WO2004107467A2 - VERFAHREN ZUR HERSTELLUNG VON OLEDs - Google Patents
VERFAHREN ZUR HERSTELLUNG VON OLEDs Download PDFInfo
- Publication number
- WO2004107467A2 WO2004107467A2 PCT/EP2004/005601 EP2004005601W WO2004107467A2 WO 2004107467 A2 WO2004107467 A2 WO 2004107467A2 EP 2004005601 W EP2004005601 W EP 2004005601W WO 2004107467 A2 WO2004107467 A2 WO 2004107467A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- structured
- conductive
- light
- depressions
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 56
- 239000000758 substrate Substances 0.000 claims abstract description 41
- 239000000463 material Substances 0.000 claims abstract description 28
- 239000002131 composite material Substances 0.000 claims abstract description 9
- 229920000642 polymer Polymers 0.000 claims description 29
- 239000012212 insulator Substances 0.000 claims description 18
- 239000007788 liquid Substances 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 17
- 238000007650 screen-printing Methods 0.000 claims description 9
- 229920001940 conductive polymer Polymers 0.000 claims description 5
- 239000004020 conductor Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 229920000620 organic polymer Polymers 0.000 claims 1
- 239000010410 layer Substances 0.000 description 128
- 238000000576 coating method Methods 0.000 description 49
- 239000011248 coating agent Substances 0.000 description 29
- 238000009826 distribution Methods 0.000 description 10
- 239000011521 glass Substances 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 229920000767 polyaniline Polymers 0.000 description 6
- 238000007639 printing Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 238000009736 wetting Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 229920001690 polydopamine Polymers 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 230000009189 diving Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 239000002650 laminated plastic Substances 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000010020 roller printing Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
- H10K71/13—Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
- H10K71/135—Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/22—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/81—Anodes
- H10K50/814—Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8051—Anodes
- H10K59/80516—Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/17—Passive-matrix OLED displays
- H10K59/173—Passive-matrix OLED displays comprising banks or shadow masks
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
Definitions
- the invention relates to a method for producing an OLED in general and with the application of layers on a substrate for producing a layer composite in particular, and the OLED itself.
- organic light-emitting devices or diodes are made from one
- Layer composite or a layer structure with an organic electroluminescent layer between two electrode layers, which is applied to a suitable substrate.
- One of the electrode layers acts as a cathode and the other as
- OLEDs have special advantages over other lamps.
- OLEDs have promising properties for flat screens, for example, because they allow a significantly larger viewing angle compared to LCD or liquid crystal displays and, as self-illuminating displays, also allow reduced power consumption compared to the backlit LCD displays.
- OLEDs can be produced as thin, flexible films that are particularly suitable for special applications in lighting and display technology.
- OLEDs are not only suitable for pixelated displays. In general, they can be used as illuminants for a wide variety of applications, such as self-illuminating signs and information boards.
- TCO coatings transparent conductive oxides
- ITO indium tin oxide
- Sn0 2 tin oxide
- TCO inorganic or organic conductive transparent coatings, e.g. thin metal layers or PEDOT or PANI (polyaniline) then only serve for the local surface distribution of the streams.
- Structuring eg for pixelated color displays
- Structuring takes place using classic PVD techniques such as shadow masks.
- “Light-emitting polymers (LEP)” especially organic molecules with molecular weights of approx. 1,000,000 amu and more (classic representatives are PPV and perylene), decompose at higher thermal loads before they evaporate.
- LEPs are brought into solution and deposited using classic liquid coating processes such as spin coating, dip coating or knife coating.
- these methods are not economical in terms of coating material (and thus cost-intensive) and structuring of the layer to be deposited cannot be achieved or can only be achieved with greater effort.
- Other approaches use printing processes (screen printing or gravure printing) or ink-jet techniques for structuring and applying less layers of material.
- the invention is therefore based on the object of a method for producing light-emitting To provide devices, in particular OLEDs, which work in a material-saving manner and produce a homogeneous light-emitting layer.
- Another object of the invention is to provide a simple and inexpensive method for producing light-emitting devices, in particular OLEDs, which can be used on a large area and on a large industrial scale and is process-stable.
- Another object of the invention is to provide a method for producing light-emitting devices, in particular OLEDs, which avoids or at least reduces the disadvantages of known methods.
- a method for producing an organic light-emitting device or diode, so-called OLED, by applying layers on a substrate or a base, for producing a layer composite is proposed.
- the substrate is provided and a first electrically conductive electrode or electrode layer is applied thereon, optionally with the interposition of further layers.
- the first electrode defines in particular an anode.
- depressions or cells are produced on the substrate or one of the layers of the layer composite and applied a layer of an organic light-emitting or electro-luminescent material.
- the organic electroluminescent material is introduced or filled into the depressions in a fluid, in particular in a liquid, state of aggregation.
- a particularly homogeneous electro-luminescent layer can be produced in a simple manner, which can also be used excellently for large-area applications.
- a structured layer e.g. a lattice structure has been applied, the structure of which defines the depressions, so that a honeycomb-structured layer filled with the electroluminescent material is produced, "honeycomb” not being limited to hexagonal structures.
- honeycomb-shaped structures formed from hexagons or rectangles are particularly preferred.
- the structured layer further preferably contains an electrically conductive material or is electrically conductive.
- the structured and electrically conductive layer defines conductor tracks for homogenizing the current flow, which are basically known to the person skilled in the art as bus bars.
- bus bars are installed at a height which is sufficient to define a sufficiently large cavity.
- the light emitting material is in liquid
- doctor blades or screen printing are particularly suitable.
- the structured layer or the bus bars are in electrically conductive contact with the first conductive electrode in order to fulfill their function as a current distributor.
- the first conductive electrode is in particular a transparent conductive anode layer, e.g. made of ITO, for electrical contacting or supplying the electroluminescent layer.
- a transparent conductive anode layer e.g. made of ITO
- a second conductive electrode or metallic cathode can be applied, the structured layer and the electroluminescent layer being arranged between the first and second electrodes.
- the structured layer and the second conductive electrode are at least directly electrically insulated from one another. This does not mean that they must not be in electrical connection with each other, but only that there is no direct contact.
- the insulation mentioned above is preferably produced by a structured insulator layer which is applied to the structured conductive layer.
- the structured insulator layer and the structured conductive layer can also be applied first.
- An electro-luminescent polymer is preferably used as the organic light-emitting material, a light-emitting polymer layer, in particular interrupted by the structured conductive layer, being produced.
- a further polymer layer more precisely a conductive or hole-conductive polymer layer, is preferably applied, which in particular is arranged directly adjacent to the light-emitting polymer layer.
- this step may even be dispensed with, subsequently applying a conductive structured layer to produce the depressions, subsequently applying a conductive
- Polymer layer within the depressions, which are defined by the conductive structured layer subsequently application of a structured insulator layer for electrically isolating the structured layer, subsequently application of a light-emitting polymer layer within the depressions, which are defined by the conductive structured layer, subsequently applying a cathode layer, the cathode layer being insulated from direct contact with the conductive structured layer by means of the structured insulator layer.
- Sequence 2 (so-called inverse OLED) providing the substrate, subsequently applying a cathode layer, the cathode layer being insulated from direct contact with the conductive structured layer by means of the structured insulator layer, subsequently applying a structured insulator layer for electrically insulating the cathode layer, subsequently applying a conductive one structured layer for producing the depressions, subsequently applying a light-emitting polymer layer within the depressions, which are defined by the conductive structured layer, subsequently applying a conductive
- Fig. 1 is a schematic sectional view of a conventional layer application by means of ink
- FIG. 2 is a schematic sectional view of a
- FIG. 3 is a schematic sectional view "bus bar" -
- FIG. 4 is a schematic perspective view of a structured honeycomb lattice structure
- FIG. 5 shows a schematic sectional illustration of an OLED according to the invention
- FIG. 6 shows a schematic sectional illustration of an inverse OLED according to the invention
- FIGS. 7a-e show schematic sectional illustrations of different ones
- FIG. 1 shows the basically known coating of a substrate glass 1 with a jet nozzle or ink jet Spray head 4 with emerging jet of liquid droplets.
- the inventors have found that the uniform coating of large areas using such an inkjet process is technically very complex, since here the surface properties, in particular the surface energy and the wettability of the substrates to be coated, the coating atmosphere (solvent saturation), ambient temperature (viscosity, drying behavior) and the former composition of the LEP coating liquid has to be checked very precisely over a long period of time (ink-jet printing is usually a sequential coating process). Typical coating defects that occur include insufficient flow of the drops 2, which leads to an inhomogeneous and inadequate layer formation.
- an ink-jet coating according to the invention is shown in a “cup structure” for structured OLED display applications.
- the substrate glass 1 is shown with a structured layer 3 with webs for the formation of depressions 3.3 between the webs 3 or for structure limitation.
- electroluminescent OLED With the Ink-Jet spray head 4, electroluminescent OLED
- the different hatching of the polymer fillings 2 represent different materials, in particular for producing different colors. This further clarifies the enormous advantages of the invention, since it is very easy and precise to produce multicolored structured OLEDs.
- FIG. 1 The disadvantages of the method can thus be illustrated in FIG. 1 .
- the manufacture of highly structured OLED displays using the invention elegantly clear out.
- wells 3.3 are applied to the substrate 1 in the ink jet process, which are then filled with the liquid of the ink jet 4.
- this method can be applied or transferred to all organic layers of an OLED layer sequence. This creates a locally defined one
- Coating achieved with a homogeneous layer thickness.
- the coating results do not change critically with slight local differences in the properties of the substrate surface, e.g. the surface energy and thus the wetting behavior of the liquid.
- TCO coatings such as ITO or Sn0 2 or thin metal layers or organic coatings, such as PEDOT or PANI
- Additional metallic conductor tracks are therefore used to support the power line. These can be attached as a line or grid both on and under the TCO layer, or laterally along separate TCO lines.
- FIG. 3 represents a schematic diagram of a “bus bar” reinforcement on a conductive transparent coating 5.
- the transparent conductive ITO coating 5 is applied to the substrate glass 1.
- the structured layer 3 in the form of metallic bus bars is in turn applied to the ITO coating 5.
- the invention ensures a reduced cost
- the improvement of the TCO conductivity is achieved by the formation of the bus bar structure. This structure is designed to be active at the same time
- Coating technology can be used. This is
- bus bars are simultaneously formed as cavity-forming recesses or cups produces a synergistic saving effect.
- 5 shows an exemplary embodiment of the OLED component design with an ink-jet coating of the active well structure 3.3 of the bus bar grid 3.1.
- the bus bar layer 3.1 is on the substrate 1
- a structured insulator layer 3.2 is applied over the busbar structure 3.1.
- the conductive transparent coating 5 is located as the anode between the substrate 1 and the busbar layer 3.1.
- a conductive or hole-conductive HTL polymer layer 6 and an immediately adjacent light-emitting EL polymer layer 7 are arranged above the anode 5 and between the webs 3.1 or in the depressions 3.3 of the structured bus bar layer.
- a cathode layer 8 is immediately adjacent to the EL polymer layer 7.
- the HTL polymer layer 6 and an EL polymer layer 7 are directly electrically isolated from the bus bars by means of the insulator layer 3.2.
- the basis is the transparent substrate 1, for example glass, thin (st) glass, glass-plastic laminate, polymer-coated thin (st) glass or a polymer plate / film, coated with the conductive (semi-) transparent layer or anode layer 5, eg consisting of or containing TCO, in particular ITO, Sn0 2 , or ln 2 0 3 or a thin metal layer, an organic thin layer made of PEDOT, PANI or the like.
- the transparent substrate for example glass, thin (st) glass, glass-plastic laminate, polymer-coated thin (st) glass or a polymer plate / film, coated with the conductive (semi-) transparent layer or anode layer 5, eg consisting of or containing TCO, in particular ITO, Sn0 2 , or ln 2 0 3 or a thin metal layer, an organic thin layer made of PEDOT, PANI or the like.
- the bus bar lattice structures 3.1 made of metal with a sufficiently high conductivity, for example Cr / Cu / Cr- Layer sequences, which have the cup shape or depressions 3.3 with sufficient properties for the ink jet coating process, are deposited.
- the width and thickness of the structure and the density of the grid mesh are additionally adapted to the requirements from the boundary conditions for the luminous uniformity of the EL layer and the current density distribution to be derived therefrom.
- the surface of the bus bars is passivated. This can be done electrochemically or through an additional local
- Coating with an insulator e.g. metal oxide or nitride or polymer.
- HTL hole transport layer, e.g. PEDOT or PANI
- EL layer electroluminescent layer 7
- the cathode 8 which is in particular opaque and / or metallic, e.g. containing Ca / Al or Ba / Al or Mg: Ag, possibly also with a thin Li intermediate layer, or transparent, e.g. applied from TCO and the component encapsulated / passivated.
- the light generated is emitted in particular via the substrate side.
- FIG. 6 shows the structure according to the invention of an alternative inverse OLED layer structure with ink jet coating of the active cup structure 3.3 of the busbar. Grid 3.1.
- the inverse OLED emits the light in the opposite direction to the substrate 1.
- busbar support must be provided here.
- the bus bar grid structure is accordingly insulated from the cathode layer 8 on the substrate.
- the substrate 1 is shown with the cathode 8 arranged directly thereon.
- the structured insulator layer 3.2 and the bus bar structure 3.1 applied thereon are arranged on the cathode 8.
- the conductive HTL polymer layer 6 and the light-emitting EL polymer layer (EL) 7 are introduced or filled into the recesses 3.3 of the bus bar structure.
- the conductive transparent anode layer 5 At the top is the conductive transparent anode layer 5.
- the TCO coating of the substrate can be dispensed with. If the bus bar grid structure is adequately designed, the
- the layers are applied to the substrate 1 in the following order: 7a: bus bar 3.1 for structure limitation and current distribution,
- FIG. 7b conductive HTL polymer layer 6
- FIG. 7c insulator layer 3.2
- FIG. 7d light-emitting EL polymer layer 7
- FIG. 7e cathode 8.
- the bus bars 3.1 are first applied to the substrate and are in direct contact with the conductive transparent layer 6 then produced using ink-jet technology or other suitable liquid coating processes (e.g.
- Insulator layer 3.2 insulated and the rest of the OLED
- the conductive transparent HTL layer can also be covered over the entire surface using appropriate liquid coating processes, e.g. Diving techniques, spin coating, etc. are applied and then, analogously to FIG. 3, the insulated bus bar structure is coated over them.
- bus-bar grid structure in the formation of the layer or in order to achieve the required uniformity.
- the bus bar structure usually required for large-area lighting applications to increase the surface conductivities is used here in two functions. However, this also couples different requirements to the grid system, such as
- Width and distance of the bus bar lines average surface conductance and minimum transparency of the
- cup structures that are as uniformly distributed as possible, ideally identical in shape, are used in a predetermined grid.
- the same liquid volumes or the same number of droplets are preferably filled in at predetermined intervals, in particular by means of an automatic control.
- The is preferably in a rectangular grid pattern
- Structure traversed sequentially with the ink-jet print head or a specified row of nozzles to increase the printing speed, particularly in the case of pixelated display applications.
- the lattice structure should preferably be designed as a rectangular or honeycomb lattice and local conductivity fluctuations should be achieved by varying the web widths.
- the present method is therefore particularly attractive if complex and expensive lithography steps can be dispensed with in the production of the bus bar lattice structure and instead simple printing methods such as screen printing, offset printing, roller printing or electrophotographic processes, e.g. Computer-to-glass (CTG) can be used.
- simple printing methods such as screen printing, offset printing, roller printing or electrophotographic processes, e.g. Computer-to-glass (CTG) can be used.
- CCG Computer-to-glass
- the process also includes substrate pretreatments directly before the solvent is applied (increased wettability) and options for influencing the layer formation (post-polymerization, partial or
- Multi-layer systems are applied with different layers or films by parallel arrangement of inkjet or similar rows of nozzles
- the polymer or monomer films are crosslinked, in particular within a film or the films with one another, in particular in a system.
- the first layer (6,7) is applied and / or layers or film partitions are locally crosslinked and / or residual liquid components are removed by rinsing with solvent or suction and / or the second layer (6,7) is applied and in the free areas or depressions locally networked.
- Display technology e.g. Backlights from cell phones, PDAs or generally LCD displays
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/556,752 US20070273276A1 (en) | 2003-05-30 | 2004-05-24 | Process for Producing Organic Light-Emitting Devices |
EP04762979A EP1629542A2 (de) | 2003-05-30 | 2004-05-25 | VERFAHREN ZUR HERSTELLUNG VON OLEDs |
JP2006508199A JP2006526263A (ja) | 2003-05-30 | 2004-05-25 | Oledを製作するためのプロセス |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10324880A DE10324880B4 (de) | 2003-05-30 | 2003-05-30 | Verfahren zur Herstellung von OLEDs |
DE10324880.3 | 2003-05-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2004107467A2 true WO2004107467A2 (de) | 2004-12-09 |
WO2004107467A3 WO2004107467A3 (de) | 2005-02-03 |
Family
ID=33482368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2004/005601 WO2004107467A2 (de) | 2003-05-30 | 2004-05-25 | VERFAHREN ZUR HERSTELLUNG VON OLEDs |
Country Status (7)
Country | Link |
---|---|
US (1) | US20070273276A1 (de) |
EP (1) | EP1629542A2 (de) |
JP (1) | JP2006526263A (de) |
KR (1) | KR20060030034A (de) |
CN (1) | CN100557853C (de) |
DE (1) | DE10324880B4 (de) |
WO (1) | WO2004107467A2 (de) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1791145A2 (de) * | 2005-11-25 | 2007-05-30 | Seiko Epson Corporation | Elektrochemische Zelle und ihre Herstellungsmethode |
EP1887628A1 (de) * | 2006-07-20 | 2008-02-13 | Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO | Elektro-optische Vorrichtung |
WO2009001241A1 (en) * | 2007-06-25 | 2008-12-31 | Koninklijke Philips Electronics N.V. | Organic functional device and method of manufacturing same |
WO2008132655A3 (en) * | 2007-04-27 | 2009-02-05 | Koninkl Philips Electronics Nv | Light emitting device with anodized metallization |
JP2010504606A (ja) * | 2006-09-22 | 2010-02-12 | オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング | 光放出装置 |
WO2010038181A1 (en) * | 2008-10-02 | 2010-04-08 | Philips Intellectual Property & Standards Gmbh | Oled device with covered shunt line |
EP2202819A1 (de) * | 2008-12-29 | 2010-06-30 | Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO | Elektrooptische Vorrichtung und Verfahren zu deren Herstellung |
US7750555B2 (en) * | 2006-02-07 | 2010-07-06 | Samsung Electronics Co., Ltd. | Transparent electrode and preparation method thereof |
US8508122B2 (en) | 2009-02-05 | 2013-08-13 | Koninklijke Philips N.V. | Organic electroluminescent device |
US8884322B2 (en) | 2006-09-22 | 2014-11-11 | Osram Opto Semiconductor Gmbh | Light-emitting device |
WO2016008994A1 (de) * | 2014-07-17 | 2016-01-21 | Osram Oled Gmbh | Optoelektronisches bauelement und verfahren zum herstellen eines optoelektronischen bauelements |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120181573A1 (en) * | 2006-11-01 | 2012-07-19 | Bar-Ilan University | Transparent conductive oxides having a nanostructured surface and uses thereof |
EP2092573A2 (de) | 2006-11-01 | 2009-08-26 | Bar-Ilan University | Nickel-cobalt-legierungen als stromkollektoren und leitfähige verbindungselemente und ihre abscheidung auf transparenten leitfähigen oxiden |
DE102007063617B4 (de) * | 2007-02-16 | 2021-09-02 | Pictiva Displays International Limited | Verfahren zur Reparatur eines elektrolumineszenten organischen Halbleiterelements |
DE102007031428A1 (de) * | 2007-07-05 | 2008-12-24 | Schott Ag | Verfahren zur Herstellung von Kavitäten für integrierte elektronische Schaltungen und verfahrensgemäß herstellbare Erzeugnisse |
WO2009068884A1 (en) | 2007-11-28 | 2009-06-04 | National University Of Singapore | Multilayer heterostructures for application in oleds and photovoltaic devices |
EP2144290A1 (de) | 2008-07-08 | 2010-01-13 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Elektronische Vorrichtung und Herstellungsverfahren dafür |
DE102008045948A1 (de) | 2008-09-04 | 2010-03-11 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines organischen strahlungsemittierenden Bauelements und organisches strahlungsemittierendes Bauelement |
JP4664446B2 (ja) * | 2009-02-10 | 2011-04-06 | パナソニック株式会社 | 有機elディスプレイの製造方法 |
US20100309185A1 (en) * | 2009-06-05 | 2010-12-09 | Koester Robert D | Low-power and lightweight high-resolution display |
EP2333863A1 (de) | 2009-12-11 | 2011-06-15 | Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO | Elektrooptische Vorrichtung, Elektrode dafür, sowie Verfahren und Vorrichtung zur Herstellung einer Elektrode und der elektrooptischen Vorrichtung |
JP5096641B1 (ja) * | 2011-09-05 | 2012-12-12 | パイオニア株式会社 | 有機elパネル及びその製造方法 |
JP2013153073A (ja) * | 2012-01-25 | 2013-08-08 | Toshiba Corp | 電子デバイス及び配線形成方法 |
DE102012109777A1 (de) * | 2012-10-15 | 2014-04-17 | Heliatek Gmbh | Verfahren zum Bedrucken optoelektronischer Bauelemente mit Stromsammelschienen |
KR101470515B1 (ko) * | 2012-12-07 | 2014-12-09 | 주식회사 아모그린텍 | 유기 박막소자 및 그 제조방법 |
DE102014102255B4 (de) * | 2014-02-21 | 2021-10-28 | Pictiva Displays International Limited | Organisches lichtemittierendes Bauelement und Verfahren zum Herstellen eines organischen lichtemittierenden Bauelements |
CN104407468B (zh) * | 2014-05-31 | 2017-02-15 | 福州大学 | 一种基于3d打印的滤色膜制备方法 |
DE102014110969A1 (de) * | 2014-08-01 | 2016-02-04 | Osram Oled Gmbh | Organisches Bauteil sowie Verfahren zur Herstellung eines organischen Bauteils |
DE102015106630A1 (de) * | 2015-04-29 | 2016-11-03 | Osram Oled Gmbh | Organisches lichtemittierendes Bauelement und Verfahren zur Herstellung eines organischen lichtemittierenden Bauelements |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6019654A (en) * | 1997-04-24 | 2000-02-01 | Lg Electronics Inc. | Multi-color organic EL display array panel and method for fabricating the same |
US20030042472A1 (en) * | 1999-08-06 | 2003-03-06 | Sharp Kabushiki Kaisha | Coating liquid for forming organic layer in organic LED display and method of manufacturing organic LED display |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6412377A (en) * | 1987-07-06 | 1989-01-17 | Ricoh Kk | Image/sound data processor |
JP3284249B2 (ja) * | 1992-03-06 | 2002-05-20 | セイコーエプソン株式会社 | 発光素子の製造方法 |
EP0862156B1 (de) * | 1996-09-19 | 2005-04-20 | Seiko Epson Corporation | Verfahren zur herstellung einer matrixanzeigevorrichtung |
US20020075422A1 (en) * | 1996-09-19 | 2002-06-20 | Seiko Epson Corporation | Matrix type display device and manufacturing method thereof |
JP3885303B2 (ja) * | 1997-08-29 | 2007-02-21 | セイコーエプソン株式会社 | 発光基板の製造方法 |
US6307528B1 (en) * | 1997-12-08 | 2001-10-23 | Hughes Electronics Corporation | Contrast organic light-emitting display |
JP2000231985A (ja) * | 1999-02-12 | 2000-08-22 | Denso Corp | 有機el素子 |
JP2000252063A (ja) * | 1999-03-01 | 2000-09-14 | Toppan Printing Co Ltd | 色切換発光素子、色切換発光素子用基板及びカラー表示装置 |
JP4524810B2 (ja) * | 1999-04-12 | 2010-08-18 | カシオ計算機株式会社 | 有機el装置 |
JP3809758B2 (ja) * | 1999-10-28 | 2006-08-16 | ソニー株式会社 | 表示装置及び表示装置の製造方法 |
JP2001155867A (ja) * | 1999-11-30 | 2001-06-08 | Tdk Corp | 有機el表示装置 |
DE10007059A1 (de) * | 2000-02-16 | 2001-08-23 | Aixtron Ag | Verfahren und Vorrichtung zur Herstellung von beschichteten Substraten mittels Kondensationsbeschichtung |
DE10117663B4 (de) * | 2001-04-09 | 2004-09-02 | Samsung SDI Co., Ltd., Suwon | Verfahren zur Herstellung von Matrixanordnungen auf Basis verschiedenartiger organischer leitfähiger Materialien |
US6680578B2 (en) * | 2001-09-19 | 2004-01-20 | Osram Opto Semiconductors, Gmbh | Organic light emitting diode light source |
-
2003
- 2003-05-30 DE DE10324880A patent/DE10324880B4/de not_active Expired - Fee Related
-
2004
- 2004-05-24 US US10/556,752 patent/US20070273276A1/en not_active Abandoned
- 2004-05-25 KR KR1020057022984A patent/KR20060030034A/ko not_active Application Discontinuation
- 2004-05-25 EP EP04762979A patent/EP1629542A2/de not_active Withdrawn
- 2004-05-25 CN CNB2004800140868A patent/CN100557853C/zh not_active Expired - Fee Related
- 2004-05-25 WO PCT/EP2004/005601 patent/WO2004107467A2/de active Application Filing
- 2004-05-25 JP JP2006508199A patent/JP2006526263A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6019654A (en) * | 1997-04-24 | 2000-02-01 | Lg Electronics Inc. | Multi-color organic EL display array panel and method for fabricating the same |
US20030042472A1 (en) * | 1999-08-06 | 2003-03-06 | Sharp Kabushiki Kaisha | Coating liquid for forming organic layer in organic LED display and method of manufacturing organic LED display |
Non-Patent Citations (2)
Title |
---|
PATENT ABSTRACTS OF JAPAN Bd. 1999, Nr. 08, 30. Juni 1999 (1999-06-30) -& JP 11 074082 A (SEIKO EPSON CORP), 16. März 1999 (1999-03-16) * |
See also references of EP1629542A2 * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1791145A3 (de) * | 2005-11-25 | 2008-04-09 | Seiko Epson Corporation | Elektrochemische Zelle und ihre Herstellungsmethode |
EP1791145A2 (de) * | 2005-11-25 | 2007-05-30 | Seiko Epson Corporation | Elektrochemische Zelle und ihre Herstellungsmethode |
US8796065B2 (en) | 2005-11-25 | 2014-08-05 | Seiko Epson Corporation | Electrochemical cell structure and method of fabrication |
US8158879B2 (en) | 2005-11-25 | 2012-04-17 | Seiko Epson Corporation | Electrochemical cell structure and method of fabrication |
US7750555B2 (en) * | 2006-02-07 | 2010-07-06 | Samsung Electronics Co., Ltd. | Transparent electrode and preparation method thereof |
EP1887628A1 (de) * | 2006-07-20 | 2008-02-13 | Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO | Elektro-optische Vorrichtung |
US8884322B2 (en) | 2006-09-22 | 2014-11-11 | Osram Opto Semiconductor Gmbh | Light-emitting device |
JP2010504606A (ja) * | 2006-09-22 | 2010-02-12 | オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング | 光放出装置 |
WO2008132655A3 (en) * | 2007-04-27 | 2009-02-05 | Koninkl Philips Electronics Nv | Light emitting device with anodized metallization |
US8004188B2 (en) | 2007-04-27 | 2011-08-23 | Koninklijke Philips Electronics N.V. | Light emitting device with anodized metallization |
WO2009001241A1 (en) * | 2007-06-25 | 2008-12-31 | Koninklijke Philips Electronics N.V. | Organic functional device and method of manufacturing same |
CN102171851B (zh) * | 2008-10-02 | 2014-05-07 | 皇家飞利浦电子股份有限公司 | 具有被覆盖的分流线的oled器件 |
WO2010038181A1 (en) * | 2008-10-02 | 2010-04-08 | Philips Intellectual Property & Standards Gmbh | Oled device with covered shunt line |
WO2010077139A3 (en) * | 2008-12-29 | 2010-11-04 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Electro-optic device and method for manufacturing the same |
EP2202819A1 (de) * | 2008-12-29 | 2010-06-30 | Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO | Elektrooptische Vorrichtung und Verfahren zu deren Herstellung |
US8772776B2 (en) | 2008-12-29 | 2014-07-08 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Electro-optic device and method for manufacturing the same |
US8508122B2 (en) | 2009-02-05 | 2013-08-13 | Koninklijke Philips N.V. | Organic electroluminescent device |
WO2016008994A1 (de) * | 2014-07-17 | 2016-01-21 | Osram Oled Gmbh | Optoelektronisches bauelement und verfahren zum herstellen eines optoelektronischen bauelements |
US10141535B2 (en) | 2014-07-17 | 2018-11-27 | Osram Oled Gmbh | Optoelectronic component and a method for producing an optoelectronic component |
Also Published As
Publication number | Publication date |
---|---|
EP1629542A2 (de) | 2006-03-01 |
KR20060030034A (ko) | 2006-04-07 |
DE10324880A1 (de) | 2005-01-05 |
WO2004107467A3 (de) | 2005-02-03 |
US20070273276A1 (en) | 2007-11-29 |
DE10324880B4 (de) | 2007-04-05 |
CN1795571A (zh) | 2006-06-28 |
CN100557853C (zh) | 2009-11-04 |
JP2006526263A (ja) | 2006-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10324880B4 (de) | Verfahren zur Herstellung von OLEDs | |
DE10117663B4 (de) | Verfahren zur Herstellung von Matrixanordnungen auf Basis verschiedenartiger organischer leitfähiger Materialien | |
DE10232937B4 (de) | Verfahren zum Konstruieren eines lichtemittierenden Bauelements | |
EP2321863B1 (de) | Verfahren zur herstellung eines organischen strahlungsemittierenden bauelements und organisches strahlungsemittierendes bauelement | |
EP1565947B1 (de) | Photovoltaisches bauelement und herstellungsverfahren dazu | |
DE102008020816B4 (de) | Organische Leuchtdiode, flächiges, optisch aktives Element mit einer Kontaktanordnung und Verfahren zur Herstellung einer organischen Leuchtdiode | |
DE10157945C2 (de) | Verfahren zur Herstellung eines organischen, elektrolumineszierenden Displays sowie ein organisches, elektrolumineszierendes Display | |
EP1916723B1 (de) | Organische lichtemittierende Diode und Verfahren zur Herstellung einer organischen lichtemittierenden Diode | |
DE102010032834B4 (de) | Optoelektronische Vorrichtung und Verfahren zu deren Herstellung | |
EP1407638A1 (de) | Organisches, farbiges, elektrolumineszierendes display und dessen herstellung | |
WO2005106987A1 (de) | Schichtanordnung für eine organische lichtemittierende diode | |
DE10133686C2 (de) | Organisches, elektrolumineszierendes Display und dessen Herstellung | |
EP1418634A1 (de) | Display auf Basis organischer, lichtemittierender Bauelemente (OLED) mit niederohmigem Kathodenkontakt | |
WO2001057938A1 (de) | Vorrichtung für die emission elektromagnetischer strahlung und verfahren zu deren herstellung | |
DE102014202945B4 (de) | Verfahren zum Herstellen eines organischen elektronischen Bauelementes und organisches elektronisches Bauelement | |
EP1438749B1 (de) | Organisches elektrolumineszierendes display | |
DE102004013449B3 (de) | OLED-Display mit Elektroden hoher Leitfähigkeit und Verfahren zu dessen Herstellung | |
DE10351195B4 (de) | Substrat zum Tintenstrahldrucken und Verfahren zu dessen Herstellung | |
EP1438758A1 (de) | Verfahren zum grossflächigen aufbringen von mechanisch empfindlichen schichten auf ein substrat | |
EP1405345A2 (de) | Organisches, elektrolumineszierendes display und dessen herstellung | |
DE10343351B4 (de) | Substrat zum Tintenstrahldrucken und Verfahren zu dessen Herstellung | |
EP1638155A1 (de) | Verbesserung der Leitfähigkeit einer Polymerelektrode durch Aufbringen einer darunterliegenden Metallschicht | |
EP2453498A2 (de) | Strahlungsemittierende Vorrichtung und Verfahren zur Herstellung einer strahlungsemittierenden Vorrichtung | |
EP1610399A1 (de) | Substrat zum Tintenstrahldrucken und Verfahren zu dessen Herstellung | |
DE102005032741A1 (de) | OLED-Bauelement, Aktiv-Matrix-OLED-Display und Verfahren zu deren Herstellung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004762979 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20048140868 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006508199 Country of ref document: JP Ref document number: 1020057022984 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2004762979 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020057022984 Country of ref document: KR |
|
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 10556752 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 10556752 Country of ref document: US |