WO2004090490A1 - Diffusor, wellenfrontquelle, wellenfrontsensor und projektionsbelichtungsanlage - Google Patents

Diffusor, wellenfrontquelle, wellenfrontsensor und projektionsbelichtungsanlage Download PDF

Info

Publication number
WO2004090490A1
WO2004090490A1 PCT/EP2003/008738 EP0308738W WO2004090490A1 WO 2004090490 A1 WO2004090490 A1 WO 2004090490A1 EP 0308738 W EP0308738 W EP 0308738W WO 2004090490 A1 WO2004090490 A1 WO 2004090490A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavefront
scattering
diffuser
source
scattering structure
Prior art date
Application number
PCT/EP2003/008738
Other languages
English (en)
French (fr)
Inventor
Martin Schriever
Helmut Haidner
Original Assignee
Carl Zeiss Smt Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10317278A external-priority patent/DE10317278A1/de
Application filed by Carl Zeiss Smt Ag filed Critical Carl Zeiss Smt Ag
Priority to AU2003281995A priority Critical patent/AU2003281995A1/en
Publication of WO2004090490A1 publication Critical patent/WO2004090490A1/de
Priority to US11/246,633 priority patent/US7388696B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0252Diffusing elements; Afocal elements characterised by the diffusing properties using holographic or diffractive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0284Diffusing elements; Afocal elements characterized by the use used in reflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection

Definitions

  • Wavefront sensor Description diffuser, wavefront source. Wavefront sensor and projection exposure tunqsanlaqe
  • the invention relates to a diffuser with a scattering structure for a wavefront source, to a corresponding wavefront source which, in addition to the diffuser, contains a wavefront formation structure in the beam path after or at the level of the scattering structure, to an associated wavefront sensor and an associated projection exposure system.
  • a wavefront source of this type is disclosed in DE 101 09 929 A1 as part of a device for wavefront measurement of optical systems by means of shear interferometry, in particular a projection lens of a microlithography projection exposure system.
  • a two-dimensional multi-hole mask which is also referred to as a coherence mask, preferably functions there as the wavefront formation structure.
  • the spatial structure of the wavefront source serves to form the spatial coherence of the wavefront.
  • the wavefront formation structure can be attached to a screen or a screen can be connected upstream of it to control the spatial coherence, since the lighting of the wavefront structure should ideally be as incoherent as possible.
  • a refractive or diffractive focusing element operating in transmission can be provided in front of the wavefront formation structure in order to adapt the illumination aperture to the aperture diaphragm of the measured projection objective.
  • the focusing screen can lie in front of or behind the focusing element.
  • the wavefront source in such a way that it can be easily integrated into a microlithography projection exposure system in order to be able to check the imaging quality of the projection objective not only before it is installed in the projection exposure system, but also afterwards at its place of use from time to time.
  • the wavefront formation structure typically contains a single so-called pinhole or a one- or two-dimensional arrangement of several such pinholes, that is to say openings of very small diameters.
  • the UV range below 200 nm and especially in the EUV range, especially for the field of application of microlithography to achieve very fine wafer structures.
  • a difficulty here is that conventional lighting systems, such as those used in micrololithography projection exposure systems, in order to deliver the desired UV or EUV exposure radiation, have a certain pupil division and, moreover, do not fill the full numerical aperture of the projection objective.
  • the invention is therefore based on the technical problem of providing a wavefront source of the type mentioned at the outset, which is capable of making the wavefront radiation comparatively homogeneous over the beam cross section of interest and over the full numerical aperture of the optical system measured with comparatively high effectiveness even for UV and in particular to provide EUV systems, as well as a diffuser that can be used for such a wavefront source, a wavefront sensor equipped with such a wavefront source and a projection exposure system containing the same.
  • the invention solves this problem by providing a diffuser with the features of claim 1, a wavefront source with the features of claim 6 or 8, a wavefront sensor with the features of claim 10 and a projection exposure system with the features of claim 1 1.
  • the diffuser according to the invention characteristically has a diffractive CGH (computer-generated hologram) scatter structure with pre- given angular scatter profile.
  • CGH computer-generated hologram
  • Such diffractive scattering structures can be calculated by algorithms known per se for this purpose, as are customary for computer-generated holograms (CGH) (hence the name “CGH structure”), and typically cannot be described by analytical functions.
  • the scattering structure can be transmitting or realized reflectively.
  • the diffractive CGH scattering structure is designed for a two-dimensional, essentially Gaussian angle scattering profile.
  • the scattering structure can advantageously be formed by a transmitting, reflecting or absorbing multilayer structure, e.g. with a base layer and at least one overlying structural layer according to the calculated CGH pattern, so that the multilayer structure has at least two defined step heights.
  • the structuring causes a light path variation in accordance with the calculated CGH pattern.
  • the dimensions of the structures result from the wavelength and the materials used and the required spread.
  • For the preferred multilayer structure for use with EUV there are favorable structure sizes from 30 nm to 3000 nm perpendicular to the light direction and from 3 nm to 200 nm in the light direction.
  • means are provided for movably holding the diffractive CGH scattering structure, with which the latter can be used in one or more spatial directions, i.e. can be moved with respect to one or more of the six degrees of freedom of movement, preferably during a measurement process.
  • the wavefront source according to the invention contains such a diffuser according to the invention. It has been shown that such a diffractive CGH scattering structure can be well dimensioned, especially for the UV and especially the EUV wavelength range, and can also be realized with materials suitable for this wavelength range and has sufficient scattering power.
  • a focusing element is located in the beam path in front of the wavefront formation structure.
  • the diffractive CGH scattering structure can be in front of or behind the focusing element or at the same height.
  • the focusing element can be any conventional, refractive or diffracting focusing element that works in transmission or reflection.
  • the wavefront source contains a focusing element with a reflecting diffractive focusing structure in the beam path at the level of the scattering structure of the diffuser or between it and the wavefront formation structure.
  • the diffuser can be a diffuser according to the invention or a conventional diffuser, as required.
  • Both of the above measures i.e.
  • the special diffuser and the reflecting diffractive focusing structure individually and in combination, contribute to the wavefront source having a wavefront with comparatively homogeneous and complete illumination of the field or the pupil of the optical system to be measured interferometrically, especially in UV and in particular EUV -Wavelength range can provide.
  • the scattering structure of the inventive or conventional diffuser and the wavefront formation structure are arranged next to one another on a common seed substrate formed. This measure can preferably be combined with the use of a reflective focusing element.
  • the wavefront source according to the invention can advantageously be used for a wavefront sensor with which lenses for use in projection exposure systems can be measured with high precision with regard to imaging errors.
  • the wavefront sensor can be implemented as an independent measuring device, but it can also be integrated into a projection exposure system.
  • the wavefront source of the wavefront sensor can e.g. fixed component of a reticle displacement unit or arranged on a carrier which can be loaded into the reticle plane of the projection exposure system instead of a mask reticle.
  • FIG. 1 is a schematic side view of a device for wavefront measurement of an optical imaging system
  • FIG. 2 shows a schematic, partial plan view of a diffractive CGH scattering structure, as can be used for a diffuser of a wavefront source of the device from FIG. 1,
  • FIG. 3 shows a schematic cross-sectional view through the diffractive CGH scattering structure from FIG. 2 in a transmitting multilayer implementation with a continuous base layer and a CGH structure layer lying above it,
  • FIG. 4 shows a schematic cross-sectional view corresponding to FIG. 3, but for a reflective realization of the scattering structure
  • 5 shows a schematic cross-sectional view corresponding to FIG. 3, but for a multilayer structure with CGH structure depressions introduced to implement the scattering structure
  • FIG. 6 shows a schematic cross-sectional view corresponding to FIG. 5, but for a multilayer structure with CGH structural recesses introduced into a base layer
  • FIG. 7 shows a schematic side view corresponding to FIG. 3, but for a scattering structure implementation by corresponding zones of different refractive index of a structure layer
  • FIG. 8 shows a schematic side view of an alternative wavefront source to that of FIG. 1 with a reflecting focusing element and a combined scattering structure-wavefront formation structure substrate, FIG.
  • FIG. 9 shows a schematic side view of a further alternative wavefront source with a reflecting scattering structure, reflecting focusing element and reflecting wavefront formation structure and
  • FIG. 10 shows a schematic side view of a further alternative wavefront source with a combined scattering structure / wavefront formation structure substrate without focusing element.
  • the measurement Solution device preferably uses the same radiation that is used by the system in normal exposure and is supplied by a conventional upstream lighting system, not shown in FIG. 1, for this purpose. This can preferably be UV radiation and especially EUV radiation.
  • a wavefront source is arranged between the illumination system (not shown) and the projection objective 1 to be measured, which serves to shape radiation coming from the illumination system into a wavefront radiation suitable for interferometric wavefront measurement of the objective 1.
  • the wavefront source in the beam path has a transmitting diffuser 2, a transmitting focusing element 3 and a transmitting coherence mask 4 or wavefront formation structure.
  • the diffuser 2 and the coherence mask 4 are each located approximately at the focal length distance f in front of or behind the focusing element 3, i.e. With this arrangement, the wavefront source produces a so-called 2f image. A distance of only approximately, but not exactly f, is preferred for the diffuser 2.
  • the coherence mask 4 is preferably located in the area of the object plane of the lens 1.
  • the image-side system part shown is also conventional and in this example comprises a diffraction grating 5, a micro-lens 6, preferably with, arranged in the area of the image plane of the lens 1 Focal length distance behind the diffraction grating 5, and a detector element 7, for example an image recording camera with a CCD array.
  • the associated beam path is represented schematically in FIG. 1 on the basis of an edge beam 9 incident parallel to the optical system axis 8, the imaging behavior of the focusing element 3 of the wavefront source additionally being illustrated in dash-dot lines by the course of an obliquely incident edge beam 10, which points to a point offset from the optical system axis 8 on the coherence mask 4.
  • the mask 4 is provided with a wavefront formation structure of the usual type, which is selected depending on the respective application, for example a zero, one or two-dimensional pinhole structure or a shear interferometry mask structure. While all three components 2, 3, 4 of the wavefront source are shown as elements working in transmission in the example of FIG. 1, a realization working in reflection is possible for each of these components in alternative embodiments.
  • FIG. 2 shows a schematic plan view of a section of a diffuser 2a that can be used for the wavefront source of FIG. 1.
  • the diffuser 2a has a diffractive CGH scattering structure 11, which is calculated using a conventional algorithm, such as is typically used for computing computer-generated holograms (CGH), and which cannot be described by analytical functions.
  • the diffractive CGH scattering structure 11 is determined such that a predetermined angle scattering profile is obtained or optimized by its diffraction orders, preferably an essentially Gaussian two-dimensional angle scattering profile, ie a two-dimensional Gaussian scattering angle distribution. Depending on the requirements, this can be a pure phase scattering structure, a pure amplitude scattering structure or a combined amplitude and phase scattering structure.
  • the diffractive CGH scattering structure 11 shown partially and in a light / dark distribution in FIG. 2, produces such a Gaussian two-dimensional scattering angle distribution as a two-stage phase and / or amplitude structure.
  • the scattering structure 11 contains minimum structure sizes perpendicular to the direction of light incidence from approximately 30 nm to approximately 3000 nm, preferably from approximately 100 nm to approximately 200 nm.
  • a multilayer structure 11a with a transmitting base layer 12, for example made of silicon or silicon nitride, and a transmitting structure layer 13, also called a membrane layer, applied thereon, for example made of molybdenum.
  • the membrane layer 13 is structured in accordance with the calculated CGH pattern, ie dark surface areas in FIG. 2 correspond, for example, to areas of the multilayer structure 11 a in which the structure layer 13 is located, while the latter is missing in the bright areas in FIG. 2, so that there the base layer 12 is exposed.
  • Radiation components 14 which pass through the structure layer 13 in addition to the base layer 12 consequently have a different effective light path length and / or absorption than radiation components 15 which fall into regions of the multilayer structure 11a which are left free by the structure layer 13 and only pass through the base layer 12, which together with the lateral CGH local distribution of the areas of the structure layer 13 gives the desired diffractive phase structure and / or amplitude structure scattering effect.
  • values between approximately 3 nm and approximately 200 nm are suitable for the layer thickness of the structural layer 13 of this two-stage amplitude and / or phase structure, depending inter alia on the radiation wavelength and the structural layer material.
  • FIG. 4 shows a realization of the diffractive CGH scatter structure 11 from FIG. 2 as a reflective multilayer structure 11 b.
  • This multilayer structure 11b contains a reflective base layer 16, for example a conventional reflective MoSi multilayer layer on a carrier layer, for example made of Zerodur material or another conventional reflective multilayer layer.
  • a structure or membrane containing the calculated CGH structure applied layer which in particular, as shown, can be the same transmitting structure layer 13 as in the embodiment of FIG. 3.
  • Material selection and dimensioning of the structure layer 13 to provide the two-stage amplitude and / or phase structure are to be carried out in the same way as for the embodiment of FIG. 3, so that reference can be made to the above explanations in this regard.
  • FIG. 3 shows a realization of the diffractive CGH scatter structure 11 from FIG. 2 as a reflective multilayer structure 11 b.
  • This multilayer structure 11b contains a reflective base layer 16, for example a conventional reflective MoSi multilayer layer on a carrier layer, for example made of Zerodur material or
  • the diffractive CGH scatter structure can be formed by an absorbent multilayer structure, e.g. corresponding to structure 11b of FIG. 4 with the modification that an absorbent structure layer is used instead of the transmitting structure layer 13.
  • FIG. 5 shows a realization of the diffractive CGH scattering structure in the form of a multilayer structure 11c, which contains six layer layers, each consisting of a first layer layer 31 and a second layer layer 32, which are stacked two times alternately one above the other, over a carrier layer 30.
  • depressions 33 are made in accordance with the desired CGH pattern, e.g. by etching.
  • the diffractive CGH scattering structure is formed by a multilayer structure 11d, in which the desired CGH pattern is introduced as depressions 34 into a base layer 35, for example by etching.
  • a base layer 35 for example by etching.
  • Several, for example three, layer layers are then placed on the top side of the base layer 35 structured in this way by CGH.
  • gen 36 applied over the entire surface and compliant, ie with a total thickness of the layer layers 36, which is significantly smaller than the depth of the CGH structural recesses 34.
  • FIG. 7 shows a realization of the diffractive CGH scattering structure in the form of a multilayer structure 11e which contains a refractive index variation layer 37 over a base layer 38.
  • the refractive index variation layer 37 is applied over the entire area with a constant thickness to the base layer 38, but is divided into two zones 37a, 37b of different refractive index.
  • the lateral extension of the two zones 37a, 37b has the shape of the desired CGH pattern, i.e. the diffractive CGH scattering structure is realized in this embodiment by the difference in refractive index.
  • each of the multilayer structures of the type of FIGS. 5 to 7 can be designed to operate in transmission or reflection as required. Furthermore, it goes without saying that any suitable combinations of the multilayer types explained above for FIGS. 3 to 7 are possible for producing the CGH scattering structure.
  • FIGS. 2 to 7 show examples of two-stage amplitude and / or phase structures, multilayer phase structures with three or more stages are also possible in alternative embodiments of the invention.
  • diffractive focusing structures can also be realized as a multilayer structure by forming a corresponding focusing pattern, for example a Fresnel zone Patterns, depending on requirements, in a transmissive or reflective realization.
  • the scattering and the wavefront formation function are integrated in a common substrate 17.
  • the substrate 17 contains a scattering structure 2b and a wavefront formation structure 4a lying next to one another at a distance.
  • the scattering structure 2b is a diffractive CGH scattering structure, e.g. 2 or alternatively around a conventional diffractive scattering structure, such as a focusing screen.
  • the wavefront formation structure 4a corresponds to the coherence mask or object structure to be selected depending on the application, as explained above for the coherence mask 4 of FIG. 1, e.g. for measurement by shear interferometry or the Shack-Hartmann method.
  • the incoming radiation is directed onto the scattering structure 2b and then focused by the reflective diffractive focusing or lens element 3a onto the wavefront formation structure 4a, which then emits the desired wavefront radiation.
  • the wave front source of FIG. 8 also preferably has a 2f structure in which the scattering structure 2b is spaced by approximately the focal length distance f, but preferably not exactly f, lie in the radiation path in front of the focusing element 3a and the wavefront formation structure 4a by approximately the focal length distance f in the radiation path behind the focusing element 3a, which results in the 2f imaging behavior.
  • FIG. 9 shows a further wavefront source with 2f imaging behavior, in which all three functionally essential components are designed to be reflective.
  • Incident radiation (18) strikes a diffuser 2c with a reflective scattering structure, which can be a diffractive CGH scattering structure or any other conventional scattering structure, and is reflected by the latter onto a focusing element realized as a focusing mirror 3b.
  • a focusing element realized as a focusing mirror 3b.
  • This can e.g. is a conventional convex mirror or Fresnel zone mirror.
  • a diffractive reflecting focusing structure can be used, such as the reflecting multilayer focusing structure 3a from FIG. 8.
  • the focusing element 3b reflects the radiation focusing on a reflecting mask 4b with the wavefront formation structure required for shaping the desired wavefront radiation.
  • the diffuser 2c is arranged to be movable, as required in one or more of its six degrees of freedom of movement.
  • the diffuser 2c as schematically illustrated in FIG. 9, is held on an axis piece 21 in one, two or three spatial directions so that it can be moved and / or rotated. Movement of the diffuser 2c is particularly advantageous during a measurement process. in which a lens of a projection exposure system or another optical imaging system is measured for imaging errors by a wavefront sensor equipped with the wavefront source. Moving the diffuser 2c contributes to an increase in the spatial incoherence of the radiation, as is desired for corresponding measurement techniques.
  • the scattering function and the focusing function are integrated in a common scattering and focusing element.
  • a diffractive CGH scattering structure or another, conventional scattering structure and a focusing structure for example a Fresnel zone plate structure, are provided, depending on requirements, working in reflection or transmission on a common substrate, for example a multilayer substrate composed of EUV-compatible materials.
  • the scattering structure is located at a distance smaller than the focal length distance f in the light path in front of the focusing element.
  • the invention also includes embodiments of wavefront sources only with a scattering structure and wavefront formation structure, i.e. without focusing structure.
  • 10 shows such an exemplary embodiment, in which the scattering function and the wavefront formation function are integrated in a common, combined scattering and wavefront formation element 19.
  • this combined element 19 can e.g. be formed by a multilayer structure made of EUV-compatible materials, which contains a diffractive CGH scattering structure and a wavefront formation structure combined.
  • Radiation 20 impinging on the combined element 19 obliquely at a certain angle ⁇ is homogenized in the desired manner by scattering in its intensity and angle distribution and shaped into the required wavefront radiation.
  • the scattering function and the wavefront formation function are separated in that a diffractive CGH scattering structure without a focusing element is located in the beam path in front of a wavefront formation structure.
  • the inventive wavefront source Especially when used for Shack-Hartmann measurement or the interferometric measurement of projection objectives in microlithography projection exposure systems, it is also possible with the inventive wavefront source to illuminate the pupil or the field of the objective completely and very homogeneously in the EUV wavelength range , even if an upstream lighting system is used that has a pupil parceling effect and is not able to illuminate the full numerical aperture of the lens alone.
  • the wavefront source according to the invention can, as is known per se as such for wavefront sources, be implemented in a single-channel or multi-channel version as required. In the latter case, several, preferably many, similar beam-guiding channels are arranged next to one another in the wavefront source.
  • Microlithography projection exposure systems are particularly used as so-called steppers or scanners.
  • a wavefront sensor according to the invention which contains the wavefront source according to the invention, can be implemented as an independent measuring device in which the projection objective is measured before installation in the stepper or scanner.
  • the wavefront sensor can be integrated in the stepper or scanner.
  • the wavefront source according to the invention can, for example, be mounted on a carrier as a complete component, which can be loaded into the stepper or scanner in the reticle plane instead of a reticle used in normal exposure operation.
  • one or more channels of the wavefront source can be a fixed component of the stepper or scanner, in that the wavefront source forms, for example, a fixed component of a reticle displacement unit of the projection exposure unit of the stepper or scanner.

Abstract

Die Erfindung bezieht sich auf eine Wellenfrontquelle mit einer Wellenfrontbildungsstruktur (4a) und einem Diffusor mit einer Streustruktur (2b) im Strahlengang vor oder auf Höhe der Wellenfrontbildungsstruktur sowie auf einen hierfür verwendbaren Diffusor, auf einen damit ausgerüsteten Wellenfrontsensor und eine entsprechende Projektionsbelichtungsanlage. Erfindungsgemäss weist der Diffusor eine diffraktive CGH-Streustruktur mit vorgegebenem Winkelstreuprofil auf. Die erfindungsgemässe Wellenfrontquelle beinhaltet einen solchen Diffusor und/oder ein Fokussierelement mit einer reflektierenden diffraktiven Fokussierstruktur (3a) im Strahlengang auf Höhe der Streustruktur oder zwischen der Streustruktur (2b) und der Wellenfrontbildungsstruktur (4a).Verwendung z.B. bei der Wellenfrontvermessung von Projektionsobjektiven in Mikrolithographie-Projektionsbelichtungsanlagen im EUV-Wellenlängenbereich.

Description

Beschreibung Diffusor, Wellenfrontquelle. Wellenfrontsensor und Projektionsbelich- tunqsanlaqe
Die Erfindung bezieht sich auf einen Diffusor mit einer Streustruktur für eine Wellenfrontquelle, auf eine entsprechende Wellenfrontquelle, die zusätzlich zu dem Diffusor eine Wellenfrontbildungsstruktur im Strahlen- gang nach oder auf Höhe der Streustruktur beinhaltet, auf einen zugehörigen Wellenfrontsensor und eine zugehörige Projektionsbelichtungsan- lage.
Eine Wellenfrontquelle dieser Art ist in der Offenlegungsschrifl DE 101 09 929 A1 als Teil einer Vorrichtung zur Wellenfrontvermessung optischer Systeme mittels Scherinterferometrie offenbart, insbesondere eines Projektionsobjektivs einer Mikrolithographie-Projektionsbelichtungs- anlage. Als Wellenfrontbildungsstruktur fungiert dort vorzugsweise eine zweidimensionale Mehrlochmaske, die auch als Kohärenzmaske be- zeichnet wird. Die räumliche Struktur der Wellenfrontquelle dient zur Formung der räumlichen Kohärenz der Wellenfront. Des weiteren ist es aus dieser Druckschrift bekannt, dass die Wellenfrontbildungsstruktur auf einer Mattscheibe angebracht oder ihr eine Mattscheibe vorgeschaltet sein kann, um die räumliche Kohärenz zu steuern, da die Beleuch- tung der Wellenfrontbildungsstruktur idealerweise möglichst inkohärent sein sollte. Zusätzlich kann ein refraktives oder diffraktives, in Transmission arbeitendes Fokussierelement vor der Wellenfrontbildungsstruktur vorgesehen sein, um die Beleuchtungsapertur an die Aperturblende des vermessenen Projektionsobjektivs anzupassen. Die Mattscheibe kann vor oder hinter dem Fokussierelement liegen. Mit der erwähnten interferometrischen Wellenfrontvermessung lassen sich Aberrationen eines mikrolithographischen Projektionsobjektivs und anderer hochauflösender optischer Abbildungssysteme sehr präzise er- mittein. Die Verwendung der Wellenfrontquelle, auch als Wellenfrontmo- dul oder Sourcemodul bezeichnet, ermöglicht die Nutzung des Beleuchtungssystemteils der Projektionsbelichtungsanlage oder eines anderen vermessenen optischen Abbildungssystems auch für diese interfero- metrische Aberrationsbestimmung. Von Vorteil ist eine Gestaltung der Wellenfrontquelle derart, dass sie einfach in eine Mikrolithographie- Projektionsbelichtungsanlage integrierbar ist, um die Abbildungsqualität des Projektionsobjektivs nicht nur vor seinem Einbau in die Projektionsbelichtungsanlage, sondern auch danach an seinem Einsatzort von Zeit zu Zeit überprüfen zu können.
In der älteren deutschen Patentanmeldung 102 17 242.0, deren Priorität die vorliegende Anmeldung in Anspruch nimmt und auf die hiermit durch Verweis voll umfänglich Bezug genommen wird, wird als weiterbildende Maßnahme vorgeschlagen, die Wellenfrontbildungsstruktur neben einem Nutzmuster, das vom Projektionsobjektiv bestimmungsgemäß z.B. auf einen Wafer abgebildet werden soll, auf einem gemeinsamen Substrat anzuordnen. Dies ermöglicht eine Aberrationsbestimmung und damit auch bei Bedarf eine Aberrationssteuerung oder Aberrationsregelung während des normalen Belichtungsbetriebs.
Für die Vermessung optischer Systeme mit der durch die Wellenfrontquelle bereitgestellten Wellenfront sind bekanntermaßen außer der erwähnten Scherinterferometrie auch andere interferometrische Verfahren möglich, aber auch nicht-interferometrische Verfahren, wie das Shack- Hartmann-Verfahren oder Hartmann-Verfahren. In letzterem Fall beinhaltet die Wellenfrontbildungsstruktur typischerweise ein einzelnes sogenanntes Pinhole oder eine ein- oder zweidimensionale Anordnung mehrerer solcher Pinholes, d.h. Öffnungen sehr kleinen Durchmessers. Speziell für das Einsatzgebiet der Mikrolithographie besteht zur Erzielung sehr feiner Waferstrukturen der Trend zu immer kürzeren Belichtungswellenlängen im UV-Bereich unter 200nm und besonders im EUV- Bereich. Dementsprechend besteht ein Bedarf an Wellenfrontquellen, die in der Lage sind, in diesem Wellenlängenbereich eine Wellenfront zu liefern, mit der sich ein Projektionsobjektiv ausreichend genau hinsichtlich Aberrationen interfero metrisch vermessen lässt. Eine Schwierigkeit besteht hierbei darin, dass übliche Beleuchtungssysteme, wie sie in Mik- rolithographie-Projektionsbelichtungsanlagen eingesetzt werden, um die gewünschte UV- bzw. EUV-Belichtungsstrahlung zu liefern, eine gewisse Pupillenparzellierung aufweisen und zudem nicht die volle numerische Apertur des Projektionsobjektivs ausfüllen.
Der Erfindung liegt daher als technisches Problem die Bereitstellung einer Wellenfrontquelle der eingangs genannten Art zugrunde, die in der Lage ist, die Wellenfrontstrahlung über den interessierenden Strahlquerschnitt hinweg vergleichsweise homogen und über die volle numerische Apertur des vermessenen optischen Systems mit vergleichsweise hoher Effektivität auch für UV- und insbesondere EUV-Systeme zur Verfügung zu stellen, sowie eines für eine solche Wellenfrontquelle verwendbaren Diffusors, eines mit einer solchen Wellenfrontquelle ausgerüsteten Wel- lenfrontsensors und einer diesen enthaltenden Projektionsbelichtungs- anlage.
Die Erfindung löst dieses Problem durch die Bereitstellung eines Diffusors mit den Merkmalen des Anspruchs 1 einer Wellenfrontquelle mit den Merkmalen des Anspruchs 6 oder 8, eines Wellenfrontsensors mit den Merkmalen des Anspruchs 10 und einer Projektionsbelichtungsan- läge mit den Merkmalen des Anspruchs 1 1.
Der erfindungsgemäße Diffusor weist charakteristischerweise eine diffraktive CGH(computergenerierte Hologramm)-Streustruktur mit vor- gegebenem Winkelstreuprofil auf. Derartige diffraktive Streustrukturen können durch hierfür an sich bekannte Algorithmen berechnet werden, wie sie für computergenerierte Hologramme (CGH) gebräuchlich sind (daher die Bezeichnung „CGH-Struktur"), und sind typischerweise nicht durch analytische Funktionen beschreibbar. Je nach Bedarf kann die Streustruktur transmittierend oder reflektierend realisiert sein.
In einer vorteilhaften Ausgestaltung ist die diffraktive CGH-Streustruktur auf ein zweidimensionales, im wesentlichen gaussförmiges Winkelstreu- profil ausgelegt.
Die Streustruktur kann vorteilhaft durch eine transmittierende, reflektierende oder absorbierende Mehrschichtstruktur gebildet sein, z.B. mit einer Basisschicht und wenigstens einer darüberliegenden Strukturschicht gemäß dem berechneten CGH-Muster, so dass die Mehrschichtstruktur wenigstens zwei definierte Stufenhöhen besitzt. Mit der Strukturierung wird eine Lichtwegvariation gemäß dem berechneten CGH-Muster bewirkt. Die Dimensionen der Strukturen ergeben sich aus der Wellenlänge und den eingesetzten Materialien und der geforderten Streubreite. Für die bevorzugte Mehrschichtstruktur zum Einsatz bei EUV ergeben sich senkrecht zur Lichtrichtung günstige Strukturgrößen von 30nm bis 3000nm und in Lichtrichtung von 3nm bis 200nm.
In weiterer Ausgestaltung der Erfindung sind Mittel zur beweglichen Hal- terung der diffraktiven CGH-Streustruktur vorgesehen, mit denen letztere je nach Bedarf in einer oder mehreren Raumrichtungen, d.h. bezüglich einem oder mehreren der sechs Bewegungsfreiheitsgrade, bewegt werden kann, vorzugsweise während eines Messvorgangs.
Die erfindungsgemäße Wellenfrontquelle beinhaltet in einem ersten Aspekt der Erfindung einen solchen erfindungsgemäßen Diffusor. Es zeigt sich, dass eine derartige diffraktive CGH-Streustruktur gerade auch für den UV- und speziell den EUV-Wellenlängenbereich zum einen gut dimensioniert und zum anderen mit für diesen Wellenlängenbereich geeigneten Materialien realisiert werden kann und ein ausreichendes Streuvermögen besitzt.
In einer Ausgestaltung dieser Wellenfrontquelle befindet sich ein Fokussierelement im Strahlengang vor der Wellenfrontbildungsstruktur. Die diffraktive CGH-Streustruktur kann sich vor oder hinter dem Fokussier- element oder auf Höhe desselben befinden. Bei dem Fokussierelement kann es sich um ein beliebiges herkömmliches, refraktives oder diffrakti- ves, in Transmission oder Reflexion arbeitendes Fokussierelement handeln.
In einem weiteren Erfindungsaspekt beinhaltet die Wellenfrontquelle ein Fokussierelement mit reflektierender diffraktiver Fokussierstruktur im Strahlengang auf Höhe der Streustruktur des Diffusors oder zwischen dieser und der Wellenfrontbildungsstruktur. Bei dem Diffusor kann es sich in diesem Fall je nach Bedarf um einen erfindungsgemäßen oder einen herkömmlichen Diffusor handeln.
Beide genannten Maßnahmen, d.h. der spezielle Diffusor und die reflektierende diffraktive Fokussierstruktur, tragen einzeln und in Kombination dazu bei, dass die Wellenfrontquelle eine Wellenfront mit vergleichswei- se homogener und vollständiger Ausleuchtung des Feldes bzw. der Pupille des interferometrisch zu vermessenden optischen Systems gerade auch im UV- und insbesondere EUV-Wellenlängenbereich zur Verfügung stellen kann.
In einer vorteilhaften Ausgestaltung der Wellenfrontquelle sind die Streustruktur des erfindungsgemäßen oder herkömmlichen Diffusors und die Wellenfrontbildungsstruktur nebeneinander auf einem gemein- samen Substrat ausgebildet. Diese Maßnahme lässt sich bevorzugt mit der Verwendung eines reflektierenden Fokussierelementes kombinieren.
Die erfindungsgemäße Wellenfrontquelle ist vorteilhaft für einen Wellen- frontsensor verwendbar, mit dem Objektive zum Einsatz in Projektions- belichtungsanlagen hinsichtlich Abbildungsfehlern hochgenau vermessen werden können. Der Wellenfrontsensor kann als eigenständige Messvorrichtung realisiert sein, er kann aber auch in eine Projektionsbe- lichtungsanlage integriert sein. Bei solchen erfindungsgemäßen Projek- tionsbelichtungsanlagen kann die Wellenfrontquelle des Wellenfrontsen- sors z.B. fester Bestandteil einer Retikelverschiebeeinheit oder auf einem Träger angeordnet sein, der anstelle eines Maskenretikels in die Retikelebene der Projektionsbelichtungsanlage geladen werden kann.
Vorteilhafte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden nachfolgend beschrieben. Hierbei zeigen:
Fig. 1 eine schematische Seitenansicht einer Vorrichtung zur Wellenfrontvermessung eines optischen Abbildungssystems,
Fig. 2 eine schematische, ausschnittweise Draufsicht auf eine diffraktive CGH-Streustruktur, wie sie für einen Diffusor einer Wellenfrontquelle der Vorrichtung von Fig. 1 verwendbar ist,
Fig. 3 eine schematische Querschnittansicht durch die diffraktive CGH-Streustruktur von Fig. 2 in einer transmittierenden Mehrschicht-Realisierung mit durchgehender Basisschicht und da- rüberliegender CGH-Strukturschicht,
Fig. 4 eine schematische Querschnittansicht entsprechend Fig. 3, jedoch für eine reflektierende Realisierung der Streustruktur, Fig. 5 eine schematische Querschnittansicht entsprechend Fig. 3, jedoch für eine Mehrschichtstruktur mit eingebrachten CGH- Strukturvertiefungen zur Realisierung der Streustruktur,
Fig. 6 eine schematische Querschnittansicht entsprechend Fig. 5, jedoch für eine Mehrschichtstruktur mit in eine Basisschicht eingebrachten CGH-Strukturvertiefungen,
Fig. 7 eine schematische Seitenansicht entsprechend Fig. 3, jedoch für eine Streustrukturrealisierung durch entsprechende Zonen unterschiedlicher Brechzahl einer Strukturschicht,
Fig. 8 eine schematische Seitenansicht einer zu derjenigen von Fig. 1 alternativen Wellenfrontquelle mit reflektierendem Fokussier- element und einem kombinierten Streustruktur-Wellenfrontbil- dungsstruktur-Substrat,
Fig. 9 eine schematische Seitenansicht einer weiteren alternativen Wellenfrontquelle mit reflektierender Streustruktur, reflektieren- dem Fokussierelement und reflektierender Wellenfrontbildungsstruktur und
Fig. 10 eine schematische Seitenansicht einer weiteren alternativen Wellenfrontquelle mit einem kombinierten Streustruktur-Wellen- frontbildungsstruktur-Substrat ohne Fokussierelement.
Fig. 1 zeigt schematisch eine Vorrichtung zur interferometrischen Wellenfrontvermessung eines optischen Systems 1 , bei dem es sich insbesondere um ein Projektionsobjektiv einer Mikrolithographie-Projektions- belichtungsanlage handeln kann. In diesem Fall kann die Vorrichtung in die Projektionsbelichtungsanlage als sogenanntes Betriebsinterferome- ter integriert sein, um die Abbildungsqualität des Projektionsobjektivs 1 an seinem Einsatzort von Zeit zu Zeit zu überprüfen, wobei die Vermes- sungsvorrichtung vorzugsweise die gleiche Strahlung benutzt, die von der Anlage im normalen Belichtungsbetrieb verwendet und von einem hierfür üblichen, vorgeschalteten, in Fig. 1 nicht gezeigten Beleuchtungssystem geliefert wird. Hierbei kann es sich vorzugsweise um UV- Strahlung und speziell um EUV-Strahlung handeln.
Zwischen dem nicht gezeigten Beleuchtungssystem und dem zu vermessenden Projektionsobjektiv 1 ist eine Wellenfrontquelle angeordnet, die dazu dient, vom Beleuchtungssystem kommende Strahlung in eine zur interferometrischen Wellenfrontvermessung des Objektivs 1 geeignete Wellenfrontstrahlung zu formen. Dazu weist die Wellenfrontquelle im Strahlengang hintereinander einen transmittierenden Diffusor 2, ein transmittierendes Fokussierelement 3 und eine transmittierende Kohärenzmaske 4 bzw. Wellenfrontbildungsstruktur auf. Der Diffusor 2 und die Kohärenzmaske 4 befinden sich jeweils ungefähr im Brennweitenabstand f vor bzw. hinter dem Fokussierelement 3, d.h. die Wellenfrontquelle bewirkt mit dieser Anordnung eine sogenannte 2f-Abbildung. Dabei ist ein Abstand von nur annähernd, aber nicht exakt f für den Diffusor 2 bevorzugt.
Die Kohärenzmaske 4 befindet sich, wie üblich, vorzugsweise im Bereich der Objektebene des Objektivs 1. Der gezeigte bildseitige Systemteil ist ebenfalls herkömmlicher Art und umfasst in diesem Beispiel ein vorzugsweise im Bereich der Bildebene des Objektivs 1 angeordnetes Beugungsgitter 5, ein Mikroobjektiv 6, vorzugsweise mit Brennweitenabstand hinter dem Beugungsgitter 5, und ein Detektorelement 7, z.B. eine Bildaufnahmekamera mit CCD-Array.
Der zugehörige Strahlverlauf ist in Fig. 1 schematisch anhand eines pa- rallel zur optischen Systemachse 8 einfallenden Randstrahls 9 repräsentiert, wobei das Abbildungsverhalten des Fokussierelements 3 der Wellenfrontquelle zusätzlich durch den Verlauf eines schräg einfallenden Randstrahls 10 strichpunktiert veranschaulicht wird, der auf einen Punkt versetzt zur optischen Systemachse 8 auf die Kohärenzmaske 4 fokus- siert wird. Die Maske 4 ist mit einer Wellenfrontbildungsstruktur üblicher Art versehen, die vom jeweiligen Anwendungsfall abhängig gewählt wird, z.B. eine null-, ein- oder zweidimensionale Pinholestruktur oder eine Scherinterferometrie-Maskenstruktur. Während im Beispiel von Fig. 1 alle drei Komponenten 2, 3, 4 der Wellenfrontquelle als in Transmission arbeitende Elemente gezeigt sind, ist für jede dieser Komponenten in alternativen Ausführungsformen eine in Reflexion arbeitende Realisierung möglich.
Fig. 2 zeigt in einer schematischen Draufsicht einen Ausschnitt eines Diffusors 2a, der für die Wellenfrontquelle von Fig. 1 verwendet werden kann. Der Diffusor 2a weist eine diffraktive CGH-Streustruktur 11 auf, die mittels eines herkömmlichen Algorithmus berechnet wird, wie er typi- scherweise zur Berechnung computergenerierter Hologramme (CGH) eingesetzt wird und die nicht durch analytische Funktionen beschreibbar ist. Die diffraktive CGH-Streustruktur 1 1 ist so bestimmt, dass durch ihre Beugungsordnungen ein vorgegebenes Winkelstreuprofil erhalten bzw. optimiert wird, vorzugsweise ein im wesentlichen gaussförmiges zwei- dimensionales Winkelstreuprofil, d.h. eine zweidimensionale gaussför- mige Streuwinkelverteilung. Dabei kann es sich je nach Bedarf um eine reine Phasenstreustruktur, eine reine Amplitudenstreustruktur oder um kombinierte Amplituden- und Phasenstreustrukturen handeln. Die in Fig. 2 teilweise und in einer Hell/Dunkel-Verteilung dargestellte, diffraktive CGH-Streustruktur 11 erzeugt als eine zweistufige Phasen- und/oder Amplitudenstruktur eine solche gaussförmige zweidimensionale Streuwinkelverteilung. Für einen Streuwinkelbereich von ±0,5° bis +5°, wie er für mikrolithographische Projektionsbelichtungsanlagen im EUV-Bereich typisch ist, beinhaltet die Streustruktur 11 minimale Strukturgrößen senkrecht zur Lichteinfallrichtung von etwa 30nm bis etwa 3000nm, bevorzugt von etwa 100nm bis etwa 200nm. Diese und andere diffraktive CGH-Streustrukturen lassen sich mit EUV- tauglichen Materialien sowohl in Transmission als auch in Reflexion realisieren. So zeigt Fig. 3 schematisch und ausschnittweise eine Realisierung der diffraktiven CGH-Streustruktur 11 von Fig. 2 in Transmission als eine Mehrschichtstruktur 11a mit einer transmittierenden Basisschicht 12 z.B. aus Silizium oder Siliziumnitrid und einer darauf aufgebrachten, transmittierenden Strukturschicht 13, auch Membranschicht genannt, z.B. aus Molybdän. Die Membranschicht 13 ist entsprechend des berechneten CGH-Musters strukturiert, d.h. dunkle Flächenbereiche in Fig. 2 entsprechen z.B. Bereichen der Mehrschichtstruktur 11 a, in denen sich die Strukturschicht 13 befindet, während letztere in den in Fig. 2 hellen Bereichen fehlt, so dass dort die Basisschicht 12 freiliegt.
Strahlungsanteile 14, welche die Strukturschicht 13 zusätzlich zur Ba- sisschicht 12 durchlaufen, haben folglich eine andere effektive Lichtweglänge und/oder Absorption als Strahlungsanteile 15, die in von der Strukturschicht 13 freigelassene Bereiche der Mehrschichtstruktur 11a einfallen und nur die Basisschicht 12 durchlaufen, was zusammen mit der lateralen CGH-Ortsverteilung der Bereiche der Strukturschicht 13 die ge- wünschte diffraktive Phasenstruktur- und/oder Amplitudenstruktur- Streuwirkung ergibt. Für die Schichtdicke der Strukturschicht 13 dieser zweistufigen Amplituden- und/oder Phasenstruktur sind je nach Anwendungsfall Werte zwischen etwa 3nm bis etwa 200nm geeignet, unter anderem abhängig von der Strahlungswellenlänge und dem Struktur- Schichtmaterial.
Fig. 4 zeigt eine Realisierung der diffraktiven CGH-Streustruktur 11 von Fig. 2 als reflektierende Mehrschichtstruktur 11 b. Diese Mehrschichtstruktur 11 b beinhaltet eine reflektierende Basisschicht 16, z.B. eine herkömmliche reflektierende MoSi-Mehrlagenschicht auf einer Trägerschicht z.B. aus Zerodur-Material oder eine andere herkömmliche reflektierende Mehrlagenschicht. Auf die Basisschicht 16 ist wiederum eine die berechnete CGH-Struktur beinhaltende Struktur- bzw. Membran- schicht aufgebracht, bei der es sich insbesondere, wie gezeigt, um die gleiche transmittierende Strukturschicht 13 wie im Ausführungsbeispiel von Fig. 3 handeln kann. Materialauswahl und Dimensionierung der Strukturschicht 13 zur Bereitstellung der zweistufigen Amplituden- und/oder Phasenstruktur sind entsprechend wie für das Ausführungsbeispiel von Fig. 3 vorzunehmen, so dass auf die obigen Ausführungen hierzu verwiesen werden kann. Wie in Fig. 4 verdeutlicht ist, ergibt sich bei gegebener Dicke der Strukturschicht 13 in Reflexion ein doppelt so großer Amplituden- bzw. Phaseneffekt wie im Fall der Transmission ge- maß Fig. 3, da Strahlungsanteile 14a, die in Bereichen der Strukturschicht 13 einfallen und reflektiert werden, letztere zweimal durchqueren, während in Zwischenbereichen einfallende Strahlung 15a nicht durch die Strukturschicht 13 läuft.
In einer weiteren Variante kann die diffraktive CGH-Streustruktur von einer absorbierenden Mehrschichtstruktur gebildet sein, z.B. entsprechend der Struktur 11 b von Fig. 4 mit der Modifikation, dass statt der transmittierenden Strukturschicht 13 eine absorbierende Strukturschicht verwendet wird.
Fig. 5 zeigt eine Realisierung der diffraktiven CGH-Streustruktur in Form einer Mehrschichtstruktur 11c, die über einer Trägerschicht 30 sechs Schichtlagen aus je einer ersten Schichtlage 31 und einer zweiten Schichtlage 32 beinhaltet, die zweifach wiederholt alternierend überein- andergestapelt sind. In die vier oberen Schichtlagen sind Vertiefungen 33 gemäß dem gewünschten CGH-Muster eingebracht, z.B. durch Ätzen.
Bei einer weiteren, in Fig. 6 gezeigten Variante ist die diffraktive CGH- Streustruktur durch eine Mehrschichtstruktur 11d gebildet, bei der das gewünschte CGH-Muster als Vertiefungen 34 z.B. durch Ätzen in eine Basisschicht 35 eingebracht ist. Auf die solchermaßen CGH -strukturierte Oberseite der Basisschicht 35 sind dann mehrere, z.B. drei, Schichtla- gen 36 ganzflächig und konform aufgebracht, d.h. mit einer Gesamtdicke der Schichtlagen 36, die deutlich kleiner als die Tiefe der CGH- Strukturvertiefungen 34 ist.
Fig. 7 zeigt eine Realisierung der diffraktiven CGH-Streustruktur in Form einer Mehrschichtstruktur 11e, die eine Brechzahlvariationsschicht 37 über einer Basisschicht 38 beinhaltet. Die Brechzahlvariationsschicht 37 ist ganzflächig mit konstanter Dicke auf die Basisschicht 38 aufgebracht, jedoch in zwei Zonen 37a, 37b unterschiedlicher Brechzahl unterteilt. Die beiden Zonen 37a, 37b haben in ihrer lateralen Ausdehnung die Gestalt des gewünschten CGH-Musters, d.h. die diffraktive CGH- Streustruktur ist in diesem Ausführungsbeispiel durch den Brechzahlunterschied verwirklicht. Im Beispiel von Fig. 7 liegt jeweils ein abrupter Übergang von der einen zur anderen Brechzahl an den Grenzflächen der beiden Zonen 37a, 37b vor. In einer alternativen Variante kann ein in lateraler Richtung allmählicher Brechzahlübergang vorgesehen sein, d.h. die Brechzahl geht innerhalb einer vorgebbaren lateralen Grenzflächenbreite stetig vom einen auf den anderen Wert über. Wie zu den Fig. 3 und 4 oben erläutert, kann jede der Mehrschichtstrukturen nach Art der Fig. 5 bis 7 je nach Bedarf in Transmission oder Reflexion arbeitend ausgelegt sein. Des weiteren versteht es sich, dass beliebige geeignete Kombinationen der oben zu den Fig. 3 bis 7 erläuterten Mehrschichttypen zur Herstellung der CGH-Streustruktur möglich sind.
Während die Fig. 2 bis 7 Beispiele zweistufiger Amplituden- und/oder Phasenstrukturen zeigen, sind in alternativen Ausführungsformen der Erfindung auch Mehrschicht-Phasenstrukturen mit drei oder mehr Stufen möglich.
In analoger Weise können bekanntermaßen auch diffraktive Fokussier- strukturen als Mehrschichtstruktur realisiert werden, indem ein entsprechendes Fokussiermuster ausgebildet wird, z.B. ein Fresnelzonen- muster, je nach Bedarf in transmittierender oder reflektierender Realisierung.
Fig. 8 zeigt hierzu ein Anwendungsbeispiel in Form einer Wellenfront- quelle, die ein in Reflexion arbeitendes Fokussierelement 3a umfasst, das durch einen solchen Mehrschichtaufbau mit einer diffraktiven Fokussierstruktur gebildet ist, wie einer Fresnelzonenplattenstruktur. Dazu kann analog zum Ausführungsbeispiel von Fig. 4 auf eine reflektierende Mehrlagen-Basisschicht eine entsprechende Fresnelzonen-Struktur- schicht aufgebracht sein, wobei für einen Einsatz im EUV-Wellenlängenbereich insbesondere wiederum die oben zu den Fig. 3 und 4 genannten Schichtmaterialien verwendbar sind.
Des weiteren sind bei der Wellenfrontquelle von Fig. 8 die Streu- und die Wellenfrontbildungsfunktion in einem gemeinsamen Substrat 17 integriert. Dazu beinhaltet das Substrat 17 mit etwas Abstand nebeneinanderliegend zum einen eine Streustruktur 2b und zum anderen eine Wellenfrontbildungsstruktur 4a. Bei der Streustruktur 2b handelt es sich um eine diffraktive CGH-Streustruktur z.B. der zu Fig. 2 erläuterten Art oder alternativ um eine herkömmliche diffraktive Streustruktur, wie eine Mattscheibe. Die Wellenfrontbildungsstruktur 4a entspricht der vom Anwendungsfall abhängig zu wählenden Kohärenzmasken- bzw. Objektstruktur, wie oben zur Kohärenzmaske 4 von Fig. 1 erläutert, z.B. zur Vermessung durch Scherinterferometrie oder das Shack-Hartmann- Verfahren.
Bei der Wellenfrontquelle von Fig. 8 wird die ankommende Strahlung auf die Streustruktur 2b gerichtet und anschließend vom reflektierenden diffraktiven Fokussier- bzw. Linsenelement 3a auf die Wellenfrontbil- dungsstruktur 4a fokussiert, welche dann die gewünschte Wellenfront- strahlung abgibt. Dabei weist auch die Wellenfrontquelle von Fig. 8 vorzugsweise einen 2f-Aufbau auf, bei dem die Streustruktur 2b um etwa den Brennweitenabstand f, jedoch vorzugsweise nicht exakt im Abstand f, im Strahlungsweg vor dem Fokussierelement 3a und die Wellenfrontbildungsstruktur 4a um etwa den Brennweitenabstand f im Strahlungsweg hinter dem Fokussierelement 3a liegen, wodurch sich das 2f- Abbildungsverhalten ergibt .
Fig. 9 zeigt eine weitere Wellenfrontquelle mit 2f-Abbildungsverhalten, bei der alle drei funktionswesentlichen Komponenten reflektierend ausgelegt sind. Einfallende Strahlung (18) trifft auf einen Diffusor 2c mit reflektierender Streustruktur, bei der es sich um eine diffraktive CGH- Streustruktur oder um eine beliebige andere, herkömmliche Streustruktur handeln kann, und wird von dieser auf ein als Fokussierspiegel 3b realisiertes Fokussierelement reflektiert. Hierbei kann es sich z.B. um einen üblichen Konvexspiegel oder Fresnelzonenspiegel handeln. Alternativ ist eine diffraktive reflektierende Fokussierstruktur verwendbar, wie die reflektierende Mehrschicht-Fokussierstruktur 3a von Fig. 8. Das Fokussierelement 3b reflektiert die Strahlung fokussierend auf eine reflektierende Maske 4b mit der zur Formung der gewünschten Wellenfront- strahlung erforderlichen Wellenfrontbildungsstruktur.
Optional ist der Diffusor 2c beweglich angeordnet, je nach Bedarf in einem oder mehreren seiner sechs Bewegungsfreiheitsgrade. Für diesen optionalen Fall ist der Diffusor 2c, wie in Fig. 9 schematisch veranschaulicht, an einem Achsstück 21 entsprechend in einer, zwei oder drei Raumrichtungen verschiebebeweglich und/oder drehbeweglich gehal- ten. Eine Bewegung des Diffusors 2c ist insbesondere während eines Vermessungsvorgangs vorteilhaft, bei dem ein Objektiv einer Projekti- onsbelichtungsanlage oder ein anderes optisches Abbildungssystem durch einen mit der Wellenfrontquelle ausgerüsteten Wellenfrontsensor hinsichtlich Abbildungsfehlern vermessen wird. Das Bewegen des Diffu- sors 2c trägt zu einer Steigerung der räumlichen Inkohärenz der Strahlung bei, wie dies für entsprechende Messtechniken gewünscht ist. ln weiteren, nicht gezeigten alternativen Ausführungsformen der erfindungsgemäßen Wellenfrontquelle sind die Streufunktion und die Fokus- sierfunktion in ein gemeinsames Streu- und Fokussierelement integriert. Dazu sind z.B. eine diffraktive CGH-Streustruktur oder eine andere, her- kömmliche Streustruktur und eine Fokussierstruktur, z.B. eine Fresnel- zonenplattenstruktur, je nach Bedarf in Reflexion oder Transmission arbeitend auf einem gemeinsamen Substrat vorgesehen, z.B. einem aus EUV-tauglichen Materialien aufgebauten Mehrschichtsubstrat. In weiteren alternativen Ausführungsformen der Erfindung befindet sich die Streustuktur in einem Abstand kleiner als der Brennweitenabstand f im Lichtweg vor dem Fokussierelement.
Des weiteren umfasst die Erfindung auch Ausführungsformen von Wel- lenfrontquellen nur mit Streustruktur und Wellenfrontbildungsstruktur, d.h. ohne Fokussierstruktur. Fig. 10 zeigt ein derartiges Ausführungsbeispiel, bei der die Streufunktion und die Wellenfrontbildungsfunktion in einem gemeinsamen, kombinierten Streu- und Wellenfrontbildungsele- ment 19 integriert sind. Dazu kann dieses kombinierte Element 19 z.B. von einem Mehrschichtaufbau aus EUV-tauglichen Materialien gebildet sein, der eine diffraktive CGH-Streustruktur und eine Wellenfrontbildungsstruktur kombiniert enthält. Unter einem bestimmten Winkel α schräg auf das kombinierte Element 19 auftreffende Strahlung 20 wird von diesem durch Streuung in seiner Intensitäts- und Winkelverteilung in gewünschter Weise homogenisiert und in die geforderte Wellenfront- Strahlung geformt. In alternativen Ausführungsformen sind Streufunktion und Wellenfrontbildungsfunktion getrennt, indem sich im Strahlengang vor einer Wellenfrontbildungsstruktur eine diffraktive CGH-Streustruktur ohne fokussierendes Element befindet.
Wie die oben erläuterten Ausführungsbeispiele deutlich machen, stellt die Erfindung eine Wellenfrontquelle zur Verfügung, die sich für Wellen- frontsensoren speziell auch für EUV-Interferometrie oder das Shack- Hartmann-Verfahren zur Wellenfrontvermessung von hochauflösenden Projektionsobjektiven in Mikrolithographie-Projektionsbelichtungsanla- gen und im übrigen für beliebige andere Wellenfrontvermessungsan- wendungen eignet, um eine sehr homogene und voll ausleuchtende Wellenfrontstrahlung bei gleichzeitiger Strahlverstärkung bereitzustellen. Von Vorteil ist die Verwendung einer diffraktiven CGH-Streustruktur zur Erzeugung eines definierten, z.B. zweidimensionalen gaussförmigen Winkelspektrums. Eine solche Streustruktur ist in Transmission und Re- flektion sowie als Amplituden- oder Phasenstruktur oder kombinierte Amplituden- und Phasenstruktur realisierbar, gerade auch für den Ein- satz im EUV-Wellenlängenbereich.
Speziell in Anwendung für die Shack-Hartmann-Vermessung oder die interferometrische Vermessung von Projektionsobjektiven in Mikrolitho- graphie-Projektionsbelichtungsanlagen ist es mit der erfindungsgemä- ßen Wellenfrontquelle auch im EUV-Wellenlängenbereich möglich, die Pupille bzw. das Feld des Objektivs vollständig und sehr homogen auszuleuchten, auch wenn ein vorgelagertes Beleuchtungssystem verwendet wird, das einen Pupillenparzellierungseffekt aufweist und allein nicht in der Lage ist, die volle numerische Apertur des Objektivs auszuleuch- ten.
Die erfindungsgemäße Wellenfrontquelle kann, wie als solches für Wel- lenfrontquellen an sich bekannt, je nach Bedarf in einkanaliger oder mehrkanaliger Ausführung realisiert sein. In letzterem Fall sind mehrere, vorzugsweise viele, gleichartige strahlführende Kanäle nebeneinander in der Wellenfrontquelle angeordnet.
Mikrolithographie-Projektionsbelichtungsanlagen sind insbesondere als sogenannte Stepper oder Scanner gebräuchlich. Um z.B. deren Projek- tionsobjektiv hochgenau zu vermessen, kann ein erfindungsgemäßer Wellenfrontsensor, der die erfindungsgemäße Wellenfrontquelle beinhaltet, als eigenständige Messvorrichtung realisiert sein, in der das Projektionsobjektiv vor Einbau in den Stepper oder Scanner vermessen wird. Alternativ kann der Wellenfrontsensor im Stepper oder Scanner integriert sein. Die erfindungsgemäße Wellenfrontquelle kann in diesem Fall z.B. als komplettes Bauteil auf einen Träger montiert sein, der anstelle eines im normalen Belichtungsbetrieb verwendeten Retikels in der Reti- kelebene in den Stepper oder Scanner geladen werden kann. Alternativ können ein oder mehrere Kanäle der Wellenfrontquelle fester Bestandteil des Steppers bzw. Scanners sein, indem die Wellenfrontquelle z.B. einen festen Bestandteil einer Retikelverschiebeeinheit der Projektions- belichtungseinheit des Steppers bzw. Scanners bildet.

Claims

Patentansprüche
1. Diffusor für eine Wellenfrontquelle eines Wellenfrontsensors, mit einer Streustruktur (1 1 ), dadurch gekennzeichnet, dass die Streustruktur eine diffraktive CGH-Streustruktur (1 1 ) mit vorgegebenem Winkelstreuprofil ist.
2. Diffusor nach Anspruch 1 , weiter dadurch gekennzeichnet, dass die diffraktive CGH-Streustruktur ein zweidimensionales, im wesentlichen gaussförmiges Winkelstreuprofil aufweist.
3. Diffusor nach Anspruch 1 oder 2, weiter dadurch gekennzeichnet, dass die diffraktive CGH-Streustruktur durch eine transmittieren- de, reflektierende oder absorbierende Mehrschichtstruktur (11a,
11 ) gebildet ist, die gemäß einem CGH-Muster in ihrer effektiven Schichtdicke und/oder in ihrer Brechzahl variiert.
4. Diffusor nach Anspruch 3, weiter dadurch gekennzeichnet, dass die wenigstens eine Strukturschicht minimale Strukturabmessungen senkrecht zur Lichtrichtung im Bereich zwischen 30nm und SOOOnm, insbesondere 100nm bis 200nm, und/oder in Lichtrichtung zwischen etwa 3nm und etwa 200nm aufweist.
5. Diffusor nach einem der Ansprüche 1 bis 4, weiter gekennzeichnet durch Mittel (21 ) zur in einer oder mehreren Translationsund/oder Drehrichtungen beweglichen Halterung der diffraktiven CGH-Streustruktur.
6. Wellenfrontquelle für einen Wellenfrontsensor, insbesondere zur Wellenfrontvermessung optischer Systeme, mit einer Wellenfrontbildungsstruktur (4, 4a, 4b, 19) und einem Diffusor (2, 2a) mit einer Streustruktur (11 , 2b, 2c, 19) im Strahlengang vor oder auf Höhe der Wellenfrontbildungsstruktur, dadurch gekennzeichnet, dass der Diffusor (2, 2a) ein solcher nach einem der Ansprüche 1 bis 5 ist.
7. Wellenfrontquelle nach Anspruch 6, weiter gekennzeichnet durch ein Fokussierelement (3, 3a, 3b) im Strahlengang vor der Wellenfrontbildungsstruktur und auf Höhe der diffraktiven CGH- Streustruktur oder vor oder hinter der diffraktiven CGH-
Streustruktur.
8. Wellenfrontquelle für einen Wellenfrontsensor, insbesondere nach Anspruch 6 oder 7, mit - einer Wellenfrontbildungsstruktur (4, 4a, 4b, 19) und einem Diffusor (2, 2a) mit einer Streustruktur (2b, 2c, 11 , 19) im Strahlengang vor der Wellenfrontbildungsstruktur, gekennzeichnet durch ein Fokussierelement (3, 3a, 3b) mit einer reflektierenden Fokus- sierstruktur im Strahlengang vor der Wellenfrontbildungsstruktur und auf Höhe der Streustruktur oder vor oder hinter der Streustruktur.
9. Wellenfrontquelle nach einem der Ansprüche 6 bis 8, weiter da- durch gekennzeichnet, dass die Streustruktur (2b) und die Wellenfrontbildungsstruktur (4a) nebeneinander auf einem gemeinsamen Substrat (17) ausgebildet sind.
10. Wellenfrontsensor mit einer Wellenfrontquelle zur Vermessung von Objektiven für Projektionsbelichtungsanlagen, dadurch gekennzeichnet, dass die Wellenfrontquelle eine solche nach einem der Ansprüche 6 bis
9 ist.
11. Projektionsbelichtungsanlage, insbesondere mikrolithographische Projektionsbelichtungsanlage, mit wenigstens einem Objektiv und mit einem Wellenfrontsensor zur Vermessung des Objektivs, dadurch gekennzeichnet, dass der Wellenfrontsensor ein solcher nach Anspruch 10 ist.
12. Projektionsbelichtungsanlage nach Anspruch 11 , weiter gekennzeichnet durch eine Retikelverschiebeeinheit, welche die Wellen- frontquelle des Wellenfrontsensors als festen Bestandteil beinhaltet.
13. Projektionsbelichtungsanlage nach Anspruch 11 , weiter gekennzeichnet durch einen Träger, auf dem die Wellenfrontquelle ange- ordnet ist und der in eine Retikelebene der Projektionsbelichtungsanlage ladbar ist.
PCT/EP2003/008738 2003-04-11 2003-08-07 Diffusor, wellenfrontquelle, wellenfrontsensor und projektionsbelichtungsanlage WO2004090490A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003281995A AU2003281995A1 (en) 2003-04-11 2003-08-07 Diffuser, wavefront source, wavefront sensor and projection lighting facility
US11/246,633 US7388696B2 (en) 2003-04-11 2005-10-11 Diffuser, wavefront source, wavefront sensor and projection exposure apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10317278.5 2003-04-11
DE10317278A DE10317278A1 (de) 2002-04-15 2003-04-11 Diffusor, Wellenfrontquelle, Wellenfrontsensor und Projektionsbelichtungsanlage

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/246,633 Continuation US7388696B2 (en) 2003-04-11 2005-10-11 Diffuser, wavefront source, wavefront sensor and projection exposure apparatus

Publications (1)

Publication Number Publication Date
WO2004090490A1 true WO2004090490A1 (de) 2004-10-21

Family

ID=33154227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/008738 WO2004090490A1 (de) 2003-04-11 2003-08-07 Diffusor, wellenfrontquelle, wellenfrontsensor und projektionsbelichtungsanlage

Country Status (3)

Country Link
US (1) US7388696B2 (de)
AU (1) AU2003281995A1 (de)
WO (1) WO2004090490A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005069080A2 (de) * 2004-01-16 2005-07-28 Carl Zeiss Smt Ag Vorrichtung und verfahren zur optischen vermessung eines optischen systems, messstrukturträger und mikrolithographie-projektionsbelichtungsanlage
DE102009018020A1 (de) 2008-06-06 2009-12-10 Carl Zeiss Smt Ag Maske sowie Verfahren zur Wellenfrontvermessung eines optischen Systems
CN106154761A (zh) * 2015-04-15 2016-11-23 上海微电子装备有限公司 一种杂散光测量装置及测量方法
US10324380B2 (en) 2017-01-12 2019-06-18 Carl Zeiss Smt Gmbh Projection exposure apparatus and method for measuring an imaging aberration

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7375799B2 (en) * 2005-02-25 2008-05-20 Asml Netherlands B.V. Lithographic apparatus
US20080259458A1 (en) * 2007-04-18 2008-10-23 Advanced Micro Devices, Inc. EUV diffractive optical element for semiconductor wafer lithography and method for making same
DE102007054683A1 (de) 2007-11-14 2009-05-28 Carl Zeiss Smt Ag Beleuchtungsoptik für die Mikrolithografie
US9186148B2 (en) 2012-01-05 2015-11-17 Ethicon Endo-Surgery, Inc. Tissue stapler anvil feature to prevent premature jaw opening
DE102012204704A1 (de) * 2012-03-23 2013-09-26 Carl Zeiss Smt Gmbh Messvorrichtung zum Vermessen einer Abbildungsgüte eines EUV-Objektives
DE102012207865B3 (de) * 2012-05-11 2013-07-11 Carl Zeiss Smt Gmbh Optische Baugruppe für die EUV-Lithographie
US10401723B2 (en) 2013-06-03 2019-09-03 Asml Netherlands B.V. Patterning device
DE102013218991A1 (de) 2013-09-20 2015-03-26 Carl Zeiss Smt Gmbh Vorrichtung zum Bestimmen einer optischen Eigenschaft eines optischen Abbildungssystems
DE102014221313A1 (de) 2014-10-21 2016-04-21 Carl Zeiss Smt Gmbh Beleuchtung für die EUV-Projektionslithografie
DE102018204626A1 (de) 2018-03-27 2019-04-04 Carl Zeiss Smt Gmbh Beleuchtungsmaske sowie Verfahren zu deren Herstellung
EP3640734A1 (de) * 2018-10-16 2020-04-22 ASML Netherlands B.V. Durchlässiger diffusor
CN112867969A (zh) * 2018-10-16 2021-05-28 Asml荷兰有限公司 透射型扩散器
EP3686673A1 (de) 2019-01-25 2020-07-29 ASML Netherlands B.V. Wellenfrontsensor und zugehörige messvorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10109929A1 (de) 2000-02-23 2001-11-22 Zeiss Carl Vorrichtung zur Wellenfronterfassung
US20020024738A1 (en) * 1994-02-28 2002-02-28 Robert W. Te Kolste Broad band controlled angle analog diffuser and associated methods
DE10105958A1 (de) * 2001-02-09 2002-09-12 Fraunhofer Ges Forschung Vorrichtung zur anisotropen Lichtstreuung sowie Verfahren zur Herstellung der Vorrichtung
US20020160545A1 (en) * 2001-04-30 2002-10-31 Erik Anderson Method of fabricating reflection-mode EUV diffusers

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5850300A (en) * 1994-02-28 1998-12-15 Digital Optics Corporation Diffractive beam homogenizer having free-form fringes
JP3167095B2 (ja) * 1995-07-04 2001-05-14 キヤノン株式会社 照明装置とこれを有する露光装置や顕微鏡装置、ならびにデバイス生産方法
DE19824030A1 (de) 1998-05-29 1999-12-02 Zeiss Carl Fa Katadioptrisches Projektionsobjektiv mit adaptivem Spiegel und Projektionsbelichtungsverfahren
EP1118905A3 (de) 1999-02-04 2003-11-05 Matsushita Electric Industrial Co., Ltd. Projektor und Anzeigevorrichtung mit optischem Element zur Difraktion und Streuung
WO2001033261A1 (en) 1999-10-29 2001-05-10 Digilens Inc. Display system utilizing ambient light and a dedicated light source
WO2003087945A2 (de) * 2002-04-15 2003-10-23 Carl Zeiss Smt Ag Interferometrische messvorrichtung und projektionsbelichtungsanlage mit derartiger messvorrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020024738A1 (en) * 1994-02-28 2002-02-28 Robert W. Te Kolste Broad band controlled angle analog diffuser and associated methods
DE10109929A1 (de) 2000-02-23 2001-11-22 Zeiss Carl Vorrichtung zur Wellenfronterfassung
DE10105958A1 (de) * 2001-02-09 2002-09-12 Fraunhofer Ges Forschung Vorrichtung zur anisotropen Lichtstreuung sowie Verfahren zur Herstellung der Vorrichtung
US20020160545A1 (en) * 2001-04-30 2002-10-31 Erik Anderson Method of fabricating reflection-mode EUV diffusers

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005069080A2 (de) * 2004-01-16 2005-07-28 Carl Zeiss Smt Ag Vorrichtung und verfahren zur optischen vermessung eines optischen systems, messstrukturträger und mikrolithographie-projektionsbelichtungsanlage
WO2005069080A3 (de) * 2004-01-16 2005-12-08 Zeiss Carl Smt Ag Vorrichtung und verfahren zur optischen vermessung eines optischen systems, messstrukturträger und mikrolithographie-projektionsbelichtungsanlage
US8004690B2 (en) 2004-01-16 2011-08-23 Carl Zeiss Smt Gmbh Device and method for the optical measurement of an optical system, measurement structure support, and microlithographic projection exposure apparatus
DE102009018020A1 (de) 2008-06-06 2009-12-10 Carl Zeiss Smt Ag Maske sowie Verfahren zur Wellenfrontvermessung eines optischen Systems
CN106154761A (zh) * 2015-04-15 2016-11-23 上海微电子装备有限公司 一种杂散光测量装置及测量方法
US10324380B2 (en) 2017-01-12 2019-06-18 Carl Zeiss Smt Gmbh Projection exposure apparatus and method for measuring an imaging aberration

Also Published As

Publication number Publication date
AU2003281995A1 (en) 2004-11-01
US20060109533A1 (en) 2006-05-25
US7388696B2 (en) 2008-06-17

Similar Documents

Publication Publication Date Title
DE10317278A1 (de) Diffusor, Wellenfrontquelle, Wellenfrontsensor und Projektionsbelichtungsanlage
EP3256835B1 (de) Prüfvorrichtung sowie verfahren zum prüfen eines spiegels
WO2004090490A1 (de) Diffusor, wellenfrontquelle, wellenfrontsensor und projektionsbelichtungsanlage
DE102009041405B4 (de) Maskeninspektionsmikroskop mit variabler Beleuchtungseinstellung
DE60209652T2 (de) Verfahren zur Messung der Aberration eines lithographischen Projektionssystems
DE10109929A1 (de) Vorrichtung zur Wellenfronterfassung
DE602004009841T2 (de) Diffusionsplatte und Verfahren zu deren Herstellung
DE102005041203A1 (de) Vorrichtung und Verfahren zur interferometrischen Messung von Phasenmasken
DE102012204704A1 (de) Messvorrichtung zum Vermessen einer Abbildungsgüte eines EUV-Objektives
DE102012010093A1 (de) Facettenspiegel
WO2005069079A1 (de) Vorrichtung und verfahren zur wellenfrontvermessung eines optischen abbildungssystems und mikrolithographie-projektionsbelichtungsanlage
WO2016184571A2 (de) Messverfahren und messanordnung für ein abbildendes optisches system
DE102010041556A1 (de) Projektionsbelichtungsanlage für die Mikrolithographie und Verfahren zur mikrolithographischen Abbildung
WO2015039751A1 (de) Vorrichtung zum bestimmen einer optischen eigenschaft eines optischen abbildungssystems
WO2018157977A1 (de) Messvorrichtung zur vermessung eines wellenfrontfehlers eines abbildenden optischen systems
DE102008000990B3 (de) Vorrichtung zur mikrolithographischen Projektionsbelichtung und Verfahren zum Prüfen einer derartigen Vorrichtung
DE102021200109A1 (de) Verfahren zur flächenhaften Bestimmung einer Karte wenigstens eines Strukturpara-meters einer strukturierten Oberfläche eines diffraktiven optischen Elements
DE102011005826A1 (de) Optische Vorrichtung
DE102017200934A1 (de) Verfahren zum Betrieb eines Manipulators einer Projektionsbelichtungsanlage
DE102019216447A1 (de) Interferometrische Prüfanordnung zur Prüfung der Oberflächenform eines Testobjekts
DE102011082481A1 (de) Beleuchtungssystem einer mikrolithographischen projektionsbelichtungsanlage und verfahren zu deren betrieb
DE102017200428B3 (de) Projektionsbelichtungsanlage sowie Verfahren zum Vermessen eines Abbildungsfehlers
DE102008043324B4 (de) Optische Anordnung zur dreidimensionalen Strukturierung einer Materialschicht
DE102014207865A1 (de) Kippspiegelüberwachung
DE102008029970A1 (de) Projektionsbelichtungsanlage für die Mikrolithographie sowie Verfahren zum Überwachen einer lateralen Abbildungsstabilität

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11246633

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11246633

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP