WO2020093128A1 - Method for producing castor oil plant seeds lacking ricin/rca, castor oil plants lacking ricin/rca, method for identifying castor oil plants lacking ricin/rca, polynucleotides, constructs and uses thereof - Google Patents

Method for producing castor oil plant seeds lacking ricin/rca, castor oil plants lacking ricin/rca, method for identifying castor oil plants lacking ricin/rca, polynucleotides, constructs and uses thereof Download PDF

Info

Publication number
WO2020093128A1
WO2020093128A1 PCT/BR2019/050480 BR2019050480W WO2020093128A1 WO 2020093128 A1 WO2020093128 A1 WO 2020093128A1 BR 2019050480 W BR2019050480 W BR 2019050480W WO 2020093128 A1 WO2020093128 A1 WO 2020093128A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
nucleic acid
ricin
castor
plant
Prior art date
Application number
PCT/BR2019/050480
Other languages
French (fr)
Portuguese (pt)
Inventor
Francisco José LIMA ARAGÃO
Glaucia BARBOSA CABRAL
Aisy BOTEGA BALDONI TARDIN
Natalia LIMA DE SOUSA
Original Assignee
Empresa Brasileira De Pesquisa Agropecuária - Embrapa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Empresa Brasileira De Pesquisa Agropecuária - Embrapa filed Critical Empresa Brasileira De Pesquisa Agropecuária - Embrapa
Priority to US17/292,307 priority Critical patent/US20210395764A1/en
Publication of WO2020093128A1 publication Critical patent/WO2020093128A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/04Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection
    • A01H1/045Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection using molecular markers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • A23K10/37Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms from waste material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8251Amino acid content, e.g. synthetic storage proteins, altering amino acid biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae

Definitions

  • the present invention is related to the field of plant biotechnology and molecular biology. More specifically, the present invention relates to a method for obtaining castor plants without the presence of ricin / RCA protein by inserting gene constructs in plant cells, particularly castor, resulting in the production of castor seeds without the protein ricin / RCA. Another aspect of the invention is in obtaining castor plants, and parts of it, containing said gene construction. In addition, the transformed plant identification method and the transformed plant identification kit are provided.
  • Castor bean (Ricinus communis) is an oilseed belonging to the Euphorbiaceae Family with worldwide distribution, but more cultivated in tropical and subtropical regions. The most important product of this crop is castor oil, which makes up 45-55% of the seed weight.
  • castor oil and derivatives are the manufacture of nylon, the production of synthetic resins and fibers, plastics, oilcloths and artificial leather (Grand View Research, 2016.
  • Castor oil can also be used in the synthesis of renewable monomers and polymers; in the production of soap, waxes, lubricants, hydraulic and brake fluids; in coatings and paints; and is still important in the cosmetics, pharmaceutical and food industries (Grand View Research (2016) Castor Oil And Derivatives Market Analysis By Product (Sebacic Acid, Ricinoleic Acid, Undecylenic Acid, Castor Wax, Dehydrated Castor Oil), By Application (Lubricants , Surface Coatings, Biodiesel, Cosmetics & Pharmaceuticals, Plastics & Resins) And Segment Forecasts To 2024. Retrieved on 13 June 2018 from https://www.officeresearch.com/industry-analysis/castor-oil-derivatives- industry).
  • castor oil In cosmetics, castor oil is used as an emollient and in perfumery; in the food sector, it is used in sweets as release and nonstick agents (FDA, 1984); and in the pharmaceutical industry, castor oil has laxative properties and is also used as a drug delivery vehicle, as well as an excipient and additive.
  • Castor cake After the extraction of castor oil, the cake remains, which is the most important by-product of the crop.
  • Castor cake can be used as a fertilizer for both conventional and organic farming (MELLO, Gabriel Alves Botelho de et al. Organic cultivation of onion under castor cake fertilization and irrigation depths. Acta Sei., Agron., Maringá, v. 40, e34993, 2018. Epub Feb 05, 2018.
  • Castor cake could also be used in animal feed if not for its high toxicity. Such toxicity occurs mainly due to the presence of ricin (RCA60), a highly toxic protein, but with low hemagglutination potential. In addition, some compounds with low toxicity are present: ricinin, CB-1A and RCA120 complex (Severino LS, 2005. What we know about castor bean cake. Documents, 134. Embrapa Cotton, Campina Grande, PB; Barnes DJ, Baldwin BS, Braasch DA, 2009. Ricin accumulation and degradation during castor seed development and late germination.Ind Crops Prod 30: 254-258; Bozza WP, Tolleson WH, Rosado LAR, Zhanga B, 2015.
  • Post-transcriptional gene silencing refers to the transactivation of homologous genes due to RNA degradation.
  • PTGS induction works exist with single-copy inserts, the presence of inverted repetitions and multiple copies of the transgenes are typically associated with silencing (as mentioned in patent application US20030135888, Jorgensen et al, Plant Mol. Biol., 31: 957 (1996)).
  • PTGS with dsRNA formation involves a construct containing a nucleic acid sequence, or fragment thereof, whose orientation towards the promoter is in the opposite direction, resulting in the formation of an antisense mRNA.
  • This antisense mRNA when transcribed inside the organism's cell, will complementarily bind to an endogenous mRNA molecule leading to the formation of a double-stranded mRNA molecule that will trigger a process involving several enzymes to amplify the response resulting in gene silencing specific for mRNA, that is, in the reduction or absence of the protein encoded by that gene (US5107065, US20030135888, US20040216190).
  • a form derived from antisense technology is the insertion of gene constructs into organisms containing nucleic acid sequences in sense and antisense orientation separated by a spacer sequence, such as introns, which will lead to the formation of a clamp-like structure.
  • double-stranded mRNA dsRNA
  • This technology also called interfering RNA, proved to be much more efficient than just inserting the nucleic acid molecule in the antisense orientation, since the mRNA molecule does not need to find the complementary molecule.
  • RNA interference has shown that it is possible to obtain plants with undetectable or absent levels of transcription (Wesley SV, Heliwell CA, Smith NA, Wang M, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D , Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG & Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants, The Plant Journal. 27: 581 -590, W09953050, US20030175783,
  • the present invention brings a novelty with great industrial application, which is the production of castor plants without the toxin ricin / RCA, obtained through post-transcriptional gene silencing of ricin genes.
  • the present invention relates to a method for obtaining castor plants without ricin / RCA through the insertion of gene constructs in plant cells, particularly castor, resulting in the production of castor seeds without ricin / RCA.
  • a first embodiment of the invention is to provide synthetic polynucleotide molecules comprising a first region with nucleic acid sequence with at least 90% similarity to the sequence described in SEQ ID No 12 and a second region with the complement of the sequence of the first region.
  • a further embodiment of the invention provides a synthetic polynucleotide comprising a first region with a nucleic acid sequence as described in SEQ ID No 12, a second region with a nucleic acid sequence as described in SEQ ID No 13 and a spacer region between the first region and the second region with nucleic acid sequence according to the sequence described in SEQ ID No 5.
  • a gene construct comprising a synthetic polynucleotide comprising a first region with nucleic acid sequence with at least 90% similarity to the sequence described in SEQ ID No 12 and a second region with the complement of the first region sequence and a region of active gene promoter operationally linked to the synthetic polynucleotide.
  • a vector containing the aforementioned gene construct is also provided.
  • the present invention provides a vector comprising a gene promoter as described in SEQ ID No 4, a first coding region with a nucleic acid sequence as sequence described in SEQ ID No 12, a second coding region with nucleic acid sequence as described in SEQ ID No 13, a spacer region between the first region and the second region with nucleic acid sequence according to the sequence described in SEQ ID No.
  • a termination signal as described in SEQ ID NO 6 a marker gene comprising the promoter described in SEQ ID NO 7, a coding region described in SEQ ID NO 8 and a termination signal described in SEQ ID NO 9 and a gene selection method comprising the promoter described in SEQ ID NO 1, a coding region described in SEQ ID NO 2 and a termination signal described in SEQ ID NO 3.
  • the double-stranded ribonucleotide molecule produced by the expression of any of the aforementioned nucleotide molecules is provided.
  • a method for obtaining castor plants without ricin / RCA comprising the steps of: a. Insert any of the nucleic acid molecules mentioned above into plant castor cells;
  • the present invention also provides eukaryotic cell and plant comprising any of the nucleic acid molecules mentioned above.
  • the plant's seed is also provided.
  • Another embodiment concerns the method of identifying the genetically transformed plant and comprises the following steps:
  • The. forming a mixture comprising a biological sample containing castor DNA and a pair of primers capable of amplifying a specific nucleic acid molecule from a genetically modified castor plant without ricin / RCA;
  • ç. detect the presence of the specific amplified nucleic acid molecule of a genetically modified castor plant without ricin / RCA.
  • a castor nucleic acid molecule identification kit in biological sample comprising a nucleic acid primer pair selected from the following pairs SEQ ID NO 19 with SEQ ID NO 20, SEQ ID NO 21 with SEQ ID NO 22, SEQ ID NO 23 with SEQ ID NO 24 or SEQ ID NO 25 with SEQ ID NO 26.
  • the present invention also provides a method of obtaining a castor plant without ricin / RCA comprising the steps of:
  • step I crossing the castor plant containing a nucleic acid molecule from the TB14S-5D event with a second castor plant; II. obtain seeds from the crossing of step I;
  • the present invention provides castor seed oil extracted from transgenic seed and castor seed cake obtained by a process using transgenic seed.
  • FIG. 1 Schematic representation of the construction used for the transformation of castor.
  • Vector for biobalistics pRicRNAi composed of the transformation cassette, a fragment of the ricin (ric) gene in sense and antisense interspersed by an intron, under the control of the 35SCaMV promoter and OCS terminator, the ahas gene (AtAhas) and the directed gus gene promoter AtACT2.
  • Figure 2 Expression of the gus in the TB14S-5D event from a histochemical assay. Non-transgenic (NT) embryos do not show gus expression.
  • FIG. 3 The Southern blot assay shows the presence of transgenes representing Aricin (interference cassette) integrated into the genome in two plants of the TB14S-5D event while no signal is observed in non-transgenic (NT) plants.
  • Aricin interference cassette
  • FIG. 4 The Northern blot shows the presence of siRNAs (small RNAs) and the absence of ricin gene transcripts in the TB14S-5D (+) event. In contrast, siRNAs were not observed and transcripts of the ricin gene were present in NT plants or negative TB14S-5D (-) event segregants.
  • FIG. 5 Detection of ricin silencing in the TB14S-5D event.
  • An ELISA test was performed to detect and quantify ricin in seed endosperm from the TB14S-5D event. Ricin was detected in the endosperm of non-transgenic seeds and in negative segregating seeds. However, ricin cannot be detected in positive TB14S-5D event seeds.
  • FIG. 6 Figure 6 - RCA120 silencing can be seen in the hemagglutination test. Proteins from seeds of the TB14S-5D event did not agglutinate red blood cells, as occurred with negative control (PBS) forming a dot at the bottom of the plate, while non-transgenic seed (NT) proteins agglutinated red blood cells as occurred in the positive control (RCA120) forming a background diffuse.
  • PBS negative control
  • NT non-transgenic seed
  • FIG. 7 Figure 7 - PCR analysis showing the presence of fragments resulting from the amplification of a fragment corresponding to an interference cassette sequence (Aricin).
  • NT is a non-transgenic plant and
  • pRIcRNAi is the vector used in the genetic transformation of castor bean.
  • FIG. 8 Figure 8 - PCR analysis showing the presence of fragments resulting from the amplification of a fragment corresponding to SEQ ID NO 27, specific marker for the TB14S-5D event.
  • Figure 9 Schematic representation of the region amplified by the primers AHASCD2F (SEQ ID NO 25) and SOJAE1 R (SEQ ID NO 26), whose sequence is described in SEQ ID NO 27.
  • the present invention addresses the production of castor plants without the ricin / RCA toxin, obtained through post-transcriptional gene silencing of the ricin gene.
  • nucleic acid refers to a large molecule which can be single-stranded or double-stranded, composed of monomers (nucleotides) containing a sugar, a phosphate and a purine or pyrimidine base.
  • a “nucleic acid fragment” is a fraction of a given nucleic acid molecule.
  • “Complementarity” refers to the specific pairing of purine bases and pyrimidines that consist of nucleic acids: pairs of adenine with thymine and pairs of guanine with cytosine. So, the "complement" of a first nucleic acid fragment refers to the second nucleic acid fragment whose nucleotide sequence is complementary to the first nucleotide sequence.
  • nucleotide sequence refers to the sequences of nucleotide polymers, forming a strand of DNA or RNA, which can be single or double stranded, optionally synthetic, unnatural or with altered nucleotide bases capable of incorporation into DNA or RNA polymers.
  • oligomer refers to short sequences of nucleotides, usually up to 100 bases in length.
  • homology to the connection between the nucleotide sequences of two nucleic acid molecules or between the amino acid sequences of two protein molecules. Estimation of such homology is provided by hybridizing DNA-DNA or RNA-RNA under stringent conditions as defined in the prior art (as mentioned in US20030074685, Hames and Higgins, Ed. (1985) Nucleic Acid Hybridization, IRL Press , Oxford, UK); or by comparing sequence similarity between two nucleic acid or protein molecules (as mentioned in US20030074685, Needleman et al., J. Mol. Biol. (1970) 48: 443-453).
  • Gene refers to the nucleotide fragment that expresses a specific protein, including preceding (5 'untranslated region) and later (3' untranslated) regulatory sequences to the coding region.
  • “Native gene” refers to an isolated gene with its own regulatory sequence found in nature.
  • “Chimeric gene” refers to the gene that comprises coding, regulatory and heterogeneous sequences not found in nature.
  • “Endogenous gene” refers to the native gene normally found in its natural location in the genome and is not isolated.
  • An “exogenous gene” refers to a gene that is not normally found in the host organism, but which is introduced by gene transfer.
  • “Pseudogene” refers to a nucleotide sequence that does not encode a functional enzyme.
  • Coding sequence refers to the DNA sequence that encodes a specific protein and excludes the non-coding sequence.
  • An "interrupted coding sequence” means the sequence that acts as a separator (for example, one or more introns connected through junctions).
  • an "intron” or “spacer region” is a nucleotide sequence that is transcribed and is present in the pre mRNA, but is removed by cleavage and re-binding of mRNA within the cell generating a mature mRNA that can be translated into a protein.
  • introns include, but are not limited to, intron pdk, pdk2, intron catalase of castor, intron Delta 12 denaturation of cotton, Delta 12 denaturation of Arabidopsis, ubiquitin intron of corn, intron of SV40, introns of the ricin gene.
  • the present invention used the intron pdk (SEQ ID NO 5)
  • RNA transcript refers to the product resulting from transcription catalyzed by the RNA polymerase of a DNA sequence. When the RNA transcript is a perfect copy of the DNA sequence, it is referred to as a primary transcript or it can be an RNA sequence derived from a post-transcriptional process of the primary transcript and is then referred to as a mature transcript.
  • Messenger RNA ( mRNA) refers to RNA that is intron-free.”
  • RNA sense refers to an RNA transcript that includes mRNA.
  • Antisense RNA refers to an RNA transcript that is complementary to all parts of a primary transcript or mRNA and that can block the expression of a target gene by interfering with the processing, transport and / or translation of its primary transcript or mRNA.
  • the complementarity of an antisense RNA can be with any part of the specific gene transcript, i.e., 5 'untranslated sequence, 3' untranslated sequence, introns or coding sequence.
  • antisense RNA may contain regions of ribozyme sequences that increase the effectiveness of antisense RNA to block gene expression.
  • “Ribozyme” refers to catalytic RNA and includes specific endoribonuclease sequences.
  • DsRNA (double-stranded)” refers to the clamp structure formed between the sequence of the mRNA or sense RNA, the sequence of a spacer / intron region and the sequence of the antisense RNA.
  • similarity refers to fragments of nucleic acids in which changes in one or more nucleotide bases do not affect the ability of the nucleic acid fragment to mediate the alteration of gene expression by gene silencing through, for example, antisense technology, co-suppression or interference RNA (RNAi). Fragments of similar nucleic acids of the present invention can also be characterized by the percentage of similarity of their nucleotide sequences with the nucleotide sequences of the nucleic acid fragment described here (SEQ ID NO 12 and SEQ ID NO 13), as determined by common algorithms employed in the state of the art.
  • sequence alignment and the similarity percentage calculation of the present invention were performed using the DNAMAN for Windows Program (Lynnon Corporation, 2001), using sequences deposited at Gene Bank, through the integration of the Web browser.
  • sequences of the B chain without, however, in this case, with effect on the RCA / RCA120 (Ricinus communis agglutinin).
  • nucleotide sequence of the target gene in the sense orientation and a nucleotide sequence in the antisense orientation must be present in the DNA molecule, whether or not there is a spacer / intron region between the sense and antisense nucleotide sequences.
  • the mentioned nucleotide sequences can consist of about 19 nt to 470 nt or even about 1740 nucleotides or more, each having a substantial total sequence similarity of about 40% to 100%. The longer the sequence, the less stringency is required for substantial total similarity of the sequence.
  • Fragments containing at least 19 nucleotides should preferably have about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% of sequence identity when compared to the sequence reference, with the possibility of having about 2 distinct non-contiguous nucleotides.
  • Preferably fragments above 60 bp are used, more preferably fragments between 150 to 500 bp.
  • the dsRNA molecule can comprise one or more regions having substantial sequence similarity to regions with at least about 14 nucleotides consecutive sense nucleotides of the target gene, defined as the first region, and one or more regions having substantial sequence similarity for regions with about 15 consecutive nucleotides of the complement of the sense nucleotides of the target gene, defined as the second region, where these regions may have base pairs separating them from one another.
  • 461 nucleotide fragments (SEQ ID NO 12 and SEQ ID NO 13) of the castor bean ricin gene were used.
  • dsRNA double-stranded RNA
  • the invention relates to a synthetic polynucleotide comprising a first region with a nucleic acid sequence with similarity of at least 90, 95, 99 or 100% with the sequence described in SEQ ID No 12 and a second region with the complement of the sequence of the first region.
  • Such polynucleotide may have a spacer region between the first and the second region, and this spacer region may be an intron sequence selected from pdk intron (SEQ ID No 5), pdk2 intron, castor catalase intron, Delta 12 cotton desaturase intron, Delta 12 desaturase from Arabidopsis, ubiquitin corn intron, SV40 intron and ricin gene introns.
  • pdk intron SEQ ID No 5
  • pdk2 intron castor catalase intron
  • Delta 12 cotton desaturase intron Delta 12 desaturase from Arabidopsis
  • ubiquitin corn intron ubiquitin corn intron
  • SV40 intron ricin gene introns.
  • Promoter refers to the DNA sequence in a gene, usually located upstream of the coding sequence, which controls the expression of the coding sequence by promoting recognition by RNA polymerase and other factors required for the transcription itself.
  • promoters can also be used to transcribe dsRNA. Promoters may also contain DNA sequences that are involved in binding protein factors which control the effect of initiation of transcription in response to physiological or developmental conditions.
  • a gene construct comprising the polynucleotide characterized above and a region of active gene promoter operatively linked to said polynucleotide.
  • Such a promoter may be a promoter expressed in plants.
  • plant-expressed promoter means a DNA sequence that is capable of initiating and / or controlling transcription in a plant cell. This includes any promoter of plant origin; any promoter of non-plant origin which is capable of directing expression in a plant cell, for example promoters of viral or bacterial origin such as CaMV35S (as mentioned in patent application US20030175783, Hapster et al, 1988 Mol. Gen. Genet.
  • tissue-specific or organ-specific promoters including but not limited to seed-specific promoters (WO8903887), specific promoters of primordial organs (as mentioned in the application US20030175783, An et al., 1996 The Plant Cell 8, 15-30), stem-specific promoters (as mentioned in patent application US20030175783, Keller et al., 1988 EMBO J.
  • promoters leaf specific (as mentioned in patent application US20030175783, Hudspeth et al., 1989 Plant Mol Biol 12: 579-589), mesophilic specific promoters, root specific promoters (as mentioned in patent application US200301 75783, Keller et al., 1989 Genes Devei. 3: 1639-1646), tuber-specific promoters (as mentioned in patent application US20030175783, Keil et al., 1989 EMBO J.
  • the following promoters were preferably used: 1) Ahas gene promoter from Arabidopsis thaliana that directs the expression of the ahas gene (pAtAhas - SEQ ID NO 1); 2) CaMV35S constitutive promoter that directs the expression of the RNAi K7 to the Ricin fragment (pCaMV35S - SEQ ID NO 4) and 3) A constitutive promoter of the Actin 2 gene from Arabidopsis thaliana that directs the expression of the gus gene (pAtAct2 - SEQ ID NO 7).
  • the promoter may contain elements "enhancers".
  • An "enhancer” is a DNA sequence that can stimulate the activity of the promoter. It can be an innate element of the promoter or a heterologous element inserted to increase the level and / or tissue-specificity of a promoter.
  • the enhancer sequence of the Alfalfa mosaic virus (35SCaMV) was used.
  • tissue-specific or development-specific promoters are those that direct gene expression almost exclusively in specific tissues, such as leaves, roots, stems, flowers, fruits or seeds, or at specific stages of development in a tissue, as at the beginning or end of embryogenesis.
  • expression refers to the transcription and stable accumulation of RNA derived from the nucleic acid fragments of the invention which, together with the cell's protein production apparatus, results in altered levels of myo-inositol 1-phosphate synthase.
  • Interference inhibition refers to the production of dsRNA transcripts capable of preventing expression of the target protein.
  • Terminators are sequences that indicate to the RNA polymerase enzyme that it must stop RNA transcription.
  • the transcription / terminator termination signal of the present invention includes, but is not limited to, SV40 termination signal, HSV TK adenylation signal, Agrobacterium tumefasciens (nos) nopaline synthase gene termination signal, termination signal of the CaMV RNA 35S gene, termination signal from the virus that attacks the subterranean Trifolium (SCSV), termination signal from the trpC gene of Aspergillus nidulans, and the like.
  • terminal signals or “terminators” were preferably used: 1) Sequence of terminator of the Arabidopsis thaliana Ahas-3 'gene (SEQ ID NO 3); 2) Sequence of the ocs-3 'terminator that terminates the expression of the K7 of RNAi Ric (SEQ ID NO 6); and 3) Sequence of the nos-3 'terminator that terminates the transcription of the gus or uidA reporter gene (SEQ ID NO 9).
  • Appropriate regulatory sequences refer to nucleotide sequences in native or chimeric genes that are located above (5 'untranslated region), within, and / or below (3' untranslated region) of nucleic acid fragments of the invention, which control the expression of the nucleic acid fragments of the invention.
  • altered levels refer to the production of gene products in transgenic organisms in quantities or proportions that differ from those in normal or non-transgenic organisms.
  • the present invention also reports vectors / gene constructs, which include fragments of castor bean gene sequences in the sense and antisense orientation, and host cells, which are genetically engineered with vectors of the invention.
  • Transformation refers to the transfer of the exogenous gene into the genome of a host organism and its genetically stable inheritance.
  • Plants refer to photosynthetic organisms and eukaryotes.
  • the nucleic acids of the invention can be used to impart desired treatments to essentially any plant. So, the invention has use on several species of plants, including species of the genera Anacardium, Anona, Arachis, Artocarpus, Asparagus, Atropa, Avena, Brassica, Carica, Citrus, Citrullus, Capsicum, Carthamus, Cocos, Coffea, Cucumis, Cucurbita, Daucus, Elaeis, Fragaria, Glycine, Gossypium, Helianthus, Heterocallis, Hordeum, Hyoseyamus, Lactuca, Linum, Lolium, Lupinus, Lycopersicon, Malus, Manihot, Majorana, Medicago, Nicotiana, Olea, Oryza, Panieum, Pannesetum, Passes Phaseolus, Pistachia, Pisum, Pyrus, Pru
  • Another object of the present invention is to provide eukaryotic cells, and eukaryotic organisms containing dsRNA molecules of the invention, or containing the gene constructs capable of producing dsRNA molecules of the invention.
  • Such gene constructs can be stably integrated into the cell genome of eukaryotic organisms.
  • gene constructs may be provided in a DNA molecule capable of replicating autonomously in the cells of eukaryotic organisms, such as viral vectors.
  • a sequence of the origin of replication of the pKannibal Plasmid (SEQ ID NO 10) was used.
  • the chimeric gene or dsRNA may also be transiently arranged in the cells of eukaryotic organisms.
  • the gene constructs of the present invention also feature coding sequences for selection genes and marker genes to assist in the process of recovery from the transgenic event.
  • selection genes There are several merchant genes and selection genes that can be used in the present invention, such as, but not limited to: nptll, hpt, neo, bar, tabs, epsps.
  • the following were preferably used: 1) Sequence of the coding region of the Ahas gene from Arabidopsis thaliana (SEQ ID NO 2); 2) Sequence of the gus or uidA reporter gene (SEQ ID NO 8); and 3) Sequence of the ampicillin resistance gene of the plasmid of pKannibal (SEQ ID NO 11).
  • One embodiment of the invention concerns a plant transformation vector comprising:
  • Termination signal according to the sequence described in SEQ ID No 6;
  • Marker gene comprising the promoter described in SEQ ID NO 7, a coding region described in SEQ ID NO 8 and a termination signal described in SEQ ID NO 9;
  • Selection gene comprising the promoter described in SEQ ID NO 1, a coding region described in SEQ ID NO 2 and a termination signal described in SEQ ID NO 3.
  • the polynucleotides, gene constructs and vectors of the invention can be introduced into the genome of the desired host plant through a variety of conventional techniques. For example, it can be introduced directly into the genomic DNA of the plant cell using techniques such as electroporation and microinjection of plant cell protoplasts, or the construct can be introduced directly into the plant tissue using ballistic methods, such as bombardment of coated particles with DNA.
  • Microinjection techniques are known in the art and well described in scientific and patent literature. The introduction of gene constructs using polyethylene glycol precipitations is described in Paszkowski et al. Embo J. 3: 2717-2722, 1984 (as mentioned in patent application US20020152501). Electroporation techniques are described in From et al. Proc. Natl. Acad. Know. USA 82: 5824, 1985 (as mentioned in patent application US20020152501). Ballistic transformation techniques are described in Klein et al. Nature 327: 70-73, 1987 (as mentioned in patent application US20020152501).
  • the gene constructs can be combined with appropriate T-DNA flanking regions and introduced into a conventional host vector Agrobacterium tumefasciens.
  • the function of virulence of the host Agrobacterium tumefasciens will direct the insertion of the gene constructs and adjacent marker into the DNA of the plant cell when the cell is infected by the bacterium. Transformation techniques mediated by Agrobacterium tumefasciens, including disarmament and the use of binary vectors, are well described in the scientific literature (as mentioned in patent application US 20020152501, Horsch et al. Science 233: 496-498, 1984; and Fraley et al Proc. Natl. Acad. Sci. USA 80: 4803, 1983).
  • the biobalistic technique was preferably used.
  • genetically modified castor plants can be obtained by A. tumefaciens.
  • Transformed plant cells that are derived from any of the transformation techniques described above can be grown to regenerate an entire plant that has the transformed genotype and then the desired phenotype such as the absence or reduction of seed mass.
  • Such regeneration techniques rely on the manipulation of certain phytohormones in tissue culture growth medium, typically containing a biocidal and / or herbicidal marker, which must be introduced together with the desired nucleotide sequence. Plant regeneration from protoplast culture is described in Evans et al., Protoplasts Isolation and Culture, Handbook of Plant Cell Culture, pp. 124-176, MacMillilan Publishing Company, New York, 1983; and Binding, Regeneration of Plants, Plant Protoplasts, pp.
  • Regeneration can also be achieved through plant calluses, explants, organs, or part of it. Such regeneration techniques are generally described in Klee et al., Ann. Ver. Of Plant Phys. 38: 467-486, 1987 1985 (as mentioned in patent application US20020152501).
  • the present invention therefore relates to a method for obtaining castor plants without ricin / RCA characterized by comprising the stages of: The. Insert the nucleic acid molecule described in castor plant cells, which may be a polynucleotide, gene construct, vector or double-filament ribonucleotide, already defined;
  • dsRNA sequences i.e., double-stranded RNA molecules
  • the invention also relates to the use of the double-stranded ribonucleotide molecule of the present invention for suppressing the expression of the ricin / RCA gene.
  • a method of identifying castor bean plants without ricin / transgenic RCA comprising the steps of:
  • The. forming a mixture comprising a biological sample containing castor DNA and a pair of primers capable of amplifying a specific nucleic acid molecule from a genetically modified castor plant without ricin / RCA; B. reacting the mixture under conditions that allow the nucleic acid primer pair to amplify a specific nucleic acid molecule from a genetically modified castor plant without ricin / RCA;
  • C. detect the presence of the specific amplified nucleic acid molecule of a genetically modified castor plant without ricin / RCA.
  • Table 1 primer pairs used to identify castor plants genetically modified without ricin / RCA.
  • the invention is also accomplished through an identification kit of a nucleic acid molecule of the castor bean TB14S-5D event in a biological sample comprising a pair of nucleic acid primers selected from the following pairs SEQ ID NO 19 with SEQ ID NO 20, SEQ ID NO 21 with SEQ ID NO 22, SEQ ID NO 23 with SEQ ID NO 24 or 20 SEQ ID NO 25 with SEQ ID NO 26, which are capable of amplifying a nucleic acid molecule from the TB14S- event Castor 5D, this amplified molecule being the sequence shown in SEQ ID NO 27.
  • the present invention also provides a method of obtaining a castor plant without ricin / RCA, characterized by the steps of:
  • the present invention provides castor seed oil extracted from transgenic seeds of transformed plants comprising the nucleic acid molecules provided and castor seed cake obtained by a process that also uses said seeds.
  • the transformation cassette (Promoter 35SKaMV - fragment of ricin sense - intron - fragment of antisense ricin - OCS primer) was removed from the vector pKANNIBAL at the Notl site and inserted into the vector pAG1 (Aragon, FJ L, Sarokin, L., Vianna, GR , and Rech, EL 2000. Selection of transgenic meristematic cells using a herbicidal molecule results in the recovery of fertile transgenic soybean (Glycine max (L.) Merrill) plants at high frequency. Theor. Appl. Genet. 101: 1 -6.
  • gus gene b-glucuronidase - uidA
  • ahas gene as a selection gene, forming the pRICRNAi gene vector / construct.
  • Figure 1 SEQ ID NO 14
  • the expression of the gus reporter gene (SEQ ID NO 8) is regulated, in this construction, by the constitutive promoter of the Actin 2 gene from Arabidopsis thaliana (SEQ ID NO 7) and by the terminator nos-3 '(SEQ ID NO 9).
  • the ahas selection gene (SEQ ID NO 2) is regulated by the promoter of the Ahas gene from Arabidopsis thaliana and by the terminator of the Ahas-3 'gene from Arabidopsis thaliana (SEQ ID NO 3).
  • the seed coat was broken with pliers and the zygotic embryos were removed with tweezers and left in water to avoid dehydration.
  • the embryos were washed three times with autoclaved distilled water, disinfected in 0.5% sodium hypochlorite for 10 minutes and washed five times with autoclaved distilled water, then the excess water was removed and the embryos were placed in an initial induction medium ( Mil) containing MS (Murashige and Skoog basal medium - Sigma M5519) plus casein 300 mg.L-1, thiamine 100 mg.L-1, sucrose 3%, indole-butyric acid (AIB) 0.05 mg.L- 1, thidiazuron (TDZ) 0.5 mg.L-1, agar 1, 4% and pH 4.0, in which they remained for 48 hours in an oven at 28 ° C in the dark.
  • Mil initial induction medium
  • MS Merashige and Skoog basal medium - Sigma M5519
  • casein 300 mg.
  • transgenic meristematic cells using a herbicidal molecule results in the recovery of fertile transgenic soybean (Glycine max (L.) Merrill) plants at high frequency, Theor, Appl, Genet, 101: 1-6).
  • Glycine max (L.) Merrill fertile transgenic soybean
  • the second bottleneck in the process was the in vitro rooting of transgenic shoots, which was induced, making it possible to obtain an entire GM plant with transfer of the transgenes to their offspring.
  • the embryos were transferred again to the Mil medium where they remained for 24 hours and then they were transferred to the MIS induction and selection medium containing MS (Murashige and Skoog basal medium - Sigma M5519) plus inositol 100 mg.L ⁇ 1 , casein 300 mg.L ⁇ 1 , thiamine 100 mg.L ⁇ 1 , sucrose 3%, AIB 0.05 mg.L 1 , TDZ 0.5 mg.L 1 , imazapyr 150 nM , 1, 4% agar and pH 4.0 where they remained for seven days.
  • MMM multibrotation and selection maintenance
  • sprouts were separated and transferred to sprout elongation medium (MAB) containing MS (Murashige and Skoog basal medium - Sigma M5519) plus inositol 100 mg.L ⁇ 1 , casein 300 mg.L ⁇ 1 , thiamine 100 mg.L ⁇ 1 , sucrose 3%, AIB 1 mg.L ⁇ 1 , gibberellic acid (GA3) 1 mg.L ⁇ 1 , 5 mM silver nitrate, 200 nM imazapyr, 1% 4 agar and pH 4, 0, and maintained, with peaks every 15 days, until the appearance of well-structured and elongated explants of about 2-3 cm which were transferred to rooting medium ME containing MS (Murashige and Skoog basal medium - Sigma M5519) plus inositol 100 mg.L ⁇ 1 , casein 300 mg.L ⁇ 1 , thiamine 100 mg.L ⁇ 1 , sucrose 3%, AIB 2 mg.
  • MAB
  • Seedlings of about 3-4 cm and with roots were acclimatized in a greenhouse in 700 ml cups containing soil and vermiculite (1: 1) with a plastic bag to maintain an age. After being acclimatized, the plants were transferred to an 8 L pot containing soil.
  • the embryos were transferred again to the Mil medium where they remained for 24 hours and then they were transferred to the MIS induction and selection medium containing MS (Murashige and Skoog basal medium - Sigma M5519) plus inositol 100 mg.L-1, casein 300 mg.L-1, thiamine 100 mg.L-1, sucrose 3%, AIB 0.05 mg.L-1, TDZ 0.5 mg.L-1, imazapyr 150 nM, agar 1, 4% and pH 4.0 where they remained for seven days.
  • MMM multibrotation and selection maintenance
  • sprouts were separated and transferred to sprout elongation medium (MAB) containing MS (Murashige and Skoog basal medium - Sigma M5519) plus inositol 100 mg.L-1, casein 300 mg.L-1, thiamine 100 mg.L-1, sucrose 3%, AIB 1 mg.L-1, gibberellic acid (GA3) 1 mg.L-1, 5 mM silver nitrate, 200 nM imazapyr, agar 1, 4% and pH 4, 0, and maintained, with peaks every 15 days, until the appearance of well-structured and elongated explants of about 2-3 cm which were transferred to rooting medium ME containing MS (Murashige and Skoog basal medium - Sigma M5519) plus inositol 100 mg.L-1, casein 300 mg.L-1, thiamine 100 mg.L-1, sucrose 3%, AIB 2 mg.L-1, gibberellic acid (GA3) 0.5 mg.L-1, 5 pM silver
  • Seedlings about 3-4 cm and with roots were acclimatized at home of vegetation in 700 ml_ cups containing red latosol and vermiculite (1: 1) with a plastic bag to maintain moisture. After being acclimatized, the plants were transferred to pots containing red latosol.
  • TB14S-5D event tissues can be used in a histochemical assay to identify the TB14S-5D event from the expression of the GUS protein on the x-gluc substrate according to (Jefferson, RA, Kavanagh, TA & Bevan, MW GUS fusions: b-glucuronidase as a sensitive and versatile gene fusion marker in higher plants (EMBO J. 6, 3901-3907, 1987).
  • Figure 2 shows that the transgenic plant has the construction containing the GUS gene while the control plant did not show expression of the GUS marker.
  • Figure 3 shows the results of Southern blot with the identification of transgenic events.
  • RNAi analyzes of T1 seed endosperm made it possible to identify Ricina / RCA mRNAs in non-GM plants, and to identify siRNAs in the endosperm of genetically modified T1 seeds.
  • Silence of ricin in the TB14S-5D event can be detected from RNA isolation and hybridization with a probe homologating the ricin region corresponding to a 148 bp fragment amplified using the Ric149RNAiF primer pair (SEQ ID NO 23 ) / RcRinf: (SEQ ID NO 24).
  • the methodology was carried out according to (Aragon, FJ L, Nogueira, EOP L, Tinoco, MLP & Faria, JC Molecular characterization of the first commercial transgenic common bean immune to the Bean golden mosaic virus. J. Biotechnol. 166, 42- 50; 10.1016 / j.jbiotec.2013.04.009, 2013).
  • Figure 4 shows the transgenic plants of the event identified via Northern blot.
  • Figure 5 shows the detection of ricin silencing in the TB14S-5D event. Ricin was detected in the endosperm of non-transgenic seeds and in negative segregating seeds. However, ricin could not be detected in positive seeds of the TB14S-5D event.
  • Silencing of RCA120 in the TB14S-5D event can be detected from a red blood cell hemagglutination assay from the extraction of total proteins from the TB14S-5D event and addition in a serially diluted blood solution, which can be red blood cell hemagglutination was observed.
  • Ricin is a lectin that has been described as weak hemagglutinin, while RCA120 has a strong hemagglutination activity. Therefore, we performed a hemagglutination test with total proteins isolated from the endosperm of transgenic and non-transgenic castor seeds. We observed strong hemagglutination when proteins isolated from non-transgenic seeds were used at a concentration of 2.5 pg / pL of total protein, and it was evident up to a concentration of 19 ng / pL of total protein. In contrast, no hemagglutination activity was visible with proteins isolated from transgenic seeds, even at the highest protein concentration. (approximately 131 times more concentrated).
  • agglutination activity was not observed in ox blood cells incubated with PBS (white), while the purified RCA120 showed strong hemagglutination activity even at a concentration of 0.39 ng / pL.
  • the proteins ricin and RCA120 were not detected in the endosperm of T1 seeds of the TB14S-5D strain, confirming the efficient silencing of Ricina and RCA120.
  • Figure 6 shows the result of a hemagglutination assay done with seed proteins from the TB14S-5D event and a control showing that seed proteins from the TB14S-5D event did not agglutinate red blood cells, as occurred with negative control (PBS) forming a point at the bottom of the plate, while non-transgenic seed proteins agglutinated red blood cells as occurred in the positive control (RCA120) forming a diffuse background.
  • PBS negative control
  • RCA120 positive control
  • Figures 7 and 8 show that the event's transgenic plants were detected with the primers used. In Figure 8, it is possible to observe the presence of the 396 bp band referring to SEQ ID NO 27, which is a specific marker for the TB14S-5D event.
  • SEQ ID NO 27 is a specific marker for the TB14S-5D event.
  • Rat gut epithelial cells (IEC-6) were incubated for 24 h with total proteins isolated from transgenic and non-transgenic seed endosperm. The viability of cells exposed to proteins isolated from non-GM plants containing 1 or 10 ng ricin / mL was reduced to 53% and 16%, respectively. However, cells exposed to the equivalent amount of transgenic seed proteins maintained their viability at 97% (at 0.5 pg total protein / m L), and at 78% at the highest protein concentration (50 pg total protein / m L ).
  • Rats (Swiss Webster) were treated via intraperitoneal administration with castor seed endosperm to measure ricin toxicosis in the lethal challenge test.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Botany (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mycology (AREA)
  • Polymers & Plastics (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Virology (AREA)
  • Animal Husbandry (AREA)
  • Food Science & Technology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a method for producing castor oil plants lacking ricin/RCA protein by inserting gene constructs in plant cells, particularly castor oil plant cells, resulting in the production of castor oil plant seeds lacking ricin/RCA. One aspect of the invention relates to providing castor oil plants, and parts thereof, containing said gene construct. The method of the present invention has proven to be effective in generating castor oil plants lacking ricin protein, or with a low expression level of said protein, allowing use of the seeds from the castor oil plant for producing detoxified cakes, for use in animal feed or fertilizers, as well as allowing production thereof in countries with restrictions due to the toxicity of ricin. Thus, a method and kit for identifying transformed plants containing the gene constructs provided herein are also provided.

Description

MÉTODO PARA OBTENÇÃO DE SEMENTES DE MAMONEIRA SEM RICINA/RCA, PLANTAS DE MAMONA SEM RICINA/RCA, MÉTODO DE IDENTIFICAÇÃO DE PLANTAS DE MAMONA SEM RICINA/RCA, POLINUCLEOTÍDEOS, CONSTRUÇÕES, E USOS DAS MESMAS. CAMPO DA INVENÇÃO  METHOD FOR OBTAINING MAMMONINE SEEDS WITHOUT RICIN / RCA, MAMMONA PLANTS WITHOUT RICIN / RCA, METHOD OF IDENTIFYING MAMMONA PLANTS WITHOUT RICIN / RCA, POLYNUCLEOTIDES, CONSTRUCTIONS, AND USES OF THE SAME. FIELD OF THE INVENTION
[l] A presente invenção está relacionada ao campo da biotecnologia vegetal e biologia molecular. Mais especificamente, a presente invenção está relacionada a um método para obtenção de plantas de mamona sem a presença da proteína ricina/RCA por meio de inserção de construções gênicas em células vegetais, particularmente de mamona, resultando na produção de sementes de mamoneira sem a proteína ricina/RCA. Outro aspecto da invenção está em obter plantas de mamona, e partes da mesma, contendo a referida construção gênica. Adicionalmente, são providos método de identificação da planta transformada assim como kit de identificação da planta transformada. [l] The present invention is related to the field of plant biotechnology and molecular biology. More specifically, the present invention relates to a method for obtaining castor plants without the presence of ricin / RCA protein by inserting gene constructs in plant cells, particularly castor, resulting in the production of castor seeds without the protein ricin / RCA. Another aspect of the invention is in obtaining castor plants, and parts of it, containing said gene construction. In addition, the transformed plant identification method and the transformed plant identification kit are provided.
DESCRIÇÃO DO ESTADO DA TÉCNICA STATEMENT OF TECHNICAL STATUS
[2] A mamona ( Ricinus communis) é uma oleaginosa pertencente à Família Euphorbiaceae com distribuição mundial, porém mais cultivada em regiões tropicais e subtropicais. Essa cultura tem como produto de maior importância o óleo de rícino, que compõe de 45-55% do peso da semente. Dentre as principais aplicações industriais do óleo de mamona e derivados estão a fabricação de nylon, a produção de resinas sintéticas e fibras, plásticos, oleados e couro artificial (Grand View Research, 2016. Castor Oil And Derivatives Market Analysis By Product (Sebacic Acid, Ricinoleic Acid, Undecylenic Acid, Castor Wax, Dehydrated Castor Oil), By Application (Lubricants, Surface Coatings, Biodiesel, Cosmetics & Pharmaceuticals, Plastics& Resins) And Segment Forecasts To 2024. Recuperado em 13 junho 2018 de https://www.grandviewresearch.com/industry-analysis/castor- oil-derivatives-industry). O óleo de mamona também pode ser utilizado na síntese de monômeros e polímeros renováveis; na produção de sabão, ceras, lubrificantes, fluidos hidráulicos e de freio; em revestimentos e tintas; e tem importância ainda nas indústrias de cosméticos, farmacêutica e de alimentos (Grand View Research (2016) Castor Oil And Derivatives Market Analysis By Product (Sebacic Acid, Ricinoleic Acid, Undecylenic Acid, Castor Wax, Dehydrated Castor Oil), By Application (Lubricants, Surface Coatings, Biodiesel, Cosmetics & Pharmaceuticals, Plastics& Resins) And Segment Forecasts To 2024. Recuperado em 13 junho 2018 de https://www.grandviewresearch.com/industry-analysis/castor-oil-derivatives- industry). Na parte de cosméticos, o óleo de mamona é utilizado como emoliente e em perfumaria; no setor alimentício, é usado na parte de doces como agentes de liberação e antiaderente (FDA, 1984); e na indústria farmacêutica, o óleo de mamona tem propriedades laxativas e também é utilizado como veículo de entregas de drogas ( drug delivery vehicle), bem como excipiente e aditivo. [2] Castor bean (Ricinus communis) is an oilseed belonging to the Euphorbiaceae Family with worldwide distribution, but more cultivated in tropical and subtropical regions. The most important product of this crop is castor oil, which makes up 45-55% of the seed weight. Among the main industrial applications of castor oil and derivatives are the manufacture of nylon, the production of synthetic resins and fibers, plastics, oilcloths and artificial leather (Grand View Research, 2016. Castor Oil And Derivatives Market Analysis By Product (Sebacic Acid, Ricinoleic Acid, Undecylenic Acid, Castor Wax, Dehydrated Castor Oil), By Application (Lubricants, Surface Coatings, Biodiesel, Cosmetics & Pharmaceuticals, Plastics & Resins) And Segment Forecasts To 2024. Retrieved 13 June 2018 from https://www.grandviewresearch.com/industry-analysis/castor- oil-derivatives-industry). Castor oil can also be used in the synthesis of renewable monomers and polymers; in the production of soap, waxes, lubricants, hydraulic and brake fluids; in coatings and paints; and is still important in the cosmetics, pharmaceutical and food industries (Grand View Research (2016) Castor Oil And Derivatives Market Analysis By Product (Sebacic Acid, Ricinoleic Acid, Undecylenic Acid, Castor Wax, Dehydrated Castor Oil), By Application (Lubricants , Surface Coatings, Biodiesel, Cosmetics & Pharmaceuticals, Plastics & Resins) And Segment Forecasts To 2024. Retrieved on 13 June 2018 from https://www.grandviewresearch.com/industry-analysis/castor-oil-derivatives- industry). In cosmetics, castor oil is used as an emollient and in perfumery; in the food sector, it is used in sweets as release and nonstick agents (FDA, 1984); and in the pharmaceutical industry, castor oil has laxative properties and is also used as a drug delivery vehicle, as well as an excipient and additive.
[3] Após a extração do óleo da semente de mamona, resta a torta que é o subproduto de maior importância da cultura. A torta de mamona pode ser usada como fertilizante, tanto para agricultura convencional quanto para a agricultura orgânica (MELLO, Gabriel Alves Botelho de et al. Organic cultivation of onion under castor cake fertilization and irrigation depths. Acta Sei., Agron., Maringá , v. 40, e34993, 2018. Epub Feb 05, 2018. http://dx.doi.org/10.4025/actasciagron.v40i1 .34993), por ser uma importante fonte de nitrogénio, fósforo, potássio, além de micronutrientes (Lima, R.L.S., Severino, L.S., Sampaio, L.R., Sofiatti,V., Gomes, J.A., Beltrão, N.E.M., 201 1. Blends of castor meai and castor husks for optimized use as organic fertilizer. Ind. Crops Prod. 33, 364-368).  [3] After the extraction of castor oil, the cake remains, which is the most important by-product of the crop. Castor cake can be used as a fertilizer for both conventional and organic farming (MELLO, Gabriel Alves Botelho de et al. Organic cultivation of onion under castor cake fertilization and irrigation depths. Acta Sei., Agron., Maringá, v. 40, e34993, 2018. Epub Feb 05, 2018. http://dx.doi.org/10.4025/actasciagron.v40i1 .34993), as it is an important source of nitrogen, phosphorus, potassium, as well as micronutrients (Lima , RLS, Severino, LS, Sampaio, LR, Sofiatti, V., Gomes, JA, Beltrão, NEM, 201 1. Blends of castor meai and castor husks for optimized use as organic fertilizer. Ind. Crops Prod. 33, 364- 368).
[4] A torta de mamona também poderia ser utilizada na alimentação animal se não pela sua alta toxicidade. Tal toxicidade ocorre principalmente devido à presença da ricina (RCA60), uma proteína altamente tóxica, mas com baixo potencial de hemaglutinação. Além disso, estão presentes alguns compostos de baixa toxidez: a ricinina, complexo CB-1A e RCA120 (Severino LS, 2005. O que sabemos sobre a torta de mamona. Documentos, 134. Embrapa Algodão, Campina Grande, PB; Barnes DJ, Baldwin BS, Braasch DA, 2009. Ricin accumulation and degradation during castor seed development and late germination. Ind Crops Prod 30:254-258; Bozza WP, Tolleson WH, Rosado LAR, Zhanga B, 2015. Ricin detection: Tracking active toxin. Biotechnol Adv 33: 1 17-123). A presença de ricina pode causar a inativação dos ribossomos, organelas celulares, podendo causar a morte de animais, incluindo seres humanos. As doses letais para animais variam de[4] Castor cake could also be used in animal feed if not for its high toxicity. Such toxicity occurs mainly due to the presence of ricin (RCA60), a highly toxic protein, but with low hemagglutination potential. In addition, some compounds with low toxicity are present: ricinin, CB-1A and RCA120 complex (Severino LS, 2005. What we know about castor bean cake. Documents, 134. Embrapa Cotton, Campina Grande, PB; Barnes DJ, Baldwin BS, Braasch DA, 2009. Ricin accumulation and degradation during castor seed development and late germination.Ind Crops Prod 30: 254-258; Bozza WP, Tolleson WH, Rosado LAR, Zhanga B, 2015. Ricin detection: Tracking active toxin. Biotechnol Adv 33: 11-17-123). The presence of ricin can cause inactivation of ribosomes, cellular organelles, which can cause the death of animals, including humans. Lethal doses for animals vary from
O, 1 g/kg para equinos até 2,3 g/kg para suínos (FONSECA; SOTO-BLANCO. Toxicitiy of ricin presente in castor bean seeds Semina: Ciências Agrárias, Londrina, v. 35, n. 3, p. 1415-1424. 2014). Para humanos, a ingestão de cinco sementes pode ser letal (OSNES, S. The history of ricin, abrin and related toxins. Toxicon, v.44, n.4, p.361 -370, 2004). Para a utilização da torta como ração animal é necessária sua detoxificação prévia, mas os métodos até então desenvolvidos geralmente são pouco eficientes e/ou economicamente inviáveis em grande escala (Severino LS, Auld DL, Baldanzi M, Cândido MJD, Chen G, Crosby W, Tan D, He X, Lakshmamma0.1 g / kg for horses up to 2.3 g / kg for pigs (FONSECA; SOTO-BLANCO. Toxicitiy of ricin present in castor bean seeds Semina: Ciências Agrárias, Londrina, v. 35, n. 3, p. 1415 -1424. 2014). For humans, the ingestion of five seeds can be lethal (OSNES, S. The history of ricin, abrin and related toxins. Toxicon, v.44, n.4, p.361 -370, 2004). To use the cake as animal feed, prior detoxification is necessary, but the methods previously developed are generally inefficient and / or economically unfeasible on a large scale (Severino LS, Auld DL, Baldanzi M, Cândido MJD, Chen G, Crosby W , Tan D, He X, Lakshmamma
P, Lavanya C, Machado OLT, Mielke T, Milani M, Miller TD, Morris JB, Morse SA, Navas AA, Soares DJ, Sofiatti V, Wang ML, Zanotto MD, Zieler H (2012) A review on the challenges for increased production of castor. Agron J 104:853-880.). P, Lavanya C, Machado OLT, Mielke T, Milani M, Miller TD, Morris JB, Morse SA, Navas AA, Soares DJ, Sofiatti V, Wang ML, Zanotto MD, Zieler H (2012) A review on the challenges for increased production of beaver. Agron J 104: 853-880.).
[5] Com relação aos documentos de patente relacionados ao desenvolvimento de plantas de mamona sem ricina, existem descritos no estado da técnica poucos documentos sobre o assunto, e nenhum visando à obtenção de plantas de mamona sem ricina por técnicas de biologia molecular. O que existe relatado são documentos visando a melhoria da produção do ácido ricinoleico, como no caso do documento de patente W0200070052, que diz respeito a um gene isolado a partir do DNA genômico de Ricinus communis e que codifica uma proteína capaz de interagir com a enzima oleato 12-hidroxilase. No entanto, quando analisamos documentos de patente visando à obtenção de plantas de mamona detoxificadas, encontramos mais tecnologias disponíveis, como é o caso de processos de detoxificação de sementes e torta de mamona (BR102015030887, CN103766598, CN103766599, CN103892145 e FR2940804). [5] Regarding the patent documents related to the development of castor plants without ricin, there are described in the state of the art few documents on the subject, and none aimed at obtaining castor plants without ricin by molecular biology techniques. What has been reported are documents aimed at improving the production of ricinoleic acid, as in the case of patent document W0200070052, which concerns a gene isolated from the genomic DNA of Ricinus communis and which encodes a protein capable of interact with the enzyme oleate 12-hydroxylase. However, when we analyze patent documents aiming to obtain detoxified castor plants, we find more technologies available, as is the case with seed detoxification processes and castor cake (BR102015030887, CN103766598, CN103766599, CN103892145 and FR2940804).
[6] Sabe-se que existem várias cópias do gene da ricina no genoma da mamona (Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, Melake- Berhan A, Jones KM, Redman J, Chen G, Cahoon EB, Gedil M, Stanke M, Haas BJ, Wortman JR, Fraser-Liggett CM, Ravel J, Rabinowicz PD (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28:951 -956) e a quantidade de ricina varia conforme a variedade (Baldoni AB, Araújo ACG, Carvalho MH, Gomes ACMM, Aragão FJL (2010) Immunolocalization of ricin accumulation during castor bean ( Ricinus communis L.) seed development. Int J Plant Biol 1 :61 -65.), mas não existe relato da existência de variedades da planta livres de ricina.  [6] Several copies of the ricin gene are known to exist in the castor bean genome (Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, Melake-Berhan A, Jones KM, Redman J, Chen G , Cahoon EB, Gedil M, Stanke M, Haas BJ, Wortman JR, Fraser-Liggett CM, Ravel J, Rabinowicz PD (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28: 951 -956) and the quantity of ricin varies according to variety (Baldoni AB, Araújo ACG, Carvalho MH, Gomes ACMM, Aragão FJL (2010) Immunolocalization of ricin accumulation during castor bean (Ricinus communis L.) seed development. Int J Plant Biol 1: 61 -65. ), but there is no report of the existence of ricin-free plant varieties.
[7] O silenciamento gênico pós-transcricional refere-se à transativação de genes homólogos devido à degradação de RNA. Embora existam trabalhos de indução de PTGS com insertos de simples-cópia, a presença de repetições invertidas e múltiplas cópias dos transgenes estão tipicamente associadas com silenciamento (como mencionado no pedido de patente US20030135888, Jorgensen et ai, Plant Mol. Biol., 31 :957 (1996)). Acredita- se que o pareamento ectópico DNA-DNA ou DNA-RNA ou a formação de transcritos antisense que dão origem a dsRNA (RNA dupla fita), resultem na formação de transcritos de RNA aberrantes (incluindo perda da poliadenilação do RNA, ou curta poliadenilação do RNA, geralmente como resultado da transcrição incompleta) que ativam o silenciamento (como mencionado no pedido de patente US20030135888, Baulcombe et al. Curr. Opin. Biotechnol., 7: 173 (1996); Depicker et al., Curr. Opin. Cell Biol., 9:373 (1997); Metzlaff et al., Cell, 88:845 (1997); Montgomery et al., Trends Genet., 14:255 (1998); Que et al., Dev. Genet., 22: 1 10 (1998); Stam et al., Mol Cell Biol. , 18: 6165 (1998); e Wassenegger et al., Plant Mol. Biol., 37:349 (1998)). 0 método mais simples de PTGS com a formação de dsRNA envolve uma construção contendo uma sequência de ácido nucleico, ou fragmento do mesmo, cuja orientação em relação ao promotor está no sentido contrário, resultando na formação de um mRNA antisense. Este mRNA antisense, quando transcrito no interior da célula do organismo, irá se ligar complementariamente a uma molécula de mRNA endógena levando à formação de uma molécula de mRNA dupla fita que irá desencadear um processo envolvendo várias enzimas para amplificar a resposta resultando no silenciamento do gene específico para o mRNA, ou seja, na redução ou ausência da proteína codificada por tal gene (US5107065, US20030135888, US20040216190). [7] Post-transcriptional gene silencing refers to the transactivation of homologous genes due to RNA degradation. Although PTGS induction works exist with single-copy inserts, the presence of inverted repetitions and multiple copies of the transgenes are typically associated with silencing (as mentioned in patent application US20030135888, Jorgensen et al, Plant Mol. Biol., 31: 957 (1996)). Ectopic DNA-DNA or DNA-RNA pairing or the formation of antisense transcripts that give rise to dsRNA (double-stranded RNA), results in the formation of aberrant RNA transcripts (including loss of RNA polyadenylation, or short polyadenylation) of RNA, usually as a result of incomplete transcription) that activate silencing (as mentioned in patent application US20030135888, Baulcombe et al. Curr. Opin. Biotechnol., 7: 173 (1996); Depicker et al., Curr. Opin. Cell Biol., 9: 373 (1997); Metzlaff et al., Cell, 88: 845 (1997); Montgomery et al., Trends Genet., 14: 255 (1998); Que et al., Dev. Genet. , 22: 1 10 (1998); Stam et al., Mol Cell Biol. , 18: 6165 (1998); and Wassenegger et al., Plant Mol. Biol., 37: 349 (1998)). The simplest method of PTGS with dsRNA formation involves a construct containing a nucleic acid sequence, or fragment thereof, whose orientation towards the promoter is in the opposite direction, resulting in the formation of an antisense mRNA. This antisense mRNA, when transcribed inside the organism's cell, will complementarily bind to an endogenous mRNA molecule leading to the formation of a double-stranded mRNA molecule that will trigger a process involving several enzymes to amplify the response resulting in gene silencing specific for mRNA, that is, in the reduction or absence of the protein encoded by that gene (US5107065, US20030135888, US20040216190).
[8] Uma forma derivada da tecnologia antisense é a inserção de construções gênicas no interior de organismos contendo sequências de ácidos nucléicos na orientação sense e antisense separadas por uma sequência espaçadora, como íntrons, o que levará à formação de uma estrutura em forma de grampo artificial de mRNA em dupla fita (dsRNA). Essa tecnologia, denominada também de RNA interferente, mostrou ser muito mais eficiente do que apenas a inserção da molécula de ácido nucléico na orientação antisense, uma vez que a molécula de mRNA não precisa encontrar a molécula complementar. A utilização da interferência de RNA (RNAi) mostrou ser possível a obtenção de plantas com níveis de transcrição indetectáveis ou ausentes (Wesley SV, Heliwell CA, Smith NA, Wang M, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG & Waterhouse PM (2001 ) Construct design for efficient, effective and high-throughput gene silencing in plants, The Plant Journal. 27: 581 -590, W09953050, US20030175783, [8] A form derived from antisense technology is the insertion of gene constructs into organisms containing nucleic acid sequences in sense and antisense orientation separated by a spacer sequence, such as introns, which will lead to the formation of a clamp-like structure. double-stranded mRNA (dsRNA). This technology, also called interfering RNA, proved to be much more efficient than just inserting the nucleic acid molecule in the antisense orientation, since the mRNA molecule does not need to find the complementary molecule. The use of RNA interference (RNAi) has shown that it is possible to obtain plants with undetectable or absent levels of transcription (Wesley SV, Heliwell CA, Smith NA, Wang M, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D , Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG & Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants, The Plant Journal. 27: 581 -590, W09953050, US20030175783,
US20030180945, US20050120415), mostrando-se uma metodologia eficaz no silenciamento de ricina em plantas. US20030180945, US20050120415), showing an effective methodology for silencing ricin in plants.
[9] Dessa forma, a presente invenção traz uma novidade com grande aplicação industrial que é a produção de plantas de mamona sem a toxina da ricina/RCA, obtidas por meio do silenciamento gênico pós-transcricional dos genes da ricina. [9] Thus, the present invention brings a novelty with great industrial application, which is the production of castor plants without the toxin ricin / RCA, obtained through post-transcriptional gene silencing of ricin genes.
SUMÁRIO DA INVENÇÃO SUMMARY OF THE INVENTION
[10] A presente invenção está relacionada a um método para obtenção de plantas de mamona sem ricina/RCA através da inserção de construções gênicas em células vegetais, particularmente de mamona, resultando na produção de sementes de mamoneira sem ricina/RCA. [10] The present invention relates to a method for obtaining castor plants without ricin / RCA through the insertion of gene constructs in plant cells, particularly castor, resulting in the production of castor seeds without ricin / RCA.
[11] Uma primeira concretização da invenção é prover moléculas de polinucleotídeo sintético compreendendo uma primeira região com sequência de ácidos nucléicos com similaridade de pelo menos 90% com a sequência descrita em SEQ ID No 12 e uma segunda região com o complemento da sequência da primeira região.  [11] A first embodiment of the invention is to provide synthetic polynucleotide molecules comprising a first region with nucleic acid sequence with at least 90% similarity to the sequence described in SEQ ID No 12 and a second region with the complement of the sequence of the first region.
[12] Uma concretização adicional da invenção provê um polinucleotídeo sintético compreendendo uma primeira região com sequência de ácidos nucléicos conforme sequência descrita em SEQ ID No 12, uma segunda região com sequência de ácidos nucléicos conforme sequência descrita em SEQ ID No 13 e uma região espaçadora entre a primeira região e a segunda região com sequência de ácidos nucléicos conforme a sequencia descrita em SEQ ID No 5.  [12] A further embodiment of the invention provides a synthetic polynucleotide comprising a first region with a nucleic acid sequence as described in SEQ ID No 12, a second region with a nucleic acid sequence as described in SEQ ID No 13 and a spacer region between the first region and the second region with nucleic acid sequence according to the sequence described in SEQ ID No 5.
[13] Também é fornecida uma construção gênica compreendendo um polinucleotídeo sintético compreendendo uma primeira região com sequência de ácidos nucléicos com similaridade de pelo menos 90% com a sequência descrita em SEQ ID No 12 e uma segunda região com o complemento da sequência da primeira região e uma região de promotor gênico ativo operacionalmente ligado ao polinucleotídeo sintético. Também é fornecido vetor contendo a referida construção gênica.  [13] A gene construct is also provided comprising a synthetic polynucleotide comprising a first region with nucleic acid sequence with at least 90% similarity to the sequence described in SEQ ID No 12 and a second region with the complement of the first region sequence and a region of active gene promoter operationally linked to the synthetic polynucleotide. A vector containing the aforementioned gene construct is also provided.
[14] Adicionalmente, a presente invenção provê um vetor compreendendo um promotor gênico conforme sequência descrita em SEQ ID No 4, uma primeira região codificante com sequência de ácidos nucléicos conforme sequência descrita em SEQ ID No 12, uma segunda região codificante com sequência de ácidos nucléicos conforme sequência descrita em SEQ ID No 13, uma região espaçadora entre a primeira região e a segunda região com sequência de ácidos nucléicos conforme a sequencia descrita em SEQ IDNo 5, um sinal de terminação conforme sequência descrita em SEQ ID No 6, um gene marcador compreendendo o promotor descrito na SEQ ID NO 7, uma região codificadora descrita na SEQ ID NO 8 e um sinal de terminação descrito na SEQ ID NO 9 e um gene de seleção compreendendo o promotor descrito na SEQ ID NO 1 , uma região codificadora descrita na SEQ ID NO 2 e um sinal de terminação descrito na SEQ ID NO 3. [14] Additionally, the present invention provides a vector comprising a gene promoter as described in SEQ ID No 4, a first coding region with a nucleic acid sequence as sequence described in SEQ ID No 12, a second coding region with nucleic acid sequence as described in SEQ ID No 13, a spacer region between the first region and the second region with nucleic acid sequence according to the sequence described in SEQ ID No. 5 , a termination signal as described in SEQ ID NO 6, a marker gene comprising the promoter described in SEQ ID NO 7, a coding region described in SEQ ID NO 8 and a termination signal described in SEQ ID NO 9 and a gene selection method comprising the promoter described in SEQ ID NO 1, a coding region described in SEQ ID NO 2 and a termination signal described in SEQ ID NO 3.
[15] Em outra concretização é fornecida a molécula de ribonucleotídeo de filamento duplo produzida pela expressão de qualquer uma das moléculas nucleotídicas mencionadas anteriormente.  [15] In another embodiment, the double-stranded ribonucleotide molecule produced by the expression of any of the aforementioned nucleotide molecules is provided.
[16] Também é provido, no presente documento, um método para obtenção de plantas de mamona sem ricina/RCA compreender as etapas de: a. Inserir em células vegetais de mamona qualquer das moléculas de ácido nucleico mencionadas anteriormente;  [16] A method for obtaining castor plants without ricin / RCA is also provided in this document, comprising the steps of: a. Insert any of the nucleic acid molecules mentioned above into plant castor cells;
b. Crescer ou regenerar as células em meios específicos;  B. Grow or regenerate cells in specific media;
c. Selecionar as plantas com o gene da ricina silenciado.  ç. Select plants with the mutated ricin gene.
[17] A presente invenção também fornece célula eucariótica e planta compreendendo qualquer uma das moléculas de ácido nucléico mencionadas anteriormente. A sementa da planta também é provida.  [17] The present invention also provides eukaryotic cell and plant comprising any of the nucleic acid molecules mentioned above. The plant's seed is also provided.
[18] Outra concretização diz respeito ao método de identificação da planta transformada geneticamente e compreende as seguintes etapas:  [18] Another embodiment concerns the method of identifying the genetically transformed plant and comprises the following steps:
a. formar uma mistura compreendendo uma amostra biológica contendo DNA de mamona e um par de primers capaz de amplificar uma molécula de ácido nucleico específica de uma planta de mamona geneticamente modificada sem ricina/RCA;  The. forming a mixture comprising a biological sample containing castor DNA and a pair of primers capable of amplifying a specific nucleic acid molecule from a genetically modified castor plant without ricin / RCA;
b. reagir a mistura sob condições que permitam que o par de primers de ácido nucleico amplifiquem uma molécula específica de ácido nucleico de uma planta de mamona geneticamente modificada sem ricina/RCA; B. reacting the mixture under conditions that allow the nucleic acid primer pair to amplify a specific molecule of nucleic acid from a genetically modified castor plant without ricin / RCA;
c. detectar a presença da molécula de ácido nucleico amplificada específica de uma planta de mamona geneticamente modificada sem ricina/RCA.  ç. detect the presence of the specific amplified nucleic acid molecule of a genetically modified castor plant without ricin / RCA.
[19] Também é fornecido um kit de identificação de molécula de ácido nucleico de mamona em amostra biológica compreendendo um par de primers de ácido nucleico selecionado dentre os seguintes pares SEQ ID NO 19 com SEQ ID NO 20, SEQ ID NO 21 com SEQ ID NO 22, SEQ ID NO 23 com SEQ ID NO 24 ou SEQ ID NO 25 com SEQ ID NO 26.  [19] A castor nucleic acid molecule identification kit in biological sample is also provided comprising a nucleic acid primer pair selected from the following pairs SEQ ID NO 19 with SEQ ID NO 20, SEQ ID NO 21 with SEQ ID NO 22, SEQ ID NO 23 with SEQ ID NO 24 or SEQ ID NO 25 with SEQ ID NO 26.
[20] A presente invenção também prevê um método de obtenção de uma planta de mamona sem ricina/RCA compreendendo as etapas de:  [20] The present invention also provides a method of obtaining a castor plant without ricin / RCA comprising the steps of:
I. cruzar a planta de mamona contendo uma molécula de ácido nucleico do evento TB14S-5D com uma segunda planta de mamona; II. obter sementes do cruzamento da etapa I;  I. crossing the castor plant containing a nucleic acid molecule from the TB14S-5D event with a second castor plant; II. obtain seeds from the crossing of step I;
III. obter amostra de DNA da semente; e  III. obtain sample of DNA from the seed; and
IV. detectar a presença da molécula de ácido nucleico do evento TB14S-5D de planta de mamona.  IV. detect the presence of the nucleic acid molecule of the castor bean plant TB14S-5D event.
[21] Por fim, a presente invenção provê óleo de semente de mamona extraído de semente transgênica e a torta da semente de mamona obtida por processo utilizando semente transgênica.  [21] Finally, the present invention provides castor seed oil extracted from transgenic seed and castor seed cake obtained by a process using transgenic seed.
BREVE DESCRIÇÃO DAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
[22] Figura 1 - Representação esquemática da construção utilizada para transformação da mamona. Vetor para biobalística pRicRNAi composto pelo cassete de transformação, um fragmento do gene da ricina (ric) em sentido senso e antissenso intercalado por um íntron, sob o controle do promotor 35SCaMV e terminador OCS, o gene ahas ( AtAhas ) e o gene gus dirigidos pelo promotor AtACT2. [23] Figura 2 - Expressão do gus no evento TB14S-5D a partir de ensaio histoquímico. Embriões não transgênicos (NT) não mostram expressão do gus. [22] Figure 1 - Schematic representation of the construction used for the transformation of castor. Vector for biobalistics pRicRNAi composed of the transformation cassette, a fragment of the ricin (ric) gene in sense and antisense interspersed by an intron, under the control of the 35SCaMV promoter and OCS terminator, the ahas gene (AtAhas) and the directed gus gene promoter AtACT2. [23] Figure 2 - Expression of the gus in the TB14S-5D event from a histochemical assay. Non-transgenic (NT) embryos do not show gus expression.
[24] Figura 3 - 0 ensaio de Southern blot mostra a presença de transgenes representando Aricin (cassete de interferência) integratedo no genoma em duas plantas do evento TB14S-5D enquanto não é observado sinal em plantas não transgênicas (NT).  [24] Figure 3 - The Southern blot assay shows the presence of transgenes representing Aricin (interference cassette) integrated into the genome in two plants of the TB14S-5D event while no signal is observed in non-transgenic (NT) plants.
[25] Figura 4 - 0 Northern blot mostra a presença de siRNAs (pequenos RNAs) e a ausência de transcritos do gene da ricina no evento TB14S-5D (+). Em contrapartida, siRNAs não foram observados e os transcritos do gene da ricina estavam presentes em plantas NT ou segregantes negativas do evento TB14S-5D (-).  [25] Figure 4 - The Northern blot shows the presence of siRNAs (small RNAs) and the absence of ricin gene transcripts in the TB14S-5D (+) event. In contrast, siRNAs were not observed and transcripts of the ricin gene were present in NT plants or negative TB14S-5D (-) event segregants.
[26] Figura 5 - Detecção do silenciamento da ricina no evento TB14S-5D. Um teste ELISA foi realizado para detectar e quantificar a ricina em endosperma de sementes do evento TB14S-5D. A ricina foi detectada no endosperma das sementes não transgênicas e nas sementes segregantes negativas. Porem, a ricina não pode ser detectada em sementes positivas do evento TB14S-5D.  [26] Figure 5 - Detection of ricin silencing in the TB14S-5D event. An ELISA test was performed to detect and quantify ricin in seed endosperm from the TB14S-5D event. Ricin was detected in the endosperm of non-transgenic seeds and in negative segregating seeds. However, ricin cannot be detected in positive TB14S-5D event seeds.
[27] Figura 6 - 0 silenciamento da RCA120 pode ser observado no ensaio de hemaglutinação. Proteínas de sementes do evento TB14S-5D não aglutinaram hemácias, conforme ocorreu com controle negativo (PBS) formando um ponto no fundo da placa, enquanto proteínas de sementes não transgênicas (NT) aglutinaram hemácias como ocorreu no controle positivo (RCA120) formando um fundo difuso.  [27] Figure 6 - RCA120 silencing can be seen in the hemagglutination test. Proteins from seeds of the TB14S-5D event did not agglutinate red blood cells, as occurred with negative control (PBS) forming a dot at the bottom of the plate, while non-transgenic seed (NT) proteins agglutinated red blood cells as occurred in the positive control (RCA120) forming a background diffuse.
[28] Figura 7 - Análises de PCR mostrando a presença de fragmentos resultantes da amplificação de um fragmento correspondente a uma sequencia do cassete de interferencia (Aricin). NT é uma planta não- transgênica e pRIcRNAi é o vetor utilizado na transformação genética de mamona.  [28] Figure 7 - PCR analysis showing the presence of fragments resulting from the amplification of a fragment corresponding to an interference cassette sequence (Aricin). NT is a non-transgenic plant and pRIcRNAi is the vector used in the genetic transformation of castor bean.
[29] Figura 8 - Análises de PCR mostrando a presença de fragmentos resultantes da amplificação de um fragmento correspondente a SEQ ID NO 27, marcador específico para o evento TB14S-5D. 1 - Marcador de 1 kb (Fermentas); 2 a 4 - plantas GM evento TB14S-5D; 5 - Vetor pRicRNAi; 6 - Controle (planta não transgênica). [29] Figure 8 - PCR analysis showing the presence of fragments resulting from the amplification of a fragment corresponding to SEQ ID NO 27, specific marker for the TB14S-5D event. 1 - 1 kb marker (Fermentas); 2 to 4 - GM plants TB14S-5D event; 5 - pRicRNAi vector; 6 - Control (non-transgenic plant).
[30] Figura 9: Representação esquemática da região amplificada pelos primers AHASCD2F (SEQ ID NO 25) e SOJAE1 R (SEQ ID NO 26), cuja sequência encontra-se descrita em SEQ ID NO 27.  [30] Figure 9: Schematic representation of the region amplified by the primers AHASCD2F (SEQ ID NO 25) and SOJAE1 R (SEQ ID NO 26), whose sequence is described in SEQ ID NO 27.
DESCRIÇÃO DETALHADA DA INVENÇÃO DETAILED DESCRIPTION OF THE INVENTION
[31] A presente invenção aborda a produção de plantas de mamona sem a toxina da ricina/RCA, obtidas através do silenciamento gênico pós- transcricional do gene da ricina. [31] The present invention addresses the production of castor plants without the ricin / RCA toxin, obtained through post-transcriptional gene silencing of the ricin gene.
[32] No contexto dessa descrição, inúmeros termos serão utilizados e por isso serão detalhados a seguir.  [32] In the context of this description, a number of terms will be used and will therefore be detailed below.
[33] O termo “ácido nucléico” refere-se a uma grande molécula a qual pode ser fita simples ou fita dupla, composta de monômeros (nucleotídeos) contendo um açúcar, um fosfato e uma base purina ou pirimidina. Um “fragmento de ácido nucléico” é uma fração de uma dada molécula de ácido nucléico. “Complementaridade” refere-se ao pareamento específico de bases purinas e pirimidinas que consistem de ácidos nucléicos: pares de adenina com timina e pares de guanina com citosina. Então, o “complemento” de um primeiro fragmento de ácido nucléico refere-se ao segundo fragmento de ácido nucléico cuja sequência de nucleotídeos é complementar à primeira sequência de nucleotídeos.  [33] The term "nucleic acid" refers to a large molecule which can be single-stranded or double-stranded, composed of monomers (nucleotides) containing a sugar, a phosphate and a purine or pyrimidine base. A "nucleic acid fragment" is a fraction of a given nucleic acid molecule. “Complementarity” refers to the specific pairing of purine bases and pyrimidines that consist of nucleic acids: pairs of adenine with thymine and pairs of guanine with cytosine. So, the "complement" of a first nucleic acid fragment refers to the second nucleic acid fragment whose nucleotide sequence is complementary to the first nucleotide sequence.
[34] Em plantas mais desenvolvidas, ácido desoxirribonucléico (DNA) é o material genético enquanto ácido ribonucléico (RNA) está envolvido na transferência da informação do DNA em proteínas. Um “genoma” é toda parte principal do material genético contida em cada célula de um organismo. O termo“sequência de nucleotídeo” refere-se às sequências de polímeros de nucleotídeos, formando uma fita de DNA ou RNA, as quais podem ser simples ou dupla-fita, opcionalmente sintéticas, não naturais ou com bases de nucleotídeos alteradas capazes de incorporação dentro de polímeros de DNA ou RNA. O termo “oligômero” refere-se a sequências curtas de nucleotídeos, usualmente até 100 bases de comprimento. O termo “homólogo” à ligação entre as sequências de nucleotídeos de duas moléculas de ácido nucléico ou entre as sequências de aminoácidos de duas moléculas de proteínas. A estimativa de tal homologia é provida através da hibridização de DNA-DNA ou RNA-RNA sob condições de estringência como definido no estado da técnica (como mencionado no documento US20030074685, Hames and Higgins, Ed. (1985) Nucleic Acid Hybridization, IRL Press, Oxford, U.K); ou pela comparação de similaridade de sequência entre duas moléculas de ácido nucléico ou proteína (como mencionado no documento US20030074685, Needleman et al. , J. Mol. Biol. (1970) 48:443- 453). [34] In more developed plants, deoxyribonucleic acid (DNA) is the genetic material while ribonucleic acid (RNA) is involved in the transfer of DNA information into proteins. A "genome" is every major part of the genetic material contained in each cell in an organism. The term "nucleotide sequence" refers to the sequences of nucleotide polymers, forming a strand of DNA or RNA, which can be single or double stranded, optionally synthetic, unnatural or with altered nucleotide bases capable of incorporation into DNA or RNA polymers. The term "oligomer" refers to short sequences of nucleotides, usually up to 100 bases in length. The term "homologous" to the connection between the nucleotide sequences of two nucleic acid molecules or between the amino acid sequences of two protein molecules. Estimation of such homology is provided by hybridizing DNA-DNA or RNA-RNA under stringent conditions as defined in the prior art (as mentioned in US20030074685, Hames and Higgins, Ed. (1985) Nucleic Acid Hybridization, IRL Press , Oxford, UK); or by comparing sequence similarity between two nucleic acid or protein molecules (as mentioned in US20030074685, Needleman et al., J. Mol. Biol. (1970) 48: 443-453).
[35] “Gene” refere-se ao fragmento de nucleotídeo que expressa uma proteína específica, incluindo sequências regulatórias precedentes (região 5’ não traduzida) e posteriores (região 3’ não traduzida) à região codificadora. “Gene nativo” refere-se a um gene isolado com sua própria sequência reguladora encontrada na natureza.“Gene quimérico” refere-se ao gene que compreende sequências codificadoras, regulatórias e heterogéneas não encontradas na natureza. “Gene endógeno” refere-se ao gene nativo normalmente encontrado em sua localização natural no genoma e não é isolado. Um“gene exógeno” refere-se a um gene que não é normalmente encontrado no organismo hospedeiro, mas que é introduzido por transferência gênica.“Pseudogene” refere-se a uma sequência nucleotídica que não codifica uma enzima funcional.  [35] "Gene" refers to the nucleotide fragment that expresses a specific protein, including preceding (5 'untranslated region) and later (3' untranslated) regulatory sequences to the coding region. “Native gene” refers to an isolated gene with its own regulatory sequence found in nature. “Chimeric gene” refers to the gene that comprises coding, regulatory and heterogeneous sequences not found in nature. "Endogenous gene" refers to the native gene normally found in its natural location in the genome and is not isolated. An "exogenous gene" refers to a gene that is not normally found in the host organism, but which is introduced by gene transfer. "Pseudogene" refers to a nucleotide sequence that does not encode a functional enzyme.
[36] “ Sequência codificadora” refere-se à sequência de DNA que codifica uma proteína específica e exclui a sequência não codificadora. Uma “sequência codificadora interrompida” significa a sequência que atua como separadora (por exemplo, um ou mais íntrons ligados através de junções).  [36] "Coding sequence" refers to the DNA sequence that encodes a specific protein and excludes the non-coding sequence. An "interrupted coding sequence" means the sequence that acts as a separator (for example, one or more introns connected through junctions).
[37] Um“íntron” ou“região espaçadora” é uma sequência de nucleotídeo que é transcrita e está presente no pré mRNA, mas é removida através de clivagem e a re-ligação do mRNA dentro da célula gerando um mRNA maduro que pode ser traduzido em uma proteína. Exemplos de íntrons incluem, mas não são limitados a íntron pdk, pdk2, íntron catalase da mamona, íntron Delta 12 desnaturase de algodão, Delta 12 desnaturase de Arabidopsis, íntron ubiquitina de milho, íntron de SV40, íntrons do gene da ricina. A presente invenção utilizou o íntron pdk (SEQ ID NO 5) [37] An "intron" or "spacer region" is a nucleotide sequence that is transcribed and is present in the pre mRNA, but is removed by cleavage and re-binding of mRNA within the cell generating a mature mRNA that can be translated into a protein. Examples of introns include, but are not limited to, intron pdk, pdk2, intron catalase of castor, intron Delta 12 denaturation of cotton, Delta 12 denaturation of Arabidopsis, ubiquitin intron of corn, intron of SV40, introns of the ricin gene. The present invention used the intron pdk (SEQ ID NO 5)
[38] “Transcrito de RNA” refere-se ao produto resultante da transcrição catalisada pela RNA polimerase de uma sequência de DNA. Quando o transcrito de RNA é uma cópia perfeita da sequência de DNA, ele é referido com transcrito primário ou ele pode ser uma sequência de RNA derivada de um processo pós-transcricional do transcrito primário e é então referido como transcrito maduro.“RNA mensageiro (mRNA)” refere-se ao RNA que está sem íntrons.“RNA sense” refere-se a um transcrito de RNA que inclui o mRNA. “RNA antisense” refere-se a um transcrito de RNA que é complementar a todas as partes de um transcrito primário ou mRNA e que pode bloquear a expressão de um gene alvo através da interferência no processamento, transporte e/ou tradução do seu transcrito primário ou mRNA. A complementaridade de um RNA antisense pode ser com qualquer parte do transcrito gênico específico, isto é, sequência 5’ não traduzida, sequência 3’ não traduzida, íntrons ou sequência codificadora. Além disso, o RNA antisense pode conter regiões de sequências ribozima que aumentam a eficácia do RNA antisense para bloquear a expressão gênica.“Ribozima” refere-se ao RNA catalítico e inclui sequências específicas de endoribonucleases. “DsRNA (dupla-fita)” refere-se a estrutura em grampo formada entre a sequência do mRNA ou RNA sense, a sequência de uma região espaçadora/íntron e a sequência do RNA antisense.  [38] "RNA transcript" refers to the product resulting from transcription catalyzed by the RNA polymerase of a DNA sequence. When the RNA transcript is a perfect copy of the DNA sequence, it is referred to as a primary transcript or it can be an RNA sequence derived from a post-transcriptional process of the primary transcript and is then referred to as a mature transcript. “Messenger RNA ( mRNA) "refers to RNA that is intron-free." RNA sense "refers to an RNA transcript that includes mRNA. “Antisense RNA” refers to an RNA transcript that is complementary to all parts of a primary transcript or mRNA and that can block the expression of a target gene by interfering with the processing, transport and / or translation of its primary transcript or mRNA. The complementarity of an antisense RNA can be with any part of the specific gene transcript, i.e., 5 'untranslated sequence, 3' untranslated sequence, introns or coding sequence. In addition, antisense RNA may contain regions of ribozyme sequences that increase the effectiveness of antisense RNA to block gene expression. “Ribozyme” refers to catalytic RNA and includes specific endoribonuclease sequences. “DsRNA (double-stranded)” refers to the clamp structure formed between the sequence of the mRNA or sense RNA, the sequence of a spacer / intron region and the sequence of the antisense RNA.
[39] O termo“similaridade” refere-se a fragmentos de ácidos nucléicos nos quais mudanças em uma ou mais bases de nucleotídeos não afetam a habilidade do fragmento de ácido nucléico mediar a alteração da expressão gênica pelo silenciamento gênico através, por exemplo, da tecnologia antisense, co-supressão ou RNA de interferência (RNAi). Fragmentos de ácido nucléico similares da presente invenção podem ser caracterizados também pela porcentagem de similaridade de suas sequências de nucleotídeos com as sequências de nucleotídeo do fragmento de ácido nucléico descritas aqui (SEQ ID NO 12 e SEQ ID NO 13), como determinada por algoritmos comuns empregados no estado da técnica. O alinhamento de sequência e o cálculo de porcentagem de similaridade da presente invenção foram realizados utilizando-se o Programa DNAMAN for Windows (Lynnon Corporation, 2001 ), utilizando sequências depositadas no Gene Bank, através da integração do Web browser. Para a presente invenção também podem ser utilizadas outras regiões da cadeia A com efeito semelhante, bem como sequências da cadeia B, sem, no entanto, nesse cas, com efeito sobre a RCA/RCA120 ( Ricinus communis agglutinin). [39] The term “similarity” refers to fragments of nucleic acids in which changes in one or more nucleotide bases do not affect the ability of the nucleic acid fragment to mediate the alteration of gene expression by gene silencing through, for example, antisense technology, co-suppression or interference RNA (RNAi). Fragments of similar nucleic acids of the present invention can also be characterized by the percentage of similarity of their nucleotide sequences with the nucleotide sequences of the nucleic acid fragment described here (SEQ ID NO 12 and SEQ ID NO 13), as determined by common algorithms employed in the state of the art. The sequence alignment and the similarity percentage calculation of the present invention were performed using the DNAMAN for Windows Program (Lynnon Corporation, 2001), using sequences deposited at Gene Bank, through the integration of the Web browser. For the present invention, other regions of the A chain with similar effect can also be used, as well as sequences of the B chain, without, however, in this case, with effect on the RCA / RCA120 (Ricinus communis agglutinin).
[40] Para que o dsRNA seja formado, é necessário que estejam presentes na molécula de DNA a sequência de nucleotídeos do gene alvo na orientação sense, e uma sequência de nucleotídeos na orientação antisense, podendo haver ou não uma região espaçadora/íntron entre as sequências de nucleotídeos sense e antisense. As sequências de nucleotídeos mencionadas podem ser constituídas de cerca de 19nt a 470 nt ou ainda cerca de 1740 nucleotídeos ou mais, cada um tendo uma similaridade substancial de sequência total com cerca de 40% a 100%. Quanto mais longa for a sequência, menos estringência é requerida para similaridade substancial total da sequência. Os fragmentos contendo pelo menos 19 nucleotídeos devem ter preferencialmente cerca de 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98% ou 99% de identidade de sequência quando comparada com a sequência de referência, com possibilidade de ter cerca de 2 nucleotídeos distintos não contíguos. Preferencialmente são utilizados fragmentos acima de 60 pb, mais preferencialmente ainda fragmentos entre 150 a 500pb.  [40] For dsRNA to be formed, the nucleotide sequence of the target gene in the sense orientation and a nucleotide sequence in the antisense orientation must be present in the DNA molecule, whether or not there is a spacer / intron region between the sense and antisense nucleotide sequences. The mentioned nucleotide sequences can consist of about 19 nt to 470 nt or even about 1740 nucleotides or more, each having a substantial total sequence similarity of about 40% to 100%. The longer the sequence, the less stringency is required for substantial total similarity of the sequence. Fragments containing at least 19 nucleotides should preferably have about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% of sequence identity when compared to the sequence reference, with the possibility of having about 2 distinct non-contiguous nucleotides. Preferably fragments above 60 bp are used, more preferably fragments between 150 to 500 bp.
[41] Em um dos aspectos da invenção, a molécula de dsRNA pode compreender uma ou mais regiões tendo uma similaridade substancial de sequência para as regiões com pelo menos cerca de 14 nucleotídeos consecutivos dos nucleotídeos sense do gene alvo, definida como primeira região e, uma ou mais regiões tendo uma similaridade substancial de sequência para as regiões com cerca de 15 nucleotídeos consecutivos do complemento dos nucleotídeos sense do gene alvo, definida como segunda região, onde essas regiões podem ter pares de bases separando-as uma da outra. Para a presente invenção foram utilizados fragmentos de 461 nucleotídeos (SEQ ID NO 12 e SEQ ID NO 13) do gene da ricina de mamona. [41] In one aspect of the invention, the dsRNA molecule can comprise one or more regions having substantial sequence similarity to regions with at least about 14 nucleotides consecutive sense nucleotides of the target gene, defined as the first region, and one or more regions having substantial sequence similarity for regions with about 15 consecutive nucleotides of the complement of the sense nucleotides of the target gene, defined as the second region, where these regions may have base pairs separating them from one another. For the present invention, 461 nucleotide fragments (SEQ ID NO 12 and SEQ ID NO 13) of the castor bean ricin gene were used.
[42] Convenientemente, o dsRNA (RNA de dupla fita) como descrito pode ser expresso em células hospedeiras à partir de construção gênica introduzida e possivelmente integrada ao genoma da célula hospedeira. Portanto, em uma concretização, a invenção diz respeito a um polinucleotídeo sintético compreendendo Uma primeira região com sequência de ácidos nucléicos com similaridade de pelo menos 90, 95, 99 ou 100% com a sequência descrita em SEQ ID No 12 e uma segunda região com o complemento da sequência da primeira região. Tal polinucleotídeo pode apresentar uma região espaçadora entre a primeira e a segunda região, podendo essa região espaçadora ser uma sequência de íntron selecionada dentre íntron pdk (SEQ ID No 5), íntron pdk2, íntron catalase da mamona, íntron Delta 12 desaturase de algodão, Delta 12 desaturase de Arabidopsis, íntron ubiquitina de milho, íntron de SV40 e íntrons do gene da ricina.  [42] Conveniently, dsRNA (double-stranded RNA) as described can be expressed in host cells from introduced gene construction and possibly integrated into the host cell genome. Therefore, in one embodiment, the invention relates to a synthetic polynucleotide comprising a first region with a nucleic acid sequence with similarity of at least 90, 95, 99 or 100% with the sequence described in SEQ ID No 12 and a second region with the complement of the sequence of the first region. Such polynucleotide may have a spacer region between the first and the second region, and this spacer region may be an intron sequence selected from pdk intron (SEQ ID No 5), pdk2 intron, castor catalase intron, Delta 12 cotton desaturase intron, Delta 12 desaturase from Arabidopsis, ubiquitin corn intron, SV40 intron and ricin gene introns.
[43] “Promotor” refere-se à sequência de DNA em um gene, usualmente localizada a montante da sequência codificadora, a qual controla a expressão da sequência codificadora promovendo o reconhecimento pela RNA polimerase e outros fatores requeridos para a própria transcrição. Em uma construção de DNA artificial, promotores podem também ser utilizados para transcrever dsRNA. Promotores podem também conter sequências de DNA que estão envolvidas na ligação de fatores de proteínas as quais controlam o efeito do início da transcrição em resposta a condições fisiológicas ou de desenvolvimento. [44] Em um dos aspectos da invenção, é fornecida uma construção gênica compreendendo o polinucleotídeo caracterizado anteriormente e uma região de promotor gênico tivo operacionalmente ligado ao referido polinucleotídeo. [43] "Promoter" refers to the DNA sequence in a gene, usually located upstream of the coding sequence, which controls the expression of the coding sequence by promoting recognition by RNA polymerase and other factors required for the transcription itself. In an artificial DNA construct, promoters can also be used to transcribe dsRNA. Promoters may also contain DNA sequences that are involved in binding protein factors which control the effect of initiation of transcription in response to physiological or developmental conditions. [44] In one aspect of the invention, a gene construct is provided comprising the polynucleotide characterized above and a region of active gene promoter operatively linked to said polynucleotide.
[45] Tal promotor pode ser um promotor expresso em plantas. Como usado aqui, o termo“promotor expresso em plantas” significa uma sequência de DNA que é capaz de iniciar e/ou controlar a transcrição em uma célula de planta. Isso inclui qualquer promotor de origem vegetal; qualquer promotor de origem não vegetal o qual seja capaz de direcionar a expressão em uma célula vegetal, por exemplo promotores de origem virai ou bacteriana tais como CaMV35S (como mencionado no pedido de patente US20030175783, Hapster et al, 1988 Mol. Gen. Genet. 212, 182-190) e promotores do gene presentes no T-DNA de Agrobaterium, promotores tecido-específicos ou órgão-específicos, incluindo mas não limitados a promotores semente- específicos (WO8903887), promotores específicos de órgãos primordiais (como mencionado no pedido de patente US20030175783, An et al., 1996 The Plant Cell 8, 15-30), promotores específicos de caule (como mencionado no pedido de patente US20030175783, Keller et al., 1988 EMBO J. 7: 3625-3633), promotores específicos de folhas (como mencionado no pedido de patente US20030175783, Hudspeth et al., 1989 Plant Mol Biol 12:579-589), promotores específicos de mesófilo, promotores específicos de raiz (como mencionado no pedido de patente US20030175783, Keller et al., 1989 Genes Devei. 3: 1639-1646), promotores específicos de tubérculos (como mencionado no pedido de patente US20030175783, Keil et al., 1989 EMBO J. 8: 1323:1330), promotores específicos de tecidos vasculares (como mencionado no pedido de patente US20030175783, Peleman et al., 1989 Gene 84: 359-369), promotores específicos de estames (WO8910396, W09213956), promotores específicos da zona de deiscência (W09713865); e semelhantes. Para a presente invenção foram utilizados preferencialmente os seguintes promotores: 1 ) Promotor do gene Ahas de Arabidopsis thaliana que dirige a expressão do gene ahas (pAtAhas - SEQ ID NO 1 ); 2) Promotor constitutivo CaMV35S que dirige a expressão do K7 de RNAi para o fragmento de Ricina (pCaMV35S - SEQ ID NO 4) e 3) Promotor constitutivo do gene de Actina 2 de Arabidopsis thaliana que dirige a expressão do gene gus (pAtAct2 - SEQ ID NO 7). [45] Such a promoter may be a promoter expressed in plants. As used here, the term "plant-expressed promoter" means a DNA sequence that is capable of initiating and / or controlling transcription in a plant cell. This includes any promoter of plant origin; any promoter of non-plant origin which is capable of directing expression in a plant cell, for example promoters of viral or bacterial origin such as CaMV35S (as mentioned in patent application US20030175783, Hapster et al, 1988 Mol. Gen. Genet. 212, 182-190) and gene promoters present in Agrobaterium T-DNA, tissue-specific or organ-specific promoters, including but not limited to seed-specific promoters (WO8903887), specific promoters of primordial organs (as mentioned in the application US20030175783, An et al., 1996 The Plant Cell 8, 15-30), stem-specific promoters (as mentioned in patent application US20030175783, Keller et al., 1988 EMBO J. 7: 3625-3633), promoters leaf specific (as mentioned in patent application US20030175783, Hudspeth et al., 1989 Plant Mol Biol 12: 579-589), mesophilic specific promoters, root specific promoters (as mentioned in patent application US200301 75783, Keller et al., 1989 Genes Devei. 3: 1639-1646), tuber-specific promoters (as mentioned in patent application US20030175783, Keil et al., 1989 EMBO J. 8: 1323: 1330), vascular tissue-specific promoters (as mentioned in patent application US20030175783, Peleman et al., 1989 Gene 84: 359-369), specific stamen promoters (WO8910396, W09213956), specific promoters of the dehiscence zone (W09713865); and the like. For the present invention, the following promoters were preferably used: 1) Ahas gene promoter from Arabidopsis thaliana that directs the expression of the ahas gene (pAtAhas - SEQ ID NO 1); 2) CaMV35S constitutive promoter that directs the expression of the RNAi K7 to the Ricin fragment (pCaMV35S - SEQ ID NO 4) and 3) A constitutive promoter of the Actin 2 gene from Arabidopsis thaliana that directs the expression of the gus gene (pAtAct2 - SEQ ID NO 7).
[46] O promotor pode conter elementos “enhancers”. Um “enhancer” é uma sequência de DNA que pode estimular a atividade do promotor. Ela pode ser um elemento inato do promotor ou um elemento heterólogo inserido para aumentar o nível e/ou a tecido-especificidade de um promotor. Na presente invenção foi utilizada a sequência enhancer do Alfalfa mosaic vírus (35SCaMV).  [46] The promoter may contain elements "enhancers". An "enhancer" is a DNA sequence that can stimulate the activity of the promoter. It can be an innate element of the promoter or a heterologous element inserted to increase the level and / or tissue-specificity of a promoter. In the present invention, the enhancer sequence of the Alfalfa mosaic virus (35SCaMV) was used.
[47] “Promotores constitutivos” referem-se àqueles que dirigem a expressão gênica em todos os tecidos e durante todo tempo. Promotores “tecido-específicos” ou “desenvolvimento-específicos” são aqueles que dirigem a expressão gênica quase que exclusivamente em tecidos específicos, tais como folhas, raízes, caules, flores, frutos ou sementes, ou em estágios do desenvolvimento específicos em um tecido, como no início ou final da embriogênese. O termo“expressão” refere-se a transcrição e acumulação estável do RNA derivado dos fragmentos de ácidos nucléicos da invenção que, em conjunto com a aparelhagem de produção de proteína da célula, resulta em níveis alterados de mio-inositol 1 -fosfato sintase. “Inibição por interferência” refere-se a produção de transcritos de dsRNA capazes de prevenir a expressão da proteína alvo.  [47] "Constitutive promoters" refer to those who direct gene expression in all tissues and at all times. “Tissue-specific” or “development-specific” promoters are those that direct gene expression almost exclusively in specific tissues, such as leaves, roots, stems, flowers, fruits or seeds, or at specific stages of development in a tissue, as at the beginning or end of embryogenesis. The term "expression" refers to the transcription and stable accumulation of RNA derived from the nucleic acid fragments of the invention which, together with the cell's protein production apparatus, results in altered levels of myo-inositol 1-phosphate synthase. "Interference inhibition" refers to the production of dsRNA transcripts capable of preventing expression of the target protein.
[48] “Sinal de terminação” ou“terminadores” são sequências que indicam para a enzima RNA polimerase que ela deve parar a transcrição do RNA. O sinal de terminação da transcrição/terminadores da presente invenção inclui, mas não está limitado a, sinal de terminação de SV40, sinal de adenilação de HSV TK, sinal de terminação do gene da nopalina sintetase de Agrobacterium tumefasciens {nos), sinal de terminação do gene RNA 35S do CaMV, sinal de terminação do vírus que ataca o Trifolium subterranean (SCSV), sinal de terminação do gene trpC de Aspergillus nidulans, e outros semelhantes. Para a presente invenção foram utilizados preferencialmente os seguintes “sinais de terminação” ou “terminadores”: 1 ) Sequência do terminador do gene Ahas-3’ de Arabidopsis thaliana (SEQ ID NO 3); 2) Sequência do terminador ocs-3’ que finaliza a expressão do K7 de RNAi Ric (SEQ ID NO 6); e 3) Sequência do terminador nos-3’ que finaliza a transcrição do gene repórter gus ou uidA (SEQ ID NO 9). [48] "Termination signal" or "terminators" are sequences that indicate to the RNA polymerase enzyme that it must stop RNA transcription. The transcription / terminator termination signal of the present invention includes, but is not limited to, SV40 termination signal, HSV TK adenylation signal, Agrobacterium tumefasciens (nos) nopaline synthase gene termination signal, termination signal of the CaMV RNA 35S gene, termination signal from the virus that attacks the subterranean Trifolium (SCSV), termination signal from the trpC gene of Aspergillus nidulans, and the like. For the present invention, the following “termination signals” or “terminators” were preferably used: 1) Sequence of terminator of the Arabidopsis thaliana Ahas-3 'gene (SEQ ID NO 3); 2) Sequence of the ocs-3 'terminator that terminates the expression of the K7 of RNAi Ric (SEQ ID NO 6); and 3) Sequence of the nos-3 'terminator that terminates the transcription of the gus or uidA reporter gene (SEQ ID NO 9).
[49] “ Sequências regulatórias apropriadas” referem-se a sequências de nucleotídeos em genes nativos ou quiméricos que estão localizadas acima (região 5’ não traduzida), dentro, e/ou abaixo (região 3’ não traduzida) dos fragmentos de ácido nucleicos da invenção, as quais controlam a expressão dos fragmentos de ácido nucleicos da invenção.  [49] "Appropriate regulatory sequences" refer to nucleotide sequences in native or chimeric genes that are located above (5 'untranslated region), within, and / or below (3' untranslated region) of nucleic acid fragments of the invention, which control the expression of the nucleic acid fragments of the invention.
[50] “Níveis alterados” referem-se à produção de produtos gênicos em organismos transgênicos em quantidades ou proporções que diferem daquelas em organismos normais ou não-transgênicos. A presente invenção também relata vetores/construções gênicas, os quais incluem fragmentos de sequências do gene da ricina de mamona na orientação sense e antisense, e células hospedeiras, as quais são geneticamente engenheiradas com vetores da invenção. “Transformação” refere-se a transferência do gene exógeno para dentro do genoma de um organismo hospedeiro e sua herança geneticamente estável.  [50] “Altered levels” refer to the production of gene products in transgenic organisms in quantities or proportions that differ from those in normal or non-transgenic organisms. The present invention also reports vectors / gene constructs, which include fragments of castor bean gene sequences in the sense and antisense orientation, and host cells, which are genetically engineered with vectors of the invention. "Transformation" refers to the transfer of the exogenous gene into the genome of a host organism and its genetically stable inheritance.
[51] “Plantas” referem-se a organismos fotossintéticos e eucariotos. Os ácidos nucleicos da invenção podem ser utilizados para conferir tratos desejados em essencialmente qualquer planta. Então, a invenção possui uso sobre várias espécies de plantas, incluindo espécies dos gêneros Anacardium, Anona, Arachis, Artocarpus, Asparagus, Atropa, Avena, Brassica, Carica, Citrus, Citrullus, Capsicum, Carthamus, Cocos, Coffea, Cucumis, Cucurbita, Daucus, Elaeis, Fragaria, Glycine, Gossypium, Helianthus, Heterocallis, Hordeum, Hyoseyamus, Lactuca, Linum, Lolium, Lupinus, Lycopersicon, Malus, Manihot, Majorana, Medicago, Nicotiana, Olea, Oryza, Panieum, Pannesetum, Passiflora, Persea, Phaseolus, Pistachia, Pisum, Pyrus, Prunus, Psidium, Raphanus, Ricinus, Secale, Senecio, Sinapis, Solanum, Sorghum, Theobromus, Trigonella, Triticum, Vicia, Vitis, Vigna, e Zea. Preferencialmente para a presente invenção as plantas são plantas do gênero Ricinus. Mais especificamente, a presente invenção diz respeito a plantas de Ricinus communis. [51] "Plants" refer to photosynthetic organisms and eukaryotes. The nucleic acids of the invention can be used to impart desired treatments to essentially any plant. So, the invention has use on several species of plants, including species of the genera Anacardium, Anona, Arachis, Artocarpus, Asparagus, Atropa, Avena, Brassica, Carica, Citrus, Citrullus, Capsicum, Carthamus, Cocos, Coffea, Cucumis, Cucurbita, Daucus, Elaeis, Fragaria, Glycine, Gossypium, Helianthus, Heterocallis, Hordeum, Hyoseyamus, Lactuca, Linum, Lolium, Lupinus, Lycopersicon, Malus, Manihot, Majorana, Medicago, Nicotiana, Olea, Oryza, Panieum, Pannesetum, Passes Phaseolus, Pistachia, Pisum, Pyrus, Prunus, Psidium, Raphanus, Ricinus, Secale, Senecio, Sinapis, Solanum, Sorghum, Theobromus, Trigonella, Triticum, Vicia, Vitis, Vigna, and Zea. Preferably for the present invention the plants are plants of the genus Ricinus. More specifically, the present invention concerns plants of Ricinus communis.
[52] Outro objeto da presente invenção é prover células eucariotas, e organismos eucariotas contendo moléculas de dsRNA da invenção, ou contendo os construções gênicas capazes de produzir moléculas de dsRNA da invenção. Tais construções gênicas podem estar estavelmente integradas no genoma das células de organismos eucariotas.  [52] Another object of the present invention is to provide eukaryotic cells, and eukaryotic organisms containing dsRNA molecules of the invention, or containing the gene constructs capable of producing dsRNA molecules of the invention. Such gene constructs can be stably integrated into the cell genome of eukaryotic organisms.
[53] Em outro aspecto da invenção, as construções gênicas podem estar providas em uma molécula de DNA capaz de se replicar de forma autónoma nas células de organismos eucariotas, tais como vetores virais. Na presente invenção foi utilizada uma sequência da origem de replicação do Plasmídeo do pKannibal (SEQ ID NO 10). O gene quimérico ou o dsRNA pode também estar disposto de forma transiente nas células de organismos eucariotas.  [53] In another aspect of the invention, gene constructs may be provided in a DNA molecule capable of replicating autonomously in the cells of eukaryotic organisms, such as viral vectors. In the present invention, a sequence of the origin of replication of the pKannibal Plasmid (SEQ ID NO 10) was used. The chimeric gene or dsRNA may also be transiently arranged in the cells of eukaryotic organisms.
[54] As construções gênicas da presente invenção apresentam ainda sequências codificadoras para genes de seleção e genes marcadores para auxiliar no processo de recuperação do evento transgênico. Existem diversos genes mercadores e genes de seleção que podem ser utilizados na presente invenção, tais como, mas não limitado a: nptll, hpt, neo, bar, abas, epsps. Na presente invenção foram utilizados preferencialmente: 1 ) Sequência da região codante do gene Ahas de Arabidopsis thaliana (SEQ ID NO 2); 2) Sequência do gene repórter gus ou uidA (SEQ ID NO 8); e 3) Sequência do gene de resistência a ampicilina do plasmídeo do pKannibal (SEQ ID NO 11 ).  [54] The gene constructs of the present invention also feature coding sequences for selection genes and marker genes to assist in the process of recovery from the transgenic event. There are several merchant genes and selection genes that can be used in the present invention, such as, but not limited to: nptll, hpt, neo, bar, tabs, epsps. In the present invention, the following were preferably used: 1) Sequence of the coding region of the Ahas gene from Arabidopsis thaliana (SEQ ID NO 2); 2) Sequence of the gus or uidA reporter gene (SEQ ID NO 8); and 3) Sequence of the ampicillin resistance gene of the plasmid of pKannibal (SEQ ID NO 11).
[55] Uma concretização da invenção diz respeito a um vetor para transformação de plantas compreendendo:  [55] One embodiment of the invention concerns a plant transformation vector comprising:
• Promotor gênico conforme sequência descrita em SEQ ID No • Gene promoter according to the sequence described in SEQ ID No
4; 4;
• Uma primeira região codificante com sequência de ácidos nucléicos conforme sequência descrita em SEQ ID No 12;  • A first coding region with a nucleic acid sequence as described in SEQ ID No 12;
• Uma segunda região codificante com sequência de ácidos nucléicos conforme sequência descrita em SEQ ID No 13; • Uma região espaçadora entre a primeira região e a segunda região com sequência de ácidos nucleicos conforme a sequencia descrita em SEQ ID No 5; • A second coding region with a nucleic acid sequence as described in SEQ ID No 13; • A spacer region between the first region and the second region with nucleic acid sequence according to the sequence described in SEQ ID No 5;
• Sinal de terminação conforme sequência descrita em SEQ ID No 6;  • Termination signal according to the sequence described in SEQ ID No 6;
• Gene marcador compreendendo o promotor descrito na SEQ ID NO 7, uma região codificadora descrita na SEQ ID NO 8 e um sinal de terminação descrito na SEQ ID NO 9; • Marker gene comprising the promoter described in SEQ ID NO 7, a coding region described in SEQ ID NO 8 and a termination signal described in SEQ ID NO 9;
• Gene de seleção compreendendo o promotor descrito na SEQ ID NO 1 , uma região codificadora descrita na SEQ ID NO 2 e um sinal de terminação descrito na SEQ ID NO 3. • Selection gene comprising the promoter described in SEQ ID NO 1, a coding region described in SEQ ID NO 2 and a termination signal described in SEQ ID NO 3.
[56] Os polinucleotídeos, construções gênicas e vetores da invenção podem ser introduzidos dentro do genoma da planta hospedeira desejada através de uma variedade de técnicas convencionais. Por exemplo, pode ser introduzido diretamente dentro do DNA genômico da célula vegetal utilizando técnicas tais como eletroporação e microinjeção de protoplastos de células de plantas, ou a construção pode ser introduzida diretamente no tecido vegetal utilizando-se métodos balísticos, tais como bombardeamento de partículas recobertas com DNA.  [56] The polynucleotides, gene constructs and vectors of the invention can be introduced into the genome of the desired host plant through a variety of conventional techniques. For example, it can be introduced directly into the genomic DNA of the plant cell using techniques such as electroporation and microinjection of plant cell protoplasts, or the construct can be introduced directly into the plant tissue using ballistic methods, such as bombardment of coated particles with DNA.
[57] Técnicas de microinjeção são conhecidas no estado da técnica e bem descritas em literatura científica e patentária. A introdução de construções gênicas utilizando-se precipitações de polietileno glicol é descrita em Paszkowski et al. Embo J. 3:2717-2722, 1984 (como mencionado no pedido de patente US20020152501 ). Técnicas de eletroporação são descritas em From et al. Proc. Natl. Acad. Sei. USA 82:5824, 1985 (como mencionado no pedido de patente US20020152501 ). Técnicas de transformações balísticas são descritas em Klein et al. Nature 327:70-73, 1987 (como mencionado no pedido de patente US20020152501 ).  [57] Microinjection techniques are known in the art and well described in scientific and patent literature. The introduction of gene constructs using polyethylene glycol precipitations is described in Paszkowski et al. Embo J. 3: 2717-2722, 1984 (as mentioned in patent application US20020152501). Electroporation techniques are described in From et al. Proc. Natl. Acad. Know. USA 82: 5824, 1985 (as mentioned in patent application US20020152501). Ballistic transformation techniques are described in Klein et al. Nature 327: 70-73, 1987 (as mentioned in patent application US20020152501).
[58] Alternativamente, as construções gênicas podem ser combinadas com regiões flanqueadoras de T-DNA apropriadas e introduzidas dentro de vetor convencional hospedeiro Agrobacterium tumefasciens. A função de virulência do hospedeiro Agrobacterium tumefasciens direcionará a inserção das construções gênicas e marcador adjacente dentro do DNA da célula vegetal quando a célula é infectada pela bactéria. Técnicas de transformação mediadas por Agrobacterium tumefasciens, incluindo desarmamento e o uso de vetores binários, são bem descritas na literatura científica (como mencionado no pedido de patente US 20020152501 , Horsch et al. Science 233:496-498, 1984; e Fraley et al. Proc. Natl. Acad. Sei. USA 80:4803, 1983). Para a presente invenção foi utilizada preferencialmente a técnica de biobalística. No entanto plantas geneticamente modificadas de mamona podem ser obtidas por A. tumefaciens. [58] Alternatively, the gene constructs can be combined with appropriate T-DNA flanking regions and introduced into a conventional host vector Agrobacterium tumefasciens. The function of virulence of the host Agrobacterium tumefasciens will direct the insertion of the gene constructs and adjacent marker into the DNA of the plant cell when the cell is infected by the bacterium. Transformation techniques mediated by Agrobacterium tumefasciens, including disarmament and the use of binary vectors, are well described in the scientific literature (as mentioned in patent application US 20020152501, Horsch et al. Science 233: 496-498, 1984; and Fraley et al Proc. Natl. Acad. Sci. USA 80: 4803, 1983). For the present invention, the biobalistic technique was preferably used. However, genetically modified castor plants can be obtained by A. tumefaciens.
[59] Células de plantas transformadas que são derivadas de qualquer uma das técnicas de transformação descritas acima podem ser cultivadas para regenerar uma planta inteira que possua o genótipo transformado e então o fenótipo desejado tal como ausência ou redução da massa de sementes. Tais técnicas de regeneração contam com a manipulação de certos fitohormônios em meio de crescimento de cultura de tecidos, tipicamente contendo um marcador biocida e/ou herbicida, que deve ser introduzido junto com a sequência de nucleotídeos desejada. Regeneração de plantas a partir de cultura de protoplastos é descrita em Evans et al., Protoplasts Isolation and Culture, Handbook of Plant Cell Culture, pp. 124-176, MacMillilan Publishing Company, New York, 1983; e Binding, Regeneration of Plants, Plant Protoplasts, pp. 21 -73, CRC Press, Boca Raton, 1985 (como mencionado no pedido de patente US20020152501 ). A regeneração pode ser também obtida através de calos de planta, explantes, órgãos, ou parte da mesma. Tais técnicas de regeneração são descritas geralmente em Klee et al., Ann. Ver. Of Plant Phys. 38:467-486, 1987 1985 (como mencionado no pedido de patente US20020152501 ).  [59] Transformed plant cells that are derived from any of the transformation techniques described above can be grown to regenerate an entire plant that has the transformed genotype and then the desired phenotype such as the absence or reduction of seed mass. Such regeneration techniques rely on the manipulation of certain phytohormones in tissue culture growth medium, typically containing a biocidal and / or herbicidal marker, which must be introduced together with the desired nucleotide sequence. Plant regeneration from protoplast culture is described in Evans et al., Protoplasts Isolation and Culture, Handbook of Plant Cell Culture, pp. 124-176, MacMillilan Publishing Company, New York, 1983; and Binding, Regeneration of Plants, Plant Protoplasts, pp. 2173, CRC Press, Boca Raton, 1985 (as mentioned in patent application US20020152501). Regeneration can also be achieved through plant calluses, explants, organs, or part of it. Such regeneration techniques are generally described in Klee et al., Ann. Ver. Of Plant Phys. 38: 467-486, 1987 1985 (as mentioned in patent application US20020152501).
[60] A presente invenção diz respeito, portanto, a um método para obtenção de plantas de mamona sem ricina/RCA caracterizado por compreender os estágios de: a. Inserir em células vegetais de mamona molécula de ácido nucléico descrita anteriormente, podendo ser um polinucleotídeo, construção gênica, vetor ou ribonucleotídeo de filamento duplo, já definidos; [60] The present invention therefore relates to a method for obtaining castor plants without ricin / RCA characterized by comprising the stages of: The. Insert the nucleic acid molecule described in castor plant cells, which may be a polynucleotide, gene construct, vector or double-filament ribonucleotide, already defined;
b. Crescer ou regenerar as células de mamona em meios específicos;  B. Grow or regenerate castor cells in specific media;
c. Selecionar as plantas de mamona com o gene da ricina silenciado.  ç. Select the castor plants with the mutated ricin gene.
[61] Sem restringir a invenção para um particular modo de ação, espera-se que a enzima em células eucariotas responsável por gerar pequenas moléculas de RNA ,como a DICER em Drosophila, possa ser saturada através da inclusão de um excesso de sequências de dsRNA (isto é, moléculas de RNA dupla fita) que não estão relacionadas com a sequência de nucleotídeos do gene alvo ou do gene a ser silenciado.  [61] Without restricting the invention to a particular mode of action, it is expected that the enzyme in eukaryotic cells responsible for generating small RNA molecules, such as DICER in Drosophila, can be saturated by including an excess of dsRNA sequences (i.e., double-stranded RNA molecules) that are not related to the nucleotide sequence of the target gene or the gene to be silenced.
[62] A variação natural na regulação posterior da expressão do gene alvo ocorrendo entre diferentes linhagens de organismos eucariotos compreendendo a mesma molécula de dsRNA será substituída através da manipulação do espectro de silenciamento gênico. Esse fato pode ocorrer através da inclusão de sequências de nucleotídeos de dsRNA extras não relacionadas com o gene alvo, as quais são operacionalmente ligadas aos dsRNA formados pela primeira e segunda região.  [62] The natural variation in the subsequent regulation of target gene expression occurring between different strains of eukaryotic organisms comprising the same dsRNA molecule will be replaced by manipulating the gene silencing spectrum. This fact can occur through the inclusion of extra dsRNA nucleotide sequences unrelated to the target gene, which are operationally linked to the dsRNA formed by the first and second regions.
[63] A invenção também diz respeito ao uso da molécula de ribonucleotídeo de filamento duplo da presente invenção para supressão da expressão do gene da ricina/RCA.  [63] The invention also relates to the use of the double-stranded ribonucleotide molecule of the present invention for suppressing the expression of the ricin / RCA gene.
[64] Em outra concretização da invenção é fornecido um método de identificação de plantas de mamona sem ricina/RCA transgênicascompreendendo as etapas de:  [64] In another embodiment of the invention, a method of identifying castor bean plants without ricin / transgenic RCA is provided, comprising the steps of:
a. formar uma mistura compreendendo uma amostra biológica contendo DNA de mamona e um par de primers capaz de amplificar uma molécula de ácido nucléico específica de uma planta de mamona geneticamente modificada sem ricina/RCA; b. reagir a mistura sob condições que permitam que o par de primers de ácido nucleico amplifiquem uma molécula específica de ácido nucleico de uma planta de mamona geneticamente modificada sem ricina/RCA; The. forming a mixture comprising a biological sample containing castor DNA and a pair of primers capable of amplifying a specific nucleic acid molecule from a genetically modified castor plant without ricin / RCA; B. reacting the mixture under conditions that allow the nucleic acid primer pair to amplify a specific nucleic acid molecule from a genetically modified castor plant without ricin / RCA;
5 c. detectar a presença da molécula de ácido nucleico amplificada específica de uma planta de mamona geneticamente modificada sem ricina/RCA.  C. detect the presence of the specific amplified nucleic acid molecule of a genetically modified castor plant without ricin / RCA.
[65] Os primers para identificação do evento transgênico de mamona estão descritos na tabela 1.  [65] Primers for identifying the transgenic castor bean event are described in table 1.
10  10
Tabela 1 : pares de primers utilizados para identificação das plantas de mamona geneticamente modificadas sem ricina/RCA.  Table 1: primer pairs used to identify castor plants genetically modified without ricin / RCA.
Figure imgf000024_0001
Figure imgf000024_0001
15 [66] A invenção também é concretizada através de um kit de identificação de uma molécula de ácido nucleico do evento TB14S-5D de mamona em uma amostra biológica compreendendo um par de primers de ácido nucleico selecionado dentre os seguintes pares SEQ ID NO 19 com SEQ ID NO 20, SEQ ID NO 21 com SEQ ID NO 22, SEQ ID NO 23 com SEQ ID NO 24 ou 20 SEQ ID NO 25 com SEQ ID NO 26, que são capazes de amplificar uma molécula de ácido nucleico do evento TB14S-5D de mamona, podendo ser essa molécula amplificada a sequência apresentada em SEQ ID NO 27. [67] A presente invenção também provê um método de obtenção de uma planta de mamona sem ricina/RCA, caracterizado pelas etapas de: [66] The invention is also accomplished through an identification kit of a nucleic acid molecule of the castor bean TB14S-5D event in a biological sample comprising a pair of nucleic acid primers selected from the following pairs SEQ ID NO 19 with SEQ ID NO 20, SEQ ID NO 21 with SEQ ID NO 22, SEQ ID NO 23 with SEQ ID NO 24 or 20 SEQ ID NO 25 with SEQ ID NO 26, which are capable of amplifying a nucleic acid molecule from the TB14S- event Castor 5D, this amplified molecule being the sequence shown in SEQ ID NO 27. [67] The present invention also provides a method of obtaining a castor plant without ricin / RCA, characterized by the steps of:
1. cruzar a planta de mamona contendo uma molécula de ácido nucleico do evento TB14S-5D com uma segunda planta de mamona; 1. cross the castor plant containing a nucleic acid molecule from the TB14S-5D event with a second castor plant;
2. obter sementes do cruzamento da etapa (a); 2. obtain seeds from the crossing of step (a);
3. obter amostra de DNA da semente; e  3. obtain sample of DNA from the seed; and
4. detectar a presença da molécula de ácido nucleico do evento TB14S-5D de planta de mamona.  4. detect the presence of the nucleic acid molecule of the castor bean plant TB14S-5D event.
[68] Finalmente, a presente invenção fornece óleo de semente de mamona extraído de sementes transgênicas de plantas transformadas compreendendo as moléculas de ácidos nucleicos providas e torta de semente de mamona obtida por processo que utiliza também as referidas sementes.  [68] Finally, the present invention provides castor seed oil extracted from transgenic seeds of transformed plants comprising the nucleic acid molecules provided and castor seed cake obtained by a process that also uses said seeds.
[69] Vários experimentos foram realizados para verificar a presença/ausência da ricina e estão descritos nos exemplos deste relatório. Enquanto os endospermas das sementes geneticamente modificas foram usados para os testes de hemaglutinação, sobrevivência de células epiteliais de intestino de rato (IEC-6) e ratos, os eixos embrionários (T1 ) foram cultivados in vitro e depois transferidos para casa de vegetação. Além disso, as plantas GM apresentam uma forte atividade histoquímica da GUS, que torna folhas, endospermas e eixos embrionários visivelmente azuis em 20 minutos. O uso deste marcador será muito útil para determinar, mesmo em condições de campo, se uma variedade específica é geneticamente modificada. Isso e deverá ser importante para o uso seguro das variedades GM para alimentação animal, uma vez que o uso de variedades com ricina é fatal.  [69] Several experiments have been carried out to check for the presence / absence of ricin and are described in the examples in this report. While the endosperm of the genetically modified seeds were used for the hemagglutination tests, survival of rat intestinal epithelial cells (IEC-6) and rats, the embryonic axes (T1) were cultured in vitro and then transferred to the greenhouse. In addition, GM plants have a strong GUS histochemical activity, which turns leaves, endosperm and embryonic axes visibly blue in 20 minutes. The use of this marker will be very useful to determine, even in field conditions, whether a specific variety is genetically modified. This and should be important for the safe use of GM varieties for animal feed, since the use of varieties with ricin is fatal.
EXEMPLOS EXAMPLES
[70] A sequencia completa da construção gênica utilizada na presente invenção está descrita em SEQ ID NO 14 e qualquer especialista na área pode ser capaz de sintetizar essa sequencia para inserir no organismo eucarioto desejado. [70] The complete sequence of the gene construct used in the present invention is described in SEQ ID NO 14 and any specialist in the field may be able to synthesize this sequence to insert it into the desired eukaryotic organism.
[71] A presente invenção é ainda definida nos seguintes Exemplos. Deve ser entendido que esses Exemplos, enquanto indicam parte da invenção, são colocados como forma de ilustração somente, não tendo, portanto, qualquer cunho limitante do escopo das presentes invenções.  [71] The present invention is further defined in the following Examples. It should be understood that these Examples, while indicating part of the invention, are given as a form of illustration only, and therefore have no limiting feature on the scope of the present inventions.
[72] Técnicas usuais de biologia molecular tais como transformação de bactérias e eletroforese em gel de agarose de ácidos nucleicos são referidos através de termos comuns para descrevê-los. Detalhes da prática dessas técnicas, bem conhecidos no estado da técnica, são descritos em Sambrook, et al. (Molecular Cloning, A Laboratory Manual, 2nd ed. (1989), Cold Spring Harbor Laboratory Press). Várias soluções utilizadas nas manipulações experimentais são referidas por seus nomes comuns tais como“solução de lise”, “SSC”, “SDS”, etc. As composições dessas soluções podem ser encontradas na referência Sambrook, et al. (supracitada). [72] Usual techniques of molecular biology such as transformation of bacteria and electrophoresis in agarose gel of nucleic acids are referred to through common terms to describe them. Details of the practice of these techniques, well known in the prior art, are described in Sambrook, et al. (Molecular Cloning, A Laboratory Manual, 2nd ed. (1989), Cold Spring Harbor Laboratory Press). Various solutions used in experimental manipulations are referred to by their common names such as "lysis solution", "SSC", "SDS", etc. The compositions of these solutions can be found in reference Sambrook, et al. (above).
Exemplo 1 Example 1
Construção de vetores para transformação genética de mamona  Construction of vectors for genetic transformation of castor
[73] Para a construção do vetor foi utilizado um fragmento do gene RcRCAI (SEQ ID NO 12, - sense e SEQ ID NO 13 - antisense) que codifica a cadeia A da ricina com alta similaridade com a RCA120, pois a cadeia A é a responsável pela toxicidade.  [73] For the construction of the vector, a fragment of the RcRCAI gene (SEQ ID NO 12, - sense and SEQ ID NO 13 - antisense) was used, which encodes the ricin A chain with high similarity to RCA120, because the A chain is responsible for toxicity.
[74] Foi isolado o DNA total de tecidos frescos de mamona usando o DNeasy Plant Mini Kit (Qiagen, Valência, CA, USA) e realizadas reações de PCR para clonar o gene RcRCAI, usando os primers RcRINF (5’ - GTCT AG ACT C G AG AC AT G AAAT AC C AGTGTTG C - 3’) e RcRINR (5’ - GAAGCTTGGTACCTAATTCTCGTGCGCAT - 3’) acrescidos de sítios das enzimas Kpnl/Xhol e Hindi I l/Xbal na extremidade de cada um. O fragmento amplificado de cerca de 480 pb foi clonado no vetor pGEM-TEasy (Kobs, G. (1997) Cloning blunt-end DNA fragments into the pGEM®-T Vector Systems. Promega Notes 62, 15-18). Então, a construção do tipo intron-hairpin foi feita a partir da inserção do fragmento do gene RcRCAI no sentido sense (SEQ ID NO 12) e antisense (SEQ ID NO 12) no vetor pKANNIBAL (Wesley, S., Helliwell, C., Smith, N., Wang, M., Rouse, D., Liu, Q., Gooding, P., Singh, S., Abbott, D., Stoutjesdijk, P., Robinson, S., Gleave, A., Green, A., and Waterhouse, P. 2001. Construct design for efficient, effective and high- throughput gene silencing in plants. Plant J. 27:581 -590.) separados pelo íntron PDK (SEQ ID NO 5), sob domínio promotor 35SCaMV (SEQ ID NO 4) e com terminador OCS (SEQ ID NO 6), permitindo a expressão do RNA de fita como fonte da geração de RNAs interferentes. O cassete de transformação (Promotor 35SKaMV - fragmento da ricina sense - íntron - fragmento da ricina antisense - teminador OCS) foi retirado do vetor pKANNIBAL no sítio Notl e inserido no vetor pAG1 (Aragão, F. J. L, Sarokin, L., Vianna, G. R., and Rech, E. L. 2000. Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean ( Glycine max (L.) Merrill) plants at high frequency. Theor. Appl. Genet. 101 :1 -6.) que contém o gene gus (b-Glucuronidase - uidA) como gene repórter e o gene ahas como gene de seleção, formando o vetor/construção gênica pRICRNAi. (Figura 1 , SEQ ID NO 14). A expressão do gene repórter gus (SEQ ID NO 8) é regulada, nesta construção, pelo promotor constitutivo do gene de Actina 2 de Arabidopsis thaliana (SEQ ID NO 7) e pelo terminador nos-3’ (SEQ ID NO 9). Já o gene de seleção ahas (SEQ ID NO 2) é regulado pelo promotor do gene Ahas de Arabidopsis thaliana e pelo terminador do gene Ahas-3’ de Arabidopsis thaliana (SEQ ID NO 3). [74] Total DNA from fresh castor tissues was isolated using the DNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA) and PCR reactions were performed to clone the RcRCAI gene using the RcRINF primers (5 '- GTCT AG ACT CG AG AC AT G AAAT AC C AGTGTTG C - 3 ') and RcRINR (5' - GAAGCTTGGTACCTAATTCTCGTGCGCAT - 3 ') plus Kpnl / Xhol and Hindi I l / Xbal enzyme sites at the end of each. The amplified fragment of about 480 bp was cloned into the pGEM-TEasy vector (Kobs, G. (1997) Cloning blunt-end DNA fragments into the pGEM®-T Vector Systems. Promega Notes 62, 15-18). So, the construction of the intron-hairpin type was made from the insertion of the RcRCAI gene fragment in sense (SEQ ID NO 12) and antisense (SEQ ID NO 12) in the pKANNIBAL (Wesley, S., Helliwell, C., Smith, N., Wang, M. , Rouse, D., Liu, Q., Gooding, P., Singh, S., Abbott, D., Stoutjesdijk, P., Robinson, S., Gleave, A., Green, A., and Waterhouse, P 2001. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27: 581 -590.) Separated by the intron PDK (SEQ ID NO 5), under promoter domain 35SCaMV (SEQ ID NO 4) and with OCS terminator (SEQ ID NO 6), allowing the expression of the ribbon RNA as a source of the generation of interfering RNAs. The transformation cassette (Promoter 35SKaMV - fragment of ricin sense - intron - fragment of antisense ricin - OCS primer) was removed from the vector pKANNIBAL at the Notl site and inserted into the vector pAG1 (Aragon, FJ L, Sarokin, L., Vianna, GR , and Rech, EL 2000. Selection of transgenic meristematic cells using a herbicidal molecule results in the recovery of fertile transgenic soybean (Glycine max (L.) Merrill) plants at high frequency. Theor. Appl. Genet. 101: 1 -6. ) containing the gus gene (b-glucuronidase - uidA) as a reporter gene and the ahas gene as a selection gene, forming the pRICRNAi gene vector / construct. (Figure 1, SEQ ID NO 14). The expression of the gus reporter gene (SEQ ID NO 8) is regulated, in this construction, by the constitutive promoter of the Actin 2 gene from Arabidopsis thaliana (SEQ ID NO 7) and by the terminator nos-3 '(SEQ ID NO 9). The ahas selection gene (SEQ ID NO 2) is regulated by the promoter of the Ahas gene from Arabidopsis thaliana and by the terminator of the Ahas-3 'gene from Arabidopsis thaliana (SEQ ID NO 3).
Exemplo 2 Example 2
Transformação de plantas de mamona  Transformation of castor plants
[75] A metodologia para obtenção das linhagens de mamoneira geneticamente modificadas foi desenvolvida a partir do bombardeamento de partículas em regiões meristemáticas dos embriões zigóticos de mamoneira. [76] Sementes saudáveis da cultivar EBDA-MPA-34 foram selecionadas e desinfestadas com uma lavagem em álcool 70% por 1 minuto, seguida de uma lavagem em hipoclorito de sódio 2% acrescido de Tween 20 (20pL para cada 100 ml_ de solução) por 20 minutos. O método descrito aqui não está restrito á variedade EBDA-MPA-34 (outras variedades podem ser utilizadas com resultados similares). As sementes foram lavadas 4 vezes com água destilada autoclavada e deixadas de molho por 24 horas. Após o período, o tegumento das sementes foi quebrado com ajuda de um alicate e os embriões zigóticos foram retirados com auxilio de pinça e deixados em água para não desidratar. Os embriões foram lavados três vezes com água destilada autoclavada, desinfestados em Hipoclorito de sódio 0,5% por 10 minutos e lavados cinco vezes com água destilada autoclavada, então o excesso de água foi retirado e os embriões foram colocados em meio de indução inicial (Mil) contendo MS (Murashige and Skoog basal médium - Sigma M5519) acrescido de caseína 300 mg.L-1 , tiamina 100 mg.L-1 , sacarose 3%, ácido indol-butirico (AIB) 0,05 mg.L-1 , thidiazuron (TDZ) 0,5 mg.L-1 , ágar 1 ,4% e pH 4,0, no qual permaneceram por 48 horas em estufa a 28°C no escuro. [75] The methodology for obtaining genetically modified castor strains was developed from the bombardment of particles in meristematic regions of zygotic castor embryo. [76] Healthy seeds of the EBDA-MPA-34 cultivar were selected and disinfected with a wash in 70% alcohol for 1 minute, followed by a wash in 2% sodium hypochlorite plus Tween 20 (20pL for each 100 ml_ of solution) for 20 minutes. The method described here is not restricted to the EBDA-MPA-34 variety (other varieties can be used with similar results). The seeds were washed 4 times with autoclaved distilled water and left to soak for 24 hours. After the period, the seed coat was broken with pliers and the zygotic embryos were removed with tweezers and left in water to avoid dehydration. The embryos were washed three times with autoclaved distilled water, disinfected in 0.5% sodium hypochlorite for 10 minutes and washed five times with autoclaved distilled water, then the excess water was removed and the embryos were placed in an initial induction medium ( Mil) containing MS (Murashige and Skoog basal medium - Sigma M5519) plus casein 300 mg.L-1, thiamine 100 mg.L-1, sucrose 3%, indole-butyric acid (AIB) 0.05 mg.L- 1, thidiazuron (TDZ) 0.5 mg.L-1, agar 1, 4% and pH 4.0, in which they remained for 48 hours in an oven at 28 ° C in the dark.
[77] Após esse período o meristema dos embriões foi exposto retirando-se os cotilédones e os primórdios foliares com auxílio de um bisturi, e foram colocados novamente no meio Mil, por 24 horas antes da transformação.  [77] After this period, the embryos meristem was exposed by removing the cotyledons and the primordial leaves with the aid of a scalpel, and were placed back in the Mil mil, for 24 hours before the transformation.
[78] Os embriões zigóticos de mamona com meristema exposto foram posicionados em meio de bombardeamento (MB), contendo MS (Murashige and Skoog basal médium - Sigma M5519) 0,5X acrescido de sacarose 3%, phytagel 0,8% e pH 5,8, de forma que o meristema se encontrasse posicionado para cima, e a transformação genética por biobalística foi realizada de acordo com Aragão et al. 2000 (Aragão, F. J. L., Sarokin, L., Vianna, G. R., and Rech, E. L. 2000. Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean ( Glycine max (L.) Merrill) plants at high frequency. Theor. Appl. Genet. 101 :1 -6). [79] A partir de análises histológicas e anatômicas dos explantes induzidos e cultivados em meios de cultura, antes e após a transformação genética, visando a visualização das camadas de células do meristema apical do embrião zigótico que estavam sendo transformadas, células competentes para transformação genética e para regeneração foram induzidas nos meios de cultura específicos para gerar gemas de novo, e dessa forma, obter brotos transgênicos. O segundo gargalo do processo foi o enraizamento in vitro dos brotos transgênicos, que foi induzido, possibilitando a obtenção de uma planta inteira GM com transferência dos transgenes para sua descendência. [78] Zygotic castor embryos with exposed meristem were placed in bombardment medium (MB), containing 0.5X DM (Murashige and Skoog basal medium - Sigma M5519) plus 3% sucrose, 0.8% phytagel and pH 5 , 8, so that the meristem is positioned upwards, and the genetic transformation by biobalistics was performed according to Aragão et al. 2000 (Aragon, FJL, Sarokin, L., Vianna, GR, and Rech, EL 2000. Selection of transgenic meristematic cells using a herbicidal molecule results in the recovery of fertile transgenic soybean (Glycine max (L.) Merrill) plants at high frequency, Theor, Appl, Genet, 101: 1-6). [79] From histological and anatomical analyzes of explants induced and cultured in culture media, before and after genetic transformation, aiming at visualizing the cell layers of the apical meristem of the zygotic embryo that were being transformed, cells competent for genetic transformation and for regeneration they were induced in the specific culture media to generate new gems, and in this way, to obtain transgenic shoots. The second bottleneck in the process was the in vitro rooting of transgenic shoots, which was induced, making it possible to obtain an entire GM plant with transfer of the transgenes to their offspring.
[80] Dessa forma, em seguida a transformação, os embriões foram transferidos novamente para o meio Mil onde permaneceram por 24 horas e então foram transferidos para o meio de indução e seleção MIS contendo MS (Murashige and Skoog basal médium - Sigma M5519) acrescido de inositol 100 mg.L·1, caseína 300 mg.L·1, tiamina 100 mg.L·1, sacarose 3%, AIB 0,05 mg.L 1, TDZ 0,5 mg.L 1, imazapyr 150 nM, ágar 1 ,4% e pH 4,0 onde permaneceram por sete dias. Após esse período os explantes foram transferidos para meio de manutenção de multibrotação e seleção (MMM) contendo MS (Murashige and Skoog basal médium - Sigma M5519) acrescido de inositol 100 mg.L·1, caseína 300 mg.L·1, tiamina 100 mg.L·1, sacarose 3%, AIB 0,1 mg.L·1, zeatina 1 mg.L·1, imazapyr 150 nM, ágar 1 ,4% e pH 4,0 por 15 dias. Após o período, os brotos foram separados e transferidos para meio de alongamento de brotos (MAB) contendo MS (Murashige and Skoog basal médium - Sigma M5519) acrescido de inositol 100 mg.L·1, caseína 300 mg.L·1, tiamina 100 mg.L·1, sacarose 3%, AIB 1 mg.L·1, ácido giberélico (GA3) 1 mg.L·1, nitrato de prata 5 mM, imazapyr 200 nM, ágar 1 ,4% e pH 4,0, e mantidos, com repicagens a cada 15 dias, até o aparecimento de explantes bem estruturados e alongados com cerca de 2-3 cm que foram transferidos para meio de enraizamento ME contendo MS (Murashige and Skoog basal médium - Sigma M5519) acrescido de inositol 100 mg.L·1, caseína 300 mg.L·1, tiamina 100 mg.L·1, sacarose 3%, AIB 2 mg.L·1, ácido giberélico (GA3) 0,5 mg.L·1, nitrato de prata 5 mM, ágar 1 ,4% e pH 4,0. Plântulas com cerca de 3-4 cm e com raízes foram aclimatizados em casa de vegetação em copos de 700 ml_ contendo solo e vermiculita (1 : 1 ) com um saco plástico para manter a um idade. Após serem aclimatizadas, as plantas foram transferidas para vaso de 8 L contendo solo. [80] Thus, after the transformation, the embryos were transferred again to the Mil medium where they remained for 24 hours and then they were transferred to the MIS induction and selection medium containing MS (Murashige and Skoog basal medium - Sigma M5519) plus inositol 100 mg.L · 1 , casein 300 mg.L · 1 , thiamine 100 mg.L · 1 , sucrose 3%, AIB 0.05 mg.L 1 , TDZ 0.5 mg.L 1 , imazapyr 150 nM , 1, 4% agar and pH 4.0 where they remained for seven days. After this period, the explants were transferred to multibrotation and selection maintenance (MMM) containing MS (Murashige and Skoog basal medium - Sigma M5519) plus inositol 100 mg.L · 1 , casein 300 mg.L · 1 , thiamine 100 mg.L · 1 , sucrose 3%, AIB 0.1 mg.L · 1 , zeatin 1 mg.L · 1 , imazapyr 150 nM, agar 1, 4% and pH 4.0 for 15 days. After the period, the sprouts were separated and transferred to sprout elongation medium (MAB) containing MS (Murashige and Skoog basal medium - Sigma M5519) plus inositol 100 mg.L · 1 , casein 300 mg.L · 1 , thiamine 100 mg.L · 1 , sucrose 3%, AIB 1 mg.L · 1 , gibberellic acid (GA3) 1 mg.L · 1 , 5 mM silver nitrate, 200 nM imazapyr, 1% 4 agar and pH 4, 0, and maintained, with peaks every 15 days, until the appearance of well-structured and elongated explants of about 2-3 cm which were transferred to rooting medium ME containing MS (Murashige and Skoog basal medium - Sigma M5519) plus inositol 100 mg.L · 1 , casein 300 mg.L · 1 , thiamine 100 mg.L · 1 , sucrose 3%, AIB 2 mg.L · 1 , gibberellic acid (GA3) 0.5 mg.L · 1 , 5 mM silver nitrate, 1, 4% agar and pH 4.0. Seedlings of about 3-4 cm and with roots were acclimatized in a greenhouse in 700 ml cups containing soil and vermiculite (1: 1) with a plastic bag to maintain an age. After being acclimatized, the plants were transferred to an 8 L pot containing soil.
Exemplo 3 Example 3
Regeneração das plantas de mamona  Regeneration of castor plants
[81] Em seguida a transformação, os embriões foram transferidos novamente para o meio Mil onde permaneceram por 24 horas e então foram transferidos para o meio de indução e seleção MIS contendo MS (Murashige and Skoog basal médium - Sigma M5519) acrescido de inositol 100 mg.L-1 , caseína 300 mg.L-1 , tiamina 100 mg.L-1 , sacarose 3%, AIB 0,05 mg.L-1 , TDZ 0,5 mg.L-1 , imazapyr 150 nM, ágar 1 ,4% e pH 4,0 onde permaneceram por sete dias. Após esse período os explantes foram transferidos para meio de manutenção de multibrotação e seleção (MMM) contendo MS (Murashige and Skoog basal médium - Sigma M5519) acrescido de inositol 100 mg.L-1 , caseína 300 mg.L-1 , tiamina 100 mg.L-1 , sacarose 3%, AIB 0,1 mg.L-1 , zeatina 1 mg.L-1 , imazapyr 150 nM, ágar 1 ,4% e pH 4,0 por 15 dias. Após o período, os brotos foram separados e transferidos para meio de alongamento de brotos (MAB) contendo MS (Murashige and Skoog basal médium - Sigma M5519) acrescido de inositol 100 mg.L-1 , caseína 300 mg.L-1 , tiamina 100 mg.L-1 , sacarose 3%, AIB 1 mg.L-1 , ácido giberélico (GA3) 1 mg.L-1 , nitrato de prata 5 mM, imazapyr 200 nM, ágar 1 ,4% e pH 4,0, e mantidos, com repicagens a cada 15 dias, até o aparecimento de explantes bem estruturados e alongados com cerca de 2-3 cm que foram transferidos para meio de enraizamento ME contendo MS (Murashige and Skoog basal médium - Sigma M5519) acrescido de inositol 100 mg.L-1 , caseína 300 mg.L-1 , tiamina 100 mg.L-1 , sacarose 3%, AIB 2 mg.L-1 , ácido giberélico (GA3) 0,5 mg.L-1 , nitrato de prata 5 pM, ágar 1 ,4% e pH 4,0. Plântulas com cerca de 3-4 cm e com raízes foram aclimatizados em casa de vegetação em copos de 700 ml_ contendo latossolo vermelho e vermiculita (1 :1 ) com um saco plástico para manter a umidade. Após serem aclimatizadas, as plantas foram transferidas para vasos contendo latossolo vermelho. [81] After the transformation, the embryos were transferred again to the Mil medium where they remained for 24 hours and then they were transferred to the MIS induction and selection medium containing MS (Murashige and Skoog basal medium - Sigma M5519) plus inositol 100 mg.L-1, casein 300 mg.L-1, thiamine 100 mg.L-1, sucrose 3%, AIB 0.05 mg.L-1, TDZ 0.5 mg.L-1, imazapyr 150 nM, agar 1, 4% and pH 4.0 where they remained for seven days. After this period, the explants were transferred to multibrotation and selection maintenance (MMM) containing MS (Murashige and Skoog basal medium - Sigma M5519) plus inositol 100 mg.L-1, casein 300 mg.L-1, thiamine 100 mg.L-1, sucrose 3%, AIB 0.1 mg.L-1, zeatin 1 mg.L-1, imazapyr 150 nM, agar 1, 4% and pH 4.0 for 15 days. After the period, the sprouts were separated and transferred to sprout elongation medium (MAB) containing MS (Murashige and Skoog basal medium - Sigma M5519) plus inositol 100 mg.L-1, casein 300 mg.L-1, thiamine 100 mg.L-1, sucrose 3%, AIB 1 mg.L-1, gibberellic acid (GA3) 1 mg.L-1, 5 mM silver nitrate, 200 nM imazapyr, agar 1, 4% and pH 4, 0, and maintained, with peaks every 15 days, until the appearance of well-structured and elongated explants of about 2-3 cm which were transferred to rooting medium ME containing MS (Murashige and Skoog basal medium - Sigma M5519) plus inositol 100 mg.L-1, casein 300 mg.L-1, thiamine 100 mg.L-1, sucrose 3%, AIB 2 mg.L-1, gibberellic acid (GA3) 0.5 mg.L-1, 5 pM silver nitrate, 1.4% agar and pH 4.0. Seedlings about 3-4 cm and with roots were acclimatized at home of vegetation in 700 ml_ cups containing red latosol and vermiculite (1: 1) with a plastic bag to maintain moisture. After being acclimatized, the plants were transferred to pots containing red latosol.
Exemplo 4 Example 4
Identificação de plantas de mamoma geneticamente modificadas por análise histoquímica do aus  Identification of genetically modified mamoma plants by histochemical analysis of aus
[82] Pode-se utilizar tecidos do evento TB14S-5D em um ensaio histoquimico para identificar o evento TB14S-5D a partir da expressão da proteína GUS no substrato x-gluc de acordo com (Jefferson, R.A., Kavanagh, T.A. & Bevan, M.W. GUS fusions: b-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901-3907, 1987). [82] TB14S-5D event tissues can be used in a histochemical assay to identify the TB14S-5D event from the expression of the GUS protein on the x-gluc substrate according to (Jefferson, RA, Kavanagh, TA & Bevan, MW GUS fusions: b-glucuronidase as a sensitive and versatile gene fusion marker in higher plants (EMBO J. 6, 3901-3907, 1987).
[83] A Figura 2 mostra que a planta transgênica possui a construção contendo gene GUS enquanto que a planta controle não mostrou expressão do marcador GUS.  [83] Figure 2 shows that the transgenic plant has the construction containing the GUS gene while the control plant did not show expression of the GUS marker.
Exemplo 5 Example 5
Identificação de plantas de mamoma geneticamente modificadas por Identification of genetically modified mamoma plants by
Southern blot Southern blot
[84] É possível detectar o evento TB14S-5D ao fixar o DNA total do evento TB14S-5D em uma membrana e hibridizar com uma sonda homologa a região Aricin correspondente a região amplificada com os primers PSIUINTF (SEQ ID NO 19) e PSIUINTR (SEQ ID NO 20). Metodologia de acordo com [Lacorte, C., Vianna, G., Aragão, F. J. L. & Rech, E. L. Molecular Characterization of Genetically Manipulated Plants in Plant Cell Culture: Essential Methods (ed. Davey, M. R. & Anthony, P.) 261 -279 (John Wiley & Sons, 2010)]. [84] It is possible to detect the TB14S-5D event by fixing the total DNA of the TB14S-5D event on a membrane and hybridize with a probe homologating the Aricin region corresponding to the amplified region with the primers PSIUINTF (SEQ ID NO 19) and PSIUINTR ( SEQ ID NO 20). Methodology according to [Lacorte, C., Vianna, G., Aragon, FJL & Rech, EL Molecular Characterization of Genetically Manipulated Plants in Plant Cell Culture: Essential Methods (ed. Davey, MR & Anthony, P.) 261 -279 (John Wiley & Sons, 2010)].
[85] A Figura 3 mostra os resultados de Southern blot com a identificação dos eventos transgênicos. Exemplo 6 [85] Figure 3 shows the results of Southern blot with the identification of transgenic events. Example 6
Identificação de plantas de mamoma geneticamente modificadas por análise de Northern blot  Identification of genetically modified mamoma plants by Northern blot analysis
[86] As análises de RNAi dos endospermas das sementes T1 , possibilitaram a identificação dos mRNAs de Ricina/RCA nas plantas não GM, e a identificação dos siRNAs nos endospermas das sementes T1 geneticamente modificadas. [86] RNAi analyzes of T1 seed endosperm made it possible to identify Ricina / RCA mRNAs in non-GM plants, and to identify siRNAs in the endosperm of genetically modified T1 seeds.
[87] Pode ser detectado o silenciamento da ricina no evento TB14S-5D a partir do isolamento de RNA e hibridização com uma sonda homologa a região da ricina correspondente a um fragmento de 148 pb amplificado utilizando o par de primers Ric149RNAiF (SEQ ID NO 23) / RcRinf: (SEQ ID NO 24). A metodologia foi realizada de acordo com (Aragão, F. J. L, Nogueira, E. O. P. L, Tinoco, M. L. P. & Faria, J. C. Molecular characterization of the first commercial transgenic common bean immune to the Bean golden mosaic virus. J. Biotechnol. 166, 42-50; 10.1016/j.jbiotec.2013.04.009, 2013).  [87] Silence of ricin in the TB14S-5D event can be detected from RNA isolation and hybridization with a probe homologating the ricin region corresponding to a 148 bp fragment amplified using the Ric149RNAiF primer pair (SEQ ID NO 23 ) / RcRinf: (SEQ ID NO 24). The methodology was carried out according to (Aragon, FJ L, Nogueira, EOP L, Tinoco, MLP & Faria, JC Molecular characterization of the first commercial transgenic common bean immune to the Bean golden mosaic virus. J. Biotechnol. 166, 42- 50; 10.1016 / j.jbiotec.2013.04.009, 2013).
[88] A Figura 4 mostra as plantas transgênicas do evento identificadas via Northern blot.  [88] Figure 4 shows the transgenic plants of the event identified via Northern blot.
Exemplo 7 Example 7
Identificação de plantas de mamoma geneticamente modificadas por ELISA  Identification of genetically modified mamoma plants by ELISA
[89] É possível detectar o silenciamento da ricina no evento TB14S-5D a partir da extração de proteínas totais e quantificação da ricina em sementes maduras do evento TB14S-5D por ELISA (Enzyme-Linked Immunosorbent Assay) de acordo com (Baldoni, A.B., Araújo, A.C.G., Carvalho, M.H., Gomes, A.C.M.M. & Aragão, F.J.L. Immunolocalization of ricin accumulation during castor bean (Ricinus communis L.) seed development. Int. J. Plant Biol. 1 :e12, 61-65, 2010).  [89] It is possible to detect ricin silencing in the TB14S-5D event from the extraction of total proteins and quantification of ricin in mature seeds of the TB14S-5D event by ELISA (Enzyme-Linked Immunosorbent Assay) according to (Baldoni, AB , Araújo, ACG, Carvalho, MH, Gomes, ACMM & Aragão, FJL Immunolocalization of ricin accumulation during castor bean (Ricinus communis L.) seed development. Int. J. Plant Biol. 1: e12, 61-65, 2010).
[90] Análise por ELISA foi utilizada para detectar e quantificar a ricina em sementes segregantes da linhagem transgênica TB14S-5D. Os resultados mostraram que as sementes do tipo selvagem (Não GM) apresentaram 20 ng de ricina/pg de proteína total, enquanto que as sementes segregantes que não contém os transgenes, apresentaram quantidades estatisticamente semelhantes de ricina em comparação com o controle (plantas não transgênicas). Em contraste, a ricina não foi detectável por ELISA nas sementes transgênicas. Considerando que o anticorpo produzido contra a cadeia A da ricina reage de forma cruzada com a RCA120 devido à elevada identidade entre elas, nossos resultados indicaram que tanto a ricina quanto a RCA120 foram silenciadas. [90] ELISA analysis was used to detect and quantify ricin in segregating seeds of the TB14S-5D transgenic strain. The results showed that wild type (non-GM) seeds showed 20 ng ricin / pg of total protein, while segregating seeds that do not contain transgenes, showed statistically similar amounts of ricin compared to the control (non-transgenic plants). In contrast, ricin was not detectable by ELISA in transgenic seeds. Considering that the antibody produced against the ricin A chain reacts crosswise with RCA120 due to the high identity between them, our results indicated that both ricin and RCA120 were silenced.
[91] A Figura 5 mostra a detecção do silenciamento da ricina no evento TB14S-5D. A ricina foi detectada no endosperma das sementes não transgênicas e nas sementes segregantes negativas. Porem, a ricina não pôde ser detectada em sementes positivas do evento TB14S-5D.  [91] Figure 5 shows the detection of ricin silencing in the TB14S-5D event. Ricin was detected in the endosperm of non-transgenic seeds and in negative segregating seeds. However, ricin could not be detected in positive seeds of the TB14S-5D event.
Exemplo 8 Example 8
Ensaio de hemaqlutinação  Hemaqglutination test
[92] O silenciamento da RCA120 no evento TB14S-5D pode ser detectado a partir de um ensaio de hemaglutinação de hemácias a partir da extração de proteínas totais do evento TB14S-5D e adição em uma solução de sangue diluído de forma seriada, podendo ser observada não hemaglutinação das hemácias.  [92] Silencing of RCA120 in the TB14S-5D event can be detected from a red blood cell hemagglutination assay from the extraction of total proteins from the TB14S-5D event and addition in a serially diluted blood solution, which can be red blood cell hemagglutination was observed.
[93] A Ricina é uma lectina que tem sido descrita como fraca hemaglutinina, enquanto a RCA120 apresenta uma forte atividade de hemaglutinação. Assim sendo, realizamos teste de hemaglutinação com proteínas totais isoladas do endosperma de sementes de mamona transgênicas e não transgênicas. Observamos forte hemaglutinação quando proteínas isoladas de sementes não transgênicas foram usadas na concentração de 2,5 pg/pL de proteína total, tendo sido evidente até a concentração de 19 ng/pL de proteína total. Em contraste, nenhuma atividade de hemaglutinação foi visível com proteínas isoladas a partir de sementes transgênicas, mesmo na maior concentração de proteína (aproximadamente 131 vezes mais concentrada). Além disso, a atividade de aglutinação não foi observada em células sanguíneas de boi incubadas com PBS (branco), enquanto que a RCA120 purificada apresentou forte atividade de hemaglutinação até na concentração de 0,39 ng/pL. Além da não presença de transcritos, as proteínas ricina e RCA120 não foram detectadas nos endospermas das sementes T1 da linhagem TB14S-5D, confirmando o eficiente silenciamento da Ricina e da RCA120. [93] Ricin is a lectin that has been described as weak hemagglutinin, while RCA120 has a strong hemagglutination activity. Therefore, we performed a hemagglutination test with total proteins isolated from the endosperm of transgenic and non-transgenic castor seeds. We observed strong hemagglutination when proteins isolated from non-transgenic seeds were used at a concentration of 2.5 pg / pL of total protein, and it was evident up to a concentration of 19 ng / pL of total protein. In contrast, no hemagglutination activity was visible with proteins isolated from transgenic seeds, even at the highest protein concentration. (approximately 131 times more concentrated). In addition, agglutination activity was not observed in ox blood cells incubated with PBS (white), while the purified RCA120 showed strong hemagglutination activity even at a concentration of 0.39 ng / pL. In addition to the absence of transcripts, the proteins ricin and RCA120 were not detected in the endosperm of T1 seeds of the TB14S-5D strain, confirming the efficient silencing of Ricina and RCA120.
[94] A Figura 6 mostra o resultado de um ensaio de hemaglutinação feito com proteínas de sementes do evento TB14S-5D e controle mostrando que proteínas de sementes do evento TB14S-5D não aglutinaram hemácias, conforme ocorreu com controle negativo (PBS) formando um ponto no fundo da placa, enquanto proteínas de sementes não transgênicas aglutinaram hemácias como ocorreu no controle positivo (RCA120) formando um fundo difuso.  [94] Figure 6 shows the result of a hemagglutination assay done with seed proteins from the TB14S-5D event and a control showing that seed proteins from the TB14S-5D event did not agglutinate red blood cells, as occurred with negative control (PBS) forming a point at the bottom of the plate, while non-transgenic seed proteins agglutinated red blood cells as occurred in the positive control (RCA120) forming a diffuse background.
Exemplo 9 Example 9
Identificação de plantas de mamoma geneticamente modificadas por PCR  Identification of genetically modified mamoma plants by PCR
[95] É possível detectar o evento TB14S-5D por PCR com a utilização dos pares de primer PSIUINTF (SEQ ID NO 19) com PSIUINTR (SEQ ID NO 20) e AHASCD2F (SEQ ID NO 25) com SOJAE1 R (SEQ ID NO 26). Metodologia utilizada de acordo com Lacorte, C., Vianna, G., Aragão, F. J. L. & Rech, E. L. Molecular Characterization of Genetically Manipulated Plants in Plant Cell Culture: Essential Methods (ed. Davey, M. R. & Anthony, P.) 261 -279 (John Wiley & Sons, 2010). A figura 9 apresenta esquematicamente a região amplificada pelos primeiros AFIASCD2F e SOJAE1 R. [95] It is possible to detect the TB14S-5D event by PCR using primer pairs PSIUINTF (SEQ ID NO 19) with PSIUINTR (SEQ ID NO 20) and AHASCD2F (SEQ ID NO 25) with SOJAE1 R (SEQ ID NO 26). Methodology used according to Lacorte, C., Vianna, G., Aragon, FJL & Rech, EL Molecular Characterization of Genetically Manipulated Plants in Plant Cell Culture: Essential Methods (ed. Davey, MR & Anthony, P.) 261 -279 (John Wiley & Sons, 2010). Figure 9 schematically shows the region amplified by the first AFIASCD2F and SOJAE1 R.
[96] As Figuras 7 e 8 mostram que as plantas transgênicas do evento foram detectadas com os primers utilizados. Na Figura 8 é possível observar a presença da banda de 396 pb referente a SEQ ID NO 27, que constitui marcador específico para o evento TB14S-5D. Exemplo 10 [96] Figures 7 and 8 show that the event's transgenic plants were detected with the primers used. In Figure 8, it is possible to observe the presence of the 396 bp band referring to SEQ ID NO 27, which is a specific marker for the TB14S-5D event. Example 10
Teste de viabilidade celular  Cell viability test
[97] Células epiteliais de intestino de rato (IEC-6) foram incubadas durante 24 h com proteínas totais isoladas de endosperma de semente transgênica e não transgênica. A viabilidade das células expostas a proteínas isoladas de planta não GM contendo 1 ou 10 ng de ricina/mL foi reduzida a 53% e 16%, respectivamente. No entanto, células expostas à quantidade equivalente de proteínas de semente transgênica mantiveram sua viabilidade a 97% (a 0,5 pg proteína total/m L), e a 78% na maior concentração de proteína (50 pg de proteína total/m L). Não houve diferença estatística entre os valores de viabilidade de 97% e 78%, e esses resultados foram corroborados pelo fato de que a síntese proteica foi inibida de 40% a 90% em células cultivadas durante 5 h com proteínas de sementes não transgênicas contendo 0,1 e 1 ng de ricina/mL, respectivamente. No entanto, nenhuma inibição foi observada em células cultivadas na presença da quantidade equivalente de proteínas isoladas a partir de sementes transgênicas, mesmo na maior concentração de proteína total. Assim sendo, demonstramos que as sementes de plantas GM não foram tóxicas para o cultivo de células epiteliais de intestino de rato.  [97] Rat gut epithelial cells (IEC-6) were incubated for 24 h with total proteins isolated from transgenic and non-transgenic seed endosperm. The viability of cells exposed to proteins isolated from non-GM plants containing 1 or 10 ng ricin / mL was reduced to 53% and 16%, respectively. However, cells exposed to the equivalent amount of transgenic seed proteins maintained their viability at 97% (at 0.5 pg total protein / m L), and at 78% at the highest protein concentration (50 pg total protein / m L ). There was no statistical difference between the viability values of 97% and 78%, and these results were corroborated by the fact that protein synthesis was inhibited from 40% to 90% in cells grown for 5 h with proteins from non-transgenic seeds containing 0 , 1 and 1 ng ricin / mL, respectively. However, no inhibition was observed in cells cultured in the presence of the equivalent amount of proteins isolated from transgenic seeds, even at the highest concentration of total protein. Therefore, we demonstrated that the seeds of GM plants were not toxic for the cultivation of rat intestinal epithelial cells.
Exemplo 11 Example 11
Teste de sobrevivência  Survival test
[98] Ratos (Swiss Webster) foram tratados via administração intraperitoneal com endosperma de sementes de mamona para medir a toxicose por ricina no teste de desafio letal. Realizamos o desafio de ricina injetando ratos com proteínas totais isoladas do evento TB14S-5D e de sementes não transgênicas. Como esperado, todos os animais que foram submetidos à injeção intraperitoneal de 20 pg de proteínas de sementes do tipo selvagem/g de peso corporal (552 pg de ricina/kg de peso corporal) morreram no primeiro período de 24 h. No entanto, animais injetados com as quantidades equivalentes de proteínas totais isoladas de sementes do evento TB14S-5D sobreviveram, sem sintomas visíveis de intoxicação por ricina (diarréia, fraqueza, baixo apetite, fezes escuras e perda de peso). Na verdade, observou-se uma diminuição notável na glicemia de animais injetados com proteínas de sementes não transgênicas. No entanto, não houve significante alteração na glicemia de animais injetados com proteínas de sementes transgênicas por um período de 60 h. Os animais foram monitorados por um período adicional de sete dias e nenhuma morte foi registrada para aqueles injetados com proteínas do evento TB14S-5D. No teste de toxicidade in vivo com proteínas totais isoladas de sementes do evento TB14S-5D, mesmo numa quantidade de 15 a 230 vezes os valores da DL50, não apresentaram efeitos tóxicos nos ratos. Com base em nossos resultados, foi possível prever que os ratos poderiam consumir até 52% de seu peso corporal de torta de mamona derivada da planta GM, sem intoxicação aguda. Geralmente, vacas, ovelhas e cabras consomem apenas 1 a 2% de seu peso corporal por dia como fonte de proteínas. [98] Rats (Swiss Webster) were treated via intraperitoneal administration with castor seed endosperm to measure ricin toxicosis in the lethal challenge test. We performed the ricin challenge by injecting rats with total proteins isolated from the TB14S-5D event and from non-transgenic seeds. As expected, all animals that were subjected to intraperitoneal injection of 20 pg of wild-type seed proteins / g of body weight (552 pg of ricin / kg of body weight) died in the first 24 h period. However, animals injected with the equivalent amounts of total proteins isolated from seeds of the TB14S-5D event survived, with no visible symptoms of ricin intoxication (diarrhea, weakness, low appetite, dark stools and weight loss). In fact, there has been a noticeable decrease in blood glucose from animals injected with proteins from non-GM seeds. However, there was no significant change in the glycemia of animals injected with proteins from transgenic seeds for a period of 60 h. The animals were monitored for an additional seven days and no deaths were recorded for those injected with TB14S-5D event proteins. In the in vivo toxicity test with total proteins isolated from seeds of the TB14S-5D event, even in an amount of 15 to 230 times the LD50 values, did not show toxic effects in the rats. Based on our results, it was possible to predict that rats could consume up to 52% of their body weight from castor bean cake derived from the GM plant, without acute intoxication. Generally, cows, sheep and goats consume only 1 to 2% of their body weight per day as a source of protein.

Claims

REIVINDICAÇÕES
1. Polinucleotídeo sintético caracterizado por compreender: 1. Synthetic polynucleotide characterized by comprising:
A) Uma primeira região com sequência de ácidos nucléicos com similaridade de pelo menos 90% com a sequência descrita em SEQ ID No 12; A) A first region with a nucleic acid sequence with at least 90% similarity to the sequence described in SEQ ID No 12;
B) Uma segunda região com o complemento da sequência deB) A second region with the complement of the sequence of
(A); (THE);
2. Polinucleotídeo de acordo com a reivindicação 1 caracterizado por a sequência de ácidos nucléicos de (A) apresentar pelo menos 95% de similaridade com a sequência descrita em SEQ ID No 12. Polynucleotide according to claim 1, characterized in that the nucleic acid sequence of (A) has at least 95% similarity with the sequence described in SEQ ID No 12.
3. Polinucleotídeo de acordo com a reivindicação 2 caracterizado por a sequência de ácidos nucléicos de (A) apresentar pelo menos 99% de similaridade com a sequência descrita em SEQ ID No 12. Polynucleotide according to claim 2, characterized in that the nucleic acid sequence of (A) is at least 99% similar to the sequence described in SEQ ID No 12.
4. Polinucleotídeo de acordo com a reivindicação 3 caracterizado por a sequência de ácidos nucléicos de (A) apresentar a sequência descrita em SEQ ID No 12. Polynucleotide according to claim 3, characterized in that the nucleic acid sequence of (A) has the sequence described in SEQ ID No 12.
5. Polinucleotídeo de acordo com qualquer uma das reivindicações 1 a 3 caracterizado por a primeira e a segunda região serem capazes de produzir uma molécula de RNA dupla-fita. Polynucleotide according to any one of claims 1 to 3, characterized in that the first and second regions are capable of producing a double-stranded RNA molecule.
6. Polinucleotídeo de acordo com a reivindicação 5 caracterizado por apresentar uma região espaçadora entre a primeira região e a segunda região. Polynucleotide according to claim 5, characterized in that it has a spacer region between the first region and the second region.
7. Polinucleotídeo de acordo com a reivindicação 6 caracterizado por a sequência espaçadora ser um íntron. Polynucleotide according to claim 6, characterized in that the spacer sequence is an intron.
8. Polinucleotídeo de acordo com a reivindicação 7 caracterizado por o íntron ser selecionado do grupo consistindo de íntron pdk, íntron pdk2, íntron catalase da mamona, íntron Delta 12 desaturase de algodão, Delta 12 desaturase de Arabidopsis, íntron ubiquitina de milho, íntron de SV40 e íntrons do gene da ricina. Polynucleotide according to claim 7, characterized in that the intron is selected from the group consisting of pdk intron, pdk2 intron, castor catalase intron, Delta 12 cotton desaturase, Delta 12 Arabidopsis desaturase, corn ubiquitin intron, intron SV40 and ricin gene introns.
9. Polinucleotídeo de acordo com a reivindicação 8 caracterizado por a região espaçadora ser o íntron pdk. Polynucleotide according to claim 8, characterized in that the spacer region is the pdk intron.
10. Polinucleotídeo sintético caracterizado por compreender: a) Uma primeira região com sequência de ácidos nucléicos conforme sequência descrita em SEQ ID No 12; b) Uma segunda região com sequência de ácidos nucléicos conforme sequência descrita em SEQ ID No 13; c) Uma região espaçadora entre a primeira região e a segunda região com sequência de ácidos nucléicos conforme a sequencia descrita em SEQ ID No 5. 10. Synthetic polynucleotide characterized by comprising: a) A first region with a nucleic acid sequence as described in SEQ ID No 12; b) A second region with a nucleic acid sequence as described in SEQ ID No 13; c) A spacer region between the first region and the second region with a nucleic acid sequence according to the sequence described in SEQ ID No 5.
11. Construção gênica caracterizada por compreender: 11. Gene construction characterized by comprising:
i) Um polinucleotídeo de acordo com qualquer uma das reivindicações 1 a 10;  i) A polynucleotide according to any one of claims 1 to 10;
ii) Região de promotor gênico ativo operacionalmente ligado ao polinucleotídeo definido em (i).  ii) Region of active gene promoter operationally linked to the polynucleotide defined in (i).
12. Construção gênica de acordo com a reivindicação 11 caracterizada por o promotor gênico de (ii) apresentar sequência de ácidos nucléicos conforme sequência descrita em SEQ ID No 4. Gene construction according to claim 11 characterized in that the gene promoter of (ii) has a nucleic acid sequence as described in SEQ ID No 4.
13. Vetor para transformação de plantas caracterizado por compreender construção gênica de acordo com a reivindicação 11 ou 12. Plant transformation vector characterized in that it comprises gene construction according to claim 11 or 12.
14. Vetor para transformação de plantas caracterizado por compreender: 14. Plant transformation vector characterized by comprising:
• Promotor gênico conforme sequência descrita em SEQ ID No• Gene promoter according to the sequence described in SEQ ID No
4; 4;
• Uma primeira região codificante com sequência de ácidos nucléicos conforme sequência descrita em SEQ ID No 12; • A first coding region with a nucleic acid sequence as described in SEQ ID No 12;
• Uma segunda região codificante com sequência de ácidos nucléicos conforme sequência descrita em SEQ ID No 13; • A second coding region with a nucleic acid sequence as described in SEQ ID No 13;
• Uma região espaçadora entre a primeira região e a segunda região com sequência de ácidos nucléicos conforme a sequencia descrita em SEQ ID No 5; • A spacer region between the first region and the second region with a nucleic acid sequence according to the sequence described in SEQ ID No 5;
• Sinal de terminação conforme sequência descrita em SEQ ID No 6; • Termination signal according to the sequence described in SEQ ID No 6;
• Gene marcador compreendendo o promotor descrito na SEQ ID NO 7, uma região codificadora descrita na SEQ ID NO 8 e um sinal de terminação descrito na SEQ ID NO 9; • Marker gene comprising the promoter described in SEQ ID NO 7, a coding region described in SEQ ID NO 8 and a termination signal described in SEQ ID NO 9;
• Gene de seleção compreendendo o promotor descrito na SEQ ID NO 1 , uma região codificadora descrita na SEQ ID NO 2 e um sinal de terminação descrito na SEQ ID NO 3. • Selection gene comprising the promoter described in SEQ ID NO 1, a coding region described in SEQ ID NO 2 and a termination signal described in SEQ ID NO 3.
15. Molécula de ribonucleotídeo de filamento duplo caracterizada por ser produzida a partir da expressão de uma molécula de ácido nucleico de acordo com qualquer das reivindicações 1 a 14. 15. Double-stranded ribonucleotide molecule characterized by being produced from the expression of a nucleic acid molecule according to any of claims 1 to 14.
16. Uso da molécula da reivindicação 15 caracterizado por resultar na supressão da expressão do gene da ricina/RCA. 16. Use of the molecule of claim 15, characterized in that it results in suppression of the expression of the ricin / RCA gene.
17. Método para obtenção de plantas de mamona sem ricina/RCA caracterizado por compreender as seguintes etapas: I) Inserir em células vegetais de mamona molécula de ácido nucléico de acordo com qualquer uma das reivindicações 1 a 15; 17. Method for obtaining castor plants without ricin / RCA characterized by comprising the following steps: I) Inserting nucleic acid molecule into castor plant cells according to any one of claims 1 to 15;
II) Crescer ou regenerar as células em meios específicos; III) Selecionar as plantas com o gene da ricina silenciado. II) Grow or regenerate cells in specific media; III) Select the plants with the mutated ricin gene.
18. Célula eucariótica caracterizada por compreender uma molécula nucleotídica de acordo com qualquer uma das reivindicações 1 a 15. 18. Eukaryotic cell characterized by comprising a nucleotide molecule according to any one of claims 1 to 15.
19. Célula eucariótica de acordo com a reivindicação 18 caracterizada por ser uma célula de Ricinus communis. 19. Eukaryotic cell according to claim 18, characterized by being a cell of Ricinus communis.
20. Planta transformada caracterizada por compreender uma molécula nucleotídica definida em qualquer uma das reivindicações 1 a 15. 20. Transformed plant characterized by comprising a nucleotide molecule defined in any one of claims 1 to 15.
21. Planta de acordo com a reivindicação 20 caracterizada por ser uma planta de Ricinus communis. 21. Plant according to claim 20, characterized by being a plant of Ricinus communis.
22. Planta de acordo com a reivindicação 21 caracterizada por ser o evento TB14S-5D. 22. Plant according to claim 21, characterized by being the TB14S-5D event.
23. Semente transgênica ou parte propagativa caracterizada por ser de planta de acordo com a reivindicação 20. 23. Transgenic seed or propagating part characterized by being of a plant according to claim 20.
24. Método de identificação de planta transformada geneticamente caracterizado por compreender as etapas de: A. formar uma mistura compreendendo uma amostra biológica contendo DNA de mamona e um par de primers capaz de amplificar uma molécula de ácido nucléico específica de uma planta de mamona geneticamente modificada sem ricina/RCA; 24. Method of identifying a genetically transformed plant characterized by comprising the steps of: A. forming a mixture comprising a biological sample containing castor DNA and a pair of primers capable of amplifying a specific nucleic acid molecule of a genetically modified castor plant without ricin / RCA;
B. reagir a mistura sob condições que permitam que o par de primers de ácido nucléico amplifiquem uma molécula específica de ácido nucleico de uma planta de mamona geneticamente modificada sem ricina/RCA; B. reacting the mixture under conditions that allow the nucleic acid primer pair to amplify a molecule nucleic acid specific of a genetically modified castor plant without ricin / RCA;
C. detectar a presença da molécula de ácido nucleico amplificada específica de uma planta de mamona geneticamente modificada sem ricina/RCA. C. detect the presence of the specific amplified nucleic acid molecule of a castor plant genetically modified without ricin / RCA.
25. Método de acordo com a reivindicação 24 caracterizado por a planta de mamona geneticamente modificada sem ricina/RCA ser o evento TB14S-5D.  25. Method according to claim 24, characterized in that the genetically modified castor plant without ricin / RCA is the TB14S-5D event.
26. Método de acordo com a reivindicação 24 caracterizada por o par de primers ser selecionado dentre os seguintes pares SEQ ID NO 19 com SEQ ID NO 20, SEQ ID NO 21 com SEQ ID NO 22 ou SEQ ID NO 23, SEQ ID NO 24 ou SEQ ID NO 25 com SEQ ID NO 26.  26. Method according to claim 24, characterized in that the primer pair is selected from the following pairs SEQ ID NO 19 with SEQ ID NO 20, SEQ ID NO 21 with SEQ ID NO 22 or SEQ ID NO 23, SEQ ID NO 24 or SEQ ID NO 25 with SEQ ID NO 26.
27. Método de acordo com a reivindicação 26 caracterizado por o par de primers ser SEQ ID NO 25 com SEQ ID NO 26.  Method according to claim 26, characterized in that the primer pair is SEQ ID NO 25 with SEQ ID NO 26.
28. Método de acordo com a reivindicação 24 caracterizado por a etapa B amplifique molécula específica de ácido nucléico conforme sequência descrita em SEQ ID NO 27.  28. Method according to claim 24, characterized in that step B amplifies specific nucleic acid molecule according to the sequence described in SEQ ID NO 27.
29. Kit de identificação de uma molécula de ácido nucleico de mamona em uma amostra biológica capaz de amplificar molécula de ácido nucleico do evento TB14S-5D caracterizado por compreender um par de primers de ácido nucleico selecionado dentre os seguintes pares SEQ ID NO 19 com SEQ ID NO 20, SEQ ID NO 21 com SEQ ID NO 22, SEQ ID NO 23 com SEQ ID NO 24 ou SEQ ID NO 25 com SEQ ID NO 26.  29. Kit for identifying a castor oil nucleic acid molecule in a biological sample capable of amplifying the nucleic acid molecule of the TB14S-5D event characterized by comprising a pair of nucleic acid primers selected from the following pairs SEQ ID NO 19 with SEQ ID NO 20, SEQ ID NO 21 with SEQ ID NO 22, SEQ ID NO 23 with SEQ ID NO 24 or SEQ ID NO 25 with SEQ ID NO 26.
30. Kit de identificação de acordo com a reivindicação 29 caracterizado por compreender o par de primers de ácido nucleico SEQ ID NO 25 com SEQ ID NO 26.  Identification kit according to claim 29, characterized in that it comprises the nucleic acid primer pair SEQ ID NO 25 with SEQ ID NO 26.
31. Kit de identificação de uma molécula de ácido nucleico de mamona em uma amostra biológica caracterizado por amplificar a sequência descrita em SEQ ID NO 27. 31. Kit for identification of a castor oil nucleic acid molecule in a biological sample characterized by amplifying the sequence described in SEQ ID NO 27.
32. Método de obtenção de uma planta de mamona sem ricina/RCA caracterizado por compreender as seguintes etapas: 32. Method of obtaining a castor plant without ricin / RCA characterized by comprising the following steps:
I. cruzar a planta de mamona contendo uma molécula de ácido nucleico do evento TB14S-5D com uma segunda planta de mamona;  I. crossing the castor plant containing a nucleic acid molecule from the TB14S-5D event with a second castor plant;
II. obter sementes do cruzamento da etapa I;  II. obtain seeds from the crossing of step I;
III. obter amostra de DNA da semente; e  III. obtain sample of DNA from the seed; and
IV. detectar a presença da molécula de ácido nucleico do evento IV. detect the presence of the event nucleic acid molecule
TB14S-5D de planta de mamona. TB14S-5D of castor plant.
33. Método de obtenção de uma planta de mamona sem ricina/RCA de acordo com a reivindicação 32 caracterizado por a etapa IV detectar a presença da molécula de ácido nucléico descrita em SEQ ID NO 27. 33. Method of obtaining a castor plant without ricin / RCA according to claim 32, characterized in that step IV detects the presence of the nucleic acid molecule described in SEQ ID NO 27.
34. Óleo de semente de mamona caracterizado por ser extraído de semente transgênica que compreenda uma molécula nucleotídica de acordo com qualquer uma das reivindicações 1 a 15. 34. Castor seed oil, characterized in that it is extracted from transgenic seed that comprises a nucleotide molecule according to any one of claims 1 to 15.
35. Torta de semente de mamona caracterizada por ser obtida por processo que utiliza semente transgênica que compreenda uma molécula nucleotídica de acordo com qualquer uma das reivindicações 1 a 15.  35. Castor seed cake characterized by being obtained by a process using transgenic seed that comprises a nucleotide molecule according to any one of claims 1 to 15.
PCT/BR2019/050480 2018-11-09 2019-11-06 Method for producing castor oil plant seeds lacking ricin/rca, castor oil plants lacking ricin/rca, method for identifying castor oil plants lacking ricin/rca, polynucleotides, constructs and uses thereof WO2020093128A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/292,307 US20210395764A1 (en) 2018-11-09 2019-11-06 Method for obtaining ricin/rca-free castor-oil plant seeds, ricin/rca-free castor-oil plants, method for identifying ricin/rca-free castor-oil plants, polynucleotides, constructs and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR102018073082-7 2018-11-09
BR102018073082-7A BR102018073082A2 (en) 2018-11-09 2018-11-09 METHOD FOR OBTAINING MAMMONINE SEEDS WITHOUT RICIN / RCA, MAMMONA PLANTS WITHOUT RICIN / RCA, METHOD OF IDENTIFYING MAMMONA PLANTS WITHOUT RICIN / RCA, POLYNUCLEOTIDES, CONSTRUCTIONS, AND USES OF THE SAME

Publications (1)

Publication Number Publication Date
WO2020093128A1 true WO2020093128A1 (en) 2020-05-14

Family

ID=70611433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2019/050480 WO2020093128A1 (en) 2018-11-09 2019-11-06 Method for producing castor oil plant seeds lacking ricin/rca, castor oil plants lacking ricin/rca, method for identifying castor oil plants lacking ricin/rca, polynucleotides, constructs and uses thereof

Country Status (3)

Country Link
US (1) US20210395764A1 (en)
BR (1) BR102018073082A2 (en)
WO (1) WO2020093128A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111778250A (en) * 2020-07-14 2020-10-16 内蒙古民族大学 Castor plant promoter PDAT1-2P5 capable of being induced at low temperature and cloning and application thereof
CN111778249A (en) * 2020-07-14 2020-10-16 内蒙古民族大学 Castor drought inducible promoter PDAT1-2P8 and cloning and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620986B1 (en) * 1999-11-23 2003-09-16 The United States Of America As Represented By The Secretary Of Agriculture Transformation of Ricinus communis, the castor plant
US20090077656A1 (en) * 2007-09-14 2009-03-19 Kabushiki Kaisha Toshiba Image forming apparatus, image forming system, and control method of image forming apparatus

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
AULD, D. L. ET AL.: "Development of castor with reduced toxicity", J. NEW SEEDS, vol. 3, no. 3, 2001, pages 61 - 69, XP055500071, DOI: 10.1300/J153v03n03_03 *
BALDONI, A. B.: "Acúmulo de ricina em sementes de mamona e silenciamento do gene em plantas geneticamente modificadas", TESE (DOUTORADO EM BIOLOGIA MOLECULAR) - UNIVERSIDADE DE BRASILIA , BRASILIA, 2010, vol. 71, 2010, Brasilia, pages 5 a 7 e 50 a 53, XP055708725 *
CHEN, Y. ET AL.: "Construction of RNAi Binary Vector of Ricin A Chain and Its Transformation", XIBEI ZHIWU XUEBAO, vol. 33, no. 1, 2013, pages 39 - 42, XP055708736, ISSN: 1000-4025, Retrieved from the Internet <URL:http://en.cnki.com.cn/Article_en/CJFDTotal-DNYX201301009.htm> [retrieved on 20200130] *
DATABASE Nucleotide [online] 14 July 2016 (2016-07-14), NIKHELY, N. A. ET AL.: "Ricinus communis ricin A chain gene , partial cds", XP055708716, retrieved from NCBI Database accession no. DQ661048 *
DATABASE Nucleotide [online] 14 November 2006 (2006-11-14), WESLEY, S. V. ET AL.: "Cloning vector pKANNIBAL", XP055708722, retrieved from NCBI Database accession no. AJ311873 *
LI, W. ET AL.: "Agrobacterium-mediated genetic transformation and regeneration of low-toxicity variety of castor (Ricinus communis L.", JOURNAL OF PURE & APPLIED MICROBIOLOGY, vol. 8, no. 2, 2014, pages 1387 - 1395, XP009507463, ISSN: 0973-7510, Retrieved from the Internet <URL:https://microbiologyjournal.org/archive_mg/jmabsread.php?snoid=1772&month=&year=> [retrieved on 20200128] *
SOUSA, N. L. ET AL.: "Bio-detoxification of ricin in castor bean (Ricinus communis L.) seeds", SCIENTIFIC REPORTS, vol. 7, 13 November 2017 (2017-11-13), pages 1 - 9, XP055708702, DOI: 10.1038/s41598-017-15636-7 *
SOUSA, N. L.: "Biodetoxificação de sementes de mamona (Ricinus communis L.) mediante silenciamento genico da ricina", TESE (DOUTORADO EM BIOTECNOLOGIA E BIODIVERSIDADE) - UNIVERSIDADE DE BRASILIA, BRASILIA, 2017, vol. 76, 20 December 2017 (2017-12-20), Brasilia, pages 63, XP055708730 *
SOUSA, N. L.: "Desenvolvimento de sistemas para transformação genetica da mamona (Ricinus Communis L) : as bases para o silenciamento da ricina", DISSERTAÇÃO (MESTRADO EM BOTANICA) - UNIVERSIDADE DE BRASILIA, EMPRESA BRASILEIRA DE PESQUISA AGROPECUARIA, BRASILIA, 2013, vol. 64, 2013, Brasilia, pages 62 e 63, XP055708731 *
WESLEY, S. V. ET AL.: "Construct design for efficient, effective and high-throughput gene silencing in plants", PLANT J., vol. 27, no. 6, 2001, pages 581 - 90, XP002187670, DOI: 10.1046/j.1365-313X.2001.01105.x *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111778250A (en) * 2020-07-14 2020-10-16 内蒙古民族大学 Castor plant promoter PDAT1-2P5 capable of being induced at low temperature and cloning and application thereof
CN111778249A (en) * 2020-07-14 2020-10-16 内蒙古民族大学 Castor drought inducible promoter PDAT1-2P8 and cloning and application thereof
CN111778250B (en) * 2020-07-14 2021-09-07 内蒙古民族大学 Castor plant promoter PDAT1-2P5 capable of being induced at low temperature and cloning and application thereof
CN111778249B (en) * 2020-07-14 2021-10-22 内蒙古民族大学 Castor drought inducible promoter PDAT1-2P8 and cloning and application thereof

Also Published As

Publication number Publication date
BR102018073082A2 (en) 2020-05-26
US20210395764A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
CN110139872A (en) Plant seed character-related protein, gene, promoter and SNP and haplotype
CN105753953B (en) Disease-resistant wheat albumen and encoding gene and its application in regulation disease resistance of plant
WO2023065966A1 (en) Application of bfne gene in tomato plant type improvement and biological yield increase
US20190127755A1 (en) Construct and vector for intragenic plant transformation
CN107629121A (en) One from transcription factor ZmNLP9 of corn and application thereof
WO2020093128A1 (en) Method for producing castor oil plant seeds lacking ricin/rca, castor oil plants lacking ricin/rca, method for identifying castor oil plants lacking ricin/rca, polynucleotides, constructs and uses thereof
WO2009060402A2 (en) Plant promoters of the xvsap1 gene
CN111511916A (en) Flowering phase regulation gene CMP1 and related vector and application thereof
US20090205073A1 (en) Transgenic plants and methods for controlling bolting in sugar beet
WO2016128998A1 (en) Improved transgenic rice plants
CN107602683A (en) One from transcription factor ZmNLP4 of corn and application thereof
CN105585623B (en) The disease-resistant breeding method for turning TaMYB-KW DNA triticum and relevant biological material and application
CN113999858B (en) SiPLATZ12 gene for regulating and controlling growth and development of foxtail millet and application thereof
BR112020008016A2 (en) resistance to housing in plants
KR102145626B1 (en) OsNFY16 promoter specific for plant seed embryo and uses thereof
CN101942477A (en) Method for improving expression level of target protein in transgenic rice endosperm
JP2011239684A (en) Improvement of material productivity of plant using transcription factor
KR101677067B1 (en) Seedspecific promoter derived from Oryza sativa and use thereof
CN110295192B (en) Bivalent RNAi expression vector for constructing TYLCV and ToCV by Gateway technology and application thereof
CN116789785B (en) High-yield and high-light-efficiency gene FarL a of long stamen wild rice and application thereof
US9790513B2 (en) Stress inducible derivative promoter
CN114644702B (en) Tango protein, related biological material and plant breeding method
CN109384835B (en) Insect-resistant related protein and application of encoding gene thereof
AU2018253628B2 (en) Construct and vector for intragenic plant transformation
JP2019510467A (en) Modification method of lateral bud germination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19882314

Country of ref document: EP

Kind code of ref document: A1