WO2004094377A1 - 光学活性なジヒドロキシヘプテン酸エステルの分離方法 - Google Patents

光学活性なジヒドロキシヘプテン酸エステルの分離方法 Download PDF

Info

Publication number
WO2004094377A1
WO2004094377A1 PCT/JP2004/005924 JP2004005924W WO2004094377A1 WO 2004094377 A1 WO2004094377 A1 WO 2004094377A1 JP 2004005924 W JP2004005924 W JP 2004005924W WO 2004094377 A1 WO2004094377 A1 WO 2004094377A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polysaccharide derivative
dihydroxy
separation
polysaccharide
Prior art date
Application number
PCT/JP2004/005924
Other languages
English (en)
French (fr)
Inventor
Keiko Kudo
Kozo Tachibana
Koichi Murazumi
Original Assignee
Daicel Chemical Industries Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd. filed Critical Daicel Chemical Industries Ltd.
Priority to JP2005505808A priority Critical patent/JPWO2004094377A1/ja
Priority to EP04729271A priority patent/EP1623976A4/en
Publication of WO2004094377A1 publication Critical patent/WO2004094377A1/ja
Priority to US11/254,856 priority patent/US7459579B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D209/24Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with an alkyl or cycloalkyl radical attached to the ring nitrogen atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/38Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
    • B01D15/3833Chiral chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/328Polymers on the carrier being further modified
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B57/00Separation of optically-active compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/12Radicals substituted by oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • B01D15/1814Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns recycling of the fraction to be distributed
    • B01D15/1821Simulated moving beds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • the present invention relates to a method for separating an optically active dihydroxyheptenoic acid ester, and more particularly, to a method for separating an optically active dihydroxyheptenoic acid ester useful for prevention and treatment of hyperlipidemia, arteriosclerosis, and the like.
  • Optical isomers have the same structural formula, but are mirror images of one another because the atoms are arranged differently in space.
  • pharmaceuticals containing optical isomers it is well known that there is a marked difference in efficacy and toxicity. For this reason, the Ministry of Health, Labor and Welfare's drug production guidelines state that "if the drug is racemic, it is desirable to consider the absorption, distribution, metabolism, and excretion kinetics of each isomer.” It is described.
  • the dose can be reduced, thereby improving the drug efficacy per unit and reducing side effects. Therefore, in the fields of pharmaceuticals, biochemistry-related industries, and the like, preparation of an optically active substance having high optical purity has become a very important issue.
  • a specific dihydroxyheptenoate esterol having an optical isomer is very effective for prevention and treatment of hyperlipidemia, arteriosclerosis, and the like.
  • a method for producing such a dihydroxyheptenoic acid ester for example, a method for industrially obtaining an optically active dihydroxyheptenoic acid ester using a filler for optical resolution is known (for example, see International Publication 95). / 2 3 12 5 pamphlet and international publication 0 2/3 0 9 3 pamphlet).
  • An object of the present invention is to provide a method capable of more clearly separating an optically active dihydroxyheptenoic acid ester. Disclosure of the invention
  • the present invention provides, as a means for solving the above-mentioned problems, a carrier containing a mixture of optical isomers of dihydroxyheptenoic acid ester represented by the following general formula (1):
  • the polysaccharide derivative has one or two or more of the substituents represented by the following general formula (2) and the general formula (3) in which part or all of the hydrogen atoms of the hydroxyl group and the amino group of the polysaccharide are substituted.
  • a method is provided that has been replaced above.
  • Ar represents a carbocyclic aromatic group or a heteroaromatic group which may have at least one of a substituent and a condensed ring, and R, has 1 to 20 carbon atoms.
  • R represents a linear or branched alkyl group, a phenyl group, or an aralkyl group having 7 to 18 carbon atoms.
  • R 2 represents a linear or branched alkyl group having a prime number of 2 to 8.
  • R 2 is a linear or branched alkyl group having 2 to 8 carbon atoms.
  • FIG. 1 is a diagram schematically showing the configuration of an example of a simulated moving floor device used in the present invention.
  • FIG. 2 is a diagram schematically showing the configuration of another example of the simulated moving bed device used in the present invention.
  • Figure 3 shows the results of using [R *, S * — (E)] — ( ⁇ ) — [3 -— (4-furenolelophenyl) 1—1 (1-methylethyl) —1H— This is the chromatogram from the separation of indole-2-yl] -3,5-dihydroxy-6-methyl heptenoate.
  • Figure 4 shows the results obtained using the column of Example 2 using [R *, S * — (E)] — ( ⁇ ) — [3— (4—funolelofeninole). This is a chromatogram from the separation of 1H- ⁇ ndanole-2-yl] -13,5-dihydroxy-16-methyl heptenoate.
  • FIG. 5 shows that [R *, S * — (E)] 1 ( ⁇ ) — [3— (4—funolelofe-nore) 1 1 1 (1-methinolate etinole) 1 using the column of Example 3 1H-Indonele_2-yl] -3,5-dihydroxy-6-methyl heptenoate.
  • Fig. 6 shows the results of [R *, S * — (E)] one ( ⁇ ) — [3 -— (4-phnorelofenenole)-1-(1-methinoleetino) using the column of Example 4.
  • FIG. 7 shows that [R *, S * — (E)] 1 (Sat) 1 [3— (4—fluorophenyl) -1— (1—methylethyl) 1 1H— using the column of Example 5 Indore 2 [1] This is a chromatogram obtained by separating 1,3,5-dihydroxy-6-methyl heptenoate.
  • Figure 8 shows the results of using [R *, S *-(E)] — ( ⁇ ) — [3 -— (4-phnoreolopheninole)-1-(1-methinoletinole) using the column of Comparative Example 1. )-1H-indole-12-yl] -3,5-dihydroxy-6-methyl heptenoate. ⁇
  • Figure 9 shows that [R *, S * _ (E)] — ( ⁇ ) — [3 -— (4-fluorophenyl) 1 1 1 (1-methylethyl) 1 1 H—indole 2 This is a chromatographic separation of 1,3,5-dihydroxy-6-methyl heptenoate.
  • FIG. 10 shows that [R *, S * — (E)] 1 (Sat) 1 [3— (4-fluorophenyl) 1 1— (1-methylethyl) 1 1H—indole 2 using the column of Example 1 This is a chromatographic separation of -3,5-dihydroxy-6-heptenoate.
  • FIG. 11 shows the results of [R *, S * — (E)] — ( ⁇ ) _ [3 -— (4-funorolelopheninole)-1- (1-methinoleetinole) using the column of Example 2. ) 1 1H—Indone 1
  • FIG. 12 shows that [R *, S * — (E)] — ( ⁇ ) — [3 -— (4-monofluorophenyl) -111- (1-methylethynole)-1 H—indole— This is the chromatographic separation of ethyl 2-ethyl-3,5-dihydroxy-1-heptenate.
  • FIG. 13 shows the results obtained by using the column of Example 4 as [R *, S * — (E)] — ( ⁇ ) — [3 -— (4-funorolelopheninole) -1- (1-methinoleethinole). This is a chromatographic separation of 1H-indomele 2-yl] -3,5-dihydroxy-6-ethyl heptenate.
  • FIG. 14 shows the results obtained by using the column of Example 5 as [R *, S *-(E)] — ( ⁇ ) — [3 -— (4-funoreo mouth).
  • Figure 15 shows that [R *, S * — (E)] — ( ⁇ ) — [3— (4-one-year-old rophenyl) -1- (1-methylethyl) 1-1H— Indole 1 2 1] 1, 3,5-Dihydroxy_ 6 This is a chromatographic separation of ethyl pentenoate.
  • Figure 16 shows the results of [R *, S * — (E)] — (Sat) 1 [3- (4-Funoleo Mouth Hue-Nore) — 1— (1-Methinoreetinore) 1H— This is a chromatographic separation of 1,3-indole] -ethyl 3,3-dihydroxy-6-heptenoate.
  • an optically active dihydroxyheptenoic acid is obtained from a solution containing a mixture of optical isomers of the dihydroxyheptenoic acid ester represented by the general formula (1) by liquid chromatography using a filler. Separate the ester.
  • a filler composed of a carrier and a polysaccharide derivative carried on the carrier is used.
  • a part or all of the hydrogen atoms of a hydroxyl group and a diamino group of the polysaccharide may be one of a substituent represented by the general formula (2) and a substituent represented by the general formula (3) or It is substituted with two or more types.
  • the polysaccharide derivative is obtained, for example, by a reaction between a benzoic acid having a linear or branched alkyl group having 2 to 8 carbon atoms and a derivative thereof, and phenyl isocyanate having the alkyl group, and a hydroxyl group of the polysaccharide. It can be synthesized according to a conventional method.
  • benzoic acid derivative examples include chlorides of benzoic acid, acid anhydrides of benzoic acid, esters of benzoic acid, and the like.
  • the benzoic acid, its derivative, and the phenyl isocyanate may be commercially available products, or may be synthesized according to a conventional method.
  • the position of the alkyl group in the phenyl group of the polysaccharide derivative is not particularly limited, it is preferable that the alkyl group is bonded to the carbon atom at the 4-position of the phenyl group. It is preferable for enhancing the effect of separating one optical isomer.
  • the type of the alkyl group is not particularly limited as long as it has 2 to 8 carbon atoms. An alkyl group having 2 to 4 carbon atoms may improve the effect of separating the one optical isomer. Is preferred. Examples of such an alkyl group include an ethyl group, an isopropyl group, an n-butyl group, an isobutyl group and a sec-butyl group. Preferably, they are an ethyl group, an isopropyl group, and an n-butynole group.
  • the polysaccharide is not particularly limited as long as it is optically active irrespective of natural polysaccharide, natural product-modified polysaccharide, synthetic polysaccharide, and oligosaccharide.
  • polysaccharide examples include ⁇ -1,4-glucan (amylose, starch, glycogen), ⁇ -1,4-glucan (cellose), ⁇ -1,6-glucan (dextran), and J3-1. , 3-glucan (curdlan, disophyllan, etc.), HI 1,3 -Gnore force,] 3-1,2-Gnore force (CrownGall polysaccharide), a-1,6-mannan, / 3 — 1,4-1, mannan,] 3-1,2-fructan (inulin), ⁇ -2,6-fructan (lepan), ⁇ -1,4-xylan, ⁇ -1,3-xylan; Examples thereof include 4-chitosan, ⁇ -1,4-monoacetylacetolechitosan (chitin), ⁇ -1,3,6-guanolecan (mutane), punorelane, agarose, and anoregic acid.
  • cellulose, amylose, ⁇ -1,4-xylan, ⁇ -1,4-chitosan, chitin, ⁇ -1,4-mannan, inulin, curdlan, etc., from which high-purity polysaccharides can be easily obtained are preferred.
  • cellulose and amylose are preferred.
  • the number average polymerization degree of the polysaccharide (the average number of monosaccharide units such as pyranose and furanose contained in one molecule) is 5 or more, preferably 10 or more.
  • oligosaccharide examples include maltose, maltotetraose, maltobentose, manoletohexaose, manoletoheptaose, isomanoletose, enoleose, palatinose, maltitol, maltotriitol, maltotetritole, isomaltolite.
  • ⁇ -cyclodextrin, ⁇ -cyclodextrin, V-cyclodextrin and the like can be mentioned.
  • the degree of substitution of the hydrogen atoms by the substituents represented by the general formulas (2) and (3) is usually from 10 to 100%, preferably from 30 to 100%.
  • L 100%, particularly preferably 80% to 100%. It is preferable that the degree of substitution be in the above range for enhancing the effect of separating the one optical isomer.
  • the degree of substitution can be adjusted, for example, by the equivalent of the benzoic acid and its derivative or the above-mentioned polyisocyanate at the time of the reaction to the hydroxyl group and the amino group of the polysaccharide.
  • the degree of substitution can be determined, for example, by examining changes in elements such as carbon, hydrogen and nitrogen before and after the introduction of a substituent by elemental analysis.
  • the form of bonding of the substituent to the polysaccharide in the polysaccharide derivative is not particularly limited.
  • the polysaccharide derivative may be a polysaccharide derivative having the same substituent bonded to the polysaccharide, or a polysaccharide derivative having different types of substituents bonded to the polysaccharide.
  • the distribution of the substituents with respect to the polysaccharide may be uniform or may be uneven.
  • the number of the substituents bonded to the monosaccharide unit may be the same in all the monosaccharide units, or may be different.
  • the position of the substituent bonded to the monosaccharide unit may be the position of a specific hydroxyl group or amino group in the monosaccharide unit, or may not be particularly regular.
  • the carrier used in the present invention is not particularly limited, and a carrier usually used as a filler to be packed in a column is used.
  • a carrier for example, Organic carriers, porous inorganic carriers, and porous organic-inorganic hybrid carriers.
  • it is a porous inorganic carrier.
  • Suitable porous organic carriers include polymeric particles selected from the group consisting of polystyrene, polyacrylamide, polyacrylate, and the like.
  • Suitable examples of the porous inorganic carrier include silica, alumina, magnesia, glass, kaolin, titanium oxide, silicate, and hydroxyapatite.
  • Suitable as a porous organic-inorganic hybrid carrier include silica, alumina, Substances containing an alkyl group, a fuel group, a butyl group, a styryl group, and the like in a molecular skeleton such as magnesia and titanium oxide are exemplified.
  • a particularly preferred carrier is silica gel.
  • the silica gel preferably has a particle size of 100 nm to 10 mm, more preferably 1 ⁇ m to 300 ⁇ , and still more preferably 1 to 75 im. .
  • the average pore size of the pores on the surface of the silica gel is preferably from 111 m to 100 ⁇ m, and 5 nix! More preferably, it is ⁇ 500 nm.
  • the silica gel has been subjected to a surface treatment to eliminate the effects of residual silanol, but it may not be subjected to any surface treatment.
  • the amount of the polysaccharide derivative supported on the carrier is usually 1 to 80% by mass, preferably 5 to 60% by mass, and particularly preferably 20 to 40% by mass based on the filler. . If the supported amount is less than 1% by mass, the optical resolution may not be effectively performed, and if it exceeds 60% by mass, the separation efficiency is lowered due to the decrease in the number of stages, which is not preferable.
  • the supported amount is a ratio between the mass of the filler and the mass of the polysaccharide derivative in the filler.
  • the filler used in the present invention is obtained by supporting the polysaccharide derivative on the carrier.
  • the method for supporting the polysaccharide derivative on a carrier can be performed by a method generally used for preparing a packing material for chromatography. Examples of such a method include a method in which the polysaccharide derivative is directly chemically bonded to the carrier, a method in which a solution containing the polysaccharide derivative is applied to the carrier, and the solvent is distilled off.
  • the solvent used for dissolving the polysaccharide derivative may be any of the commonly used organic solvents as long as the solvent can dissolve the polysaccharide derivative.
  • a chemical bond between the carrier and the polysaccharide derivative on the carrier, a chemical bond between the polysaccharide derivatives on the carrier, a chemical bond using a third component interposed between the carrier and the polysaccharide derivative, a polysaccharide on the carrier A further chemical bond is formed by irradiation of the derivative with light, irradiation with V-rays or the like, irradiation with electromagnetic waves such as microwaves, or reaction with the generation of radicals by a radical initiator, etc., on the polysaccharide derivative carrier. Further solidity in Stabilization may be attempted.
  • optically active esterol dihydroxyheptenoate separated by the filler is represented by the general formula (1).
  • the alkyl group preferably has 1 to 20 carbon atoms, more preferably has 1 to 8 carbon atoms, and still more preferably has 2 to 5 carbon atoms.
  • the aromatic group of the aralkyl group preferably has 6 to 14 carbon atoms, and may have one or both of a hetero atom and a condensed ring.
  • the alkylene group of the aralkyl group preferably has 1 to 4 carbon atoms, and may be linear or branched.
  • Ar in the general formula (1) is an aromatic group which may have a hetero atom, and includes a condensed polycyclic aromatic group.
  • Ar include a phenyl group, a naphthyl group, an indenyl group, a pyridyl group, a quinolyl group, an indolyl group and the like.
  • the substituent that Ar may have is not particularly limited as long as the effects of the present invention are not impaired.
  • examples of such a substituent include a substituent comprising only a hetero atom such as a nitro group, a substituent containing a hetero atom such as a hydroxyl group and an alkoxyl group, a halogen group such as fluorine and chlorine, and the like. ⁇ ⁇ They may have these substituents, and examples thereof include hydrocarbon groups such as an alkyl group and a phenyl group.
  • dihydroxyheptenoic acid ester examples include [R *, S *-(E)] — ( ⁇ ) — [3- (4-fluorophenyl) —1-1 represented by the following structural formula (4).
  • the mixture of the optical isomers of the dihydroxyheptenoic acid ester is not particularly limited as long as at least one of the optical isomers in the mixture contains the optical isomer separated by the polysaccharide derivative. It is preferable that they are 5R-form and 3R5S-form.
  • the mixture may be a mixture of enantiomers, such as a mixture of a 3S5R form and a 3R5S form, or a mixture of a 3S5R form or a 3R5S form, and the like. It may be a mixture containing diastereomers, such as a mixture with S 5 S form or 3R 5 R form, or a mixture thereof.
  • At least an optical isomer of dihydroxyheptenoic acid ester represented by the general formula (1) is used as the filler as a stationary phase, a supercritical fluid or a general solvent, and a mixed solvent as a mobile phase.
  • the mixed solution is supplied to the stationary phase, and the optical isomer can be separated by column chromatography in which the mobile phase moves the optical isomer in the stationary phase.
  • a solvent such as a mixed solvent that can dissolve the mixture is used.
  • the type and composition of such a solvent are determined according to the type and concentration of the solute.
  • a solvent usually used for liquid chromatography can be used.
  • the solvent used for the mixed solution is preferably a mobile phase in liquid chromatography and a method analogous thereto, that is, an eluent from the viewpoint of facilitating reuse of the eluent.
  • the mixed solution may contain other components as long as the components can be separated from the optical isomer by the column chromatography.
  • the optically active dihydroxyheptenoic acid ester by collecting a solution of one optical isomer separated by ordinary column chromatography and distilling the solvent from the solution. It is.
  • simulated moving bed type mouth chromatography In the case of producing the optically active dihydroxyheptenoic acid ester, it is more preferable to use simulated moving bed type mouth chromatography.
  • a solvent usually used in this method can be used as a mobile phase.
  • the simulated moving bed chromatography comprises a step of supplying an eluent to an endless pipe formed by connecting a plurality of columns packed with the packing material in series, and an eluent in the pipe. Discharging a part of the liquid flowing through the conduit from a position downstream of the supply position of the eluent in the flow direction (hereinafter also referred to as a “first discharge step”); Supplying the mixed solution to a position downstream of a discharge position of the liquid in the flow direction (hereinafter also referred to as a “first discharge position”); a supply position of the mixed solution in the conduit and the elution Discharging a part of the liquid flowing through the conduit from a position between the liquid supply position (hereinafter referred to as a “second discharge port”); The position at which the liquid is discharged in this step is also referred to as a “second discharge position”), and the mixed solution is supplied to the position of the mixed component in the mixed solution in the conduit.
  • the supply position of the elution night, the first discharge position, the supply position of the mixed solution, and the second discharge position are set in the downstream direction of the liquid flow while maintaining the relative positional relationship of these positions.
  • a component in the mixed solution that is easily adsorbed by the filler and a component that is hardly adsorbed by the filler (hereinafter, “ Raffinate component) is adsorbed to the filler.
  • the etastratato component is distributed on the upstream side of the mixed solution supply position because the speed of moving in the pipeline is lower than the moving speed of the raffinate component and the moving speed of the mixed solution supply position.
  • the rough rice component is distributed on the downstream side of the mixed solution supply position because the moving speed of the rough line component is higher than the moving speed of the estrastruct component and the moving speed of the mixed solution supply position.
  • the concentration of each component supplied from the mixed solution supply position increases with time until equilibrium is reached, and the concentration distribution of the etastratato component is near the supply position of the mixed solution at the top and upstream of the mixed solution supply position. Distribute.
  • the concentration distribution of the raffinate component is distributed near the supply position of the mixed solution at the top and downstream of the supply position of the mixed solution.
  • the concentration and distribution of each component are as follows: the size of the column, the type of packing material, the type of liquid to be supplied to the pipeline, the supply speed, the speed of each liquid discharged from the pipeline, and the supply position and discharge position It is adjusted according to various conditions such as the relative positional relationship of and the moving speed (switching speed).
  • the mixed component is a component in which the ethatract component and the rough component in the mixed solution are mixed.
  • the position of the mixed component is not particularly limited as long as it is a position in a pipeline where the estrastrata component and the raffinate component are mixed. However, it is preferable that the position is such that the etastratato component and the raffinate component are mixed in equal amounts.
  • the relative positions of the supply position of the eluent, the first discharge position, the supply position of the mixed solution, and the second discharge position are substantially equidistant positions in the pipeline. It may be a relationship or a positional relationship at different intervals.
  • the timing of movement of these positions is determined by analyzing the components of the liquid flowing through the pipeline, setting various conditions such as the type of filler and the flow velocity of the liquid in the pipeline, and performing simulations using a computer. You can decide.
  • the simulated moving bed type liquid mouth chromatography is disclosed in, for example, International Publication No. 95Z2312 / 25 Panflat, disclosed in Japanese Patent Application Laid-Open No. Hei 9-2012 / 502, etc. This can be performed using a simulated moving bed (SMB) device.
  • SMB simulated moving bed
  • FIG. 1 is a schematic diagram showing an example of a simulated moving bed device used in the present invention
  • FIG. 2 is a schematic diagram showing another example of a simulated moving bed device used in the present invention.
  • the conduit is formed by connecting 12 columns in series
  • the conduit is formed by connecting 8 columns in series.
  • all the lines connecting the columns are connected to a line for supplying an eluent, a line for supplying a mixed solution, and a line for discharging a liquid.
  • the supply or discharge of liquid from these lines is controlled by automatic valves.
  • the number and size of the columns are determined by factors such as the type and composition of the mixed solution, the flow rate, the pressure loss, and the size of the apparatus, and are not limited.
  • the mixed components in the mixed solution come into contact with the packing material, and adsorption and desorption are repeated by the flow of the supplied eluent.
  • the degree to which the filler adsorbs the ethastruct component depends on the rough rice Since it is larger than the degree of adsorption of the single component, the moving speed in the column is reduced. Since the degree to which the filler adsorbs the raffinate component is smaller than the degree to which the elastact component is adsorbed, the speed of movement in the force ram increases, and the concentration distribution of the rough component is determined by the concentration of the extract component in the conduit. Prior to concentration distribution.
  • the amount of the eluent supplied to the filler adsorbing the raffinate component is smaller than that at the time of adsorbing the raffinate component, the movement of the roughine component moving through the pipeline is suppressed.
  • the packing material on the downstream side of the point where the supply amount of the eluent is reduced adsorbs components in the eluent, and the eluent containing no such components is supplied to a pipe downstream of the above-mentioned point.
  • 1 to 12 are chambers (adsorption chambers and columns) containing the packing material, which are connected to each other in series.
  • Reference numeral 13 denotes an eluent supply line
  • 14 denotes an ethatract extraction line
  • 15 denotes an optical isomer-containing liquid supply line
  • 16 denotes a raffinate extraction line
  • 17 denotes a recycle line
  • 18 denotes a pump.
  • adsorption chambers 1 to 12 and each line 13 to 16 shown in Fig. 1 desorption operation is performed in adsorption chambers 1 to 3
  • concentration operation is performed in adsorption chambers 4 to 6
  • adsorption is performed in adsorption chambers 7 to 9.
  • Operation and eluent recovery operation are performed in the adsorption chambers 10 to 12, respectively.
  • each supply liquid and withdrawal line are moved by a valve at regular time intervals by one adsorption chamber in the flow direction of the liquid in the pipeline.
  • the desorption operation is performed in adsorption chambers 2 to 4, and adsorption chambers 5 to 7 ,
  • the adsorption operation is performed in the adsorption chambers 8 to 10, and the eluate recovery operation is performed in the adsorption chambers 11 to 1, respectively.
  • the extract solution collected from the extract extraction line 14 is concentrated by sequentially supplying it to a first falling thin film evaporator, a second falling thin film evaporator, and a forced thin film evaporator.
  • the vapor from the evaporator is stored in a recovery tank, for example, and the composition is adjusted by an evaporator, so that it can be reused as an eluent.
  • the concentrated liquid concentrated by the evaporator is sent to a storage tank, and when an operation such as recrystallization or distillation is performed, a target optically active substance is obtained from the concentrated liquid.
  • the raffinate solution collected from the raffinate extraction line 16 may be mixed with the mixed solution via a racemization tank, and may be subjected to the chromatographic separation again.
  • the simulated moving bed apparatus shown in Fig. 1 is an apparatus that uses an elastact component as a manufacturing object.
  • the above-described equipment such as an evaporator and an evaporator is connected to the downstream side of the raffinate extraction line 16, the rough rice bed will be manufactured. It is possible to construct an apparatus that uses the component G as a production object.
  • the simulated moving bed apparatus shown in FIG. 1 is provided with equipment such as the evaporator and the evaporator in both the elastorct extraction line 14 and the rough rice extraction line 16, whereby the estrastrat component and the raffinate are provided. It is possible to configure an apparatus in which both components are used as a production object.
  • each supply liquid and the extraction line are moved by a valve at regular time intervals by one adsorption chamber in the flow direction of the liquid in the pipeline.
  • the desorption operation is performed in the adsorption chamber 2
  • the concentration operation is performed in the adsorption chambers 3 to 6
  • the adsorption operation is performed in the adsorption chambers 7 to 8
  • the eluent recovery operation is performed in the adsorption chamber 1.
  • the method of the present invention it is possible to efficiently separate at least one optical isomer of dihydroxyheptenoic acid ester, and to obtain an optically active dihydroxyheptenoic acid ester having high preparative productivity. Become.
  • the obtained optically active dihydroxyheptenoic acid ester can be used as an active ingredient of a pharmaceutical.
  • the dihydroxyheptenoic acid ester is any one of optical isomers of a compound represented by the following general formula (6) useful as a pharmaceutical or a mevalonolactone-based compound represented by the following general formula (7).
  • Any of the optical isomers can be used as an intermediate for production by a known reaction such as an oxidation reaction or a dehydration condensation reaction.
  • Ar represents an amide ring aromatic group or a heterocyclic aromatic group which may have at least one of a substituent and a condensed ring
  • R is a group having a prime number of 1 to 2 0 represents a linear or branched alkyl group, a phenyl group, or an aralkyl group having a prime number of 7 to 18.
  • Ar represents a tea ring aromatic group or a fusuma element aromatic group which may have at least one of a substituent and a condensed ring.
  • Synthetic Example 1 (2) was obtained in the same manner as in Synthesis Example 1 except that methyl iodide was replaced with iodide thiol.
  • the obtained sample was measured by 1 H-NMR, MS, and IR, and the extract was identified from the obtained spectrum. — The peaks detected by NMR and IR are shown below.
  • the packing material prepared in (2) was packed into a stainless steel column having a length of 25 cm and an inner diameter of 0.46 cm by a slurry packing method to prepare an optical isomer separation column.
  • the optical rotation of the detected peak component was measured with an optical rotation detector, PDR_Chira 1 Ad Advanced Laser P o1 arimeter, to confirm that the detected peak was an optical isomer. You can check.
  • the retention coefficient (k,) was calculated by the following equations (1) and (2), and the separation coefficient (was calculated from the following equation (3).
  • V indicates the retention capacity (retention time) of the soluble component of each optical isomer that elutes quickly, and vo is the dead volume (dead time), which is the elution capacity (elution time) of tri-tert-butylbenzene. Time).
  • 0 is the dead volume, which is the elution volume (at the time of elution) of the tree ⁇ ⁇ r ⁇ -butylbenzene
  • a filler for separating optical isomers was prepared in the same manner as in (2) of Example 1 except that the cellulose tris (4- ⁇ -butylphenylcanolepamate) obtained in (1) was used.
  • a power ram for optical isomer separation was prepared in the same manner as in (3) of Example 1, except that the filler for optical isomer separation obtained in (2) was used.
  • a filler for separating optical isomers was prepared in the same manner as in (2) of Example 1, except that the cellulose tris (4-ethylcarbamate) obtained in (1) was used.
  • a power ram for optical isomer separation was prepared in the same manner as in (3) of Example 1, except that the filler for optical isomer separation obtained in (2) was used.
  • a filler for separating optical isomers was prepared in the same manner as in (2) of Example 1, except that the senorellose tris (41-sec-ptinolephenylcanolebamate) obtained in (1) was used.
  • a filler for separating optical isomers was prepared in the same manner as in (2) of Example 1, except that the cellulose tris (4-isobutylphenylcarbamate) obtained in (1) was used.
  • CH I RALCEL OG registered trademark of Daicel Chemical Industries, Ltd.
  • the particle size of 20 ⁇ m was packed into a stainless steel column with a length of 25.1.1 and an inner diameter of 0.46 cm 2 by the slurry packing method to produce an optical isomer separation column.
  • CHI RALCEL OF (Registered by Daicel Chemical Industries, Ltd.) trademark, a particle size 20Myuiotaita), filled with slurry packing method to a stainless steel column of length 25 c m 3 ⁇ 40.46 cm, to produce an optical isomer separating force ram.
  • Table 3 shows the retention coefficient and separation coefficient for these optical resolutions, and Figs. 15 and 16 show the chromato-drafts.
  • Table 3 [R *, S *-(E)]-( ⁇ )-[3- (4-fluorophenyl) 1-1-1 (1-methylethyl) -1 1 H-indole-2-yl] -1, 3,5- Conclusion of optical resolution of dihydroxy-1-heptanate
  • the packing material for separating optical isomers obtained in (2) of Example 1 was packed into eight stainless steel columns having an inner diameter of 1.0 cm and a length of 10 cm by a slurry-filling method, and was subjected to a small simulated moving bed type apparatus.
  • [R *, S *-(E)] — ( ⁇ ) _ [3— (4—F / L-Feninole) 1-1— (1-Methinoleetinole)
  • One iH prepared in Synthesis Example 1 —Indone 1-2-yl] —3,5-Dihydroxy-6-methyl heptenoate was collected.
  • Table 4 shows the operating conditions of the small simulated moving bed apparatus and the productivity of the obtained rough rice components.
  • optical isomer separation fillers obtained in (2) of Examples 2 to 5 was used in the same manner as in Examples 12 to 15 using a small simulated moving bed type apparatus, respectively. hand,
  • an optically active dihydroxyheptenoic acid ester can be more clearly separated, and can be produced with a higher fractionation productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Indole Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

芳香族基を有するジヒドロキシヘプテン酸エステルの光学異性体の混合物を含有する溶液から、担体と、この担体に担持された多糖誘導体とからなる充填剤を使用する液体クロマトグラフィーにより、光学活性な前記ジヒドロキシヘプテン酸エステルを分離する。前記多糖誘導体には、多糖の水酸基及びアミノ基の水素原子の一部もしくは全部が、特定のアルキル基を有する芳香族基で一つの水素原子が置換されたカルバモイル基、及び特定のアルキル基を有するベンゾイル基の一種又は二種以上で置換されている多糖誘導体を用いる。本発明によれば、光学活性なジヒドロキシヘプテン酸エステルをより一層明確に分離することができる。

Description

明細書 光学活性なジヒドロキシヘプテン酸ェステルの分離方法 技術分野
本発明は、 光学活性なジヒドロキシヘプテン酸エステルの分離方法に関し、 更 に詳しくは、 高脂血症や動脈硬化等の予防、 治療に有用な、 光学活性なジヒドロ キシヘプテン酸エステルの分離方法に関する。 背景技術
光学異性体は、 構造式は同一であるが、 原子が空間で異なった配置をとつてい るために互いに鏡像の関係にある。 光学異性体を含有する医薬品の場合では、 薬 効、 毒性の点で顕著な差が見られるケースが良く知られている。 このため厚生労 働省の医薬品製造指針においては、 「当該薬物がラセミ体である場合には、 それ ぞれの異性体について吸収、 分布、 代謝、 排泄動態を検討しておくことが望まし い」 と記載されている。
また、 片方の光学異性体のみを治療薬として用いると投与量が少なくて済み、 単位あたりの薬効向上や、 副作用の低減を図ることができる。 したがって医薬、 生化学関連産業等の分野においては、 光学純度の高い光学活性体を調製すること が極めて重要な課題となっている。
光学異性体が存在する特定のジヒドロキシヘプテン酸エステノレは、 高脂血症及 び動脈硬化症等の予防及ぴ治療に非常に有効であることが知られている。 このよ うなジヒドロキシヘプテン酸エステルの製造方法としては、 例えば光学分割用充 填剤を用いて光学活性なジヒドロキシヘプテン酸エステルを工業的に得る方法が 知られている (例えば、 国際公開 9 5 / 2 3 1 2 5号パンフレツト及び国際公開 0 2 / 3 0 9 0 3号パンフレツト参照) 。
し力 し、 従来用いられていた光学分割用充填剤における前記ジヒドロキシヘプ テン酸エステルの生産性については、 検討の余地が残されており、 より一層生産 性の優れた光学活性なジヒドロキシヘプテン酸エステルの製造方法が強く望まれ ていた。
本発明の課題は、 光学活性なジヒドロキシヘプテン酸エステルをより一層明確 に分離することのできる方法を提供する事にある。 発明の開示
本発明は、 前記課題を解決するための手段として、 下記一般式 ( 1 ) で表され るジヒドロキシヘプテン酸エステルの光学異性体の混合物を含有する溶液から、 担体と、 この担体に担持された多糖誘導体とカ らなる充填剤を使用する液体ク口 マトグラフィ一により、 光学活性な前記ジヒドロキシヘプテン酸エステルを分離 する方法であって、
多糖誘導体は、 多糖の水酸基及びァミノ基の水素原子の一部もしくは全部が、 下記一般式 (2 ) で表される置換基及び一般式 (3 ) で表される置換基の一種又 は二種以上で置換されていることを特徴とする方法を提供する。
Figure imgf000004_0001
(式中、 A rは、 置換基及び縮合環の少なくともいずれかを有していても良い、 炭素環 芳香族基又は複素琛芳香族基を表し、 R,は、 炭素数が 1 ~ 2 0の直鎖状もしくは分枝 状のアルキル基、 フヱニル基、 又は崁素数が 7 ~ 1 8のァラルキル基を表す。 )
Figure imgf000004_0002
(式中、 R 2は、 崁素数が 2〜 8の直鎖状もしくは分枝状のアルキル基を表す。 )
Figure imgf000005_0001
(式中、 R2は、 炭素数が 2〜 8の直鎖状もしくは分枝状のアルキル基を す。 ) 図面の簡単な説明
図 1は、 本発明に用いられる擬似移動床装置の一例の構成の概略を示す図であ る。
図 2は、 本発明に用いられる擬似移動床装置の他の例の構成の概略を示す図で あ 。
図 3は、 実施例 1のカラムを用いて [R*, S*— (E) ] — (±) — [3— (4 ーフノレオロフェニル) 一 1一 (1—メチルェチル) 一 1H—インドールー 2—ィ ル] —3, 5—ジヒドロキシ _6—ヘプテン酸メチルを分離したときのクロマト グラフである。
図 4は、 実施例 2のカラムを用いて [R*, S*— (E) ] — (±) — [3— (4 —フノレオロフェニノレ) 一 1一 (1ーメチノレエチノレ) 一 1H— ^ ンドーノレ一 2—ィ ル] 一 3, 5—ジヒドロキシ一 6—ヘプテン酸メチルを分離したときのクロマト グラフである。
図 5は、 実施例 3のカラムを用いて [R*, S*— (E) ] 一 (±) — [3— (4 —フノレオロフェ-ノレ) 一 1一 (1ーメチノレエチノレ) 一 1H—インドーノレ _ 2—ィ ル] —3, 5—ジヒドロキシ _ 6—ヘプテン酸メチルを分離したときのクロマト グラフである。
図 6は、 実施例 4のカラムを用いて [R*, S*— (E) ] 一 (±) — [3— (4 ーフノレオロフェェノレ) - 1 - (1ーメチノレエチノレ) 一 1 H—インドーノレ一 2—ィ ル] —3, 5—ジヒドロキシー 6 _ヘプテン酸メチルを分離したときのクロマト グラフである。
図 7は、 実施例 5のカラムを用いて [R*, S*— (E) ] 一 (土) 一 [3— (4 —フルオロフェエル) - 1 - (1—メチルェチル) 一 1 H—インドールー 2—ィ ル] 一 3, 5—ジヒドロキシー 6—ヘプテン酸メチルを分離したときのクロマト グラフである。
図 8は、 比較例 1のカラムを用いて [R*, S*- (E) ] — (±) — [3— (4 ーフノレオロフェニノレ) - 1 - (1ーメチノレエチノレ) ― 1 H—ィンドール一 2—ィ ル] -3, 5—ジヒドロキシー 6—ヘプテン酸メチルを分離したときのクロマト グラフである。 ■
図 9は、 比較例 2のカラムを用いて [R*, S*_ (E) ] — (±) — [3— (4 —フルオロフェニル) 一 1一 (1ーメチルェチル) 一 1 H—インドールー 2—ィ ノレ] 一 3, 5—ジヒドロキシー 6—ヘプテン酸メチルを分離したときのクロマト グラフである。
図 10は、 実施例 1のカラムを用いて [R*, S*— (E) ] 一 (土) 一 [3— (4一フルオロフェ -ル) 一1— (1ーメチルェチル) 一 1H—インドールー 2 —ィル] -3, 5—ジヒドロキシー 6—ヘプテン酸ェチルを分離したときのクロ マトグラフである。
図 11は、 実施例 2のカラムを用いて [R*, S*— (E) ] — (±) _ [3— (4ーフノレオロフェニノレ) - 1 - (1ーメチノレエチノレ) 一 1H—インドーノレ一 2
—ィル] —3, 5—ジヒドロキシー 6—ヘプテン酸ェチルを分離したときのクロ マトグラフである。
図 12は、 実施例 3のカラムを用いて [R*, S*— (E) ] — (±) — [3— (4一フルオロフェニル) 一 1一 (1ーメチルェチノレ) - 1 H—インドール— 2 一ィル] —3, 5—ジヒドロキシ一 6—ヘプテン酸ェチルを分離したときのクロ マトグラフである。
図 13は、 実施例 4のカラムを用いて [R*, S*— (E) ] — (±) — [3— (4ーフノレオロフェニノレ) - 1 - (1ーメチノレエチノレ) 一1H—インドーメレー 2 —ィル] —3, 5—ジヒドロキシー 6—ヘプテン酸ェチルを分離したときのクロ マトグラフである。
図 14は、 実施例 5のカラムを用いて [R*, S*- (E) ] — (±) — [3— (4ーフノレオ口フエ-ノレ) 一 1一 (1ーメチノレエチノレ) 一 1H—インドーノレ一 2 一ィル] 一 3, 5—ジヒドロキシ一 6—ヘプテン酸ェチルを分離したときのクロ マトグラフである。
図 15は、 比較例 1のカラムを用いて [R*, S*— (E) ] — (±) — [3— (4一フル才ロフエニル) - 1 - (1 _メチルェチル) 一 1 H—ィンドール一 2 一ィル] 一 3, 5—ジヒ ドロキシ _ 6 プテン酸ェチルを分離したときのクロ マトグラフである。
図 16は、 比較例 2のカラムを用いて [R*, S*— (E) ] — (土) 一 [3— (4ーフノレオ口フエ-ノレ) — 1— (1—メチノレエチノレ) 一 1H—インドーノレ一 2 —ィノレ] 一 3, 5—ジヒドロキシー 6 _ヘプテン酸ェチルを分離したときのクロ マトグラフである。 発明を実施するための最良の形態
本発明では、 前記一般式 ( 1 ) で表されるジヒドロキシヘプテン酸エステルの 光学異性体の混合物を含有する溶液から、 充填剤を使用する液体クロマトグラフ ィ一により、 光学活性なジヒドロキシヘプテン酸エステルを分離する。 前記充填 剤には、 担体と、 この担体に担持された多糖誘導体とからなる充填剤が用いられ る。
前記多糖誘導体は、 多糖の水酸基及ぴァミノ基の水素原子の一部もしくは全部 が、 前記一般式 (2) で表される置換基及び前記一般式 (3) で表される置換基 の一種又は二種以上で置換されている。
前記多糖誘導体は、 例えば炭素数が 2〜 8の直鎖状もしくは分枝状のアルキル 基を有する安息香酸及びその誘導体や前記アルキル基を有するフエ二ルイソシァ ナートと多糖の水酸基との間の反応によって、 常法に従って合成することができ る。
前記安息香酸の誘導体としては、 例えば安息香酸の塩化物、 安息香酸の酸無水 物、 安息香酸のエステル等が挙げられる。 前記安息香酸、 その誘導体、 及び前記 フエ二ルイソシアナートは、 市販品を用いても良く、 また常法に従って合成する ことができる。
前記多糖誘導体のフエニル基における前記アルキル基の位置は特に限定されな いが、 フエニル基の 4位の炭素原子に前記アルキル基が結合していることが、 前 記一方の光学異性体の分離効果を高める上で好ましい。 また、 前記アルキル基の 種類は、 炭素数が 2〜8であれば特に限定されないが、 炭素数が 2〜4のアルキ ル基であることが、 前記一方の光学異性体の分離効果を高める上で好ましい。 このようなアルキル基としては、 例えばェチル基、 イソプロピル基、 n—プチ ル基、ィソブチル基、 s e c—プチル基等が挙げられる。好ましくは、ェチル基、 イソプロピル基、 n―プチノレ基である。
前記多糖としては、 天然多糖、 天然物変性多糖、 合成多糖、 及びオリゴ糖のい ずれを問わず、 光学活性であれば特に制限はない。
前記多糖の具体例としては、 α— 1, 4ーグルカン (アミロース、 デンプン、 グリコーゲン) 、 β- 1, 4一グルカン (セル口ース) 、 α - 1 , 6一グルカン (デキストラン) 、 J3— 1, 3—グルカン (カードラン、 ジソフイラン等) 、 ひ 一 1, 3ーグノレ力ン、 ]3— 1, 2—グノレ力ン (C r own Ga l l多糖) 、 a — 1, 6—マンナン、 /3— 1, 4一マンナン、 ]3— 1, 2—フラクタン (ィヌリ ン) 、 β- 2, 6—フラクタン (レパン) 、 β— 1, 4ーキシラン、 β - 1, 3 ーキシラン、 ;3— 1, 4—キトサン、 β— 1, 4一 Ν—ァセチノレキトサン (キチ ン) 、 α— 1, 3- 1, 6—グノレカン (ムタン) 、 プノレラン、 ァガロース、 ァノレ ギン酸等を挙げることができる。
これらの中では、 高純度の多糖を容易に入手できるセルロース、 アミロース、 β— 1 , 4ーキシラン、 β— 1, 4ーキトサン、 キチン、 β - 1, 4一マンナン、 ィヌリン、 カードラン等が好ましく、 特にセルロース、 アミロースが好ましい。 前記多糖の数平均重合度 ( 1分子中に含まれるピラノース及ぴフラノース等の 単糖ユニットの個数の平均数) は 5以上、 好ましくは 10以上である。 一方、 特 に上限はないが、 2000以下であること力 取り扱いの容易さにおいて好まし く、 特に好ましくは 500以下である。
前記オリゴ糖の具体例としては、 マルトース、 マルトテトラオース、 マルトべ ンタ才ース、 マノレトへキサオース、 マノレトへプタオース、 イソマノレトース、 ェノレ オース、 パラチノース、 マルチトール、 マルトトリイ トール、 マルトテトライ ト ール、 イソマルチトース、 α—シクロデキストリン、 β—シクロデキストリン、 V—シクロデキストリン等を挙げることができる。 本発明に用いられる多糖誘導体において、 前記一般式 (2 ) 及び (3 ) で示さ れる置換基による前記水素原子の置換度は、 通常 1 0〜1 0 0 %であり、 好まし くは 3 0〜; L 0 0 %であり、 特に好ましくは 8 0 %〜 1 0 0 %である。 前記置換 度が前記範囲にあること力 前記一方の光学異性体の分離効果を高める上で好ま しい。
前記置換度は、 例えば、 前記反応時における前記安息香酸及びその誘導体や前 記フヱ-ルイソシアナートの、 前記多糖の前記水酸基及びァミノ基に対する当量 によって調整することが可能である。 また、 前記置換度は、 例えば置換基導入の 前後における炭素、 水素及び窒素等の元素の変化を元素分析により調べることに よって求めることができる。
前記多糖誘導体における多糖に対する前記置換基の結合の形態は、 特に限定さ れない。 例えば、 前記多糖誘導体は、 同じ置換基が多糖に結合した多糖誘導体で あっても良いし、 異なる種類の置換基が多糖に結合した多糖誘導体であっても良 い。
また、 前記多糖誘導体では、 多糖に対する前記置換基の分布は均等であっても 良いし、 偏りがあっても良い。 また、 単糖ユニットに結合する前記置換基の個数 は、 全ての単糖ユニットにおいて同じであっても良いし、 異なっていても良い。 また、 単糖ユニットに結合する前記置換基の位置は、 単糖ユニットにおける特 定の水酸基及びァミノ基の位置であっても良いし、 特に規則性がなくても良い。 本発明に用いられる担体としては、 特に限定されず、 カラムに充填される充填 剤として通常利用される担体が用いられる。 このような担体としては、 例えば多 ?し質の有機担体、 多孔質の無機担体、 及び多孔質の有機無機ハイブリッド担体等 が挙げられる。 好ましくは多孔質の無機担体である。
多孔質の有機担体として適当なものには、ポリスチレン、ポリアクリルアミド、 及びポリアクリレート等からなる群から選択される高分子の粒子が挙げられる。 多孔質の無機担体として適当なものには、 シリカ、 アルミナ、 マグネシア、 ガ ラス、 カオリン、 酸化チタン、 ケィ酸塩、 及びヒドロキシァパタイト等が挙げら れる。
多孔質の有機無機ハイプリッド担体として適当なものには、シリカ、アルミナ、 マグネシア、 酸化チタン等の分子骨格中にアルキル基、 フエ-ル基、 ビュル基、 スチリル基等を含有する物質が挙げられる。 特に好ましい担体はシリカゲルであ る。
シリカゲルは、 粒径が 1 0 0 n m〜 1 0 mmであることが好ましく、 1 μ m〜 3 0 0 μ πιであることがより好ましく、 1〜7 5 i mであることがより一層この ましい。 シリカゲルの表面の孔の平均孔径は 1 11 m〜 1 0 0 μ mであることが好 ましく、 5 n ix!〜 5 0 0 n mであることがより好ましい。 シリカゲルは、 残存シ ラノールの影響を排除するために表面処理が施されていることが望ましいが、 表 面処理が全く施されていなくてもよい。
担体に担持される多糖誘導体の担持量は、 充填剤に対して通常 1〜8 0質量% であり、 好ましくは 5〜 6 0質量%であり、 特に好ましくは 2 0〜 4 0質量%で ある。 担持量が 1質量%未満では光学分割を有効に行えないことがあり、 また 6 0質量%を超えても段数の減少による分離効率の低下が起こるため好ましくない。 なお、 前記担持量は、 充填剤の質量と充填剤中の多糖誘導体の質量との割合であ る。
本発明に用いられる充填剤は、 前記多糖誘導体を前記担体に担持させることに よって得られる。 前記多糖誘導体を担体に担持させる方法は、 クロマトグラフィ 一用の充填剤の調製に通常用いられる方法によって行うことができる。 このよう な方法としては、 例えば前記多糖誘導体を前記担体に直接、 化学結合する方法、 及び多糖誘導体を含有する溶液を担体に塗布してから溶剤を留去する方法等が挙 げ'られる。
前記方法において多糖誘導体の溶解に使用される溶剤は、 多糖誘導体を溶解さ せる事ができるものであれば、 通常使用されている有機溶剤のいかなるものでも 良い。
さらに、 担体と担体上の多糖誘導体との間の化学結合、 担体上の多糖誘導体同 士の化学結合、担体と多糖誘導体との間に介在する第三成分を利用した化学結合、 担体上の多糖誘導体への光照射、 V線等の放射線照射、 マイクロ波等の電磁波照 射による反応、 ラジカル開始剤等によるラジカル発生による反応等によって、 更 なる化学結合を形成させることで、 多糖誘導体の担体上における更なる強固な固 定化を図ってもよい。
前記充填剤によって分離される光学活性なジヒドロキシヘプテン酸ェステノレは、 前記一般式 (1 ) で表される。
前記一般式 ( 1 ) における としては、炭素数が 1〜 2 0の直鎖状もしくは分 枝状のアルキル基、 フエニル基、 又はァラルキル基であれば特に限定されない。 前記アルキル基は、 炭素数が 1〜 2 0であることが好ましく、 炭素数が 1 ~ 8で あることがより好ましく、 炭素数が 2〜5であることがさらに好ましい。
また、 前記ァラルキル基の芳香族基は、 炭素数が 6〜1 4であることが好まし く、 ヘテロ原子及び縮合環のいずれか一方又は両方を有していても良い。 前記ァ ラルキル基のアルキレン基は、 炭素数が 1〜4であることが好ましく、 直鎖状で あっても良いし、 分枝状であっても良い。
前記一般式 (1 ) における A rとしては、 ヘテロ原子を有していても良い芳香 族基であり、 縮合多環芳香族基を含む。 このような A rとしては、 例えばフエ二 ル基、 ナフチル基、 インデニル基、 ピリジル基、 キノリル基、 インドリル基等が 挙げられる。
また、 前記 A rが有していても良い置換基は、 本発明の効果を損なわない範囲 であれば特に限定されない。 このような前記置換基としては、 例えばニトロ基等 のへテロ原子のみからなる置換基ゃァミノ基、 水酸基、 アルコキシル基等のへテ 口原子を含む置換基、 フッ素や塩素等のハロゲン基、 及ぴこれらの置換基を有し ていても良 、アルキル基やフエニル基等の炭化水素基等が挙げられる。
前記ジヒドロキシヘプテン酸エステルの具体例としては、 下記構造式 (4 ) で 表される [R *, S *- (E) ] — (±) — [ 3— ( 4一フルオロフェニル) —1 一 ( 1—メチノレエチノレ) 一 1 H—インドーノレ一 2—ィノレ] 一 3, 5—ジヒ ドロキ シ一 6—ヘプテン酸メチル、及び下記構造式 ( 5 ) で表される [R *, S *- (E) ] 一 (士) 一 [ 3— (4—フルオロフェニル) 一1— ( 1ーメチルェチル) 一 1 H ーィンドーノレ一 2—イノレ] - 3 , 5ージヒ ドロキシー 6—ヘプテン酸ェチノレ等が 挙げられる。
Figure imgf000012_0001
前記ジヒドロキシヘプテン酸エステルの光学異性体の混合物は、 混合物中の少 なくとも一方の光学異性体が前記多糖誘導体で分離される光学異性体を含有する ものであれば特に限定されないが、 3 S 5 R体及び 3 R 5 S体であることが好ま しい。
また、 前記混合物は、 3 S 5 R体と 3 R 5 S体との混合物のように、 鏡像異性 体の混合物であっても良いし、 3 S 5 R体又は 3 R 5 S体他と 3 S 5 S体又は 3 R 5 R体との混合物のように、 ジァステレオマーを含有する混合物であっても良 いし、 またこれらの混合物であっても良い。
本発明においては、前記充填剤を固定相とし、超臨界流体あるいは一般の溶媒、 混合溶媒を移動相として、 少なくとも前記一般式 ( 1 ) で表されるジヒドロキシ ヘプテン酸エステルの光学異性体を含有する混合溶液を前記固定相に供給して、 前記移動相によって固定相中において前記光学異性体を移動させるカラムクロマ トグラフィ一によつて、 前記光学異性体を分離することができる。 本発明では、 液体ク口マトグラフィーを適用すること.が、 前記光学異性体を分離する上で好ま しい。
前記混合溶液には、 前記混合物を溶解できる混合溶媒等の溶媒が用いられる。 このような溶媒の種類や組成は、 溶質の種類や濃度に応じて決められる。 前記溶 媒には、 通常液体ク口マトグラフィ一に用いられる溶媒を用いることができる。 混合溶液に用いられる溶媒は、 液体クロマトグラフィー及びこれに準ずる方法 における移動相、 すなわち溶離液であることが、 溶離液の再利用を容易にする上 で好ましい。 前記混合溶液は、 前記カラムクロマトグラフィ一によって前記光学 異性体に対して分離可能な成分であれば、 他の成分を含んでいても良い。
本発明では、 通常のカラムクロマトグラフィーによって分離された一方の光学 異性体の溶液を採取し、 この溶液から溶媒を留去することによつて前記光学活性 なジヒドロキシヘプテン酸エステルを得ることが可能である。
このような前記光学活性なジヒドロキシヘプテン酸エステルの製造では、 試料 の供給及び液体の排出の少なくともいずれかが非連続に行われる回分式クロマト グラフィ一、 あるいは試料の供給及び液体の排出が連続して行われる擬似移動床 式クロマトグラフィーを用いて前記光学活性なジヒドロキシヘプテン酸エステル の分離を行うこと力 光学活性なジヒドロキシヘプテン酸エステルの分取生産性 を高める上で好ましい。
特に、 前記光学活性なジヒドロキシヘプテン酸エステルを製造する場合では、 擬似移動床式ク口マトグラフィーを用いることがより好ましい。 前記擬似移動床 式クロマトグラフィーでは、 通常この方法で用いられる溶媒を移動相に用いるこ とができる。
前記擬似移動床式クロマトグラフィーは、 前記充填剤が充填されている複数の カラムを直列に接続して形成される無端状の管路に溶離液を供給する工程と、 前 記管路における溶離液の流れ方向において溶離液の供給位置よりも下流側の位置 から前記管路を流れる液体の一部を排出する工程 (以下 「第一の排出工程」 とも 言う) と、 前記管路における溶離液の流れ方向において前記液体の排出位置 (以 下 「第一の排出位置」 とも言う) よりも下流側の位置に前記混合溶液を供給する 工程と、 前記管路における前記混合溶液の供給位置と前記溶離液の供給位置との 間の位置から前記管路を流れる液体の一部を排出する工程 (以下 「第二の排出ェ 程 J とも言い、 この工程による液体の排出位置を 「第二の排出位置」 とも言う) と、 前記管路における前記混合溶液中の混合成分の位置に前記混合溶液を供給す るように、 前記溶離夜の供給位置、 前記第一の排出位置、 前記混合溶液の供給位 置、 及び前記第二の排出位置を、 これらの位置の相対的な位置関係を保ったまま 液体の流れの下流方向へ移動させる工程と、 前記管路から排出される液体に含ま れる成分を取り出す工程とを含む。
前記擬似移動床式ク口マトグラフィ—において、前記管路では、混合溶液中の、 充填剤により吸着されやすい成分 (以下 「エタストラクト成分」 とも言う) と、 充填剤により吸着されにくい成分 (以下 「ラフィネート成分」 とも言う) とが、 充填剤に吸着される。
エタストラタト成分は、 前記管路を移動する速度が、 ラフィネート成分の移動 速度、 及び混合溶液の供給位置の移動速度よりも小さいので、 混合溶液の供給位 置の上流側に分布する。
一方、 ラフイネ一ト成分は、 前記管路を移動する速度が、 エタストラクト成分 の移動速度、 及び混合溶液の供給位置の移動速度よりも大きいので、 混合溶液の 供給位置の下流側に分布する。
混合溶液の供給位置より供給される各成分の濃度は、 平衡に達するまで経時的 に高まり、 エタストラタト成分の濃度分布は混合溶液の供給位置付近を頂点に混 合溶液の供給位置よりも上流側に分布する。 一方、 ラフィネート成分の濃度分布 は、 混合溶液の供給位置付近を頂点に混合溶液の供給位置よりも下流側に分布す る。
経時的に広がった各成分の濃度分布の両端が、 各排出位置に到達すると、 各成 分を含む溶液が前記管路よりそれぞれ排出される。 各成分の濃度や分布は、 前記 カラムの大きさ、 充填剤の種類、 管路に供給する液体の種類、 供給速度、 管路か ら排出される各液体の速度、 及び前記供給位置及び排出位置の相対的な位置関係 及びその移動速度 (切り替え速度) 等の諸条件により調整される。
なお、 前記混合成分は、 混合溶液中の前記エタストラクト成分と前記ラフイネ 一ト成分とが混在する成分である。 また、 前記混合成分の位置は、 エタストラタ ト成分とラフィネート成分とが混在している管路中の位置であれば特に限定され ないが、 エタストラタト成分とラフィネート成分とが等量で混在している位置で あることが好ましい。
また、 溶離液の供給位置、 前記第一の排出位置、 前記混合溶液の供給位置、 及 び前記第二の排出位置の相対的な位置関係は、 管路において実質的に等間隔にあ る位置関係であっても良いし、 異なる間隔の位置関係であっても良い。 また、 こ れらの位置の移動時期は、 管路を流れる液体の成分の分析や、 充填剤の種類及び 管路中の液体の流速等の諸条件を設定した、 コンピュータによるシミュレーンョ ン等によって決めることができる。
前記擬似移動床式液体ク口マトグラフィ一は、 例えば、 国際公開第 9 5 Z 2 3 1 2 5号パンフレツトゃ特開平 9一 2 0 6 5 0 2号公報等に開示されている、 通 常用いられる擬似移動床 ( S MB ) 装置を用いて行うことができる。
以下、 図面に基づいて本発明における方法を説明する。
図 1は、 本発明に用いられる擬似移動床装置の一例を示す模式図であり、 図 2 は本発明に用いられる擬似移動床装置の別の例を示す模式図である。 図 1におい て、 前記管路は 1 2体のカラムを直列に接続することによって形成されており、 図 2において、 前記管路は 8体のカラムを直列に接続することによって形成され ている。
それぞれの装置において、 図示しないが、 カラム同士を接続する全ての管路に は、 溶離液を供給する管路、 混合溶液を供給する管路、 及び液体を排出する管路 が接続されている。 これらの管路からの液体の供給又は液体の排出は、 自動弁に よって制御されている。
なお、 前記カラムの数や大きさは、 混合溶液の種類や組成、 流量、 圧損、 装置 の大きさ等の要因によって決まるものであり、 限定されるものではない。
前記装置を用いる擬似移動床式クロマトグラフィーでは、 基本的操作として、 次に示す吸着操作、 濃縮操作、 脱着操作及び溶離液回収操作が連続的に循環して 実施される。
( 1 ) 吸着操作
混合溶液中の混合成分が充填剤と接触し、 供給される溶離液の流れにより吸着 と脱着を繰り返す。 充填剤がエタストラクト成分を吸着する度合いは、 ラフイネ 一ト成分を吸着する度合いよりも大きいため、 前記カラム内の移動速度が小さく なる。 充填剤がラフィネート成分を吸着する度合いは、 エタストラクト成分を吸 着する度合いよりも小さいため、 力ラム内の移動速度が大きくなり、 ラフイネ一 ト成分の濃度分布は、 前記管路においてェクストラクト成分の濃度分布よりも先 行する。
( 2 ) 濃縮操作
主としてェクス トラタト成分が吸着している充填床に、 ェクストラクト成分を 含んだ溶離液が供給されると、 充填剤上に残存しているラフィネート成分が追い 出され、 ェクストラクト成分が濃縮される。
( 3 ) 脱着操作
エタストラタト成分の濃縮時よりも多くの量の溶離液が充填床に供給されると、 それまで充填剤に吸着されていたェクストラタト成分が充填剤上から脱離し、 力 ラム内のェクストラクト成分の移動速度が濃縮操作時のそれよりも大きくなる。
( 4 ) 溶離液回収操作
ラフィネート成分を吸着している充填剤に、 ラフィネート成分の吸着時よりも 溶離液の供給量が減少すると、 管路を移動しているラフイネ一ト成分の移動が抑 制される。 溶離液の供給量が減少するポイントよりも下流側の充填剤は、 溶離液 中の成分を吸着し、 このような成分を含有しない溶離液が前記ボイントよりも下 流側の管路に供給される。
図 1において、 1〜 1 2は充填剤の入った室 (吸着室、 カラム) であり、 相互 に直列に連結されている。 1 3は溶離液供給ライン、 1 4はエタストラクト抜き 出しライン、 1 5は光学異性体含有液供給ライン、 1 6はラフィネート抜き出し ライン、 1 7はリサイクルライン、 1 8はポンプを示す。
図 1で示した吸着室 1〜1 2と各ライン 1 3〜1 6の配置の状態では、 吸着室 1〜 3で脱着操作、 吸着室 4〜 6で濃縮操作、 吸着室 7〜 9で吸着操作、 吸着室 1 0〜 1 2で溶離液回収操作がそれぞれ行われている。 このような擬似移動床で は、 一定時間間隔ごとにバルブ操作により各供給液及び抜き出しラインを、 管路 における液体の流れ方向に吸着室 1室分だけそれぞれ移動させる。
従って、 次の吸着室の配置状態では、 吸着室 2〜4で脱着操作、 吸着室 5〜 7 で濃縮操作、 吸着室 8〜1 0で吸着操作、 吸着室 1 1 ~ 1で溶離液回収操作がそ れぞれ行われるようになる。 このような操作を順次行うことによって、 光学異性 体の混合物の分離処理が連続的に効率よく達成される。
図 1において、 ェクストラクト抜き出しライン 1 4から採取されたェクストラ クト溶液は、 第一流下型薄膜蒸発器、 第二流下型薄膜蒸発器、 強制型薄膜蒸発器 に順次供給することによって濃縮される。 蒸発器からの蒸気は、 例えば回収槽に 収容し、 蒸発装置によって組成を調整すると、 溶離液として再利用することが可 能となる。
前述した蒸発器によつて濃縮された濃縮液は貯留槽に送られ、 再結晶や蒸留等 の操作を行うと、 前記濃縮液から目的の光学活性体が得られる。
なお、 ラフィネート抜き出しライン 1 6から採取されたラフィネート溶液は、 ラセミ化槽を介して混合溶液と混合されて、 前記クロマトグラフィーによる分離 に再度供しても良い。
なお、 図 1の擬似移動床装置は、 エタストラクト成分を製造目的物とする装置 であるが、 前述した蒸発器や蒸発装置等の機器をラフィネート抜き出しライン 1 6の下流側に接続すると、 ラフイネ一ト成分を製造目的物とする装置を構成する ことが可能である。
また、 図 1の擬似移動床装置は、 エタストラクト抜き出しライン 1 4及びラフ イネ一ト抜き出しライン 1 6の両方に、 前記蒸発器や蒸発装置等の機器をそれぞ れ設けると、 エタストラタト成分及びラフィネート成分の両方を製造目的物とす る装置を構成することが可能である。
また、 図 2に示した吸着室 1〜8と各ライン 1 3〜1 6の配置の状態では、 吸 着室 1で溶離液回収操作、 吸着室 2〜 5で吸着操作、 吸着室 6〜 7で濃縮操作、 吸着室 8で脱着操作がそれぞれ行われている。 このような擬似移動床では、 一定 時間間隔ごとにバルブ操作により各供給液及ぴ抜き出しラインを、 管路における 液体の流れ方向に吸着室 1室分だけそれぞれ移動させる。
従って、 次の吸着室の配置状態では、 吸着室 2で脱着操作、 吸着室 3〜 6で濃 縮操作、 吸着室 7 ~ 8で吸着操作、 吸着室 1で溶離液回収操作がそれぞれ行われ るようになる。 このような操作を順次行うことによって、 光学異性体の混合物の 分離処理が連続的に効率よく達成される。
本発明の方法により、 ジヒドロキシヘプテン酸エステルの少なくとも一方の光 学異性体が効率よく分離することができ、 大きな分取生産性をもつて光学活性な ジヒドロキシヘプテン酸ェステルを得ることが可能となる。 得られる光学活性な ジヒドロキシヘプテン酸エステルは、 医薬品の有効成分として用いることができ 。
また、 前記ジヒドロキシヘプテン酸エステルは、 医薬品等として有用な下記一 般式 ( 6 ) で表される化合物のいずれかの光学異性体や、 下記一般式 ( 7 ) で表 されるメバロノラクトン系化合物のいずれかの光学異性体を、 酸化反応や脱水縮 合反応等の公知の反応によって製造する際の中間体として用いることができる。
Figure imgf000018_0001
(式中、 A rは、 置換基及び縮合環の少なくともいずれかを有していても良い、 灰素環 芳香族基又は複素環芳香族基を表し、 R,は、 崁素数が 1 ~ 2 0の直鎖状もしくは分枝 状のアルキル基、 フ Xニル基、 又は! ¾素数が 7 ~ 1 8のァラルキル基を表す。 )
Figure imgf000018_0002
(式中、 A rは、 置換基及び縮合環の少なくともいずれかを有していても良い、 茶環 芳香族基又は襖素璟芳香族基を表す。 )
実施例
以下、 本発明を実施例によって詳細に説明するが、 本発明はこれらの実施例に 限定されるものではな く合成例 1 [R*, S*— (E) ] — (±) — [3— (4一フルオロフェニル) - 1 - (1—メチノレエチル) 一 1 H—ィンドール一 2—ィル] 一 3, 5—ジヒ ド 口キシー 6—ヘプテン酸メチルの作製 >
(1) [R*, S*- (E) ] — (±) — [3- (4—フルオロフェ -ル) _ 1一 (1 一メチノレエチノレ) 一 1H—インドールー 2—ィル] 一 3 , 5ージヒ ドロキシー 6 一ヘプテン酸ナトリゥム塩の抽出
下記構造式 (8) で示される [R*, S*— (E) ] — (±) — [3— (4—フ ルオロフェニル) — 1一 ( 1一メチルェチノレ) - 1 H—ィンドール一 2—ィル] -3, 5—ジヒドロキシ一 6—ヘプテン酸ナトリウム塩を、 NOV ART I S製 の医薬品 L e s c o 1 (同社の登録商標) からクロ口ホルムカロ熱還流にて抽出し た。 得られた試料を1 H— NMR、 COSY, 13C_NMR、 HMQC、及び I R によって測定し、 得られたスぺクトルから抽出物を特定した。 iH— NMI^ 13 C一 NMR、 及ぴ I Rで検出されたピークを以下に示す。
Figure imgf000019_0001
'H-NMR (DMSO- d6) : δ 1. 30 (m, 1 H, H2 1) , 1. 53 (m, 1 H, H2 1) , 1. 5 5 (d, J = 6. 9Hz, 6I-I, HI 6, HI 7) , 1. 8 9 (m, 1 H, H23) , 2. 09 (m, 1 H, H2 3) , 3. 73 (m, 1 H, H22) , 4. 23 (m, 1 H, H20) , 4. 88 (m, 1H, H1 5) , 5. 70 (d d, J i= 1 6. 0Hz, J2=5. 4Hz, 1 H, H I 9) , 6. 59 (d, J = 15. 7Hz, 1H, H 18) , 7. 0— 7. 6 (m, 8H, H 2-H5, H 10, H 1 1 , H 13, H 14)
13C— NMR (DMSO-de) : 21. 5 (C 16, C 17) , 43. 7 (C 23) , 44. 5 (C 24) , 47. 2 (C I O) , 65. 9 (C 22), 69. 0 (C 20) ' 1 12. 1 (C 2) , 115. 4 (C 1 1, C 13) , 116.
9 (C 18) , 118 7 (C 5) , 119. 6 (C4) , 121. 6 (C3) , 141. 8 (C 19) 1 59. 8 (C I 2) , 16 1. 7 (C 8) (なお、 1 13. 0, 127. 7 134. 3, 及び 134. 8は四級炭素の C 1, C 6,
C 7, C 9)
I R (KB r d i s k) : 3000〜 2850 (w, C一 H伸縮) , 158 0 (s, C = 0伸縮) , 1 500 (m, 置換芳香族) , 1345 (m) , 122 0 ( s ) , 1155 (m) , 1 105 (w) , 970 (w) , 835 (m, p置 換芳香族) , 740 (m, 置換芳香族)
(2) [R*, S*— (E) ] — (±) — [3— (4—フルオロフェニル) ー1一 (1 —メチノレエチノレ) 一 1 H—ィンドール一 2—ィノレ] — 3 , 5ージヒドロキシ一 6 —ヘプテン酸ナトリゥム塩のメチルエステルイ匕
上記(1)で得た [R*, S*— (E) ] — (±) — [3— (4—フルオロフヱニル) - 1 - (1ーメチルェチル) 一1H—インドール一 2—ィル] 一 3, 5—ジヒド 口キシー 6—ヘプテン酸ナトリゥム塩を、 ジメチルホノレムァミド溶液中で、 炭酸 リチウムを触媒として過剰のヨウ化メチルと反応させ、 得られた油性成分をジェ チルエーテルにより抽出した。得られた試料を1 H— NMR、 MS、及び I Rで測 定し、得られたスぺクトルから抽出物を特定した。 — NMR及び I Rで検出さ れたピークを以下に示す。
^-NMR (DMSO-de) : δ 1. 41 (m, 1 H) , 1. 59 (d, J =7. 0Hz, 6H) , 2. 30 (d d, J i= 14. 8Hz, J 2= 8. 6 H z , 1 H) , 2. 44 (d d, J i= 14. 8Hz, J 2=4. 3Hz, 1 H) , 3. 58 ( s, 31- I), 3. 87 (m, 1 H), 4. 24 (m, 1 H) , 4. 50 (m, 1H), 4. 90 (m, 1 H) , 5. 70 (d d, J i= 16. 1Hz, J2= 5. 8H z, 1 H) , 6. 6 9 (d, J = l 5. 7H z , 1 H) , 7. 0— 7. 6 (m, 8H)
I R (KB r d i s k) : 3 0 5 0〜 28 5 0 (w, C一 H伸縮) , 1 72 0 ( s, C = 0伸縮) , 1 54 5 (m) , 1 500 (m, 置換芳香族) , 1 34 5 (m) , 1 2 20 ( s ) , 1 1 5 5 (m) , 1 1 00 (w) , 9 7 0 (w) , 8 3 5 (m, p置換芳香族) , 740 (m, 置換芳香族)
<合成例 2 [R*, S*— (E) ] 一 (±) — [3— (4一フルオロフェエル) — 1一 (1ーメチノレエチノレ) 一 1 H—インドーノレ _ 2—ィノレ] - 3, 5—ジヒ ド 口キシー 6—ヘプテン酸ェチルの作製 >
(1) [R*, S*- (E) ] — (±) — [3— (4一フルオロフェエル;) _ 1 _ (1 —メチルェチル) ― 1 H—ィンドール一 2—ィル] - 3, 5ージヒ ドロキシ一 6 —ヘプテン酸ナトリゥム塩の抽出
合成例 1の(1)と同じ手法により得た。
(2) [R*, S*- (E) ] — (±) — [3— (4—フルオロフェエル) 一 1— (1 ーメチノレエチノレ) 一 1 H—ィンドール一 2—ィノレ] 一 3, 5ージヒ ドロキシ一 6 —ヘプテン酸ナトリゥム塩のェチルエステル化
ョゥ化メチルをョゥ化工チルに代えて、 合成例 1の(2)と同じ手法により得た。 得られた試料を1 H— NMR、 MS、及び I Rによって測定し、得られたスぺクト ルから抽出物を特定した。 — NMR及び I Rで検出されたピークを以下に示す。 aH-NMR (DMSO- d e) δ 1. 1 6 ( t , J ι= 7. 1 H z , J 2= 7. 1 H z , 3H) , 1. 5 8 ( d, J = 7. 0H z , 6 H) , 2. 2 9 ( d d, J = 1 4. 8H z , J 2= 8. 5Hz , 1 H) , 2. 4 2 (d d, J 1 4. 8H z , J =4. 5H z , 1 H) , 3. 4 (m, 1 H) , 3. 8 7 (m, 1 H) , 4. 0 2 (q, J = 7. 0H z , 2 H) , 4. 2 3 (m, 1 H) , 4. 76 (m, 1 H) , 4. 90 (q, J = 7. 0H z , 1 H) , 5. 7 2 (d d, J t= 1 6. 1 H z , J 5. 9H z , 1 H) , 6. 6 2 (d, J = 1 5. 7H z, 1 H) , 7. 0- 7. 7 (m, 8H) I R (KB r d i s k) : 3050〜2850 (w, C—H伸縮) , 172 0 ( s, C = 0伸縮) , 1550 (m) , 1505 (m, 置換芳香族) , 134 5 (m) , 1220 ( s ) , 1 155 (m) , 1 100 (w) , 970 (w) ,
835 (m, ρ置換芳香族) , 740 (m, 置換芳香族) く実施例 1 >
(1) セルロース トリス (4ーィソプロピルフエ二ルカルバメート) の合成 セルロース 50 gを乾燥ピリジンに分散させ、 これに 4—イソプロピルフエ二 ルイソシアナ一ト 310 g (セルロース中の水酸基に対して 2. 0当量) を加え て 24時間加熱還流した。反応物をメタノールに注ぎ、生じた白色固体を濾別し、 減圧乾燥してセルロース トリス (4—イソプロピルフエ二ルカルバメート) を 得た。 得られた生成物の炭素、 水素、 及び窒素元素の元素分析の結果を表 1に示 す。
(2) 光学異性体分離用充填剤の作製
(1)で得られたセルロース トリス (4一イソプロピルフエ二ルカルバメート) をァセトンに溶解させ、 得られたァセトン溶液を粒径 20 mのシリカゲルへ均 一に振りかけた後、 溶剤を留去させることにより、 セルロース トリス (4ーィ ソプロピルフェエル力ルバメート) が担持された充填剤を得た。
(3) 光学異性体分離用カラムの作製
(2)で作製した充填剤を、長さ 25 cm、内径 0. 46 cmのステンレス製カラ ムにスラリ一充填法で充填し、 光学異性体分離用カラムを作製した。
(4) [R*, S*- (E) ] _ (±) _ [3— (4—フルオロフェニル) — 1一 (1 ーメチルェチル) -1H一^ ンドール一 2—ィル] -3, 5—ジヒ ドロキシー 6 一ヘプテン酸メチルの光学異性体の分離
前記 (3)で得られた光学異性体分離用カラムを用い、合成例 1で作製した [ R *, S*- (E) ] — (±) — [3— (4—フルオロフェニル) 一1— (1ーメチルェ チル) 一 1H—インドールー 2—ィル] _3, 5—ジヒ ドロキシ一 6—ヘプテン 酸メチルについて液体クロマトグラフィーにより光学分割を行った。 この光学分 割における保持係数及び分離係数を表 2に、 クロマトグラフを図 3に示す。 なお、 前記液体ク口マトグラフィ一は、 測定装置として J AS C O社製 U V— 970を用い、 下記の分析条件で行つた。 なお、 検出されたピークの成分の旋光 性を旋光検出器 PDR_Ch i r a 1社製 Ad V a n c e d La s e r P o 1 a r i me t e rによって測定することにより、 検出されたピークが光学異 性体であることを確認することができる。 また、 前記保持係数 (k, ) は下記式 (1) 及び(2) 力 算出し、前記分離係数( は下記式 (3) から算出した。 ぐ分析条件 >
移動相:へキサン / 2—プロパノール =80Z 20 (ν/ν)
¾¾¾: 1. 0 m 1 / i n
カラム温度: 25°C
検出波長: 254 nm
k ι = ( 1— v o) Z v o
(ただし、 V ,は、 各光学異性体のょリ早く溶出する溶莨成分の保持容量 (保持時間) を示し、 v oはトリー t e r t—ブチルベンゼンの溶出容量 (溶出時間) であるデッド ボリューム (デッドタイム) を示す。 )
k a = ( V a— V o) / v o
(ただし、 V 2は、 各光学異性体のより遅く溶出する溶質成分の保持容!: (保持時間) を示し、 V。はトリ一 t e r t—ブチルベンゼンの溶出容量 (溶出時間) であるデッド ボリューム (デッドタイム) を示す。 ) or = k 2' / k ι'
(ただし、 ,及び^ 2は、 各光学異性体の溶質成分の保持容量 (保持時間) を示し、 V
0はトリー ΐ β r ΐ一ブチルベンゼンの溶出容量 (溶出時閬) であるデッドボリューム
(デッド イム) を示す β )
<実施例 2>
(1) セルロース トリス (4 _η_ブチルフエ二ルカルバメート) の合成
4ーィソプロピルフエ二ルイソシアナ一トの代わりに 4 _η—ブチルフエエル ィソシアナ一トを使用した他は、実施例 1の(1)と同じ手法により合成し、セル口 ース トリス (4— η_プチルフエ二ルカルバメート) を得た。 得られた生成物 の炭素、 水素、 及び窒素元素の元素分析の結果を表 1に示す。
(2) 光学異性体分離用充填剤の作製
(1)で得られたセルロース トリス (4— η—ブチルフエ二ルカノレパメート)を 使用した以外は、実施例 1の (2)と同じ手法により光学異性体分離用充填剤を作製 した。
(3) 光学異性体分離用カラムの作製
(2)で得られた光学異性体分離用充填剤を使用した以外は、 実施例 1の(3)と同 じ手法により光学異性体分離用力ラムを作製した。
(4) [R*, S*— (E) ] _ (±) — [3— (4—フルオロフヱニル) -1- (1 ーメチルェチル) — 1 H—インドールー 2—ィル] _3, 5—ジヒ ドロキシ一 6 一ヘプテン酸メチルの光学異性体の分離
(3)で得られた光学異性体分離用カラムを用い、合成例 1で作製した [R*, S* 一 (E) ] — (±) — [3— (4—フルオロフェニル) 一1— (1—メチルェチ ノレ) _ 1 H—インドールー 2—ィル] —3, 5—ジヒ ドロキシ一 6—ヘプテン酸 メチルについて、 実施例 1と同様に液体ク口マトグラフィ一により光学分割を行 つた。 この光学分割における保持係数及び分離係数を表 2に、 クロマトグラフを 図 4に示す。
<実施例 3〉
(1) セルロース トリス ( 4—ェチルフエ二ルカルバメート) の合成
4—イソプロピルフエ-ルイソシアナートの代わりに 4ーェチノレフエニノレイソ シアナ一トを使用した他は、実施例 1の(1)と同じ手法により合成し、セルロース トリス ( 4 -ェチルフェ二ルカルバメート) を得た。 得-られた生成物の炭素、 水素、 及び窒素元素の元素分析の結果を表 1に示す。
(2) 光学異性体分離用充填剤の作製
(1)で得られたセルロース トリス (4—ェチルフエ-ルカルバメート) を使用 した以外は、実施例 1の (2)と同じ手法により光学異性体分離用充填剤を作製した。
(3) 光学異性体分離用カラムの作製
(2)で得られた光学異性体分離用充填剤を使用した以外は、 実施例 1の(3)と同 じ手法により光学異性体分離用力ラムを作製した。
(4) [R*, S *- (E) ] 一 (±) — [ 3— (4一プノレオ口フエュノレ) _ 1一 (1 ーメチルェチル) 一 i H—インドール一 2—ィノレ] - 3 , 5—ジヒ ドロキシ _ 6 —ヘプテン酸メチルの光学異性体の分離
(3)で得られた光学異性体分離用カラムを用い、合成例 1で作製した [R *, S * 一 (E) ] — (±) — [ 3— (4—フルオロフェニル) 一 1一 (1ーメチルェチ ル) 一 1 H—インドール一 2—ィル] —3, 5—ジヒ ドロキシ一 6—ヘプテン酸 メチルについて、 実施例 1と同様に液体クロマトグラフィーにより光学分割を行 つた。 この光学分割における保持係数及び分離係数を表 2に、 クロマトグラフを 図 5に示す。 ぐ実施例 4 >
(1) セルロース トリス (4一 s e c—ブチルフエ二ルカルバメート) の合成 4一イソプロピノレフエ-ノレイソシアナートの代わりに 4一 s e cーブチノレフエ -ルイソシアナ一トを使用した他は、実施例 1の(1)と同じ手法により合成し、セ ルロース トリス (4一 s e c—ブチルフエ二ルカルバメート) を得た。 得られ た生成物の炭素、 水素、 及び窒素元素の元素分析の結果を表 1に示す。
(2) 光学異性体分離用充填剤の作製
(1)で得られたセノレロース トリス ( 4一 s e c—プチノレフエ二ルカノレバメー ト)を使用した以外は、実施例 1の (2)と同じ手法により光学異性体分離用充填剤 を作製した。
(3) 光学異性体分離用カラムの作製
(2)で得られた光学異性体分離用充填剤を使用した以外は、 実施例 1の(3)と同 じ手法により作製した。
(4) [R *, S *— (E ) ] — (±) — [ 3— ( 4—フルオロフ工ニル) _ 1ー (1 —メチルェチル) — i H—インドール一 2—ィル] 一 3 , 5—ジヒ ドロキシー 6 —ヘプテン酸メチルの光学異性体の分離
(3)で得られた光学異性体分離用カラムを用い、合成例 1で作製した [R *, S * _ ( E) ] — (±) _ [ 3— (4一フルオロフヱ-ル) 一 1— ( 1—メチルェチ ル) 一 1 H—インドールー 2—ィル] —3 , 5—ジヒ ドロキシ一 6—ヘプテン酸 メチルについて、 実施例 1と同様に液体クロマトグラフィーにより光学分割を行 つた。 この光学分割における保持係数及び分離係数を表 2に、 クロマトグラフを 図 6に示す。 ぐ実施例 5 >
(1) セルロース トリス ( 4一イソプチルフエ二ルカルバメート) の合成
4 _イソプロピルフェ二ルイソシァナートの代わりに 4一イソプチルフェ二ノレ ィソシアナ一トを使用した他は、実施例 1の(1)と同じ手法により合成し、セル口 ース トリス (4—イソブチルフエ二ルカルバメート) を得た。 得られた生成物 の炭素、 水素、 及び窒素元素の元素分析の結果を表 1に示す。
(2) 光学異性体分離用充填剤の作製
(1)で得られたセルロース トリス (4ーィソブチルフエ二ルカルバメート) を 使用した以外は、実施例 1の (2)と同じ手法により光学異性体分離用充填剤を作製 した。
(3) 光学異性体分離用カラムの作製
(2)で得られた光学異性体分離用充填剤を使用した以外は、 実施例 1の(3)と同 じ手法により作製した。
(4) [R*, S*_ (E) ] — (±) _ [3— (4—フルオロフェ-ル) - 1- (1 —メチルェチル) 一 1 H—インドール一 2—ィル] -3, 5—ジヒ ドロキシ _6 —ヘプテン酸メチルの光学異性体の分離
(3)で得られた光学異性体分離用カラムを用い、合成例 1で作製した [R*, S* 一 (E) ] _ (±) — [3— (4—フルオロフェニル) - 1 - (1—メチルェチ ル) 一 1H—インドール一 2—ィル] —3, 5—ジヒ ドロキシ一 6—ヘプテン酸 メチルについて、 実施例 1と同様に液体ク口マトグラフィ一により光学分割を行 つた。 この光学分割における保持係数及び分離係数を表 2に、 クロマトグラフを 図 7に示す。 合成したポリマ一の元素分析
Figure imgf000027_0001
注轵:カツコ内は理論値 ぐ比較例 1>
セルロース トリス (4一メチルフエ二ルカルバメート) がシリ力ゲルに担持 されている充填剤であるダイセル化学工業 (株) 製光学異性体分離用充填剤 CH I RALCEL OG (ダイセル化学工業社の登録商標、 粒径 20 μ m) を、 長 さ 25。1!1、内径0.46 c ΐϋのステンレス製カラムにスラリー充填法で充填し、 光学異性体分離用カラムを作製した。
得られた前記光学異性体分離用カラムを用い、 合成例 1で作製した [R*, S* 一 (E) ] — (±) — [3— (4—フルオロフェ -ル) — 1— (1ーメチルェチ ノレ) 一 1H—インドール一 2—ィル] —3, 5—ジヒ ドロキシー 6—ヘプテン酸 メチルについて、 実施例 1と同様に液体クロマトグラフィーにより光学分割を行 つた。 この光学分割における保持係数及び分離係数を表 2に、 クロマトグラフを 図 8に示す。
<比較例 2>
セノレロース トリス (4一クロ口フエ;^レ力 レバメート) がシリカゲノレに担持 されている充填剤であるダイセル化学工業 (株) 製光学異性体分離用充填剤 CH I RALCEL OF (ダイセル化学工業社の登録商標、 粒径 20μιη) を、 長 さ 25 cm ¾0.46 cmのステンレス製カラムにスラリー充填法で充填し、 光学異性体分離用力ラムを作製した。
得られた前記光学異性体分離用カラムを用い、 合成例 1で作製した [R*, S* 一 (E) ] — (±) — [3— (4—フルオロフヱ-ル) 一1— (1—メチルェチ ノレ) 一 1 H—インドーノレ一 2—ィノレ] -3, 5—ジヒ ドロキシ一 6—ヘプテン酸 メチノレについて、 実施例 1と同様に液体ク口マトグラフィ一により光学分割を行 つた。 この光学分割における保持係数及び分離係数を表 2に、 クロマトグラフを 図 9に示す。 表 2 [FT, S*— (E) ] — (±) — [3— (4一フルオロフェニル)一 1— (1一 メチルェチル)一 1 H—インド一ルー 2—^ fル] —3, 5—ジヒドロキシ一 6—ヘプ丁 ン酸 チルの光学分割の結果 '
Figure imgf000029_0001
<実施例 6〜10>
合成例 1で作製した [R*, S*— (E) ] 一 (土) 一 [3— (4—フルオロフ ェニル) 一1— (1—メチルェチル) 一 1H— ^ ンドーノレ一 2—ィル] 一 3, 5 ージヒドロキシー 6 _ヘプテン酸メチルに代えて、合成例 2で作製した [R*, S *- (E) ] _ (±) — [3— (4—フルオロフェニル) - 1 - (1ーメチルェチ ル) 一 1 H—インドーノレ一 2—イスレ] 一 3, 5—ジヒ ドロキシ一 6—ヘプテン酸 ェチルの光学異性体の分離を、 実施例 1〜実施例 5と同様に行った。 これらの光 学分割における保持係数及び分離係数を表 3に、 クロマトグラフを図 10〜図 1 4にそれぞれ示す。
<比較例 3及び 4〉
合成例 1で作製した [R*, S*_ (E) ] — (±) — [3— (4—フルオロフ ェ -ル) - 1 - (1ーメチノレエチル) 一 1H—インドール一 2 fル] —3, 5 —ジヒドロキシー 6—ヘプテン酸メチルに代えて、合成例 2で作製した [R*, S *- (E) ] — (±) — [3— (4一フルオロフェニル) - 1 - (1—メチルェチ ル) 一1H—インドール一 2—ィノレ] —3, 5—ジヒ ドロキシ一 6—ヘプテン酸 ェチルの光学異性体の分離を、 比較例 1及び比較例 2と同様に行った。 これらの 光学分割における保持係数及び分離係数を表 3に、 クロマトダラフを図 15及び 図 16にそれぞれ示す。 表 3 [R*, S*- (E) ] - (±) - [3— (4一フルオロフェニル) 一 1一(1一 メチルェチル)一 1 H—インドールー 2—ィル]一 3, 5—ジヒドロキシ一 6—へプ亍 ン酸ェテルの光学分割の結桊
Figure imgf000030_0001
ぐ実施例 11 >
実施例 1の (2)で得られた光学異性体分離用充填剤を内径 1. 0 cm、長さ 10 cmのステンレス製カラム 8本にスラリ一充填法で充填し、 小型擬似移動床式装 置に取り付け、 合成例 1で作製した [R*, S*- (E) ] — (±) _ [3— (4 —フ /レオ口フエ二ノレ) 一1— (1—メチノレエチノレ) 一 iH—インドーノレ一 2—ィ ル] — 3 , 5—ジヒドロキシ _ 6—ヘプテン酸メチルの分取を行つた。 小型擬似 移動床式装置の操作条件、及び得られたラフイネ一ト成分の生産性を表 4に示す。 また、 前記小型擬似移動床式装置による [R*, S*- (E) ] — (±) — [3 ― (4—フノレォロフエ-ノレ) _1一 (1—メチノレエチノレ) 一 1H—インドーノレ一 2—ィル] 一 3, 5—ジヒドロキシ _ 6—ヘプテン酸メチルの分取条件を以下に 示す。 く分取条件〉
移動相:へキサンノ 2—プロパノール =80/20 (v/v)
力ラム温度: 40 °C
検出波長: 254 nm
混合溶液の濃度: 5 g/L (溶媒は移動相と同じ)
<実施例 12〜実施例 15 >
実施例 2〜実施例 5の(2)で得られた光学異性体分離用充填剤のそれぞれを使 用した以外は、 実施例 11と同様に、 小型擬似移動床式装置による [R*, S*— (E) ] 一 (±) — [ 3— (4一フルオロフヱ ノレ) ー 1一 (1ーメチルェチル) — 1 H—インドールー 2—ィル] 一 3 , 5—ジヒドロキシ一 6—ヘプテン酸メチ ルの分取を行った。 小型擬似移動床式装置の操作条件、 及び得られたラフイネ一 ト成分の生産性を表 4に示す。
<比較例 5〉
比較例 2で用意した光学異性体分離用充填剤を使用した以外は、 実施例 1 1と 同様に、 小型擬似移動床式装置による [R*, S *— (E) ] _ (±) — [ 3— ( 4 —フノレォロフエ-ノレ) 一1— ( 1—メチノレエチノレ) 一 1 H—インドーノレ一 2—ィ ル] 一 3, 5—ジヒドロキシー 6—ヘプテン酸メチルの分取を行った。 小型擬似 移動床式装置の操作条件、及び得られたラフイネ一ト成分の生産性を表 4に示す。 なお、 比較例 1で用意した光学異性体分離用充填剤は、 単カラムによる前記液 体ク口マトグラフィ一において分離が不十分であったため、 前記光学異性体分離 用充填剤については、 前記小型擬似移動床式装置への適用を実施しなかった。 表 4
Figure imgf000031_0001
*:光学巽性体分離用充填剤 1 kg当たリが 1 日に処理可能なラセミ体の質量 <実施例 1 6 >
実施例 1の (2)で得られた光学異性体分離用充填剤を実施例 1 1と同様に充填 した小型擬似移動床式装置を用いて、 合成例 2で作製した [R*, S *- (E) ] 一 (土) 一 [ 3 - ( 4—フルオロフェエル) 一 1一 ( 1ーメチルェチノレ) 一 1 H 一インドール一 2—ィル] 一 3, 5—ジヒドロキシー 6—ヘプテン酸ェチルの分 取を行った。 小型擬似移動床式装置の操作条件及び得られたラフイネ一ト成分の 生産性を表 5に示す。
<実施例 1 7〜実施例 2 0 >
実施例 2〜実施例 5の (2)で得られた光学異性体分離用充填剤のそれぞれを、実 施例 1 2〜実施例 1 5と同様に充填した小型擬似移動床式装置をそれぞれ用いて、
[R*, S *— (E) ] — (±) — [ 3— ( 4—フルオロフヱ-ル) 一 1— ( 1— メチルェチル) —i H—インドール一 2—ィル] 一 3, 5—ジヒ ドロキシー 6— ヘプテン酸ェチルの分取を行つた。 小型擬似移動床式装置の操作条件及び得られ たラフィネート成分の生産性を表 5に示す。
<比較例 6 >
比較例 2で用意した光学異性体分離用充填剤を実施例 1 6と同様に充填した小 型擬似移動床式装置を用いて、 [R *, S *— ( E) ] — (±) — [ 3— (4ーフ ルオロフェニル) ー 1一 (1ーメチルェチル) 一 1 H—インドールー 2—ィル] — 3, 5—ジヒドロキシー 6—へプテン酸ェチルの分取を行つた。 小型擬似移動 床式装置の操作条件及び得られたラフイネ一ト成分の生産性を表 5に示す。
なお、 比較例 1で用意した光学異性体分離用充填剤は、 単カラムによる前記液 体ク口マトグラフィ一において分離が不十分であったため、 前記光学異†生体分離 用充填剤については、 前記小型擬似移動床式装置への適用を実施しなかった。 表 5
Figure imgf000033_0001
*:光学異性体分離用充填剤 i kg当たりが 1 日に処理可能なラセミ体の莨量
産業上の利用可能性
本発明により、 光学活性なジヒドロキシヘプテン酸エステルをより一層明確に 分離することができ、 また、 より一層大きな分取生産性をもって製造することが できる。

Claims

請求の範囲
1 . 下記一般式 ( 1 ) で表されるジヒドロキシヘプテン酸エステルの光学異性体 の混合物を含有する : N溶—— 液から、 担体と、 この担体に担持された多糖誘導体とから なる充填剤を使用する 体一 =ク口マトグラフィ一により、 光学活性な前記ジヒドロ キシヘプテン酸エステルを分離する方法であって、
前記多糖誘導体は、 多糖の水酸基及びァミノ基の水素原子の一部もしくは全部 が、 下記一般式 ( 2 ) で表される置換基及び一般式 (3 ) で表される置換基の一 種又は二種以上で置換されていることを特徴とする方法。
Figure imgf000034_0001
(式中、 A rは、 置換基及び縮合環の少なくともいずれかを有していても良い、 炭素環 芳香族基又は複素琛芳香族基を表し、 R,は、 炭素数が 1〜 2 0の直鎖状もしくは分枝 状のアルキル基、 フ: L二ル基、 又は崁素数が 7〜 1 8のァラルキル基を表す。 〉
2
(式中、 R 2は、 |¾素数が 2〜 8の直鎖状もしくは分枝状のアルキル基を表す。 )
Figure imgf000034_0002
(式中、 R 2は、 炭素数が 2 ~ 8の直鎖状もしくは分枝状のアルキル基を表す。 )
2 . 前記多糖誘導体は、 セルロース又はアミロースであることを特徴とする請求 項 1記載の方法。
3 . 前記多糖誘導体の前記アルキル基は、前記一般式(2 ) 又は前記一般式(3 ) におけるフエニル基の 4位の炭素原子に結合していることを特徴とする請求項 1 又は 2に記載の方法。
4 . 前記多糖誘導体の前記アルキル基は、 ェチル基、 イソプロピル基、 n—ブチ ル基、 ィソブチル基、 又は s e c—ブチル基であることを特徴とする請求項 3記 載の方法。
5 . 前記液体ク口マトグラフィ一は、 擬似移動床式クロマトグラフィーであるこ とを特徴とする請求項 1〜 4のいずれか一項に記載の方法。
PCT/JP2004/005924 2003-04-24 2004-04-23 光学活性なジヒドロキシヘプテン酸エステルの分離方法 WO2004094377A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005505808A JPWO2004094377A1 (ja) 2003-04-24 2004-04-23 光学活性なジヒドロキシヘプテン酸エステルの分離方法
EP04729271A EP1623976A4 (en) 2003-04-24 2004-04-23 PROCESS FOR SEPARATING OPTICALLY ACTIVE DIHYDROXY-HEPTENOIC ACID ESTERS
US11/254,856 US7459579B2 (en) 2003-04-24 2005-10-21 Method of separating optically active dihydroxy-heptenoic acid esters

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003119819 2003-04-24
JP2003-119819 2003-04-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/254,856 Continuation US7459579B2 (en) 2003-04-24 2005-10-21 Method of separating optically active dihydroxy-heptenoic acid esters

Publications (1)

Publication Number Publication Date
WO2004094377A1 true WO2004094377A1 (ja) 2004-11-04

Family

ID=33308112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005924 WO2004094377A1 (ja) 2003-04-24 2004-04-23 光学活性なジヒドロキシヘプテン酸エステルの分離方法

Country Status (6)

Country Link
US (1) US7459579B2 (ja)
EP (1) EP1623976A4 (ja)
JP (1) JPWO2004094377A1 (ja)
KR (1) KR20050114282A (ja)
CN (1) CN100400510C (ja)
WO (1) WO2004094377A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004099766A1 (ja) * 2003-04-24 2006-07-13 ダイセル化学工業株式会社 光学異性体用分離剤
JPWO2016182083A1 (ja) * 2015-05-14 2018-03-01 株式会社ダイセル 光学異性体用分離剤

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290635A (ja) * 1988-05-18 1989-11-22 Daicel Chem Ind Ltd 光学分割方法
WO1997023778A1 (fr) * 1995-12-21 1997-07-03 Daicel Chemical Industries, Ltd. Remplissage de chromatographie liquide a haute performance
WO2002030853A1 (fr) * 2000-10-13 2002-04-18 Daicel Chemical Industries, Ltd. Matiere de remplissage pour separation d'isomeres optiques et procede permettant la separation d'isomeres optiques au moyen de cette matiere de remplissage

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60500015A (ja) * 1982-11-22 1985-01-10 サンド・アクチエンゲゼルシヤフト メバロラクトン同族体とその誘導体、これらの製造法およびこれらを含有する製薬学的組成物
MY105067A (en) * 1988-10-13 1994-07-30 Novartis Ag Process for the preparation of 7-substituted-hept-6-enoic and -heptanoic acids and derivatives and intermediates thereof.
DE69526784T2 (de) 1994-02-25 2002-09-05 Daicel Chem Verfahren zur herstellung von optisch aktiven mevalonolactonen
JPH09206502A (ja) 1995-12-01 1997-08-12 Daicel Chem Ind Ltd 擬似移動床式分離装置
US6946557B2 (en) 2000-10-13 2005-09-20 Daicel Chemical Industries, Ltd. Process for producing optically active ethyl (3R, 5S, 6E)-7-[2-cycloproply-4-(4-fluorophenyl)quinolin-3-yl]-3,5-dihydroxy-6-heptenoate
DE10216967A1 (de) * 2002-04-16 2003-11-13 Bayer Ag Verfahren zur Herstellung spezieller aromatischer Aldehyde

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290635A (ja) * 1988-05-18 1989-11-22 Daicel Chem Ind Ltd 光学分割方法
WO1997023778A1 (fr) * 1995-12-21 1997-07-03 Daicel Chemical Industries, Ltd. Remplissage de chromatographie liquide a haute performance
WO2002030853A1 (fr) * 2000-10-13 2002-04-18 Daicel Chemical Industries, Ltd. Matiere de remplissage pour separation d'isomeres optiques et procede permettant la separation d'isomeres optiques au moyen de cette matiere de remplissage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004099766A1 (ja) * 2003-04-24 2006-07-13 ダイセル化学工業株式会社 光学異性体用分離剤
JPWO2016182083A1 (ja) * 2015-05-14 2018-03-01 株式会社ダイセル 光学異性体用分離剤

Also Published As

Publication number Publication date
EP1623976A1 (en) 2006-02-08
CN1809535A (zh) 2006-07-26
US20060079708A1 (en) 2006-04-13
KR20050114282A (ko) 2005-12-05
US7459579B2 (en) 2008-12-02
JPWO2004094377A1 (ja) 2006-07-13
CN100400510C (zh) 2008-07-09
EP1623976A4 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
US7749389B2 (en) Filler used for separating optical isomers and process for separating optical isomers with the filler
AU691582B2 (en) Process for producing optically active mevalonolactone compound
JP4236463B2 (ja) 光学活性な(3r,5s,6e)−7−[2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル]−3,5−ジヒドロキシ−6−ヘプテン酸エチルの製造方法
WO1991002006A1 (en) Polysaccharide derivatives and separating agent
EP1366809B1 (en) Separating agent for optical isomer
US7459579B2 (en) Method of separating optically active dihydroxy-heptenoic acid esters
EP1391239B1 (en) Method for producing an optical isomer separating filler and its use in chromatography
JP6016631B2 (ja) 光学異性体用分離剤
JPS60226833A (ja) 多糖の芳香族エステル誘導体より成る分離剤
EP1618949B1 (en) Agent for separating optical isomers
JP4293792B2 (ja) 多環式構造を有する多糖誘導体よりなる分離剤
US7550596B2 (en) Method of producing ethyl (3R, 5S, 6E)-7-[2 cyclopropyl-4-(fluorophenyl) quinoline-3-yl]-3, 5-dihydroxy-6-heptenoate
WO2004099766A1 (ja) 光学異性体用分離剤

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505808

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057020045

Country of ref document: KR

Ref document number: 11254856

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004729271

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3120/CHENP/2005

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 1020057020045

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048171226

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004729271

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11254856

Country of ref document: US