WO2004110660A1 - 土壌洗浄方法及び土壌洗浄装置 - Google Patents

土壌洗浄方法及び土壌洗浄装置 Download PDF

Info

Publication number
WO2004110660A1
WO2004110660A1 PCT/JP2003/014384 JP0314384W WO2004110660A1 WO 2004110660 A1 WO2004110660 A1 WO 2004110660A1 JP 0314384 W JP0314384 W JP 0314384W WO 2004110660 A1 WO2004110660 A1 WO 2004110660A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
sediment
separation tank
tank
soil
Prior art date
Application number
PCT/JP2003/014384
Other languages
English (en)
French (fr)
Inventor
Yousuke Shikata
Original Assignee
Etl Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Etl Inc. filed Critical Etl Inc.
Priority to AU2003280749A priority Critical patent/AU2003280749A1/en
Publication of WO2004110660A1 publication Critical patent/WO2004110660A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/02Extraction using liquids, e.g. washing, leaching, flotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0015Controlling the inclination of settling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/02Settling tanks with single outlets for the separated liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/2444Discharge mechanisms for the classified liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets

Definitions

  • the present invention relates to a soil cleaning method and a soil cleaning apparatus using a cutter, and more particularly, to a low cost irrespective of the particle size of a deep layer, a shallow layer, a high concentration contamination, a low concentration contamination, a composite contamination, or a contaminated soil.
  • the present invention relates to a soil washing method and a soil washing device capable of efficiently purifying contaminated soil. Background art
  • a peg point or deep peg is placed on contaminated soil in the ground to pump groundwater and reduce the groundwater level, while pumping groundwater to ground.
  • a purification method has been proposed in which water is injected from another place after purification by the purification equipment. This method forms a wide stream of water in the contaminated soil, promotes infiltration and circulation, and removes pollutants contained in the soil.
  • a soil washing method in which contaminated soil is excavated and taken out, thrown into a rotating drum installed in a plant, subjected to a washing treatment, and reburied in the ground.
  • the equipment system is complicated and expensive, and the plant equipment becomes large-scale in order to process a large amount of earth and sand.
  • the place was restricted.
  • various devices are required for discharging, dehydrating, and backfilling the washed soil, and there is a problem in that it is troublesome and costly.
  • the washing water subjected to soil washing is subjected to a purification treatment using a coagulant having a particle size within a certain range.
  • a flocculant consisting of fine-grained carbon or the like is mixed into the wash water and stirred, and then an acidifying agent or a polymer flocculant is added, and the flocculant is allowed to adsorb impurities in the wash water, and the thickener is used. Continuous sedimentation solid-liquid separation.
  • the coagulant to which the impurities are adsorbed is generated as sludge, and therefore, there is an inconvenience that this sludge must also be treated. Disclosure of the invention
  • Still another object of the present invention is to provide a water-absorbing / air-supplying filter capable of promoting sedimentation of soil particles and the like contained in polluted water flowing into the water tank without using a water tank having a large area. It is an object of the present invention to provide a soil washing device provided with a pipe.
  • the soil cleaning method of the present invention performs soil cleaning using an ejector for cleaning contaminated sediment, a sediment separation tank for receiving the washed sediment, and a scum separation tank for receiving water stored in the sediment separation tank.
  • scum composed of contaminated fine particles separated from the sediment floats and separates, forming a thin layer near the water surface. Since the water near the upper water surface is configured to be sent to the scum separation tank, the scum floated and separated in the sediment separation tank can be prevented from flowing out to the next process without using large-scale and complicated equipment. It becomes possible to process it.
  • the stored water flowing into the scum separation tank is separated into scum, separated water and sediment in the scum separation tank.
  • Concentrated scum with a high concentration of contamination emerges at the top, In the area, a layer of low-contamination water is formed, and at the bottom, heavy sediment and some contaminants settle.
  • the concentrated scum is collected, and the separated water is reused as washing water.
  • the water used for cleaning is separated into water in the scum separation tank, circulated and supplied to each process, and reused. It is possible to minimize the amount and prevent an increase in cost.
  • the inflowing water moves at a flow rate of approximately 60 cm to 100 cm per minute, so that the scum is separated efficiently.
  • a process of filtering the separated water in the scum separation tank by a filtering means and a process of reusing the filtered water filtered by the filtering means as washing water are performed. It is preferable to set to.
  • the soil cleaning method of the present invention by cleaning contaminated soil with an ejector, it is possible to efficiently remove particularly fine soil having a small particle size such as viscosity and silt, which has conventionally been difficult to separate contaminants. In addition, it is possible to reliably purify, and it is possible to extremely reduce the amount of contaminated fine particles. And, since the soil and soil are surely washed, drainage is extremely good, and dewatering after discharging the earth can be performed in a short time.
  • the dewatering process of earth removal can be significantly shortened, and the backfill of earth and sand can be performed efficiently.
  • soil since soil is washed in the process of transport by the ejector, soil can be washed without requiring a large space compared to the conventional configuration in which the soil is washed in a rotating drum.
  • soil washing method of the present invention it is not necessary to secure a large area for soil washing, so that it is possible to perform soil washing on land where contaminated soil has occurred or on a factory site, which is accompanied by transport of soil and the like.
  • the sediment settled in the sediment separation tank is washed again by an ejector and transferred to the next sediment separation tank, and water near the upper surface of the next sediment separation tank is sent to the scum separation tank. And a process of reusing the separated water of the next scum separation tank as washing water, and a step of discharging the sediment deposited in the next sediment separation tank.
  • the soil cleaning method according to claim 6 of the present invention comprises an ejector for cleaning contaminated sediment, a plurality of sediment separation tanks for classifying the washed sediment according to particle size, and a filtration for filtering water stored in the sediment separation tank. And a water supply tank for receiving the filtered water from the filtration means, wherein the soil is washed by the agitator before transferring the soil to the sediment separation tank.
  • a process of filtering the stored water by the filtration means and a step of filtering water from the filtration means.
  • water supply Wherein the process to be reused as a washing water receiving in a process of discharging the precipitated sediment in the sediment separation tank, further comprising a.
  • one filter is used to absorb the water stored in the sediment separation tank, so even if the sediment separation tank does not have a large surface area, the inflow into the sediment separation tank is ensured. In addition, sedimentation of sediment in the tank can be promoted. In addition, by sending air from one filter tube, it is possible to eliminate clogging of the filter and generate fine bubbles in the sediment separation tank, thereby separating contaminants in the sediment separation tank.
  • the soil is separated into the sediment separation tank.
  • a process of cleaning the collected contaminated sediment by an agitator is performed, and the washed sediment is settled in a sediment separation tank.
  • the washed sediment is transferred to the first sediment separation tank to classify coarse-grained soil, and the washed sediment is transferred to the second sediment separation tank to fine-grained soil.
  • a process of transferring the washed sediment to a third sediment separation keg to classify the fine-grained soil, and a process of absorbing the water stored in the sediment separation tank with a pipe having a filter.
  • a process of absorbing the water stored in the first sediment separation tank with a single tube for water absorption and air supply and a process of absorbing the water stored in the second sediment separation tank with a single tube for water absorption and air filtration is absorbed by In the treatment of filtering the stored water by the filtration means, the stored water in the first sediment separation tank, the second sediment separation tank, and the third sediment separation tank is subjected to It is preferable to perform a process of transferring to a filtering means and filtering.
  • the contaminated soil is transferred to a re-cleaning tank and the contaminant is separated from the contaminated sand before the conveyed soil is transferred to the sediment separation tank. And good.
  • a process of sending water near the upper surface of the re-cleaning tank to the scum separation tank may be performed.
  • a process of transferring the stored water in the re-cleaning tank to a filtering unit and filtering the same may be performed. Further, after the separation processing in the re-cleaning tank is performed, a processing is performed in which fine air bubbles are generated on the re-cleaning top with compressed air to float the contaminants, so that the micro-cleaning in the re-cleaning tank is performed. It is preferable because contaminants attached to the soil particles can be surely separated.
  • the soil cleaning apparatus of the present invention includes an edge cutter for cleaning the contaminated sediment, a sediment separation tank for receiving the washed sediment, and a scum separation tank for receiving water stored in the sediment separation tank.
  • the ejector is disposed at least in a preceding stage of the sediment separating tank, and the scum separating tank is disposed in a subsequent stage of the sediment separating tank.
  • the soil cleaning apparatus of the present invention includes a slurry tank in which contaminated soil slurried is stored, a plurality of sediment separation tanks for sedimenting contaminated sediment by particle size, and the slurry tank and the sediment separation tank.
  • An ejector interposed therebetween, a water pipe connecting the plurality of sediment separation tanks, a water absorption / air-supplying filter pipe arranged in the plurality of sediment separation tanks, and a storage water of the plurality of sediment separation tanks
  • a water supply tank for circulating the water filtered by the filtration means as washing water, and the water stored in the sediment separation tank is directly absorbed by one pipe of the water absorption and air supply filter.
  • the filter is then transferred to the filtration means, and air bubbles are generated from one tube of the filter for water absorption and air supply so that clogging of the filter is eliminated and contaminants in the sediment separation tank are separated.
  • an outlet for transferring the stored water to the scum separation tank is provided on an upper side of the sediment separation tank, and the scum floated on the sediment separation tank can flow out of the sediment separation tank. It is configured as follows.
  • the sediment separation tank absorbs water stored in the sediment separation tank with a pipe provided with a filter, and generates fine bubbles from the pipe to clog the filter. And a single filter for water absorption and air supply that separates contaminants contained in the stored water is provided, so that the water flows into the water tank without using a water tank having a large area. Polluted water It is possible to promote sedimentation of soil particles and the like contained in the soil.
  • the system is provided with a filtering means for filtering the separated water separated by the scum separation top, and a water supply tank for circulating the water filtered by the filtering means as washing water so that water can be reused. May be.
  • the sediment separation tank has a configuration in which a lower side is formed narrower than an upper side, and an opening for discharging sediment and a lid member or a valve capable of opening and closing the opening are provided on the lower side.
  • the sediment settled in the sediment separation tank is gradually discharged only by opening the lid member, and the discharge of the sediment can be performed smoothly.
  • it is not necessary to change the position of the sediment separation tank or to tilt the tank in order to discharge the sediment it is possible to discharge the sediment that requires a large space.
  • the one pipe for the water absorption and air supply filter provided in the soil washing apparatus includes a switching device connected to a pump and a compressor, a pipe connected to the switching device, and a water intake and transmission connected to the pipe. And a filter attached to the water intake and air supply unit, and a predetermined water intake amount is secured by disposing one pipe for the water intake and air supply filter, and the inside of the water tank is driven by driving the pump. The water is absorbed through the filter, and fine air bubbles are generated from the intake air supply unit through the filter by driving the compressor.
  • the use of one pipe for the intake / air-supply filter having the above configuration promotes the sedimentation of soil particles etc. contained in the polluted water flowing into the water tank without using a water tank having a large area. Becomes possible. That is, the water in the water tank is caused to flow out of the tank by the filter for intake / air / fiber of the present invention, whereby the amount of water flowing into the water tank can be ensured. Then, when the polluted water flows into the water tank, the soil particles and the like contained in the polluted water are prohibited from flowing out of the tank by the filter of the intake / air-supplying device, and settle in the tank. In this way, the polluted water flows into the tank one after another, and the soil particles are separated from the polluted water by the filter 1 and settled, thereby efficiently purifying the water. It is possible to do.
  • Figure 1 is a schematic diagram showing the entire soil cleaning device according to the first embodiment:
  • Figure 2 illustrates the ejector
  • Figure 3 is a table showing the ratio of soil, water and oil in each process:
  • FIG. 4 is an illustration of the sediment separation tank
  • FIG. 5 is an illustration of the sediment separation tank
  • FIG. 6 is an illustration of the sediment separation tank
  • FIG. 7 is an illustration of the scum separation tank:
  • Figure 8 is an illustration showing the sediment separation tank and scum separation tank:
  • Fig. 9 is a schematic diagram showing the whole soil cleaning device in the second embodiment:
  • Figure 10 is an illustration of the air jack
  • Fig. 11 is an explanatory diagram showing a state where contaminants such as oil have overflowed from the rewashing tank;
  • Figure 12 is an explanatory diagram showing the state where the sediment was discharged from the sedimentation tank
  • Fig. 13 is an explanatory diagram showing a configuration in which a water absorption pipe is provided in a sediment separation tank:
  • Fig. 14 is an explanatory diagram showing the water intake and air supply part of one pipe for the water absorption and air supply filter:
  • Fig. 15 is an enlarged explanatory view showing the water intake of one pipe of the filter for water absorption and air supply;
  • Fig. 16 is an explanatory diagram showing the state of water absorption and the state of air introduction by one tube for both a water absorption and air supply filter; ⁇
  • Figure 17 is a block diagram showing the steps of the soil washing method
  • FIGS. 1 to 8 show an embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing the entire soil cleaning apparatus in the first embodiment
  • FIG. 2 is an explanatory diagram of an ejector
  • FIG. Table showing the ratio of soil, water, and oil in each process.
  • Figures 4 to 6 illustrate the sediment separation tank.
  • Figure 7 illustrates the scum separation tank.
  • Figure 8 illustrates the sediment separation tank and the scum separation tank.
  • the collected contaminated soil is purified by the following method. That is, in the soil treatment method of this example, the collected contaminated sediment is washed by the ejector 18 to convert SS components such as soil particles into single particles, and the washed sediment is transferred to the first sediment separation tank 3. A process in which sediment is settled by sedimentation, and a process in which water in the vicinity of the upper water surface where scum composed of contaminated fine particles floats out of the stored water in the first sediment separation tank 3 is sent out to the scum separation tank. The sediment settled in the first sediment separation tank 3 is washed by an ejector, and the washed sediment is transferred to the second sediment separation tank 4 to settle the sediment.
  • the soil washing device S for soil washing Ejector 18 that separates contaminated soil by sucking up soil and separates contaminants
  • Slurry tank 1 that stores sediment discharged from Ejector 18 and sediment re-washed by Ejector 8
  • Scum separation tank that receives the water near the upper water surface of the sediment separation tank 3 and the second sediment separation tank 4 that sediments the washed sediment. It comprises a tank 19, a sand filtration tank 6 for filtering the separated water sent from the scum separation tank 19, and a water supply tank 7 for receiving the water filtered by the sand filtration tank 6.
  • the sand filtration tank 6 is used as the filtration means.
  • the filtration means is not limited to the sand filtration tank 6, and other filtration means such as a bag filter, zeolite, activated carbon, and a sand basin may be used.
  • the symbol P in the figure is a sand pump. The contaminated soil 12 excavated on the site and accumulated in the soil receiving tank 12a is injected into the slurry tank 1 through the ejector 18.
  • the ejector 18 is connected between the earth receiving tank 12a and the slurry tank 1, between the slurry tank 1 and the re-wash tank 2, the first sediment separating tank 3 and the second sediment separating Located between tank 4.
  • the ejector 18 includes a suction-side tube 8a, a discharge-side tube 8b, a discharge tube 8c provided continuously with the discharge-side tube 8b, and a suction-side tube 8c.
  • Pressure water pipe 8d provided between the pipe 8a and the discharge side pipe 8b, a gas introduction pipe 8e communicating with the pressure water pipe, and a pressure water supply source for supplying high-pressure water to the inside of the pressure water pipe 8d 8f.
  • the driving high-pressure water pumped from the pressure water supply source 8f is sent out toward the discharge-side pipe 8b.
  • the driving high-pressure water is ejected at a pressure of, for example, 5 to 250 kgZcm 2 .
  • the cleaning water from the water supply tank 7 is reused as the driving high-pressure water.
  • the initial speed of the driving high-pressure water is 30 to 60 mZse G , and a negative pressure is generated at the interface of the driving high-pressure water. Therefore, when the driving high-pressure water is jetted from the nozzle of the pressure water pipe 8d, the ejected driving high-pressure water ejector acts to eject air from the gas introduction pipe 8e to form gas-mixed pressure water. Then, the pressurized water in a gaseous state is jetted out to the discharge-side tube 8b, so that the inside of the suction-side tube 8a is in a state close to a vacuum, whereby the slurry is turned into slurry from the slurry tank 1. The contaminated soil 12 is sucked up and pumped to the discharge side pipe 8b. The suction and pumping of the contaminated soil 12 will be continued as long as the driving high-pressure water jet continues.
  • the pressurized water in a gaseous state is blown out, so that fine soil particles such as silt and clay are made into a single particle, which makes it easy to come into contact with the cleaning water in the pipe, and also changes in the cross section of the pipe.
  • ultrasonic waves are generated due to various changes in bubbles, and the separation of pollutants and soil particles is instantaneously performed by the aeration of air. For this reason, it is possible to preferably clean even fine soil particles, which were conventionally difficult to clean.
  • a portion 8g is formed in which the pipe diameter of the pipe 8b on the discharge side is partially reduced.
  • a concave portion 8h is provided between the discharge side pipe 8b and the discharge pipe 8c.
  • the slurried sediment flow passing through the discharge-side pipe 8b is further increased in pressure at the point 8g where the pipe diameter is narrow, flows into the recess 8h while vigorously flowing, and then flows into the discharge pipe 8c. Leaks to
  • the earth and sand in the slurry tank 1 is again diluted, washed, and stirred by the ejector 18, and transferred to the rewash tank 2.
  • the driving water for ejector 18 was used as the dilution water.
  • the re-cleaning tank 2 is filled with cleaning water such as tap water. The re-cleaning tank 2 discharges the slurried washed earth and sand, pollutants separated from the earth and sand, and gas bubbles.
  • the re-cleaning tank 2 among the contaminants, contaminants such as oil having a low specific gravity are stirred and separated by an air ration by a gas discharged at the same time, and float on the water surface. From the lower side of the re-cleaning tank 2, the stored water and the earth and sand are sent out to the first earth and sand separating tank 3 so as not to include the floating contaminants.
  • FIG. 4 is an explanatory diagram of the sediment separation tank used in this example.
  • the sediment separation tank is formed in the shape of a prism or a cylinder on the upper side, and in the shape of a quadrangular pyramid on the lower side.
  • a cylindrical earth and sand discharge port 31 and a valve 32 that can open and close the earth and sand discharge port 31 are provided.
  • the sediment separation tank By forming the sediment separation tank as described above, when discharging the sediment, the accumulated sediment can be naturally moved downward and discharged from one place. In addition, since the water is discharged from below, it is possible to discharge only the sediment while maintaining the water level in the sediment separation tank. According to the sediment separation tank of this example, it is possible to discharge the sediment from the sediment discharge port 31 continuously and quantitatively simply by opening and closing the valve 32.
  • the shape of the sediment separation tank is not limited to the shape shown in FIG. 4, but may be the shape shown in FIG.
  • the sediment separation tank shown in Fig. 5 is shaped like a vertical half of the sediment separation tank shown in Fig. 4. Even with such a shape, the accumulated sediment can be naturally moved downward and discharged from one place.
  • Reference numeral 36 in FIG. 5 is a hole for attaching the water pipe 9.
  • a sediment discharge port 31 for discharging sediment is provided in the lower part of the sedimentation tank shown in Fig. 5.
  • a cover 33 covering the earth and sand discharge port 31 is provided.
  • the lid 33 is vertically movable by a first hydraulic cylinder 34. When the lid 33 moves upward, the earth and sand discharge port 31 is opened.
  • the lid 33 is configured to be tightly attached to the earth and sand discharge port 31 by the second hydraulic cylinder 35 when the earth and sand discharge port 31 is closed.
  • a screw conveyor 20 may be provided below the sediment separation tanks 3 and 4.
  • the discharged earth and sand can be efficiently transferred to the next process.
  • one end of the screw conveyor 2 is raised upward to reduce the height difference from the water level of the sediment separation tanks 3 and 4, thereby suppressing the discharge of water from the sediment separation tanks 3 and 4. good.
  • the stirring means is composed of, for example, a stirring blade having a plurality of blades and a driving means such as a motor for rotating the stirring blade.
  • a stirring means having another configuration such as a plurality of stirring rods and a driving means for driving the stirring rods in a predetermined direction may be used.
  • the sediment agitated by the agitation means separates contaminants such as oil and sediment in the sediment separation tanks 3 and 4.
  • the sediment deposited in the first sediment separation tank 3 is taken out from the sediment discharge port 31, diluted, washed and stirred by the ejector 18, and transferred to the second sediment separation tank 4. Water near the upper water surface in the first sediment separation tank 3 is transferred to the scum separation tank 19. You.
  • scum composed of contaminated fine particles separated from the sediment floats and separates, forming a thin layer near the water surface.
  • outlets 3b and 4b are formed for sending the scum floating in the water stored in the sediment separation tanks 3 and 4 to the outside.
  • a pipe 19a is connected to the outlets 3b and 4b, and the contaminants flowing into the pipe 19a from the outlets 3b and 4b are sent to the scum separation tank 19. .
  • a pump may be provided in the pipe 19a in order to surely flow out of the sediment separation tanks 3 and 4.
  • the scum separation tank 19 of this example is made of a steel pipe and is formed at a height of about 4 m. In this example, about 40 liters of water per minute is taken from the sediment separation tanks 3 and 4 and flows into the scum separation tank 19. The water flowing into the scum separation tank 19 moves in the scum separation tank 19 at a flow rate of approximately 60 cm to 100 cm per minute.
  • the water containing the scum that has flowed in is separated into concentrated scum, separated water, and a substance having a high specific gravity.
  • the concentrated scum floats and collects on the upper side, the separated water is located in the middle, and the heavy sediment and contaminants settle on the bottom.
  • the concentrated scum is collected and then processed off-site.
  • the water containing the concentrated scum is sent to the sand filtration tank 6 where the pollutants are removed.
  • the separated water is collected, it is transferred to the sand filtration tank 6, where it is reused as washing water after filtration.
  • the pollution degree of the separated water is low, it can be reused as washing water without passing through the sand filtration tank 6.
  • the sediment settled at the bottom is extracted, if the degree of cleaning is low, it will be washed again. If the degree of washing is high, it is treated as washed soil.
  • the sediment that has settled out is taken out from the lower side of the second sediment separation tank 4, and after dehydration, reused as washed soil.
  • the soil since the soil is washed by the ejector, regardless of the type of contaminants such as oil, tar, and heavy metal contamination, low water permeability, which was relatively difficult with the conventional cleaning technology, was used. Even fine soil particles such as silt clay can be reliably washed. Therefore, the drainage becomes extremely good, and the dewatering after the soil removal can be performed in a short time.
  • the water generated by the dewatering of the washed soil c is transferred to the water supply tank 7 and reused.
  • Water containing scum near the water surface of the second sediment separation tank 4 is transferred to the scum separation tank 19.
  • the water transferred from the second sediment separation tank 4 to the scum separation tank 19 is separated into concentrated scum and separated water.
  • the separated water here is transferred to the water supply tank 7 without passing through the sand filtration tank 6 because the pollution degree is low.
  • the water accumulated in the water supply tank 7 is transferred to the sediment separation tank 3, the ejector 18 and the scum separation tank 19, and is reused as washing water or dilution water.
  • the separation treatment without causing the scum of the sediment separation tank to flow into the next step.
  • the water separated in the scum separation tank 19 is reused, and the amount of water discharged together with the washed sediment from the sediment separation tank can be adjusted. According to this example, it is possible to reduce the amount of water used to about 1/10 compared to the conventional water washing method.
  • FIG. 8 is an explanatory diagram showing the soil / sand separation tanks 3 and 4 and the scum separation tank 19 more specifically.
  • ⁇ sand separation tanks of the shape shown in Fig. 5 are used as soil separation tanks 3 and 4.
  • the filter 16 for water absorption and air supply will be described in detail in the second embodiment.
  • the configuration and function of the filter 16 for water absorption and air supply will be briefly described.
  • the water-absorption / air-supply filter tube 16 includes a tube 16a and a water intake / air supply 16b, and is configured to transfer the water taken from the water intake / air supply 16b to the sand filtration tank 6 via the tube 16a. ing.
  • the number of the water absorption / air-supplying filter tubes 16 is such that the number of the water-absorption / air-supplying filters 16 can be appropriately absorbed and supplied according to the size of each sediment separation tank 3.
  • a filter is provided in the filter tube 16 for water absorption and air supply, and by this filter, passage of soil particles having a predetermined diameter or more is prohibited, and the soil particles caught by the filter are settled in the tank. It is configured to:
  • the scum separation tank 19 the water containing the inflowing scum is separated into concentrated scum 19b, separated water 19c, and a substance 19d having a high specific gravity.
  • the concentrated scum 19a floats and collects on the upper side, the separated water 19b is located in the middle, and sediment and some impurities settle at the bottom as a substance 19c having a high specific gravity.
  • the concentrated scum 19b separated in the scum separation tank 19 is transferred to the scum recovery tank 19e, and then disposed. Separated water 19c separated in the scum separation tank 19 is taken out of the scum separation tank 19 and reused as dilution water or washing water.
  • the scum separation tank 19 is provided with an outlet 19f for the concentrated scum 19b, and by opening a valve 19g provided at the outlet 19f, the concentrated scum 19b can be taken out.
  • the scum separation tank 19 is provided with an outlet 19h for the separated water 19c. By opening a valve 19 ⁇ provided at the outlet 19h, the separated water 19c can be taken out. It has been done.
  • contaminated soil 12 is excavated ((1) in FIGS. 1 and 3).
  • the contaminated soil 12 is put into the soil receiving tank 12a, it is reslurried by the water in the soil receiving tank 12a ((2) in FIGS. 1 and 3).
  • the oil content of the contaminated soil 12 is further separated by dilution, washing and stirring, and the ratio of soil, water and oil is determined. Is as shown in (3) of Fig. 3.
  • the soil and water in the slurry tank 1 are sucked by the ejector 18 and transferred to the re-cleaning tank 2 ((5) in FIG. 1).
  • the oil is further separated from the soil and soil, water, and oil are removed.
  • the ratio is as shown in (5) of FIG.
  • the scum floats on the water surface of the rewash tank 2. A part of this scum is returned to the soil receiving tank 12a ((11) in Figs. 1 and 3), and the ratio of soil, water, and oil in the re-washing tank 2 decreases as the oil content decreases. It becomes as shown in 6).
  • the first sediment separation tank 3 scum floats and sediment settles.
  • the sediment that has settled out is taken out from the sediment discharge port 31 of the first sediment separation tank 3 ((7) in Fig. 1). At this time, according to the sediment separation tank of this example, as shown in (7) of FIG. 3, it is possible to take out almost only sediment. This sediment is transferred to the second sediment separation tank 4 via the ejector 18 ((8) in FIG. 1). At this time, the ratio of soil, water, and oil is as shown in (8) of FIG.
  • the water near the upper surface of the first sediment separation tank 3 is transferred to the scum separation tank 19 ((16) in FIGS. 1 and 3).
  • the concentrated scum and the separated water are separated in the scum separation tank 19
  • the water with low contamination concentration in the middle part is transferred to the water supply tank 7 ((17) in Figs. 1 and 3) and
  • the highly contaminated water is transferred to sand filter tank 6 ((18) in Figs. 1 and 3).
  • sand filter tank 6 flow of water near the water surface if the water supply tank 7 ((23) in FIG. 1 and FIG. 3), soil, water, c sand percentage of oil which is as shown in (24) in FIG. 3
  • the filtration treatment in the filtration tank 6 produces water whose oil content is greatly reduced (Fig. 1 and Fig. 3 (21)), and also generates water (oil drainage) containing a large amount of oil ( Figures 1 and 3 (25)).
  • the stored water in the second sediment separation tank 4 is transferred to the scum separation tank 19 ((19) in Fig. 1). At this time, the water has a lower oil concentration than the water transferred from the first sediment separation tank 4 to the scum separation tank 19, as shown in (19) of FIG.
  • the separated water in the scum separation tank 19 has an oil content that can be used as washing water, and is therefore transferred to the water supply tank 7 without passing through the sand filtration tank 6 (see (27) in FIGS. 1 and 3). )).
  • the water supplied to water tank 7 also includes fresh water, and the ratio of soil, water, and oil The result is as shown in (22) of FIG.
  • the scum also floats near the water surface in the water supply tank 7.
  • FIG. 9 is a schematic diagram showing the entire soil cleaning device in the second embodiment
  • Fig. 10 is an explanatory diagram of an air jack
  • Fig. 11 is an explanatory diagram showing a state where contaminants such as oil have overflowed from the re-cleaning tank.
  • 12 is an explanatory view showing a state in which sediment is discharged from the sediment separation tank
  • FIG. 13 is an explanatory view showing a configuration in which a sediment separation tank is provided with a filter for water absorption and air supply
  • FIG. 15 is an enlarged explanatory view showing the water intake port of one pipe for the water absorption and air supply filter
  • FIG. 16 is an explanatory view showing the water absorption state and the air introduction state by the water absorption and air supply filter pipe
  • FIG. 17 is a block diagram showing the steps of the soil cleaning method.
  • the collected contaminated soil is purified by the following method.
  • the collected contaminated sediment is processed by the following methods: I: Kut-a-y (8) Washing and soil particles etc. into single particles, and washing the washed sediment into the first sediment Transfer to the separation tank 3 to classify the coarse-grained soil, process to absorb the water stored in the first sediment separation tank 3 with the filter 16 for water absorption and air supply, and process for the filter 16 for water absorption and air supply
  • That contaminants Separation process transfer of washed sediment to the third sediment separation tank 5 to classify fine-grained soil, and filter for water absorption and air supply of water stored in the third sediment separation tank 5 1 6
  • the filter 16d generates fine air bubbles from the filter tube 16 to eliminate clogging of the filter 16d, and removes contaminants contained in the water stored in the third sediment separation tank 5.
  • the soil cleaning device S for performing the above-mentioned soil cleaning includes a slurry tank 1 in which the contaminated soil is stored, suction of the contaminated soil to convert the contaminated soil into single particles, and removal of contaminants.
  • Ejector 18 to be separated Re-cleaning tank 2 for separating contaminants from the sediment discharged from Ejector 8
  • First sediment separation tank 3 for sedimentation of washed sediment 2
  • Second sediment separation tank 4 Second sediment separation tank 4
  • a third sediment separation tank 5 and a water absorption / air supply filter that absorbs the stored water in the sediment separation tanks 3, 4, 5 and sends air to the sediment separation tanks 3, 4, 5 to generate fine bubbles.
  • a pipe 16 a sand filtration tank 6 for filtering the stored water sent from the sediment separation tanks 3, 4, 5, a water supply tank 7 for receiving the water filtered by the sand filtration tank 6, a rewashing tank 1 and And air jacks 10 installed in the sediment separation tanks 3, 4, and 5.
  • the first sediment separation tank 3, the second sediment separation tank 4, and the third sediment separation tank 5 are connected by a water pipe 9.
  • the stored water in the sediment separation tanks 3, 4, and 5 is absorbed by the above-mentioned filter 16 for water absorption and air supply, and also flows through the water pipe 9 to be finally filtered in the sand filtration tank 6.
  • the slurry tank 1 is excavated on site by a hydraulic shovel, etc. Contamination ⁇ 1 2 carried by 1 1 is thrown in, and an appropriate amount of washing water 7 a circulated from water tank 7 is added.
  • a washing water 7 a circulated from water tank 7 is added.
  • a screen 1a having a hole is provided at the upper part of the slurry tank 1 so as to remove gravels and flakes having a predetermined particle size or more.
  • an appropriate amount of the reactant may be added to the slurry tank 1 so that the separation from the contaminants in the suction and flow processes in the edge ⁇ -cta 18 is promoted.
  • An ejector 8 is provided between the slurry tank 1 and the rewash tank 2 and between the rewash tank 2 and the first sediment separation tank 3. Note that the ejector 8 may be provided between the first sediment separation tank 3 and the second sediment separation tank 4, and between the second sediment separation tank 4 and the third sediment separation tank 5. Further, when the earth and sand are charged into the slurry tank 1, the slurry may be supplied via the ejector 18.
  • the earth and sand washed by the edge construction tank 18 is transferred to the re-wash tank 2 from the discharge pipe 8c.
  • the re-cleaning tank 2 is filled with cleaning water such as tap water.
  • the re-cleaning tank 2 discharges the slurried washed earth and sand, contaminants separated from the earth and sand, and foamy gas.
  • contaminants such as oil having a low specific gravity are stirred and separated by an air ration by a gas discharged at the same time, and float on the water surface.
  • contaminants (scum) such as oil floating on the water surface are configured to be overflown out of the re-cleaning tank 2 and removed. That is, in the soil cleaning apparatus S of this example, as shown in FIG. 11, an air jack 10 is provided on the bottom side of the recleaning tank 2, and the air jack 10 It is configured to remove contaminants (scum) 13 that floated on the water surface by inclining.
  • Contamination that overflows from re-cleaning tank 2 is located at the upper opening edge of re-cleaning tank 2.
  • Receiving tray 2a for receiving substance (scum) 13 is provided.
  • the receiving tray 2a is provided at the opening edge on the inclined side of the recleaning tank 2. If the pollutant (scum) 13 that has flowed into the receiving tray 2a is high-concentration oily sludge, it will be stocked and disposed off-site.
  • the air jack 10 includes a guide 10a, an air bag 10b, and an air inlet 10c, and the outer peripheral side of the air bag 10b extends in the vertical direction.
  • the bellows can be extended and contracted.
  • the bellows portion of the air bag 1 Ob is configured to spread along the guide ⁇ Oa.
  • the air jack 10 is about 22 mm when air is not introduced, and is thin enough not to affect the installation state of the recleaning tank 2.
  • the bellows portion of the air bag 10b expands upward, and the side of the re-cleaning tank 2 where the air jack 10 is disposed is lifted upward.
  • the air jacket 10 is expanded with a width of about 10 to 50 mm.
  • the rewashing tank 2 is inclined, and contaminants (scum) 13 such as oil floating on the water surface of the rewashing tank 2 are transferred to the receiving tray 2a, and the contaminants (scum) 13 are removed. Is done.
  • contaminants (scum) 13 such as oil floating on the water surface of the rewashing tank 2 are transferred to the receiving tray 2a, and the contaminants (scum) 13 are removed. Is done.
  • the re-cleaning tank 2 may not be provided.
  • the sediment from which contaminants such as oil have been separated in the rewashing tank 2 is transferred to the first sediment separation tank 3 via the ejector 18.
  • the first sediment separation tank 3 and the second Classification of sediment is performed using three sediment separation tanks consisting of the sediment separation tank 4 and the third sediment separation tank 5.
  • each of the sediment separation tanks 3, 4, and 5 in this example do not require a large space for installation, and are formed in a size that can be transported by truck.
  • each of the sediment separation tanks 3, 4, and 5 is provided with a water absorption and air supply / filter device 16 as a water intake and air supply device.
  • the filter is constructed so that sedimentation of the sediment is promoted without using large sediment separation tanks 3, 4, and 5 by absorbing the water stored in the sediment separation tank with one filter tube 16. I have.
  • sedimentation is determined by the area of the water tank and the amount of water flowing into the water tank.
  • the sedimentation velocity of particles is determined by the particle size and specific gravity of the particles (Stokes's theory).
  • a water tank having a large area was required.
  • a single pipe 16 for water absorption and air supply is provided in the soil and sand separation tanks 3, 4, and 5, and the filter pipe 16 for water absorption and air supply is also provided by the soil and sand separation tank 16.
  • a filter 16d is provided in the filter 16 for both the water absorption and the air supply. The filter 16d prohibits the passage of soil particles having a predetermined diameter or more, and sediments the soil particles in the tank.
  • the apparent inflow into the water tank is (Q-GT). Inflow can be ensured.
  • the soil particles contained in the inflowing polluted water are separated by the filter 16d and settle down sequentially. In this way, sedimentation of soil particles in the tank is promoted even if the area of the tank is small.
  • the filter 16 for water absorption and air supply provided in the first sediment separation tank 3, the second sediment separation tank 4, and the third sediment separation tank 5.
  • the number of the filter pipes 16 for both water absorption and air supply is such that they can appropriately absorb and supply water according to the size of each sediment separation tank 3, 4.5.
  • the water-absorption / air-supply filter tube 16 includes a tube 16a and a water intake / air supply 16b, and is configured to transfer water taken from the water intake / air supply 16b to the sand filtration tank 6 via the tube 16a. ing.
  • FIG. 14 shows the intake air supply section 16b.
  • a plurality of perforated pipes 16c are provided in a comb-like manner in the water intake / air supply section 16b as water intake / air inlets for water intake and air supply.
  • a filter 16d is attached to each of the porous tubes 16c as shown in FIG. 15, so that soil particles having a predetermined particle size or more cannot pass through.
  • the filter 16d is provided with pores of about 1 to 5 / m, and is configured so that only the contaminants and some fine-grained soil can pass through. Therefore, the contaminants in the storage water have a very small particle size or are ionized, so that they pass through the filter 16d, but soil particles are blocked.
  • the particle size of the sediment in each sedimentation tank can be adjusted by changing the size of the pores of the filter 16d. In this way, the filter 16d provided in the perforated tube 16c ensures separation of soil and contaminants.
  • a pump 16e is connected as a drive source to one pipe 16 of the filter for water absorption and air supply.
  • the filter 16 for water absorption and air supply absorbs the water stored in the sediment separation tanks 3, 4, and 5, and the sand filtration tank 6 Transfer to
  • compressed air is sent to the filter tube 16 for both water absorption and air supply, and bubbles are generated through the filter 16d, so that contaminants can adhere to the bubbles and float. In this way, the concentration of pollutants in the stored water can be reduced.
  • water absorption / air-supply filter pipes 16 When a plurality of water absorption / air-supply filter pipes 16 are provided, some of the water absorption / air-supply filter pipes 16 are used only for the purpose of sending compressed air, and are installed in the tank. It is preferable to feed the compressed air continuously.
  • the fine sediment 5a is settled in the third sediment separation tank 5, and when the compressed air is sent in, the fine sediment 5a is diffused into the storage water, and the water absorption / air-supply filter is used. Clogging is likely to occur in the filter 16d of the tube 16.
  • the inside of the third sediment separation tank 5 is covered in a range from the bottom side of the sediment separation tank 5 to reach the water surface, and the Fine It is preferable to provide a filter 5b for preventing infiltration of fine particles ⁇ 5a, and to absorb the supernatant in one filter 16 for water absorption and air supply within a range covered by the filter. It is preferable that the filter 5b is provided with pores of about 1 to 5 jUm. Filter 5b power ⁇ In case of clogging, blow air from one filter 16 for water absorption and air supply, vibrate filter 5b, or pressurize water from the side surrounded by filter 5b. Dissolved by distributing.
  • the first sedimentation tank 3, the second sedimentation separation tank 4, and the third sedimentation separation tank 5 are provided with an outlet for discharging water near the upper water surface to the outside.
  • the water containing the dyeing substance may be sent to the scum separation tank 19.
  • first sediment separation tank 3, the second sediment separation tank 4, and the third sediment separation tank 5 may be provided with a lid for preventing the pollutant gas from evaporating into the atmosphere.
  • a configuration may be adopted in which a filter 16 for water absorption and air supply for generating bubbles and absorbing water is provided in the rewashing tank 2.
  • the first sediment separation tank 3, the second sediment separation tank 4, and the third sediment separation tank 5 are connected by a water flow pipe 9, and the water stored in the respective sediment separation tanks 3, 4, and 5 is connected to the water flow pipe 9. It is configured to move to the next process.
  • a filter 9a is provided at an intake of the water pipe 9.
  • the filter 9a is provided with pores of about 5 to 10 m, and is configured to prevent the passage of gravel, dust, and soil particles of a predetermined particle size or more.
  • the pores of the filter 9a provided in the water pipe 9 are the largest in the filter 9a provided in the first sediment separation tank 3.Next, the filter 9a provided in the second sediment separation tank 4.
  • the hole of the filter 9a provided in the third sediment separation tank 5 is configured to be the smallest.
  • a sediment discharge port 14 for discharging sediment deposited in the sedimentation tanks 3, 4 and 5 is provided as shown in Fig. 12.
  • the sediment discharge port 14 includes an opening 14a provided on the peripheral wall of the sediment separation tanks 3, 4, and 5, and a lid 14b that covers the opening 14a.
  • the lid 14b is fixed to the sediment separation tanks 3, 4, and 5 on the upper side, and can be opened and closed on the lower side.
  • the lid 14b is configured to be disposed in close contact with the openings of the sediment separating tanks 3, 4, and 5 by a packing body or the like except when the sediment is discharged.
  • Each of the sediment separation tanks 3, 4, and 5 is filled with washing water such as tap water.
  • the washed sediment, pollutants separated from the sediment, and foamy gas are discharged into the sediment separation tanks 3, 4, and 5.
  • An air jack 10 is provided in each of the sediment separation tanks 3, 4, and 5. As will be described later, the air jacks 10 arranged in the sediment separation tanks 3, 4, and 5 serve to discharge the sediment settled in the sediment separation tanks 3, 4.5, as described later. It is provided to incline 5.
  • Turbid water in the first sediment separation tank 3 is transferred to the second sediment separation tank 4 via the water pipe 9.
  • part of the muddy water in the first sediment separation tank 3 is transferred to the sand filtration tank 6 by the filter 16 for water absorption and air supply.
  • the silt having a low specific gravity floats in water to form turbid water.
  • the turbid water in the second sediment separation tank 4 is transferred to the third sediment separation tank 5 through the water pipe 9. Sent.
  • part of the turbid water in the second sediment separation tank 4 is transferred to the sand filtration tank 6 by a single tube 16 for water absorption and air supply filter.
  • the third sediment separation tank 5 fine-grained soil 5 a and the like are sedimented out of the sediment transferred from the second sediment separation tank 4.
  • the stored water in the third sediment separation tank 5 is transferred to the sand filtration tank 6 by the water passage pipe 9 and the one pipe 16 for water absorption and air supply.
  • Sand filter media having different particle diameters are arranged in layers in the sand filter tank 6, and contaminants contained in the sewage adhere to the sand filter media while the sewage flows through the sand filter media. It is configured to be removed.
  • the sand filter tank 6 In the sand filter tank 6, most of the pollutants are adsorbed and captured by the sand filter medium while the wastewater passes through the sand filter medium. Therefore, when the sewage reaches the bottom of the sand filtration tank 6 and becomes filtered water, the filtered water is in a state of being completely washed. The filtered water is sucked by the suction pipe 6a connected to the pump 6b and transferred to the water supply tank 7. Then, the filtered water accumulated in the water supply tank 7 is reused as washing water.
  • a zeolite tank (not shown) may be provided in addition to the sand filtration tank 6 to remove heavy metal ions and emulsiond oil.
  • the filtered water transferred to the water supply tank 7 needs further purification, the filtered water may be transferred to the water treatment device 15 to perform a chemical treatment.
  • the filtered water contains a mercury compound
  • the filtered water is transferred to the neutralization tank 15a, where sodium sulfide or sodium hydrosulfide is added, and insoluble mercury sulfide is generated.
  • the filtered water contains arsenic, an excess of ferric salt is added to form insoluble iron arsenate, which is then coagulated and decomposed together with iron hydroxide in the coagulation sedimentation tank 15b.
  • water treatment is performed according to the pollutants.
  • the filtered water after the chemical treatment was passed through a filter press 15c to remove squirrel sludge. Transferred to tank. After the sludge is dewatered, it is treated off-site.
  • the contaminants are separated from the contaminated soil 12, and the contaminants are washed by the ejector 18, overflowed from the re-cleaning tank 2, and sanded by the filter 16 for water absorption and air supply.
  • Water is sent to the filtration tank 6, the contaminants are floated by fine air bubbles, and removed by the sand filtration tank 6.
  • the washed sediment is discharged out of the sediment separation tanks 3, 4, and 5 after all residual water in the sediment separation tanks 3, 4, and 5 is drained.
  • the drainage in the sediment separation tanks 3, 4, and 5 may be performed by absorbing water with a single tube 16 for water absorption and air supply. At this time, water should be absorbed in the order of the third sediment separation tank 5, the second sediment separation tank 4, and the first sediment separation tank 3.
  • the amount of contaminants adsorbed in the sand filtration tank 6 gradually increases, and in particular, the purification treatment by the sand filtration tank 6 can be smoothly performed at the initial stage.
  • the filtration process can be performed efficiently.
  • the sediment separation tanks 3, 4, 5 are tilted using the air jack 10 arranged on the lower surface of each of the sediment separation tanks 3, 4, 5, and the sediment separation tanks 3, 4, 5, Drain the soil inside.
  • the air jack 10 expands by about 300 mm and tilts at a steeper angle than when the pollutant 13 overflows in the re-cleaning tank 2.
  • the coarse sediment 3a is separated in the first sediment separation tank 3, the fine grain ⁇ 4a is separated in the second sediment separation tank 4, and the third sediment separation tank 5
  • Each of the sedimentation tanks 3, 4, 5 Are discharged with uniform grain size.
  • the soil washing apparatus S of the present example since the SS component such as the soil particles is made into single particles by the ejector in the process of flowing, the dewatering process of the discharged soil can be significantly reduced.
  • a dewatering device 17 such as a dewatering net or a dewatering tray on which the optimum water drainer L is formed for each particle size of soil.
  • the dewatered soil is transferred to a sediment receiving tray 18 by a crane, where a simple analysis is performed to determine whether contaminants have been sufficiently removed. After that, the sediment is temporarily stored in the stock yard according to the particle size, and after final inspection, it is backfilled.
  • the earth and sand discharged from the soil washer S in this example is easy to reuse because the discharged soil has the same particle size. Since the coarse-grained soil 3a and the fine-grained soil 4a are suitably dewatered, they can be back-filled or reused as a base material for construction. The fine-grained soil 5a has low dewatering performance and generates a small amount of force. It can be backfilled after treatment with quicklime and can be used as a concrete material together with cement.
  • the contaminated soil is put into the slurry tank 1, the washing water is supplied from the water supply tank 7, and the slurry contaminated soil is obtained (step S1).
  • the contaminated soil in the slurry tank 1 is sucked by the ejector 18.
  • the contaminated soil is set in a state where the contaminants are separated or easily separated in the process of being transported by the ejector 18, and the washed sediment and the contaminants separated from the sediment are transferred to the re-cleaning tank 2 (step S2).
  • step S5 coarse-grained soil is settled and separated.
  • step S6 The water stored in the first sediment separation tank 3 is transferred to the second sediment separation tank 4 via the water pipe 9 (step S6). Further, the stored water in the first sediment separation tank 3 is transferred to the sand filtration tank 6 via the water absorption / air-supplying filter pipe 16 (step S7).
  • step S8 fine-grained soil is settled and separated.
  • the stored water in the second sediment separation tank 4 is transferred to the third sediment separation tank 5 via the water pipe 9 (step S9). Further, the stored water in the second sediment separation tank 4 is transferred to the sand filtration tank 6 via the filter pipe 16 which also functions as a water absorption and air supply (step S10).
  • step S11 fine-grained soil is settled and separated.
  • the stored water in the third sediment separation tank 5 is transferred to the sand filtration tank 6 through the water pipe 9 and the one pipe 16 for water absorption and air supply (step S12).
  • the contaminated water is filtered in the sand filter tank 6, and the filtered water is sucked by the suction pipe and transferred to the water supply tank 7 (step S13).
  • the air and sand separation tanks 3, 4, and 5 are removed.
  • the sand is settled and the sand deposited in the sediment separation tanks 3, 4, 5 is discharged (step S14).
  • the discharged earth and sand is showered according to particle size, placed on a tray for dehydration, and subjected to dehydration treatment (Step S15). After inspection, backfilling is performed for each application (Step S16). ) 0
  • the present invention is not limited to this, and the soil cleaning apparatus of this example can purify rivers and lakes. It can be used for other purposes such as purification of contaminated water discharged from factories and gas stations, and simple sewage treatment.
  • the configuration in which the ejector 18 and the filter 16 for water absorption and air supply are used in combination is shown.
  • the treatment such as purification of contaminated water is performed without using the ejector 18. It may be performed.
  • a sediment separation tank having a lower part formed narrower than the upper part, an opening for discharging sediment on the lower part, and a lid member or valve capable of opening and closing the opening is used.
  • the sediment separation tank of the first embodiment may be applied to the sediment separation tank of the second embodiment.
  • the sediment separation tank is composed of two tanks, and in the second embodiment, the separation tank is composed of three tanks.
  • the present invention is not limited to this. It is good also as composition provided with a tank.
  • the re-cleaning tank 2 may be provided with a scum separation tank 19, but the scum separation tanks 3, 4, and 5 are also provided with a scum separation tank 19, The water near the upper surface of each tank may be transferred to the scum separation tank 19 and separated.
  • water including scum floating near the upper surface of the sediment separation tank is sent to the scum separation tank.
  • the scum is prevented from flowing out to the next processing step, and soil can be washed efficiently.
  • the separated water separated in the scum separation tank is reused as washing water, thereby minimizing the amount of water used and preventing an increase in cost. That is, if the required washing water is initially secured, the soil washing process can be continuously performed only by replenishing the reduced amount by evaporation or the like.
  • Water containing scum is sent to the scum separation tank through a pipe connected to the sediment separation tank.
  • a pipe connected to the sediment separation tank As described above, when discharging water containing scum, it is not necessary to move or tilt the sediment separation tank, and it is possible to perform the operation with less labor and space.
  • the sediment separation tank of the present invention has a configuration in which the lower side is formed narrower than the upper side, and an opening for discharging the earth and sand, and a lid member or a valve capable of opening and closing the opening are provided on the lower side.
  • the configuration of the apparatus is reduced in size and simplified, and the soil can be washed at low cost and in a small space.
  • the conventional washing technology can also be used. Even fine soil particles such as silt clay with low water permeability, which was relatively difficult, can be reliably washed. Therefore, drainage is extremely good, and dewatering after discharging can be performed in a short time. It becomes.
  • each sediment separation tank when one filter for both water absorption and air supply is installed in each sediment separation tank, the water in the tank is allowed to flow out of the tank so that the sediment separation tank does not need to have a large area. Inflow can be secured. In this way, contaminated water containing soil particles and contaminants flows into the sediment separation tank one after another. And settle down, and the purification process can be performed efficiently.
  • soil cleaning can be performed without requiring a large space, so that, as in a gasoline stand in a narrow factory site, It is possible to carry out the cleaning process effectively using the limited space.
  • soil purification treatment can be carried out locally, which can reduce energy consumption required for soil transportation and achieve energy savings. .
  • the soil cleaning method and the soil cleaning apparatus of the present invention since the classification of soil and soil is based on sedimentation in principle, expensive water treatment equipment can be eliminated as much as possible.
  • water used for washing in a series of processes is purified in a sand filter tank, transferred to a water supply tank, circulated and supplied to each step, and reused. Cost, while minimizing the amount of water used and minimizing the amount of water used.
  • the dewatering process of the discharged soil can be significantly shortened.
  • the sediment is classified and deposited according to the particle size in the sediment separation tank, when the sediment is discharged from the sediment separation tank, the discharged sediment can be obtained in a state where the particle diameters are uniform. For this reason, it is possible to efficiently perform post-processing such as showering, dehydration, and backfilling performed after discharge.

Abstract

汚染土砂を洗浄するエジェクター8と、洗浄された土砂を受け入れる土砂分離槽3,4と、この土砂分離槽3,4の貯留水を受け入れるスカム分離槽19とを用いて土壌の洗浄を行う方法であって、土砂分離槽3,4に土砂を移送する前にエジェクター8により汚染土砂を洗浄する処理と、洗浄された土砂を土砂分離槽3,4にて沈殿させる処理と、土砂分離槽3,4の上部水面付近の水をスカム分離槽19に送出する処理と、スカム分離槽19の濃縮スカムを回収する処理と、スカム分離槽19の分離水を洗浄水として再利用する処理と、土砂分離槽3,4に沈殿した土砂を排出する処理とを備える。

Description

明 細 書
土壌洗浄方法及び土壌洗浄装置
技術分野
本発明は、ェジ: cクタ一による土壌洗浄方法及び土壌洗浄装置に関し、特に, 深層、浅層、高濃度汚染、低濃度汚染、複合汚染、或いは汚染土壌の粒径を 問わず、低コストかつ効率的に汚染土壌を浄化することが可能な土壌洗浄方 法及び土壌洗浄装置に関する。 背景技術
近年では、地球規模で環境問題が議論されており、環境汚染の一つである 土壌汚染についても関心が高まっている。土壌や地下水を汚染する物質とし ては、例えば、揮発性有機化合物(例えば、トリクロロエチレン、ベンゼン、亍ト ラクロ口エチレン等)、石油系の炭化水素、六価クロム、油分(ベンゼン)等が知 られている。
汚染された土壌を浄化する手段として、例えば、ゥエルポイント或いはディー プゥエルを地盤内の汚染土壌部分に打設し、地下水を揚水して地下水位を低 減させる一方で、揚水した地下水を地上の浄化設備により浄化した後で、別の 場所から注水を行う浄化工法が提案されている。この工法は、汚染土壌内に 広く水流を形成して、浸透循環を促進し、土壌中に含まれる汚染物質を除去 するものである。
しかし、高度に汚染された ±壌は、土粒子間隙に汚染物質が存在しており、 土粒子間隙に水や空気が浸入し得ない透水性の悪い状況にある。このため、 揚水, 注水作業を実施したとしても、地層の層境等において水が行き渡らず、 土壌中に含まれる汚染物質を十分に除去することができないという問題があつ た。特に、シルト質の土壌のように、透水係数が低い土壌にあっては、上記ェ 法では満足な結果を得ることは困難であった。 或いは、タールや重金属による汚染土壌等を、効果的に浄化する方法として, 汚染土壌を非汚染土壌に入れ替える土壌置換工法が知られている。この土地 置換工法では、確実に汚染土壌の浄化を行うことが可能であるが、大量の土 壌を運搬する際に多量の運搬エネルギー等を消費し、 co2発生を結局は助長 するという問題があった。また、埋め戻し用の土壌を購入するのに多大なコスト がかかるという問題があった。さらに、その汚染土壌の最終処理も社会的な大 問題となっている。
さらにまた、汚染土壌を掘削して取り出し、プラントに設置した回転ドラムに投 入して、洗浄処理を施し、再度地盤に埋め戻す土壌洗浄法が知られている。し かし、この工法によれば、装置システムが複雑及び高価であり、また、大量の 土砂を処理するためにプラン卜設備が大規模となり、設置のための広いスぺー スが必要となり、設置場所が制限されてしまうという問題があった。また、洗浄 された土壌の排出や脱水,埋め戻しを行うために種々の装置が必要とされ、手 間とコストがかかるという問題があった。
また、上記工法において、土壌洗浄を行った洗浄水については、粒径が一定 の範囲にある凝集剤を用いて浄化処理される。つまり、洗浄水に微粒状カーボ ン等からなる凝集剤を混入して撹拌し、その後、酸性化剤や高分子凝集剤を 添加し、凝集剤に洗浄水中の不純物を吸着させ、シックナ一等で連続的に沈 降固液分離するものである。洗浄水の浄化処理では、不純物が吸着された凝 集剤がスラッジとして発生するため、このスラッジの処理も行わなければならな し、という不都合があった。 発明の開示
本発明の目的は、安価な構造でぁリながら、油、重金属等の複合汚染につ いて効率良く土壌洗浄を行うことができる土壌洗浄方法及び土壌洗浄装置を 提供することにある。 また、本発明の他の目的は、省スペースであり、汚染土壌の浄化処理を現地 で行うことができる土壌洗浄方法及び土壌洗浄装置を提供することにある。 さらに、本発明の目的は、極力、汚染土壌,洗浄水を場外に出すことを少なく し、土壌運搬等に要されるエネルギー消費を低減し、さらに洗浄水を場内で再 利用することにより水の使用量を必要最小限にして、省エネルギー化を実現し た土壌洗浄方法及び土壌洗浄装置を提供することにある。
さらにまた、本発明の目的は、大きな面積を有する水槽を使用しなくても、水 槽内に流入する汚濁水に含まれる土粒子等の沈降を促進することができる吸 水送気兼用フィルタ一管を備えた土壌洗浄装置を提供することにある。
本発明について、請求項に基づいた態様で説明する。
本発明の土壌洗浄方法は、汚染土砂を洗浄するェジェクタ一と、洗浄された 土砂を受け入れる土砂分離槽と、該土砂分離槽の貯留水を受け入れるスカム 分離槽と、を用いて土壌の洗浄を行う方法であって、前記土砂分離槽に土砂 を移送する前に前記ェジ Xクタ一により汚染土砂を洗浄する処理と、該洗浄さ れた土砂を土砂分離槽にて沈殿させる処理と、前記土砂分離槽の上部水面 付近の水をスカム分離槽に送出する処理と、前記スカム分離槽の濃縮スカム を回収する処理と、前記スカ厶分離槽の分離水を洗浄水として再利用する処 理と、前記土砂分離槽に沈殿した土砂を排出する処理と、を備えている。
土砂分離槽の上部水面付近には、土砂より分離した汚染微細粒子等からな るスカムが浮上分離し、水面付近に薄い層を形成するが、本発明の土壌洗浄 方法によれば、分離槽の上部水面付近の水をスカム分離槽に送出するように 構成されているので、土砂分離槽で浮上分離したスカムについて、大がかりで 複雑な装置を用いることなく、次工程への流出を防止し、適切に処理すること が可能となる。
スカム分離槽に流入した貯留水は、スカム分離槽において、スカムと分離水 と沈降物に分離される。上部には汚染濃度の高い濃縮スカムが浮上し、中間 部は汚染濃度の低い水の層が形成され、底部には比重の重い土砂や、一部 の汚染物質が沈降する。
上記濃縮スカムは回収され、分離水は洗浄水として再利用される。このよう に、洗浄に使用した水を、スカム分離槽で分離水としてから各工程に循環供給 して再利用するようにしているので、洗浄水が場外に出ることがなく、また、水 の使用量を必要最小限にし、コストの増加を防ぐことが可能となる。
前記スカム分離槽では、流入された水が流速毎分略 60cm乃至 1 00cmで 移動し、スカムの分離が効率的に行われるように構成されている。なお、分離 水の汚染濃度が高い場合は、前記スカム分離槽の分離水を濾過手段で濾過 する処理と、該濾過手段で濾過された濾過水を洗浄水として再利用する処理 と、を行うようにすると好適である。
また、本発明の土壌洗浄方法によれば、汚染土砂をェジェクタ一で洗浄する ことにより、特に従来では汚染物質の分離が困難であった粘度,シルト等の粒 径の微細な土砂についても効率的且つ確実に浄化することが可能であり、汚 染された微細粒子の発生量を極めて少なくすることが可能となる。そして、土 砂の洗浄が確実に行われるため、水はけについても極めて良好になり、排土 後の脱水も短時間で行うことが可能となる。
また、ェジェクタ一により土粒子等の S S成分が流送過程で単粒子化される ので、排土の脱水工程を大幅に短縮することができ、土砂の埋め戻しを効率 的に行うことが可能となる。また、ェジェクタ一による流送過程で土砂の洗浄を 行うので、従来の回転ドラム内にて ±壌洗浄する構成等に比して、広いスぺー スを要することなく土壌洗浄を行うことが可能となる。本発明の土壌洗浄方法 によれば、土壌洗浄において広い面積を確保する必要がないため、汚染土壌 の発生した土地や工場敷地内で土壌洗浄を行うことが可能であり、土壌等の 運搬に伴う環境汚染や、エネルギーの多消費が発生することなく好適である。 なお、前記洗浄された土砂を土砂分離槽にて沈殿させる処理の前に、前記 土砂分離槽内で前記土砂を希釈 '撹拌する処理を行うと、土砂の洗浄効果が 高められ、スカムの分離をより効果的に行うことが可能となる。
そして、さらに前記土砂分離槽で沈殿された土砂をェジェクタ一により再洗浄 して次の土砂分離槽に移送する処理と、前記次の土砂分離槽の上部水面付 近の水をスカム分離槽に送出する処理と、前記次のスカム分離槽の分離水を 洗浄水として再利用する処理と、前記次の土砂分離槽に沈殿した土砂を排出 する処理と、を行う。
本発明の請求項 6に係る土壌洗浄方法は、汚染土砂を洗浄するェジェクタ 一と、洗浄された土砂を粒径別に分級する複数の土砂分離槽と、該土砂分離 槽の貯留水を濾過する濾過手段と、該濾過手段からの濾過水を受け入れる 給水槽と、を少なくとも用いて土壌の洗浄を行う方法であって、前記土砂分離 槽に土砂を移送する前に前記ェジエクタ一により汚染土砂を洗浄する処理と、 該洗浄された土砂を土砂分離槽にて沈殿させ粒径別に分級する処理と、前記 土砂分離槽の貯留水をフィルターを備えた管で吸水する処理と、前記管よリ微 細気泡を発生させて前記フィルターの目詰まりを解消するとともに、前記貯留 水に含まれる汚染物質を分離させる処理と、前記貯留水を前記濾過手段にて 濾過する処理と、該濾過手段からの濾過水を給水槽で受け入れて洗浄水とし て再利用する処理と、前記土砂分離槽に沈殿した土砂を排出する処理と、を 備えたことを特徴とする。
上記土壌洗浄方法では、フィルタ一管で、土砂分離槽の貯留水を吸水する 構成とされているので、土砂分離槽が大きな表面積を有していなくても、土砂 分離槽への流入量を確保し、槽内での土砂の沈降を促進することが可能とな る。また、フィルタ一管から送気することにより、フィルタ一の目詰まりを解消す るとともに、土砂分離槽に微細気泡を発生させて、土砂分離槽内の汚染物質 を分離することが可能となる。
なお、上記請求項 6に記載の土壌洗浄方法において、前記土砂分離槽に土 砂を移送する前に前記ェジェクタ一により汚染土砂を洗浄する処理では、採取 された汚染土砂をェジ: Πクタ一により洗浄する処理がなされ、前記洗浄された 土砂を土砂分離槽にて沈殿させ粒径別に分級する処理では、洗浄された土砂 を第 1の土砂分離槽へ移送して粗粒土を分級する処理と、洗浄された土砂を 第 2の土砂分離槽へ移送して細粒土を分級する処理と、洗浄された土砂を第 3の土砂分離樽へ移送して微細粒土を分級する処理と、がなされ、前記土砂 分離槽の貯留水をフィルターを備えた管で吸水する処理では、前記第 1の土 砂分離槽の貯留水を吸水送気兼用フィルタ一管で吸水する処理と、前記第 2 の土砂分離槽の貯留水を吸水送気兼用フィルタ一管で吸水する処理と、前記 第 3の土砂分離槽の貯留水を吸水送気兼用フィルタ一管で吸水する処理と、 がなされ、前記貯留水を前記濾過手段にて濾過する処理では、前記第 1の土 砂分離槽, 第 2の土砂分離槽,第 3の土砂分離槽の貯留水を前記濾過手段 に移送して濾過する処理がなされると好適である。
なお、汚染濃度が高い場合は、前記洗浄された土砂を土砂分離槽に移送す る処理の前に、前記汚染土砂を再洗浄槽に移送し、前記汚染土砂から汚染 物質を分離させる処理を行うと良い。このとき、前記再洗浄槽の上部水面付 近の水をスカ厶分離槽に送出する処理を行っても良い。
また、再洗浄槽または土砂分離槽にェジ: πクタ一を介して土砂を移送すること により、汚染土砂から汚染物質を分離或いは分離されやすい状態とすることが できる。そして、ェジェクタ一内での吸引空気により微細気泡が発生され、その 気泡により土砂に付着した汚染物質が浮上される。
さらに、前記再洗浄槽での分離処理がなされた後で、前記再洗浄槽の貯留 水を濾過手段に移送して濾過する処理を行うようにしても良い。さらに、前記再 洗浄槽での分離処理がなされた後で、前記再洗浄檣に圧縮空気にて微細気 泡を発生させて汚染物質を浮上させる処理を行うことにより、再洗浄槽内の微 細土粒子に付着した汚染物質を確実に分離させることができ好適である。 また、前記排出された土砂を脱水して埋め戻す処理において、前記土砂分 離槽から排出された土砂が粒径別に処理されるようにすると、排土後に行うシ ャワーリングゃ脱水処理を効率的に行うことができ好適である。
本発明の土壌洗浄装置は、前記汚染土砂を洗浄するェジ工クタ一と、洗浄さ れた土砂を受け入れる土砂分離槽と、該土砂分離槽の貯留水を受け入れる スカム分離槽と、を備え、前記ェジェクタ一は前記土砂分離槽の少なくとも前 段に配設され、前記スカム分離槽は前記土砂分離槽の後段に配設されたこと を特徴とする。
また、本発明の土壌洗浄装置は、スラリー化された汚染土砂が収納されたス ラリー槽と、汚染土砂を粒径別に沈殿させる複数の土砂分離槽と、前記スラリ ー槽と土砂分離槽との間に介在するェジェクタ一と、前記複数の土砂分離槽 を連結する通水管と、前記複数の土砂分離槽に配設される吸水送気兼用フィ ルター管と、前記複数の土砂分離槽の貯留水を濾過する濾過手段と、該濾過 手段で濾過された水を洗浄水として循環させる給水槽と、を備え、前記吸水送 気兼用フィルタ一管により、前記土砂分離槽内の貯留水が直接吸水されて前 記濾過手段へ移送され、前記吸水送気兼用フィルタ一管より気泡が発生され てフィルターの目詰まりが解消されるとともに前記土砂分離槽内の汚染物質が 分離されることを特徴とする。
上記土壌洗浄装置において、前記土砂分離槽の上部側に、前記貯留水を 前記スカム分離槽へ移送するための流出口が設けられており、土砂分離槽に 浮上したスカムを土砂分離槽から流出できるように構成されている。
さらに、請求項 1 4の土壌洗浄装置において、前記土砂分離槽に、前記土砂 分離槽の貯留水をフィルターを備えた管で吸水するとともに、前記管より微細 気泡を発生させて前記フィルターの目詰まりを解消し、前記貯留水に含まれる 汚染物質を分離させる吸水送気兼用フィルタ一管が配設された構成とすること により、大きな面積を有する水槽を使用しなくても、水槽内に流入する汚濁水 に含まれる土粒子等の沈降を促進することが可能となる。
なお、前記スカム分離檣で分離された分離水を濾過する濾過手段と、該濾 過手段で濾過された水を洗浄水として循環させる給水槽を備えた構成とし、水 の再利用を図るようにしても良い。
また、前記土砂分離槽について、下部側が上部側よりも狭く形成されるととも に、下部側に土砂排出用の開口と、該開口を開閉可能な蓋部材またはバルブ が設けられた構成とすることにより、土砂分離槽に沈降した土砂が、蓋部材を 開放するだけで徐々に排出され、土砂の排出をスムーズに行うことが可能とな る。また、土砂を排出するために土砂分離槽の位置を変えたり、傾けたりする 必要がないため、広いスペースを必要とすることな 土砂の排出を行うことが 可能となる。
前記土壌洗浄装置に配設される前記吸水送気兼用フィルタ一管は、ポンプ 及びコンプレッサーに接続された切替装置と、該切替装置に接続された管部と、 該管部に接続された取水送気部と、該取水送気部に取着されたフィルターと、 を備え、前記取水送気兼用フィルタ一管を配設することにより所定の取水量を 確保し、前記ポンプの駆動により前記水槽内の水が前記フィルターを介して吸 水されるとともに、前記コンプレッサーの駆動により前記取水送気部から前記 フィルターを介して微細気泡が発生されることを特徴とする。
上記構成からなる取水送気兼用フィルタ一管を使用することにより、大きな面 積を有する水槽を使用しなくても、水槽内に流入する汚濁水に含まれる土粒 子等の沈降を促進することが可能となる。すなわち、本発明の取水送気兼用フ ィルター管で水槽内の水を槽外に流出させることにより、水槽への流入量を確 保することができる。そして、水槽に汚濁水が流入されたとき、汚濁水に含まれ る土粒子等は、取水送気兼用装置のフィルタ一により槽外への流出を禁止さ れ、槽内に沈降する。このようにして、槽内に次々に汚濁水を流入させ、この汚 濁水からフィルタ一により土粒子を取り分けて沈降させ、効率的に浄化処理を 行うことが可能となる。
フィルターに土粒子等が詰まり、通水量が確保できなくなったときには、吸水 送気兼用フィルタ一管をコンプレッサーに接続し、取水兼用送気部から微細気 泡を発生させる。このようにして、フィルターの細孔に詰まった土粒子等を除去 することができる。また、水槽内に微細気泡を発生させることにより、水槽内の 汚染物質を気泡に付着させて浮上させ、分離することが可能となる。 図面の簡単な説明
図 1は第 1実施例に係る土壌洗浄装置の全体を示す概略図:
図 2はェジェクタ一の説明図:
図 3は各工程での土,水,油の比率を示す一覧表:
図 4は土砂分離槽の説明図
図 5は土砂分離槽の説明図
図 6は土砂分離槽の説明図
図 7はスカ厶分離槽の説明図:
図 8は土砂分離槽及びスカム分離槽を示す説明図:
図 9は第 2実施例における土壌洗浄装置の全体を示す概略図:
図 1 0はエアージャッキの説明図;
図 1 1は再洗浄槽から油分等の汚染物質をオーバーフローさせた状態を示す 説明図;
図 1 2は土砂分離槽から土砂を排出した状態を示す説明図;
図 1 3は土砂分離槽に吸水管を設けた構成を示す説明図:
図 1 4は吸水送気兼用フィルタ一管の取水送気部を示す説明図:
図 1 5は吸水送気兼用フィルタ一管の取水口を示す拡大説明図;
図 1 6は吸水送気兼用フィルタ一管による吸水状態及び空気導入状態を示す 説明図; ιυ
図 1 7は土壌洗浄方法の工程を示すブロック図;
である。 発明を実施するための最良の形態
以下、本発明の一実施の形態を図面に基づいて説明する。なお、以下に説 明する部材, 配置等は本発明を限定するものでなく、本発明の趣旨の範囲内 で種々改変することができるものである。
図 1乃至図 8は本発明の一実施例を示すものであり、図 1は第 1実施例にお ける土壌洗浄装置の全体を示す概略図、図 2はェジェクタ一の説明図、図 3は 各工程での土,水,油の比率を示す一覧表、図 4乃至図 6は土砂分離槽の説 明図、図 7はスカム分離槽の説明図、図 8は土砂分離槽及びスカム分離槽を 示す説明図である。
(第 1実施例)
以下、本発明の第 1実施例について説明する。本例では、採取された汚染土 壌について、次の方法により浄化するものである。すなわち、本例の土壌処理 方法は、採取された汚染土砂をェジェクタ一 8により洗浄し土粒子等 SS成分を 単粒子化する処理と、洗浄された土砂を第 1の土砂分離槽 3へ移送して土砂 を沈殿させる処理と、第 1の土砂分離槽 3の貯留水のうち、汚染微細粒子等 からなるスカムが浮上分離した上部水面付近の水を、スカム分離槽に送出す る処理と、第 1の土砂分離槽 3に沈降した土砂をェジェクタ一で洗浄し、洗浄さ れた土砂を第 2の土砂分離槽 4へ移送して土砂を沈殿させる処理と、第 2の ± 砂分離槽 4の貯留水のうち、汚染微細粒子等からなるスカムが浮上分離した 上部水面付近の水を、スカム分離槽に送出する処理と、スカム分離槽 1 9で分 離した濃縮スカムを回収する処理と、スカ厶分離槽 1 9で分離した分離水を再 度洗浄水として利用する処理と、を行うものである。
上記土壌洗浄を行うための土壌洗浄装置 Sは、図 1に示すように、汚染土 壌を吸引し汚染土壌を単粒子化するとともに、汚染物質を分離するェジェクタ 一 8と、ェジェクタ一 8から排出された土砂が収納されたスラリー槽 1と、ェジェク ター 8で再洗浄した土砂が収納された再洗浄槽 2と、洗浄された土砂を沈殿さ せる第 1の土砂分離槽 3 , 第 2の土砂分離槽 4と、土砂分離槽 3, 4の上部水 面付近の水を受け入れるスカム分離槽 1 9と、スカム分離槽 1 9から送水された 分離水を濾過する砂濾過槽 6と、砂濾過槽 6で濾過された水を受け入れる給 水槽 7と、から構成されている。本例では、濾過手段として砂濾過槽 6を用いて し、るが、砂濾過槽 6に限らず、袋状フィルター, ゼォライト,活性炭,沈砂池等 の他の濾過手段を使用しても良い。なお、図中の符号 Pはサンドポンプである。 スラリー槽 1には、敷地内で掘削され、土受槽 1 2aに蓄積された汚染土 1 2が、 ェジェクタ一 8を介して投入される。
ェジェクタ一 8は、図 1に示すように、土受槽 1 2aとスラリー槽 1との間、スラリ ー槽 1と再洗浄槽 2との間、第 1の土砂分離槽 3と第 2の土砂分離槽 4との間 に配設されている。ェジェクタ一 8は、図 2に示すように、吸引側の管体 8 aと、 排出側の管体 8bと、排出側の管体 8bに連続して設けられた排出管 8cと、吸 引側の管体 8 aと排出側の管体 8bの間に設けられた圧力水管 8dと、圧力水 管に連通した気体導入管 8eと、圧力水管内 8dに駆動高圧水を供給する圧力 水供給源 8fとを備えて構成されている。
圧力水管 8dからは、圧力水供給源 8fから圧送される駆動高圧水が、排出 側の管体 8bへ向けて送出される。駆動高圧水は、例えぱ 5〜 250kgZcm2 の圧力で噴出される。本例では、駆動高圧水として給水槽 7からの洗浄水を再 利用している。
駆動高圧水の初速は 30~ 60mZseGであり、駆動高圧水の境界面には負圧 が発生する。したがって、駆動高圧水が圧力水管 8dのノズルから噴射されると、 噴出した駆動高圧水のェジェクタ一作用により、気体導入管 8 eから大気が吸 入されて、気体混入状態の圧力水となる。 そして、気体混入状態の圧力水が、排出側の管体 8bに噴出することにより、 吸引側の管体 8 aの内部が真空に近い状態となり、これにより、スラリー槽 1よ リ、スラリー化された汚染土砂 1 2が吸い上げられて、排出側の管体 8bへ圧送 される。汚染土砂 1 2の吸引及び圧送は、駆動高圧水の噴出が続く限り継続し て行われる。
ェジェクタ一 8により、スラリー化された汚染土砂 1 2が吸引されると、管体内 の A点において、吸引された汚染土砂 1 2と駆動高圧水とが衝突する。これに より、気体,固体,液体の三相状態の衝突が持続され、その結果、汚染土砂 1 2に付着していた汚染物質が分離、或いは分離されやすい状態となる。
ェジェクター8による洗浄では、気体混入状態の圧力水が噴出することにより、 土砂、特にシル卜,粘土等の微細土粒子が単粒子化し、管内で洗浄水と接し やすくなリ、又管内の断面変化により気泡が様々に変化することにより超音波 が発生し、且つ空気の曝気作用により、汚染物質と土粒子の分離が瞬時に行 われる。このため、従来では、洗浄が困難であった微細土粒子についても好適 に洗浄することが可能である。
なお、本例のェジェクタ一は、図 2に示すように、排出側の管体 8bの管径が、 一部で狭くなつた箇所 8gが形成されている。また、排出側の管体 8bと排出管 8cとの間に凹部 8hが設けられている。
上記構成により、排出側の管体 8bを通過するスラリー化された土砂流は、管 径の狭くなつた箇所 8gでさらに高圧になり、勢いよく流れながら凹部 8hに流れ 込み、その後、排出管 8cへと流出する。
したがって、ェジェクタ一 8の B点でも、凹部 8hへ向かう土砂流と、排出管 8c 側へ流下する土砂流とが衝突し、土砂に付着していた汚染物質が、さらに分 離、或いは分離されやすい状態となる。
スラリー槽 1の土砂は、再度ェジェクタ一 8により希釈,洗浄,撹拌され、再洗 浄槽 2へ移送される。このとき、希釈水としてはェジェクタ一 8の駆動水が用い られる。再洗浄槽 2には水道水等の洗浄水が満たされている。この再洗浄槽 2 に、スラリー化した洗浄済みの土砂と、土砂から分離された汚染物質、泡状の 気体が排出される。
再洗浄槽 2では、汚染物質のうち、比重の軽い油分等の汚染物質が、同時 に排出される気体によるエアレーシヨンによって撹拌分離されて水面に浮上す る。この浮上した汚染物質を含まないように、再洗浄槽 2の下部側から、貯留 水と土砂を第 1の土砂分離槽 3へ送出する。
本例では、第 1の土砂分離槽 3, 第 2の土砂分離槽 4からなる 2つの土砂分 離槽を用いて、汚染物質の分離を行う。図 4は、本例で用いる土砂分離槽の 説明図である。土砂分離槽は、上部側は角柱形または円筒形に形成され、下 部側が四角錐の形状に形成されている。下端部には、筒形の土砂排出口 31 と、この土砂排出口 31を開閉可能なバルブ 32が設けられている。
土砂分離槽を上記のような形状とすることにより、土砂を排出する際に、堆積 した土砂を自然に下方へ移動させ、一箇所から排出させることが可能となる。 また、下方から排出するので、土砂分離槽の水位を維持しながら土砂のみを 排出することが可能である。本例の土砂分離槽によれば、バルブ 32を開閉す るだけで、土砂排出口 31より土砂の排出を連続定量的に行うことが可能とな る。
なお、土砂分離槽の形状については、図 4に示す形状に限らず、図 5に示す 形状としても良い。図 5の土砂分離槽は、図 4の土砂分離槽を縦半分に割った ような形状とされている。このような形状でも、堆積した土砂を自然に下方へ移 動させ、一箇所から排出させることが可能である。なお、図 5の符号 36は、通 水管 9を取り付けるための穴である。通水管 9が設けられた場合、土砂分離槽 3の貯留水は、通水管 9を流通して土砂分離槽 4に移送され、土砂分離槽 4の 貯留水は通水管 9を流通して砂濾過槽 6に移送され濾過される。
図 5の土砂分離槽の下部側には、土砂を排出するための土砂排出口 31と、 この土砂排出口 3 1を被覆する蓋体 33が設けられている。蓋体 33は、第 1の 油圧シリンダ 34により上下方向に移動可能とされている。蓋体 33が上方向に 移動したときに、土砂排出口 3 1が開放される。また、蓋体 33は、土砂排出口 31を閉止しているときに、第 2の油圧シリンダ 35により、土砂排出口 3 1に密 着するように構成されている。
したがって、土砂を排出するときには、先ず第 2の油圧シリンダ 35が作動され, 蓋体 33と土砂排出口 31との密着が解除され、さらに第 1の油圧シリンダ 34が 作動され、蓋体 33が上方へ移動して、土砂排出口 31が開放される。
なお、図 6に示すように、土砂分離槽 3 , 4の下方にスクリューコンベア 20を 設けた構成としても良い。スクリューコンベア 20を設けることにより、排出された 土砂を、次工程に効率的に移送することが可能となる。このとき、スクリューコ ンベア 2の一端を上方に上げ、土砂分離槽 3 , 4の水位との高低差を小さくす ることにより、土砂分離槽 3, 4からの水の排出を抑えるようにしても良い。
第 1の土砂分離槽 3には、再洗浄槽 2から移送されてきた洗浄済みの土砂と、 土砂から分離された汚染物質、泡状の気体が流れ込む。このとき、土砂分離 槽内で土砂を希釈'撹拌すると、汚染物質の分離が促進され好適である。この とき、必要であれば、土砂分離槽 3に給水槽 7から給水を行う。
撹袢手段は、例えば複数枚の羽根部を備えた撹拌羽根と、この撹拌羽根を 回転駆動させるモータ等の駆動手段から構成されている。或いは、撹拌手段と して、複数本の撹拌棒と、この撹拌棒を所定方向に駆動させる駆動手段から なるもの等、他の構成の撹拌手段を用いても良い。撹拌手段により撹拌された 土砂は、油分等の汚染物質が分離されるとともに、土砂分離槽 3 , 4に沈殿す る。
第 1の土砂分離槽 3内に沈殿した土砂は土砂排出口 3 1から取出され、ェジ ェクタ一 8で希釈,洗浄,撹拌され、第 2の土砂分離槽 4へ移送される。また、 第 1の土砂分離槽 3内の上部水面付近の水は、スカム分離槽 1 9へ移送され る。
土砂分離槽 3, 4の上部水面付近には、土砂より分離した汚染微細粒子等 からなるスカムが浮上分離し、水面付近に薄い層を形成する。本例の土砂分 離槽 3, 4には、図 7に示すように、土砂分離槽 3 , 4の貯留水に浮上したスカ ムを、外部に送出するための流出口 3 b, 4bが形成されている。流出口 3 b, 4 bには、管体 1 9aが接続され、流出口 3b, 4bから管体 1 9aに流れ込んだ汚染 物質が、スカム分離槽 1 9まで送出されるように構成されている。なお、土砂分 離槽 3 , 4からの流出を確実に行うために、管体 1 9aにポンプを設けた構成とし ても良い。
本例のスカム分離槽 1 9は鋼管からなり、略 4mの高さに形成されている。本 例では、毎分 40リットル程度の水が土砂分離槽 3 , 4から取水され、スカム分 離槽 1 9に流入する。スカム分離槽 1 9に流入した水は、スカム分離槽 1 9内を 毎分略 60cm〜 1 00cmの流速で移動する。
スカム分離槽内 1 9では、流入したスカムを含む水が、濃縮スカムと、分離水 と、比重の重い物質とに分離される。濃縮スカムは浮上して上部側に集まり、 分離水は中間部に位置し、底部には比重の重い土砂や汚染物質が沈降す る。
濃縮スカムは回収されて、その後、場外処理される。或いは、濃縮スカ厶を含 む水を砂濾過槽 6に送り、砂濾過槽 6で汚染物質が除去される。分離水は回 収された後、砂濾過槽 6に移送され、濾過後に洗浄水として再利用される。な お、分離水の汚染度が低い場合には、砂濾過槽 6を通さずに、そのまま洗浄 水として再利用することができる。底部に沈降した土砂などは、抜き出された後、 洗浄度が低い場合には、再度洗浄が行われる。また、洗浄度が高い場合には、 洗浄土として処理される。
第 2の土砂分離槽 4には、第 1の土砂分離槽 3から移送されてきた洗浄済み の土砂と、土砂から分離された汚染物質、泡状の気体が流れ込む。そして、流 入した土砂が沈殿する。
沈殿した土砂は、第 2の土砂分離槽 4の下部側から取り出され、脱水後、洗 浄土として再利用される。なお、本例では、ェジェクタ一により土砂の洗浄を行 つているので、油,タール,重金属汚染等、汚染物質の種類に拘わらず、また 従来の洗浄技術では比較的困難であった透水性の低いシルト粘土等の、微 細な土粒子についても、確実に洗浄することが可能となる。したがって、水はけ についても極めて良好になり、排土後の脱水も短時間で行うことが可能となる c 洗浄土の脱水により生成された水は、給水槽 7に移送され再利用される。
第 2の土砂分離槽 4の水面付近のスカムを含む水は、スカム分離槽 1 9へ移 送される。第 2の土砂分離槽 4からスカム分離槽 1 9へ移送された水は、濃縮 スカムと分離水とに分離される。なお、本例では、ここでの分離水については、 汚染度が低いため、砂濾過槽 6を通さずに給水槽 7へ移送している。給水槽 7 に蓄積された水は、土砂分離槽 3,ェジェクタ一 8、スカム分離槽 1 9に移送さ れ、洗浄水や希釈水として再利用される。
本例によれば、土砂分離槽のスカムを次の工程に流入させることなぐ簡単 に分離処理することが可能である。また、スカム分離槽 1 9で分離された水を再 利用する構成とされており、土砂分離槽から洗浄土砂を排出するときに一緒に 排出される水量を調整することができる。本例によれば、従来の水洗浄方式に 比して、使用水量を 1 0分の 1程度に抑えることが可能である。
図 8は、土砂分離槽 3 , 4とスカム分離槽 1 9について、さらに具体的に示す 説明図である。図 8では、土砂分離槽 3, 4として、図 5に示す形状の ±砂分離 槽が使用されている。
図 8に示す土砂分離槽 3, 4には、前記した構成の他、吸水送気兼用フィルタ 一管 1 6が配設されている。吸水送気兼用フィルタ一管 1 6については、第 2の 実施例において詳細に説明するが、ここで吸水送気兼用フィルタ一管 1 6の構 成と機能について概略を説明する。 吸水送気兼用フィルタ一管 16は、管部 16aと取水送気部 16bを備え、取水 送気部 16bから取水した水を、管部 16aを介して砂濾過槽 6へ移送するように 構成されている。吸水送気兼用フィルタ一管 16は、各土砂分離槽 3の大きさに 応じて、適切に吸水及び送気できる本数が配設されている。
吸水送気兼用フィルタ一管 16で土砂分離槽 3, 4内の貯留水を吸水すること により、土砂分離槽 3, 4への流入量を確保しながら、見かけの流入量を小さく することができる。したがって、土砂分離槽 3, 4において大きな面積を確保しな くても、微細な粒径の土粒子を沈降させることが可能となる。吸水送気兼用フィ ルター管 16にはフィルターが設けられており、このフィルタ一により、所定径以 上の土粒子の通過が禁止され、フィルターに引つかかった土粒子が槽内に沈 降されるように構成されている。
なお、吸水送気兼用フィルタ一管 16のフィルターに目詰まりが発生したときに は、吸水送気兼用フィルタ一管 16に圧縮空気を送り、目詰まりを解消するよう に構成されている。また、吸水送気兼用フィルタ一管 16へ圧縮空気が送り込 まれ、フィルターを通して気泡を発生させることにより、汚染物質を気泡に付着 させて浮上させることが可能となる。このようにして、貯留水における汚染物質 の濃度低下を図ることができる。
土砂分離槽 3, 4の流出口 3b, 4bからは、土砂分離槽 3, 4の上部水面付 近の水が流出する。この水は、管体 19aを通ってスカ厶分離槽 19へ移送され る。スカム分離槽内 19では、流入したスカムを含む水が、濃縮スカム 19bと、 分離水 19cと、比重の重い物質 19dと、に分離される。濃縮スカム 19aは浮上 して上部側に集まり、分離水 19bは中間部に位置し、底部には比重の重い物 質 19cとして土砂や、一部の不純物が沈降する。
スカム分離槽 19で分離された濃縮スカ厶 19bは、スカム回収槽 19eに移送 され、その後、処分される。また、スカム分離槽 19で分離された分離水 19cは、 スカム分離槽 19から取り出され、希釈水や洗浄水として再利用される。 図 8の例では、スカム分離槽 19に、濃縮スカム 19bの流出口 19fが設けられ ており、この流出口 19fに設けられたバルブ 19gを開けることにより、濃縮スカ ム 19bを取り出せるように構成されている。また、スカ厶分離槽 19には、分離 水 19cの流出口 19hが設けられており、この流出口 19hに設けられたバルブ 1 9ίを開けることにより、分離水 19cを取り出すことができるように構成されてい る。
以下、上記した第 1の実施例に係る土壌洗浄装置を用いて土壌洗浄を行う 工程について説明する。ここでは、図 1及び図 3を用いて、各洗浄工程を経るこ とにより、掘削された汚染土が洗浄土になるまでの間に、 1時間あたりの土、水、 油の量(m3)がどのように変化するかについても説明する。図 1の括弧付き数 字で示されている処理工程のポイントと、図 3の括弧付き数字で示されている 土、水、油の割合とが対応している。なお、汚染物質として油が除去される例 が示されているが、本例の土壌洗浄方法及び土壌洗浄装置によれば、油に限 ることな スカムとして浮上する重金属等の他の汚染物質についても除去可 能であることは勿論である。
先ず、汚染土 12が掘削される(図 1及び図 3の(1))。汚染土 12が土受槽 1 2aに投入されると、土受槽 12a内の水によリスラリー化される(図 1及び図 3の (2))。
土受槽 12aの汚染土 12がェジェクタ一 8により洗浄されると(図 1の(3))、汚 染土 12の油分が希釈,洗浄,撹袢によりさらに分離され、土、水、油の割合は、 図 3の(3)に示すようになる。次いで、スラリー槽 1の土砂及び水がェジェクタ一 8により吸引され、再洗浄槽 2に移送される(図 1の(5)〉。このとき、さらに土砂 から油分が分離され、土、水、油の割合は、図 3の(5)に示すようになる。
再洗浄槽 2の水面にはスカムが浮上する。このスカムの一部が土受槽 12a に戻され(図 1及び図 3の(11))、再洗浄槽 2における土、水、油の割合は、油 分の割合が低減し、図 3の(6)に示すようになる。 第 1の土砂分離槽 3では、スカムが浮上するとともに、土砂が沈降する。沈降 した土砂は第 1の土砂分離槽 3の土砂排出口 31から取り出される(図 1の (7))。このとき、本例の土砂分離槽によれば、図 3の(7)に示されるように、ほ ぼ土砂のみを取り出すことが可能である。この土砂はェジェクタ一 8を介して第 2の土砂分離槽 4へ移送される(図 1の(8))。このときの、土、水、油の比率は, 土砂からさらに油分が分離され、図 3の(8)に示すようになる。
一方、第 1の土砂分離槽 3の上部水面付近の水は、スカム分離槽 19に移送 される(図 1及び図 3の(16))。スカム分離槽 19で、濃縮スカムと分離水とに 分離処理が行われると、中間部の汚染濃度の低い水を給水槽 7へ移送し(図 1及び図 3の(17))、上部水面付近の汚染濃度の高い水を砂濾過槽 6に移送 する(図 1及び図 3の(18))。砂濾過槽 6では、給水槽 7の水面付近の水が合 流し(図 1及び図 3の(23))、土、水、油の割合は図 3の(24)に示すようになる c 砂濾過槽 6での濾過処理により、油分の含有量が大幅に下がった水が生成さ れるとともに(図 1及び図 3の(21))、油分を多く含む水(排油)が生成される (図 1及ぴ図 3の(25))。
第 2の土砂分離槽 4では、スカムが浮上するとともに、土砂が沈降する。この 土砂は、油分の含有量が大幅に低減している(図 1及び図 3の( 9 ))。この土砂 は、脱水後、排土される(図 1及び図 3の(10))。排土を脱水することによリ生 成された水は、油分含有率が低く(図 1及び図 3の(20))、洗浄水として再利 用される。
また、第 2の土砂分離槽 4の貯留水は、スカ厶分離槽 19へ移送される(図 1 の(19))。このときの水は、図 3の(19)に示すように、第 1の土砂分離槽 4か らスカム分離槽 19へ移送された水よりも、油分の濃度が低くなつている。スカ ム分離槽 19の分離水は、洗浄水として使用可能な油分含有率になっており、 このため砂濾過槽 6を通さずに給水槽 7へ移送される(図 1及び図 3の(27))。 給水槽 7に投入される水は、新水も含んでおり、全体の土、水、油の割合は 図 3の(22)に示すようになる。なお、給水槽 7においても、スカムが水面付近 に浮上する。このため、底部付近の純度の高い水(図 1及び図 3の(14))を汲 み出し、ェジェクタ一 8で希釈 先浄水として再利用する。従って、図 3における (12), (13), (14), (15), (26)の土、水、油の割合は同一となっている。
(第 2実施例)
次に、本発明の第 2実施例について説明する。なお、本例において、前記実 施例と同様部材には同一符号を付して、その説明を省略する。図 9は第 2実施 例における土壌洗浄装置の全体を示す概略図、図 10はエアージャッキの説明 図、図 11は再洗浄槽から油分等の汚染物質をオーバーフローさせた状態を 示す説明図、図 12は土砂分離槽から土砂を排出した状態を示す説明図、図 13は土砂分離槽に吸水送気兼用フィルタ一管を設けた構成を示す説明図、 図 14は吸水送気兼用フィルタ一管の取水送気部を示す説明図、図 15は吸水 送気兼用フィルタ一管の取水口を示す拡大説明図、図 16は吸水送気兼用フ ィルター管による吸水状態及び空気導入状態を示す説明図、図 17は土壌洗 浄方法の工程を示すブロック図である。
本例では、採取された汚染土壌について、次の方法により浄化するものであ る。本例の土壌処理方法は、採取された汚染土砂をェジ: I:クタ一 8によ y洗浄 し土粒子等 SS成分を単粒子化する処理と、洗浄された土砂を第 1の土砂分 離槽 3へ移送して粗粒土を分級する処理と、第 1の土砂分離槽 3の貯留水を 吸水送気兼用フィルタ一管 16で吸水する処理と、吸水送気兼用フィルタ一管 16より微細気泡を発生させてフィルター" I6dの目詰まりを解消するとともに、 第 1の ±砂分離槽 3の貯留水に含まれる汚染物質を分離させる処理と、洗浄 された土砂を第 2の土砂分離槽 4へ移送して細粒土を分級する処理と、第 2の 土砂分離槽 4の貯留水を吸水送気兼用フィルタ一管 16で吸水する処理と、吸 水送気兼用フィルタ一管 16より微細気泡を発生させてフィルター 16dの目詰 まりを解消するとともに、第 2の土砂分離槽 4の貯留水に含まれる汚染物質を 分離させる処理と、洗浄された土砂を第 3の土砂分離槽 5へ移送して微細粒 土を分級する処理と、第 3の土砂分離槽 5の貯留水を吸水送気兼用フィルタ 一管 1 6で吸水する処理と、吸水送気兼用フィルタ一管 1 6より微細気泡を発生 させてフィルター 1 6dの目詰まりを解消するとともに、第 3の土砂分離槽 5の貯 留水に含まれる汚染物質を分離させる処理と、第 1の土砂分離槽 3, 第 2の土 砂分離槽 4, 第 3の土砂分離槽 5の貯留水を濾過手段としての砂濾過槽 6に 移送して濾過する処理と、濾過水を給水槽 7に移送し洗浄水として再利用する 処理と、各土砂分離槽 3 , 4, 5に沈殿した土砂を排出する処理と、排出された 土砂を脱水して埋め戻す処理と、を行うものである。これら全ての処理を 1サイ クルとし、 1サイクルは約 30〜60分間で行われる。なお、本例では、排出され た土砂を埋め戻す処理を行っているが、他の用途に使用しても良い。
上記土壌洗浄を行うための土壌洗浄装置 Sは、図 9に示すように、汚染土壌 が収納されたスラリー槽 1と、汚染土壌を吸引し汚染土壌を単粒子化するとと もに、染物質を分離するェジェクタ一 8と、ェジェクタ一 8から排出された土砂か ら汚染物質を分離する再洗浄槽 2と、洗浄された土砂を沈殿させる第 1の土砂 分離槽 3 ,第 2の土砂分離槽 4, 第 3の土砂分離槽 5と、土砂分離槽 3, 4, 5 の貯留水を吸水するとともに、土砂分離槽 3, 4, 5へ送気し微細気泡を発生さ せる吸水送気兼用フィルタ一管 1 6と、土砂分離槽 3, 4, 5から送水された貯 留水を濾過する砂濾過槽 6と、砂濾過槽 6で濾過された水を受け入れる給水 槽 7と、再洗浄槽 1及び土砂分離槽 3, 4, 5に配設されたエアージャッキ 1 0と、 から構成されている。
第 1の土砂分離槽 3,第 2の土砂分離槽 4 ,第 3の土砂分離槽 5は通水管 9 にて連結されている。土砂分離槽 3, 4, 5の貯留水は、上記吸水送気兼用フィ ルター管 1 6により吸水される他、通水管 9も流通し、最終的に砂濾過槽 6にて 濾過される。
スラリー槽 1には、敷地内で油圧ショベル等により掘削され、ホイールローダ 一 1 1により運搬された汚染 ± 1 2が投入され、給水槽 7から循環されてきた洗 浄水 7 aが適量加えられる。スラリー槽 1に汚染土 1 2を投入する際には、スラリ ー槽 1の後段で汚染 ± 1 2を洗浄するェジェクタ一 8の管径を考慮して、所定粒 径以上の礫,ガラが投入されないようにする。
このため、本例では、スラリー槽 1の上部に孔が穿設されたスクリーン 1 aを設 け、所定粒径以上の礫,ガラを除去するように構成されている。なお、汚染土 1 2の性質によっては、スラリー槽 1内に適量の反応剤を添加し、ェジ: πクタ一 8で の吸引,流送過程での汚染物質との分離が促進されるようにする。
スラリー槽 1と再洗浄槽 2、及び再洗浄槽 2と第 1の土砂分離槽 3との間にェ ジェクター8が配設されている。なお、ェジェクター8を、第 1の土砂分離槽 3と第 2の土砂分離槽 4、第 2の土砂分離槽 4と第 3の土砂分離槽 5との間に設けた 構成としても良い。また、スラリー槽 1に土砂を投入する際に、ェジヱクタ一 8を 介して投入する構成としても良い。
ェジ工クタ一 8により洗浄された土砂は、排出管 8cから、再洗浄槽 2へ移送さ れる。再洗浄槽 2には水道水等の洗浄水が満たされている。この再洗浄槽 2に、 スラリー化した洗浄済みの土砂と、土砂から分離された汚染物質、泡状の気 体が排出される。
再洗浄槽 2では、汚染物質のうち、比重の軽い油分等の汚染物質が、同時 に排出される気体によるエアレーシヨンによって撹拌分離されて水面に浮上す る。水面に浮上した油分等の汚染物質(スカム)について、本例では、再洗浄 槽 2の外にオーバーフローさせて除去することができるように構成されている。 すなわち、本例の土壌洗浄装置 Sでは、図 1 1に示すように、再洗浄槽 2の底 部側にエア一ジャッキ 1 0が配設されており、このエアージャッキ 1 0で再洗浄槽 2を傾斜させることにより、水面に浮上した汚染物質(スカム) 1 3を除去するよ うに構成されている。
再洗浄槽 2の上部開口縁部には、再洗浄槽 2よりオーバーフローされた汚染 物質(スカム) 1 3を受ける受トレー 2 aが設けられている。受トレー 2aは、再洗 浄槽 2の傾斜側の開口縁部に設けられている。受トレー 2aに流入された汚染 物質(スカム) 1 3が、高濃度油分スラッジである場合は、ストックされ場外処分 される。
エアージャッキ 1 0は、図 1 0に示すように、ガイド 1 0aと、空気袋 1 0bと、空気 注入口 1 0cとから構成されており、空気袋 1 0bの外周側辺は、上下方向に伸 縮可能な蛇腹となっている。そして、空気注入口 1 Ocから空気が供給されると, 空気袋 1 Obの蛇腹部分がガイド Ί Oaに沿って広がるように構成されている。ェ ァージャッキ 1 0は、空気が導入されていないときには 22mm程度であり、再洗 浄槽 2の設置状態に影響を与えない程度の薄さとされている。
したがって、空気注入口 1 0cから空気が供給されると、空気袋 1 0bの蛇腹の 部分が上方へ広がり、再洗浄槽 2のエアージャッキ 1 0が配設された側が上方 に持ち上げられる。なお、汚染物質 1 3をオーバーフローするときには、エアージ ャツキ 1 0は 1 0〜50mm程度の幅で膨張される。
このようにして、再洗浄槽 2が傾斜し、再洗浄槽 2の水面に浮上した油分等 の汚染物質(スカム) 1 3が受トレー 2aへ移送され、汚染物質(スカム) 1 3が除 去される。このように、土壌洗浄の工程のはじめに、先ず再洗浄槽 2において 油分等の汚染物質を除去することにより、次工程での浄化処理への負荷を軽 減することが可能となる。なお、汚染濃度が比較的低い場合には、再洗浄槽 2 を設けない構成としても良い。
なお、本実施例において、再洗浄槽 2で浮上した汚染物質(スカム) 1 3を除 去するために、前記第 1の実施例のように、再洗浄槽 2に汚染物質(スカム)排 出のための流出口を設け、この流出口から汚染物質(スカム) 1 3を排出する 構成としても良い。
再洗浄槽 2で油分等の汚染物質が分離された土砂は、ェジェクタ一 8を介し て第 1の土砂分離糟 3へ移送される。本例では、第 1の土砂分離槽 3 ,第 2の 土砂分離槽 4, 第 3の土砂分離槽 5からなる 3つの土砂分離槽を用いて、土砂 の分級を行う。
本例の土砂分離槽 3, 4, 5は、設置に広いスペースを必要とせず、またトラッ クで運搬可能な大きさに形成されている。すなわち、本例の土砂洗浄装置 で は、各土砂分離槽 3, 4, 5に、取水送気兼用装置としての吸水送気兼用フィ ルター管 1 6が配設されており、この吸水送気兼用フィルタ一管 1 6にて、土砂 分離槽内の貯留水を吸水することにより、大型の土砂分離槽 3, 4, 5を用いな くても、土砂の沈降が促進されるように構成されている。
一般に、土砂沈降は、水槽の面積と、水槽への流入量で決定される。
粒子の沈降速度は、粒子の粒径と比重により求められるが(ストークスの理 論)、水槽の面積を A、流入量を Qとしたとき、 v = Q/Aで求められる V値が、土 粒子の沈降速度以下であるとき、土粒子はこの槽内で沈降する。
したがって、微細な粒径の土粒子を沈降させるためには、広い面積を有する 水槽が必要であった。しかし、本例の土砂洗浄装置 Sでは、土砂分離槽 3, 4, 5に吸水送気兼用フィルタ一管 1 6が配設されており、この吸水送気兼用フィル ター管 1 6で土砂分離槽 3, 4, 5内の貯留水を吸水することにより、土砂分離 槽 3, 4, 5への流入量を確保することができる。吸水送気兼用フィルタ一管 1 6 にはフィルタ一 1 6dが設けられており、このフィルター 1 6dにより、所定径以上 の土粒子の通過が禁止され、槽内に土粒子が沈降される。
すなわち、吸水送気兼用フィルタ一管 1 6による吸水量を GTとすると、水槽へ の見かけの流入量は(Q— GT )となり、流入量 Qに吸水量 Q'を近づけることに より、槽への流入量を確保することができる。流入する汚濁水に含まれる土粒 子はフィルター 1 6dで取リ分けられ、順次沈降する。このようにして、水槽の面 積が小さくても土粒子の槽内での沈降が促進される。
本例の土砂洗浄装置 Sの土砂分離槽 3, 4, 5は、より具体的には、開口面 積が 2. 4m X 2. 4m = 5. 76m2程度の大きさとなるように形成されている。な お、土砂分離槽 3, 4, 5の深さは適宜設定される。
ここで、第 1の土砂分離槽 3, 第 2の土砂分離槽 4,第 3の土砂分離槽 5に配 設される吸水送気兼用フィルタ一管 16について説明する。吸水送気兼用フィ ルター管 16は、各土砂分離槽 3, 4. 5の大きさに応じて、適切に吸水及び送 気できる本数が配設されている。吸水送気兼用フィルタ一管 16は、管部 16aと 取水送気部 16bを備え、取水送気部 16bから取水した水を、管部 16aを介し て砂濾過槽 6へ移送するように構成されている。
図 14は、取水送気部 16bを示すものである。図示されているように、取水送 気部 16bには取水及び送気を行う取水送気口として、複数本の多孔管 16cが クシ型に並列して設けられている。そして、それぞれの多孔管 16cには、図 15 に示すようにフィルター 16dが取着され、所定の粒径以上の土粒子が通過でき ないように構成されている。
フィルター 16dは、 1〜5/ m程度の細孔が設けられ、汚染物質と一部の微 細粒土以外は通過できないように構成されている。したがって、貯留水中の汚 染物質は極めて粒径が小さいか、或いはイオン化しているため、フィルタ一 16 dを通過するが、土粒子は通過を遮断される。なお、各土砂分離槽の沈降土 の粒径は、フィルター 16dの細孔の大きさを変えることにより調整することがで きる。このようにして、多孔管 16cに配設されたフィルタ一 16dにより、土砂と汚 染物質の分離が確実に図られる。
土砂分離槽 3, 4, 5に吸水送気兼用フィルタ一管 16を配設する場合は、吸 水送気兼用フィルタ一管 16の取水送気部 16bが、土砂分離槽 3, 4, 5の上 下方向に重なるように配設する。このとき、吸水及び送気を偏りなく効果的に 行うために、多孔管 16cが互い違いになるように配設する。
図 16に示すように、吸水送気兼用フィルタ一管 16には、駆動源としてポンプ 16eが接続されている。そして、ポンプ 16eが作動しているときには、吸水送気 兼用フィルタ一管 16は土砂分離槽 3, 4, 5中の貯留水を吸水し、砂濾過槽 6 へと移送する。
なお、吸水送気兼用フィルタ一管 1 6のフィルター 1 6dに目詰まりが発生した ときには、吸水送気兼用フィルタ一管 1 6に圧縮空気を送り、目詰まりを解消す るように構成されている。このため、本例の吸水送気兼用フィルタ一管 1 6には, 上記したポンプ 1 6eの他、圧縮空気を送付するコンプレッサー 1 6fが接続され ている。そして、切替装置としての切替バルブ 1 6gを介して、吸水送気兼用フィ ルター管 1 6にて貯留水を吸水することも、或いは、吸水送気兼用フィルタ一管 1 6へ圧縮空気を送付することも、両方できるように構成されている。
すなわち、吸水送気兼用フィルタ一管 1 6に目詰まりが発生した場合は、吸水 送気兼用フィルタ一管 1 6を駆動していたポンプ 1 6e力、ら、コンプレッサー 1 6fへ 接続を切リ替え、コンプレッサー 1 6fから吸水送気兼用フィルタ一管 1 6へ圧縮 空気を送り込む。吸水送気兼用フィルタ一管 1 6へ圧縮空気が送り込まれると、 フィルター 1 6dに付着していた礫,ガラ,土粒子等が吹き飛ばされ、フィルタ一 1 6dの目詰まりが解消される。
また、吸水送気兼用フィルタ一管 1 6へ圧縮空気が送り込まれ、フィルター 1 6 dを通して気泡を発生させることにより、汚染物質を気泡に付着させて浮上させ ることが可能となる。このようにして、貯留水における汚染物質の濃度低下を 図ることができる。
そして、吸水送気兼用フィルタ一管 1 6が複数本配設されている場合は、一部 の吸水送気兼用フィルタ一管 1 6について、圧縮空気を送り込む用途のみとし て使用し、槽内に連続して圧縮空気を送り込むようにすると好適である。
なお、第 3の土砂分離槽 5には、微細粒土 5aが沈殿しており、圧縮空気が送 リ込まれたときに微細粒土 5aが貯留水中に拡散して、吸水送気兼用フィルタ 一管 1 6のフィルター 1 6dに目詰まりが発生しやすくなる。
このため、図 1 3に示すように、第 3の土砂分離槽 5内に、土砂分離槽 5の底 部側から水面上に達するまでの範囲で槽内を被覆し、被覆された部分への微 細粒 ± 5aの浸入を防止するフィルター 5 bを設置し、フィルターで被覆された範 囲で、吸水送気兼用フィルタ一管 1 6にて上澄を吸水するようにすると好適であ る。フィルタ一 5bには、 1〜5 jU m程度の細孔が設けられていると好適である。 フィルター 5 b力《目詰まりした場合は、吸水送気兼用フィルタ一管 1 6よりエア —を吹き付けたり、フィルター 5 bを振動させたり、或いは、フィルター 5 bに囲ま れている側から圧力水を流通させることにより解消する。
なお、第 1の土砂分離槽 3,第 2の土砂分離槽 4,第 3の土砂分離槽 5に、上 部水面付近の水を外部に流出させるための流出口を設け、この流出口から汚 染物質を含む水が、スカム分離槽 1 9に送出される構成としても良い。
また、第 1の土砂分離槽 3,第 2の土砂分離槽 4,第 3の土砂分離槽 5に、汚 染物質ガスの大気への蒸発を防止する蓋を設けた構成としても良い。また、気 泡発生及び吸水を行う吸水送気兼用フィルタ一管 1 6を、再洗浄槽 2に設けた 構成としても良い。
第 1の土砂分離槽 3,第 2の土砂分離槽 4,第 3の土砂分離槽 5は通水管 9 で連結され、それぞれの土砂分離槽 3, 4, 5の貯留水が、通水管 9を通って次 の工程へ移動するように構成されている。
通水管 9の取水口には、フィルター 9aが設けられている。フィルター 9aには 5 〜1 0 m程度の細孔が設けられ、所定の粒径以上の礫,ガラ, 土粒子が通 過できないように構成されている。
通水管 9に設けられるフィルター 9aの細孔は、第 1の土砂分離槽 3に設けら れているフィルター 9aの孔が最も大き 次に、第 2の土砂分離槽 4に設けられ ているフィルター 9aの孔が大きく、第 3の土砂分離槽 5に設けられているフィル ター 9aの孔が最も小さくなるように構成されている。
なお、土砂分離槽 3 , 4, 5には、吸水送気兼用フィルタ一管 1 6より微細な気 泡が導入されているので、フィルター 9 aへの目詰まりは発生しにくくなつている が、次第に目詰まりが発生した場合は、フィルター 9aに振動を与え、フィルタ一 9aに付着した土粒子をふるい落として、フィルター 9aの目詰まりを解消する。 また、それぞれの土砂分離槽 3, 4 , 5の下部には、図 1 2に示すように、土砂 分離槽 3, 4, 5内で沈殿した土砂を排出するための土砂排出口 1 4が設けら れている。土砂排出口 1 4は、土砂分離槽 3, 4, 5の周壁に設けられた開口 1 4aと、この開口 1 4aを被覆する蓋体 1 4bとから構成されている。
蓋体 1 4bは、上部側が土砂分離槽 3 , 4 , 5に固着され、下部側が開閉可能 とされている。蓋体 1 4bは、土砂排出時以外は、パッキング体等により土砂分 離槽 3 , 4, 5の開口に密着して配設されるように構成されている。
各土砂分離槽 3 , 4, 5には、水道水等の洗浄水が満たされている。この土砂 分離槽 3 , 4, 5に、洗浄済みの土砂と、土砂から分離された汚染物質、泡状 の気体が排出される。
また、各土砂分離槽 3, 4, 5には、エアージャッキ 1 0が設けられている。土砂 分離槽 3 , 4 , 5に配設されたエアージャッキ 1 0は、後述するように、土砂分離 槽 3, 4. 5内に沈降した土砂を排出する際に、土砂分離槽 3, 4, 5を傾斜させ るために設けられている。
第 1の土砂分離槽 3には、再洗浄槽 2から移送されてきた洗浄済みの土砂と、 土砂から分離された汚染物質、泡状の気体が流れ込む。そして、流入した ± 砂のうち、粗粒土 3 a等の比重の大きいものが沈殿する。なお、比重の軽いシ ルト分等は水中に浮遊して濁水を形成する。
第 1の土砂分離槽 3の濁水は、通水管 9を介して第 2の土砂分離槽 4へ移送 される。また、第 1の土砂分離槽 3の濁水の一部は、吸水送気兼用フィルター 管 1 6により、砂濾過槽 6へ移送される。
第 2の土砂分離槽 4では、第 1の土砂分離槽 3から移送されてきた土砂のう ち、細粒土 4a等が沈殿する。そして、第 2の土砂分離槽 4でも、比重の軽いシ ル卜分等は水中に浮遊して濁水を形成する。
第 2の土砂分離槽 4の濁水は、通水管 9を介して、第 3の土砂分離槽 5に移 送される。また、第 2の土砂分離槽 4の濁水の一部は、吸水送気兼用フィルタ 一管 1 6により、砂濾過槽 6へ移送される。
第 3の土砂分離槽 5では、第 2の土砂分離槽 4から移送されてきた土砂のう ち、微細粒土 5a等が沈殿する。第 3の土砂分離槽 5の貯留水は、通水管 9及 び吸水送気兼用フィルタ一管 1 6により、砂濾過槽 6へ移送される。
砂濾過槽 6には、粒径の異なる砂濾材が層状に重ねて配設されており、この 砂濾材を汚水が流通していく間に、汚水に含まれる汚染物質が砂濾材に付着 して除去されるように構成されている。
砂濾過槽 6では、汚水が砂濾材を通過する過程で、汚染物質の大半が砂濾 材によって吸着捕捉される。よって、汚水が砂濾過槽 6の底部に達して濾過水 となった時点では、濾過水は洗浄が完了した状態となっている。濾過水は、ポ ンプ 6 bに接続された吸引用配管 6 aにより吸引され、給水槽 7に移送される。 そして、給水槽 7に蓄積された濾過水は、洗浄水として再利用される。
なお、砂濾過槽 6の他にゼォライト槽(図示せず)を設け、重金属イオンや、ェ マルジヨン化した油を除去する構成としても良い。
また、給水槽 7に移送された濾過水について、さらに浄化が必要である場合 は、水処理装置 1 5に移送され化学的処理を行う構成としても良い。
例えば、濾過水に水銀化合物が含有されている場合は、濾過水は中和処理 槽 1 5aに移され、硫化ソーダもしくは水硫化ソーダが添加され、不溶性の硫化 水銀が生成される。
また、濾過水にヒ素が含有されている場合は、過剰の第二鉄塩が添加され、 不溶性の砒酸鉄とされた後、凝集沈殿槽 1 5 bにおいて水酸化鉄と共に凝集 分解される。或いは、濾過水に鉛が含まれている場合は、アルカリ剤が投入さ れて PH = 9〜1 0に調整され、凝集沈殿して分離される。
その他、汚染物質に応じた水処理がなされる。化学的処理がなされた濾過 水は、フィルタープレス 1 5 cを通過させることによリスラッジが取り除かれ、清水 槽へ移送される。スラッジは脱水された後、場外処理される。
以上のようにして、汚染土 1 2から汚染物質が分離され、汚染物質は、ェジェ クタ一 8による洗浄処理、再洗浄槽 2からのオーバーフロー処理、吸水送気兼 用フィルタ一管 1 6による砂濾過槽 6への送水、及び微細気泡による汚染物質 の浮上処理、砂濾過槽 6での濾過処理により除去され、各土砂分離槽 3 , 4, 5内には洗浄済みの土砂が沈降する。
洗浄済みの土砂は、土砂分離槽 3, 4, 5内の残留水が全て排水された後、 土砂分離槽 3, 4, 5の外に排出される。なお、土砂分離槽 3 , 4, 5内の排水は、 吸水送気兼用フィルタ一管 1 6により吸水して行っても良い。このとき、第 3の土 砂分離槽 5, 第 2の土砂分離槽 4,第 1の土砂分離槽 3の順で吸水を行うと良 い。
すなわち、この順番で吸水を行うことにより、砂濾過槽 6で吸着される汚染物 質の量が次第に増加することになるので、特に、はじめの段階で砂濾過槽 6に よる浄化処理がスムーズに行われ、効率的に濾過処理を行うことができる。 排土を行う際は、各土砂分離槽 3, 4, 5の下面に配設されたエア一ジャッキ 1 0を用いて土砂分離槽 3, 4 , 5を傾け、土砂分離槽 3 , 4, 5内の土砂を排出 する。土砂を排出する場合は、エアージャッキ 1 0が 300mm程度膨張し、再洗 浄槽 2にて汚染物質 1 3をオーバーフローさせるときよりも、より急な角度で傾 斜するようにする。
エアージャッキ 1 0が膨張すると、土砂分離槽 3, 4 , 5の、エアージャッキ 1 0 が配設された側が上方に持ち上げられる。土砂分離槽 3 , 4, 5が傾斜すること により、土砂分離槽 3 , 4, 5の下方に設けられた土砂排出口 1 4より、土砂分 離槽 3 , 4, 5内の土砂がスムーズに排出される。
本例の土壌洗浄装置 Sでは、第 1の土砂分離槽 3で粗粒土 3 aが分離され, 第 2の土砂分離槽 4で細粒 ± 4aが分離され,第 3の土砂分離槽 5で微細粒土 5 aが分離されるように構成されているので、それぞれの土砂分離槽 3, 4, 5か らは粒径の揃った土砂が排出される。
したがって、排土処理としてシャワーリングを行う際には、各粒径に適正な水 圧で行うことができる。また、本例の土壌洗浄装置 Sによれば、ェジェクタ一に より土粒子等の SS成分が流送過程で単粒子化されているので、排土の脱水 工程を大幅に短縮することができる。脱水を行う際には、各粒径の土砂毎に、 最適な水切り子 Lが形成された脱水用ネットや脱水用トレイ等の脱水装置 1 7を 用い、効率的に水切りすることが可能となる。
脱水処理がなされた土砂は、クレーンにより土砂受トレイ 1 8に移送され、ここ で、汚染物質が十分に除去されているかどうか簡易分析がなされる。その後、 土砂は粒径別にストックヤードに一時的にストックされ、最終的に検査した後、 埋め戻し処理がなされる。
本例の土壌洗浄装置 Sから排出される土砂は、排土の粒径が揃っているの で、再利用も容易である。粗粒土 3aや細粒土 4aは脱水が好適に行われるた め、そのまま埋め戻したり、建築用の下地材としての再利用が可能である。微 細粒土 5aは脱水性能が低い力 発生量も少量であり、生石灰にて処理後、埋 め戻しが可能であり、またセメント等とともにコンクリートの材料として使用する ことが可能である。
ここで、本例の土壌洗浄方法の工程について、図 1 7のブロック図にて説明す る。
先ず、汚染土がスラリー槽 1に投入され、給水槽 7から洗浄水が供給され、ス ラリー化された汚染土が得られる(ステップ S 1 )。次いで、スラリー槽 1の汚染 土がェジェクタ一 8により吸引される。汚染土は、ェジェクタ一 8による流送過程 で汚染物質が分離または分離されやすい状態とされ、洗浄済みの土砂、土砂 から分離された汚染物質が再洗浄槽 2に移送される(ステップ S2)。
ェジェクタ一 8から排出される微細気泡により、再洗浄槽 2の水面には汚染物 質が浮上され、この汚染浮上物質は、エアージャッキ 1 0で再洗浄槽 2を傾ける ことによリオ一バーフローされる(ステップ S3)。再洗浄槽 2内の土砂は、ェジェ クタ一 8を介して第 1の土砂分離槽 3に移送される(ステップ S4)。
第 1の土砂分離槽 3では、粗粒土が沈殿し分離される(ステップ S5)。第 1の 土砂分離槽 3の貯留水は、通水管 9を介して第 2の土砂分離槽 4へ移送され る(ステップ S 6)。さらに、第 1の土砂分離槽 3の貯留水は、吸水送気兼用フィ ルター管 1 6を介して砂濾過槽 6へ移送される(ステップ S7)。
第 2の土砂分離槽 4では、細粒土が沈殿し分離される(ステップ S8)。第 2の 土砂分離槽 4の貯留水は、通水管 9を介して第 3の土砂分離槽 5へ移送され る(ステップ S9)。さらに、第 2の土砂分離槽 4の貯留水は、吸水送気兼用フィ ルター管 1 6を介して砂濾過槽 6へ移送される(ステップ S 1 0)。
第 3の土砂分離槽 5では、微細粒土が沈殿し分離される(ステップ S 1 1 )。第 3の土砂分離槽 5の貯留水は、通水管 9及び吸水送気兼用フィルタ一管 1 6を 介して砂濾過槽 6へ移送される(ステップ S 1 2)。
砂濾過槽 6では汚染水が濾過され、その滤過水は吸引用配管により吸引さ れ、給水槽 7に移送される(ステップ S 1 3)。また、各土砂分離槽 3, 4, 5のほ ぼ全ての貯留水が、砂濾過槽 6に移送されたことが確認されたら、エアージャッ キ 1 0で各土砂分離槽 3, 4, 5を傾斜させ、土砂分離槽 3 , 4, 5に沈殿した ± 砂を排出する(ステップ S 1 4)。
排出された土砂は、粒径別にシャワーリングされ、脱水用卜レイに載置されて 脱水処理が行われ(ステップ S 1 5)、検査後、用途別に埋め戻しがなされる(ス テツプ S 1 6) 0
なお、上記実施例において、連続して土壌洗浄処理を行う場合は、スラリー 槽をニ槽用意し、交互に土壌を充填しながら、洗浄処理を行うと良い。また、 採取箇所によって異なる汚染物質が付着している場合についても、スラリー槽 を複数用意し、汚染物質の種類によって土壌を分類し、別々のスラリー槽に収 納するようにすると良い。 また、上記実施例では、再洗浄槽 2に浮上した油分を、エアージャッキ 1 0を 用いて再洗浄槽 2を傾斜させることによリオ一バーフローさせる構成を示したが, これに限らず、第 1の土砂分離槽 3,第 2の土砂分離槽 4,第 3の土砂分離槽 5について、浮上した汚染物質をエアージャッキ 1 0を用いてオーバーフローさ せるようにしても良い。
この場合、第 1の土砂分離槽 3, 第 2の土砂分離槽 4, 第 3の土砂分離槽 5 に配設された通水管 9のフィルター 9aについて、通常のフィルターと,水の流通 をストップ可能な蓋体とに切替可能としておき、汚染物質をオーバーフローさせ るときは、蓋体で通水管 9の流通をストップさせ、通水管 9による土砂分離槽同 士の接続を解除してから行うようにすると良い。
また、上記実施例では、粗粒土,細粒土,微細粒土を含む土壌の洗浄を行 う例を示したが、これに限らず、本例の土壌洗浄装置は、河川-湖沼の浄化、 工場やガソリンスタンド等から排出される汚染水の浄化、簡易下水処理等、他 の用途にも使用することが可能である。
さらに、上記実施例では、ェジェクタ一 8と吸水送気兼用フィルタ一管 1 6を組 み合わせて使用する構成を示したが、ェジェクタ一 8を使用せずに、汚染水の 浄化等の処理を行うようにしても良い。
第 1の実施例では、土砂分離槽として、下部側が上部側よりも狭く形成され、 下部側に土砂排出用の開口と、この開口を開閉可能な蓋部材またはバルブ が設けられたものを使用しているが、この第 1の実施例の土砂分離槽を、第 2 の実施例の土砂分離槽に適用しても良い。
また、土砂分離槽について、第 1の実施例では 2槽、第 2の実施例では 3槽 からなる構成としたが、これに限らず、土砂の汚染状況に応じて、所定数の土 砂分離槽を設ける構成としても良い。
さらに、第 2の実施例において、再洗浄槽 2にスカム分離糟 1 9を設けた構成 としても良いとしたが、さらに土砂分離槽 3, 4, 5にもスカム分離槽 1 9を設け、 各槽の上部水面付近の水をスカム分離槽 1 9に移送し、分離させる構成として も良い。 産業上の利用性
以上のように、本発明の土壌洗浄方法及び土壌洗浄装置によれば、土砂分 離槽の上部水面付近に浮上したスカムを含む水を、スカム分離槽に送出する ように構成されているので、スカムが次の処理工程へ流出するのを防止し、効 率良く土壌洗浄を行うことが可能となる。また、スカム分離槽で分離された分 離水を洗浄水として再利用することにより、水の使用量を必要最小限にし、コ ストの増加を防ぐことが可能となる。すなわち、初期に所要の洗浄水を確保し ておけば、その後は蒸発等による低減分の補給を行うだけで、土壌洗浄処理 を継続的に行うことができる。
また、スカムを含む水は、土砂分離槽に接続された管体を通してスカム分離 槽へ送出される。このように、スカムを含む水を排出する際に、土砂分離槽を 動かしたり、傾けたりする必要がなく、省力且つ省スペースで行うことが可能と なる。
さらに、本発明の土砂分離槽は、下部側が上部側よりも狭く形成されるととも に、下部側に土砂排出用の開口と、該開口を開閉可能な蓋部材またはバルブ が設けられた構成とされ、土砂の排出を連続定量的に行うことが可能であり、 これにより装置構成が小型化及び単純化されて、低コスト及び省スペースで土 壌洗浄を行うことが可能となる。
また、土砂分離槽に土砂を投入する前に、土砂をェジェクタ一で洗浄するよう に構成されているので、油,タール, 重金属汚染等、汚染物質の種類に拘わら ず、また従来の洗浄技術では比較的困難であった透水性の低いシル卜粘土等 の、微細な土粒子についても、確実に洗浄することが可能となる。したがって、 水はけについても極めて良好になり、排土後の脱水も短時間で行うことが可能 となる。
さらに、ェジ: ι:クタ一による流送過程で土砂の洗浄を行うので、従来の回転ド ラム内にて土壌洗浄する構成等に比して、広いスペースを要することなく土壌 洗浄を行うことが可能となる。
また、各土砂分離槽に吸水送気兼用フィルタ一管を配設した場合は、槽内の 水を槽外へ流出させることにより、土砂分離槽を広い面積としなくても土砂分 離槽への流入量を確保することができる。このようにして、土砂分離槽に土粒 子や汚染物質を含む汚染水を次々に流入させ、この汚染水を吸水送気兼用 フィルタ一管で吸水するときにフィルタ一により微細な土粒子を取り分けて沈降 させ、効率的に浄化処理を行うことが可能となる。
また、土砂分離槽に吸水送気兼用フィルタ一管を配設した場合、吸水送気 兼用フィルタ一管は送気が可能であるため、土砂分離槽内に微細気泡を発生 させて、フィルターの目詰まりを解消することが可能である。さらに、吸水送気 兼用フィルタ一管による微細気泡により、土砂分離槽内の貯留水に含まれる 汚染物質を浮上させることができ、汚染物質を確実に分離させることが可能と なる。
このように、本発明の土壌洗浄方法及び ±壌洗浄装置によれば、広いスぺ ースを要することなく土壌洗浄を行うことができるので、狭隘な工場敷地内ゃガ ソリンスタンドのように、限られたスペースを有効利用した洗浄処理を行うこと が可能となる。また、汚染土壌の発生地が狭い場所であっても、土壌浄化処 理を現地で行うことができ、土壌運搬等に要されるエネルギー消費を抑制し、 省エネルギー化を実現することが可能となる。
また、本発明の土壌洗浄方法及び土壌洗浄装置によれば、土砂の分級は 原則として沈殿によるため、高価な水処理設備を極力排除することができる。 さらに、一連の工程で洗浄に使用した水を、砂濾過槽で浄化してから給水槽に 移送し、各工程に循環供給して再利用するようにしているので、場外汚染を排 除し、また水の使用量を必要最小限にし、さらに環境保全に配慮しつつ、コスト の増加を防ぐことが可能となる。
さらに、ェジェクタ一により土粒子等の SS成分が流送過程で単粒子化される ので、排土の脱水工程を大幅に短縮することができる。また、土砂分離槽にお いて土砂が粒径別に分級して堆積されるので、土砂分離槽から土砂を排出し たとき、粒径の揃った状態で排出土砂を得ることができる。このため、排出後に 行うシャワーリング,脱水処理, 埋め戻しなどの後処理を効率的に行うことが 可能となる。

Claims

請求の範囲
1 . 汚染土砂を洗浄するェジ: πクタ一と、洗浄された土砂を受け入れる土砂分 離槽と、該土砂分離槽の貯留水を受け入れるスカ厶分離槽と、を用いて土壌 の洗浄を行う方法であって、
前記土砂分離槽に土砂を移送する前に前記ェジ: cクタ一により汚染土砂を 洗浄する処理と、該洗浄された土砂を土砂分離槽にて沈殿させる処理と、前 記土砂分離槽の上部水面付近の水をスカム分離槽に送出する処理と、前記 スカム分離槽の濃縮スカムを回収する処理と、前記スカ厶分離槽の分離水を 洗浄水として再利用する処理と、前記土砂分離槽に沈殿した土砂を排出する 処理と、を備えたことを特徴とする土壌洗浄方法。
2.前記スカム分離槽では、流入された水が流速毎分略 60cm乃至 1 00cmで 移動することを特徴とする請求項 1記載の土壌洗浄方法。
3.前記スカム分離槽の分離水を濾過手段で濾過する処理と、該濾過手段で 濾過された濾過水を洗浄水として再利用する処理と、を備えたことを特徴とす る請求項 1記載の土壌洗浄方法。
4.前記洗浄された土砂を土砂分離槽にて沈殿させる処理の前に、前記土砂 分離槽内で前記 ±砂を希釈'撹拌する処理を備えたことを特徴とする請求項 1 記載の土壌洗浄方法。
5.前記土砂分離槽で沈殿された土砂をェジ: πクタ一により再洗浄して次の土 砂分離槽に移送する処理と、前記次の土砂分離槽の上部水面付近の水をス カム分離槽に送出する処理と、前記次のスカム分離槽の分離水を洗浄水とし て再利用する処理と、前記次の土砂分離槽に沈殿した土砂を排出する処理と、 を備えたことを特徴とする請求項 1記載の土壌洗浄方法。
6. 汚染土砂を洗浄するェジ: Eクタ一と、洗浄された土砂を粒径別に分級する 複数の土砂分離槽と、該土砂分離槽の貯留水を濾過する濾過手段と、該濾 過手段からの濾過水を受け入れる給水槽と、を少なくとも用いて土壌の洗浄を 行う方法であって、
前記土砂分離槽に土砂を移送する前に前記ェジ; ι:クタ一により汚染土砂を 洗浄する処理と、該洗浄された土砂を土砂分離槽にて沈殿させ粒径別に分級 する処理と、前記土砂分離槽の貯留水をフィルタ一を備えた管で吸水する処 理と、前記管より微細気泡を発生させて前記フィルターの目詰まりを解消する とともに、前記貯留水に含まれる汚染物質を分離させる処理と、前記貯留水を 前記濾過手段にて濾過する処理と、該濾過手段からの濾過水を給水槽で受 け入れて洗浄水として再利用する処理と、前記土砂分離槽に沈殿した土砂を 排出する処理と、を備えたことを特徴とする土壌洗浄方法。
7.前記土砂分離槽に土砂を移送する前に前記ェジェクタ一により汚染土砂を 洗浄する処理では、採取された汚染土砂をェジェクタ一により洗浄する処理が なされ、
前記洗浄された土砂を土砂分離槽にて沈殿させ粒径別に分級する処理では、 洗浄された土砂を第 1の土砂分離槽へ移送して粗粒土を分級する処理と、洗 浄された土砂を第 2の土砂分離槽へ移送して細粒土を分級する処理と、洗浄 された土砂を第 3の土砂分離槽へ移送して微細粒土を分級する処理と、がな され、
前記土砂分離槽の貯留水をフィルターを備えた管で吸水する処理では、前 記第 1の土砂分離槽の貯留水を吸水送気兼用フィルタ一管で吸水する処理と、 前記第 2の土砂分離槽の貯留水を吸水送気兼用フィルタ一管で吸水する処 理と、前記第 3の土砂分離槽の貯留水を吸水送気兼用フィルタ一管で吸水す る処理と、がなされ、
前記貯留水を前記濾過手段にて濾過する処理では、前記第 1の土砂分離 槽,第 2の土砂分離槽,第 3の土砂分離槽の貯留水を前記濾過手段に移送し て濾過する処理がなされることを特徴とする請求項 6記載の土壌洗浄方法。
8.前記洗浄された土砂を土砂分離槽に移送する処理の前に、前記汚染土砂 を再洗浄槽に移送し、前記汚染土砂から汚染物質を分離させる処理を行うこ とを特徴とする請求項 1または 6記載の土壌洗浄方法。
9.前記再洗浄槽の上部水面付近の水をスカム分離槽に送出する処理を備え たことを特徴とする請求項 8記載の土壌洗浄方法。
1 0.前記再洗浄槽または土砂分離槽にはェジェクタ一を介して土砂が移送さ れることを特徴とする請求項 1または 6記載の土壌洗浄方法。
1 1 .前記再洗浄槽での分離処理がなされた後で、前記再洗浄槽の貯留水を 滤過手段に移送して濾過する処理がなされることを特徴とする請求項 1または 6記載の土壌洗浄方法。
1 2.前記再洗浄槽での分離処理がなされた後で、前記再洗浄槽に圧縮空気 にて微細気泡を発生させて汚染物質を浮上させる処理がなされることを特徴と する請求項 1または 6記載の土壌洗浄方法。
1 3.前記排出された土砂を脱水して埋め戻す処理では、前記土砂分離槽か ら排出された土砂が粒径別に処理されることを特徴とする請求項 6記載の土 壌洗浄方法。
1 4.前記汚染土砂を洗浄するェジェクタ一と、洗浄された土砂を受け入れる土 砂分離槽と、該土砂分離槽の上部水面付近の水を受け入れるスカム分離槽 と、を備え、
前記ェジ: Eクタ一は前記土砂分離槽の少なくとも前段に配設され、
前記スカム分離槽は前記土砂分離槽の後段に配設されたことを特徴とする 土壌洗浄装置。
1 5.スラリー化された汚染土砂が収納されたスラリー槽と、
汚染土砂を粒径別に沈殿させる複数の土砂分離槽と、
前記スラリー槽と土砂分離槽との間に介在するェジ工クタ一と、
前記複数の土砂分離槽を連結する通水管と、
前記複数の土砂分離槽に配設される吸水送気兼用フィルタ一管と、 前記複数の土砂分離槽の貯留水を濾過する濾過手段と、 該濾過手段で濾過された水を洗浄水として循環させる給水槽と、を備え、 前記吸水送気兼用フィルタ一管により、前記土砂分離槽内の貯留水が直接 吸水されて前記濾過手段へ移送され、
前記吸水送気兼用フィルタ一管より気泡が発生されてフィルターの目詰まり が解消されるとともに前記土砂分離槽内の汚染物質が分離されることを特徴 とする土壌洗浄装置。
1 6.前記土砂分離槽の上部側には、前記土砂分離槽の上部水面付近の水 を前記スカム分離槽へ移送するための流出口が設けられたことを特徴とする 請求項 1 4または 1 5記載の土壌洗浄装置。
1 7.前記土砂分離槽には、前記土砂分離槽の貯留水をフィルターを備えた管 で吸水するとともに、前記管より微細気泡を発生させて前記フィルターの目詰 まりを解消し、前記貯留水に含まれる汚染物質を分離させる吸水送気兼用フ ィルター管が配設されたことを特徴とする請求項 1 4記載の土壌洗浄装置。
1 8.前記スカム分離槽で分離された分離水を濾過する濾過手段と、該濾過手 段で濾過された水を洗浄水として循環させる給水槽を備えたことを特徴とする 請求項 1 4記載の土壌洗浄装置。
1 9.前記土砂分離槽は、下部側が上部側よりも狭く形成されるとともに、下部 側に土砂排出用の開口と、該開口を開閉可能な蓋部材またはバルブが設けら れたことを特徴とする請求項 1 4または 1 5記載の土壌洗浄装置。
20.前記吸水送気兼用フィルタ一管は、
ポンプ及びコンプレッサーに接続された切替装置と、該切替装置に接続され た管部と、該管部に接続された取水送気部と、該取水送気部に取着されたフ ィルターと、を備え、
前記取水送気兼用フィルタ一管を配設することにより所定の取水量を確保 し、 前記ポンプの駆動により前記水槽内の水が前記フィルタ一を介して吸水され るとともに、前記コンプレッサーの駆動により前記取水送気部から前記フィルタ —を介して微細気泡が発生されることを特徴とする請求項 1 4または 1 5記載の 土壌洗浄装置。
PCT/JP2003/014384 2003-06-10 2003-11-12 土壌洗浄方法及び土壌洗浄装置 WO2004110660A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003280749A AU2003280749A1 (en) 2003-06-10 2003-11-12 Method and apparatus for cleaning soil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-165624 2003-06-10
JP2003165624A JP4382397B2 (ja) 2003-06-10 2003-06-10 土砂洗浄装置及び土砂洗浄方法

Publications (1)

Publication Number Publication Date
WO2004110660A1 true WO2004110660A1 (ja) 2004-12-23

Family

ID=33549220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014384 WO2004110660A1 (ja) 2003-06-10 2003-11-12 土壌洗浄方法及び土壌洗浄装置

Country Status (3)

Country Link
JP (1) JP4382397B2 (ja)
AU (1) AU2003280749A1 (ja)
WO (1) WO2004110660A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100779992B1 (ko) 2007-09-20 2007-11-28 주식회사 알파환경엔지니어링 토양 세척 설비용 월류식 침사지 및 이를 통한 무방류 토양세척 설비
JP5632327B2 (ja) * 2011-04-25 2014-11-26 大成建設株式会社 杭の掘削排土システム
JP6096526B2 (ja) * 2013-02-13 2017-03-15 株式会社日本水処理技研 研磨機及びこれを用いた汚染物質除去システム並びに汚染物質除去方法
JP6284156B2 (ja) * 2014-11-07 2018-02-28 株式会社ピーシーエス 汚染物質分離減容化システム及び方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332469A (en) * 1976-09-06 1978-03-27 Toshin Giken Kk Sorting method for ballasts and its device
JPS5496475U (ja) * 1977-12-20 1979-07-07
WO1998037991A1 (en) * 1997-02-27 1998-09-03 Continuum Environmental, Inc. Method of treating organic contaminated materials
JP2002177942A (ja) * 2000-12-14 2002-06-25 Kumagai Gumi Co Ltd 土壌の浄化方法及び浮遊分離装置
JP2002336731A (ja) * 2001-05-11 2002-11-26 Shibuya Machinery Co Ltd 分離方法及びその装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332469A (en) * 1976-09-06 1978-03-27 Toshin Giken Kk Sorting method for ballasts and its device
JPS5496475U (ja) * 1977-12-20 1979-07-07
WO1998037991A1 (en) * 1997-02-27 1998-09-03 Continuum Environmental, Inc. Method of treating organic contaminated materials
JP2002177942A (ja) * 2000-12-14 2002-06-25 Kumagai Gumi Co Ltd 土壌の浄化方法及び浮遊分離装置
JP2002336731A (ja) * 2001-05-11 2002-11-26 Shibuya Machinery Co Ltd 分離方法及びその装置

Also Published As

Publication number Publication date
JP4382397B2 (ja) 2009-12-09
JP2005000771A (ja) 2005-01-06
AU2003280749A1 (en) 2005-01-04

Similar Documents

Publication Publication Date Title
KR100729863B1 (ko) 준설토의 슬러지제거와 오탁수 처리장치 및 그 방법
KR100952752B1 (ko) 미세토양 세척장치 및 방법
KR100974911B1 (ko) 오염토사 정화용 유동식 세척 시스템
KR102141236B1 (ko) 각종 준설토용 정화시스템
KR100903593B1 (ko) 오염토양정화를 위한 초음파 토양세척방법 및 장치
KR101982969B1 (ko) 복합 오염토양 정화시스템용 유수분리장치
KR101278958B1 (ko) 폐수처리시스템
KR101658523B1 (ko) 오염토양 선별 및 세척처리 정화시스템
CN106542684A (zh) 一种快速处理含油污水的处理设备
JP2001020318A (ja) 水域浄化方法及び水域浄化システム及びダム排砂システム
KR100460629B1 (ko) 토양세척기 및 이를 이용한 토양세척장치
KR200422043Y1 (ko) 준설토의 슬러지제거와 오탁수 처리장치
JP2003334533A (ja) 土壌洗浄方法及び土壌洗浄装置並びに吸水送気兼用装置
JP5067809B2 (ja) 沈砂洗浄装置
US20200298146A1 (en) System for processing solid and liquid construction waste
KR20050034668A (ko) 토사슬라임과 슬러지의 연속 진공흡입 이수이토 탈수재처리공법 및 그 장치
KR100334742B1 (ko) 흡입기를 이용한 호소, 저수지, 댐 및 하천의 바닥퇴적물 제거방법 및 그 시스템
WO2004110660A1 (ja) 土壌洗浄方法及び土壌洗浄装置
KR100470138B1 (ko) 이동식 오니(汚泥)처리시스템
KR102112962B1 (ko) 오염토 세척 선별 장치
KR200377629Y1 (ko) 집약적 폐수처리장치
JP2002355663A (ja) 高圧噴流土壌洗浄システム及び洗浄方法
KR101929269B1 (ko) 복합 오염토양 정화시스템용 침적물분쇄장치
CN113000586A (zh) 一种用于土壤修复的淋洗装置
KR200265588Y1 (ko) 폐수 처리장치

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase