, and is not inferior to conventional plants. It is to enable the production of excellent plants having the number of branches and leaves. In addition, it can contribute to the production of plants adapted to multi-stage cultivation in indoor plant cultivation facilities being conducted in recent years.
  • the present inventors previously determined from transcriptional activators derived from Arabidopsis thaliana a transcriptional repression domain that imparts strong transcriptional repression activity to the transcriptional activator, and CREST-T using the transcription repression domain.
  • the CREST-T method has been shown to be an epoch-making technique that can be widely applied to plants including monocotyledonous rice (Patent Documents 15 to 22, Non-Patent Documents 1 to 3). .
  • Patent Documents 15 to 22, Non-Patent Documents 1 to 3 Non-Patent Documents 1 to 3
  • Recently, as these transcriptional repression domains conventionally known motifs composed of (L / F) DLN (L / F) (X) P (where X represents any amino acid residue.
  • the protein encoded by the At2g43060 gene has the function of suppressing the vertical elongation of plant cells even when it is overexpressed, and has the function of dwarfing transformed plants. .
  • a transcriptional repressor domain linked to this gene and transforming it into a repressor knowledge that can produce excellent fertile plants with low plant height beyond the species
  • the present invention has been completed. That is, in the present invention, a gene that dominantly induces a fertile trait can be isolated and identified, and a transcriptional repressor domain gene bound to the gene and functionally converted to a repressor can be expressed ectopically. Thus, it is possible to reliably and easily produce fertile plants.
  • the present inventors encoded a construct (35S: At2g43060) that expresses the gene of accession number At2g43060, which is classified as a transcriptional gene in the Arabidopsis database, under the control of the CaMV35S promoter, and a protein of this gene.
  • a 35S: At2g43060SRDX construct was prepared by inducing a chimeric gene in which the DNA encoding the SRDX peptide was fused with the C-terminus of the DNA to be read by the CaMV35S gene promoter (35S). Transformed Arabidopsis plants introduced with these chimeric gene constructs showed clear fertile traits.
  • a protein comprising the amino acid sequence of any one of the following (a) to (b), which has a function of suppressing the elongation of plant cells; (A) the amino acid sequence shown in SEQ ID NO: 1, (B) an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1; (C) an amino acid sequence encoded by the base sequence shown in SEQ ID NO: 2, (D) an amino acid sequence encoded by a base sequence that hybridizes with a complementary sequence of the base sequence shown in SEQ ID NO: 2 under stringent conditions.
  • the transcription repression domain is a motif consisting of (L / F) DLN (L / F) (X) P (where X represents any amino acid residue) or “DLELLL”, 2].
  • [4] The protein according to [2] above, wherein the transcription repression domain is a peptide having a plant transcription function, comprising an amino acid sequence represented by the following formula (I): Formula (I) X 1 -X 2 -Leu-Phe-Gly-Val-X 3 (Wherein X 1 and X 3 represent an amino acid sequence composed of 1 to 10 arbitrary amino acids, and X 2 represents Lys or Arg).
  • [5] A nucleic acid molecule encoding the protein according to any one of [1] to [4].
  • [6] An expression vector comprising the nucleic acid molecule according to [5].
  • [7] A transformed cell into which the nucleic acid molecule according to [5] has been introduced.
  • a method for producing a protein having a function of suppressing the elongation of plant cells comprising culturing and collecting the transformed cells according to [7].
  • a method for dwarfing a plant comprising expressing the nucleic acid molecule according to [5] in a cell of a plant body.
  • Photograph of 35S At2g43060SRDX gene-expressing Arabidopsis thaliana plant. It shows a remarkable form of fertility.
  • the left is a photograph of an At2g43060SRDX gene-expressing Arabidopsis plant, and the right is a wild-type plant. Scanning electron micrograph of the stem of At2g43060SRDX gene expressing Arabidopsis thaliana plant. A round cell line is observed. Scanning electron micrograph of the stem of a wild type plant. A state in which vertically long cells are lined up is observed. Analysis of AtEXP8 expression level in Arabidopsis thaliana expressing At2g43060SRDX.
  • AtEXP8 encodes a kind of Arabidopsis-derived expansin (an enzyme involved in cell longitudinal elongation). It can be seen that the expression level of this gene is reduced in At2g43060SRDX gene expression Arabidopsis thaliana. The expression level of Arabidopsis thaliana UBQ gene (ubiquitin gene) is quantified as 1. The same applies to the following experiments. Analysis of ENT expression level in At2g43060SRDX gene expression Arabidopsis thaliana. ENT encodes a type of Arabidopsis endoxyloglucan transferase (an enzyme involved in the longitudinal elongation of cells).
  • At2g43060SRDX gene expression Arabidopsis thaliana.
  • the photo on the left shows a 35S: At2g43060 gene overexpressing Arabidopsis plant, and the photo on the right shows a wild type plant.
  • 35S: At2g43060 gene overexpressing Arabidopsis thaliana shows a remarkable fertile morphology.
  • At2g43060 gene overexpression Arabidopsis thaliana the expression level of this gene is decreased.
  • the photo on the right shows a tobacco plant expressing the At2g43060SRDX gene
  • the photo on the left shows a control plant.
  • the internodes are contracted.
  • Scanning electron micrograph of the stem of tobacco plant expressing At2g43060SRDX gene. A round cell line is observed.
  • Scanning electron micrograph of the stem of a tobacco control plant. A state in which vertically long cells are lined up is observed.
  • the graph which shows the plant height of an At2g43060SRDX gene expression tobacco plant and a wild type plant.
  • At2g43060SRDX gene-expressing tobacco shows a decrease in plant height of more than 40% compared to the wild type.
  • the graph which shows the number of leaves formed in one individual of an At2g43060SRDX gene expression tobacco plant and a wild type plant. In At2g43060SRDX gene-expressing tobacco, the number of leaves is slightly increased compared to the wild type.
  • B is a photograph taken from above of the leaf shape of At2g43060SRDX transgenic tobacco, and A is a control.
  • the gene encoding the transcriptional regulatory factor used in the present invention is typically an At2g43060 gene derived from Arabidopsis thaliana and represented by SEQ ID NO: 2.
  • the protein encoded by the gene is overexpressed in the transformed plant alone or as a chimeric protein fused with the transcriptional regulatory domain, thereby suppressing the expression of the enzyme gene involved in the longitudinal elongation of the cells in the plant. It is thought to do.
  • Such an expression suppression mechanism is the same as the transcription control mechanism that the present inventors have conventionally developed as the CREST-T method, and the present invention is generally applicable to general-purpose plants including monocotyledonous plants such as rice. It is an applicable method for suppressing the expression of an enzyme gene.
  • the gene encoding the transcriptional regulatory factor that can be used in the present invention is not limited to the At2g43060 gene derived from Arabidopsis thaliana, but also includes corresponding genes derived from other plant species, and fragments thereof can be used as long as they retain the same function. Good.
  • Such a gene has a homology (identity) of 70% or more, preferably 80% or more, more preferably 90% or more, and even more preferably 95% or more with SEQ ID NO: 2 in the nucleotide sequence.
  • the amino acid sequence encoded by has a homology (identity) of SEQ ID NO: 1 of 70% or more, preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more.
  • a protein comprising the amino acid sequence of any one of the following (a) to (b), wherein the protein has a function of suppressing the elongation of plant cells; (A) the amino acid sequence shown in SEQ ID NO: 1, (B) an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1; (C) an amino acid sequence encoded by the base sequence shown in SEQ ID NO: 2, (D) an amino acid sequence encoded by a base sequence that hybridizes with a complementary sequence of the base sequence shown in SEQ ID NO: 2 under stringent conditions.
  • stringent conditions refer to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed.
  • a highly homologous nucleic acid that is, a complementary strand of DNA consisting of a nucleotide sequence having a homology of 90% or more, preferably 95% or more, is hybridized with the nucleotide sequence shown in SEQ ID NO: 2 and has a lower homology.
  • a condition in which the complementary strand of the nucleic acid does not hybridize is mentioned. More specifically, it refers to a condition in which the sodium concentration is 15 to 300 mM, preferably 15 to 75 mM, and the temperature is 50 to 60 ° C., preferably 55 to 60 ° C.
  • One or several amino acids means 1 to 100, preferably 1 to 50, more preferably 1 to 30, and still more preferably about 1 to 10.
  • the transcription repression domain is a motif ((L / F) DLN (L / F) (X) P) which is a transcription repression domain shown in Patent Documents 15 to 22 and Non-Patent Documents 1 to 3.
  • X represents any amino acid residue, a transcription repressing peptide comprising SEQ ID NO: 3) and “DLELLL (SEQ ID NO: 4)”, and the following formula (I) described in Japanese Patent Application No. 2008-62113
  • SRDX LDLELRLGFA: SEQ ID NO: 5
  • the latter motif is represented as follows.
  • X 1 -X 2 -Leu-Phe-Gly-Val-X 3 In the above formula (I), X 2 represents Lys or Arg.
  • X 1 and X 3 may be any amino acid, and the number of amino acids constituting the amino acid sequence of X 1 and X 3 may be any number as long as each is within the range of 1 to 10. From the viewpoint of ease of synthesis of the peptide to be used, the shorter one is better, but in order to surely increase the suppressing effect, the total number of X 1 and X 3 is preferably 3 or more. More preferably, X 1 + X 3 is 6 or more, more preferably 10 or more.
  • conserved motif contained here is “(R / K) LFGV” or “(X) (R / K) LFGV (X)”. (However, X represents any amino acid residue.) (SEQ ID NO: 6) Typical nucleotide sequences contained in this motif are included in Arabidopsis transcription factors At3g11580, At2g46870, At1g13260, At1g68840, At4g36990, At4g11660, and the like. (R / K) can be obtained as a base sequence corresponding to the LFGV motif.
  • the inventors developed the present invention when expressing in a plant cell of a transformed plant body a chimeric protein in which a transcriptional regulatory factor having a plant cell elongation suppressing function and a transcriptional repression domain are bound.
  • This is performed according to the CRES-T method (Chimeric repressor silencing technology) (Patent Documents 15 to 22, Non-Patent Documents 1 to 3).
  • the CRES-T method uses a transcription repression domain (dominant repressor) isolated from a plant and binds to the carboxyl group terminal of the transcriptional activator to impart a strong transcriptional repression activity to the transcriptional activator.
  • the transcription repression domain used in the CRES-T method is a motif of (L / F) DLN (L / F) (X) P or (X) (R / K) LFGV (X) motif (where X is any Has also been identified not only in Arabidopsis thaliana, but also in a wide range of plant transcriptional repressors such as tobacco and rice, and related genes similar in sequence and function in the CRES-T method. It has been confirmed that the function can be suppressed and that it can be applied to plants in general beyond species.
  • the promoter that controls the transcription control factor of the present invention may be any promoter that can be expressed in the stem extension. Therefore, plant constitutive expression-inducing promoters containing CaMV35S and promoters that control expression in stems are all suitable for this invention. Furthermore, promoters that induce particularly strong expression in the stem extension are particularly preferred. For example, rice D18 promoter (Japanese Patent Laid-Open No. 2007-215416). A promoter that induces gene expression by an external factor is also suitable for the present invention. Examples of methods for introducing the gene or recombinant vector of the present invention into plants include the Agrobacterium method, the PEG-calcium phosphate method, the electroporation method, the liposome method, the particle gun method, and the microinjection method. Whether or not a gene has been incorporated into a plant can be confirmed by PCR, Southern hybridization, Northern hybridization, or the like.
  • Plants to be transformed in the present invention include whole plants, plant organs (eg leaves, petals, stems, roots, seeds, etc.), plant tissues (eg epidermis, phloem, soft tissue, xylem, vascular bundles, etc.) ) Or plant cultured cells.
  • plant organs eg leaves, petals, stems, roots, seeds, etc.
  • plant tissues eg epidermis, phloem, soft tissue, xylem, vascular bundles, etc.
  • Examples of plants used for transformation include plants belonging to the Brassicaceae, Eggplant, Gramineae, Legumes, etc., but are not limited to these plants.
  • it can be applied to general breeding of food-producing plants such as rice, wheat and other grains, beans, and corn, together with vegetables such as solanaceous plants, and therefore from the viewpoint of future food production technology. I have great expectations.
  • Tobacco is a plant that has long been used for research as a model plant of the solanaceous family, but there is very little knowledge about its genetic resources. However, the knowledge of tobacco can be expected to be widely available in the solanaceous family, which contains many major crops such as tomatoes and potatoes. Tobacco is a diploid that is difficult to modify in traits, whether by mating breeding or molecular breeding.
  • the polyploid plants include soybeans and wheat, which are important crops for food and feed, and the knowledge obtained in tobacco seems to be useful for breeding these polyploid plants.
  • the dwarfing of plants by the chimeric protein of the present invention is due to the suppression of the elongation of stem cells in the longitudinal direction.
  • the present inventors made detailed observations of epidermal cells using a scanning electron microscope in epidermal cells of stems ectopically expressing the chimeric protein, and the cells were elongated vertically. Confirmed that there is no.
  • the protein or chimeric protein of the present invention can also be produced using a plant cell host, another microbial host such as E. coli, an animal cell host, or the like. These proteins may be able to dwarf the plant body by acting directly on the plant body.
  • the present inventors extracted RNA from a plant ectopically expressing the chimeric protein and analyzed various genes involved in stem cell elongation. The expression level was analyzed. As a result, it was found that in transgenic plants ectopically expressing the chimeric protein, the expression of enzyme groups (such as EXP8) that promote cell longitudinal elongation was suppressed.
  • enzyme groups such as EXP8
  • the cell elongation suppression function by the chimeric protein of the present invention is due to the suppression of the expression of enzymes that promote cell elongation. That is, because the stem elongation suppression function of the present transcription control protein and the chimeric protein requires that the protein be ectopically expressed in a tissue in which the target enzyme group of the protein is transcribed.
  • a group of enzymes that promote cell elongation by combining a gene encoding the protein with a promoter region capable of controlling expression in a tissue in which the target enzyme gene is expressed to form a chimeric vector and introducing it into a plant body The expression of this gene can be suppressed, and the elongation of the plant stem in the vertical direction can be suppressed.
  • At2g43060 gene is used as a gene (transcription control factor) encoding a protein having a function of suppressing the elongation of plant cells of the present invention
  • SRDX is used as a representative transcription repression domain that binds to the gene.
  • the function of inhibiting the elongation in the vertical direction of plant stem cells by the transcriptional control protein and chimeric protein of the present invention acts regardless of the type of plant.
  • the present applicant introduced a construct for expressing a chimeric protein in which SRDX was fused to the Arabidopsis transcriptional regulatory factor under the control of the CaMV35S promoter, and observed its morphology.
  • the internodes of the stem were shortened and the final plant height was also lowered.
  • the epidermal cells of the stem were observed using a scanning electron microscope, the suppression of the elongation of the stem cells in the vertical direction was observed, as in Arabidopsis.
  • the action of the chimeric construct is common between Arabidopsis and tobacco. Turned out to be. Furthermore, the reduction of internodes in the tobacco introduced with the chimeric construct was common to the stems of the vegetative growth stage and the reproductive growth stage. Therefore, the action of the chimeric construct is common to the vegetative growth stage and the reproductive growth stage. It has been found. That is, the action of the chimeric construct is not limited to the suppression of the elongation of flower stems of rosette plants, but also functions widely for the suppression of elongation of stems during the vegetative growth stage of plants. In addition, in the chimeric construct-introduced tobacco, the number of leaves did not decrease even though the plant body became dwarf. This indicates that the action of the chimeric construct is limited to the suppression of the elongation of stem cells in the vertical direction, and does not act on the formation patterns of branches and leaves that have a great influence on fruit formation and biomass.
  • Example 1 the At2g43060 gene was ligated with a gene fragment encoding SRDX, which is a transcriptional repression domain, and connected to the downstream of the cauliflower mosaic virus 35S promoter to construct a transformed plasmid.
  • the plasmid was transformed into an Arabidopsis plant.
  • the effect of At2g43060SRDX chimera gene on suppression of plant height elongation in Arabidopsis thaliana was examined by introducing and observing the morphology of transformed plants and analyzing the effect on the expression of cell elongation promoting enzymes.
  • Example 2 a transformed plasmid was constructed by connecting the At2g43060 gene downstream of the cauliflower mosaic virus 35S promoter, the plasmid was introduced into an Arabidopsis plant, the morphology of the transformed plant was observed, and the cell elongation promoting enzyme
  • Example 3 a gene fragment encoding SRDX, which is a transcriptional repression domain, was ligated to the At2g43060 gene, and this was connected downstream of the cauliflower mosaic virus 35S promoter to construct a transformed plasmid, which was introduced into a tobacco plant. Then, by observing the morphology of the transformed plant, the plant height elongation inhibitory effect of the At2g43060 gene in tobacco was investigated.
  • Example 1 (1-1) Construction of Transformation Vector pBIG2 A DNA fragment containing the cauliflower mosaic virus 35S promoter (CaMV 35S) by cleaving the plasmid p35S-GFP of Clontech (Clontech, USA) with restriction enzymes HindIII and BamHI. Were separated and collected by agarose gel electrophoresis. A plant transformation vector pBIG-HYG (Becker, D. 1990 Nucleic Acid Research, 18: 203) assigned by Michigan State University, USA was cleaved with restriction enzymes HindIII and SstI, and the GUS gene was removed by agarose gel electrophoresis. A DNA fragment was obtained. DNA having the following sequence was synthesized, heated at 70 ° C.
  • This DNA fragment has a BamHI restriction enzyme site at the 5 ′ end, an omega sequence derived from tobacco mosaic virus that enhances translation efficiency, and restriction enzyme sites SmaI and SalI.
  • Transformation vector 35S Construction of At2g43060SRDX Partial base sequence of SUPERMAN) Two complementary DNA sequences with GGG 3 'and stop codon 3' 5'-GGGCTCGATCTGGATCTAGAACTCCGTTTGGGTTTCGCTTAAG-3 '(SEQ ID NO: 9) 5'-CTTAAGCGAAACCCAAACGGAGTTCTAGATCCAGATCGAGCCC-3 '(SEQ ID NO: 10) was annealed and inserted into the pBIG2 vector cut with SmaI. The sequence was confirmed and the one introduced in the forward direction was selected and designated as p35SRDX.
  • At2g43060 cDNA As a template, 5 end upper primer 5'-GATGGCCTCTGCAGACAAACTCATAAACAC-3 '(SEQ ID NO: 11) 3 end lower primer 5'-TTTGGGAGATAAGCCATCAACGAGACACTG-3 '(SEQ ID NO: 12)
  • a PCR reaction was used to amplify the full length sequence of At2g43060 excluding the stop codon. The PCR reaction was performed for 30 cycles, with a denaturation reaction at 94 ° C. for 1 minute, an annealing reaction at 50 ° C. for 1 minute, and an extension reaction at 72 ° C. for 3 minutes.
  • the bacterial cells were collected from the culture solution and suspended in 500 ml of an infection medium.
  • Arabidopsis thaliana grown for 14 days was soaked for 1 minute, infected, and then grown and seeded again.
  • the collected seeds are sterilized with 50% bleach and 0.02% Triton X-100 solution for 7 minutes, rinsed three times with sterilized water, and the sterilized seeds are added to 1/2 MS selective medium containing 30 mg / l hygromycin. I was slaughtered. A transformed plant growing on the hygromycin plate was selected, replanted in soil, and grown.
  • Example 2 (2-1) Construction of Transformation Vector 35S: At2g43060 Using Arabidopsis At2g43060 cDNA as a template, 5 end upper primer GATGGCCTCTGCAGACAAACTCATAAACAC (SEQ ID NO: 17) 3 end lower primer GGGGTCGACTCATTTGGGAGATAAGCCATC (SEQ ID NO: 18) was used to amplify the full-length sequence of At2g43060 by PCR reaction. The PCR reaction was performed for 30 cycles, with a denaturation reaction at 94 ° C. for 1 minute, an annealing reaction at 50 ° C. for 1 minute, and an extension reaction at 72 ° C. for 3 minutes.
  • This amplified fragment was cut with SmaI and inserted into the pBIG vector recovered by agarol gel electrophoresis. The sequence was confirmed, and the one with the At2g43060 gene introduced in the forward direction was selected to obtain 35S: At2g43060.
  • Transformation of Arabidopsis plants with 35S: At2g43060 is carried out by Transformation of Arabidopsis thaliana byvacuum inflation (http: //www.bch. htm). However, I did not use vacuum to infect it, but just dipped it.
  • the plasmid was introduced into a soil bacterium [(Agrobacterium tumefaciens strain GV3101 (C58C1Rifr) pMP90 (Gmr) (koncz and Schell 1986)] strain by culturing in the 250 ml LB medium for 2 days. .
  • the bacterial cells were collected from the culture solution and suspended in 500 ml of an infection medium.
  • Arabidopsis thaliana grown for 14 days was soaked for 1 minute, infected, and then grown and seeded again.
  • the collected seeds are sterilized with 50% bleach and 0.02% Triton X-100 solution for 7 minutes, rinsed three times with sterilized water, and the sterilized seeds are added to 1/2 MS selective medium containing 30 mg / l hygromycin. I was slaughtered. A transformed plant growing on the hygromycin plate was selected, replanted in soil, and grown.
  • RNA was extracted from Arabidopsis plants transformed with 35S: At2g43060 (Day 10 seedlings), and a reverse transcription reaction was performed using this as a template. CDNA was obtained. Using this as a template, quantitative PCR reaction was performed to analyze the expression levels of EXP8 and EXT genes.
  • EXP8 PCR 5'-GTTCCTGTCTCTTTCCGAAGAG-3 '(SEQ ID NO: 13)
  • an antisense primer 5'-TACGTCTCCTGCTCCTCCTA-3 '(SEQ ID NO: 14) was used.
  • Example 3 (Example 3) (3-1) Preparation of tobacco plant transformed with 35S: At2g43060SRDX Tobacco transformation with 35S: At2g43060SRDX was performed by the leaf disk method.
  • the plasmid was introduced into a soil bacterium [(Agrobacterium tumefaciens strain GV3101 (C58C1Rifr) pMP90 (Gmr) (koncz and Schell 1986)] strain by culturing in the 100 ml LB medium for 2 days. .
  • the bacterial cells are collected from the culture solution, suspended in 5 ml of LB medium, and immersed in a disc in which tobacco leaves grown in a sterile state are cut into approximately 1 cm squares for 5 minutes to be infected. After that, the cells were grown on MS plates for 2 days at 24 ° C. for 16 hours with a light period of 8 hours and a dark period. After that, the leaf disc was transplanted to a medium containing 0.5 mg / l of claforan, 1 mg / l of benzylaminopurine, and 100 mg / l of kanamycin, and sterilized and selected, and adventitious buds were formed.
  • the formed adventitious buds were isolated and transplanted to a medium containing 0.5 mg / l of claforan, 1 mg / l of naphthalene acetic acid and 100 mg / l of kanamycin to induce rooting.
  • the rooted individuals were transplanted to a medium containing kraforan 0.5 mg / l and kanamycin 100 mg / l, grown, and transplanted to soil when seeded to a certain extent, and then seeded.
  • the collected seeds are sterilized with 50% bleach and 0.02% Triton X-100 solution for 7 minutes, rinsed three times with sterilized water, and the sterilized seeds are seeded in MS selective medium containing 100 mg / l kanamycin. did.
  • a transformed plant growing on the kanamycin plate was selected, replanted in soil, and grown.
  • FIG. 4B shows a view obtained by observing the morphology of epidermal cells of this transformed tobacco stem using a scanning electron microscope.
  • C is a photograph of a wild-type stem taken at the same scale.
  • Tobacco transformed with 35S: At2g43060SRDX showed significant reduction of stem cells in the vertical direction, similar to Arabidopsis thaliana introduced with this construct. From this, it was proved that the 35S: At2g43060SRDX chimeric construct inhibits the longitudinal elongation of stem cells even in tobacco.
  • a photograph of the shape of the transformed tobacco leaf taken from above is shown in FIG.
  • FIG. 4A is a wild-type diagram.
  • the length of the leaves of the transformant was 0.5 when the control was 1.
  • the lateral length was 0.7 to 1.0 when the control was set to 1. From this result, it was clearly shown that the elongation in the vertical direction was significantly suppressed rather than the lateral elongation of the leaves.
  • the change in plant height of the transformant is 0.2 to 0.45 when the control is 1, the suppression of stem elongation is more remarkable in this transformant than in the case of leaf size reduction. It became clear to be observed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The object aims to find a factor involved in the regulation of plant cell elongation and produce a superior plant having a reduced height and having the similar numbers of branches and leaves to those of the original type one by manipulating the factor.  A protein comprising an amino acid sequence depicted in any one of the amino acid sequences (a) to (d) shown below and capable of inhibiting the elongation of a plant cell or a chemeric protein produced by linking a transcription inhibition domain to the C-terminal of the protein is allowed to express in a cell of a transgenic plant: (a) the amino acid sequence depicted in SEQ ID NO:1; (b) an amino acid sequence having the deletion, substitution or addition of one or several amino acid residues in the amino acid sequence depicted in SEQ ID NO:1; (c) an amino acid sequence encoded by the nucleotide sequence depicted in SEQ ID NO:2; and (d) an amino acid sequence encoded by a nucleotide sequence which can hybridize with a sequence complementary to the nucleotide sequence depicted in SEQ ID NO:2 under stringent conditions.

Description

矮性化形質転換植物および矮性化を誘導するための遺伝子Dwarfing transformed plants and genes for inducing dwarfing
 本発明は、植物の細胞伸長抑制による矮性化に関わる転写制御因子をコードする遺伝子並びに該遺伝子を用いて形質転換した植物の矮性化に関する。 The present invention relates to a gene encoding a transcriptional regulatory factor involved in dwarfing by suppressing cell elongation of a plant and dwarfing a plant transformed using the gene.
 農業現場において、矮性形質は風水害による倒伏防止や作業の利便性向上に非常に重要な形質であり、これまでにも従来の育種法による矮性品種の作出は盛んに行なわれてきた。しかしながら、従来の育種法において新品種を作出するためには膨大な時間が必要である。一方で人類が、食用、あるいは、その他の原料として栽培し、利用する植物の種類は、古くから継続的に栽培されているものだけでも莫大な数に上り、これらの中で矮性化を必要とする全ての品種について矮性品種を作出することは従来の育種法では非常に困難である。
 また、近年の地球環境変動や人間の生活スタイルの変化によって、人類が必要とする作物の種類も、その作物に必要な形質も、刻々と変化している。例えば、植物を圃場栽培ではなく閉鎖型完全人工環境制御下で栽培し、医薬品等の有用物質生産の場として利用する、いわゆる「植物工場」などの試みも現在開始されている。閉鎖型植物生産施設での栽培を目的とした場合、これまでに育種開発された品種は必ずしも最適なものではなく、より空間を有効に利用しうる形態、つまり、栽培スペースの面積では体積を有効に利用しうる形態、多段栽培に適した形質をもつことが重要であり、従来必要とされたよりもより一層、矮性化された植物品種の作出が必要である。
 このようなニーズの変化の中で、育種に膨大な時間を有する従来の育種方法にかわり、より短い時間で必要な形態変化を誘導することの出来る遺伝子組換えによる育種法が非常に有用とされるようになり、有用形質の誘導に関与する遺伝子資源の発掘とその利用方法の確立、機能の解明が急務となってきている。
 また、新品種作出の必要性が多様な植物品種に及ぶ現状から、様々な植物種、植物品種において簡便に、また、一律に同じ形質変化を誘導しうる育種手法の開発も重要であると考えられる。
In the agricultural field, fertile traits are very important traits for preventing lodging due to storm and flood damage and improving convenience of work, and so far, fertile varieties have been actively produced by conventional breeding methods. However, enormous time is required to produce a new variety in the conventional breeding method. On the other hand, the number of types of plants that human beings cultivate and use as edible or other raw materials has grown enormously even from those that have been cultivated continuously since ancient times, and among these, dwarfing is required. It is very difficult to produce fertile varieties for all varieties that do so.
In addition, due to recent changes in the global environment and changes in human lifestyles, the types of crops that humans need and the traits they need for crops are constantly changing. For example, a trial of so-called “plant factory”, in which plants are cultivated under closed-type fully artificial environment control instead of field cultivation and used as a place for producing useful substances such as pharmaceuticals, has been started. For the purpose of cultivation in a closed plant production facility, the varieties that have been bred and developed so far are not necessarily optimal, and the volume can be effectively used in a form that allows more effective use of space, that is, the area of the cultivation space. Therefore, it is important to have a trait suitable for multi-stage cultivation, and it is necessary to produce a dwarfed plant variety more than conventionally required.
In response to such changes in needs, a genetic breeding method that can induce the necessary morphological changes in a shorter time is very useful in place of the conventional breeding method that has a huge time for breeding. As a result, it has become an urgent task to find genetic resources involved in the induction of useful traits, establish their use, and elucidate their functions.
In addition, since the need to create new varieties extends to various plant varieties, it is also important to develop breeding methods that can easily and uniformly induce the same trait changes in various plant species and plant varieties. It is done.
 最近、遺伝子組換えによる植物の形質転換技術を利用した矮性化植物の作出についての技術開発が活発化し、様々な手法が開発されている。
 イネなどにおいては生育に重要な植物ホルモンやその他の物質の生合成に関わる遺伝子をアンチセンス等で抑制する方法(特許文献1~7)、これら遺伝子に変異を導入する方法(特許文献8~10)の他、イネの節で特異的に働くプロモーターを用いる方法(特許文献11)や、微生物由来酵素を用いて細胞壁に代謝異常を起こさせる方法(特許文献12)も検討されていた。しかしながら、アンチセンスや変異導入などで標的遺伝子を抑制しても、機能重複遺伝子がある場合には完全に遺伝子機能を抑制することは困難であり、また、標的となる合成経路が複数存在する場合には複数の経路に関与する遺伝子のすべてを抑制することは不可能に近く、また、一方では生育に重要な遺伝子やその関与する代謝経路は完全にその機能を抑制してしまうと生育状態が著しく悪化することから、適切なレベルで制御することが必要であるが、その制御は容易ではない。またそれぞれの植物ごとに標的遺伝子の塩基配列が微妙に異なるため、アンチセンス法などで遺伝子の機能を抑制する方法は植物一般に適用できる汎用性のある技術とはいえなかった。
 また、モデル植物であるシロイヌナズナ由来の遺伝子について網羅的に過剰発現コンストラクトを作成し、それをシロイヌナズナに導入することにより、矮小化を誘導、原因遺伝子を特定するなどして、At4g31910, At1g04910,
At4g35700, At1g49770遺伝子(WO2005/026345)、At1g66820遺伝子(特許文献2)を同定し、これら遺伝子を過剰発現させて矮小化させる方法(特許文献2)も開発されたが、これらによって植物を一般的に完全に矮小化させるという目的が達成されたともいえない。また、一般的にこれらの技術を用いた場合、草丈が低くなると同時に、枝、葉の数の減少や、葉の厚み、茎の太さの変化をも誘導されることが多く、バイオマス全体が減少してしまう傾向にあり、観賞用植物としてはともかく、野菜、穀物など作物として多収性が重要とされる栽培植物一般に適用できる汎用的技術ではなかった。
 したがって、草丈だけが低くなりバイオマスはほとんど変化しない、従来の植物と遜色ない枝・葉の数を有する優良植物の作出が可能であり、同時に栽培植物一般に適用できる汎用性もある、簡便で確実な技術が求められていた。
Recently, technological development for producing fertile plants using plant transformation technology by genetic recombination has been activated, and various methods have been developed.
In rice and the like, methods for suppressing genes related to biosynthesis of plant hormones and other substances important for growth by antisense (Patent Documents 1 to 7), methods for introducing mutations into these genes (Patent Documents 8 to 10) In addition, a method using a promoter that specifically works in the rice node (Patent Document 11) and a method of causing metabolic abnormality in the cell wall using a microorganism-derived enzyme (Patent Document 12) have also been studied. However, even if the target gene is suppressed by antisense or mutagenesis, it is difficult to completely suppress the gene function if there is a duplicated gene, and there are multiple target synthetic pathways. However, it is almost impossible to suppress all genes involved in multiple pathways, and on the other hand, genes that are important for growth and metabolic pathways involved are completely inhibited from functioning. Since it deteriorates remarkably, it is necessary to control at an appropriate level, but the control is not easy. In addition, since the base sequence of the target gene is slightly different for each plant, a method for suppressing the function of the gene by an antisense method or the like cannot be said to be a versatile technique applicable to plants in general.
In addition, we created an overexpression construct for the gene derived from the model plant, Arabidopsis thaliana, introduced it into Arabidopsis thaliana, induced dwarfism, identified the causative gene, etc., At4g31910, At1g04910,
At4g35700, At1g49770 genes (WO2005 / 026345) and At1g66820 genes (Patent Document 2) have been identified, and a method (Patent Document 2) in which these genes are overexpressed and dwarfed has also been developed. It cannot be said that the goal of complete dwarfing has been achieved. In general, when these techniques are used, the plant height is lowered, and at the same time, the number of branches and leaves is decreased, and the change in leaf thickness and stem thickness is often induced. It is a general technique that can be applied to general cultivated plants where high yield is important as crops such as vegetables and cereals.
Therefore, it is possible to produce excellent plants with the same number of branches and leaves as conventional plants, with only a low plant height and almost no change in biomass. At the same time, there is versatility that can be applied to cultivated plants in general. Technology was sought.
特開2001-238686号公報Japanese Patent Laid-Open No. 2001-238686 特開2001-178468号公報Japanese Patent Laid-Open No. 2001-178468 特開2003-334085号公報Japanese Patent Laid-Open No. 2003-334085 特開2005-278636号公報JP 2005-278636 A 特開2005-204673号公報JP 2005-204673 A 再公表2003-84314号公報Republished 2003-84314 特開2008-161192号公報JP 2008-161192 A 特開2007-049970号公報JP 2007-049970 A 特開2003-000260号公報JP2003-000260 特開2002-010786号公報JP 2002-010786 A 特開2007-215416号公報JP 2007-215416 A 特開2005-040036号公報JP 2005-040036 A 国際公開2005/026345号パンフレット(WO2005/026345)International Publication 2005/026345 Pamphlet (WO2005 / 026345) 特開2008-099637号公報JP2008-099637 特許第3829200号Patent No. 3829200 特許第3995211号Japanese Patent No.3995211 特開2001-269177号公報JP 2001-269177 A 特開2001-269178号公報JP 2001-269178 A 特開2001-292776号公報JP 2001-292776 特開2001-292777号公報Japanese Patent Laid-Open No. 2001-292777 特開2001-269176号公報Japanese Patent Laid-Open No. 2001-269176 特開2001-269179号公報JP 2001-269179 A
 本発明の課題は、植物の節間の細胞伸長を制御する因子を見出し、これを操作することによって植物の草丈を低くし、倒伏に強く、農作業が簡便で、なおかつ、従来の植物と遜色ない枝・葉の数を有する優良植物の作出を可能にすることにある。また、近年行なわれつつある室内型植物栽培施設における多段型栽培に適応した植物の作出にも貢献できる。 An object of the present invention is to find a factor that controls cell elongation between nodes of a plant, and by manipulating this factor, the plant height of the plant is lowered, it is resistant to lodging, is easy to farm, and is not inferior to conventional plants. It is to enable the production of excellent plants having the number of branches and leaves. In addition, it can contribute to the production of plants adapted to multi-stage cultivation in indoor plant cultivation facilities being conducted in recent years.
 本発明者等は、以前、シロイヌナズナ由来の転写活性化因子の研究から、転写活性化因子に対して強い転写抑制活性を付与する転写抑制ドメインを確定し、当該転写抑制ドメインを用いたCREST-T法を開発し、当該CREST-T法が、単子葉であるイネも含めた広く植物一般に適用できる画期的な技術であることを示した(特許文献15~22、非特許文献1~3)。そして、最近、これらの転写抑制ドメインとして、従来知られていた(L/F)DLN(L/F)(X)Pからなるモチーフ(但し、Xは任意のアミノ酸残基を示す。配列番号3)及び「DLELRL(配列番号4)」からなる転写抑制ペプチド以外に新たな転写ドメインの保存モチーフを確定し、特願2008-62113号として出願している。(この出願明細書に記載された内容は、本願明細書の記載内容として組み入れるものとする。)
 本発明者等は、上記課題を解決するため、シロイヌナズナの転写制御遺伝子に着目し、鋭意研究の結果、At2g43060遺伝子に典型的な転写抑制ドメインのSRDXを繋いだキメラタンパク質を植物体内で過剰に発現させた場合に、顕著な植物の矮性化機能を有することを見出し、そのキメラタンパク質が植物細胞の伸長を促進する酵素群の発現抑制をするというメカニズムも解明した。さらに、At2g43060遺伝子がコードするタンパク質には、それ自体を過剰に発現させた場合にも植物細胞の縦方向の伸長を抑制する機能があり、形質転換植物を矮性化させる機能を有することも見出した。
 そして、当該遺伝子、および、これに転写抑制ドメインを結合してリプレッサーに機能変換したものを用いてタバコ植物を形質転換した結果、生物種を超えて草丈の低い優れた矮性植物が作出できる知見を得たことで、本発明を完成させた。
 すなわち、本発明において、矮性形質を優性的に誘導する遺伝子を単離同定することができ、当該遺伝子に転写抑制ドメイン遺伝子を結合してリプレッサーに機能変換したものを異所的に発現させることによって、確実かつ簡便に矮性植物の作出を可能にするものである。
The present inventors previously determined from transcriptional activators derived from Arabidopsis thaliana a transcriptional repression domain that imparts strong transcriptional repression activity to the transcriptional activator, and CREST-T using the transcription repression domain. The CREST-T method has been shown to be an epoch-making technique that can be widely applied to plants including monocotyledonous rice (Patent Documents 15 to 22, Non-Patent Documents 1 to 3). . Recently, as these transcriptional repression domains, conventionally known motifs composed of (L / F) DLN (L / F) (X) P (where X represents any amino acid residue. SEQ ID NO: 3) ) And “DLELLL (SEQ ID NO: 4)”, a new conserved motif of the transcription domain has been determined and has been filed as Japanese Patent Application No. 2008-62113. (The contents described in this application specification shall be incorporated as the description contents of this specification.)
In order to solve the above problems, the present inventors have focused on the transcriptional control gene of Arabidopsis thaliana and, as a result of intensive research, overexpressed a chimeric protein in which SRDX, a typical transcription repression domain, is linked to the At2g43060 gene. And found that it has a remarkable plant dwarfing function, and elucidated the mechanism by which the chimeric protein suppresses the expression of enzymes that promote plant cell elongation. Furthermore, we found that the protein encoded by the At2g43060 gene has the function of suppressing the vertical elongation of plant cells even when it is overexpressed, and has the function of dwarfing transformed plants. .
As a result of transforming tobacco plants using the gene and a transcriptional repressor domain linked to this gene and transforming it into a repressor, knowledge that can produce excellent fertile plants with low plant height beyond the species Thus, the present invention has been completed.
That is, in the present invention, a gene that dominantly induces a fertile trait can be isolated and identified, and a transcriptional repressor domain gene bound to the gene and functionally converted to a repressor can be expressed ectopically. Thus, it is possible to reliably and easily produce fertile plants.
 具体的には、本発明者らはシロイヌナズナデーターベース中で転写遺伝子として分類されているアクセッション番号At2g43060の遺伝子を、CaMV35Sプロモーター制御下で発現させるコンストラクト(35S:At2g43060)とこの遺伝子のタンパク質をコードするDNAのC末端にSRDXペプチドをコードするDNAを読み枠が合うように融合したキメラ遺伝子をCaMV35S遺伝子のプロモーター(35S)で誘導した35S:At2g43060SRDXコンストラクトを作成した。これらのキメラ遺伝子コンストラクトを導入した形質転換シロイヌナズナ植物は明らかな矮性形質を示した。これらの形質転換シロイヌナズナについて詳細な解析を行なったところ、花茎の細胞の縦方向の伸長が抑制されていることが判明した。
 さらに、このシロイヌナズナのキメラ遺伝子(35S:At2g43060SRDX)をタバコ植物体に導入し、得られた形質転換植物を観察したところ、これらのタバコは野生型と比較して節間が短くなり、草丈が著しく低くなることが判った。さらにその原因を解明するためにタバコの茎についても表皮細胞の観察を行なったところ、シロイヌナズナの花茎の細胞と同様に縦方向の伸長が抑制されている事が判明した。これらのことから、シロイヌナズナの転写制御因子At2g43060を用いて作製したキメラ遺伝子は植物の種、および、生育ステージを問わず茎の細胞の縦方向の伸長を抑制し、植物の矮性化を誘導することが示された。
Specifically, the present inventors encoded a construct (35S: At2g43060) that expresses the gene of accession number At2g43060, which is classified as a transcriptional gene in the Arabidopsis database, under the control of the CaMV35S promoter, and a protein of this gene. A 35S: At2g43060SRDX construct was prepared by inducing a chimeric gene in which the DNA encoding the SRDX peptide was fused with the C-terminus of the DNA to be read by the CaMV35S gene promoter (35S). Transformed Arabidopsis plants introduced with these chimeric gene constructs showed clear fertile traits. Detailed analysis of these transformed Arabidopsis thaliana revealed that the longitudinal elongation of the flower stem cells was suppressed.
Furthermore, when this Arabidopsis chimera gene (35S: At2g43060SRDX) was introduced into a tobacco plant and the resulting transformed plants were observed, the internodes of these tobaccos were shorter than the wild type, and the plant height was remarkably high. It turned out to be lower. Furthermore, in order to elucidate the cause, the epidermal cells were also observed on tobacco stems, and it was found that longitudinal elongation was suppressed as in Arabidopsis flower stem cells. Based on these results, the chimeric gene produced using the Arabidopsis transcriptional regulator At2g43060 suppresses the vertical elongation of stem cells regardless of plant species and growth stage, and induces the dwarfing of plants. It has been shown.
 すなわち、本発明は以下の通りである。
〔1〕 以下の(a)~(b)のいずれかに記載のアミノ酸配列を含むタンパク質であって、植物細胞の伸長抑制機能を有するタンパク質;
(a)配列番号1に示されるアミノ酸配列、
(b)配列番号1に示されるアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列、
(c)配列番号2に示される塩基配列がコードするアミノ酸配列、
(d)配列番号2に示される塩基配列の相補配列とストリンジェントな条件下でハイブリダイズする塩基配列がコードするアミノ酸配列。
〔2〕 前記タンパク質が、そのC末側に転写抑制ドメインを結合させたキメラタンパク質であることを特徴とする、前記〔1〕に記載のタンパク質。
〔3〕 前記転写抑制ドメインが、(L/F)DLN(L/F)(X)Pからなるモチーフ(但し、Xは任意のアミノ酸残基を示す。)又は「DLELRL」である、前記〔2〕に記載のタンパク質。
〔4〕 前記転写抑制ドメインが、下記式(I)で示されるアミノ酸配列からなる、植物の転写機能を有するペプチドである、前記〔2〕に記載のタンパク質;
式(I)
 X1-X2-Leu-Phe-Gly-Val-X3
(式中、X1及びX3は1~10個の任意のアミノ酸で構成されるアミノ酸配列を表し、X2はLys又はArgを表す。)。
〔5〕 前記〔1〕~〔4〕のいずれかに記載のタンパク質をコードする核酸分子。
〔6〕 前記〔5〕に記載の核酸分子を含む、発現ベクター。
〔7〕 前記〔5〕に記載の核酸分子が発現可能な状態で導入されている、形質転換細胞。
〔8〕 前記〔5〕に記載の核酸分子が導入された、矮性化された形質転換植物およびその子孫。
〔9〕 前記〔7〕に記載の形質転換細胞を培養し、採取することを特徴とする、植物細胞の伸長抑制機能を有するタンパク質の製造方法。
〔10〕 前記〔5〕に記載の核酸分子を植物細胞に導入し、該植物細胞から植物体を再生させることを特徴とする、矮性化された形質転換植物体の製造方法。
〔11〕 前記〔5〕に記載の核酸分子を植物体の細胞内で発現させることを特徴とする、植物の矮性化方法。
That is, the present invention is as follows.
[1] A protein comprising the amino acid sequence of any one of the following (a) to (b), which has a function of suppressing the elongation of plant cells;
(A) the amino acid sequence shown in SEQ ID NO: 1,
(B) an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1;
(C) an amino acid sequence encoded by the base sequence shown in SEQ ID NO: 2,
(D) an amino acid sequence encoded by a base sequence that hybridizes with a complementary sequence of the base sequence shown in SEQ ID NO: 2 under stringent conditions.
[2] The protein according to [1] above, wherein the protein is a chimeric protein having a transcription repression domain bound to the C-terminal side thereof.
[3] The transcription repression domain is a motif consisting of (L / F) DLN (L / F) (X) P (where X represents any amino acid residue) or “DLELLL”, 2].
[4] The protein according to [2] above, wherein the transcription repression domain is a peptide having a plant transcription function, comprising an amino acid sequence represented by the following formula (I):
Formula (I)
X 1 -X 2 -Leu-Phe-Gly-Val-X 3
(Wherein X 1 and X 3 represent an amino acid sequence composed of 1 to 10 arbitrary amino acids, and X 2 represents Lys or Arg).
[5] A nucleic acid molecule encoding the protein according to any one of [1] to [4].
[6] An expression vector comprising the nucleic acid molecule according to [5].
[7] A transformed cell into which the nucleic acid molecule according to [5] has been introduced.
[8] A dwarfed transformed plant into which the nucleic acid molecule according to [5] has been introduced and its progeny.
[9] A method for producing a protein having a function of suppressing the elongation of plant cells, comprising culturing and collecting the transformed cells according to [7].
[10] A method for producing a dwarfed transformed plant, wherein the nucleic acid molecule according to [5] is introduced into a plant cell, and the plant is regenerated from the plant cell.
[11] A method for dwarfing a plant, comprising expressing the nucleic acid molecule according to [5] in a cell of a plant body.
 本発明の転写制御因子、およびそのC末側にSRDXペプチドなどの転写抑制ドメインを融合したキメラタンパク質をコードする遺伝子を、植物体内において過剰発現させることで、細胞伸長に関与する酵素の遺伝子発現を阻害し、細胞の縦方向の伸長を抑制する機能を有する。その結果、シロイヌナズナ植物体は著しく矮性となる。
 また、本発明の遺伝子による植物体の矮性化の誘導は植物一般に適用でき、本遺伝子は植物の茎の細胞の伸長には影響を及ぼすが、葉や枝の数などには影響しないので、各種植物の育種分野において非常に有用である。
By overexpressing in the plant body the gene encoding the transcriptional regulatory factor of the present invention and a chimeric protein in which a transcription repressing domain such as SRDX peptide is fused to the C-terminal side thereof, gene expression of an enzyme involved in cell elongation is expressed. It has a function of inhibiting and suppressing the elongation in the longitudinal direction of cells. As a result, Arabidopsis plants become extremely fertile.
In addition, induction of dwarfing of plants by the gene of the present invention can be applied to plants in general, and this gene affects the elongation of plant stem cells but does not affect the number of leaves and branches. It is very useful in the field of plant breeding.
35S:At2g43060SRDX遺伝子発現シロイヌナズナ植物の写真。著しい矮性の形態を示す。Photograph of 35S: At2g43060SRDX gene-expressing Arabidopsis thaliana plant. It shows a remarkable form of fertility. 左はAt2g43060SRDX遺伝子発現シロイヌナズナ植物、右は野性型植物の写真。The left is a photograph of an At2g43060SRDX gene-expressing Arabidopsis plant, and the right is a wild-type plant. At2g43060SRDX遺伝子発現シロイヌナズナ植物の茎の走査型電子顕微鏡写真。丸い細胞が並んでいる様子が観察される。Scanning electron micrograph of the stem of At2g43060SRDX gene expressing Arabidopsis thaliana plant. A round cell line is observed. 野生型植物の茎の走査型電子顕微鏡写真。縦長の細胞が並んでいる様子が観察される。Scanning electron micrograph of the stem of a wild type plant. A state in which vertically long cells are lined up is observed. At2g43060SRDX遺伝子発現シロイヌナズナにおけるAtEXP8の発現量の解析。AtEXP8はシロイヌナズナ由来エクスパンシン(細胞の縦方向の伸長に関与する酵素)の一種をコードする。At2g43060SRDX遺伝子発現シロイヌナズナにおいてはこの遺伝子の発現量が低下していることがわかる。なお、シロイヌナズナのUBQ遺伝子(ユビキチン遺伝子)の発現量を1として定量している。以下の実験でも同様である。Analysis of AtEXP8 expression level in Arabidopsis thaliana expressing At2g43060SRDX. AtEXP8 encodes a kind of Arabidopsis-derived expansin (an enzyme involved in cell longitudinal elongation). It can be seen that the expression level of this gene is reduced in At2g43060SRDX gene expression Arabidopsis thaliana. The expression level of Arabidopsis thaliana UBQ gene (ubiquitin gene) is quantified as 1. The same applies to the following experiments. At2g43060SRDX遺伝子発現シロイヌナズナにおけるENTの発現量の解析。ENTはシロイヌナズナのエンドキシログルカントランスフェラーゼ(細胞の縦方向の伸長に関与する酵素)の一種をコードする。At2g43060SRDX遺伝子発現シロイヌナズナにおいてはこの遺伝子の発現量が低下していることがわかる。Analysis of ENT expression level in At2g43060SRDX gene expression Arabidopsis thaliana. ENT encodes a type of Arabidopsis endoxyloglucan transferase (an enzyme involved in the longitudinal elongation of cells). It can be seen that the expression level of this gene is reduced in At2g43060SRDX gene expression Arabidopsis thaliana. 左は35S:At2g43060遺伝子過剰発現シロイヌナズナ植物、右は野性型植物の写真。35S:At2g43060遺伝子過剰発現シロイヌナズナは著しい矮性形態を示す。The photo on the left shows a 35S: At2g43060 gene overexpressing Arabidopsis plant, and the photo on the right shows a wild type plant. 35S: At2g43060 gene overexpressing Arabidopsis thaliana shows a remarkable fertile morphology. 35S:At2g43060遺伝子過剰発現シロイヌナズナにおけるAtEXP8の発現量の解析。Analysis of the expression level of AtEXP8 in 35S: At2g43060 gene overexpressing Arabidopsis thaliana. 35S:At2g43060遺伝子過剰発現シロイヌナズナにおけるENTの発現量の解析。35S:At2g43060遺伝子過剰発現シロイヌナズナにおいてはこの遺伝子の発現量が低下していることがわかる。Analysis of ENT expression in 35S: At2g43060 gene overexpressing Arabidopsis thaliana. It can be seen that in 35S: At2g43060 gene overexpression Arabidopsis thaliana, the expression level of this gene is decreased. 右はAt2g43060SRDX遺伝子発現タバコ植物、左はコントロール植物の写真。At2g43060SRDX遺伝子発現タバコ植物においては節間が縮まっている様子が観察される。The photo on the right shows a tobacco plant expressing the At2g43060SRDX gene, and the photo on the left shows a control plant. In the At2g43060SRDX gene-expressing tobacco plant, it is observed that the internodes are contracted. At2g43060SRDX遺伝子発現タバコ植物の茎の走査型電子顕微鏡写真。丸い細胞が並んでいる様子が観察される。Scanning electron micrograph of the stem of tobacco plant expressing At2g43060SRDX gene. A round cell line is observed. タバコのコントロール植物の茎の走査型電子顕微鏡写真。縦長の細胞が並んでいる様子が観察される。Scanning electron micrograph of the stem of a tobacco control plant. A state in which vertically long cells are lined up is observed. At2g43060SRDX遺伝子発現タバコ植物と野生型植物の草丈を示すグラフ。野生型の草丈の平均値を1として表した。At2g43060SRDX遺伝子発現タバコにおいては野生型と比較して40%以上、草丈の減少がみられる。The graph which shows the plant height of an At2g43060SRDX gene expression tobacco plant and a wild type plant. The average value of wild-type plant height was expressed as 1. At2g43060SRDX gene-expressing tobacco shows a decrease in plant height of more than 40% compared to the wild type. At2g43060SRDX遺伝子発現タバコ植物と野生型植物の一個体に形成される葉の枚数を示すグラフ。At2g43060SRDX遺伝子発現タバコにおいては野生型と比較して、やや葉の枚数が増加している。The graph which shows the number of leaves formed in one individual of an At2g43060SRDX gene expression tobacco plant and a wild type plant. In At2g43060SRDX gene-expressing tobacco, the number of leaves is slightly increased compared to the wild type. BがAt2g43060SRDX遺伝子形質転換タバコの葉の形を上方から撮影した写真、Aはコントロール。B is a photograph taken from above of the leaf shape of At2g43060SRDX transgenic tobacco, and A is a control.
 以下、本発明をさらに詳細に説明する。
 本発明において用いられる転写制御因子をコードする遺伝子は、典型的にはシロイヌナズナ由来のAt2g43060遺伝子であり、配列番号2で表される。
 当該遺伝子がコードするタンパク質は、単独でまたは転写制御ドメインと融合したキメラ蛋白質として形質転換植物体内で過剰発現されることで、植物体内の細胞内の縦方向の伸長に関わる酵素遺伝子の発現を抑制するものと考えられる。このような発現抑制機構は、本発明者らが従来からCREST-T法として開発してきた転写制御機構と同様であり、本願発明は、イネなどの単子葉植物も包含する汎用性のある植物一般に適用可能な酵素遺伝子の発現の抑制方法である。
Hereinafter, the present invention will be described in more detail.
The gene encoding the transcriptional regulatory factor used in the present invention is typically an At2g43060 gene derived from Arabidopsis thaliana and represented by SEQ ID NO: 2.
The protein encoded by the gene is overexpressed in the transformed plant alone or as a chimeric protein fused with the transcriptional regulatory domain, thereby suppressing the expression of the enzyme gene involved in the longitudinal elongation of the cells in the plant. It is thought to do. Such an expression suppression mechanism is the same as the transcription control mechanism that the present inventors have conventionally developed as the CREST-T method, and the present invention is generally applicable to general-purpose plants including monocotyledonous plants such as rice. It is an applicable method for suppressing the expression of an enzyme gene.
 すなわち本願発明で用いることができる転写制御因子をコードする遺伝子は、シロイヌナズナ由来At2g43060遺伝子に限らず他の植物種由来の対応する遺伝子も包含され、また同一機能を保持している限り、そのフラグメントでもよい。そのような遺伝子は、塩基配列では配列番号2とは、70%以上、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上の相同性(同一性)を有し、それがコードするアミノ酸配列では配列番号1と70%以上、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上の相同性(同一性)を有する。
 具体的には、下記のタンパク質をコードする核酸分子として表現することができる。
 以下の(a)~(b)のいずれかに記載のアミノ酸配列を含むタンパク質であって、植物細胞の伸長抑制機能を有するタンパク質;
(a)配列番号1に示されるアミノ酸配列、
(b)配列番号1に示されるアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列、
(c)配列番号2に示される塩基配列がコードするアミノ酸配列、
(d)配列番号2に示される塩基配列の相補配列とストリンジェントな条件下でハイブリダイズする塩基配列がコードするアミノ酸配列。
 ここで、ストリンジェントな条件とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。例えば、相同性が高い核酸、すなわち配列番号2に示す塩基配列と90%以上、好ましくは95%以上の相同性を有する塩基配列からなるDNAの相補鎖がハイブリダイズし、それより相同性が低い核酸の相補鎖がハイブリダイズしない条件が挙げられる。より具体的には、ナトリウム濃度が15~300mM、好ましくは15~75mMであり、温度が50~60℃、好ましくは55~60℃での条件をいう。
 また、1若しくは数個のアミノ酸とは、1~100個、好ましくは1~50個、より好ましくは1~30個、さらに好ましくは1~10個程度をいう。
That is, the gene encoding the transcriptional regulatory factor that can be used in the present invention is not limited to the At2g43060 gene derived from Arabidopsis thaliana, but also includes corresponding genes derived from other plant species, and fragments thereof can be used as long as they retain the same function. Good. Such a gene has a homology (identity) of 70% or more, preferably 80% or more, more preferably 90% or more, and even more preferably 95% or more with SEQ ID NO: 2 in the nucleotide sequence. The amino acid sequence encoded by has a homology (identity) of SEQ ID NO: 1 of 70% or more, preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more.
Specifically, it can be expressed as a nucleic acid molecule encoding the following protein.
A protein comprising the amino acid sequence of any one of the following (a) to (b), wherein the protein has a function of suppressing the elongation of plant cells;
(A) the amino acid sequence shown in SEQ ID NO: 1,
(B) an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1;
(C) an amino acid sequence encoded by the base sequence shown in SEQ ID NO: 2,
(D) an amino acid sequence encoded by a base sequence that hybridizes with a complementary sequence of the base sequence shown in SEQ ID NO: 2 under stringent conditions.
Here, stringent conditions refer to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. For example, a highly homologous nucleic acid, that is, a complementary strand of DNA consisting of a nucleotide sequence having a homology of 90% or more, preferably 95% or more, is hybridized with the nucleotide sequence shown in SEQ ID NO: 2 and has a lower homology. A condition in which the complementary strand of the nucleic acid does not hybridize is mentioned. More specifically, it refers to a condition in which the sodium concentration is 15 to 300 mM, preferably 15 to 75 mM, and the temperature is 50 to 60 ° C., preferably 55 to 60 ° C.
One or several amino acids means 1 to 100, preferably 1 to 50, more preferably 1 to 30, and still more preferably about 1 to 10.
 また、本発明において転写抑制ドメインとは、特許文献15~22及び非特許文献1~3に示される転写抑制ドメインである(L/F)DLN(L/F)(X)Pからなるモチーフ(但し、Xは任意のアミノ酸残基を示す。配列番号3)及び「DLELRL(配列番号4)」からなる転写抑制ペプチド、さらには、特願2008-62113号に記載される下記の式(I)の転写抑制ペプチドが用いられる。前者の典型的なモチーフはSRDX(LDLELRLGFA:配列番号5)であり、後者のモチーフは以下のように表される。
式(I)
 X1-X2-Leu-Phe-Gly-Val-X3
 上記式(I)中、X2はLys又はArgを表す。X1及びX3についてはどのようなアミノ酸であってもよく、X1及びX3のアミノ酸配列を構成するアミノ酸の数はそれぞれが1~10個の範囲内であればいくつでもよい。使用するペプチドの合成のし易さからみれば短い方がよいが、確実に抑制効果を上げるためには、X1及びX3をあわせた数が3以上であることが好ましい。より好ましくは、X1+X3が6以上、さらに好ましくは10以上であることが好ましい。ここに含まれる保存モチーフを一文字表記で示せば、「(R/K)LFGV」または「(X)(R/K)LFGV(X)」となる。(但し、Xは任意のアミノ酸残基を示す。)(配列番号6)このモチーフに含まれる典型的な塩基配列は、シロイヌナズナ転写因子のAt3g11580、At2g46870、At1g13260、At1g68840、At4g36990及びAt4g11660などに含まれる(R/K)LFGVモチーフに対応する塩基配列として取得できる。
In the present invention, the transcription repression domain is a motif ((L / F) DLN (L / F) (X) P) which is a transcription repression domain shown in Patent Documents 15 to 22 and Non-Patent Documents 1 to 3. X represents any amino acid residue, a transcription repressing peptide comprising SEQ ID NO: 3) and “DLELLL (SEQ ID NO: 4)”, and the following formula (I) described in Japanese Patent Application No. 2008-62113 These transcriptional repressing peptides are used. The typical motif of the former is SRDX (LDLELRLGFA: SEQ ID NO: 5), and the latter motif is represented as follows.
Formula (I)
X 1 -X 2 -Leu-Phe-Gly-Val-X 3
In the above formula (I), X 2 represents Lys or Arg. X 1 and X 3 may be any amino acid, and the number of amino acids constituting the amino acid sequence of X 1 and X 3 may be any number as long as each is within the range of 1 to 10. From the viewpoint of ease of synthesis of the peptide to be used, the shorter one is better, but in order to surely increase the suppressing effect, the total number of X 1 and X 3 is preferably 3 or more. More preferably, X 1 + X 3 is 6 or more, more preferably 10 or more. If the conserved motif contained here is indicated by a single letter, it is “(R / K) LFGV” or “(X) (R / K) LFGV (X)”. (However, X represents any amino acid residue.) (SEQ ID NO: 6) Typical nucleotide sequences contained in this motif are included in Arabidopsis transcription factors At3g11580, At2g46870, At1g13260, At1g68840, At4g36990, At4g11660, and the like. (R / K) can be obtained as a base sequence corresponding to the LFGV motif.
 本発明において、植物細胞の伸長抑制機能を有する転写制御因子と転写抑制ドメインとが結合されたキメラタンパク質を形質転換した植物体の植物細胞内で発現させる際には、本発明者らが開発したCRES-T法(Chimeric repressor silencing technology)に従って行う(特許文献15~22、非特許文献1~3)。
 CRES-T法は、植物から単離された転写抑制ドメイン(ドミナントリプレッサー)を用い、転写活性化因子のカルボキシル基末端に結合して、当該転写活性化因子に強力な転写抑制活性を付与する技術であり、それぞれをコードする核酸分子のキメラ遺伝子を生体内で発現させることで、該標的遺伝子の転写を強く抑制する。転写抑制ドメインを融合したキメラ遺伝子は該転写活性因子のみではなく、同一遺伝子に対して重複して働く他の転写活性因子の機能も全て抑制することから、CRES-T法を用いて作成された植物は標的遺伝子の発現を完全に抑制した形態を示す利点がある。
 CRES-T法で用いられる転写抑制ドメインは、(L/F)DLN(L/F)(X)Pなるモチーフや(X)(R/K)LFGV(X)モチーフ(但し、Xは、いずれも任意のアミノ酸残基を表す)シロイヌナズナのみならず、タバコ、イネなど広範囲な植物の転写抑制因子でも多数同定されており、またCRES-T法においては配列と機能が類似した近縁遺伝子についても機能抑制が可能であり、種を超えて植物一般に適用可能であることが確認されている。
In the present invention, the inventors developed the present invention when expressing in a plant cell of a transformed plant body a chimeric protein in which a transcriptional regulatory factor having a plant cell elongation suppressing function and a transcriptional repression domain are bound. This is performed according to the CRES-T method (Chimeric repressor silencing technology) (Patent Documents 15 to 22, Non-Patent Documents 1 to 3).
The CRES-T method uses a transcription repression domain (dominant repressor) isolated from a plant and binds to the carboxyl group terminal of the transcriptional activator to impart a strong transcriptional repression activity to the transcriptional activator. It is a technology that strongly suppresses transcription of the target gene by expressing in vivo the chimeric gene of the nucleic acid molecule that encodes each. A chimeric gene fused with a transcriptional repression domain was created using the CRES-T method because it suppresses not only the transcriptional activator, but also all other functions of the transcriptional activator acting on the same gene. Plants have the advantage of showing a form in which the expression of the target gene is completely suppressed.
The transcription repression domain used in the CRES-T method is a motif of (L / F) DLN (L / F) (X) P or (X) (R / K) LFGV (X) motif (where X is any Has also been identified not only in Arabidopsis thaliana, but also in a wide range of plant transcriptional repressors such as tobacco and rice, and related genes similar in sequence and function in the CRES-T method. It has been confirmed that the function can be suppressed and that it can be applied to plants in general beyond species.
 本発明の転写制御因子を制御するプロモーターは、茎の伸長部において発現するものであればよい。よって、CaMV35Sを含む植物の恒常的発現誘導プロモーター、および、茎において発現を制御するプロモーター類はすべてこの発明に適する。さらに、茎の伸長部において特に強い発現を誘導するプロモーターは特に好ましい。例えば、イネD18プロモーター(特開2007-215416)。また、外的要因によって遺伝子発現を誘導するプロモーターも本発明に適する。
 本発明の遺伝子又は組換えベクターを植物中に導入する方法としては、アグロバクテリウム法、PEG-リン酸カルシウム法、エレクトロポレーション法、リポソーム法、パーティクルガン法、マイクロインジェクション法等が挙げられる。
 遺伝子が植物に組み込まれたか否かの確認は、PCR法、サザンハイブリダイゼーション法、ノーザンハイブリダイゼーション法等により行うことができる。
The promoter that controls the transcription control factor of the present invention may be any promoter that can be expressed in the stem extension. Therefore, plant constitutive expression-inducing promoters containing CaMV35S and promoters that control expression in stems are all suitable for this invention. Furthermore, promoters that induce particularly strong expression in the stem extension are particularly preferred. For example, rice D18 promoter (Japanese Patent Laid-Open No. 2007-215416). A promoter that induces gene expression by an external factor is also suitable for the present invention.
Examples of methods for introducing the gene or recombinant vector of the present invention into plants include the Agrobacterium method, the PEG-calcium phosphate method, the electroporation method, the liposome method, the particle gun method, and the microinjection method.
Whether or not a gene has been incorporated into a plant can be confirmed by PCR, Southern hybridization, Northern hybridization, or the like.
 本発明において形質転換の対象となる植物は、植物体全体、植物器官(例えば葉、花弁、茎、根、種子等)、植物組織(例えば表皮、師部、柔組織、木部、維管束等)又は植物培養細胞のいずれをも意味するものである。
 形質転換に用いられる植物としては、アブラナ科、ナス科、イネ科、マメ科等に属する植物が挙げられるが、これらの植物に限定されるものではない。
 このように、本発明においては、ナス科植物等の野菜類と共に、イネ、小麦等の穀物、豆類、トウモロコシなど食糧生産性植物の育種一般に適用できるので、将来的な食糧生産技術の上からも大きな期待がもてる。
 タバコは、ナス科のモデル植物として古くから研究に使用されてきた植物であるが、その遺伝子資源についての知見は非常に少ない。しかし、タバコにおける知見はトマト、ジャガイモなどの主要作物を多く含むナス科において広く利用可能であることが期待できる。
 また、タバコは、交配育種方法でも分子育種でも形質の改変が困難な複二倍体である。倍数体植物の中には食用・飼料用として重要な作物であるダイズ、コムギなどが含まれ、タバコにおいて得られた知見はこれら倍数体植物の育種に有用であると思われる。
 さらに、シロイヌナズナはロゼット性であり、栄養成長期には節間の伸長がみられないため、栄養成長期の矮性化の評価が困難であることに対して、タバコにおいては栄養成長期・生殖成長期ともに節の伸長がみられることから、矮性化の評価が簡単である。本発明のキメラタンパク質による植物の矮性化は茎の細胞の縦方向の伸長抑制によるものである。このことを立証するために本発明者らは該キメラタンパク質を異所的に発現した茎の表皮細胞において走査型電子顕微鏡を用いた表皮細胞の詳細な観察を行ない、細胞が縦に伸長していないことを確認した。
 また、本発明のタンパク質又はキメラタンパク質を植物細胞宿主又は大腸菌など他の微生物宿主、動物細胞宿主などを用いて産生することもできる。これらタンパク質は、植物体に直接作用させることにより、植物体を矮小化できる可能性がある。
Plants to be transformed in the present invention include whole plants, plant organs (eg leaves, petals, stems, roots, seeds, etc.), plant tissues (eg epidermis, phloem, soft tissue, xylem, vascular bundles, etc.) ) Or plant cultured cells.
Examples of plants used for transformation include plants belonging to the Brassicaceae, Eggplant, Gramineae, Legumes, etc., but are not limited to these plants.
Thus, in the present invention, it can be applied to general breeding of food-producing plants such as rice, wheat and other grains, beans, and corn, together with vegetables such as solanaceous plants, and therefore from the viewpoint of future food production technology. I have great expectations.
Tobacco is a plant that has long been used for research as a model plant of the solanaceous family, but there is very little knowledge about its genetic resources. However, the knowledge of tobacco can be expected to be widely available in the solanaceous family, which contains many major crops such as tomatoes and potatoes.
Tobacco is a diploid that is difficult to modify in traits, whether by mating breeding or molecular breeding. The polyploid plants include soybeans and wheat, which are important crops for food and feed, and the knowledge obtained in tobacco seems to be useful for breeding these polyploid plants.
Furthermore, because Arabidopsis is rosette and there is no internode elongation during the vegetative growth phase, it is difficult to evaluate dwarfing during the vegetative growth phase, whereas in tobacco, the vegetative growth and reproductive growth It is easy to evaluate dwarfism because of the growth of nodes in each period. The dwarfing of plants by the chimeric protein of the present invention is due to the suppression of the elongation of stem cells in the longitudinal direction. In order to prove this, the present inventors made detailed observations of epidermal cells using a scanning electron microscope in epidermal cells of stems ectopically expressing the chimeric protein, and the cells were elongated vertically. Confirmed that there is no.
In addition, the protein or chimeric protein of the present invention can also be produced using a plant cell host, another microbial host such as E. coli, an animal cell host, or the like. These proteins may be able to dwarf the plant body by acting directly on the plant body.
 本発明のキメラタンパク質による細胞の伸長抑制機能の詳細を解明するために本発明者らは該キメラタンパク質を異所的に発現した植物からRNAを抽出し、茎の細胞伸長に関与する各種遺伝子の発現量を解析した。その結果、該キメラタンパク質を異所的に発現した形質転換植物においては、細胞の縦方向の伸長を促進する酵素群(EXP8など)の発現が抑制されていることが判明した。 In order to elucidate the details of the cell growth inhibitory function of the chimeric protein of the present invention, the present inventors extracted RNA from a plant ectopically expressing the chimeric protein and analyzed various genes involved in stem cell elongation. The expression level was analyzed. As a result, it was found that in transgenic plants ectopically expressing the chimeric protein, the expression of enzyme groups (such as EXP8) that promote cell longitudinal elongation was suppressed.
 本発明のキメラタンパク質による細胞の伸長抑制機能は細胞の伸長を促進する酵素群の発現抑制によるものである。すなわち、本転写制御タンパク質、および、キメラタンパク質による茎の伸長抑制機能には、該タンパク質の標的となる酵素群が転写されている組織において該タンパク質を異所的に発現させることが必要であるから、該タンパク質をコードする遺伝子は標的酵素遺伝子の発現している組織において発現制御を行なうことの出来るプロモーター領域と結合させてキメラベクターとし、植物体に導入することによって、細胞伸長を促進する酵素群の遺伝子の発現を抑制し、植物の茎の縦方向の伸長を抑制することができる。 The cell elongation suppression function by the chimeric protein of the present invention is due to the suppression of the expression of enzymes that promote cell elongation. That is, because the stem elongation suppression function of the present transcription control protein and the chimeric protein requires that the protein be ectopically expressed in a tissue in which the target enzyme group of the protein is transcribed. A group of enzymes that promote cell elongation by combining a gene encoding the protein with a promoter region capable of controlling expression in a tissue in which the target enzyme gene is expressed to form a chimeric vector and introducing it into a plant body The expression of this gene can be suppressed, and the elongation of the plant stem in the vertical direction can be suppressed.
 以下に、具体的に本発明の実施態様を示すが、本発明はこれに限定されない。ここでは、本発明の植物細胞の伸長抑制機能を有するタンパク質をコードする遺伝子(転写制御因子)として、代表的なAt2g43060遺伝子を用い、当該遺伝子に結合する転写抑制ドメインとしてはSRDXを代表させて用いる。
 まず、転写制御因子であるAt2g43060遺伝子に転写抑制ドメインSRDXを融合したキメラ遺伝子のみではなく、この遺伝子にコードされる転写制御因子そのものがシロイヌナズナの矮性化を誘導することを示すために、本発明者らは該転写制御因子をCaMV35Sプロモーター制御下で異所的に発現させた形質転換植物において詳細な解析を行なった。
 該転写制御因子をCaMV35Sプロモーター制御下で異所的に発現させた形質転換シロイヌナズナにおいては、SRDXを融合したキメラタンパク質を異所的に発現させた形質転換シロイヌナズナと同様に、著しい矮性化が観察された。
 該転写制御因子をCaMV35Sプロモーター制御下で異所的に発現させた形質転換シロイヌナズナからRNAを抽出し、各遺伝子の発現量を解析したところ、この植物においては、SRDXを融合したキメラタンパク質を異所的に発現させた形質転換シロイヌナズナと同様に、細胞の縦方向の伸長を促進する酵素群の発現が抑制されていることが判明した。
Although the embodiment of the present invention is specifically shown below, the present invention is not limited to this. Here, a representative At2g43060 gene is used as a gene (transcription control factor) encoding a protein having a function of suppressing the elongation of plant cells of the present invention, and SRDX is used as a representative transcription repression domain that binds to the gene. .
First, in order to show that not only the chimeric gene in which the transcription repression domain SRDX is fused to the transcriptional regulatory factor At2g43060 gene, but also the transcriptional regulatory factor itself encoded by this gene induces the dwarfing of Arabidopsis thaliana. Et al. Performed a detailed analysis in a transgenic plant in which the transcription factor was ectopically expressed under the control of the CaMV35S promoter.
In transformed Arabidopsis thaliana expressed ectopically under the control of the CaMV35S promoter, remarkable dwarfing was observed as in transformed Arabidopsis thaliana expressed ectopically with a chimeric protein fused with SRDX. It was.
When RNA was extracted from transformed Arabidopsis thaliana in which the transcription factor was ectopically expressed under the control of the CaMV35S promoter, the expression level of each gene was analyzed. In this plant, the chimeric protein fused with SRDX was ectopic. It was found that the expression of enzymes that promote the elongation of cells in the longitudinal direction was suppressed in the same manner as in transgenic Arabidopsis thaliana expressed in an artificial manner.
 本発明の転写制御タンパク質、および、キメラタンパク質による植物の茎の細胞の縦方向の伸長抑制機能は植物の種類を問わず作用する。このことを証明するために本申請者らは該シロイヌナズナ転写制御因子にSRDXを融合したキメラタンパク質をCaMV35Sプロモーターの制御下で発現させるコンストラクトをタバコ植物体に導入し、その形態観察を行なった。
 該キメラコンストラクトを導入したタバコにおいては茎の節間が短くなり、最終的な草丈も低くなった。走査型電子顕微鏡を用いて茎の表皮細胞の観察を行なったところ、シロイヌナズナと同様に、茎細胞の縦方向の伸長抑制が観察されたことから、該キメラコンストラクトの作用はシロイヌナズナとタバコで共通していることが判明した。
 さらに、該キメラコンストラクト導入タバコにおける節間の縮小は栄養成長期と生殖成長期の茎に共通してみられたことから、該キメラコンストラクトの作用は栄養成長期と生殖成長期に共通していることが判明した。
 すなわち、該キメラコンストラクトの作用はロゼット性植物の花茎の伸長抑制に限定されるものではなく、植物の栄養成長期の茎の伸長抑制に対しても広く機能するものである。
 また、該キメラコンストラクト導入タバコにおいては植物体が矮性化したにもかかわらず、葉の枚数は減少しなかった。このことは該キメラコンストラクトの作用が茎の細胞の縦方向の伸長抑制に限定されており、果実の形成やバイオマスに大きな影響を与える枝や葉の形成パターンに対しては作用しないことを示す。
The function of inhibiting the elongation in the vertical direction of plant stem cells by the transcriptional control protein and chimeric protein of the present invention acts regardless of the type of plant. In order to prove this, the present applicant introduced a construct for expressing a chimeric protein in which SRDX was fused to the Arabidopsis transcriptional regulatory factor under the control of the CaMV35S promoter, and observed its morphology.
In the tobacco into which the chimeric construct was introduced, the internodes of the stem were shortened and the final plant height was also lowered. When the epidermal cells of the stem were observed using a scanning electron microscope, the suppression of the elongation of the stem cells in the vertical direction was observed, as in Arabidopsis. Therefore, the action of the chimeric construct is common between Arabidopsis and tobacco. Turned out to be.
Furthermore, the reduction of internodes in the tobacco introduced with the chimeric construct was common to the stems of the vegetative growth stage and the reproductive growth stage. Therefore, the action of the chimeric construct is common to the vegetative growth stage and the reproductive growth stage. It has been found.
That is, the action of the chimeric construct is not limited to the suppression of the elongation of flower stems of rosette plants, but also functions widely for the suppression of elongation of stems during the vegetative growth stage of plants.
In addition, in the chimeric construct-introduced tobacco, the number of leaves did not decrease even though the plant body became dwarf. This indicates that the action of the chimeric construct is limited to the suppression of the elongation of stem cells in the vertical direction, and does not act on the formation patterns of branches and leaves that have a great influence on fruit formation and biomass.
 以下、本発明の実施例を示すが、本発明はこれら実施例に限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
 実施例1においては、At2g43060遺伝子に転写抑制ドメインであるSRDXをコードする遺伝子断片を結合させ、これをカリフラワーモザイクウイルス35Sプロモーターの下流につないで形質転換プラスミドを構築し、該プラスミドをシロイヌナズナ植物体に導入し、形質転換植物の形態を観察、および、細胞伸長促進酵素の発現に対する影響を解析することにより、At2g43060SRDXキメラ遺伝子のシロイヌナズナにおける草丈伸長抑制効果を調べたものである。
 実施例2は、At2g43060遺伝子をカリフラワーモザイクウイルス35Sプロモーターの下流につないで形質転換プラスミドを構築し、該プラスミドをシロイヌナズナ植物体に導入し、形質転換植物の形態を観察、および、細胞伸長促進酵素の発現に対する影響を解析することにより、At2g43060遺伝子のシロイヌナズナにおける草丈伸長抑制効果を調べたものである。
 実施例3は、At2g43060遺伝子に転写抑制ドメインであるSRDXをコードする遺伝子断片を結合させ、これをカリフラワーモザイクウイルス35Sプロモーターの下流につないで形質転換プラスミドを構築し、該プラスミドをタバコ植物体に導入し、形質転換植物の形態を観察することにより、At2g43060遺伝子のタバコにおける草丈伸長抑制効果を調べたものである。
In Example 1, the At2g43060 gene was ligated with a gene fragment encoding SRDX, which is a transcriptional repression domain, and connected to the downstream of the cauliflower mosaic virus 35S promoter to construct a transformed plasmid. The plasmid was transformed into an Arabidopsis plant. The effect of At2g43060SRDX chimera gene on suppression of plant height elongation in Arabidopsis thaliana was examined by introducing and observing the morphology of transformed plants and analyzing the effect on the expression of cell elongation promoting enzymes.
In Example 2, a transformed plasmid was constructed by connecting the At2g43060 gene downstream of the cauliflower mosaic virus 35S promoter, the plasmid was introduced into an Arabidopsis plant, the morphology of the transformed plant was observed, and the cell elongation promoting enzyme By analyzing the effect on expression, we investigated the inhibitory effect of At2g43060 gene on plant height elongation in Arabidopsis thaliana.
In Example 3, a gene fragment encoding SRDX, which is a transcriptional repression domain, was ligated to the At2g43060 gene, and this was connected downstream of the cauliflower mosaic virus 35S promoter to construct a transformed plasmid, which was introduced into a tobacco plant. Then, by observing the morphology of the transformed plant, the plant height elongation inhibitory effect of the At2g43060 gene in tobacco was investigated.
(実施例1)
(1-1)形質転換用ベクターpBIG2の構築
 クローンテック社製(Clontech社,USA)のプラスミドp35S-GFPを制限酵素HindIIIとBamHIで切断し、カリフラワーモザイクウイルス35Sプロモーター(CaMV 35S)を含むDNA断片をアガロースゲル電気泳動で分離し回収した。米国ミシガン州立大学より譲渡された植物形質転換用ベクターpBIG-HYG(Becker,D.1990 Nucleic Acid Research,18:203)を制限酵素HindIIIとSstIで切断し、アガロースゲル電気泳動によってGUS遺伝子を除いたDNA断片を得た。
 以下の配列を有するDNAを合成し、70℃で10分加温した後、自然冷却によりアニールさせて2本鎖DNAとした。このDNA断片には、5’末端にBamHI制限酵素部位、翻訳効率を高めるタバコモザイクウイルス由来のomega配列、及び制限酵素部位SmaI、SalIを有する。
5’-GATCCACAATTACCAACAACAACAAACAACAAACAACATTACAATTACAGATCCCGGGGGTACCGTCGACGAGCTC-3’(配列番号7)
5’-CGTCGACGGTACCCCCGGGATCTGTAATTGTAATGTTGTTTGTTGTTTGTTGTTGTTGGTAATTGT-3’(配列番号8)
 CaMV 35Sプロモーター領域をふくむDNA断片と合成した2本鎖DNAを、GUS遺伝子を除いたpBIG-HYGのHindIII、SstI部位に挿入し、植物形質転換用ベクターpBIG2を得た。
Example 1
(1-1) Construction of Transformation Vector pBIG2 A DNA fragment containing the cauliflower mosaic virus 35S promoter (CaMV 35S) by cleaving the plasmid p35S-GFP of Clontech (Clontech, USA) with restriction enzymes HindIII and BamHI. Were separated and collected by agarose gel electrophoresis. A plant transformation vector pBIG-HYG (Becker, D. 1990 Nucleic Acid Research, 18: 203) assigned by Michigan State University, USA was cleaved with restriction enzymes HindIII and SstI, and the GUS gene was removed by agarose gel electrophoresis. A DNA fragment was obtained.
DNA having the following sequence was synthesized, heated at 70 ° C. for 10 minutes, and then annealed by natural cooling to obtain double-stranded DNA. This DNA fragment has a BamHI restriction enzyme site at the 5 ′ end, an omega sequence derived from tobacco mosaic virus that enhances translation efficiency, and restriction enzyme sites SmaI and SalI.
5'-GATCCACAATTACCAACAACAACAAACAACAAACAACATTACAATTACAGATCCCGGGGGTACCGTCGACGAGCTC-3 '(SEQ ID NO: 7)
5'-CGTCGACGGTACCCCCGGGATCTGTAATTGTAATGTTGTTTGTTGTTTGTTGTTGTTGGTAATTGT-3 '(SEQ ID NO: 8)
A double-stranded DNA synthesized with a DNA fragment containing the CaMV 35S promoter region was inserted into the HindIII and SstI sites of pBIG-HYG excluding the GUS gene to obtain a plant transformation vector pBIG2.
(1-2)形質転換ベクター35S:At2g43060SRDXの構築
 SUPERMANの部分塩基配列)の5’にGGGを3’にストップコドンを付与した相補的な二本のDNA配列
5’-GGGCTCGATCTGGATCTAGAACTCCGTTTGGGTTTCGCTTAAG-3’(配列番号9)
5’-CTTAAGCGAAACCCAAACGGAGTTCTAGATCCAGATCGAGCCC-3’(配列番号10)
をアニールし、SmaIでカットした上記のpBIG2ベクターに挿入、シークエンスを確認して順方向に導入されたものを選抜し、p35SRDXとした。
シロイヌナズナAt2g43060cDNAを鋳型として、
5末アッパープライマー
5’-GATGGCCTCTGCAGACAAACTCATAAACAC-3’(配列番号11)
3末ローアープライマー
5’-TTTGGGAGATAAGCCATCAACGAGACACTG-3’(配列番号12)
を用いてPCR反応によりAt2g43060の全長配列からストップコドンを除いたものを増幅した。なお上記PCR反応の条件は、変性反応94℃1分、アニール反応50℃1分、伸長反応72℃3分を1サイクルとして30サイクル行った。次いで、SmaIでカットしてアガロールゲル電気泳動で回収した上記のp35SRDXに挿入し、シークエンスを確認してAt2g43060遺伝子が順方向に導入されたものの中からさらにAt2g43060遺伝子とSRDXの読み枠が一致しているものを選抜、35S:At2g43060SRDXとした。
(1-2) Transformation vector 35S: Construction of At2g43060SRDX Partial base sequence of SUPERMAN) Two complementary DNA sequences with GGG 3 'and stop codon 3'
5'-GGGCTCGATCTGGATCTAGAACTCCGTTTGGGTTTCGCTTAAG-3 '(SEQ ID NO: 9)
5'-CTTAAGCGAAACCCAAACGGAGTTCTAGATCCAGATCGAGCCC-3 '(SEQ ID NO: 10)
Was annealed and inserted into the pBIG2 vector cut with SmaI. The sequence was confirmed and the one introduced in the forward direction was selected and designated as p35SRDX.
Using Arabidopsis At2g43060 cDNA as a template,
5 end upper primer
5'-GATGGCCTCTGCAGACAAACTCATAAACAC-3 '(SEQ ID NO: 11)
3 end lower primer
5'-TTTGGGAGATAAGCCATCAACGAGACACTG-3 '(SEQ ID NO: 12)
A PCR reaction was used to amplify the full length sequence of At2g43060 excluding the stop codon. The PCR reaction was performed for 30 cycles, with a denaturation reaction at 94 ° C. for 1 minute, an annealing reaction at 50 ° C. for 1 minute, and an extension reaction at 72 ° C. for 3 minutes. Next, insert it into the above-mentioned p35SRDX cut with SmaI and collected by agarol gel electrophoresis. From the sequence confirmed and the At2g43060 gene introduced in the forward direction, the reading frame of At2g43060 gene and SRDX match. The thing was selected and it was set as 35S: At2g43060SRDX.
(1-3)35S:At2g43060SRDXで形質転換した植物体の作成
 35S:At2g43060SRDXによるシロイヌナズナ植物の形質転換は、Transfomation of Arabidopsis thaliana byvacuum infiltration(http://www.bch.msu.edu/pamgreen/protocol.htm)に従った。ただし、感染させるのにバキュウムは用いないで、浸すだけにした。上記プラスミドを、土壌細菌[(Agrobacterium tumefaciens strain GV3101(C58C1Rifr)pMP90(Gmr)(koncz and Schell 1986)]株にエレクトロポレーション法で導入した。導入した菌を250ミリリットルのLB培地で二日間培養した。
 次いで、培養液から菌体を、回収し、500ミリリットルの感染用培地(Infiltration medium)に懸濁した。この溶液に、14日間生育したシロイヌナズナを1分間浸し、感染させた後、再び生育させ結種させた。回収した種子を50%ブリーチ、0.02%Triton X-100溶液で7分間滅菌した後、滅菌水で3回リンスし、滅菌した種子を30mg/lのハイグロマイシンを含む1/2MS選択培地に蒔種した。
 上記ハイグロマイシンプレートで生育する形質転換植物体を選抜し、土壌に植え換え、生育した。
(1-3) Preparation of plant body transformed with 35S: At2g43060SRDX Transformation of Arabidopsis plants with 35S: At2g43060SRDX is carried out by Transformation of Arabidopsis thaliana byvacum infiltration (http: //www.bch.msu.proto htm). However, I did not use vacuum to infect it, but just dipped it. The plasmid was introduced into a soil bacterium [(Agrobacterium tumefaciens strain GV3101 (C58C1Rifr) pMP90 (Gmr) (koncz and Schell 1986)] strain by culturing in the 250 ml LB medium for 2 days. .
Subsequently, the bacterial cells were collected from the culture solution and suspended in 500 ml of an infection medium. In this solution, Arabidopsis thaliana grown for 14 days was soaked for 1 minute, infected, and then grown and seeded again. The collected seeds are sterilized with 50% bleach and 0.02% Triton X-100 solution for 7 minutes, rinsed three times with sterilized water, and the sterilized seeds are added to 1/2 MS selective medium containing 30 mg / l hygromycin. I was slaughtered.
A transformed plant growing on the hygromycin plate was selected, replanted in soil, and grown.
(1-4)35S:At2g43060SRDXで形質転換したシロイヌナズナ植物体の形質
 35S:At2g43060SRDXで形質転換した植物体の形質を図1のAおよびBの左側に示す。Bの右側の植物は野生型である。35S:At2g43060SRDXで形質転換したシロイヌナズナにおいては著しい花茎の矮性化の形態が確認された。このことより、35S:At2g43060SRDXキメラコンストラクトはシロイヌナズナにおいて花茎の矮性化を誘導することが証明された。
 この形質転換シロイヌナズナの茎の表皮細胞の形態を走査型電子顕微鏡を用いて観察した図を図1のCに示す。Dは同じスケールで撮影した野生型の茎の写真である。35S:At2g43060SRDXで形質転換したシロイヌナズナにおいては茎の細胞の縦方向の著しい縮小がみられた。このことより、35S:At2g43060SRDXキメラコンストラクトはシロイヌナズナにおいて花茎の細胞の縦方向の伸長を阻害することが証明された。
(1-4) Traits of Arabidopsis plants transformed with 35S: At2g43060SRDX Traits of plants transformed with 35S: At2g43060SRDX are shown on the left side of FIGS. The plant on the right side of B is wild type. In Arabidopsis thaliana transformed with 35S: At2g43060SRDX, remarkable flower stem dwarfing was confirmed. This demonstrates that the 35S: At2g43060SRDX chimeric construct induces flower stem dwarfing in Arabidopsis.
A view of the morphology of the epidermal cells of the transformed Arabidopsis stem using a scanning electron microscope is shown in FIG. D is a photograph of a wild-type stem taken at the same scale. In Arabidopsis thaliana transformed with 35S: At2g43060SRDX, the stem cells were markedly reduced in the vertical direction. From this, it was proved that 35S: At2g43060SRDX chimera construct inhibits the longitudinal elongation of flower stem cells in Arabidopsis thaliana.
(1-5)35S:At2g43060SRDXで形質転換したシロイヌナズナ植物体における遺伝子発現解析
 35S:At2g43060SRDXで形質転換したシロイヌナズナ植物体(10日目実生)よりRNAを抽出し、これを鋳型として逆転写反応を行なって、cDNAを得た。
 これを鋳型とし、定量的PCR反応を行なって、EXP8およびEXT遺伝子の発現量を解析した。ここで、EXP8はシロイヌナズナ由来エクスパンシンであり、ENTはシロイヌナズナのエンドキシログルカントランスフェラーゼであって、いずれも、細胞の縦方向の伸長に関与する酵素である。なお、定量的PCR反応においては内部標準として一般的に使用されるシロイヌナズナのUBQ遺伝子(ユビキチン遺伝子)の発現量を1として対象遺伝子がそれと比較して何倍量発現しているかを定量しており、以下の実験でも同様である。
 
EXP8のPCRには、センスプライマーとして
5’-GTTCCTGTCTCTTTCCGAAGAG-3’(配列番号13)
アンチセンスプライマーとして
5’-TACGTCTCCTGCTCCTCCTA-3’(配列番号14)
を用いた。
ENTのPCRには、センスプライマーとして
5’- CCTTTGGAACATGTACCAGATCGT-3’(配列番号15)
アンチセンスプライマーとして
5’- GGTTGAATGGGAAACGTACTCCTA-3’(配列番号16)
を用いた。
 この定量的PCRの結果を図1のE,Fに示す。35S:At2g43060SRDXで形質転換したシロイヌナズナにおいては細胞の縦方向の伸長に関与する酵素遺伝子EXP8およびENTの発現量が低下していた。このことより、35S:At2g43060SRDXキメラコンストラクトはシロイヌナズナにおいて細胞の縦方向の伸長に関与する酵素の遺伝子発現を阻害することが証明された。
(1-5) Gene expression analysis in Arabidopsis thaliana plants transformed with 35S: At2g43060SRDX RNA was extracted from Arabidopsis thaliana plants transformed with 35S: At2g43060SRDX (Day 10 seedlings), and a reverse transcription reaction was performed using this as a template. CDNA was obtained.
Using this as a template, quantitative PCR reaction was performed to analyze the expression levels of EXP8 and EXT genes. Here, EXP8 is Arabidopsis thaliana-derived expansin, and ENT is Arabidopsis thaliana endoxyloglucan transferase, both of which are involved in the longitudinal elongation of cells. In quantitative PCR reactions, the expression level of Arabidopsis thaliana UBQ gene (ubiquitin gene), which is generally used as an internal standard, is set to 1, and the amount of the target gene expressed is quantified. The same applies to the following experiments.

As a sense primer for EXP8 PCR
5'-GTTCCTGTCTCTTTCCGAAGAG-3 '(SEQ ID NO: 13)
As an antisense primer
5'-TACGTCTCCTGCTCCTCCTA-3 '(SEQ ID NO: 14)
Was used.
As a sense primer for ENT PCR
5'-CCTTTGGAACATGTACCAGATCGT-3 '(SEQ ID NO: 15)
As an antisense primer
5'-GGTTGAATGGGAAACGTACTCCTA-3 '(SEQ ID NO: 16)
Was used.
The results of this quantitative PCR are shown in E and F of FIG. In Arabidopsis transformed with 35S: At2g43060SRDX, the expression levels of the enzyme genes EXP8 and ENT involved in the longitudinal elongation of the cells were reduced. This demonstrates that the 35S: At2g43060SRDX chimeric construct inhibits gene expression of enzymes involved in longitudinal cell growth in Arabidopsis thaliana.
(実施例2)
(2-1)形質転換ベクター35S:At2g43060の構築
 シロイヌナズナAt2g43060cDNAを鋳型として、
5末アッパープライマー
GATGGCCTCTGCAGACAAACTCATAAACAC(配列番号17)
3末ローアープライマー
GGGGTCGACTCATTTGGGAGATAAGCCATC(配列番号18)
を用いてPCR反応によりAt2g43060の全長配列を増幅した。なお上記PCR反応の条件は、変性反応94℃1分、アニール反応50℃1分、伸長反応72℃3分を1サイクルとして30サイクル行った。この増幅断片を、SmaIでカットしてアガロールゲル電気泳動で回収したpBIGベクターに挿入し、シークエンスを確認してAt2g43060遺伝子が順方向に導入されたものを選抜、35S:At2g43060とした。
(Example 2)
(2-1) Construction of Transformation Vector 35S: At2g43060 Using Arabidopsis At2g43060 cDNA as a template,
5 end upper primer
GATGGCCTCTGCAGACAAACTCATAAACAC (SEQ ID NO: 17)
3 end lower primer
GGGGTCGACTCATTTGGGAGATAAGCCATC (SEQ ID NO: 18)
Was used to amplify the full-length sequence of At2g43060 by PCR reaction. The PCR reaction was performed for 30 cycles, with a denaturation reaction at 94 ° C. for 1 minute, an annealing reaction at 50 ° C. for 1 minute, and an extension reaction at 72 ° C. for 3 minutes. This amplified fragment was cut with SmaI and inserted into the pBIG vector recovered by agarol gel electrophoresis. The sequence was confirmed, and the one with the At2g43060 gene introduced in the forward direction was selected to obtain 35S: At2g43060.
(2-2)35S:At2g43060で形質転換した植物体の作成
 35S:At2g43060によるシロイヌナズナ植物の形質転換は、Transfomation of Arabidopsis thaliana byvacuum infiltration(http://www.bch.msu.edu/pamgreen/protocol.htm)に従った。ただし、感染させるのにバキュウムは用いないで、浸すだけにした。上記プラスミドを、土壌細菌[(Agrobacterium tumefaciens strain GV3101(C58C1Rifr)pMP90(Gmr)(koncz and Schell 1986)]株にエレクトロポレーション法で導入した。導入した菌を250ミリリットルのLB培地で二日間培養した。
 次いで、培養液から菌体を、回収し、500ミリリットルの感染用培地(Infiltration medium)に懸濁した。この溶液に、14日間生育したシロイヌナズナを1分間浸し、感染させた後、再び生育させ結種させた。回収した種子を50%ブリーチ、0.02%Triton X-100溶液で7分間滅菌した後、滅菌水で3回リンスし、滅菌した種子を30mg/lのハイグロマイシンを含む1/2MS選択培地に蒔種した。
 上記ハイグロマイシンプレートで生育する形質転換植物体を選抜し、土壌に植え換え、生育した。
(2-2) Production of Plant Transformed with 35S: At2g43060 Transformation of Arabidopsis plants with 35S: At2g43060 is carried out by Transformation of Arabidopsis thaliana byvacuum inflation (http: //www.bch. htm). However, I did not use vacuum to infect it, but just dipped it. The plasmid was introduced into a soil bacterium [(Agrobacterium tumefaciens strain GV3101 (C58C1Rifr) pMP90 (Gmr) (koncz and Schell 1986)] strain by culturing in the 250 ml LB medium for 2 days. .
Subsequently, the bacterial cells were collected from the culture solution and suspended in 500 ml of an infection medium. In this solution, Arabidopsis thaliana grown for 14 days was soaked for 1 minute, infected, and then grown and seeded again. The collected seeds are sterilized with 50% bleach and 0.02% Triton X-100 solution for 7 minutes, rinsed three times with sterilized water, and the sterilized seeds are added to 1/2 MS selective medium containing 30 mg / l hygromycin. I was slaughtered.
A transformed plant growing on the hygromycin plate was selected, replanted in soil, and grown.
(2-3)35S:At2g43060で形質転換したシロイヌナズナ植物体の形質
 35S:At2g43060で形質転換した植物体の形質を図2のAの左側に示す。Aの右側の植物は野生型である。これは図1のA、Bに示される35S:At2g43060SRDXで形質転換した植物体と類似していた。このことより、35S:At2g43060コンストラクトはSRDXと融合しなくてもシロイヌナズナにおいて花茎の矮性化を誘導することが証明された。
(2-3) Traits of Arabidopsis plants transformed with 35S: At2g43060 The traits of the plants transformed with 35S: At2g43060 are shown on the left side of FIG. The plant on the right side of A is wild type. This was similar to the plant transformed with 35S: At2g43060SRDX shown in FIGS. This demonstrates that the 35S: At2g43060 construct induces flower stem dwarfing in Arabidopsis without fusion with SRDX.
(2-4)35S:At2g43060で形質転換したシロイヌナズナ植物体における遺伝子発現解析
 35S:At2g43060で形質転換したシロイヌナズナ植物体(10日目実生)よりRNAを抽出し、これを鋳型として逆転写反応を行なって、cDNAを得た。
 これを鋳型とし、定量的PCR反応を行なって、EXP8およびEXT遺伝子の発現量を解析した。
EXP8のPCRには、センスプライマーとして
5’-GTTCCTGTCTCTTTCCGAAGAG-3’(配列番号13)
アンチセンスプライマーとして
5’-TACGTCTCCTGCTCCTCCTA-3’(配列番号14)
を用いた。
ENTのPCRには、センスプライマーとして
5’- CCTTTGGAACATGTACCAGATCGT-3’(配列番号15)
アンチセンスプライマーとして
5’- GGTTGAATGGGAAACGTACTCCTA-3’(配列番号16)
を用いた。
 この定量的PCRの結果を図2のB,Cに示す。35S:At2g4306S0で形質転換したシロイヌナズナにおいては細胞の縦方向の伸長に関与する酵素遺伝子EXP8およびENTの発現量が低下していた。このことより、35S:At2g43060コンストラクトはシロイヌナズナにおいて細胞の縦方向の伸長に関与する酵素の遺伝子発現を阻害することが証明された。
(2-4) Gene Expression Analysis in Arabidopsis Plants Transformed with 35S: At2g43060 RNA was extracted from Arabidopsis plants transformed with 35S: At2g43060 (Day 10 seedlings), and a reverse transcription reaction was performed using this as a template. CDNA was obtained.
Using this as a template, quantitative PCR reaction was performed to analyze the expression levels of EXP8 and EXT genes.
As a sense primer for EXP8 PCR
5'-GTTCCTGTCTCTTTCCGAAGAG-3 '(SEQ ID NO: 13)
As an antisense primer
5'-TACGTCTCCTGCTCCTCCTA-3 '(SEQ ID NO: 14)
Was used.
As a sense primer for ENT PCR
5'-CCTTTGGAACATGTACCAGATCGT-3 '(SEQ ID NO: 15)
As an antisense primer
5'-GGTTGAATGGGAAACGTACTCCTA-3 '(SEQ ID NO: 16)
Was used.
The results of this quantitative PCR are shown in FIGS. In Arabidopsis transformed with 35S: At2g4306S0, the expression levels of the enzyme genes EXP8 and ENT involved in the longitudinal elongation of the cells were decreased. This demonstrates that the 35S: At2g43060 construct inhibits gene expression of enzymes involved in longitudinal cell growth in Arabidopsis.
(実施例3)
(3-1)35S:At2g43060SRDXで形質転換したタバコ植物体の作成
 35S:At2g43060SRDXによるタバコの形質転換は、リーフディスク法により行なった。
 上記プラスミドを、土壌細菌[(Agrobacterium tumefaciens strain GV3101(C58C1Rifr)pMP90(Gmr)(koncz and Schell 1986)]株にエレクトロポレーション法で導入した。導入した菌を100ミリリットルのLB培地で二日間培養した。
 次いで、培養液から菌体を、回収し、5ミリリットルのLB培地に懸濁し、これに、無菌状態で生育させたタバコの葉を約1センチメートル角に切ったディスクを5分間浸し、感染させた後、MSプレート上で2日間、24℃16時間明期8時間暗期条件下で生育させた。そののち、リーフディスクをクラフォラン0.5 mg/l, ベンジルアミノプリン 1mg/l,カナマイシン100 mg/l を含む培地に移植し、除菌と選抜、および、不定芽の形成を行なった。形成された不定芽を単離し、クラフォラン0.5 mg/l, ナフタレン酢酸 1mg/l,カナマイシン100 mg/l を含む培地に移植し、発根を誘導した。発根した個体をクラフォラン0.5 mg/l,カナマイシン100 mg/l を含む培地に移植し、生育させ、ある程度大きくなったところで土に移植して結種させた。回収した種子を50%ブリーチ、0.02%Triton X-100溶液で7分間滅菌した後、滅菌水で3回リンスし、滅菌した種子を100 mg/lのカナマイシンを含むMS選択培地に蒔種した。
 上記カナマイシンプレートで生育する形質転換植物体を選抜し、土壌に植え換え、生育した。
(Example 3)
(3-1) Preparation of tobacco plant transformed with 35S: At2g43060SRDX Tobacco transformation with 35S: At2g43060SRDX was performed by the leaf disk method.
The plasmid was introduced into a soil bacterium [(Agrobacterium tumefaciens strain GV3101 (C58C1Rifr) pMP90 (Gmr) (koncz and Schell 1986)] strain by culturing in the 100 ml LB medium for 2 days. .
Next, the bacterial cells are collected from the culture solution, suspended in 5 ml of LB medium, and immersed in a disc in which tobacco leaves grown in a sterile state are cut into approximately 1 cm squares for 5 minutes to be infected. After that, the cells were grown on MS plates for 2 days at 24 ° C. for 16 hours with a light period of 8 hours and a dark period. After that, the leaf disc was transplanted to a medium containing 0.5 mg / l of claforan, 1 mg / l of benzylaminopurine, and 100 mg / l of kanamycin, and sterilized and selected, and adventitious buds were formed. The formed adventitious buds were isolated and transplanted to a medium containing 0.5 mg / l of claforan, 1 mg / l of naphthalene acetic acid and 100 mg / l of kanamycin to induce rooting. The rooted individuals were transplanted to a medium containing kraforan 0.5 mg / l and kanamycin 100 mg / l, grown, and transplanted to soil when seeded to a certain extent, and then seeded. The collected seeds are sterilized with 50% bleach and 0.02% Triton X-100 solution for 7 minutes, rinsed three times with sterilized water, and the sterilized seeds are seeded in MS selective medium containing 100 mg / l kanamycin. did.
A transformed plant growing on the kanamycin plate was selected, replanted in soil, and grown.
(3-2)35S:At2g43060SRDXで形質転換したタバコ植物体の形質
 35S:At2g43060SRDXで形質転換したタバコ植物体の次世代の形質を図3のAの右側に示す。Aの左側の植物はベクターコントロールである。これは図1のA,Bに示される35S:At2g43060SRDXで形質転換したシロイヌナズナ植物体と同様に矮性の形態を示していた。また、形質転換タバコにおける節間伸長阻害は栄養成長期・生殖成長期を通じて観察された。植物の草丈を調査したグラフを図3のDに示す。形質転換植物においては野生型と比較して草丈が40%以上矮性化していた。一方で、図3のEに示すように一個体に形成される葉の枚数は減少していなかった。このことより、35S:At2g43060SRDXコンストラクトはタバコにおいても広く茎の伸長阻害を誘導する一方で、葉の形成数などには影響を与えないことが証明された。
 この形質転換タバコの茎の表皮細胞の形態を走査型電子顕微鏡を用いて観察した図を図4のBに示す。Cは同じスケールで撮影した野生型の茎の写真である。35S:At2g43060SRDXで形質転換したタバコにおいては同コンストラクトを導入したシロイヌナズナと同様に茎の細胞の縦方向の著しい縮小がみられた。このことより、35S:At2g43060SRDXキメラコンストラクトはタバコにおいても茎の細胞の縦方向の伸長を阻害することが証明された。
 この形質転換タバコの葉の形を上方から撮影した写真を図4のBに示す。図4のAは野生型の図である。形質転換タバコにおいては葉の縦方向の伸長が阻害され、葉が丸くなっていることが観察された。葉のサイズ変化をより明確に示すために各個体の大きい方から三枚の葉の縦横長を測定したところ、形質転換体の葉の縦の長さはコントロールを1としたときに0.5~0.8であり、横の長さはやはりコントロールを1としたときに0.7~1.0であった。この結果から葉の横の伸長よりも縦方向の伸長が顕著に抑制されていることが明確に示された。また、形質転換体の草丈の変化がコントロールを1としたときに0.2~0.45であることから、本形質転換体においては葉のサイズダウンよりも、茎の伸長抑制の方が顕著に観察されることが明白となった。
(3-2) Traits of tobacco plants transformed with 35S: At2g43060SRDX The next generation traits of tobacco plants transformed with 35S: At2g43060SRDX are shown on the right side of FIG. The plant on the left side of A is a vector control. This showed a fertile morphology similar to the Arabidopsis plant transformed with 35S: At2g43060SRDX shown in FIGS. In addition, inhibition of internode elongation in transformed tobacco was observed throughout the vegetative and reproductive growth periods. The graph which investigated the plant height of the plant is shown to D of FIG. In the transformed plant, the plant height was 40% or more dwarf compared to the wild type. On the other hand, as shown in E of FIG. 3, the number of leaves formed in one individual was not decreased. From this, it was proved that the 35S: At2g43060SRDX construct induces stem elongation inhibition widely in tobacco, but does not affect the number of leaves formed.
FIG. 4B shows a view obtained by observing the morphology of epidermal cells of this transformed tobacco stem using a scanning electron microscope. C is a photograph of a wild-type stem taken at the same scale. Tobacco transformed with 35S: At2g43060SRDX showed significant reduction of stem cells in the vertical direction, similar to Arabidopsis thaliana introduced with this construct. From this, it was proved that the 35S: At2g43060SRDX chimeric construct inhibits the longitudinal elongation of stem cells even in tobacco.
A photograph of the shape of the transformed tobacco leaf taken from above is shown in FIG. FIG. 4A is a wild-type diagram. In the transformed tobacco, it was observed that the longitudinal elongation of the leaf was inhibited and the leaf was rounded. In order to show the change in leaf size more clearly, the length and width of three leaves were measured from the larger of each individual. The length of the leaves of the transformant was 0.5 when the control was 1. The lateral length was 0.7 to 1.0 when the control was set to 1. From this result, it was clearly shown that the elongation in the vertical direction was significantly suppressed rather than the lateral elongation of the leaves. In addition, since the change in plant height of the transformant is 0.2 to 0.45 when the control is 1, the suppression of stem elongation is more remarkable in this transformant than in the case of leaf size reduction. It became clear to be observed.
 本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書に組み入れるものとする。 All publications, patents and patent applications cited in this specification shall be incorporated into this specification as they are.

Claims (11)

  1.  以下の(a)~(b)のいずれかに記載のアミノ酸配列を含むタンパク質であって、植物細胞の伸長抑制機能を有するタンパク質;
    (a)配列番号1に示されるアミノ酸配列、
    (b)配列番号1に示されるアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列、
    (c)配列番号2に示される塩基配列がコードするアミノ酸配列、
    (d)配列番号2に示される塩基配列の相補配列とストリンジェントな条件下でハイブリダイズする塩基配列がコードするアミノ酸配列。
    A protein comprising the amino acid sequence of any one of the following (a) to (b), wherein the protein has a function of suppressing the elongation of plant cells;
    (A) the amino acid sequence shown in SEQ ID NO: 1,
    (B) an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1;
    (C) an amino acid sequence encoded by the base sequence shown in SEQ ID NO: 2,
    (D) an amino acid sequence encoded by a base sequence that hybridizes with a complementary sequence of the base sequence shown in SEQ ID NO: 2 under stringent conditions.
  2.  前記タンパク質が、そのC末側に転写抑制ドメインを結合させたキメラタンパク質であることを特徴とする、請求項1に記載のタンパク質。 The protein according to claim 1, wherein the protein is a chimeric protein in which a transcription repression domain is bound to the C-terminal side thereof.
  3.  前記転写抑制ドメインが、(L/F)DLN(L/F)(X)Pからなるモチーフ(但し、Xは任意のアミノ酸残基を示す。)又は「DLELRL」である、請求項2に記載のタンパク質。 The transcriptional repression domain is a motif consisting of (L / F) DLN (L / F) (X) P (where X represents any amino acid residue) or "DLELLL". Protein.
  4.  前記転写抑制ドメインが、下記式(I)で示されるアミノ酸配列からなる、植物の転写機能を有するペプチドである、請求項2に記載のタンパク質;
    式(I)
     X1-X2-Leu-Phe-Gly-Val-X3
    (式中、X1及びX3は1~10個の任意のアミノ酸で構成されるアミノ酸配列を表し、X2はLys又はArgを表す。)。
    The protein according to claim 2, wherein the transcription repression domain is a peptide having a plant transcription function, comprising an amino acid sequence represented by the following formula (I):
    Formula (I)
    X 1 -X 2 -Leu-Phe-Gly-Val-X 3
    (Wherein X 1 and X 3 represent an amino acid sequence composed of 1 to 10 arbitrary amino acids, and X 2 represents Lys or Arg).
  5.  請求項1~4のいずれかに記載のタンパク質をコードする核酸分子。 A nucleic acid molecule encoding the protein according to any one of claims 1 to 4.
  6.  請求項5に記載の核酸分子を含む、発現ベクター。 An expression vector comprising the nucleic acid molecule according to claim 5.
  7.  請求項5に記載の核酸分子が発現可能な状態で導入されている、形質転換細胞。 A transformed cell into which the nucleic acid molecule according to claim 5 has been introduced in an expressible state.
  8.  請求項5に記載の核酸分子が導入された、矮性化された形質転換植物およびその子孫。 A dwarfed transformed plant into which the nucleic acid molecule according to claim 5 has been introduced and its progeny.
  9.  請求項7に記載の形質転換細胞を培養し、採取することを特徴とする、植物細胞の伸長抑制機能を有するタンパク質の製造方法。 A method for producing a protein having a function of suppressing the elongation of plant cells, comprising culturing and collecting the transformed cells according to claim 7.
  10.  請求項5に記載の核酸分子を植物細胞に導入し、該植物細胞から植物体を再生させることを特徴とする、矮性化された形質転換植物体の製造方法。 A method for producing a dwarfed transformed plant, comprising introducing the nucleic acid molecule according to claim 5 into a plant cell and regenerating the plant from the plant cell.
  11.  請求項5に記載の核酸分子を植物体の細胞内で発現させることを特徴とする、植物の矮性化方法。 A method for dwarfing a plant, characterized in that the nucleic acid molecule according to claim 5 is expressed in cells of a plant body.
PCT/JP2009/064824 2008-08-29 2009-08-26 Dwarf transgenic plant, and gene for induction of dwarfing WO2010024269A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008222884A JP4528953B2 (en) 2008-08-29 2008-08-29 Dwarfing transformed plants and genes for inducing dwarfing
JP2008-222884 2008-08-29

Publications (1)

Publication Number Publication Date
WO2010024269A1 true WO2010024269A1 (en) 2010-03-04

Family

ID=41721436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064824 WO2010024269A1 (en) 2008-08-29 2009-08-26 Dwarf transgenic plant, and gene for induction of dwarfing

Country Status (2)

Country Link
JP (1) JP4528953B2 (en)
WO (1) WO2010024269A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102776179A (en) * 2011-05-12 2012-11-14 中国农业科学院作物科学研究所 Wheat dwarf gene tandem repeat fragment and application thereof
WO2019172282A1 (en) * 2018-03-05 2019-09-12 国立研究開発法人産業技術総合研究所 Nucleic acid molecule and vector inducing endosperm development in seed plant without fertilization, transgenic seed plant capable of developing endosperm without fertilization and method for constructing same
CN116034866A (en) * 2023-01-10 2023-05-02 四川农业大学 Method for cultivating dwarf corn variety by utilizing corn heterohexaploid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103181322B (en) * 2013-04-19 2015-09-23 河北冀南种业有限公司 The breeding method of the short list 268 of a kind of br-2 dwarf type genes corn

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081695A2 (en) * 2001-04-06 2002-10-17 Syngenta Participations Ag Genes that are modulated by posttranscriptional gene silencing
JP2005204573A (en) * 2004-01-22 2005-08-04 Japan Science & Technology Agency Method for producing plant with modified leaf shape, and the resulting plant, and use of the plant
JP2006101827A (en) * 2004-10-08 2006-04-20 Japan Science & Technology Agency Method for producing male-sterile transformed plant and the resulting plant, and use thereof
WO2007102346A1 (en) * 2006-02-28 2007-09-13 Japan Science And Technology Agency Plant having reduced lignin and cellulose contents without reducing glucan content, method of producing the same and utilization thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4488750B2 (en) * 2004-01-21 2010-06-23 ユニチカ株式会社 L-arabinose-containing syrup

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081695A2 (en) * 2001-04-06 2002-10-17 Syngenta Participations Ag Genes that are modulated by posttranscriptional gene silencing
JP2005204573A (en) * 2004-01-22 2005-08-04 Japan Science & Technology Agency Method for producing plant with modified leaf shape, and the resulting plant, and use of the plant
JP2006101827A (en) * 2004-10-08 2006-04-20 Japan Science & Technology Agency Method for producing male-sterile transformed plant and the resulting plant, and use thereof
WO2007102346A1 (en) * 2006-02-28 2007-09-13 Japan Science And Technology Agency Plant having reduced lignin and cellulose contents without reducing glucan content, method of producing the same and utilization thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PADHAM, A, K. ET AL.: "Characterization of a Plastid Triacylglycerol Lipase from Arabidopsis", PLANT PHYSIOLOGY, vol. 143, March 2007 (2007-03-01), pages 1372 - 1384 *
YEPHREMOV, ALEXANDER. ET AL.: "Characterization of the FIDDLEHEAD Gene of Arabidopsis Reveals a Link between Adhesion Response and Cell Differentiation in the Epidermis", THE PLANT CELL, vol. 11, November 1999 (1999-11-01), pages 2187 - 2201 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102776179A (en) * 2011-05-12 2012-11-14 中国农业科学院作物科学研究所 Wheat dwarf gene tandem repeat fragment and application thereof
WO2019172282A1 (en) * 2018-03-05 2019-09-12 国立研究開発法人産業技術総合研究所 Nucleic acid molecule and vector inducing endosperm development in seed plant without fertilization, transgenic seed plant capable of developing endosperm without fertilization and method for constructing same
JP2019150022A (en) * 2018-03-05 2019-09-12 国立研究開発法人産業技術総合研究所 Nucleic acid molecule and vector for inducing the generation of endosperm of seed plant not through fertilization, and recombinant seed plant in which endosperm can be generated not through fertilization and method for producing the same
US11319545B2 (en) 2018-03-05 2022-05-03 National Institute Of Advanced Industrial Science And Technology Nucleic acid molecule and vector inducing endosperm development in seed plant without fertilization, transgenic seed plant capable of developing endosperm without fertilization and method for constructing same
JP7453657B2 (en) 2018-03-05 2024-03-21 国立研究開発法人産業技術総合研究所 Nucleic acid molecules and vectors that induce endosperm development in seed plants without fertilization, recombinant seed plants that can develop endosperm without fertilization, and methods for producing the same
CN116034866A (en) * 2023-01-10 2023-05-02 四川农业大学 Method for cultivating dwarf corn variety by utilizing corn heterohexaploid
CN116034866B (en) * 2023-01-10 2024-04-09 四川农业大学 Method for cultivating dwarf corn variety by utilizing corn heterohexaploid

Also Published As

Publication number Publication date
JP2010051293A (en) 2010-03-11
JP4528953B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
JP5519192B2 (en) Gene for increasing protein content of seed and method for using the same
CN110628808B (en) Arabidopsis AtTCP5 gene and application thereof in regulating plant height
CN108192920B (en) Method for improving plant disease resistance by using NDR1 gene
CN107459565A (en) Application of the soybean drought resisting GAP-associated protein GAP in regulating and controlling soybean drought resistance
JP4528953B2 (en) Dwarfing transformed plants and genes for inducing dwarfing
CN109971766A (en) A kind of and plant stress tolerance-associated protein PwRBP1 and its encoding gene and application
WO2003084314A1 (en) Plant with improved organogenesis and method of constructing the same
JP5787413B2 (en) A method for producing a toothpick-forming plant in which the ability to produce tubers or the ability to form a toothpick is improved compared to a wild strain, and a toothpick-forming plant produced by the method
CN112251449A (en) Rice gene OsHsp40 and application thereof in preparation of transgenic plants with abiotic stress resistance
CN108165557B (en) Application of wheat TaZCTC 2 gene in regulating and controlling flowering time of plants
CN114085854B (en) Drought-resistant and salt-tolerant gene OsSKL2 for rice and application thereof
AU734895B2 (en) Gene for floral regulation and methods for controlling of flowering
JP5403206B2 (en) Method for modifying plant morphology
WO2018010459A1 (en) Isolated promoter safes6 not expressed in endosperm and application of promoter safes6
JP2013212105A (en) Environmental stress-resistant plant with high seed productivity and method for constructing the same
CN114230649B (en) Tn1 protein related to rice tillering force, related biological material and application thereof
JP2004166504A (en) Method for cultivating transgenic plant
CN114516908B (en) Rice grain shape regulatory protein HOS59, encoding gene and application thereof
CN112725353B (en) Recombinant vector, transformant, primer for amplifying AtNAC58 gene and preparation method and application thereof
JPWO2004092380A1 (en) Rice nicotianamine synthase gene promoter and use thereof
US20220042030A1 (en) A method to improve the agronomic characteristics of plants
JP4439844B2 (en) Cis elements that confer plant iron deficiency responsiveness and / or root-specific expression
JP5892492B2 (en) Method for producing plant body with freezing tolerance and use thereof
JP5845306B2 (en) Gene for increasing protein content of seed and method for using the same
JP5850078B2 (en) Gene for reducing protein content of seed and method of using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09809920

Country of ref document: EP

Kind code of ref document: A1