KR101784162B1 - Novel gene promoting early flowering or maturity in plant and use thereof - Google Patents

Novel gene promoting early flowering or maturity in plant and use thereof Download PDF

Info

Publication number
KR101784162B1
KR101784162B1 KR1020160081052A KR20160081052A KR101784162B1 KR 101784162 B1 KR101784162 B1 KR 101784162B1 KR 1020160081052 A KR1020160081052 A KR 1020160081052A KR 20160081052 A KR20160081052 A KR 20160081052A KR 101784162 B1 KR101784162 B1 KR 101784162B1
Authority
KR
South Korea
Prior art keywords
plant
gene
flowering
vector
seq
Prior art date
Application number
KR1020160081052A
Other languages
Korean (ko)
Inventor
서민정
김길현
문중경
박장환
박명렬
Original Assignee
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국 filed Critical 대한민국
Priority to KR1020160081052A priority Critical patent/KR101784162B1/en
Application granted granted Critical
Publication of KR101784162B1 publication Critical patent/KR101784162B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/827Flower development or morphology, e.g. flowering promoting factor [FPF]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/50Vectors comprising as targeting moiety peptide derived from defined protein
    • C12N2810/60Vectors comprising as targeting moiety peptide derived from defined protein from viruses
    • C12N2810/609Vectors comprising as targeting moiety peptide derived from defined protein from viruses positive strand RNA viruses

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Plant Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physiology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Virology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 식물의 개화기 또는 성숙기를 촉진하는 유전자 및 이의 용도에 관한 것으로, 더욱 상세하게는 서열번호 1 또는 2의 염기서열을 포함하는 재조합 벡터, 상기 벡터를 식물세포에 형질전환시켜 식물체 내에서 목표 유전자인 서열번호 3의 염기서열로 이루어진 유전자의 발현을 억제하는 단계를 포함하는 식물체의 개화기 또는 성숙기를 촉진하는 방법, 개화기 또는 성숙기가 촉진된 형질전환 식물체의 제조방법, 상기 제조방법에 의해 제조된 개화기 또는 성숙기가 촉진된 형질전환 식물체 및 이의 종자에 관한 것이다.More particularly, the present invention relates to a recombinant vector comprising the nucleotide sequence of SEQ ID NO: 1 or 2, a method for transforming the vector into a plant cell, A method for promoting a flowering period or a mature stage of a plant, a method for producing a transgenic plant promoted to flowering period or mature stage, a method for producing a transgenic plant produced by the above production method, A transgenic plant or a mature stage promoted plant, and seeds thereof.

Description

식물체의 개화기 또는 성숙기를 촉진하는 유전자 및 이의 용도 {Novel gene promoting early flowering or maturity in plant and use thereof}[0001] The present invention relates to a gene for promoting flowering or maturation of a plant,

본 발명은 식물의 개화기 또는 성숙기를 촉진하는 유전자 및 이의 용도에 관한 것으로, 더욱 상세하게는 서열번호 1 또는 2의 염기서열을 포함하는 재조합 벡터, 상기 벡터를 식물세포에 형질전환시켜 서열번호 3의 염기서열로 이루어진 유전자의 발현을 억제하는 단계를 포함하는 식물체의 개화기 또는 성숙기를 촉진하는 방법, 개화기 또는 성숙기가 촉진된 형질전환 식물체의 제조방법, 상기 제조방법에 의해 제조된 개화기 또는 성숙기가 촉진된 형질전환 식물체 및 이의 종자에 관한 것이다.More particularly, the present invention relates to a recombinant vector comprising the nucleotide sequence of SEQ ID NO: 1 or 2, which transforms the vector into a plant cell to produce a recombinant vector of SEQ ID NO: 3 A method for promoting the flowering period or mature stage of a plant, a method for producing a transgenic plant promoted to flowering period or mature stage, a method for promoting flowering period or mature stage produced by the above- Transgenic plants and seeds thereof.

경작 식물에 있어서 개화 시기는 중요한 의미를 갖는데, 이는 개화 시기를 조절함으로써 수확 시기를 조절하는 것이 가능해지기 때문이다. 개화 시기를 조절할 수 있다면 원하는 시기에 수확하는 것이 가능해진다. 이러한 이유에서 식물 생물공학 분야의 종사자들은 유전자 조작의 방법으로 개화 시기를 조절하기 위해 노력하고 있다.In cultivated plants, flowering time is important because it is possible to control the timing of flowering by controlling flowering time. If the flowering time can be controlled, it is possible to harvest at the desired time. For this reason, people in the field of plant biotechnology are trying to control the flowering time by methods of genetic manipulation.

여러 경작 식물들 중 콩(soybean)은 열대, 아열대 및 온화한 기후에서 성장할 수 있는 콩과 식물로, 단백질, 탄수화물, 오일, 비타민 및 미네랄과 같은 풍부한 영양소를 함유하며 2억 톤 이상의 콩이 매년 생산되는 가장 중요한 작물 중 하나이다. 콩 개화기는 현재까지, 온도, 일장, 콩 품종의 유전자형에 의해 복합적으로 조절되는 것으로 보고 되었으며, 지금까지 E1, E2, E3, E4, E5, E6, E7, E8, J의 9개 유전자좌(loci)에 위치한 개화관련 유전자가 밝혀졌다. 2010년에 콩 표준유전체 해독이 완료됨에 따라, E1, E2, E3, E4 유전자가 분자수준에서 동정이 되었다. 이 유전자 (E1, E2, E3, E4)는 장일조건에서 강하게 작용이 되어 개화가 지연되고, 반대로 단일조건에서는 약해지면서 개화가 단축이 된다. Soybean is a soybean plant that can grow in tropical, subtropical and temperate climates. It contains abundant nutrients such as proteins, carbohydrates, oils, vitamins and minerals, and more than 200 million tons of soybeans are produced annually It is one of the most important crops. Eighteen loci of E1 , E2 , E3 , E4 , E5 , E6 , E7 , E8 and J have been reported to be controlled by genotypes of temperature, The flowering-related gene was found. With the completion of bean standard genome sequencing in 2010, the E1 , E2 , E3 and E4 genes were identified at the molecular level. These genes ( E1 , E2 , E3 , and E4 ) act strongly under long-day conditions, delaying flowering, and vice versa.

종래의 전통방법은 만생종 (E1E2E3E4)에 조생종 (e1e2e3e4)을 여교배해서 고위도 장일조건에 적합한 콩품종을 육성하는 것이나, 교배를 통해 품종을 육성하는 것은 대략 7~10년 정도의 기간이 소요된다는 치명적인 문제점이 있다.Conventional traditional methods are to cultivate soybean varieties suitable for long-latitude long-term conditions by crossing early species (E1E2E3E4) with eulerian species (E1E2E3E4), but it is estimated that it takes about 7 to 10 years to breed varieties through crossing There is a problem.

한편, VIGS(Virus-induced gene silencing)는 유전자 기능을 분석하기 위한 역유전학 도구로, 내인성 식물 타겟 유전자의 짧은 서열을 포함하는 재조합 바이러스로 식물체를 감염시켜 서열 특이적 방법으로 유전자 침묵 메카니즘을 유도한다. Virus-induced gene silencing (VIGS) is a reverse genetics tool for analyzing gene functions. It induces gene silencing mechanisms by sequence-specific methods by infecting plants with recombinant viruses containing short sequences of endogenous plant target genes .

이러한 배경 하에, 본 발명자들은 VIGS 시스템을 이용하여 콩의 조기개화에 영향을 미치는 유전자를 연구하던 중 식물체의 특정 유전자를 침묵시키는 경우 개화기 또는 성숙기 촉진 효과가 뛰어남을 확인하고 상기 유전자 발현의 억제를 통해 개화기 또는 성숙기가 단축된 형질전환 콩 품종을 개발함으로써 본 발명을 완성하였다.Under these circumstances, the inventors of the present invention found out that when the genes affecting the early flowering of soybean were studied using the VIGS system, silencing of specific genes of the plants confirmed that the effect of promoting the flowering or mature stage was excellent, The present inventors have completed the present invention by developing a transgenic soybean cultivar having shortened flowering period or mature stage.

본 발명의 목적은 개화기 또는 성숙기가 촉진된 식물체를 제조하기 위한 SYCMV (soybean yellow commom mosaic virus) 유래 재조합 VIGS (Virus-induced gene silencing) 벡터를 제공하는 것이다.It is an object of the present invention to provide a recombinant VIGS (virus-induced gene silencing) vector derived from soybean yellow commom mosaic virus (SYCMV) for the production of flowering plants or maturation-promoted plants.

본 발명의 다른 목적은 상기 재조합 VIGS 벡터를 이용하여 식물체의 개화기 또는 성숙기를 촉진하는 방법을 제공하는데 있다.It is another object of the present invention to provide a method for promoting the flowering or ripening stage of a plant using the recombinant VIGS vector.

본 발명의 또 다른 목적은 상기 재조합 VIGS 벡터를 이용하여 개화기 또는 성숙기가 촉진된 형질전환 식물체의 제조방법, 상기 제조방법으로 제조된 형질전환 식물체 및 이의 종자를 제공하는데 있다.It is another object of the present invention to provide a method for producing a transgenic plant promoted to flowering or mature stage using the recombinant VIGS vector, a transgenic plant produced by the method, and seeds thereof.

상술한 과제를 해결하기 위해, 본 발명은 프로모터 및 전장 (full length) SYCMV (soybean yellow commom mosaic virus) 핵산 서열을 포함하고, 상기 전장 SYCMV 서열 중 외피 단백질 코딩 유전자의 3'-말단에 서열번호 1 또는 2의 염기서열이 삽입된 재조합 VIGS(virus-induced gene silencing) 벡터를 제공한다.In order to solve the above-mentioned problems, the present invention provides a recombinant vector comprising a promoter and a full length SYCMV (soybean yellow commom mosaic virus) nucleic acid sequence, wherein at the 3'-end of the envelope protein coding gene of the full length SYCMV sequence, Or a recombinant VIGS (virus-induced gene silencing) vector into which the nucleotide sequence of SEQ ID NO: 2 is inserted.

본 발명은 또한, 상기 재조합 VIGS 벡터를 식물세포에 형질전환시켜 식물체의 목표 유전자인 서열번호 3의 염기서열로 이루어진 유전자 발현을 억제하는 단계를 포함하는 식물체의 개화기 또는 성숙기를 촉진하는 방법을 제공한다.The present invention also provides a method for promoting the flowering or maturing phase of a plant, comprising the step of transforming the recombinant VIGS vector into plant cells to inhibit gene expression comprising the nucleotide sequence of SEQ ID NO: 3, which is the target gene of the plant .

본 발명은 또한, 재조합 VIGS 벡터를 식물세포에 형질전환시키는 단계를 포함하는 개화기 또는 성숙기가 촉진된 형질전환 식물체의 제조방법을 제공한다.The present invention also provides a method for the production of a transgenic or mature-promoted transgenic plant comprising transforming a recombinant VIGS vector into a plant cell.

본 발명은 또한, 상기 제조방법에 의해 제조된 개화기 또는 성숙기가 촉진된 형질전환 식물체를 제공한다.The present invention also provides a transgenic plant or a mature stage promoted transgenic plant produced by the above production method.

본 발명의 바람직한 일실시예에 따르면, 상기 식물체는 만생종 품종일 수 있다.According to a preferred embodiment of the present invention, the plant may be a benthic species.

본 발명의 바람직한 다른 일실시예에 따르면, 상기 만생종 품종은 콩일 수 있다.According to another preferred embodiment of the present invention, the brio variety may be beans.

본 발명은 또한, 상기 형질전환 식물체의 종자를 제공한다.The present invention also provides a seed of the transgenic plant.

본 발명에서 제공되는 SYCMV 유래 재조합 VIGS 벡터를 이용하여 식물체의 특정 목표 유전자를 침묵시켜 조기 개화가 유도된 형질전환 식물체를 개발함으로써 생산시기가 단축된 신규한 식물체를 제공할 수 있다. 또한, 본 발명의 SYCMV 유래 재조합 VIGS 벡터를 이용한 식물체의 조기 개화는 식량, 사료, 화훼, 원예, 에너지 작물 등 다양한 작물 개발 분야, 식물 종자산업 및 농업의 발전에 유용하게 활용할 수 있는 효과가 있다.It is possible to provide a novel plant having a shortened production period by developing a transgenic plant inducing early flowering by silencing a specific target gene of a plant using the SYCMV-derived recombinant VIGS vector provided in the present invention. In addition, the early flowering of plants using the SYCMV-derived recombinant VIGS vector of the present invention is effective for the development of various crops such as food, feed, flower, horticulture, energy crops, plant seed industry and agricultural development.

도 1은 본 발명에서 사용된 SYCMV-VIGS 벡터의 모식도이다.
도 2는 표 2에 기재된 개화관련유전자가 침묵된 각각의 개체에서 qRT-PCR을 통해 해당 유전자의 발현량 감소를 측정하여 그래프로 나타낸 것이다. 여기서, Mock은 무처리한 건강한 개체, SYCMV:empty는 바이러스만 접종한 개체(대조구), SYCMV:개화관련유전자(실험구)를 접종한 개체를 나타낸다.
도 3은 SYCMV:empty 접종 개체와 본 발명의 서열번호 2의 염기서열이 삽입된 SYCMV 유래 재조합 VIGS 벡터 접종 개체의 개화기와 성숙기 비교한 사진이다.
1 is a schematic diagram of a SYCMV-VIGS vector used in the present invention.
Fig. 2 is a graph showing the decrease in the expression level of the corresponding gene through qRT-PCR in each individual in which the flowering-related gene shown in Table 2 is silenced. Here, Mock represents a healthy individual without treatment, SYCMV: empty represents an individual vaccinated with a virus (control), and SYCMV: a flowering-related gene (experimental group).
FIG. 3 is a photograph showing the flowering period and mature stage of a SYCMV-null inoculated individual and a SYCMV-derived recombinant VIGS vector inoculated with a nucleotide sequence of SEQ ID NO: 2 of the present invention.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

상술한 바와 같이, 종래의 전통방법은 만생종 (E1E2E3E4)에 조생종 (e1e2e3e4)을 여교배해서 고위도 장일조건에 적합한 콩품종을 육성하는 것이나, 교배를 통해 품종을 육성하는 것은 대략 7~10년 정도의 기간이 소요된다는 치명적인 문제점이 있다.As described above, the conventional traditional method is to cultivate soybean varieties suitable for long-latitude long-term conditions by crossing early maturity (E1E2E3E4) with early maturity (E1E2E3E4), but cultivating breed through crossing is about 7-10 years There is a fatal problem that it takes a long time.

이에 본 발명에서는 VIGS 시스템을 이용하여 식물체의 특정 목표 유전자를 침묵시키는 경우 개화기 또는 성숙기 촉진 효과가 뛰어남을 확인하고 상기 유전자 단편을 이용하여 개화기 또는 성숙기가 촉진된 식물체를 제조하기 위한 SYCMV 유래 재조합 VIGS 벡터를 제공함으로써 상술한 문제의 해결방안을 모색하였다. 본 발명에서 제공되는 SYCMV 유래 재조합 VIGS 벡터로 형질전환된 식물체는 특정 목표 유전자의 발현이 식물체에서 침묵되어 조기 개화가 유도된다. 이를 통해, 생산시기가 단축된 신규한 식물체를 제공할 수 있다. 또한, 본 발명의 SYCMV 유래 재조합 VIGS 벡터를 이용한 식물체의 조기 개화는 식량, 사료, 화훼, 원예, 에너지 작물 등 다양한 작물 개발 분야, 식물 종자산업 및 농업의 발전에 유용하게 활용할 수 있는 효과가 있다.Therefore, the present invention provides a recombinant VIGS vector derived from SYCMV for the production of a plant having a flowering period or a mature stage promoted by using the gene fragment, confirming that the effect of promoting the flowering or mature stage is excellent when silencing a specific target gene of the plant using the VIGS system To solve the above-mentioned problem. Plants transformed with the SYCMV-derived recombinant VIGS vector provided in the present invention induce early flowering because the expression of a specific target gene is silenced in the plant. As a result, a new plant having a shortened production period can be provided. In addition, the early flowering of plants using the SYCMV-derived recombinant VIGS vector of the present invention is effective for the development of various crops such as food, feed, flower, horticulture, energy crops, plant seed industry and agricultural development.

본 발명은 프로모터 및 전장 (full length) SYCMV (soybean yellow commom mosaic virus) 핵산 서열을 포함하고, 상기 전장 SYCMV 서열 중 외피 단백질 코딩 유전자의 3'-말단에 서열번호 1 또는 2의 염기서열이 삽입된 재조합 VIGS(virus-induced gene silencing) 벡터를 제공한다.The present invention relates to a promoter comprising a promoter and a full length SYCMV (soybean yellow commom mosaic virus) nucleic acid sequence, wherein a nucleotide sequence of SEQ ID NO: 1 or 2 is inserted at the 3'-end of the envelope protein coding gene And provides a recombinant virus-induced gene silencing (VIGS) vector.

VIGS (Virus-induced gene silencing)는 바이러스 벡터에 식물유전자를 도입한 후 식물체를 감염시키면, 그 도입된 유전자의 내인성 식물유전자가 발현이 억제되는 현상을 말한다. 이는 PTGS (Post-transcriptional gene silencing)의 일종으로서, 전사-후(post-transcriptional), RNA 턴오버(RNA turnover) 및 뉴클레오티드 서열 특이적(nucleotide sequence-specific) 이라는 특징들을 가진다. 따라서, VIGS를 이용하면 도입 유전자의 기능을 신속하고 간편하게 대량으로 분석할 수 있다.Virus-induced gene silencing (VIGS) is a phenomenon in which expression of an endogenous plant gene of an introduced gene is suppressed by introducing a plant gene into a viral vector and then infecting the plant. It is a type of post-transcriptional gene silencing (PTGS), characterized by post-transcriptional, RNA turnover and nucleotide sequence-specific. Therefore, using VIGS, the function of transgene can be rapidly and easily mass-analyzed.

본 발명의 재조합 VIGS 벡터에서, 상기 프로모터는 시험관 내 전사 또는 형질전환에 적합한 프로모터들로서, 바람직하게는 T7 프로모터, SP6 프로모터, CaMV 35S 프로모터, 액틴 프로모터, 유비퀴틴 프로모터, pEMU 프로모터, MAS 프로모터 또는 히스톤 프로모터일 수 있으며, 더욱 바람직하게는 T7 프로모터, SP6 프로모터 또는 CaMV 35S 프로모터일 수 있으나, 이에 제한되지 않는다. "프로모터"란 용어는 구조 유전자로부터의 DNA 업스트림의 영역을 의미하며 전사를 개시하기 위하여 RNA 중합효소가 결합하는 DNA 분자를 말한다.In the recombinant VIGS vector of the present invention, the promoter is preferably selected from the group consisting of T7 promoter, SP6 promoter, CaMV 35S promoter, actin promoter, ubiquitin promoter, pEMU promoter, MAS promoter or histone promoter And more preferably, it may be a T7 promoter, SP6 promoter or CaMV 35S promoter, but is not limited thereto. The term "promoter " refers to the region of DNA upstream from the structural gene and refers to a DNA molecule to which an RNA polymerase binds to initiate transcription.

본 발명의 재조합 VIGS 벡터는 전장 SYCMV 서열 뒤에 터미네이터를 포함할 수 있다. 상기 터미네이터는 통상의 터미네이터를 사용할 수 있으며, 그 예로는 노팔린 신타아제(NOS), 벼 α-아밀라아제 RAmy1 A 터미네이터, 파세올린(phaseoline) 터미네이터, 아그로박테리움 투메파시엔스(agrobacterium tumefaciens)의 옥토파인(Octopine) 유전자의 터미네이터 등이 있으나, 이에 한정되는 것은 아니다.The recombinant VIGS vector of the present invention may comprise a terminator after the full-length SYCMV sequence. The terminator can be a conventional terminator, such as nopaline synthase (NOS), rice α-amylase RAmy1 A terminator, phaseoline terminator, agrobacterium tumefaciens octopine And the terminator of the Octopine gene, but the present invention is not limited thereto.

용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 암호된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 단편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로서 인위적인 수단에 의해 세포 내 재도입된 것이다.The term "recombinant" refers to a cell in which a cell replicates a heterologous nucleic acid, expresses the nucleic acid, or expresses a protein encoded by a peptide, heterologous peptide or heterologous nucleic acid. Recombinant cells can express a gene or a gene fragment that is not found in the natural form of the cell, either in a sense or in an antisense form. In addition, the recombinant cell can express a gene found in a cell in its natural state, but the gene has been modified and reintroduced intracellularly by an artificial means.

용어 "벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 지칭할 때 사용된다. 벡터는 DNA를 복제시키고, 숙주세포에서 독립적으로 재생산될 수 있다. 용어 "전달체"는 흔히 "벡터"와 호환하여 사용된다.The term "vector" is used to refer to a DNA fragment (s), nucleic acid molecule, which is transferred into a cell. The vector replicates the DNA and can be independently regenerated in the host cell. The term "carrier" is often used interchangeably with "vector ".

본 발명의 SYCMV 유래 재조합 VIGS 벡터에서, 전장 SYCMV 핵산 서열은 공지된 데이터베이스에서 이용가능하며, 예를 들어, GenBank accession number JF495127로 개시되어 있는 것일 수 있으나, 이에 제한되지 않는다. 본 발명에 사용된 SYCMV-VIGS 벡터의 모식도는 도 1에 나타난 바와 같으며, 해당 벡터는 한국생명공학연구원의 문제선 박사님 연구실로부터 분양받아 사용하였다.In the SYCMV-derived recombinant VIGS vector of the present invention, the full-length SYCMV nucleic acid sequence is available in a known database, for example, but not limited to, those disclosed in GenBank accession number JF495127. The schematic diagram of the SYCMV-VIGS vector used in the present invention is shown in FIG. 1, and the vector was used from the laboratory of Dr. Kwon Seon Lee of the Korea Research Institute of Bioscience and Biotechnology.

본 발명의 재조합 VIGS 벡터는 목표 유전자를 도입한 식물체 내에서 일시적으로 발현시킬 수 있는 일시적(transient) 발현 벡터 및 목표 유전자가 도입된 식물체에서 영구적으로 발현시킬 수 있는 식물 발현 벡터로 사용할 수 있다. 식물 발현 벡터의 바람직한 예는 아그로박테리움 튜머파시엔스 (Agrobacterium tumefaciens)와 같은 적당한 숙주에 존재할 때 그 자체의 일부, 소위 T-영역을 식물 세포로 전이시킬 수 있는 Ti-플라스미드 벡터이다. 다른 유형의 Ti-플라스미드 벡터 (EP 0 116 718 B1호 참조)는 현재 식물 세포, 또는 잡종 DNA를 식물의 게놈 내에 적당하게 삽입시키는 새로운 식물이 생산될 수 있는 원형질체로 잡종 DNA 서열을 전이시키는데 이용되고 있다. Ti-플라스미드 벡터의 특히 바람직한 형태는 EP 0 120 516 B1호 및 미국 특허 제4,940,838호에 청구된 바와 같은 소위 바이너리 (binary) 벡터이다.The recombinant VIGS vector of the present invention can be used as a transient expression vector that can be transiently expressed in a plant into which a target gene is introduced and a plant expression vector that can be permanently expressed in a plant into which the target gene is introduced. A preferred example of a plant expression vector is a Ti-plasmid vector which is capable of transferring a so-called T-region to a plant cell when it is present in a suitable host such as Agrobacterium tumefaciens. Other types of Ti-plasmid vectors (see EP 0 116 718 B1) are currently used to transfer hybrid DNA sequences to plant cells or protoplasts in which new plants capable of properly inserting hybrid DNA into the plant's genome can be produced have. A particularly preferred form of the Ti-plasmid vector is a so-called binary vector as claimed in EP 0 120 516 B1 and U.S. Patent No. 4,940,838.

본 발명의 재조합 VIGS 벡터에 이용될 수 있는 바이너리 벡터는 아그로박테리움 튜머파시엔스의 Ti 플라스미드와 함께 존재 시 식물체를 형질전환시킬 수 있는 T-DNA의 RB (right border)과 LB (left border)을 함유하는 어떤 바이너리 벡터도 될 수 있으나, 바람직하게는 당업계에서 자주 사용되는 pBI101 (Cat#: 6018-1, Clontech, 미국), pBIN19 (Genbank 수탁번호 U09365), pBI121, pCAMBIA 벡터 등을 사용하는 것이 좋다.Binary vectors that can be used for the recombinant VIGS vector of the present invention include the RB (right border) and LB (left border) of T-DNA, which can transform the plant when present together with the Ti plasmid of Agrobacterium tumefaciens (Cat #: 6018-1, Clontech, USA), pBIN19 (Genbank Accession No. U09365), pBI121, pCAMBIA vector, etc., which are frequently used in the art, may be used good.

본 발명의 SYCMV 유래 재조합 VIGS 벡터에서, 외피 단백질 코딩 유전자의 3'-말단에 삽입되는 염기서열은 침묵시키고자 하는 식물체의 목표 유전자에 상보적으로 결합하는 유전자 단편이다. 본 발명의 일실시예에서는 서열번호 1(sense) 또는 서열번호 2(antisense)의 염기서열을 도입한 Virus-induced gene silencing (VIGS) 시스템을 이용하여 식물체의 목표 유전자인 서열번호 3의 염기서열로 이루어진 유전자를 침묵시킬 경우, 다른 여러 개화관련 유전자를 침묵시키는 것보다 개화기 또는 성숙기를 촉진시키는 효과가 우수함을 확인하였다. 구체적으로 개화기 또는 성숙기 촉진 효과를 비교하기 위해, 개화관련 유전자로 공지된 E2, E3 또는 E4 유전자의 단편, 또는 E2-paralogue 또는 E4-paralogue 유전자의 단편이 도입된 VIGS 시스템을 이용하여 식물체의 목표 유전자인 E2(Glyma10g36600), E3(Glyma19g41210), E4(Glyma20g22160), E2-paralogue(Glyma20g30980) 또는 E4-paralogue(Glyma10g28170) 유전자를 각각 침묵시켰다. 이들 유전자 단편은 SYCMV 3’ 말단에 BsrGI 부위에 센스(sense) 또는 안티센스(antisense) 방향으로 삽입될 수 있다.In the SYCMV-derived recombinant VIGS vector of the present invention, the base sequence inserted at the 3'-end of the coat protein coding gene is a gene fragment complementarily binding to a target gene of the plant to be silenced. In one embodiment of the present invention, a nucleotide sequence of SEQ ID NO: 3, which is a target gene of a plant, is constructed using a virus-induced gene silencing (VIGS) system in which a nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: It was confirmed that the silencing of the constructed gene is more effective in promoting flowering or maturing than silencing other flowering related genes. Specifically, in order to compare the flowering or mature stimulating effect, a VEGS system in which a fragment of E2, E3 or E4 gene known as a flowering-related gene, or a fragment of E2-paralogue or E4-paralogue gene is introduced, E2 (Glyma10g36600), E3 (Glyma19g41210), E4 (Glyma20g22160), E2-paralogue (Glyma20g30980) or E4-paralogue (Glyma10g28170) genes were silenced respectively. These gene fragments can be inserted in the sense or antisense direction at the BsrGI site at the 3 'end of SYCMV.

표 1에 나타난 바와 같이 총 12개의 VIGS 컨스트럭트를 제작하였으나, 목표 유전자가 삽입되지 않은 4개의 컨스트럭트(표 1의 검정색)는 제외시키고 정확한 사이즈와 원하는 유전자 염기서열을 포함하는 8개의 컨스트럭트(표 1의 붉은색)를 장엽콩(만생종 품종)에 접종하여 개화시(첫 꽃이 피는 시기)를 조사하였다. 그 결과, 표 3에 나타난 바와 같이 서열번호 2의 염기서열이 삽입된 SYCMV 유래 재조합 VIGS 벡터를 접종시킨 식물체 중 개화가 가장 빠른 식물체는 대조구보다 13일 개화가 단축되었고, 평균적으로 11일 정도 개화가 빨라지는 것을 확인하였다.A total of 12 VIGS constructs were constructed as shown in Table 1, except that the four constructs (the blacks in Table 1) without the target gene inserted were excluded and the eight consensus sequences containing the correct size and the desired gene sequence (Red color in Table 1) was inoculated into the sweetpotato (a kind of a longevity) and examined when the first flower bloomed. As a result, as shown in Table 3, among the plants inoculated with the SYCMV-derived recombinant VIGS vector containing the nucleotide sequence of SEQ ID NO: 2, the plants with the fastest flowering showed shortened flowering on the 13th day than on the control, And confirmed that it accelerated.

또한, 각각의 VIGS 컨스트럭트가 접종된 개체에 대해 목표 유전자들의 발현량 감소를 확인하기 위하여 qRT-PCR을 수행한 결과, 도 2에 나타난 바와 같이 SYCMV:empty 접종 개체(대조구)보다 서열번호 2의 염기서열이 삽입된 SYCMV 유래 재조합 VIGS 벡터 접종 개체에서 식물체의 목표 유전자인 서열번호 3의 염기서열로 이루어진 유전자의 발현량이 현저하게 감소됨을 확인하였다.In addition, qRT-PCR was performed to confirm reduction of the expression level of target genes in each individual VIGS construct-inoculated individuals. As a result, as shown in Fig. 2, as compared with SYCMV: empty inoculation (control) The recombinant VIGS vector inoculated with the nucleotide sequence of SEQ ID NO: 3 inserted into the recombinant VIGS vector showed a remarkably reduced expression amount of the gene consisting of the nucleotide sequence of SEQ ID NO: 3, which is the target gene of the plant.

나아가, SYCMV:empty 접종 개체 (대조구)와 서열번호 2의 염기서열이 삽입된 SYCMV 유래 재조합 VIGS 벡터 접종 개체(실험구)의 개화기와 성숙기를 비교해 본 결과, 도 3에 나타난 바와 같이 실험구의 개체는 개화기 및 성숙기가 촉진되어 대조구에 비해 수확기에 빨리 접어든다는 것을 확인하였다.Furthermore, the maturation period and the maturation period of SYCMV: empty inoculated (control) and recombinant VIGS vector inoculated with SYSMVV (SEQ ID NO: 2) were examined. As shown in FIG. 3, It was confirmed that the flowering period and ripening period were accelerated and folded faster than the control.

본 발명은 프로모터 및 전장 (full length) SYCMV (soybean yellow commom mosaic virus) 핵산 서열을 포함하고, 상기 전장 SYCMV 서열 중 외피 단백질 코딩 유전자의 3'-말단에 서열번호 1 또는 2의 염기서열이 삽입된 재조합 VIGS(virus-induced gene silencing) 벡터를 식물세포에 형질전환시켜 식물체의 목표 유전자인 서열번호 3의 염기서열로 이루어진 유전자를 침묵시키는 단계를 포함하는 식물체의 개화기 또는 성숙기를 촉진하는 방법을 제공한다.The present invention relates to a promoter comprising a promoter and a full length SYCMV (soybean yellow commom mosaic virus) nucleic acid sequence, wherein a nucleotide sequence of SEQ ID NO: 1 or 2 is inserted at the 3'-end of the envelope protein coding gene Transforming a recombinant VIGS (virus-induced gene silencing) vector into a plant cell to silence the gene consisting of the nucleotide sequence of SEQ ID NO: 3, which is the target gene of the plant, to promote the flowering or mature stage of the plant .

본 발명은 또한, 상기 재조합 VIGS 벡터를 식물세포에 형질전환시키는 단계를 포함하는 개화기 또는 성숙기가 촉진된 형질전환 식물체의 제조방법 및 상기 제조방법으로 제조된 개화기 또는 성숙기가 촉진된 형질전환 식물체를 제공한다.The present invention also provides a method for producing a transgenic plant promoted to flowering period or mature stage, which comprises the step of transforming the recombinant VIGS vector into a plant cell, and a transgenic plant or a mature stage promoted plant produced by the above-mentioned production method do.

식물의 형질전환은 DNA를 식물에 전이시키는 임의의 방법을 의미한다. 그러한 형질전환 방법은 반드시 재생 및 (또는) 조직배양 기간을 가질 필요는 없다. 식물 종의 형질전환은 이제는 쌍자엽 식물뿐만 아니라 단자엽 식물 양자를 포함한 식물 종에 대해 일반적이다. 원칙적으로, 임의의 형질전환 방법은 본 발명에 따른 잡종 DNA를 적당한 선조 세포로 도입시키는데 이용될 수 있다. 방법은 원형질체에 대한 칼슘/폴리에틸렌 글리콜 방법(Krens et al., 1982, Nature 296: 72-74; Negrutiu et al., 1987, Plant Mol. Biol. 8: 363-373), 원형질체의 전기 천공법 (Shillito et al., 1985, Bio/Technol. 3: 1099-1102), 식물 요소로의 현미주사법 (Crossway et al.,1986, Mol. Gen. Genet. 202: 179-185), 각종 식물 요소의 (DNA 또는 RNA-코팅된) 입자 충격법 (Klein et al.,1987, Nature 327: 70), 식물의 침윤 또는 성숙 화분 또는 소포자의 형질전환에 의한 아그로박테리움 투머파시엔스 매개된 유전자 전이에서 (비완전성) 바이러스에 의한 감염(EP 0 301 316호) 등으로부터 적당하게 선택될 수 있다. 본 발명에 따른 바람직한 방법은 아그로박테리움 매개된 DNA 전달을 포함한다. 특히 바람직한 것은 EPA 120 516호 및 미국 특허 제4,940,838호에 기재된 바와 같은 소위 바이너리 벡터 기술을 이용하는 것이다.Transformation of a plant means any method of transferring DNA to a plant. Such transformation methods do not necessarily have a regeneration and / or tissue culture period. Transformation of plant species is now common for plant species, including both terminal plants as well as dicotyledonous plants. In principle, any transformation method can be used to introduce the hybrid DNA according to the present invention into suitable progenitor cells. The method is based on the calcium / polyethylene glycol method for protoplasts (Krens et al., 1982, Nature 296: 72-74; Negrutiu et al., 1987, Plant Mol. Biol. 8: 363-373) 1986, Mol. Gen. Genet. 202: 179-185), the use of various plant elements (such as, for example, Shillito et al., 1985, Bio / Technol.3: 1099-1102) (DNA or RNA-coated) particle impact method (Klein et al., 1987, Nature 327: 70), infiltration of plants or Agrobacterium tumefaciens mediated gene transfer by transformation of mature pollen or micro- Virus infection (EP 0 301 316), and the like. A preferred method according to the present invention comprises Agrobacterium mediated DNA delivery. Particularly preferred is the use of so-called binary vector techniques as described in EPA 120 516 and U.S. Pat. No. 4,940,838.

식물의 형질전환에 이용되는 "식물 세포"는 어떤 식물 세포도 된다. 식물 세포는 배양 세포, 배양 조직, 배양기관 또는 전체 식물이다. "식물 조직"은 분화된 또는 미분화된 식물의 조직, 예를 들면 이에 한정되진 않으나, 뿌리, 줄기, 잎, 꽃가루, 종자, 암 조직 및 배양에 이용되는 다양한 형태의 세포들, 즉 단일 세포, 원형질체(protoplast), 싹 및 캘러스 조직을 포함한다. 식물 조직은 인 플란타(in planta)이거나 기관 배양, 조직배양 또는 세포 배양 상태일 수 있다."Plant cell" used for transformation of a plant may be any plant cell. Plant cells are cultured cells, cultured tissues, cultivated or whole plants. "Plant tissue" refers to a tissue of differentiated or undifferentiated plant, including but not limited to roots, stems, leaves, pollen, seeds, cancer tissues, and various types of cells used for culture, protoplasts, shoots and callus tissue. The plant tissue may be in planta or may be in an organ culture, tissue culture or cell culture.

상기 제조방법에 의해 제조된 형질전환 식물체는 목표 유전자, 즉, 서열번호 2의 염기서열로 이루어진 유전자가 침묵되어 있다. 본 명세서에서, 용어 “침묵”은 유전자의 발현이 하향조절(downregulation) 또는 완전히 억제(suppression)되는 현상을 말한다.The transgenic plants produced by the above method are silenced in the target gene, that is, the gene consisting of the nucleotide sequence of SEQ ID NO: 2. As used herein, the term " silence " refers to a phenomenon in which the expression of a gene is downregulated or completely suppressed.

본 발명의 구체적인 일 실시예에서, SYCMV에 의해 감염되는 식물체는 특별히 제한되지 않으나, 바람직하게는 만생종 품종, 더욱 바람직하게는 만생종 품종의 콩(soybean)일 수 있다.In a specific embodiment of the present invention, the plant to be infected by SYCMV is not particularly limited, but may preferably be a longevity variety, more preferably a soybean variety.

본 발명의 명세서에서 “만생종”은 동일작물 중에 생육기간이 길어 늦게 성숙하는 품종을 말한다.In the specification of the present invention, the term " germ line varieties " refers to varieties that mature late due to a long growing period in the same crop.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to examples. However, the following examples are illustrative of the present invention, and the present invention is not limited to the following examples.

목표 유전자가 삽입된 SYCMV 유래 VIGS 재조합 벡터의 제조Production of SYCMV-derived VIGS recombinant vector with target gene inserted

목표 유전자가 삽입되지 않은 SYCMV-VIGS empty vector는 한국생명공학연구원의 문제선 박사님 연구실에서 분양받아 사용하였다. 35S 프로모터 유래 SYCMV 클론을 구성하기 위해, pPZP211 바이너리벡터를 사용하였고 BsrGI 제한효소 부위는 외래 서열(foreign sequence)을 클로닝하기 위해 변형되었다. 개화기 또는 성숙기 촉진 효과를 확인하기 위해 본 발명에서 목표 유전자로 선별된 서열번호 3의 염기서열로 이루어진 유전자를 침묵시키기 위해 서열번호 3의 염기서열에 상보적으로 결합할 수 있는 서열번호 1(sense) 또는 서열번호 2(antisense)의 염기서열을 BsrGI 부위에 삽입하여 2개의 VIGS 컨스트럭트를 제작하였다. 또한, 개화기 또는 성숙기 촉진 효과를 비교하기 위해 9개의 주요 콩 개화 유전자들 중, E2 (GIGANTEA), E3 (PHYA3), E4 (PHYA2) 유전자의 단편, 및 E2-paralogue, E4-paralogue 유전자 단편을 각각 BsrGI 부위에 센스 또는 안티센스 방향으로 삽입하여 10개의 VIGS 컨스트럭트를 제작하였다. 재조합 VIGS 벡터 제작을 위한 개화관련유전자의 프라이머 세트는 하기 표 1에 기재된 바와 같다.The empty vector, SYCMV-VIGS, in which the target gene was not inserted, To construct the SYSMV clone from the 35S promoter, the pPZP211 binary vector was used and the BsrGI restriction site was modified to clone a foreign sequence. In order to silence the gene consisting of the nucleotide sequence of SEQ ID NO: 3 selected as the target gene in the present invention in order to confirm the effect of promoting the flowering or mature stage, SEQ ID NO: 1, which can complementarily bind to the nucleotide sequence of SEQ ID NO: Or the nucleotide sequence of SEQ ID NO: 2 (antisense) was inserted into the BsrGI site to construct two VIGS constructs. In order to compare the promoting effect of the flowering period or the mature stage, fragments of E2 (GIGANTEA), E3 ( PHYA3 ) and E4 ( PHYA2 ) genes and E2- paralogue and E4- paralogue gene fragments Ten VIGS constructs were constructed by inserting in the sense or antisense orientation at the BsrGI site. Primer sets of flowering-related genes for the production of recombinant VIGS vectors are as shown in Table 1 below.

Figure 112016062570225-pat00001
Figure 112016062570225-pat00001

벡터 제작에 사용된 목표 유전자들의 단편 서열은 하기 표 2와 같다.The fragment sequences of the target genes used in vector production are shown in Table 2 below.

목표
유전자
goal
gene
목표 유전자의 단편서열The fragment sequence of the target gene
서열번호 3SEQ ID NO: 3 sense
(서열
번호 1)
sense
(order
No. 1)
TCCATCATTCAAGGCTTTCCTTGAAGTTGTCAAGAACAGGAGCTTACTCTGGAAGGTCTATGAAACGGATGCCATTCATTCATTGCATTTAATACTGAGAGATGCGTTCAAAGAGACAGAGAGCATGAAGATAGCCACATATGCTCCCAATTCAAGGCTTGGTTGTTTGAACATTGAAGAAACGCAAGGACTGGAGGCAGTGACAAATGAGATGGTAAGGTTAATTGAAACAGCAACAGTGCCAGTTTTGGCAGTTGATGTTAATGGGATGGTCAATGGATGGAAC TCCATCATTCAAGGCTTTCCTTGAAGTTGTCAAGAACAGGAGCTTACTCTGGAAGGTCTATGAAACGGATGCCATTCATTCATTGCATTTAATACTGAGAGATGCGTTCAAAGAGACAGAGAGCATGAAGATAGCCACATATGCTCCCAATTCAAGGCTTGGTTGTTTGAACATTGAAGAAACGCAAGGACTGGAGGCAGTGACAAATGAGATGGTAAGGTTAATTGAAACAGCAACAGTGCCAGTTTTGGCAGTTGATGTTAATGGGATGGTCAATGGATGGAAC
antisene
(서열
번호 2)
antisene
(order
No. 2)
GTTCCATCCATTGACCATCCCATTAACATCAACTGCCAAAACTGGCACTGTTGCTGTTTCAATTAACCTTACCATCTCATTTGTCACTGCCTCCAGTCCTTGCGTTTCTTCAATGTTCAAACAACCAAGCCTTGAATTGGGAGCATATGTGGCTATCTTCATGCTCTCTGTCTCTTTGAACGCATCTCTCAGTATTAAATGCAATGAATGAATGGCATCCGTTTCATAGACCTTCCAGAGTAAGCTCCTGTTCTTGACAACTTCAAGGAAAGCCTTGAATGATGGAGTTCCATCCATTGACCATCCCATTAACATCAACTGCCAAAACTGGCACTGTTGCTGTTTCAATTAACCTTACCATCTCATTTGTCACTGCCTCCAGTCCTTGCGTTTCTTCAATGTTCAAACAACCAAGCCTTGAATTGGGAGCATATGTGGCTATCTTCATGCTCTCTGTCTCTTTGAACGCATCTCTCAGTATTAAATGCAATGAATGAATGGCATCCGTTTCATAGACCTTCCAGAGTAAGCTCCTGTTCTTGACAACTTCAAGGAAAGCCTTGAATGATGGA
E2
E2
sense
(서열
번호 4)
sense
(order
No. 4)
 GGCGGACATCTGTTGTACCTTCAGAAGATTCATTCCCATCAAAACTTGACCATAATTCTAACAAAACCCCATGTCCAAAGGGTGCATCAGATTATACCTTGGGTAAAGGTGTCACAGGTTTCTCATTGGATGCGTCTGATCTAGCCAACTTCCTCACAATGGACAGGCATATAGGATTGAATTGCAATGGACAAATTTTTCTAAGATCCACGCTAGCAGAGAAACAAGAATTATGTTTTTCTGTAGTTTCACTGCTATGGCACAAGCGGCGGACATCTGTTGTACCTTCAGAAGATTCATTCCCATCAAAACTTGACCATAATTCTAACAAAACCCCATGTCCAAAGGGTGCATCAGATTATACCTTGGGTAAAGGTGTCACAGGTTTCTCATTGGATGCGTCTGATCTAGCCAACTTCCTCACAATGGACAGGCATATAGGATTGAATTGCAATGGACAAATTTTTCTAAGATCCACGCTAGCAGAGAAACAAGAATTATGTTTTTCTGTAGTTTCACTGCTATGGCACAAGC
antisense
(서열
번호 5)
antisense
(order
No. 5)
 GCTTGTGCCATAGCAGTGAAACTACAGAAAAACATAATTCTTGTTTCTCTACTAGCGTGGATCTTAGAAAAATTTGTCCATTGCAATTCAATCCTATATGCCTGTCCATTGTGAGGAAGTTGGCTAGATCAGACGCATCCAATGAGAAACCTGTGACACCTTTACCCAAGGTATAATCTGATGCACCCTTTGGACATGGGGTTTTGTTAGAATTATGGTCAAGTTTTGATGGGAATGAATCTTCTGAAGGTACAACAGATGTCCGCCGCTTGTGCCATAGCAGTGAAACTACAGAAAAACATAATTCTTGTTTCTCTACTAGCGTGGATCTTAGAAAAATTTGTCCATTGCAATTCAATCCTATATGCCTGTCCATTGTGAGGAAGTTGGCTAGATCAGACGCATCCAATGAGAAACCTGTGACACCTTTACCCAAGGTATAATCTGATGCACCCTTTGGACATGGGGTTTTGTTAGAATTATGGTCAAGTTTTGATGGGAATGAATCTTCTGAAGGTACAACAGATGTCCGCC
E3 E3 sense
(서열
번호 6)
sense
(order
No. 6)
 CTCGGATCTTGACAGCATCATTGATGGCTACATGGATTTGGAGATGGTTGAATTCACTTTGCATGAAGTTTTGGTTGCCTCCCTAAGTCAAGTCATGACAAAGAGTAATGCAAAAGGTATCCGAGTAGTCAATGATGTTGAAGAGAAGATCACAACAGAGACCTTATATGGTGATAGTATCAGGCTTCAGCAGGTCTTAGCTGACTTTTTATTGATTTCCATCAATTTCACACCAACTGGAGGTCAGGTTGCTCGGATCTTGACAGCATCATTGATGGCTACATGGATTTGGAGATGGTTGAATTCACTTTGCATGAAGTTTTGGTTGCCTCCCTAAGTCAAGTCATGACAAAGAGTAATGCAAAAGGTATCCGAGTAGTCAATGATGTTGAAGAGAAGATCACAACAGAGACCTTATATGGTGATAGTATCAGGCTTCAGCAGGTCTTAGCTGACTTTTTATTGATTTCCATCAATTTCACACCAACTGGAGGTCAGGTTG
antisense
(서열
번호 7)
antisense
(order
No. 7)
 TTTACACAACCTGACCTCCAGTTGGTGTGAAATTGATGGAAATCAATAAAAAGTCAGCTAAGACCTGCTGAAGCCTGATACTATCACCATATAAGGTCTCTGTTGTGATCTTCTCTTCAACATCATTGACTACTCGGATACCTTTTGCATTACTCTTTGTCATGGCTTGACTTAGGGAGGCAACCAAAACTTCATGCAAAGTGAATTCAACCATCTCCAAATCCATGTAGCCATCAATGATGCTGTCAAGATCCGAGTTTACACAACCTGACCTCCAGTTGGTGTGAAATTGATGGAAATCAATAAAAAGTCAGCTAAGACCTGCTGAAGCCTGATACTATCACCATATAAGGTCTCTGTTGTGATCTTCTCTTCAACATCATTGACTACTCGGATACCTTTTGCATTACTCTTTGTCATGGCTTGACTTAGGGAGGCAACCAAAACTTCATGCAAAGTGAATTCAACCATCTCCAAATCCATGTAGCCATCAATGATGCTGTCAAGATCCGAG
E4E4 sense
(서열
번호 8)
sense
(order
No. 8)
 CATGCGAAAGGCAAGATGATTCAGCCTTTTGGGTGCTTGTTGGCCTTAGATGAGAAAACATGCAAGGTCATTGCATACAGTGAGAACGCACACGAAATGCTGACCATGGTGAGCCATGCTGTCCCCAGTGTTGGTGACCACCCTGCCCTTGGTATTGGCACTGACATAAAAACTCTATTCACTGCACCAAGTGCTTCTGCATTGCAGAAGGCTCTAGGATTTGCAGAGGTTTTGCTTCTTAACCCTGTCCTTATCCATTGCAAGACCTCTGGGAAGCCCTTTTACATGCGAAAGGCAAGATGATTCAGCCTTTTGGGTGCTTGTTGGCCTTAGATGAGAAAACATGCAAGGTCATTGCATACAGTGAGAACGCACACGAAATGCTGACCATGGTGAGCCATGCTGTCCCCAGTGTTGGTGACCACCCTGCCCTTGGTATTGGCACTGACATAAAAACTCTATTCACTGCACCAAGTGCTTCTGCATTGCAGAAGGCTCTAGGATTTGCAGAGGTTTTGCTTCTTAACCCTGTCCTTATCCATTGCAAGACCTCTGGGAAGCCCTTTTA
antisense
(서열
번호 9)
antisense
(order
No. 9)
 TAAAAGGGCTTCCCAGAGGTCTTGCAATGGATAAGGACAGGGTTAAGAAGCAAAACCTCTGCAAATCCTAGAGCCTTCTGCAATGCAGAAGCACTTGGTGCAGTGAATAGAGTTTTTATGTCAGTGCCAATACCAAGGGCAGGGTGGTCACCAACACTGGGGACAGCATGGCTCACCATGGTCAGCATTTCGGGTGCGTTCTCACTGTATGCAATGACCTTGCATGTTTTCTCATCTAAGGCCAACAAGCACCCAAAAGGCTGAATCATCTTGCCTTTCTGCATGTAAAAGGGCTTCCCAGAGGTCTTGCAATGGATAAGGACAGGGTTAAGAAGCAAAACCTCTGCAAATCCTAGAGCCTTCTGCAATGCAGAAGCACTTGGTGCAGTGAATAGAGTTTTTATGTCAGTGCCAATACCAAGGGCAGGGTGGTCACCAACACTGGGGACAGCATGGCTCACCATGGTCAGCATTTCGGGTGCGTTCTCACTGTATGCAATGACCTTGCATGTTTTCTCATCTAAGGCCAACAAGCACCCAAAAGGCTGAATCATCTTGCCTTTCTGCATG
E2-
paralogue
E2-
paralogue
sense
(서열
번호 10)
sense
(order
No. 10)
 CAACTCCAAGATGGGCTGTTGCCAATGGTGCTGGTGTTATATTGAGTGTTTGTGATGATGAAGTTGCTCGCAATGAGACTACTACTTTAACAGCAGCTGCTGTCCCTGCACTTTTGCTTCCTCCTCCAACGACAGCTTTGGATGAGCATCTTGTTGCTGGATTACCAGCTCTGGAACCATATGCTCGTTTATTTCATAGATATTATGCAATTGCTACTCCAAGTGCTACACAAAGACTTCTTCTTGGACTTCTTGAAGCACCCCCATCGTGGGCTCCAGATGCACTTGATGCTGCTGTCAACTCCAAGATGGGCTGTTGCCAATGGTGCTGGTGTTATATTGAGTGTTTGTGATGATGAAGTTGCTCGCAATGAGACTACTACTTTAACAGCAGCTGCTGTCCCTGCACTTTTGCTTCCTCCTCCAACGACAGCTTTGGATGAGCATCTTGTTGCTGGATTACCAGCTCTGGAACCATATGCTCGTTTATTTCATAGATATTATGCAATTGCTACTCCAAGTGCTACACAAAGACTTCTTCTTGGACTTCTTGAAGCACCCCCATCGTGGGCTCCAGATGCACTTGATGCTGCTGT
antisense
(서열
번호 11)
antisense
(order
No. 11)
 ACAGCAGCATCAAGTGCATCTGGAGCCCACGATGGGGGTGCTTCAAGAAGTCCAAGAAGAAGTCTTTGTGTAGCACTTGGAGTAGCAATTGCATAATATCTATGAAATAAACGAGCATATGGTTCCAGAGCTGGTAATCCAGCAACAAGATGCTCATCCAAAGCTGTCGTTGGAGGAGGAAGCAAAAGTGCAGGGACAGCAGCTGCTGTTAAAGTAGTAGTCTCATTGCGAGCAACTTCATCATCACAAACACTCAATATAACACCAGCACCATTGGCAACAGCCCATCTTGGAGTTGACAGCAGCATCAAGTGCATCTGGAGCCCACGATGGGGGTGCTTCAAGAAGTCCAAGAAGAAGTCTTTGTGTAGCACTTGGAGTAGCAATTGCATAATATCTATGAAATAAACGAGCATATGGTTCCAGAGCTGGTAATCCAGCAACAAGATGCTCATCCAAAGCTGTCGTTGGAGGAGGAAGCAAAAGTGCAGGGACAGCAGCTGCTGTTAAAGTAGTAGTCTCATTGCGAGCAACTTCATCATCACAAACACTCAATATAACACCAGCACCATTGGCAACAGCCCATCTTGGAGTTG
E4-
paralogue
E4-
paralogue
sense
(서열
번호 12)
sense
(order
No. 12)
 GCTAGAATGGCTCAGGCAACTGTAGATGCAAAAATCCATGCAACTTTTGAGGAGTCCGGTAGTTCCTTTGATTACTCCAGTTCGGTGCGCGTCTCTGGTACAGCTGATGGAGTCAATCAACCAAGGTCTGACAAAGTTACAACAGCTTACCTCAATCACATGCAGAGAGGCAAGATGATTCAGCCTTTTGGTTGCTTGTTGGCCATTGATGAGAAAGCTAGAATGGCTCAGGCAACTGTAGATGCAAAAATCCATGCAACTTTTGAGGAGTCCGGTAGTTCCTTTGATTACTCCAGTTCGGTGCGCGTCTCTGGTACAGCTGATGGAGTCAATCAACCAAGGTCTGACAAAGTTACAACAGCTTACCTCAATCACATGCAGAGAGGCAAGATGATTCAGCCTTTTGGTTGCTTGTTGGCCATTGATGAGAAA
antisense
(서열
번호 13)
antisense
(order
No. 13)
 TTTCTCATCAATGGCCAACAAGCAACCAAAAGGCTGAATCATTTTGCCTCTCTGCATGTGATTGAGGTAAGCTGTTGTAACTTTGTCAGACCTTGGTTGATTGACTCCATCAGCTGTACCAGAGACGCGCACCGAACTGGAGTAATCAAAGGAACTACCGGACTCCTCAAAAGTTGCATGGATTTTTGCATCTACAGTTGCCTGAGCCATTCTAGCTTTCTCATCAATGGCCAACAAGCAACCAAAAGGCTGAATCATTTTGCCTCTCTGCATGTGATTGAGGTAAGCTGTTGTAACTTTGTCAGACCTTGGTTGATTGACTCCATCAGCTGTACCAGAGACGCGCACCGAACTGGAGTAATCAAAGGAACTACCGGACTCCTCAAAAGTTGCATGGATTTTTGCATCTACAGTTGCCTGAGCCATTCTAGC

목표 유전자가 The target gene 침묵된Silent 식물체의 개화시 단축 및 개화관련유전자의 발현량 확인 Identification of shortening and flowering-related gene expression in flowering of plants

상기 실시예 1에서 제조된 12개의 VIGS 컨스트럭트 중 목표 유전자가 삽입되지 않은 4개의 컨스트럭트(표 1의 검정색)는 제외시키고 정확한 사이즈와 원하는 유전자 염기서열을 포함하는 8개의 컨스트럭트(표 1의 붉은색)를 아그로박테리움-매개 침입을 이용하여 장미콩에 접종하였다. 표현형과 목표 유전자의 침묵을 확인한 후, 침묵된 식물체의 감염된 잎이 표본으로 추출되었다. 이렇게 수득된 잎은 온실에서 16시간의 광주기로 10일된 장엽콩(10-day-old)의 초생옆과 떡잎에 기계적으로 접종시키는데 사용하였다.Four constructs (black in Table 1) in which the target gene was not inserted among the 12 VIGS constructs prepared in Example 1 were excluded, and eight constructs including the correct size and the desired gene sequence ≪ / RTI > red in Table 1) was inoculated into the rosacea using Agrobacterium-mediated invasion. After confirming the phenotype and silencing of the target gene, the infected leaves of silent plants were extracted as a sample. The leaves thus obtained were used to mechanically inoculate 10-day-old 10-day-old perennials and cotyledons in a greenhouse with a 16-hour photoperiod.

목표 유전자가 침묵된 식물체(실험구)와 침묵되지 않은 식물체(대조구)의 개화시(first flowering dates, FFDs)와 꼬투리 성숙(pod maturities, PMs)을 장일(long day, LD) 조건(16h 빛/8h 암흑)에서 비교하였다.The first flowering dates (FFDs) and pod maturities (PMs) of the target gene silenced plants (control) and non-silenced plants (control) were converted to long day (LD) 8 h darkness).

장엽콩 품종은 전형적으로 파종 60일 후에 개화하는데 이와 유사하게 SYCMV:empty 접종 개체는 하기 표 3에 나타난 바와 같이 대략 60일 경에 개화하였다. 또한, 목표 유전자가 침묵된 식물체의 개화시는 12월 1일 내지 8일에 일어난 반면(50-55 das), 침묵되지 않은 SYCMV:empty 접종 개체는 12월 14일에 개화하였다(61 das). 구체적으로, 기존에 알려진 개화유전자 E2-F, E3-F, E4-R이 침묵된 개체들의 평균 개화시는 52~53일로 대조구보다 8~9일 정도 단축되었다. 이러한 결과는 SYCMV-개화관련유전자가 침묵된 개체가 침묵되지 않은 SYCMV:empty 접종 개체의 개화시 보다 일찍 일어난다는 것을 나타낸다. 특히, 서열번호 2의 염기서열이 삽입된 SYCMV 유래 재조합 VIGS 벡터 접종 개체 중 개화가 가장 빠른 개체는 대조구보다 13일 개화시가 단축되었고, 평균적으로 11일 정도 개화가 빨라지는 것을 확인 하였다. ANOVA 분석을 통해서도 대조구 (A)와 비교했을 때 식물체의 목표 유전자인 서열번호 3의 염기서열로 이루어진 유전자(D)가 넉다운 되었을 때, 가장 유의한 차이가 나타났다(표 3).Varietal varieties typically bloom 60 days after sowing. Similarly, SYCMV: empty inoculated individuals bloomed approximately 60 days as shown in Table 3 below. In addition, non-silenced SYCMV: empty inoculated plants bloomed on December 14 (61 das), whereas plants that were silenced with target genes occurred on December 1 to 8 (50-55 das) on flowering. Specifically, the average flowering time of previously silenced individuals of flowering genes E2-F, E3-F and E4-R was 52 ~ 53 days shorter than that of the control by 8 ~ 9 days. These results indicate that the SYCMV-flowering related gene silenced individuals occur earlier than in the flowering of non-silenced SYCMV: empty inoculated individuals. Particularly, among the inoculated recombinant VIGS vectors derived from the SYCMV containing the nucleotide sequence of SEQ ID NO: 2, the flowering time of 13 days was shorter than that of the control, and the flowering speed was about 11 days on average. The ANOVA analysis showed the most significant difference when the gene (D) consisting of the nucleotide sequence of SEQ ID NO: 3, which is the target gene of the plant, was knocked down as compared with the control (A) (Table 3).

Figure 112016062570225-pat00002
Figure 112016062570225-pat00002

개화관련유전자가 침묵된 8개의 개체의 개화기에서 관찰된 변화를 개화관련유전자가 침묵되지 않은 개체와 비교 확인하기 위해, 침묵되지 않은 개체와 침묵된 개체의 4번째와 5번째 잎이 qRT-PCR에 의해 측정된 목표 유전자의 전사 수준을 분석하는데 사용되었다. qRT-PCR에 사용된 프라이머 세트는 하기 표 4에 기재된 바와 같다.In order to compare the observed changes in the flowering period of eight individuals with silenced flowering-related genes to those without silenced flowering-related genes, the fourth and fifth leaves of silent and silent individuals were subjected to qRT-PCR ≪ / RTI > was used to analyze the level of transcription of the target gene as measured by the gene. The primer set used for qRT-PCR is as shown in Table 4 below.

목표 유전자Target gene 프라이머 서열 (5' to 3')The primer sequence (5 'to 3') 서열번호 3SEQ ID NO: 3 Forward Forward TTGCTGAGGTGAAAAGGCCATTGCTGAGGTGAAAAGGCCA Reverse Reverse ATATCTTTGGAAGTTATTCTATATCTTTGGAAGTTATTCT E2 E2 ForwardForward AGAAAATCAAAATACCTAGCAGAAAATCAAAATACCTAGC ReverseReverse TCCGAATAGGTGCATGAATTTCCGAATAGGTGCATGAATT E3 E3 Forward Forward GGAAAGCATTTACTCACACTGGAAAGCATTTACTCACACT Reverse Reverse TCCCAACTCAGTACCCTCTATCCCAACTCAGTACCCTCTA E4E4 Forward Forward CAGCAGGTGCCTTGCAATCTCAGCAGGTGCCTTGCAATCT Reverse Reverse GTTACTCCTAATCTCCATACGTTACTCCTAATCTCCATAC E2-paralogueE2-paralogue Forward Forward TTCCTAGAAATTGGATGCATTTCCTAGAAATTGGATGCAT Reverse Reverse CAGATGTTTGTAAGTCCTCACAGATGTTTGTAAGTCCTCA E4-paralogueE4-paralogue Forward Forward GTTGGTGACCACCCTGCCCTGTTGGTGACCACCCTGCCCT Reverse Reverse ATACCTTAGAGGAAAGGGAAATACCTTAGAGGAAAGGGAA

도 2에 나타난 바와 같이, SYCMV:empty 접종 개체보다 서열번호 2의 염기서열이 삽입된 SYCMV 유래 재조합 VIGS 벡터 접종 개체에서 목표 유전자인 서열번호 3의 염기서열로 이루어진 유전자의 발현량이 현저하게 감소하는 것을 확인하였다.As shown in Fig. 2, the expression amount of the gene consisting of the nucleotide sequence of SEQ ID NO: 3, which is the target gene, in the SYCMV-derived recombinant VIGS vector inoculated with the nucleotide sequence of SEQ ID NO: 2 inserted into the SYCMV: Respectively.

개화기와 성숙기 촉진 효과 비교Comparison of promoting effects of flowering and maturing period

본 실시예에서는 SYCMV:empty 접종 개체(대조구)와 서열번호 2의 염기서열이 삽입된 SYCMV 유래 재조합 VIGS 벡터 접종 개체(실험구)의 개화기와 성숙기를 비교하였다.In this example, the maturation period and the flowering period of SYCMV: empty inoculated (control) and recombinant VIGS vector inoculated with SYCMV (SEQ ID NO: 2) were compared.

도 3에 나타난 바와 같이, 대조구인 SYCMV:empty 접종 개체의 첫 꽃이 피었을 때, 실험구 개체는 이미 꽃이 만개한 상태였다. 성숙기 경우에도 실험구의 개체는 꼬투리 색이 갈색으로 변했으며 수확기에 접어든 것을 알 수 있지만, SYCMV:empty 접종 개체는 아직 꼬투리가 초록색이었다. 또한 실험구의 개체는 SYCMV:empty 접종 개체보다 약 2주 정도 빨리 성숙된다는 것을 확인하였다.As shown in FIG. 3, when the first flower of the SYCMV: empty inoculation control, which was a control, was bloomed, the experimental group had already been in full bloom. Even in the mature stage, the pods of the experimental group turned brown, indicating that they had entered the harvest, but the SYCMV: empty inoculum still had green pods. It was also confirmed that the individuals in the experimental group matched about two weeks earlier than the SYCMV: empty inoculum.

이상의 결과를 통해, 식물체에서 서열번호 3의 염기서열로 이루어진 유전자를 침묵시키면, 개화기와 성숙기가 현저하게 촉진된다는 것을 확인하였다. 이러한 결과를 바탕으로, 만생종 품종에 서열번호 1 또는 2의 염기서열이 삽입된 SYCMV 유래 재조합 VIGS 벡터를 접종하면 개화기와 성숙기를 앞당길 수 있는 농자재로도 유용하게 사용할 수 있을 것으로 사료된다.From the above results, it was confirmed that silencing of the gene consisting of the nucleotide sequence of SEQ ID NO: 3 in the plant markedly promotes the flowering phase and the mature stage. Based on these results, it may be useful to inoculate the recombinant VIGS vector derived from SYCMV with the nucleotide sequence of SEQ. ID. NO. 1 or 2 in the freshman cultivar as a plant material that can accelerate the flowering period and mature stage.

본 발명의 SYCMV 유래 재조합 VIGS 벡터를 이용한 식물체의 조기 개화는 식량, 사료, 화훼, 원예, 에너지 작물 등 다양한 작물 개발 분야, 식물 종자산업 및 농업의 발전에 유용하게 활용할 수 있는 효과가 있다.The early flowering of plants using the SYCMV-derived recombinant VIGS vector of the present invention is effective for the development of various crops such as food, feed, flower, horticulture, energy crops, plant seed industry and agricultural development.

<110> THE FOUNDATION OF AG. TECH. COMMERCIALIZATION AND TRANSFER <120> Novel gene promoting early flowering or maturity in plant and use thereof <130> 1060676 <160> 37 <170> KopatentIn 2.0 <210> 1 <211> 286 <212> DNA <213> Artificial Sequence <220> <223> fragment of flowering-related gene(sense) <400> 1 tccatcattc aaggctttcc ttgaagttgt caagaacagg agcttactct ggaaggtcta 60 tgaaacggat gccattcatt cattgcattt aatactgaga gatgcgttca aagagacaga 120 gagcatgaag atagccacat atgctcccaa ttcaaggctt ggttgtttga acattgaaga 180 aacgcaagga ctggaggcag tgacaaatga gatggtaagg ttaattgaaa cagcaacagt 240 gccagttttg gcagttgatg ttaatgggat ggtcaatgga tggaac 286 <210> 2 <211> 286 <212> DNA <213> Artificial Sequence <220> <223> fragment of flowering-related gene(antisense) <400> 2 gttccatcca ttgaccatcc cattaacatc aactgccaaa actggcactg ttgctgtttc 60 aattaacctt accatctcat ttgtcactgc ctccagtcct tgcgtttctt caatgttcaa 120 acaaccaagc cttgaattgg gagcatatgt ggctatcttc atgctctctg tctctttgaa 180 cgcatctctc agtattaaat gcaatgaatg aatggcatcc gtttcataga ccttccagag 240 taagctcctg ttcttgacaa cttcaaggaa agccttgaat gatgga 286 <210> 3 <211> 2991 <212> DNA <213> Artificial Sequence <220> <223> flowering-related gene <400> 3 atgataattc ttgtttacgt actcggcatg atgtttctgt cgtttcctgg tcaattaaga 60 tcatcaagac ccagtgctag gaggatatct cagacaagtt tagatgcaaa accgcatgca 120 acatttgagg aatcaggtag ttcttttgac tactcgaatt cagtgaaaat gtctccagct 180 ggtacaggag gaggcactgt cagtggagag catgaaccaa agtctgatag agcagcaaca 240 actgcttacc tccatcagat gcagaaaggc aagcttattc agccatttgg gtgcttgttg 300 gtcttagatg agaaaacata taaggtcatc gcttacagtg agaatgcacc tgaaatgctc 360 accatggcta gtcatgctgt ccccagtgtt gatgaccacc ctgctcttga cattggcact 420 tacataagga ctattttcac tgccccaagt attgcttcta ttcacaaggt acttggattt 480 ggggatcttt cacttcataa caccattcta gtccattgca agacctttgg gaatcccttt 540 tacgcaatta tccatcttgt taccggtagc acaatcatcg attttgagtc ggtccagcct 600 cctgaagttc ccatgactgc atccggttcc ctgcaatcct actacaagct tgcagcaaaa 660 gcaacaacta gattgcaatc cttggctact gtgaacatgg aaacactatg taacacaatg 720 gttcaagagg tttttgagct cacaggttat gacagagtga tggcttataa attccatgac 780 gatgatcatg gggaagtgat tgctgaggtg aaaaggccag gcctagagcc atatctgggg 840 ttgcactacc cagccactga tattccccat gcgacgcgct tttctttatg gagaacaagg 900 tgcgtgattc aagacaaaaa aattccattt gatttagctt tgtatggatc aaccttgagg 960 gctgctcata gttgccactt gcaattcatg gtgaacatga attctagtgc ttccttggta 1020 ttggcagttg tgatcaatga caatgatgaa gatgggaata gttctgatga tgctgctgtt 1080 cagcagccac acaagagtag tacgagtcta tggggtttag tagtttgcca tcacactact 1140 cccaagtttg ttcctcaggg gcgtatttgt catccacgtg tgggcaaaga gctagagatt 1200 gagtatcaga ttgttgagaa gaacatcctg cgaactcaaa cacacttgtt tgatgtgctg 1260 acgcgagatg agcccctagc cattgtttca cagagtccta atatgatgga tcttgtcaag 1320 tgtgatggag cgaccctgtt atataaaaac aaggtgtgga gattaggggt aacgccaagt 1380 gaatctcaga taagagagat agctttgtgg ctctctcagt gccataggga ttccacaggt 1440 ttttttacag atagcttgtc tgatgcaggc ttccctgggg ctgctgctct tggtgatatt 1500 gcatgtggaa tgacatctgc cagaataact tccaaagata tagttttctg gttttggtct 1560 cacacggctg cagaaatccg atgcgacggt gcaaagcatg aacctggtga aagggatgat 1620 gttgtcaaga acaggagctt actctggaag gtctatgaaa cggatgccat tcattcattg 1680 catttaatac tgagagatgc gttcaaagag acagagagca tgaagatagc cacatatgct 1740 cccaattcaa ggcttggttg tttgaacatt gaagaaacgc aaggactgga ggcagtgaca 1800 aatgagatgg taaggttaat tgaaacagca acagtgccag ttttggcagt tgatgttaat 1860 gggatggtca atggatggaa caccaaaatt gctgagttga caggtcttcc aagtgatgaa 1920 gctatgggaa agcattttct cacacttgta gaggattttt cagtagatag agtcaagaag 1980 atgttgcaca tggcattgca gggtgaggaa gaggaagaga gaaatgtcca atttgagatc 2040 aacacatatg atttcaagat tgattctggt cctgccagct tggtagttaa tgcttgtgca 2100 agcagggatc ttcaagataa tattgtggga gtttgttttg tggcacaagg tataactgct 2160 cagaaaacaa tgatggaaaa attcccccga attgaaggtg actacaaggc aattgtacag 2220 aacccaaacc catcgatccc tccattattt agcacagatg aatttggttg gtgttgtgaa 2280 tggaattcag ctatggcaaa attaaccgga tggaagcgag aggaggtgat ggataaaatg 2340 cttttaggag agattttcgg gacccagata gctggttgtc gcctaaggaa tcatgaagct 2400 gttgttaatt ttagcattgt acttaataca gccatggctg gtttggaaac agagaaggtt 2460 cctattggtt tctttactcg cgatggaaag catgtagaat ctagtccaga gctgcaacag 2520 gcattacaca ttcagctcct atctgagcaa actgcaatga aaagactgaa agatttaaat 2580 tatttgaaaa ggcaaatccg gaatccttta tatgggatta tgttctcccg gaaattgtta 2640 gagggtactg agttgggagc tgaacaaaaa caatttctgc aaatgagcac gcagtgtcaa 2700 caccagctta gcaaaattct ggatgactca gatcttgaca gcatcattga tggttgccat 2760 ttgtgtggta ttttgagcat ttatcaacaa gagttcctat taaatcatac aattgtaaac 2820 attacgcatg atggttttgg ggttccagaa acattgctga accagatgtt tggacgtgat 2880 ggacatgaat ctgaggaggg tattagcatg ctgattagca gaaagctcat gaagggagac 2940 gtacgttaca taagggaagc agggaaaatc atctttcatc ttatctgttg a 2991 <210> 4 <211> 267 <212> DNA <213> Artificial Sequence <220> <223> E2 gene fragment(sense) <400> 4 ggcggacatc tgttgtacct tcagaagatt cattcccatc aaaacttgac cataattcta 60 acaaaacccc atgtccaaag ggtgcatcag attatacctt gggtaaaggt gtcacaggtt 120 tctcattgga tgcgtctgat ctagccaact tcctcacaat ggacaggcat ataggattga 180 attgcaatgg acaaattttt ctaagatcca cgctagcaga gaaacaagaa ttatgttttt 240 ctgtagtttc actgctatgg cacaagc 267 <210> 5 <211> 267 <212> DNA <213> Artificial Sequence <220> <223> E2 gene fragment(antisense) <400> 5 gcttgtgcca tagcagtgaa actacagaaa aacataattc ttgtttctct actagcgtgg 60 atcttagaaa aatttgtcca ttgcaattca atcctatatg cctgtccatt gtgaggaagt 120 tggctagatc agacgcatcc aatgagaaac ctgtgacacc tttacccaag gtataatctg 180 atgcaccctt tggacatggg gttttgttag aattatggtc aagttttgat gggaatgaat 240 cttctgaagg tacaacagat gtccgcc 267 <210> 6 <211> 251 <212> DNA <213> Artificial Sequence <220> <223> E3 gene fragment(sense) <400> 6 ctcggatctt gacagcatca ttgatggcta catggatttg gagatggttg aattcacttt 60 gcatgaagtt ttggttgcct ccctaagtca agtcatgaca aagagtaatg caaaaggtat 120 ccgagtagtc aatgatgttg aagagaagat cacaacagag accttatatg gtgatagtat 180 caggcttcag caggtcttag ctgacttttt attgatttcc atcaatttca caccaactgg 240 aggtcaggtt g 251 <210> 7 <211> 257 <212> DNA <213> Artificial Sequence <220> <223> E3 gene fragment(antisense) <400> 7 tttacacaac ctgacctcca gttggtgtga aattgatgga aatcaataaa aagtcagcta 60 agacctgctg aagcctgata ctatcaccat ataaggtctc tgttgtgatc ttctcttcaa 120 catcattgac tactcggata ccttttgcat tactctttgt catggcttga cttagggagg 180 caaccaaaac ttcatgcaaa gtgaattcaa ccatctccaa atccatgtag ccatcaatga 240 tgctgtcaag atccgag 257 <210> 8 <211> 284 <212> DNA <213> Artificial Sequence <220> <223> E4 gene fragment(sense) <400> 8 catgcgaaag gcaagatgat tcagcctttt gggtgcttgt tggccttaga tgagaaaaca 60 tgcaaggtca ttgcatacag tgagaacgca cacgaaatgc tgaccatggt gagccatgct 120 gtccccagtg ttggtgacca ccctgccctt ggtattggca ctgacataaa aactctattc 180 actgcaccaa gtgcttctgc attgcagaag gctctaggat ttgcagaggt tttgcttctt 240 aaccctgtcc ttatccattg caagacctct gggaagccct ttta 284 <210> 9 <211> 285 <212> DNA <213> Artificial Sequence <220> <223> E4 gene fragment(antisense) <400> 9 taaaagggct tcccagaggt cttgcaatgg ataaggacag ggttaagaag caaaacctct 60 gcaaatccta gagccttctg caatgcagaa gcacttggtg cagtgaatag agtttttatg 120 tcagtgccaa taccaagggc agggtggtca ccaacactgg ggacagcatg gctcaccatg 180 gtcagcattt cgggtgcgtt ctcactgtat gcaatgacct tgcatgtttt ctcatctaag 240 gccaacaagc acccaaaagg ctgaatcatc ttgcctttct gcatg 285 <210> 10 <211> 298 <212> DNA <213> Artificial Sequence <220> <223> E2-paralogue gene fragment(sense) <400> 10 caactccaag atgggctgtt gccaatggtg ctggtgttat attgagtgtt tgtgatgatg 60 aagttgctcg caatgagact actactttaa cagcagctgc tgtccctgca cttttgcttc 120 ctcctccaac gacagctttg gatgagcatc ttgttgctgg attaccagct ctggaaccat 180 atgctcgttt atttcataga tattatgcaa ttgctactcc aagtgctaca caaagacttc 240 ttcttggact tcttgaagca cccccatcgt gggctccaga tgcacttgat gctgctgt 298 <210> 11 <211> 298 <212> DNA <213> Artificial Sequence <220> <223> E2-paralogue gene fragment(antisense) <400> 11 acagcagcat caagtgcatc tggagcccac gatgggggtg cttcaagaag tccaagaaga 60 agtctttgtg tagcacttgg agtagcaatt gcataatatc tatgaaataa acgagcatat 120 ggttccagag ctggtaatcc agcaacaaga tgctcatcca aagctgtcgt tggaggagga 180 agcaaaagtg cagggacagc agctgctgtt aaagtagtag tctcattgcg agcaacttca 240 tcatcacaaa cactcaatat aacaccagca ccattggcaa cagcccatct tggagttg 298 <210> 12 <211> 216 <212> DNA <213> Artificial Sequence <220> <223> E4-paralogue gene fragment(sense) <400> 12 gctagaatgg ctcaggcaac tgtagatgca aaaatccatg caacttttga ggagtccggt 60 agttcctttg attactccag ttcggtgcgc gtctctggta cagctgatgg agtcaatcaa 120 ccaaggtctg acaaagttac aacagcttac ctcaatcaca tgcagagagg caagatgatt 180 cagccttttg gttgcttgtt ggccattgat gagaaa 216 <210> 13 <211> 216 <212> DNA <213> Artificial Sequence <220> <223> E4-paralogue gene fragment(antisense) <400> 13 tttctcatca atggccaaca agcaaccaaa aggctgaatc attttgcctc tctgcatgtg 60 attgaggtaa gctgttgtaa ctttgtcaga ccttggttga ttgactccat cagctgtacc 120 agagacgcgc accgaactgg agtaatcaaa ggaactaccg gactcctcaa aagttgcatg 180 gatttttgca tctacagttg cctgagccat tctagc 216 <210> 14 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> forward primer for SEQ ID NO: 3 <400> 14 aaatgtacat ccatcattca aggctttcc 29 <210> 15 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for SEQ ID NO: 3 <400> 15 aaatgtacag ttccatccat tgaccatcc 29 <210> 16 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> forward primer for E2 <400> 16 aaatgtacag gcggacatct gttgtacct 29 <210> 17 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for E2 <400> 17 aaatgtacag cttgtgccat agcagtgaa 29 <210> 18 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> forward primer for E3 <400> 18 aaatgtacac tcggatcttg acagcatca 29 <210> 19 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for E3 <400> 19 aaatgtacac aacctgacct ccagttggt 29 <210> 20 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> forward primer for E4 <400> 20 aaatgtacac atgcagaaag gcaagatga 29 <210> 21 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for E4 <400> 21 aaatgtacat aaaagggctt cccagaggt 29 <210> 22 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> forward primer for E2-paralogue <400> 22 aaatgtacac aactccaaga tgggctgtt 29 <210> 23 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for E2-paralogue <400> 23 aaatgtacaa cagcagcatc aagtgcatc 29 <210> 24 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> forward primer for E4-paralogue <400> 24 aaatgtacag ctagaatggc tcaggcaac 29 <210> 25 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for E4-paralogue <400> 25 aaatgtacat ttctcatcaa tggccaaca 29 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> qRT-PCR forward primer for SEQ ID NO: 3 <400> 26 ttgctgaggt gaaaaggcca 20 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> qRT-PCR reverse primer for SEQ ID NO: 3 <400> 27 atatctttgg aagttattct 20 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> qRT-PCR forward primer for E2 <400> 28 agaaaatcaa aatacctagc 20 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> qRT-PCR reverse primer for E2 <400> 29 tccgaatagg tgcatgaatt 20 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> qRT-PCR forward primer for E3 <400> 30 ggaaagcatt tactcacact 20 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> qRT-PCR reverse primer for E3 <400> 31 tcccaactca gtaccctcta 20 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> qRT-PCR forward primer for E4 <400> 32 cagcaggtgc cttgcaatct 20 <210> 33 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> qRT-PCR reverse primer for E4 <400> 33 gttactccta atctccatac 20 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> qRT-PCR forward primer for E2-paralogue <400> 34 ttcctagaaa ttggatgcat 20 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> qRT-PCR reverse primer for E2-paralogue <400> 35 cagatgtttg taagtcctca 20 <210> 36 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> qRT-PCR forward primer for E4-paralogue <400> 36 gttggtgacc accctgccct 20 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> qRT-PCR reverse primer for E4-paralogue <400> 37 ataccttaga ggaaagggaa 20 <110> THE FOUNDATION OF AG. TECH. COMMERCIALIZATION AND TRANSFER <120> Novel gene promoting early flowering or maturity in plant and use          the <130> 1060676 <160> 37 <170> Kopatentin 2.0 <210> 1 <211> 286 <212> DNA <213> Artificial Sequence <220> <223> fragment of flowering-related gene (sense) <400> 1 tccatcattc aaggctttcc ttgaagttgt caagaacagg agcttactct ggaaggtcta 60 tgaaacggat gccattcatt cattgcattt aatactgaga gatgcgttca aagagacaga 120 gagcatgaag atagccacat atgctcccaa ttcaaggctt ggttgtttga acattgaaga 180 aacgcaagga ctggaggcag tgacaaatga gatggtaagg ttaattgaaa cagcaacagt 240 gccagttttg gcagttgatg ttaatgggat ggtcaatgga tggaac 286 <210> 2 <211> 286 <212> DNA <213> Artificial Sequence <220> <223> fragment of flowering-related gene (antisense) <400> 2 gttccatcca ttgaccatcc cattaacatc aactgccaaa actggcactg ttgctgtttc 60 aattaacctt accatctcat ttgtcactgc ctccagtcct tgcgtttctt caatgttcaa 120 acaaccaagc cttgaattgg gagcatatgt ggctatcttc atgctctctg tctctttgaa 180 cgcatctctc agtattaaat gcaatgaatg aatggcatcc gtttcataga ccttccagag 240 taagctcctg ttcttgacaa cttcaaggaa agccttgaat gatgga 286 <210> 3 <211> 2991 <212> DNA <213> Artificial Sequence <220> <223> flowering-related gene <400> 3 atgataattc ttgtttacgt actcggcatg atgtttctgt cgtttcctgg tcaattaaga 60 tcatcaagac ccagtgctag gaggatatct cagacaagtt tagatgcaaa accgcatgca 120 acatttgagg aatcaggtag ttcttttgg tactcgaatt cagtgaaaat gtctccagct 180 ggtacaggag gaggcactgt cagtggagag catgaaccaa agtctgatag agcagcaaca 240 actgcttacc tccatcagat gcagaaaggc aagcttattc agccatttgg gtgcttgttg 300 gtcttagatg agaaaacata taaggtcatc gcttacagtg agaatgcacc tgaaatgctc 360 accatggcta gtcatgctgt ccccagtgtt gatgaccacc ctgctcttga cattggcact 420 tacataagga ctattttcac tgccccaagt attgcttcta ttcacaaggt acttggattt 480 ggggatcttt cacttcataa caccattcta gtccattgca agacctttgg gaatcccttt 540 tacgcaatta tccatcttgt taccggtagc acaatcatcg attttgagtc ggtccagcct 600 cctgaagttc ccatgactgc atccggttcc ctgcaatcct actacaagct tgcagcaaaa 660 gcaacaacta gattgcaatc cttggctact gtgaacatgg aaacactatg taacacaatg 720 gttcaagagg tttttgagct cacaggttat gacagagtga tggcttataa attccatgac 780 gatgatcatg gggaagtgat tgctgaggtg aaaaggccag gcctagagcc atatctgggg 840 ttgcactacc cagccactga tattccccat gcgacgcgct tttctttatg gagaacaagg 900 tgcgtgattc aagacaaaaa aattccattt gatttagctt tgtatggatc aaccttgagg 960 gctgctcata gttgccactt gcaattcatg gtgaacatga attctagtgc ttccttggta 1020 ttggcagttg tgatcaatga caatgatgaa gatgggaata gttctgatga tgctgctgtt 1080 cagcagccac acaagagtag tacgagtcta tggggtttag tagtttgcca tcacactact 1140 cccaagtttg ttcctcaggg gcgtatttgt catccacgtg tgggcaaaga gctagagatt 1200 gagtatcaga ttgttgagaa gaacatcctg cgaactcaaa cacacttgtt tgatgtgctg 1260 acgcgagatg agcccctagc cattgtttca cagagtccta atatgatgga tcttgtcaag 1320 tgtgatggag cgaccctgtt atataaaaac aaggtgtgga gattaggggt aacgccaagt 1380 gaatctcaga taagagagat agctttgtgg ctctctcagt gccataggga ttccacaggt 1440 ttttttacag atagcttgtc tgatgcaggc ttccctgggg ctgctgctct tggtgatatt 1500 gcatgtggaa tgacatctgc cagaataact tccaaagata tagttttctg gttttggtct 1560 cacacggctg cagaaatccg atgcgacggt gcaaagcatg aacctggtga aagggatgat 1620 gtgtcaaga acaggagctt actctggaag gtctatgaaa cggatgccat tcattcattg 1680 catttaatac tgagagatgc gttcaaagag acagagagca tgaagatagc cacatatgct 1740 cccaattcaa ggcttggttg tttgaacatt gaagaaacgc aaggactgga ggcagtgaca 1800 aatgagatgg taaggttaat tgaaacagca acagtgccag ttttggcagt tgatgttaat 1860 gggatggtca atggatggaa caccaaaatt gctgagttga caggtcttcc aagtgatgaa 1920 gctatgggaa agcattttct cacacttgta gaggattttt cagtagatag agtcaagaag 1980 atgttgcaca tggcattgca gggtgaggaa gaggaagaga gaaatgtcca atttgagatc 2040 aacacatatg atttcaagat tgattctggt cctgccagct tggtagttaa tgcttgtgca 2100 agcagggatc ttcaagataa tattgtggga gtttgttttg tggcacaagg tataactgct 2160 cagaaaacaa tgatggaaaa attcccccga attgaaggtg actacaaggc aattgtacag 2220 aacccaaacc catcgatccc tccattattt agcacagatg aatttggttg gtgttgtgaa 2280 tggaattcag ctatggcaaa attaaccgga tggaagcgag aggaggtgat ggataaaatg 2340 cttttaggag agattttcgg gacccagata gctggttgtc gcctaaggaa tcatgaagct 2400 gttgttaatt ttagcattgt acttaataca gccatggctg gtttggaaac agagaaggtt 2460 cctattggtt tctttactcg cgatggaaag catgtagaat ctagtccaga gctgcaacag 2520 gcattacaca ttcagctcct atctgagcaa actgcaatga aaagactgaa agatttaaat 2580 tatttgaaaa ggcaaatccg gaatccttta tatgggatta tgttctcccg gaaattgtta 2640 gagggtactg agttgggagc tgaacaaaaa caatttctgc aaatgagcac gcagtgtcaa 2700 caccagctta gcaaaattct ggatgactca gatcttgaca gcatcattga tggttgccat 2760 ttgtgtggta ttttgagcat ttatcaacaa gagttcctat taaatcatac aattgtaaac 2820 attacgcatg atggttttgg ggttccagaa acattgctga accagatgtt tggacgtgat 2880 ggacatgaat ctgaggaggg tattagcatg ctgattagca gaaagctcat gaagggagac 2940 gtacgttaca taagggaagc agggaaaatc atctttcatc ttatctgttg a 2991 <210> 4 <211> 267 <212> DNA <213> Artificial Sequence <220> <223> E2 gene fragment (sense) <400> 4 ggcggacatc tgttgtacct tcagaagatt cattcccatc aaaacttgac cataattcta 60 acaaaacccc atgtccaaag ggtgcatcag attatacctt gggtaaaggt gtcacaggtt 120 tctcattgga tgcgtctgat ctagccaact tcctcacaat ggacaggcat ataggattga 180 attgcaatgg acaaattttt ctaagatcca cgctagcaga gaaacaagaa ttatgttttt 240 ctgtagtttc actgctatgg cacaagc 267 <210> 5 <211> 267 <212> DNA <213> Artificial Sequence <220> <223> E2 gene fragment (antisense) <400> 5 gcttgtgcca tagcagtgaa actacagaaa aacataattc ttgtttctct actagcgtgg 60 atcttagaaa aatttgtcca ttgcaattca atcctatatg cctgtccatt gtgaggaagt 120 tggctagatc agacgcatcc aatgagaaac ctgtgacacc tttacccaag gtataatctg 180 atgcaccctt tggacatggg gttttgttag aattatggtc aagttttgat gggaatgaat 240 cttctgaagg tacaacagat gtccgcc 267 <210> 6 <211> 251 <212> DNA <213> Artificial Sequence <220> <223> E3 gene fragment (sense) <400> 6 ctcggatctt gacagcatca ttgatggcta catggatttg gagatggttg aattcacttt 60 gcatgaagtt ttggttgcct ccctaagtca agtcatgaca aagagtaatg caaaaggtat 120 ccgagtagtc aatgatgttg aagagaagat cacaacagag accttatatg gtgatagtat 180 caggcttcag caggtcttag ctgacttttt attgatttcc atcaatttca caccaactgg 240 aggtcaggtt g 251 <210> 7 <211> 257 <212> DNA <213> Artificial Sequence <220> <223> E3 gene fragment (antisense) <400> 7 tttacacaac ctgacctcca gttggtgtga aattgatgga aatcaataaa aagtcagcta 60 agacctgctg aagcctgata ctatcaccat ataaggtctc tgttgtgatc ttctcttcaa 120 catcattgac tactcggata ccttttgcat tactctttgt catggcttga cttagggagg 180 caaccaaaac ttcatgcaaa gtgaattcaa ccatctccaa atccatgtag ccatcaatga 240 tgctgtcaag atccgag 257 <210> 8 <211> 284 <212> DNA <213> Artificial Sequence <220> <223> E4 gene fragment (sense) <400> 8 catgcgaaag gcaagatgat tcagcctttt gggtgcttgt tggccttaga tgagaaaaca 60 tgcaaggtca ttgcatacag tgagaacgca cacgaaatgc tgaccatggt gagccatgct 120 gtccccagtg ttggtgacca ccctgccctt ggtattggca ctgacataaa aactctattc 180 actgcaccaa gtgcttctgc attgcagaag gctctaggat ttgcagaggt tttgcttctt 240 aaccctgtcc ttatccattg caagacctct gggaagccct ttta 284 <210> 9 <211> 285 <212> DNA <213> Artificial Sequence <220> <223> E4 gene fragment (antisense) <400> 9 taaaagggct tcccagaggt cttgcaatgg ataaggacag ggttaagaag caaaacctct 60 gcaaatccta gagccttctg caatgcagaa gcacttggtg cagtgaatag agtttttatg 120 tcagtgccaa taccaagggc agggtggtca ccaacactgg ggacagcatg gctcaccatg 180 gtcagcattt cgggtgcgtt ctcactgtat gcaatgacct tgcatgtttt ctcatctaag 240 gccaacaagc acccaaaagg ctgaatcatc ttgcctttct gcatg 285 <210> 10 <211> 298 <212> DNA <213> Artificial Sequence <220> <223> E2-paralogue gene fragment (sense) <400> 10 caactccaag atgggctgtt gccaatggtg ctggtgttat attgagtgtt tgtgatgatg 60 aagttgctcg caatgagact actactttaa cagcagctgc tgtccctgca cttttgcttc 120 ctcctccaac gacagctttg gatgagcatc ttgttgctgg attaccagct ctggaaccat 180 atgctcgttt atttcataga tattatgcaa ttgctactcc aagtgctaca caaagacttc 240 ttcttggact tcttgaagca cccccatcgt gggctccaga tgcacttgat gctgctgt 298 <210> 11 <211> 298 <212> DNA <213> Artificial Sequence <220> <223> E2-paralogue gene fragment (antisense) <400> 11 acagcagcat caagtgcatc tggagcccac gatgggggtg cttcaagaag tccaagaaga 60 agtctttgtg tagcacttgg agtagcaatt gcataatatc tatgaaataa acgagcatat 120 ggttccagag ctggtaatcc agcaacaaga tgctcatcca aagctgtcgt tggaggagga 180 agcaaaagtg cagggacagc agctgctgtt aaagtagtag tctcattgcg agcaacttca 240 tcatcacaaa cactcaatat aacaccagca ccattggcaa cagcccatct tggagttg 298 <210> 12 <211> 216 <212> DNA <213> Artificial Sequence <220> <223> E4-paralogue gene fragment (sense) <400> 12 gctagaatgg ctcaggcaac tgtagatgca aaaatccatg caacttttga ggagtccggt 60 agttcctttg attactccag ttcggtgcgc gtctctggta cagctgatgg agtcaatcaa 120 ccaaggtctg acaaagttac aacagcttac ctcaatcaca tgcagagagg caagatgatt 180 cagccttttg gttgcttgtt ggccattgat gagaaa 216 <210> 13 <211> 216 <212> DNA <213> Artificial Sequence <220> <223> E4-paralogue gene fragment (antisense) <400> 13 tttctcatca atggccaaca agcaaccaaa aggctgaatc attttgcctc tctgcatgtg 60 attgaggtaa gctgttgtaa ctttgtcaga ccttggttga ttgactccat cagctgtacc 120 agagacgcgc accgaactgg agtaatcaaa ggaactaccg gactcctcaa aagttgcatg 180 gatttttgca tctacagttg cctgagccat tctagc 216 <210> 14 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> forward primer for SEQ ID NO: 3 <400> 14 aaatgtacat ccatcattca aggctttcc 29 <210> 15 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for SEQ ID NO: 3 <400> 15 aaatgtacagt ttccatccat tgaccatcc 29 <210> 16 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> forward primer for E2 <400> 16 aaatgtacag gcggacatct gttgtacct 29 <210> 17 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for E2 <400> 17 aaatgtacag cttgtgccat agcagtgaa 29 <210> 18 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> forward primer for E3 <400> 18 aaatgtacac tcggatcttg acagcatca 29 <210> 19 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for E3 <400> 19 aaatgtacac aacctgacct ccagttggt 29 <210> 20 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> forward primer for E4 <400> 20 aaatgtacac atgcagaaag gcaagatga 29 <210> 21 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for E4 <400> 21 aaatgtacat aaaagggctt cccagaggt 29 <210> 22 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> forward primer for E2-paralogue <400> 22 aaatgtacac aactccaaga tgggctgtt 29 <210> 23 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for E2-paralogue <400> 23 aaatgtacaa cagcagcatc aagtgcatc 29 <210> 24 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> forward primer for E4-paralogue <400> 24 aaatgtacag ctagaatggc tcaggcaac 29 <210> 25 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for E4-paralogue <400> 25 aaatgtacat ttctcatcaa tggccaaca 29 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > qRT-PCR forward primer for SEQ ID NO: 3 <400> 26 ttgctgaggt gaaaaggcca 20 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > qRT-PCR reverse primer for SEQ ID NO: 3 <400> 27 atatctttgg aagttattct 20 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> QRT-PCR forward primer for E2 <400> 28 agaaaatcaa aatacctagc 20 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> QRT-PCR reverse primer for E2 <400> 29 tccgaatagg tgcatgaatt 20 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> QRT-PCR forward primer for E3 <400> 30 ggaaagcatt tactcacact 20 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> QRT-PCR reverse primer for E3 <400> 31 tcccaactca gtaccctcta 20 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> QRT-PCR forward primer for E4 <400> 32 cagcaggtgc cttgcaatct 20 <210> 33 <211> 20 <212> DNA <213> Artificial Sequence <220> QRT-PCR reverse primer for E4 <400> 33 gttactccta atctccatac 20 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> QRT-PCR forward primer for E2-paralogue <400> 34 ttcctagaaa ttggatgcat 20 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> QRT-PCR reverse primer for E2-paralogue <400> 35 cagatgtttg taagtcctca 20 <210> 36 <211> 20 <212> DNA <213> Artificial Sequence <220> QRT-PCR forward primer for E4-paralogue <400> 36 gttggtgacc accctgccct 20 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> QRT-PCR reverse primer for E4-paralogue <400> 37 ataccttaga ggaaagggaa 20

Claims (7)

프로모터 및 전장 (full length) SYCMV (soybean yellow commom mosaic virus) 핵산 서열을 포함하고, 상기 전장 SYCMV 서열 중 외피 단백질 코딩 유전자의 3'-말단에 서열번호 1 또는 2의 염기서열이 삽입된 재조합 VIGS(virus-induced gene silencing) 벡터.(SEQ ID NO: 1 or 2) inserted at the 3'-end of the envelope protein coding gene of the full-length SYCMV sequence, and a recombinant VIGS (SEQ ID NO: virus-induced gene silencing vector. 제1항의 재조합 VIGS 벡터를 식물세포에 형질전환시켜 식물체의 목표 유전자인 서열번호 3의 염기서열로 이루어진 유전자의 발현을 억제하는 단계를 포함하는 식물체의 개화기 또는 성숙기를 촉진하는 방법.A method for promoting the flowering or maturing stage of a plant, comprising the step of transforming the recombinant VIGS vector of claim 1 into a plant cell to inhibit the expression of the gene consisting of the nucleotide sequence of SEQ ID NO: 3 which is the target gene of the plant. 제1항의 재조합 VIGS 벡터를 식물세포에 형질전환시키는 단계를 포함하는 개화기 또는 성숙기가 촉진된 형질전환 식물체의 제조방법.A method for producing a transgenic or mature stage promoted transgenic plant comprising transforming a plant cell with the recombinant VIGS vector of claim 1. 제3항의 제조방법에 의해 제조된 개화기 또는 성숙기가 촉진된 형질전환 식물체.A transgenic plant or a mature stage promoted plant produced by the method of claim 3. 제4항에 있어서, 상기 식물체는 만생종 품종인 것을 특징으로 하는 형질전환 식물체.5. The transgenic plant according to claim 4, wherein the plant is a benthic species. 제5항에 있어서, 상기 만생종 품종은 콩인 것을 특징으로 하는 형질전환 식물체.6. The transgenic plant according to claim 5, wherein the benthic varieties are soybeans. 제4항에 따른 식물체의 형질전환된 종자.A transformed seed of a plant according to claim 4.
KR1020160081052A 2016-06-28 2016-06-28 Novel gene promoting early flowering or maturity in plant and use thereof KR101784162B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160081052A KR101784162B1 (en) 2016-06-28 2016-06-28 Novel gene promoting early flowering or maturity in plant and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160081052A KR101784162B1 (en) 2016-06-28 2016-06-28 Novel gene promoting early flowering or maturity in plant and use thereof

Publications (1)

Publication Number Publication Date
KR101784162B1 true KR101784162B1 (en) 2017-10-13

Family

ID=60139365

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160081052A KR101784162B1 (en) 2016-06-28 2016-06-28 Novel gene promoting early flowering or maturity in plant and use thereof

Country Status (1)

Country Link
KR (1) KR101784162B1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GenBank Accession Number XM_006604710 (2015.11.25.)

Similar Documents

Publication Publication Date Title
CN105753953B (en) Disease-resistant wheat albumen and encoding gene and its application in regulation disease resistance of plant
CN105624188B (en) A kind of SPL18 gene is improving the application in plant products
CN109111514A (en) And the breeding method and its relevant biological material of the transgenic wheat of anti-banded sclerotial blight and root rot
CN109423492B (en) Application of SlTOE1 gene in regulation and control of flowering time and yield of tomatoes
CN103819549B (en) A kind of rice protein and encoding gene application in regulation and control plant drought resistance thereof
WO2021243528A1 (en) Use of drw1 protein in regulation and control of plant height and seed size of rice
KR101554678B1 (en) Gene delivery system for transformation of plant using plant virus and uses thereof
CN110468118B (en) Chimonanthus nitens SUMO E3 ligase gene CpSIZ1 and application thereof
WO2020093128A1 (en) Method for producing castor oil plant seeds lacking ricin/rca, castor oil plants lacking ricin/rca, method for identifying castor oil plants lacking ricin/rca, polynucleotides, constructs and uses thereof
CN115772212A (en) Alfalfa chloroplast MsSAP22 gene and application thereof in improving drought resistance of plants
KR101784162B1 (en) Novel gene promoting early flowering or maturity in plant and use thereof
CN110627887B (en) Application of SlTLFP8 protein and related biological material thereof in regulation and control of tomato drought resistance
CN111909937B (en) Rice drought-tolerant gene OsUGT55 and application thereof
CN105175519B (en) Applications of the Protein S RL2 in cultivating leaf roll Qushui River rice
CN103665129B (en) One kind of plant associated protein TaMYB72 at heading stage and application thereof
WO2007061146A1 (en) A method for producing chinese cabbage transformant using tissues of flower stalk and a transformant with promoted soft rot resistance obtained from the method
JP2010142156A (en) Ospip1;3 gene-introduced cold-resistant rice
CN107739403B (en) Protein related to plant flowering phase and coding gene and application thereof
KR101724370B1 (en) TRSV recombinant vector and uses thereof
EP2363465A1 (en) Transgenic plant of which seed has enlarged size
CN116640200B (en) Application of MfERF086 gene in alfalfa growth and development and/or cold resistance regulation
CN112725353B (en) Recombinant vector, transformant, primer for amplifying AtNAC58 gene and preparation method and application thereof
CN115807010B (en) Honeysuckle leaf glandular hair-growing gene and application thereof
KR102081963B1 (en) Promoter specific for plant seed embryo and uses thereof
CN116789785B (en) High-yield and high-light-efficiency gene FarL a of long stamen wild rice and application thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant