WO2004096419A2 - 水素ガス及び酸素ガスの減圧・加圧溶解方式のコロイド溶液による自動酸化還元処理システム - Google Patents

水素ガス及び酸素ガスの減圧・加圧溶解方式のコロイド溶液による自動酸化還元処理システム Download PDF

Info

Publication number
WO2004096419A2
WO2004096419A2 PCT/JP2004/005660 JP2004005660W WO2004096419A2 WO 2004096419 A2 WO2004096419 A2 WO 2004096419A2 JP 2004005660 W JP2004005660 W JP 2004005660W WO 2004096419 A2 WO2004096419 A2 WO 2004096419A2
Authority
WO
WIPO (PCT)
Prior art keywords
gas
stirring
solution
pressure
tank
Prior art date
Application number
PCT/JP2004/005660
Other languages
English (en)
French (fr)
Other versions
WO2004096419A3 (ja
Inventor
Chikashi Kamimura
Original Assignee
Yugen Kaisya Joho Kagaku Kenkyusyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yugen Kaisya Joho Kagaku Kenkyusyo filed Critical Yugen Kaisya Joho Kagaku Kenkyusyo
Priority to US10/554,551 priority Critical patent/US20070034556A1/en
Priority to EP04729980A priority patent/EP1623753A4/en
Priority to CNB2004800114454A priority patent/CN100339316C/zh
Priority to KR1020057020161A priority patent/KR100649449B1/ko
Publication of WO2004096419A2 publication Critical patent/WO2004096419A2/ja
Publication of WO2004096419A3 publication Critical patent/WO2004096419A3/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2322Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles using columns, e.g. multi-staged columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4314Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor with helical baffles
    • B01F25/43141Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor with helical baffles composed of consecutive sections of helical formed elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/60Pump mixers, i.e. mixing within a pump
    • B01F25/64Pump mixers, i.e. mixing within a pump of the centrifugal-pump type, i.e. turbo-mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/70Mixers specially adapted for working at sub- or super-atmospheric pressure, e.g. combined with de-foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/70Mixers specially adapted for working at sub- or super-atmospheric pressure, e.g. combined with de-foaming
    • B01F33/71Mixers specially adapted for working at sub- or super-atmospheric pressure, e.g. combined with de-foaming working at super-atmospheric pressure, e.g. in pressurised vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/82Combinations of dissimilar mixers
    • B01F33/821Combinations of dissimilar mixers with consecutive receptacles
    • B01F33/8212Combinations of dissimilar mixers with consecutive receptacles with moving and non-moving stirring devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/727Treatment of water, waste water, or sewage by oxidation using pure oxygen or oxygen rich gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/22Nature of the water, waste water, sewage or sludge to be treated from the processing of animals, e.g. poultry, fish, or parts thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/32Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters
    • C02F2103/322Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters from vegetable oil production, e.g. olive oil production

Definitions

  • the present invention dissolves excessively hydrogen gas or oxygen gas in a liquid and solution system to increase the reactivity of the liquid, and requires a hydrogen system and an oxidation process for a reaction system requiring a reduction treatment.
  • the reaction system relates to a system for promoting the reaction mildly using oxygen gas.
  • a large amount of hot water is used at the production site of steelmaking and rolled steel sheets when shaping high-temperature heated steel materials.
  • Currently used water is ordinary industrial water with high Eh and under oxidizing conditions, and has an oxidation reaction when cooled. Use of the reduced water prevents oxidation reaction and improves quality.
  • Oxidation treatment is characterized by the fact that the present invention can be scaled up to any size of site, such as purification of oxygen-deficient waters due to accumulation of mud on the ocean floor, accumulation of mud on lake bottoms and rivers. It has a great effect on the purification of the contaminated area associated with.
  • the present inventor has also proposed a technique of shredding clusters formed by water on a molecular level, and allowing hydrogen molecules to enter between water molecules to individualize the water molecules, thereby improving the water permeation ability and the cleaning ability.
  • An inventor of a "continuously supplying a large amount of saturated hydrogen water to wash water, bath water, etc.” for continuously converting water to saturated hydrogen water has been filed and published as Japanese Patent Application Laid-Open No. 2000-354696.
  • the inventor of the present invention originated from the oxidation-reduction potential measuring means using the principle that the difference between the oxygen gas amount and the hydrogen gas amount supplied to the liquid medium at a constant flow rate determines the level of the oxidation-reduction potential of the solution.
  • Invented and filed a system that sends signals to the central processing unit, adjusts the gas supply amount, and controls the oxidation-reduction potential "Method for producing gas-dissolved liquid medium and system for producing gas-dissolved liquid medium". Published in Japanese Unexamined Patent Publication No. 2003-019426).
  • all of the above technologies adjust the strength of the oxidized state and reduced state of the liquid material up to the saturation state of oxygen gas and hydrogen gas. It was not intended to create a supersaturated condition of hydrogen gas or oxygen gas, and to perform strong reduction treatment and oxidation treatment in solution.
  • microbubble generation technology that generates fine air bubbles in water.
  • Water that generates microbubbles with air has a redox potential (Eh ) Is within + 200mV-+ 300mV, and the oxidizing power of the colloid solution generated by oxygen is more than + 600mV.
  • the reducing power of one colloid solution generated by hydrogen is less than 600mV. Can not.
  • the present technology is directed to exhibiting a strong, oxidizing, or strong, reducing action in a solution, and blowing gaseous oxygen or hydrogen into the solution to reduce the effect.
  • the present invention provides a system that dissolves gas into a solution and simultaneously creates a gas-liquid coexisting colloidal solution of oxygen and hydrogen through a high-pressure stirring process, a high-speed stirring process, and a high-pressure stirring process.
  • the colloid solution in which oxygen and hydrogen gas and liquid coexist has a function of buffering between gas and liquid, rather than merely dissolving gas in the solution. It does not cause a decrease in the action capacity of the solution accompanying the above.
  • the automatic oxidation-reduction treatment system of the present invention using a colloidal solution of a hydrogen gas and an oxygen gas under a reduced pressure and a pressure is used to first introduce oxygen or hydrogen through a nozzle to a reduced-pressure stirring tank and supply the solution to a solution under low-pressure conditions. Then, after the bubbles are broken by stirring under reduced pressure, the bubbles are further finely reduced under reduced pressure by high-speed stirring using a water flow pump, and the bubbles are quickly sent out to a pumping pressurized stirring tank to instantaneously compress and shrink the bubbles.
  • This system is characterized by dissolving and simultaneously compressing and refining into a colloidal state.
  • FIG. 1 is an external view of the entire apparatus as viewed from obliquely right forward and obliquely above.
  • FIG. 2 is a perspective view of the entire apparatus as viewed from obliquely right front and obliquely above.
  • FIG. 3 is an external view of the entire apparatus as viewed from the front.
  • FIG. 4 is a perspective view of the entire apparatus as viewed from the front.
  • FIG. 5 is a perspective view of the entire apparatus as viewed from the back.
  • FIG. 6 is a perspective view of the entire apparatus as viewed from the right side.
  • FIG. 7 is a perspective view of the entire apparatus as viewed from the left side.
  • FIG. 8 is a perspective view of the entire apparatus viewed from above.
  • FIG. 9 is an external view of a reduced-pressure stirring tank and a pressurized stirring tank viewed from obliquely above the front.
  • FIG. 10 is a perspective view of a reduced-pressure stirring tank and a pressurized stirring tank viewed from obliquely above from the front.
  • FIG. 11 is an external view of a reduced-pressure stirring tank and a pressurized stirring tank viewed from the front.
  • FIG. 12 is a perspective view of a reduced-pressure stirring tank and a pressurized stirring tank viewed from the front.
  • the present system includes a solution supply and processing system for controlling the flow of the solution and performing the gas mixing process, and a gas control system for controlling the gas flow.
  • FIG. 1 Slant front view
  • Fig. 2 Slant front perspective view
  • the solution control system passes the solution from the inlet A through the decompression adjusting cock B, guides the solution through the induction pipe C equipped with the decompression gauge D, the decompression agitation tank E to the water flow pump G, and the high speed by the water flow pump G.
  • the stirring process and the water flow pump G pass through the induction pipe H through the pressurized stirring tank J, pass through the induction pipe K with the pressurized pressure gauge L and reach the pressure adjustment cock M.
  • the pressure adjustment and stirring process, and the movement of the water flowing from the pressure adjustment cock M to the water distribution port P through the guide pipe N and the solution flow meter 0 are sensed, and the gas switching It consists of an automatic actuation process that sends it to station 17.
  • the gas control system passes from the open / close cock 4 of the gas cylinder 3 to the gas pressure setting valve 6 linked to the gas pressure adjusting gauge 7 through the cylinder pressure gauge (display of gas amount) 5, and the gas supply opening / closing cock after setting the gas pressure
  • a gas flow adjustment knob that operates a needle gas valve in conjunction with a supply gas pressure setting process that guides the gas to the gas filter 11 with the gas lead pipe 8 and a gas flow meter 14, and a process that purifies the supply gas with the gas filter 11.
  • the gas flow control process consisting of 13 and the stop of water sensed by the solution flow meter 0 ⁇
  • the flow signal is passed through the gas supply opening / closing command transmission coil 16 and the gas supply is opened / closed by the sequencer (or relay) built into the solution flow meter 0
  • the device 17 is operated, and the gas supply nozzle 23 opening into the decompression agitation tank E through the gas supply pipe 18 automatically turns off the gas supply. , Ru.
  • the structure of the reduced-pressure stirring tank E and the pressurized stirring tank J is composed of a stirring tank outer tube 25 made of transparent acrylic resin and the inside of which can be observed, and an iron or stainless steel stirring tank cap 26.
  • the flow direction of the solution flows in the direction of arrow 27 in each case.
  • the gas supply nozzle 23 sent from the gas supply opening / closing device 13 is arranged at the upper part of the decompression stirring tank G, and the vortex generator is a fixed vortex generating stirrer 24 (that is, a baffle plate 24) that flows in five spiral directions.
  • the liquid flow is converted into a vortex 28 which rotates in the tube by the installation method described above, and the oxygen gas and hydrogen gas are stirred under reduced pressure to break bubbles.
  • the vortex generator converts the liquid flow into a vortex 28 that rotates in the tube by a baffle plate system 24 with a five-stage helically inclined surface. Stir the hydrogen gas and compress the broken bubbles to achieve finer and more homogenous.
  • the solution to be supplied to the automatic oxidation-reduction treatment apparatus includes steelmaking cooling water, concrete water, dropping water, water for protection, various cleaning waters, water for food processing, drinking water, tap water, groundwater, and exports. Water for transportation and preservation, sewage treatment water for dams, river water, lake water, marine water, etc. can be mentioned.
  • the reduction-treated colloidal solution when used as cooling water for steelmaking, prevents oxidation of ultra-high-temperature materials during contact cooling, and makes it possible to improve the quality of iron materials on the surface.
  • the reduction-treated colloid solution is used as concrete water, the concrete component under CaO oxidizing conditions is rapidly reduced, and the reducing conditions are sealed in the concrete, so that the inner steel frame and reinforcing steel can be protected. ⁇ ⁇ Expansion due to oxidation is prevented, making it possible to extend the life of concrete.
  • the reduction-treated colloidal solution is used as dropping water, water for protection, and water for various washings, the component of the metal mackerel of various metal products is rapidly reduced.
  • the component of the metal mackerel of various metal products is rapidly reduced.
  • Fe +3 It is rapidly reduced to and dissolved in the force SFe +2, and the removal of mackerel becomes remarkably easy, thus enabling cost reduction of removal and prevention.
  • the reduced colloid solution is applied to drinking water, tap water, groundwater, and water for long-term transportation and storage such as export, the growth of aerobic microorganisms that rot the water is suppressed, and the removal of water-soluble organic substances is anaerobic. It also prevents the growth of germ-free microorganisms, and does not cause deterioration such as water spoilage, and enables long-term storage. It is possible to respond to demand.
  • the oxidized colloid solution is applied to sewage treated water for dams and river water, river water, lake water, marine water, etc., it is possible to eliminate and reduce disinfecting water areas originating from sludge on the bottom of water, and improve oxygen-deficient water areas. It can greatly contribute to the great environmental improvement of Kale.
  • a vortex mini-pump (outer diameter 150 mm, rotor radius 50 mm, inner diameter of water intake port 5 mm, inner diameter of discharge port 5 mm) was used as a water flow pump.
  • the power motor (outer diameter 130mm, 100V, 5A, 0.1kW, 1400rpm) was used.
  • the pressure-reducing stirrer is a transparent polyacrylic tube with an inner diameter of 4 cm and a length of 30 cm
  • the vortex generator is a baffle plate with a five-stage spiral flow
  • the pressure is controlled by a pressure-reducing valve.
  • the pressure stirrer is a transparent polyacrylic tube with an inner diameter of 4 cm and a length of 30 cm
  • the vortex generator is a baffle plate installation method that flows in five spiral directions
  • the pressure is a pressure adjustment method using a pressure valve. .
  • a method using the present oxidation-reduction treatment apparatus that has a process of reduced-pressure stirring, high-speed stirring, and pressure stirring, and produces a gas-liquid colloid of hydrogen gas.
  • the normal numerical force S the maximum numerical force S—about 300 mV in ordinary bubbling, but the reduction and reduction of the force, but the oxidation / reduction control device has the maximum numerical force S—600 mV. Reduced to a certain level.
  • this oxidation-reduction treatment device that has the steps of reduced-pressure stirring, high-speed stirring, and pressurized stirring, it is reduced to the highest numerical value of about 700 mV, and the time required to reach a strong level is also significantly shortened.
  • a high reducing power can be provided. This effect is considered to be due to the fact that fine hydrogen gas is dispersed in a colloidal form and exhibits a strong reducing action, not merely by a reducing action of dissolved hydrogen gas. Therefore, colloid formation could not be achieved to the extent of the conventional oxidation-reduction treatment device, which is considered to have partially achieved the same function in the conventional oxidation-reduction control device.
  • the test was carried out in the manner described in the previous test by (1) using a normal publishing method, (2) using a conventional redox control device, and (3) using a redox treatment device.
  • Eh oxidation-reduction potential
  • the value of about 300 mV in the ordinary bubbling method increased to a level of +120 mV in 24 hours.
  • the conventional oxidation-reduction control device With the conventional oxidation-reduction control device, the highest numerical value was raised to the level of about 600 mV power-50 mV.
  • the power increased to about _700 mV to a level of 480 mV.
  • a method using the present oxidation-reduction treatment apparatus that has the steps of reduced-pressure stirring, high-speed stirring, and pressure stirring, and produces a gas-liquid colloid of oxygen gas.
  • the three methods were used to compare the time-dependent changes in Eh during treatment due to the dissolution of oxygen gas in an oxygen cylinder.
  • Oxidation treatment of tap water with oxygen gas and change in redox potential (unit: mV)
  • this oxidation-reduction treatment device that has the steps of reduced-pressure stirring, high-speed stirring, and pressure stirring, the highest value is oxidized to a level of about +640 mV, and the time to reach a strong level is significantly reduced.
  • a high oxidizing power can be provided even instantaneously. This effect is not merely a strong oxidizing effect due to the oxidizing effect of dissolved oxygen gas.
  • the force S which is considered to have partially caused the same function in the conventional oxidation-reduction control device, is a force that is not colloidal to the extent of the present oxidation-reduction treatment device.
  • the test was carried out in the manner described in the previous test by (1) using a normal publishing method, (2) using a conventional redox control device, and (3) using a redox treatment device. It was placed in a beaker and the change over time in the oxidation-reduction potential (Eh) of water was investigated.
  • Eh oxidation-reduction potential
  • the treated hydrogen gas is fine and dispersed in a colloidal form, so the effect of air that is dissolved from the upper surface of the container as colloidal hydrogen becomes a new oxygen supply source. It is thought to be due to the function of suppressing
  • the conventional oxidation-reduction control device partially has the same function as the present oxidation-reduction treatment device, but because of the insufficient function, the speed decreased at an intermediate speed.
  • each of oxygen gas and hydrogen gas is finely divided into water and various kinds of solutions or liquids through the steps of reduced-pressure stirring, high-speed stirring, and pressurized stirring. It stabilizes gas-liquid colloids as foam, imparts strong oxidizing power or strong reducing power, and provides it to various industries as a stable and safe oxidizing agent and reducing agent.
  • Reduction treatment technology greatly contributes to quality improvement and cost reduction in the automobile industry, shipbuilding industry, precision machinery, marine products industry, steelmaking industry, etc., which are highly effective in preventing and dropping steel and metal. That can be S.
  • Silicon chip For cleaning of pumps, etc. it can be used as a new cleaning agent in combination with ultrasonic technology, and the production cost can be significantly reduced without environmental pollution.
  • Oxidation treatment technology greatly contributes to environmental improvement by using its strong and oxidizing power for large-scale projects such as the Ariake Sea, Lake Shinji, Lake Biwa and Kasumigaura purification projects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

明 細 書
水素ガス及び酸素ガスの減圧 ·加圧溶解方式のコロイド溶液による自動 酸化還元処理システム
技術分野
[0001] 本発明は液体及び溶液系へ水素ガスまたは酸素ガスを過剰に溶存させ、液体の 反応性を高め、還元処理を必要とする反応系には水素ガスを、酸化処理を必要とす る反応系には酸素ガスを用いてマイルドに反応を促進するシステムに関する。
背景技術
[0002] 製鋼、圧延鋼板の生産現場では高温加熱の鋼材の整形時に多量の温水を用いて いる。現在用いている水は通常の工業用水で Ehが高く酸化条件下にあり、冷却時に 酸化反応を有している。還元処理水を使用すれば酸化反応を防止し、品質向上が 可能となる。
[0003] 自動車その他鉄鋼製品では鉄地肌の洗浄は行わなレ、か、防鲭液による鲭落しが 行われ、防鲭塗料が塗られている。還元処理水を使用すれば、鉄鲭の三価鉄が二 価鉄に変化して水に溶解し、容易に鉄地肌の洗浄が可能となる上、洗浄後鉄地肌が 乾く迄の間、鉄地肌の酸化を防止するので、その後の防鲭塗料の塗付仕上がりが非 常にスムースになる。また、車の洗浄に当たっては鉄鲭を即時二価の鉄にして溶解し 、鉄地肌の表面を清浄にするので、乾燥後の再酸化が防止され鯖の進行を抑制す ること力 Sできる。
[0004] 海洋の環境汚染により海底のへ泥集積地海底で海域が還元条件となり酸素欠乏 水域が拡大している。琵琶湖、霞ケ浦を始め多くの湖沼で同様の現象が起っている。 酸化処理は本願発明がどの様な規模の現場に対してもスケールアップすることが可 能である特徴から、海洋海底のへ泥集積に伴う酸素欠乏水域の浄化、湖沼底及び 河川のへ泥集積に伴う汚染地帯に対する浄化に大きな効果を有している。
また、水面上で水の跳ね車によってエアレーシヨンを行っている養殖漁業へ適用す ることによって、超過密多頭飼育に対しても環境維持が可能で、酸化処理と魚の頭 数を適正に保てば、魚の健康維持、病害発生の抑制効果等安全飼育が可能となる。 [0005] ところで発明者は回分式 (バッチ方式)で溶液を脱気した後にこの溶液へ水素を飽 和させ、溶液に還元性を与える「食品等の還元性水素水とその製造方法並びに製造 装置」を発明し、出願して特開平 8-56632号公報として公開されている。
[0006] また、本発明者は分子レベルで水が形成するクラスターを細断し、水素分子が水分 子の間に入って、水分子を個化させ、水の浸透能力と洗浄能力を高める技術で用水 を連続的に飽和水素水に変換する「洗濯水、風呂水等へ供給する飽和水素水大量 連続供給装置」を発明し、出願して特開 2000—354696号公報として公開されてい る。
[0007] さらに、本発明者は一定流量の液状媒体へ供給する酸素ガス量及び水素ガス量の 相違が溶液の酸化還元電位のレベルを決定する原理を用い、酸化還元電位の計測 手段から発した信号を中央演算処理装置へ送り、ガス供給量を調整し、酸化還元電 位を制御するシステム「ガス溶存液状媒体の生産方法およびガス溶存液状媒体の生 産システム」を発明し、出願して特開 2003-019426)号公報として公開されている。 しかし、以上の技術はいずれも、液状体に対し酸素ガス、水素ガスの飽和状態まで の範囲で酸化状態、還元状態の強度を調整する技術であって、本技術のような気液 共存のコロイドによる水素ガスまたは酸素ガスの過飽和条件を創出し、溶液中で強い 還元処理、酸化処理を行うことを目的にしたものではなかった。
[0008] 他に本技術と原理的に類似する技術として、水に空気の微細な気泡を発生させる マイクロバブル生成の技術がある力 空気でマイクロバブルを発生させた水は酸化還 元電位(Eh)の値がレ、ずれも + 200mV— + 300mVの範囲にあり、酸素で生成する コロイド溶液の + 600mV以上の酸化力はなぐ水素で生成するコロイド溶液の一 600 mV以下の還元力も発生させることはできない。
溶液中での強い酸化処理、還元処理は本技術及び処理装置によってのみ達成す ること力 Sでき、生体に対し安全なガス供給のもとで効率良く処理する技術は他には例 を見ない。
発明の開示
[0009] 前記問題を解決するために本技術では、溶液中で強レ、酸化作用、または強レ、還元 作用を発揮させることを主眼として、ガス状の酸素または水素を溶液へ吹き込み、減 圧撹拌の行程、高速撹拌の行程、加圧撹拌の行程を経て、気体を溶液に溶解すると 同時に酸素及び水素の気液共存のコロイド溶液を創出するシステムを提供する。酸 素及び水素気液共存のコロイド溶液は単に気体が溶液に溶解した状態より、酸化作 用及び還元作用を強く発揮するだけでなぐ気液相互の緩衝機能もあって酸化又及 び還元の進行に伴う溶液の作用能力の低下が起らない特徴を有している。
[0010] 本願発明の水素ガス及び酸素ガスの減圧加圧溶解方式のコロイド溶液による自動 酸化還元処理システムは、酸素または水素をまずノズルで減圧撹拌槽へ導レ、て低圧 条件の溶液へ供給し、減圧撹拌による気泡砕断後、更に水流ポンプによる高速撹拌 によって気泡を更に微細に減圧細断し、ポンプ力 加圧撹拌槽へ急速に送出して、 気泡を瞬間的に加圧細断させながら溶解させると同時に圧縮微細化し、コロイド状態 にすることを特徴とするシステムである。
図面の簡単な説明
[0011] [図 1]は斜め右前方斜め上から見た装置全体の外観図である。
[図 2]は斜め右前方斜め上から見た装置全体の透視図である。
[図 3]は正面から見た装置全体の外観図である。
[図 4]は正面から見た装置全体の透視図である。
[図 5]は背面から見た装置全体の透視図である。
[図 6]は右側面から見た装置全体の透視図である。
[図 7]は左側面から見た装置全体の透視図である。
[図 8]は上面から見た装置全体の透視図である。
[図 9]は正面斜め上から見た減圧撹拌槽と加圧撹拌槽の外観図である。
[図 10]は正面斜め上から見た減圧撹拌槽と加圧撹拌槽の透視図である。
[図 11]は正面から見た減圧撹拌槽と加圧撹拌槽の外観図である。
[図 12]は正面から見た減圧撹拌槽と加圧撹拌槽の透視図である。
符号の説明
[0012] <水、溶液及び液体の供給と処理系統 >
A 装置への水、溶液及び液体の取り入れ口と誘導パイプ
B 減圧調整バルブ C 減圧撹拌槽への誘導パイプ
D 減圧ゲージ
E 減圧撹拌槽
F 水流ポンプへの誘導パイプ
G 水流ポンプ =高速撹拌装置
H 水流ポンプからの誘導パイプ
I 加圧撹拌槽への方向変換誘導パイプ
J 加圧撹拌槽
K 加圧撹拌槽から加圧調整バルブへの誘導パイプ
L 加圧ゲージ
M 加圧調整バルブ
N 加圧調整バルブから液体流量計への誘導パイプ
0 液体流量計
P 液体流量計から処理液の外部誘導パイプ及び配出口
<ガス制御系統と自動化システム系統 >
1 電源スィッチ
2 ポンプの,駆動モーター
3 ガスボンベ
4 ボンべ開閉栓
5 ボンべ圧力ゲージ(ボンべ内ガス残存量を表示)
6 ガス出力圧力調整バルブ
7 ガス出力圧力表示ゲージ
8 ガス出力バルブ
9 ガス配出誘導パイプ
10 ガス濾過フィルター入口
11 ガス濾過フィルター
12 ガス濾過フィルター出口及びガス流量計への誘導パイプ 13 ガス流量計ニードルバルブ調整つまみ 14 ガス流量計
15 ガス流量計からガス供給開閉弁への誘導パイプ
16 液体流量計内蔵のセンサー接続のシークェンサ一とガス供給開閉弁を繋ぐコィ ノレ
17 ガス供給開閉弁
18 減圧撹拌槽ガス噴射ノズルへのガス供給パイプ
19 ガス供給パイプ接続部
20 ガスボンベ固定装置
21 装置全体のスチールボディー
22 移動用キャスター
23 減圧撹搾槽内のガス供給ノズノレ
24 減圧撹拌槽及び加圧撹拌槽内の固定渦流発生撹拌子 (邪魔板)
25 ポリアクリル管の透明な減圧撹拌槽及び加圧撹拌槽ボディー
26 減圧撹拌槽及び加圧撹拌槽防水接続キャップ
27 液体の流動方向
28 渦流を示す
発明を実施するための最良の形態
[0013] 本システムは、溶液の流動を制御しガス混入処理を行う溶液の供給と処理系統とガ ス流動を制御するガス制御系統から成っている。
以下本発明を図面を参照しながら説明する。
図 1 斜め前方外観図、図 2 斜め前方透視図、図 3 正面外観図、
図 4 正面透視図、図 5 背面透視図、図 6 左側面透視図、
図 7 右側面透視図、図 8 平面透視図
[0014] ぐ水、溶液及び液体の供給と処理系統 >
溶液制御系統は溶液を吸入口 Aから減圧調整コック Bを通過し、減圧ゲージ Dを付 設した誘導パイプ C、減圧撹拌槽 Eを経て水流ポンプ Gへ導く減圧調整行程と、水流 ポンプ Gによる高速撹拌行程と水流ポンプ Gから誘導パイプ Hを経て加圧撹拌槽 Jを 通過後加圧圧力ゲージ Lを付設した誘導パイプ Kを通過して加圧調整コック Mに至 る加圧調整撹拌行程と、加圧調整コック Mから誘導パイプ Nを通り溶液流量計 0を通 過して配水口 Pへ流れる水流の動きを感知し、ガス供給の断続を指令をガス開閉装 置 17へ送る自動作動行程から成っている。
[0015] <ガス制御系統と自動化システム >
ガス制御系統はガスボンベ 3の開閉コック 4からボンべ圧ゲージ (ガス量表示) 5を経 て、ガス圧調整ゲージ 7と連動するガス圧設定弁 6に通じ、ガス圧設定後ガス供給開 閉コック 8とガスリード管 9でガスフィルタ一 11まで導く供給ガス圧設定行程とガスフィ ルター 11によって供給ガスを浄化する行程とガス流量計 14と連動し、ガス流量調整 ニードルバルブを作動するガス流量調節ツマミ 13で構成するガス流量調節行程と溶 液流量計 0で感知する水の停止 ·流動信号をガス供給開閉指令伝達コイル 16を通じ 、溶液流量計 0に内蔵するシークェンサ一(またはリレー)でガス供給開閉装置 17を 作動し、ガス供給パイプ 18を通して減圧撹拌槽 E内へ開口したガス供給ノズル 23力、 ら自動的に、ガス供給の停止'供給を行う作動自動化行程力 成ってレ、る。
[0016] <減圧撹拌装置と加圧撹拌装置の構造 >
減圧撹拌槽 Eと加圧撹拌槽 Jの外観 ·構造は図 9 斜め前方外観図、図 10 斜め前 方透視図、図 11 正面外観図、図 12 正面透視図を参照。
減圧撹拌槽 Eと加圧撹拌槽 Jの構造は透明のアクリル樹脂で内部が観察できる撹拌 槽外殻管 25と鉄製又はテンレス製の撹拌槽キャップ 26で構成し、上下を密閉して撹 拌槽を形成する。溶液の流動方向はいずれも矢印 27の方向へ流動する。減圧撹拌 槽 Gは上部にガス供給開閉装置 13から送られて来るガス供給ノズノレ 23を配置し、渦 流発生装置は 5段階の螺旋方向に流動させる固定渦流発生撹拌子 24 (即ち邪魔板 24)の設置方式で液流が管内で回転流動する渦流 28に変換させ、減圧条件で酸素 ガス及び水素ガスを撹拌し、気泡を破砕する。
加圧撹拌槽 Eは溶液の流動に当たって、渦流発生装置は 5段の螺旋方向への傾 斜面を持つ邪魔板方式 24で液流を管内で回転する渦流 28に変換させ、減圧条件 で酸素ガス及び水素ガスを撹拌し、砕断した気泡を圧縮し微細化と均質化を図る。
[0017] <自動酸化還元処理の方法 >
次に前述した構造の酸化 ·還元処理システムの実用上の作動行程について説明す れば、ボンべ 3の開閉コック 4を開いて、圧力ゲージ 5のガス量を確認して、供給ガス 圧ゲージ 7を見ながらガス圧設定弁 6を調整し、ガス供給開閉コック 8を開いてガス供 給系統の準備を完了する。
次に減圧コック B、加圧コック Mを開いて、電源スィッチ 1を入力し、モーター 2を作 動して装置内へ溶液を導入する。溶液流量計〇を確認しながら、減圧ゲージ Dと減 圧コック Bで圧力調整を行い、加圧ゲージ Lと加圧コック Mで圧力調整を行い、ガス 流量計 14のニードルバノレブをガス流量調整つまみ 13を回して開放し、 目標ガス供 給量に調整する。溶液の流量とガス供給量の設定が終了すれば、溶液の配水使用 の断続に合わせてセンサーが働き装置が自動的に作動し、溶液とガスの減圧撹拌、 高速撹拌、加圧撹拌の 3行程を経て、水素ガスでは還元コロイド溶液を提供して自動 的に還元処理を行い、酸素ガスでは酸化コロイド溶液を提供して自動的に酸化処理 を行う。
[0018] 前記、 自動酸化還元処理装置に供給する溶液は、製鋼冷却水、コンクリート水、鲭 落用水、防鲭用水、各種洗浄用水、食品加工用水、飲料水、水道水、地下水、輸出 等長期運搬保存用水、ダム用水下水処理水、河川水、湖沼水、海洋水、等を挙げる こと力 Sできる。
[0019] 還元処理コロイド溶液では、鉄鋼铸造等の冷却水として用いれば、超高温の素材 に対し接触冷却時に酸化を防止し、表面の鉄素材が高品質化することを可能とする
[0020] 還元処理コロイド溶液をコンクリート水として使用すれば、 CaOの酸化条件にあるコ ンクリート成分が急速に還元され、還元条件がコンクリート内に封じ込まれるので、内 部の鉄骨、鉄筋の防鲭ゃ酸化に依る膨張が防止され、コンクリートの寿命を長くする ことを可能としている。
[0021] 還元処理コロイド溶液を鲭落用水、防鲭用水、各種洗浄用水、として使用すれば、 各種金属製品の金属の鯖の成分が、急速に還元され、例えば、鉄製品では、 Fe+3 力 SFe+2に急速に還元されて溶解し、鯖の除去が著しく簡便になる等鲭除去ゃ防鲭 のコスト削減を可能とする。
[0022] 還元処理コロイド溶液を食品加工用水として使用すれば、食品素材の酸化を防止 し、特にビタミン、酵素、その他機能性成分、脂質の酸化による破壊を防止し、成分 の歩留まりを高めて高品質化する他、還元条件を維持する処置に用いれば長期保 蔵性の機能を高める。
[0023] 還元処理コロイド溶液を飲料水、水道水、地下水、輸出等長期運搬保存用水に適 用すれば、水を腐らせる好気性微生物の繁殖を抑え、水溶性の有機物を除去すれ ば、嫌気性微生物の繁殖も防止するので、水が腐る等の変敗を起さず、長期保蔵が 可能となり、今後起ると考えられる地球的な水不足に対し、貯蔵、運搬等の長期的な 水の需要に対応することが可能となる。
[0024] 酸化処理コロイド溶液をダム用水下水処理水、河) 11水、湖沼水、海洋水等に適用 すれば、水底の汚泥に由来する還元水域の解消や消毒、酸素欠乏水域の改善等ス ケールの大きな環境改善に大きく貢献することができる。
実施例 1
[0025] 上記装置を用いて水素コロイド溶液による還元処理、酸素コロイド溶液による酸化 処理の実施例について述べる。
[0026] 前述した第 1図一第 8図に示す構造の酸化'還元処理装置を用いて、水素コロイド 溶液による還元処理が水素飽和水とどの様な相違を有するか比較試験を行った。
[0027] 試験に用いた還元処理装置の規模は、水流ポンプには渦流ミニポンプ (外径 150 mm、回転子半径 50mm、吸水口の内径 5mm、吐出口の内径 5mm)を使用した。 動力モーターは(外径 130mm、 100V、 5A、 0. lkW、 1400rpm)を使用した。減 圧撹拌装置が内径 4cmで長さ 30cmの透明ポリアクリル管で、渦流発生装置は 5段 階の螺旋方向に流動させる邪魔板設置方式で、圧力は減圧バルブによる減圧調整 方式である。加圧撹拌装置は内径 4cmで長さ 30cmの透明ポリアクリル管で、渦流発 生装置は 5段階の螺旋方向に流動させる邪魔板設置方式で、圧力は加圧バルブに よる加圧調整方式である。
[0028] <試験の実施条件 >
試験の実施方法は、
1 ビーカー内でスターラーで撹拌しながら直接バブリングよつてゆっくり水素ガスを 通気し、飽和状態までガスを溶解させる常圧による溶解方法。 2 水素ガスをタンク内で低圧加圧条件で高速撹拌し、飽和状態まで溶解させる従来 の酸化還元制御装置による溶解方法。
3 減圧撹拌、高速撹拌、加圧撹拌の行程を有し、水素ガスの気液コロイドを生産す る本酸化還元処理装置による方法。
の 3方法で水素ボンベによる水素ガスの溶解による処理時の Ehの経時的変化を比 較した。
[0029] 調查は Ehメーターにより処理時の Ehの経時的変化を測定し、その結果を表 1に示 した。
[0030] [表 1]
Figure imgf000011_0001
水道水の水素ガスによる還元処理と酸化還元電位の変化(単位は mV)
[0031] 前記表 1から明らかなように、通常のバブリングでは最高の数値力 S— 300mV程度の レベルまでし力、還元されなレ、が、酸化還元制御装置では、最高の数値力 S— 600mV 程度のレベルまで還元される。
これを減圧撹拌、高速撹拌、加圧撹拌の行程を有する本酸化還元処理装置を用 いて処理すれば、最高の数値カ 700mV程度のレベルまで還元され、強いレベル までの到達時間も著しく短縮され瞬時でも高い還元力を付与することができる。 この作用は単に溶存水素ガスの還元作用によって強い還元作用をもつのではなく 、微細な水素ガスがコロイド状に分散し、強い還元作用を示すことによると考えられる 。従って、従来の酸化還元制御装置でも一部同様の機能が起っていたものと考えら れる力 本酸化還元処理装置の程度まではコロイド化ができなかった。
[0032] <試験の実施条件 >
試験の実施方法は、先述の試験において、 1通常のパブリング法、 2従来の酸化還 元制御装置、 3本酸化還元処理装置によって、還元処理した後上面を開放し、空気 と接触させた 14のビーカーに入れ、水の酸化還元電位 (Eh)の経時的変化を調査し [0033] 調査は Ehメーターにより処理後刻々と変わる Ehの経時的な変化を測定し、その結 果を表 2に示した。
[0034] [表 2]
Figure imgf000012_0001
水道水の水素ガスによる還元処理後の酸化還元電位の変化(単位は mV)
[0035] 前記表 2から明らかなように、通常のバブリング法では数値カ 300mV程度であつ たものが 24時間で + 120mVのレベルまで上昇した。従来の酸化還元制御装置で は最高の数値カ 600mV程度力 — 50mVのレベルまで上昇した。本酸化還元処 理装置を用いて処理すれば、 _700mV程度力 480mVのレベルまで上昇した。 この上昇速度の相違は、通常のパブリング法では溶存水素が極めて早く開放した 容器上面から溶け込んでくる空気中の酸素と結合あるいは置換して Ehが早く上昇す るのに対し、本酸化還元処理装置では処理した水素ガスが微細なコロイド状に分散 し、コロイド状の水素が新たな還元作用の給源となって容器上面から溶け込んでくる 空気中酸素の影響を抑える働きがあることに起因すると考えられる。
従来の酸化還元制御装置でも部分的には本酸化還元処理装置と同様の機能を有 するが機能が不十分であるため中間的な速度で上昇したものと考えられる。
実施例 2
[0036] 前述した本酸化還元処理装置を用いて、酸素コロイド溶液による酸化処理が酸素 飽和水とどの様な相違を有するか比較試験を行った。
[0037] 試験に用いた酸化処理装置の規模は、前述の還元処理の実施規模と同様である。
[0038] <試験の実施条件 >
試験の実施方法は、
1 ビーカー内でスターラーで撹拌しながら直接バブリングよつてゆっくり酸素ガスを 通気し、飽和状態までガスを溶解させる常圧による溶解方法。
2 酸素ガスをタンク内で低圧加圧で高速撹拌し、飽和状態まで溶解させる従来の酸 化還元制御装置による溶解方法。
3 減圧撹拌、高速撹拌、加圧撹拌の行程を有し、酸素ガスの気液コロイドを生産す る本酸化還元処理装置による方法。
の 3方法で酸素ボンベによる酸素ガスの溶解による処理時の Ehの経時的変化を比 較した。
[0039] 調查は Ehメーターにより処理時の Ehの経時的変化を測定し、その結果を表 3に示 した。
[0040] [表 3]
Figure imgf000013_0001
水道水の酸素ガスによる酸化処理と酸化還元電位の変化(単位は mV)
[0041] 前記表 3から明らかなように、通常のパブリングでは最高の数値が + 540mV程度 のレベルまでしか酸化されないが、従来の酸化還元制御装置では最高の数値が + 6 10mV程度のレベルまで酸化される。
これを減圧撹拌、高速撹拌、加圧撹拌の行程を有する本酸化還元処理装置を用 いて処理すれば、最高の数値が + 640mV程度のレベルまで酸化され、強いレベル までの到達時間も著しく短縮され、瞬時でも高い酸化力を付与することができる。 この作用は単に溶存酸素ガスの酸化作用によって強い酸化作用をもつのではなく
、微細な水素ガスがコロイド状に分散し、強い酸化作用を示すことによると考えられる
。従って従来の酸化還元制御装置でも一部同様の機能が起っていたものと考えられ る力 S、本酸化還元処理装置の程度まではコロイド化されな力、つたと云える。
[0042] <試験の実施条件 >
試験の実施方法は、先述の試験において、 1通常のパブリング法、 2従来の酸化還 元制御装置、 3本酸化還元処理装置によって、還元処理した後上面を開放し、空気 と接触させた 14のビーカーに入れ、水の酸化還元電位 (Eh)の経時的変化を調査し た。
[0043] 調査は Ehメーターにより処理後刻々と変わる Ehの経時的な変化を測定し、その結 果を表 4に示した。
[0044] [表 4]
Figure imgf000014_0001
水道水の水素ガスによる酸化処理後の酸化還元電位の変化(単位は mV)
[0045] 前記表 4から明らかなように、通常のバブリング法では数値が + 540mV程度であつ たものが 24時間で + 478mVのレベルまで低下した。従来の酸化還元制御装置で は最高の数値が 610mV程度から + 570mVのレベルまで低下した。本酸化還元処 理装置を用いて処理すれば、 640mV程度から 620mVのレベルまで低下した。 この低下速度の相違は、通常のバブリング法では溶存水素が極めて早く開放した 容器上面から溶け込んでくる空気中と置換して窒素、炭酸ガスが溶解し酸素が減少 して Ehが早く低下するのに対し、本酸化還元処理装置では処理した水素ガスが微 細な.コロイド状に分散してレ、るのでコロイド状の水素が新たな酸素供給の給源とな つて容器上面から溶け込んでくる空気の影響を抑える働きがあることに起因すると考 えられる。
従来の酸化還元制御装置でも部分的には本酸化還元処理装置と同様の機能を有 するが機能が不十分であるため中間的な速度で低下したものと考えられる。
産業上の利用可能性
[0046] 以上説明したように本発明では、酸素ガス、水素ガスそれぞれを水及び各種の溶 液或いは液体に対し、減圧撹拌の行程、高速撹拌の行程、加圧撹拌の行程を経て、 微細な泡として気液コロイドまで安定化させ、強い酸化力或いは強い還元力を付与 し、安定で安全な酸化剤、還元剤として各種の産業へ提供するものである。
[0047] 還元処理技術は、鉄鋼金属類の防鲭、鲭落し等で効果が高ぐ自動車産業、造船 産業、精密機械、铸物工業、製鉄製鋼産業等の品質向上、コスト削減に大きく貢献 すること力 Sできる。
また、強力な還元作用はコンクリート工業において優れた効果を示す。シリコンチッ プ等の洗浄に当たっては超音波技術と併用して新しい洗浄剤として役立ち環境汚染 もなぐ生産コストを著しく削減することができる。
酸化処理技術は、有明海、宍道湖、琵琶湖、霞ケ浦の浄化事業等巨大なプロジェ 外に対し、その強レ、酸化力により環境改善に大きく役立つ。
また、養殖漁業では魚の病気の発生を防止するなど環境面から、人体に無害な成 分で改善することを可能としてレ、る。

Claims

請求の範囲
[1] 流動する液体へ水素ガスをフィルターで濾過後供給し、溶液の気体溶解度以上に
、微細気泡として過剰に懸濁させ、気液混在のコロイド溶液として強力な還元力を創 出する目的で、減圧槽内においてガスノズノレにより水素ガスを噴射させ、減圧撹拌槽 では槽内に設置した固定渦流発生撹拌子によって、回転する渦流に基づく減圧撹 拌と高速回転ポンプ内における高速撹拌を組合せて、減圧下の撹拌でガス気泡の 破砕を行い、水素ガスの微細気泡を形成し、次に挿入した加圧撹拌槽では槽内に設 置した固定渦流発生撹拌子によって、高速回転ポンプから送られてきた微細気泡を 瞬間的に押し潰し、加圧撹拌して気泡をさらに細力べ圧縮微細化しながら均質化し、 溶液を気液混合の過飽和状態に導き溶解させ、気液共存のコロイドを形成し、溶液 の強力な還元作用を創出することを可能にする減圧撹拌、高速撹拌、加圧撹拌の三 段階の撹拌溶解過程を有することを特徴とする溶液の自動化酸化還元処理システム
[2] 流動する液体へ酸素ガスをフィルターで濾過浄化後供給し、溶液の気体溶解度以 上に、微細気泡として過剰に懸濁させ、気液混在のコロイド溶液として強力な酸化力 を創出する目的で、減圧槽内においてガスノズノレにより酸素ガスを噴射させ、減圧撹 拌槽では槽内に設置した固定渦流発生撹拌子によって、回転する渦流に基づく減 圧撹拌と高速回転ポンプ内における高速撹拌を組合せて、減圧下の撹拌でガス気 泡の破砕を行い、酸素ガスの微細気泡を形成し、次に挿入した加圧撹拌槽では槽内 に設置した固定渦流発生撹拌子によって、高速回転ポンプから送られてきた微細気 泡を瞬間的に押し潰し、加圧撹拌して気泡をさらに細かく圧縮微細化しながら均質 化し、溶液を気液混合の過飽和状態に導き溶解させ、気液共存のコロイドを形成し、 溶液の強力な酸化作用を創出することを可能にする減圧撹拌、高速撹拌、加圧撹拌 の三段階の撹拌溶解過程を有することを特徴とする溶液の自動酸化還元処理システ ム。
[3] 請求の範囲第 1項の還元処理にぉレ、て、水素ガスの供給源が水素ガスボンベ、水 の電気分解による水素ガス及び稀酸と金属を化学反応させて生ずる水素ガス等のい ずれの水素供給装置からの水素をも使用する自動酸化還元処理システム。
[4] 請求の範囲第 2項の酸化処理にぉレ、て、酸素ガスの供給源が酸素ガスボンベ、水 の電気分解による酸素ガス及びオゾン発生装置等から供給される酸素のいずれの酸 素供給装置からの酸素をも使用する自動酸化還元処理システム。
[5] 請求の範囲第 1項の還元処理、請求の範囲第 2項の酸化処理において流動する 液体が植物油、鉱物油である自動酸化還元処理システム。
[6] 請求の範囲第 1項及び第 2項の酸化還元処理を実施する装置として、水流ポンプ の吸引力と加圧力を利用し、請求の範囲第 3項に示した水素供給装置及び請求の 範囲第 4項に示した酸素供給装置から供給するガス供給源を有し、ガス圧調整グー ジ、ガス濾過フィルター、ガス流量計から成り、これでガス供給圧力を一定に調整後、 液体流量計の値をガス流量計に付属するニードルバルブで目標の酸化力、還元力 にガス流量を設定し調整するガス供給系統と装置内へ溶液を導入し、溶液の流入量 を制御し、処理槽内を減圧する流入量制御減圧バルブ、処理槽の減圧メーター及び 流入する溶液の流量メーターから成る液体供給系統の装置と連結したガス供給口を 備えた減圧撹拌槽の行程と高速回転の渦巻きポンプによる高速撹拌装置の行程と 溶液の装置外への排出量を抑制する加圧バルブ及び槽内圧力加圧メーターを備え た加圧撹拌槽の行程と、これ等各行程を順次連結し、供給液体が通過する溶液の処 理系統で、溶液の処理系統とガス供給系統の二つの系統を連絡し、液体の流動の 断続に伴うガス供給の断続を行うため、液体の流量計の値で作動するリレー装置ま たはシークェンサ一装置でガス供給の切り換え装置とを連動させ、液体の流動が起 れば切り換え装置が作動して減圧撹拌槽のガス供給口が開き、ガスが溶液へ供給さ れ、液体の流動が停止すれば切り換え装置が作動して減圧撹拌槽のガス供給口を 閉じ、ガスの供給が停止し、減圧撹拌、高速撹拌、加圧撹拌の三段階の撹拌溶解過 程を経て、水素ガスを供給すれば強力な還元力を有する還元コロイドに、酸素ガスを 供給すれば強力な酸化力を有する酸化コロイドにそれぞれ変換する機能を有する自 動酸化還元処理システム。
PCT/JP2004/005660 2003-04-28 2004-04-28 水素ガス及び酸素ガスの減圧・加圧溶解方式のコロイド溶液による自動酸化還元処理システム WO2004096419A2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/554,551 US20070034556A1 (en) 2003-04-28 2004-04-28 Automatic oxidization-reduction treatment system using a colloidal solution of hydrogen gas or oxygen gas produced under a reduced pressure and a high pressure
EP04729980A EP1623753A4 (en) 2003-04-28 2004-04-28 HYDROGEN OR OXYGEN DISSOLVING AUTOMATIC OXIDATION-REDUCTION TREATMENT SYSTEM FOR PRESSURIZED COLLOIDAL SOLUTION UNDER PRESSURE
CNB2004800114454A CN100339316C (zh) 2003-04-28 2004-04-28 氢气和氧气的减压、加压溶解方式的胶体溶液的自动氧化还原处理系统
KR1020057020161A KR100649449B1 (ko) 2003-04-28 2004-04-28 수소 가스 또는 산소 가스의 감압·가압 용해 방식의콜로이드 용액에 의한 자동 산화 환원 처리 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-158698 2003-04-28
JP2003158698A JP3843361B2 (ja) 2003-04-28 2003-04-28 溶液の還元処理方法及び酸化処理方法並びに自動酸化還元処理装置

Publications (2)

Publication Number Publication Date
WO2004096419A2 true WO2004096419A2 (ja) 2004-11-11
WO2004096419A3 WO2004096419A3 (ja) 2005-02-24

Family

ID=33410871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005660 WO2004096419A2 (ja) 2003-04-28 2004-04-28 水素ガス及び酸素ガスの減圧・加圧溶解方式のコロイド溶液による自動酸化還元処理システム

Country Status (6)

Country Link
US (1) US20070034556A1 (ja)
EP (1) EP1623753A4 (ja)
JP (1) JP3843361B2 (ja)
KR (1) KR100649449B1 (ja)
CN (1) CN100339316C (ja)
WO (1) WO2004096419A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180208490A1 (en) * 2017-01-25 2018-07-26 Ping-jui Han Energy hydrogen water dissolving device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3969444B2 (ja) * 2005-09-29 2007-09-05 トヨタ自動車株式会社 貴金属触媒の製造方法
WO2008029525A1 (fr) * 2006-09-05 2008-03-13 Ohta, Shigeo Procédé et appareillage pour la production en masse de liquide contenant du gaz dissous dans celui-ci par un procédé d'écoulement sous pression constante
DE202007004912U1 (de) * 2007-04-03 2007-07-26 Blum, Holger Vorrichtung zur Behandlung von Ballastwasser mit wässriger Acroleinlösung
JP2009044988A (ja) * 2007-08-18 2009-03-05 Yukinori Itokazu 酒類の改質方法、改質装置及びこれによって得られる酒類
JP4972754B2 (ja) * 2008-10-10 2012-07-11 有限会社情報科学研究所 耐震貯水堤防とその設置工法
JP5475273B2 (ja) * 2008-12-15 2014-04-16 株式会社Hic 微小気泡生成装置、水素水製造装置及び水素水製造方法
JP5566175B2 (ja) * 2010-04-27 2014-08-06 株式会社オプトクリエーション ナノバブル・フコイダン水製造方法と製造システム
JP2016104474A (ja) 2014-08-22 2016-06-09 有限会社情報科学研究所 共鳴発泡と真空キャビテーションによるウルトラファインバブル製造方法及びウルトラファインバブル水製造装置。
JP6043900B1 (ja) * 2016-02-12 2016-12-14 有限会社情報科学研究所 内燃機関エンジンによるウルトラファインバブルアクアジェット装置。
KR101740409B1 (ko) 2016-04-22 2017-05-26 충남대학교산학협력단 주석 이온이 도핑된 아연 산화물 입자 및 이의 연속 제조 방법
KR101999164B1 (ko) * 2017-04-18 2019-07-11 주식회사 인응 응용 가스를 함유한 나노 버블수 발생장치
CN110657417A (zh) * 2019-10-12 2020-01-07 象山冰川智能装备有限公司 一种用于沸腾锅炉内的增氧设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916527A (ja) * 1982-07-16 1984-01-27 Kotobuki:Kk 高密度微細気泡発生方法
JP2890342B2 (ja) * 1994-08-23 1999-05-10 熊本県 食品等の還元性水素水とその製造方法並びに製造装置
US5904851A (en) * 1998-01-19 1999-05-18 Life International Products, Inc. Oxygenating apparatus, method for oxygenating liquid therewith, and applications thereof
JP3829170B2 (ja) * 2001-05-01 2006-10-04 有限会社情報科学研究所 ガス溶存液状媒体の生産システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP1623753A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180208490A1 (en) * 2017-01-25 2018-07-26 Ping-jui Han Energy hydrogen water dissolving device

Also Published As

Publication number Publication date
JP2004344859A (ja) 2004-12-09
EP1623753A4 (en) 2006-11-29
WO2004096419A3 (ja) 2005-02-24
CN1780796A (zh) 2006-05-31
CN100339316C (zh) 2007-09-26
KR20050114729A (ko) 2005-12-06
KR100649449B1 (ko) 2006-11-28
EP1623753A2 (en) 2006-02-08
JP3843361B2 (ja) 2006-11-08
US20070034556A1 (en) 2007-02-15

Similar Documents

Publication Publication Date Title
ES2392598T3 (es) Proceso para el tratamiento de agua utilizando un dispositivo de alta velocidad de cizallamiento
JP5261124B2 (ja) ナノバブル含有液体製造装置及びナノバブル含有液体製造方法
KR100843970B1 (ko) 마이크로 버블 발생장치
JP5097024B2 (ja) 水処理装置および水処理方法
WO2004096419A2 (ja) 水素ガス及び酸素ガスの減圧・加圧溶解方式のコロイド溶液による自動酸化還元処理システム
CN103130356B (zh) 废液处理装置和废液处理方法
US20120211426A1 (en) Method and system for treating a contaminated fluid
JP5128357B2 (ja) 水処理装置および水処理方法
CN102107928A (zh) 功率超声空化降解高浓度有机废水预处理技术及设备
US20100243580A1 (en) Hyperoxidation advanced oxidative treatment of water
WO1996014884A8 (es) Procedimiento, formula e instalacion para el tratamiento y esterilizacion de los residuos biologicos, solidos, liquidos, metalicos ferricos, metalicos no ferricos, toxicos y peligrosos hospitalarios
JP5037479B2 (ja) 浄化処理装置及び浄化処理方法
CN201842670U (zh) 流动型超声空化降解高浓度印染污水反应器
JP2008178792A (ja) 生物反応方法および生物反応装置
JP2009028666A (ja) ナノバブル含有磁気活水製造装置およびナノバブル含有磁気活水製造方法
JP4847424B2 (ja) 水処理装置
JP2001113150A (ja) 加圧型気液混合装置、及びこれを用いた廃液処理装置
JP2023024187A (ja) 余剰汚泥の減容化方法及び余剰汚泥の減容化システム
JP2004050067A (ja) 汚泥の減容化システム
KR20210035401A (ko) 나노버블발생장치

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057020161

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048114454

Country of ref document: CN

Ref document number: 2789/CHENP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2004729980

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057020161

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004729980

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007034556

Country of ref document: US

Ref document number: 10554551

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10554551

Country of ref document: US