WO2004090055A1 - 重付加体及び該重付加体を含有するカチオン電着塗料 - Google Patents

重付加体及び該重付加体を含有するカチオン電着塗料 Download PDF

Info

Publication number
WO2004090055A1
WO2004090055A1 PCT/JP2004/004500 JP2004004500W WO2004090055A1 WO 2004090055 A1 WO2004090055 A1 WO 2004090055A1 JP 2004004500 W JP2004004500 W JP 2004004500W WO 2004090055 A1 WO2004090055 A1 WO 2004090055A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
added
cationic electrodeposition
compound
parts
Prior art date
Application number
PCT/JP2004/004500
Other languages
English (en)
French (fr)
Inventor
Hideki Iijima
Koji Kamikado
Shigetaka Setodoi
Original Assignee
Kansai Paint Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co., Ltd. filed Critical Kansai Paint Co., Ltd.
Priority to CA002521863A priority Critical patent/CA2521863A1/en
Priority to US10/552,344 priority patent/US20060131543A1/en
Priority to JP2005505206A priority patent/JP4545092B2/ja
Publication of WO2004090055A1 publication Critical patent/WO2004090055A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4488Cathodic paints
    • C09D5/4492Cathodic paints containing special additives, e.g. grinding agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/50Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing nitrogen, e.g. polyetheramines or Jeffamines(r)

Definitions

  • the present invention relates to a polyadduct and a cationic electrodeposition coating containing the polyadduct.
  • the present invention provides a novel polyaddition product having a polyoxyalkylene chain, and a coating film having excellent finishability, coating workability such as oil resistance, tint resistance, and water mark resistance, and excellent adhesion to a top coating film.
  • the present invention relates to a cationic electrodeposition paint containing the polyadduct which can be formed.
  • Cationic electrodeposition coatings are mainly used in a wide range of applications, including automobile bodies and automobile parts, and those having various properties have been developed.
  • the performance required for cationic electrodeposition paints includes coating workability such as finish, oil repellency, water mark resistance, and contamination resistance, and adhesion to the top coat film. These performances are important items when line painting automobile bodies.
  • Method (1) A method in which a surface conditioner is kneaded into a paint to form an emulsion.
  • a surface conditioner is dispersed in an aqueous medium together with a base resin such as an amine-added epoxy resin, a curing agent such as a block polyisocyanate compound, and other additives to prepare an emulsion.
  • Method (2) A method in which a bath of a cationic electrodeposition coating is prepared in advance using an emulsion and a pigment dispersion paste, and a surface conditioner is added to the bath.
  • the surface conditioner since the surface conditioner is emulsified together with the base resin and the curing agent, the dispersibility of the emulsion is reduced and the emulsion particle size is increased. Or the corrosion resistance may be reduced.
  • the surface conditioner does not adapt to the bath of the cationic electrodeposition paint or the coating film to be formed, equipment failures such as clogging of filter monofiltration and UF filtration, and detachment of sealer. However, there is a concern that peeling or repelling of the coating film may occur. As means for resolving these problems, for example, Japanese Patent Publication No.
  • 6-76568 discloses a cationic electrode obtained by dispersing an epoxy resin amine adduct containing a hydrolyzable alkoxysilane group into water. It has been proposed to mix adhesive gelling fine particles with a cationic electrodeposition coating material and to impart a repelling prevention effect to the re-formed coating film by its surface conditioning effect. However, when the cationic electrodeposition gelled fine particles are added later to the cation electrodeposition paint, they have an effect of preventing cissing (they can be applied to the above-mentioned method (2)). If the pump is continuously circulated or agitated for a long time to give a mechanical share, problems such as a decrease in finish of the coated surface and a loss of paint stability occur.
  • JP-A-2001-2005 discloses alkylene-based polyether polyols such as polymethylene glycol, polyethylene glycol, polypropylene glycol, and polybutylene glycol, and bisphenol alone or bisphenol. Containing a polyether polyol, such as an aromatic ring-containing polyether polyol obtained by reacting a polyether polyol with a glycol, as a surface conditioner, and a cationic electrodeposition coating that does not deteriorate finish or corrosion resistance. I have.
  • the surface conditioner described in JP-A-2001-2005 has no water dispersibility and cannot be added to a bath of a cationic electrodeposition paint later. There are problems such as the inability to make fine adjustments to improve the prevention effect. Also, when added in a large amount, the adhesion between the formed electrodeposition coating film and the sealer may be reduced, and the adhesion between the electrodeposition coating film and the middle- and overcoating film may be reduced.
  • Japanese Patent Application Laid-Open No. 2000-288407 discloses that in a cationic electrodeposition paint, a hydrophobic acryl resin and a higher alcohol having a specific molecular weight distribution and HLB, such as ethylene oxide and / or propylene oxide, are used. It has been proposed to prevent the generation of oil cissing, drying unevenness and water marks on a coating film by adding an oxide additive. According to the method described in JP-A-2001-288407, a hydrophobic acryl resin or a specific molecular weight distribution and HLB as components of the emulsion are used. Must be added: ethylene oxide and Z or propylene oxide adducts of higher alcohols, and depending on the mixing ratio of the two, oil cissing, drying unevenness, etc. may lower the coating workability. May be.
  • Japanese Patent Application Laid-Open No. 2002-294,165 discloses that the number average molecular weight obtained by reacting a diepoxy compound with an amino polyether is from 200,000 to 100,000. It has been proposed to include an amino-modified epoxy resin having a polyether chain of 0 as a surface conditioner in an electrodeposition paint. Although this surface conditioner can be added to electrodeposition paints as described in the above method (2), it is stable under mild paint agitation (eg, lab cans and small-scale tanks). However, when the coating line receives a long-term share of a filter or UF filter in the coating line, a part of the surface conditioner aggregates and blocks the filter or UF filter. Problems such as sticking to the painted surface may occur.
  • the present inventors have found that the weight average molecular weight obtained by reacting polyetherpolyamine with monoepoxysilane is in the range of 250 to 100,000.
  • the polyadduct in the coating is prepared by mixing the surface modifier into the coating in advance to form an emulsion, or by preparing a bath of a cationic electrodeposition paint, and then adding the surface modifier.
  • the cationic electrodeposition paint containing the polyadduct is also suitable for coating workability such as finish, oil repellency, water mark resistance, and contamination resistance, adhesion to topcoat paint, and coating lines.
  • the present inventors have found that a coating film having excellent paint stability, curability, corrosion resistance and the like can be formed, and have completed the present invention.
  • the present invention provides a polyadduct (A) of an amine compound having a polyoxyalkylene chain (a) and a monoepoxysilane (a 2 ) having a weight average molecular weight in the range of 250 to 10,000. Is the thing
  • the present invention also provides the above polyaddition to a cationic electrodeposition coating composition containing an amine-added epoxy resin obtained by adding an amino group-containing compound to an epoxy resin as a base resin and a blocked polyisocyanate compound as a curing agent.
  • An object of the present invention is to provide a cationic electrodeposition coating composition obtained by mixing or adding the body (A) in the range of 0.1 to 20 parts by weight per 100 parts by weight of the total solid content of the base resin and the curing agent.
  • the polyaddition product (A) of the present invention is obtained by reacting an amine compound having a polyoxyalkylene chain (a ⁇ ) with a monoepoxysilane (a 2 ), and has a range of 250 to 10,000. Having a weight average molecular weight of
  • the amine compound (a,) having a polyoxyalkylene chain includes a polyoxyalkylene chain in one molecule (this polyoxyalkylene chain may be composed of one kind of oxyalkylene unit; And at least one, preferably 1 to 3 amino groups, and a compound having at least one, preferably 1 to 3 amino groups. , (2), (3) and (4).
  • R. represents NH 2 or OH
  • R, and R 2 represents C 2 H 4 or C 3 H 6, respectively
  • R 3 is H
  • a, b and n are each integers of 1 or more
  • m is an integer of 0 or more.
  • R 2 each represent C 2 H 4 or C 3 H 6
  • R 3 represents H, C 2 H 5 or C 3 H 7
  • a and n are each an integer of 1 or more
  • m is an integer greater than or equal to 0
  • Specific examples of the compound represented by the above formula (2) include San Amyl MAP-10 (weight average molecular weight of about 600), San Amyl MAP-20 (weight average molecular weight of about 13,00) (Sanyo Chemical Co., Ltd.) Product name).
  • R 2 each represent C 2 H 4 or C 3 H 6 , n is an integer of 1 or more, and m is an integer of 0 or more)
  • Specific examples of the compound represented by the above formula (3) include Jeffamine D400 (weight average molecular weight of about 400) and Jeffamine D2000 (weight average molecular weight of about 2,000) (all of which are manufactured by Huntsman, trade name) ) And the like.
  • R and R 2 each represent C 2 H 4 or C 3 H 6
  • R 3 represents H, C 2 H 5 or C 3 H 7
  • a, b and n are each an integer of 1 or more.
  • m is an integer greater than or equal to 0.
  • Monoepoxysilane (a 2 ) has one epoxy group in one molecule and one formula
  • Q 2 and Q 3 each represent an alkyl group, an alkoxy group, or an alkylcarboxy group, provided that at least one of Q 2 and Q 3 is a group other than an alkyl group
  • Heavy adduct (A) of the present invention the ring-opening addition reaction between an Amino group and an epoxy group of the monoepoxy silane (a 2) of ⁇ amine compound (ai) having a polyoxyalkylene chain as described above Can be manufactured.
  • This ring-opening addition reaction is usually carried out in a suitable inert solvent at a temperature in the range of about 50 to about 130 ° C, preferably about 70 to about 110 ° C, for 30 minutes to 6 hours. It can be carried out by stirring for about 1 hour, preferably about 1 to 3 hours.
  • the ratio of the monoepoxysilane (a 2 ) to the amine compound (a n ) is not strictly limited, but generally, the monoepoxysilane (a) is used per mole of the amino group of the amine compound (a). It is preferable to use a2) in the range of 0.5 to 2 mol, particularly 0.5 to 1.5 mol.
  • solvents examples include hydrocarbons such as toluene, xylene, cyclohexane, and n-hexane; ester solvents such as methyl acetate, ethyl acetate, and butyl acetate; acetone, methyl ethyl ketone, Ketones such as methyl isobutyl ketone and methylamyl ketone; amides such as dimethylformamide and dimethylacetamide; alcohols such as methanol, ethanol, n-propanol and iso-propanol; and mixtures thereof.
  • hydrocarbons such as toluene, xylene, cyclohexane, and n-hexane
  • ester solvents such as methyl acetate, ethyl acetate, and butyl acetate
  • acetone methyl ethyl ketone
  • Ketones such as methyl isobutyl ketone and methyla
  • the polyaddition product (A) may be applied to a coating line even when a filter filter, a UF filtration device, or the like is used for a long time. A) is stable, and there are no problems such as clogging of the filter or UF membrane or sticking of paint to the painted surface.
  • Cationic electrodeposition paint
  • the polyaddition product (A) of the present invention can be dispersed in a base resin, a curing agent, and other paint additives as described below to form an emulsion, and then a cationic electrodeposition paint can be obtained.
  • the polyaddition product (A) is neutralized with an organic acid, for example, acetic acid, formic acid or a mixture thereof, and is further added with water to be dispersed, whereby the water dispersion (A) can be obtained.
  • A can be added later to a previously prepared bath of cationic electrodeposition paint, for example, it can be added during a rest time of a painting line, a holiday, etc.
  • the adduct (A) can be used in the range of 10 to 100, preferably 20 to 70, and more preferably 30 to 50 in terms of mgKOH per 1 g of the resin solid content.
  • the cationic electrodeposition paint to which the polyadduct (A) can be blended or added according to the present invention preferably comprises a cationic resin used as a base resin and a blocked polyisocyanate compound as a curing agent as basic components. It is contained as.
  • the cationic resin used as the base resin is a resin having a cationizable group such as an amino group, an ammonium base, a sulfonium base, or a phosphonium base in a molecule.
  • the resin which is usually used as the base resin of the resin for example, any type of resin such as an epoxy resin, an acrylic resin, a polybutadiene resin, an alkyd resin or a polyester resin may be used.
  • an amine-added epoxy resin obtained by subjecting a polyepoxide compound to an addition reaction with an amino-containing compound is preferable.
  • Examples of the above amine-added epoxy resin include: (1) an adduct of a polyepoxide compound with a primary mono- and polyamine, a secondary mono- and polyamine, or a mixed primary and secondary polyamine (for example, US Pat. (2) An adduct of a polyepoxide compound with a secondary mono- and polyamine having a ketiminated primary amino group (see, for example, US Pat. No. 4,017,438). (3) a reaction product obtained by etherification of a polyepoxide compound with a ketiminated hydroxy compound having a primary amino group (see, for example, JP-A-59-43013). Can be mentioned.
  • the polyepoxide compound used in the production of the above-mentioned amine-added epoxy resin is a compound having one or more, preferably two or more epoxy groups in one molecule, and is generally at least 200, preferably 400.
  • Examples of the polyphenol compound that can be used for forming the polyepoxide compound include bis (4-hydroxyphenyl) -12,2-propane, 4,4′-dihydroxybenzophenone, and bis (4-hydroxyphenyl). 1) 1,1-ethane, bis (4-hydroxyphenyl) 1,1,1-isobutane, bis (4-hydroxy2 or 3-tert-butyl-phenyl) 1,2,2-propane, bis (2 -Hydroxynaphthyl) methane, tetra (4-hydroxyphenyl) -11,1,2,2-ethane, 4,4'-dihydroxydiphenylsulfone, phenol novolak, cresol novolak and the like.
  • the polyepoxide compound may be partially reacted with a polyol, a polyether polyol, a polyester polyol, a polyamideamine, a polycarponic acid, a polyisocyanate compound, or the like. It may be a product obtained by graft polymerization of a power prolactone such as a rubber, an acrylic monomer, etc. ⁇
  • Examples of the primary mono- and polyamines, secondary mono- and polyamines, or primary and secondary mixed polyamines used in the production of the amine-added epoxy resin of the above (1) include monotylamine, dimethylamine, monoethylamine, getylamine.
  • Mono- or dialkylamines such as mono-, mono-isopropylamine, di-isopropylamine, mono-butylamine, di-butylamine: alkanolamines such as mono-ethanolamine, diethanolamine, mono (2-hydroxypropyl) amine, mono-methylaminoethanol Mines: alkylene polyamines such as ethylenediamine, propylenediamine, petylenediamine, hexamethylenediamine, diethylenetriamine, and triethylenetetramine.
  • the secondary mono- and polyamines having a ketiminated primary amino group used in the production of the amine-added epoxy resin of the above (2) include, for example, those for the production of the amine-added epoxy resin of the above (1).
  • primary mono- and polyamines secondary mono- and polyamines or primary and secondary mixed polyamines
  • compounds having a primary amino group for example, monomethylamine, monoethanolamine, etc.
  • Ketimine compounds obtained by reacting ketone compounds with ethylenediamine, diethylenetriamine and the like can be mentioned.
  • Examples of the hydroxy compound having a ketiminated primary amino group used in the production of the amine-added epoxy resin of the above (3) include, for example, the first amino compound used in the production of the amine-added epoxy resin of the above (1).
  • monoamines and polyamines, secondary mono- and polyamines or mixed primary and secondary polyamines compounds having a primary amino group and a hydroxyl-xyl group (for example, monoethanolamine, mono (2- And hydroxy-containing ketimines obtained by reacting a ketone compound with hydroxypropyl) amine.
  • the amamine-added epoxy resin is reacted with the polyepoxide compound, a polyol compound obtained by adding a force prolactone to a compound having two or more active hydrogen-containing groups in one molecule, and an amino-containing compound.
  • the polyol-modified amine-added epoxy resin is also included and can be suitably used.
  • the compound having two or more active hydrogen-containing groups in one molecule generally has a number average molecular weight in the range of 62 to 50,000, particularly 62 to 150, It preferably contains 2 to 30, especially 2 to 10, active hydrogen-containing groups per molecule.
  • the active hydrogen-containing group include a hydroxyl group, a primary amino group and a secondary amino group. And an amino group.
  • the compound having two or more active hydrogen-containing groups in one molecule include ethylene glycol, propylene glycol, 1,3-butylene glycol, 1,4-butanediol, 1,6-hexanediol, Low molecular weight polyols such as diethylene glycol, dipropylene glycol, neopentyl glycol, glycerin, trimethyl alcohol, pentaerythritol, etc .: Wires such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, bisphenol A polyethylene glycol ether Or branched polyether polyols; organic diphenols such as succinic acid, adipic acid, azelaic acid, sebacic acid, maleic acid, cyclohexandicarboxylic acid, phthalic acid, isophthalic acid, and terephthalic acid Polyester polyol obtained by polycondensation reaction between an acid or an anhydride thereof and an organic diol,
  • Examples of the caprolactone to be subjected to the addition reaction to the compound having two or more active hydrogen-containing groups in one molecule include r-force prolactone, r-force prolactone, and (5-force prolactone). ⁇ -force prolactone is preferred.
  • the addition reaction between the compound having two or more active hydrogen-containing groups in one molecule and hydrprolactone can be carried out by a method known per se, and a polyol compound is obtained by this addition reaction.
  • the amino group-containing compound used in the production of the above-mentioned polyol-modified amine-added epoxy resin is a cation-imparting component for introducing an amino group into the resin to cationize the resin.
  • Those having at least one active hydrogen that reacts can be used.
  • Specific examples thereof include, for example, primary mono- and polyamines, secondary mono- and polyamines, or primary and secondary mixed polyamines used in the production of the amine-added epoxy resin of the above (1); )) A secondary mono- and polyamine having a ketiminated primary amino group used in the production of an amine-added epoxy resin of the above; and (3) a ketiminated mono- and polyamine used in the production of the amine-added epoxy resin of the above (3). And hydroxy compounds having a primary amino group.
  • the cationic resin generally has a number-average molecular weight in the range of 700 to 600, particularly 85 to 500, more particularly 100 to 400, and the cationic group Is preferably 0.5 to 3 equivalents, more preferably 0.6 to 2.5 equivalents, more preferably 0.7 to 2 equivalents per kg of the resin. If the cationic resin has an amino group as a cationizable group, neutralize it with an acid such as an organic carboxylic acid such as formic acid, acetic acid, propionic acid, or lactic acid; or an inorganic acid such as hydrochloric acid or sulfuric acid.
  • an organic carboxylic acid such as formic acid, acetic acid, propionic acid, or lactic acid
  • an inorganic acid such as hydrochloric acid or sulfuric acid.
  • Water-soluble or water-dispersible while having a cationizable group such as an ammonium base, a sulfonium base, or a phosphonium base, it is not necessary to neutralize it, and the water-soluble or water Can be decentralized.
  • a cationizable group such as an ammonium base, a sulfonium base, or a phosphonium base
  • the cationic resin may be used after being solubilized or dispersed in water, or may be used as an organic solvent solution.
  • the cationic resin can be neutralized by an acid and dissolved or dispersed in an aqueous medium to enable cationic electrodeposition coating.
  • a xylene formaldehyde resin-modified amino group-containing epoxy resin may be used as the base resin.
  • the xylene formaldehyde resin-modified amino group-containing epoxy resin includes an amino group-containing epoxy resin obtained by reacting an xylene formaldehyde resin and an amino group-containing compound with an epoxy resin having an epoxy equivalent of 180 to 300,000. You.
  • the same epoxy resins as those described for the cationic resin are preferable.
  • Xylene formaldehyde resin is useful for internal plasticization (modification) of epoxy resin.
  • xylene formaldehyde resin is produced by subjecting xylene and formaldehyde and, in some cases, rifenols to a condensation reaction in the presence of an acidic catalyst. Can be done.
  • formaldehyde examples include industrially easily available compounds that generate formaldehyde such as formalin, paraformaldehyde and trioxane.
  • phenols include monovalent or divalent phenolic compounds having two or three reaction sites, and specifically include, for example, phenol, cresol, para Octyl phenol, nonyl phenol, bisphenol propane, bisphenol methane, resozolecin, pyrocatechol, hydroquinone, Para-tert-butyl phenol, bisphenol I-sulfone, bisphenol ether, paraphenyl phenol and the like can be mentioned, and these can be used alone or in combination of two or more. Of these, phenol and cresol are particularly preferred.
  • Examples of the acidic catalyst used for the condensation reaction of xylene and formaldehyde described above, and in some cases rifenols, include sulfuric acid, hydrochloric acid, balatruenesulfonic acid, and oxalic acid. Is particularly preferably sulfuric acid.
  • the condensation reaction can be carried out, for example, by heating to a temperature at which xylene, phenols, water, and ho (remalin, etc.) existing in the reaction system are refluxed, usually at a temperature of about 80 to about 100 ° C. It can be completed in about 2 to 6 hours.
  • the xylene-formaldehyde resin can be obtained by heat-reacting xylene with formaldehyde and, in some cases, refenol under the above conditions in the presence of an acidic catalyst.
  • the xylene formaldehyde resin thus obtained is generally 20 to 50,000 centipoise (25 ° C.), preferably 25 to 35,000 centipoise (25 ° C.), more preferably 3 to 50 centipoise (25 ° C.). It can have a viscosity in the range of 0-"! 5,000 centivoise (25 ° C) and is generally 100-500,000, especially 150-300,000. It is preferred that the compound has a hydroxyl equivalent of 0, more preferably 200 to 100,000.
  • the amino group-containing compound is a cationicity-imparting component for introducing an amino group into an epoxy resin to make the epoxy resin cationic, and the same compound as that used in the production of the cationic resin is used. be able to.
  • the reaction of the xylene formaldehyde resin and the amino group-containing compound with respect to the epoxy resin can be performed in any order.In general, it is preferable to simultaneously react the xylene formaldehyde resin and the amino group-containing compound with the epoxy resin. It is suitable.
  • the above addition reaction is usually carried out in a suitable solvent at a temperature of about 80 to about 170 ° C, preferably about 90 to about 150 ° C, for about 1 to 6 hours, preferably about 1 to 6 hours. Do about 5 hours Can be.
  • the solvent include hydrocarbons such as toluene, xylene, cyclohexane, and n-hexane: esters such as methyl acetate, ethyl acetate, and butyl acetate; acetone, methyl elketone, and methyl isobutyl ketone.
  • ketones such as methyl amyl ketone: amides such as dimethylformamide and dimethylacetamide; alcohols such as methanol, ethanol, n-propanol and iso-propanol; and mixtures thereof.
  • the proportion of each reaction component used in the above addition reaction is not strictly limited, and can be changed as appropriate.
  • the total solid weight of the three components of the epoxy resin, the xylene formaldehyde resin, and the amide-containing compound is calculated as follows. The following range is appropriate based on the standard.
  • Epoxy resin is generally 50 to 90% by weight, preferably 50 to 85% by weight
  • xylene formaldehyde resin is generally 5 to 45% by weight, preferably 6 to 43% by weight
  • the compound is preferably used in a range of generally 5 to 25% by weight, preferably 6 to 20% by weight.
  • a blocked polyisocynate compound which is an addition reaction product of the polyisocynate compound and the blocking agent in almost stoichiometric amounts, is used in terms of curability, anticorrosion properties, and the like. Is preferred.
  • polyisocyanate compound used here those known in the art can be used.
  • tolylene diisocyanate, xylylene diisocyanate, phenylene diisocyanate, diphenylmethane_2,4 'Diisocyanate, diphenylmethane 1,4' diisocyanate usually called “MDIJ”
  • cloud MDI bis (isocyanatemethyl) cyclohexane, tetramethylenediisocyanate, hexamethylenediiso
  • Aromatic, aliphatic or alicyclic polyisocyanate compounds such as cyanate, methylene diisocyanate, and isophorone diisocyanate
  • cyclized polymers of these polyisocyanate compounds isocyanate pellets
  • Ethylene oxide is added to the excess amount of these polyisocyanate compounds.
  • Examples thereof include compounds containing a terminal isocyanate obtained by reacting a low-molecular-weight active hydrogen-containing compound such as coal, propylene glycol, trimethylolpropane, hexanetriol, and castor oil. Two or more can be used in combination.
  • a blocking agent is a substance that blocks by adding to the isocyanate group of a polyisocyanate compound, and the blocked polyisocyanate compound formed by the addition is stable at room temperature, When heated to a baking temperature (usually about 100 ° C. to about 200 ° C.), it is desirable that the blocking agent be capable of dissociating to regenerate free isocyanate groups.
  • Blocking agents satisfying such requirements include, for example, lactam compounds such as throxyprolactam and monobutyrolactam; oxime compounds such as methylethylketoxime and cyclohexanoxoxime; phenol, para-t-butylphenol And phenolic compounds such as cresol: aliphatic alcohols such as n-butanol and 2-ethylhexanol; aromatic alkyl alcohols such as phenylcarbinol and methylphenylcarbinol; ethylene glycol monobutyl ether and diethylene glycol mono Examples thereof include ether alcohol compounds such as ethyl ether.
  • diols having a molecular weight of 76 to 150 or having a hydroxyl group with a molecular weight of 106 to 500 having two hydroxyl groups having different reactivity from each other are blocking agents.
  • the blocked polyisocyanate used as the above can also be used as a curing agent.
  • the above-mentioned diol has two hydroxyl groups having different reactivities, for example, a combination of a primary hydroxyl group and a secondary hydroxyl group, a primary hydroxyl group and a tertiary hydroxyl group, and a combination of a secondary hydroxyl group and a tertiary hydroxyl group.
  • 76 to 150 for example, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,2-butanediol, 3-methyl- 1,2-butanediol, 1,2-pentanediol, 1,4-pentanediol, 3-methyl-1,4-pentanediol, 3-methyl-4,5-pentanediol, 2,2,4 —Dimethyl-1,3-pentanediol, 1,5-hexanediol, 1,4-hexanediol and other diols having two hydroxyl groups with different reactivities can be mentioned.
  • propylene glycol is preferred from the viewpoints of reactivity of the blocked polyisocyanate, reduction of heating loss, and storage stability of paint.
  • diols are Usually, the more reactive hydroxyl group reacts with the isocyanate group to block the isocyanate group.
  • the above-mentioned carboxyl group-containing diol includes a carboxyl group-containing diol having a molecular weight of 106 to 500, and has a carboxyl group in the molecule, thereby improving low-temperature dissociation and improving low-temperature curability.
  • an organotin compound is used as a curing catalyst, the curability at low temperatures can be greatly improved.
  • diol having a lipoxyl group examples include 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, dimethylolvaleric acid, and glyceric acid.
  • the above-mentioned tomb resin and curing agent are generally 50 to 95% by weight, especially 60 to 90% by weight, and more particularly 65 to 8% by weight, based on the total solid content of both.
  • the curing agent can be used in the range of 5 to 50% by weight, especially 10 to 40% by weight, more particularly 15 to 35% by weight.
  • the cationic electrodeposition coating composition has a total solid content of the base resin and the curing agent of 10 to 40% by weight, particularly 10 to 30% by weight, and more preferably 15 to 25% by weight. It can be contained in degrees.
  • Cationic electrodeposition paints include, in addition to the basic two components of base resin and curing agent, if necessary, other paint additives, such as coloring pigments, body paints, anti-fouling paints, organic solvents, and pigment dispersion. Agents, surface conditioners, surfactants, acids, catalysts, and the like can be included in commonly used amounts.
  • polyaddition product (A) of the present invention can be blended with a cationic electrodeposition paint component at any stage of the preparation of the cationic electrodeposition paint (hereinafter referred to as “pre-addition method J”), or It can also be added to a previously prepared cationic electrodeposition coating (hereinafter referred to as “post-addition method”).
  • pre-addition method J a cationic electrodeposition paint component at any stage of the preparation of the cationic electrodeposition paint
  • post-addition method a previously prepared cationic electrodeposition coating
  • the polyadduct (A) is dispersed in an aqueous medium together with a base resin, a curing agent, and optionally other paint additives to form an emulsion, and then the emulsion and the pigment are dispersed.
  • a cationic electrodeposition paint can be prepared using the paste.
  • the polyadduct (A), the base resin, the curing agent and, if necessary, other coating additives are combined together and mixed well to form a dissolving varnish, and the aqueous medium
  • a neutralizing agent selected from formic acid, acetic acid, lactic acid, propionic acid, citric acid, malic acid, sulfamic acid, a mixture of two or more of these is added and dispersed in water, and the resultant is cationically electrodeposited.
  • a neutralizing agent selected from formic acid, acetic acid, lactic acid, propionic acid, citric acid, malic acid, sulfamic acid, a mixture of two or more of these is added and dispersed in water, and the resultant is cationically electrodeposited.
  • the compounding amount of the polyadduct (A) is 0.1 to 20 parts by weight, particularly 0.5 to 15 parts by weight, more preferably 1 to 100 parts by weight, per 100 parts by weight of the total solid content of the base resin and the curing agent.
  • a range of from 10 to 10 parts by weight is preferable from the viewpoint of paint stability and the like.
  • the polyadduct (A) is added to the polyadduct (A) in an amount of 10 to "! 00, preferably 20 to 70, more preferably 30 to 50 in terms of mgKOH per 1 g of the solid content. Then, an organic acid such as acetic acid, formic acid, or lactic acid is added, and the polyadduct (A) is dispersed in water to prepare an aqueous dispersion of the polyadduct (A).
  • a neutralization agent is added to the above-mentioned base resin, curing agent and, if necessary, other coating additives, and water-dispersed to produce a re-emulsion. And, if necessary, diluting with an aqueous medium to prepare a cationic electrodeposition paint.
  • the aqueous dispersion of the above-mentioned polyadduct (A) was added to the previously prepared cationic electrodeposition paint as a solid, and the solid content was 0.1 to 20 per 100 parts by weight of the total solid content of the base resin and the curing agent.
  • the cationic electrodeposition coating composition according to the present invention can be obtained by adding it in an amount of from 0.5 to 15 parts by weight, more preferably from 1 to 10 parts by weight.
  • the addition of the polyadduct (A) can be performed at the stage of electrodeposition coating.
  • the cationic electrodeposition coating composition of the present invention prepared as described above can be applied to a desired substrate surface by cationic electrodeposition coating.
  • the electrodeposition coating is diluted with deionized water so that the bath solid concentration is about 5 to about 40% by weight, and the pH is adjusted to a range of 5.5 to 9.0.
  • a cationic electrodeposition paint bath can be used, usually under the conditions of a bath temperature of 15 to 35 ° C and a load voltage of 100 to 400V.
  • the film thickness of the cationic electrodeposition coating film formed using the cationic electrodeposition coating material of the present invention is not particularly limited, but is generally 10 to 40 m, based on the cured coating film. Particularly, it is preferably in the range of 10 to 25 / m.
  • the baking temperature of the coating film is generally in the range of about 120 to about 200 ° C, preferably about 140 to about 180 ° C, and the baking time is 5 to 60 ° C. Minutes, preferably about 10 to 30 minutes.
  • the cationic electrodeposition coating composition of the present invention containing the polyadduct (A) is excellent in coating workability such as finish of the coated surface, oil repellency, water stain resistance, contamination resistance, and adhesion to a top coating.
  • the polyaddition product (A) of the present invention is used as a water dispersion when the operation of the painting line is stopped (during breaks and during work shifts). During breaks, holidays, etc.), the paint can be added directly into the tank, making it extremely easy to improve and adjust the coating workability.
  • the pigment content in the cationic electrodeposition coating is reduced to 5 to 18% by weight, the sedimentation and redispersibility of the coating are improved, but the coating surface generally tends to repell. Since the polyadduct (A) does not reduce the corrosion resistance of the coating film, it can be added to the cationic electrodeposition paint in a wide range of 0.1 to 20 parts by weight, and the coating workability is greatly improved. Be improved. Example
  • Chemiol EP-400P polypropylene glycol diglycidyl ether, epoxy equivalent 297, manufactured by Sanyo Chemical Industries, Ltd., epoxy equivalent 297) (Value 192) 99.6 parts and benzyldimethylamine 0.6 part were added and reacted at 160 ° C. until the acid value became 0.5 or less to obtain a diepoxide having an epoxy equivalent of 2,300.
  • a 2-liter separable flask equipped with a thermometer, reflux condenser and stirrer was charged with 240 g of 50% formalin, 55 g of phenol, 101 g of 98% industrial sulfuric acid, and 212 g of meta-xylene. Incubate at 88 ° C for 4 hours. After the completion of the reaction, the mixture is allowed to stand to separate the resin phase and the aqueous sulfuric acid phase. Unreacted meta-xylene was stripped for 20 minutes at a condition of OmmH g / 1 20 to 130 ° C. to obtain a xylene formaldehyde resin 1 having a viscosity of 1,050 centivoise (25 ° C.).
  • a base resin No. 1 which is a xylene formaldehyde resin-modified amino group-containing epoxy resin having a resin solid content of 80% was obtained.
  • Production Example 8 (Production of base resin No. 2)
  • PP-400 manufactured by Sanyo Kasei Co., trade name, polypropylene glycol, molecular weight: 400
  • 300 g of prolactone was added, and the temperature was raised to 130 ° C.
  • 0.01 g of tetrabutoxytitanium was added, and the temperature was raised to 170 ° C. Sampling was performed over time while maintaining this temperature.
  • the amount of unreacted ⁇ -force prolactone was traced by infrared absorption spectrum measurement, and when the reaction rate reached 98% or more, cooling was performed.
  • Epicoto 828 EL manufactured by Japan Epoxy Resin Co., Ltd., trade name, X-epoxy resin epoxy equivalent: 190, molecular weight: 350
  • l 400 g of bisphenol A and 0.2 g of dimethylbenzylamine were added to The reaction was carried out at 30 ° C. until the epoxy equivalent reached 750.
  • Nonylph 120 g of ⁇ -nor was added thereto, and the mixture was reacted at 130 ° C. until the epoxy equivalent became 1,000,000. Then, 1200 g of denaturant, 95 g of diethanolamine and 65 g of ketiminated diethylenetriamine were added, and the mixture was reacted at 120 ° C for 4 hours. , Resin solids 8 A base resin No. 2 which was a polyol-modified amino-containing epoxy resin to which 0% of nonylphenol I was added was obtained. Production Example 9 (Production of curing agent)
  • Example 1 (Production of cationic electrodeposition paint No. 1)
  • Emulsion No. 1 for cationic electrodeposition paint No. 1 309 parts (solid content 105 parts), pigment dispersion paste 49.6 parts (solid content 27.3 parts) obtained in Production Example 14 and deionized water 1 73.8 parts were added to obtain a cationic electrodeposition paint No. 1 having a solid content of 2 ⁇ / ⁇ .
  • Examples 2 to 4 and Comparative Examples 1 to 4 were added to obtain a cationic electrodeposition paint No. 1 having a solid content of 2 ⁇ / ⁇ .
  • the cationic electrodeposition paint N was prepared in the same manner as in Example 1.
  • Electrodeposition coating was applied to cold rolled dull steel sheets and zinc plated steel sheets.
  • the coating film was baked in an electric hot air dryer at 170 ° C for 20 minutes to obtain a test plate.
  • test plate was tested according to the following test conditions. The results are shown in Table 3. Table 3 Test results
  • O has Ra value less than 0.25 / m
  • indicates Ra value of 0.25 to 0.35 m
  • Oil repellency A 1 m I machine oil in a crown was placed on an E-plate after electrodeposition coating. Then, the condition of the baked coated surface was observed at 170 ° C for 20 minutes.
  • the hair is scattered on a part of the painted surface
  • indicates that the sealer displacement is 5 mm or less
  • Corrosion protection baking temperature 1 70 ° C-The electrodeposition coating film of each electrodeposition coated plate (using a chemically treated zinc plated steel plate) obtained in 20 minutes must be baked to reach the substrate. After making a cross-cut wound with, a salt spray test was conducted for 840 hours in accordance with JISZ-2371 to evaluate the length of the mackerel and blister width (one side) from the knife wound.
  • is ⁇
  • blister width is less than 3 mm (one side)
  • the width is less than 3-4 mm (one side)
  • X indicates that the width of the blister exceeds 4 mm (one side).
  • is 1 1-2 Omg / L
  • X indicates greater than 2 OmgZL.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Polyethers (AREA)

Abstract

本発明は、カチオン電着塗料に用いた場合に、仕上がり性、耐油ハジキ牲、耐水跡性などの塗装作業性やシーラー付着性、防食性などに優れた塗膜を与える塗料安定性が良好な添加剤として、ポリオキシアルキレン鎖を有するアミン化合物とモノエポキシシランとの、重量平均分子量が250~10,000の範囲内にある重付加体を提供するものである。

Description

明細書
重付加体及び該重付加体を含有するカチオン電着塗料 技術分野
本発明は、 ポリオキシアルキレン鎖を有する新規な重付加体、 及び仕上り性、 耐油ノ、ジキ性、 耐水跡性などの塗装作業性や上塗リ塗膜との付着性などに優れた 塗膜を形成しうる該重付加体を含有するカチオン電着塗料に関する。 背景技術
カチオン電着塗料は、 主に、 自動車ボディや自動車部品を始めとする幅広い用 途に使用されており、 従来から種々の特性を有するものが開発されている。
カチオン電着塗料に要求される性能として、 仕上り性、 耐油ハジキ性、 耐水跡 性、 耐コンタミ性などの塗装作業性や、 上塗り塗膜との付着性などが挙げられ、 待に、 複雑形状の自動車ボディをライン塗装する際には、 これらの性能は重要項 目である。
上記の性能を向上させるために、 従来、 カチオン電着塗料に表面調整剤などを 添加する方法が提案されており、 例えば、 以下に記載する方法 (1 ) 、 (2 ) な どが採用されている。
方法 ( 1 ) :表面調整剤を塗料に練り込んでエマルシヨンとする方法。 例えば、 表面調整剤をァミン付加エポキシ樹脂などの基体樹脂、 プロックポリィソシァネ ート化合物などの硬化剤、 その他の添加剤とともに水性媒体中に分散させ、 エマ ルシヨンを作製した後、 そのエマルシヨン及び顏料分散ペース卜を用いてカチォ ン電着塗料を作製する方法。
方法 (2 ) :エマルシヨン及び顔料分散ペーストを用いて予めカチオン電着塗 料の浴を作製し、 その浴に表面調整剤を添加する方法。
上記の方法 (1 ) は、 表面調整剤を基体樹脂や硬化剤とともにエマルシヨン化 するため、 エマルシヨンの分散性が低下し、 エマルシヨン粒径が増大することか ら、 塗料安定性を損なったり、 仕上り性や防食性の低下を招くおそれがある。 . 他方、 上記の方法 (2 ) では、 表面調整剤が、 カチオン電着塗料の浴や形成さ れる塗膜に馴染まず、 フィルタ一濾過機や U F濾過機の閉塞などの設備不具合、 シーラーの脱落、 中■上塗り塗膜の剥がれやハジキなどが生ずる心配がある。 これらの問題を改善する手段として、 例えば、 特公平 6— 7 6 5 6 8号公報に は、 加水分解性アルコキシシラン基を含有するエポキシ樹脂ァミン付加物を水分 散化することにより得られるカチオン電着性のゲル化微粒子をカチオン電着塗料 に配合し、 その表面調整効果によリ形成塗膜にハジキ防止効果を付与することが 提案されている。 しかしながら、 このカチオン電着性のゲル化微粒子は、 カチォ ン電着塗料に後添加した場合にはハジキ防止効果があるものの (前記の方法 ( 2 ) に適用できる) 、 カチオン電着塗料を長期間にわたってポンプで循環又は 攪拌して機械的なシェアを与え続けると、 塗面の仕上り性の低下や塗料安定性を 損なうなどの問題が生ずる。
また、 特開 2 0 0 1—3 0 0 5号公報には、 ポリメチレングリコ一.ル、 ポリェ チレングリコール、 ポリプロピレングリコール、 ポリブチレングリコールなどの アルキレン系ポリエーテルポリオールや、 ビスフエノール単独もしくはビスフエ ノールとグリコールとを反応させてなる芳香環含有ポリエーテルポリオールなど のポリエーテルポリオ一ルを表面調整剤として含有する、 仕上り性や防食性を低 下することがないカチオン電着塗料が記戴されている。 しかし、 上記特開 2 0 0 1 - 3 0 0 5号公報に記載の表面調整剤は水分散性がなく、 カチオン電着塗料の 浴に後添加することができず、 そのため、 塗膜のハジキ防止効果を改善するため の微調整ができないなどの問題がある。 また、 多量に添加すると、 形成される電 着塗膜とシーラーとの間の付着性が低下したり、 中■上塗り塗膜との付着性が低 下することがある。
他方、 特開 2 0 0 1 — 2 8 8 4 0 7号公報には、 カチオン電着塗料中に、 疎水 性のァクリル樹脂と特定の分子量分布および H L Bを有する高級アルコールのェ チレンォキサイドおよび またはプロピレンォキサイド付加物を添加することに より、 塗膜の油ハジキ、 乾きムラおよび水跡の発生を防止することが提案されて いる。 し力、し、 上記特開 2 0 0 1 - 2 8 8 4 0 7号公報に記載の方法では、 エマ ルションの成分として疎水性のァクリル樹脂又は特定の分子量分布および H L B を有する高級アルコールのエチレンォキサイドおよび Zまたはプロピレンォキサ ィド付加物の 2種類を加えなければならず、 しかも 2種類の配合比率によっては 油ハジキ、 乾きムラなどが生じ塗装作業性が低下することがある。
さらに、 特開 2 0 0 2— 2 9 4 1 6 5号公報には、 ジエポキシ化合物とァミノ ポリエーテルとを反応させて得られる数平均分子量が 2 0 , 0 0 0〜1 0 0, 0 0 0のポリエーテル鎖を有するァミノエーテル変性エポキシ樹脂を表面調整剤と して電着塗料に含有させることが提案されている。 この表面調整剤は、 前記の方 法 (2 ) に示されるような電着塗料への後添加が可能であるものの、 マイルドな 塗料攪拌 (例えば、 ラボの缶や小スケールのタンク) では安定性が良好であるが、 塗装ラインにおいてフィルター濾過機や U F濾過機などのシェアを長期にわたつ て受けたときには、 表面調整剤の一部が凝集してフィルタ一濾過機や U F濾過機 の閉塞、 塗面にブッが付着するなどの不具合を生じることがある。
そのため、 前記の方法 (1 ) 及び (2 ) のいずれの添加方式にも適用可能であ リ、 かつ仕上がり性、 耐油ハジキ性、 耐水跡性、 耐コンタミ性などの塗装作業性、 上塗り塗膜との付着性、 塗装ラインでの塗料安定性、 硬化性、 防食性などをバラ ンスよく保持したカチオン電着塗料用の表面調整剤の開発が求められている。 発明の開示
本発明者らは、 上記要望に応えるべく銳意研究を重ねた結果、 今回、 ポリエー テルポリアミンとモノエポキシシランを反応させることにより得られる重量平均 分子量が 2 5 0〜 1 0 , 0 0 0の範囲内にある重付加体が、 表面調整剤を予め塗 料に練リ込んでエマルション化する方法、 カチオン電着塗料の浴を作製し、 その 後に表面調整剤を添加する方法のいずれの添加方法にも利用可能であり、 しかも、 該重付加体を含むカチオン電着塗料は、 仕上がり性、 耐油ハジキ性、 耐水跡性、 耐コンタミ性などの塗装作業性、 上塗り塗料との付着性、 塗装ラインでの塗料安 定性、 硬化性、 防食性などに優れた塗膜を形成することを見出し、 本発明を完成 するに至った。 かくして、 本発明は、 ポリオキシアルキレン鎖を有するァミン化合物 (a とモノエポキシシラン (a2) との、 重量平均分子量が 250〜 10, 000の 範囲内にある重付加体 (A) を提供するものである
本発明は、 また、 基体樹脂としてエポキシ樹脂にアミノ基含有化合物を付加反 応させて得られるァミン付加エポキシ樹脂及び硬化剤としてブロック化ポリイソ シァネー卜化合物を含有するカチオン電着塗料に、 上記重付加体 (A) を、 基体 樹脂と硬化剤の合計固形分 1 00重量部あたり 0. 1〜20重量部の範囲内で配 合又は添加してなるカチオン電着塗料を提供するものである。
以下、 本発明の重付加体及びカチオン電着塗料についてさらに詳細に説明する。 重付加体 (A) :
本発明の重付加体 (A) は、 ポリオキシアルキレン鎖を有するァミン化合物 (a -,) とモノエポキシシラン (a 2) を反応させることにより得られるもので あり、 250〜10, 000の範囲内の重量平均分子量を有する。
ポリオキシアルキレン鎖を有するァミン化合物 (a,) には、 1分子中にポリ ォキシアルキレン鎖 (このポリオキシアルキレン鎖は 1種のォキシアルキレン単 位からなるものであってもよく、 或いは 2種もしくはそれ以上のォキシアルキレ ン単位からなるもので つてもよい) と、 少なくとも 1個 好ましくは 1〜3個 のァミノ基とを有する化合物が包含され、 具体的には、 例えば、 下記式 (1) 、 (2) 、 (3) 及び (4) で示される化合物を挙げることができる。
R0(CH2)aN(CH2)bNH2
(1 )
(R^^— (R20)mR3
(式中、 R。は NH2又は OHを表し、 R,及び R2はそれぞれ C2H4又は C3 H6を表し、 R3は H、 C2H5又は C3H7を表し、 a、 b及び nはそれぞれ 1 以上の整数であり、 mは 0以上の整数である)
上記式 (1 ) で示される化合物の具体例としては、 サンアミール TAP— 1 0 (重量平均分子量 約 600) 、 サンアミール TAP— 40 (重量平均分子量 約 2, 300) (以上いずれも、 三洋化成社製、 商品名) など力《挙げられる。 H2N(CH2)aO(RiO)n-(R20)mR3 (2)
(式中、 及び R2はそれぞれ C2H4又は C3H6を表し、 R3は H、 C2H5 又は C3H7を表し、 a及び nはそれぞれ 1以上の整数であり、 mは 0以上の 整数である)
上記式 (2) で示される化合物の具体例としては、 サンアミ一ル MAP— 1 0 (重量平均分子量 約 600) 、 サンアミ一ル MAP— 20 (重量平均分子量 約 1 3, 00) (三洋化成社製、 商品名) などが挙げられる。
Figure imgf000006_0001
(式中、 及び R2はそれぞれ C2H4又は C3H6を表し、 nは 1以上の整数 であり、 mは 0以上の整数である)
上記の式 (3) で示される化合物の具体例としては、 ジェファーミン D400 (重量平均分子量 約 400) 、 ジェファーミン D2000 (重量平均分子量 約 2, 000) (以上いずれも、 ハンツマン社製、 商品名) などが挙げられる。
Figure imgf000006_0002
(式中、 R 及び R2はそれぞれ C2H4又は C3H6を表し、 R3は H、 C2H5 又は C3H7を表し、 a、 b及び nはそれぞれ 1以上の整数であり、 mは 0以 上の整数である)
モノエポキシシラン (a 2) には、 1分子中に 1個のエポキシ基と、 1個の式
I
— Si— Q2 Q3 (ここで Q2及び Q3はそれぞれアルキル基、 アルコキシ基またはアルキ ルカルポ二ルォキシ基を表し、 ただし Q2及び Q3のうちの少なくとも 1つはアルキル基以外の基である)
の基とを有する化合物が包含され、 具体的には、 例えば、 下記式 (5) 〜 (1
1) で示される化合物を挙げることができる。
(5)
Figure imgf000007_0001
(6)
Figure imgf000007_0002
CH,
H2C—CH— CH2— O- -C3H6-Si-OC2H5 (7)
λ \ I
O OC2H5
OCCH3 0
H2C-CH-CH2-O— C3H6-Si (8)
O ' 0
OCCH3
Figure imgf000007_0003
Figure imgf000008_0001
Figure imgf000008_0002
本発明の重付加体 (A) は、 以上に述べたポリオキシアルキレン鎖を有するァ ミン化合物 (a i) のァミノ基とモノエポキシシラン (a 2) のエポキシ基との 間の開環付加反応により製造することができる。 この開環付加反応は、 通常、 適 当な不活性溶媒中にて、 約 50〜約 1 30°C、 好ましくは約 70〜約 1 10°Cの 範囲内の温度で、 30分間〜 6時間程度、 好ましくは 1〜3時間程度攪拌するこ とにより実施することができる。 ァミン化合物 (a n) に対するモノエポキシシ ラン (a2) の使用割合は、 厳密に制限されるものではないが、 一般には、 アミ ン化合物 (a ) のァミノ基 1モルあたり、 モノエポキシシラン (a 2) を 0. 5〜2モル、 特に 0. 5〜 1. 5モルの範囲内で使用することが好ましい。 また、 使用しうる溶媒としては、 例えば、 トルエン、 キシレン、 シクロへキサン、 n- へキサンなどの炭化水素系;酢酸メチル、 酢酸ェチル、 酢酸ブチルなどのエステ ル系;アセトン、 メチルェチルケトン、 メチルイソブチルケトン、 メチルァミル ケ卜ンなどのケトン系;ジメチルホルムアミド、 ジメチルァセ卜アミドなどのァ ミド系; メタノール、 エタノール、 n—プロパノール、 i s o—プロパノールな どのアルコール系; あるいはこれらの混合物などが挙げられる。
上記のァミン化合物 (a ,) とモノエポキシシラン (a2) との反応を、 出発 原料として、 上記式 (1 ) の化合物と上記式 (5) の化合物を用いた場合を例に とつて反応式で示せば以下のとおりである。 OCH3
H2NCH2CH2NCH2CH2NH2 2H2C-CH- CH2— Q-C3H6- -Si— OCH3
I
O
( 0)一 (R2Q)mR3 OCH3
(1) (5)
OCH3 OCH3 CH30-Si-C3H6-0-CH2CH - CH2-NH-CH2CH2NCH2CH2-NH-CHrCHCH2-0-C3H6-Si- OCH3
OCH 3 OH (R10)n-(R20)mR3 OH OCH 3 これにより、 重量平均分子量が 250〜1 0, 000、 好ましくは 500〜6, 000、 さらに好ましくは 1, 000〜3, 000の範囲内にある重付加体 (A) を製造することができる。 得られる重付加体 (A) の重量平均分子量が 1 0, 000を越えると、 塗装ラインにおいて該重付加体に長期にわたってシェア がかかった時の安定性が低下し、 逆に、 重量平均分子量が 250未満であると、 塗面の表面調整効果が不足して塗面にハジキが発生し易くなる。 他方、 重付加体 (A) の重量平均分子量が上記の範囲内にあると、 塗装ラインにおいて該重付加 体にフィルター濾過機や U F濾過機などのシェアが長期にわたってかかったとき でも重付加体 (A) が安定しており、 フィルタ一や U F膜の閉塞や塗面にブッが 付着するなどの不具合が生ずることがない。 カチオン電着塗料:
本発明の重付加体 (A) は、 以下に述べる如き基体樹脂及び硬化剤、 その他の 塗料用添加剤とともに分散してエマルシヨンとした後、 カチオン電着塗料とする ことができる。
また、 重付加体 (A) を有機酸、 例えば、 酢酸、 ギ酸又はこれらの混合物で中 和し、 さらに水を加えて分散することによって水分散体 (A とすることがで きる。 この水分散体 (A は、 予め調製されたカチオン電着塗料の浴に後添加 することができ、 例えば、 塗装ラインの休憩時間、 休日などに添加することが可 能である。 上記の有機酸は、 重付加体 (A) の樹脂固形分 1 gあたりの mgKO H換算で、 1 0〜 100、 好ましくは 20〜 70、 さらに好ましくは 30〜 50 の範囲内で使用することができる。 有機酸の使用量が樹脂固形分 1 gあたりの m g K O H換算で、 1 O m g K O H Z g未満では、 重付加体 (A ) を水分散体とす ることが困難であり、 反対に 1 0 0を越えると、 添加したカチオン電着塗料の酸 濃度 (M E Q) が上昇するためクーロン効率が低下し、 通電しても造膜しないな どの不具合や、 G A材 (合金化溶融亜鉛メツキ鋼板) 塗装においてピンホールが 発生したりするなどの問題が生じやすくなる。
本発明に従い重付加体 (A ) を配合し又は添加することができるカチオン電着 塗料は、 好ましくは、 基体樹脂として用いられるカチオン性樹脂と硬化剤として のブロック化ポリイソシァネート化合物を基本成分として含有するものである。 基体樹脂として使用されるカチオン性樹脂は、 分子中にアミノ基、 アンモニゥ 厶塩基、 スルホニゥム塩基、 ホスホニゥ厶塩基などのカチオン化可能な基を有す る樹脂であり、 樹脂種としては、 電着塗料の基体樹脂として通常使用されている もの、 例えば、 エポキシ系、 アクリル系、 ポリブタジエン系、 アルキド系、 ポリ エステル系などのいずれのタイプの樹脂であってもよい。 特に、 ポリエポキシド 化合物にァミノ基含有化合物を付加反応させて得られるアミン付加エポキシ樹脂 が好適である。
上記のァミン付加エポキシ樹脂としては、 例えば、 ( 1 ) ポリエポキシド化合 物と第 1級モノ一及びポリアミン、 第 2級モノー及びポリアミン又は第 1、 2級 混合ポリアミンとの付加物 (例えば、 米国特許第 3, 984, 299号明細書参照) ; ( 2 ) ポリエポキシド化合物とケチミン化された第 1級ァミノ基を有する第 2級 モノ一及びポリアミンとの付加物 (例えば、 米国特許第 4, 017, 438号 明細書参 照) ; ( 3 ) ポリエポキシド化合物とケチミン化された第 1級ァミノ基を有する ヒドロキシ化合物とのエーテル化により得られる反応物 (例えば、 特開昭 59— 43013号公報参照) 等を挙げることができる。
上記のァミン付加エポキシ樹脂の製造に使用されるポリエポキシド化合物は、 1分子中にエポキシ基を 1個以上、 好ましくは 2個以上有する化合物であり、 一 般に、 少なくとも 2 0 0、 好ましくは 4 0 0〜4 0 0 0、 さらに好ましくは 8 0 0〜 2 5 0 0の範囲内の数平均分子量及び少なくとも 1 6 0、 好ましくは 1 8 0 〜2 5 0 0、 さらに好ましくは 4 0 0〜 1 5 0 0の範囲内のエポキシ当量を有す るものが適しておリ、 特に、 ポリフエノール化合物とェピクロルヒドリンとの反 応によって得られるものが好ましい。
該ポリエポキシド化合物の形成のために用い得るポリフヱノール化合物として は、 例えば、 ビス (4—ヒドロキシフエニル) 一 2 , 2—プロパン、 4, 4 ' 一 ジヒドロキシベンゾフエノン、 ビス (4—ヒドロキシフエ二ル) 一 1, 1—エタ ン、 ビス (4ーヒドロキシフエニル) 一 1, 1—イソブタン、 ビス (4—ヒドロ キシー2もしくは 3— tert—ブチル一フエニル) 一 2, 2—プロパン、 ビス (2 ーヒドロキシナフチル) メタン、 テトラ (4—ヒドロキシフエニル) 一 1 , 1 , 2, 2—ェタン、 4, 4 ' —ジヒドロキシジフエニルスルホン、 フエノールノボ ラック、 クレゾ一ルノボラック等を挙げることができる。
該ポリエポキシド化合物は、 ポリオール、 ポリエーテルポリオ一ル、 ポリエス テルポリオール、 ポリアミ ドアミン、 ポリカルポン酸、 ポリイソシァネート化合 物などと一部反応させたものであってもよく、 更にまた、 ε—力プロラク卜ンな どの力プロラクトン、 アクリルモノマ一などをグラフト重合させたものであって もよい ο
上記 (1 ) のァミン付加エポキシ樹脂の製造に使用される第 1級モノー及びポ リアミン、 第 2級モノー及びポリアミン又は第 1、 2級混合ポリアミンとしては、 例えば、 モノ チルァミン、 ジメチルァミン、 モノェチルァミン、 ジェチルアミ ン、 モノイソプロピルァミン、 ジイソプロピルァミン、 モノプチルァミン、 ジブ チルァミンなどのモノーもしくはジーアルキルアミン:モノエタノールァミン、 ジエタノールァミン、 モノ (2—ヒドロキシプロピル) ァミン、 モノメチルアミ ノエタノ一ルなどのアルカノールァミン;エチレンジァミン、 プロピレンジアミ ン、 プチレンジァミン、 へキサメチレンジァミン、 ジエチレン卜リアミン、 トリ エチレンテトラミンなどのアルキレンポリアミンなどを挙げることができる。 上記 (2 ) のァミン付加エポキシ樹脂の製造に使用されるケチミン化された第 1級アミノ基を有する第 2級モノ一及びポリアミンとしては、 例えば、 上記 ( 1 ) のアミン付加エポキシ樹脂の製造に使用される第 1級モノ一及びポリアミ ン、 第 2級モノー及びポリアミン又は第 1、 2級混合ポリアミンのうち、 第 1級 アミノ基を有する化合物 (侈 «えば、 モノメチルァミン、 モノエタノールァミン、 エチレンジァミン、 ジエチレン卜リアミンなど) にケ卜ン化合物を反応させてな るケチミン化物を挙げることができる。
上記 (3 ) のァミン付加エポキシ樹脂の製造に使用されるケチミン化された第 1級アミノ基を有するヒドロキシ化合物としては、 例えば、 上記 (1 ) のァミン 付加エポキシ樹脂の製造に使用される第 1級モノ一及びポリアミン、 第 2級モノ —及びポリアミン又は第 1、 2級混合ポリアミンのうち、 第 1級ァミノ基とヒド 口キシル基を有する化合物 (例えば、 モノエタノールァミン、 モノ (2—ヒ ドロ キシプロピル) ァミンなど) にケトン化合物を反応させてなるヒドロキシル基含 有ケチミン化物を挙げることができる。
前記ァミン付加エポキシ樹脂には、 前記ポリエポキシド化合物、 1分子中に 2 個以上の活性水素含有基を有する化合物に力プロラクトンを付加して得られるポ リオール化合物、 及びァミノ基含有化合物を反応させてなるポリオール変性ァミ ン付加エポキシ樹脂も包含され、 好適に使用することができる。
上記 1分子中に 2個以上の活性水素含有基を有する化合物は、 一般には、 6 2 〜5 , 0 0 0、 特に 6 2〜 1 5 0 0の範囲内の数平均分子量を有し、 1分子当り 2〜3 0個、 特に 2〜1 0個の活性水素含有基を含有するものであることが好ま しく、 この活性水素含有基としては、 例えば、 水酸基、 第 1級ァミノ基、 第 2級 アミノ基などを挙げることができる。
上記 1分子中に 2個以上の活性水素含有基を有する化合物の具体例としては、 エチレングリコール、 プロピレングリコール、 1 , 3—ブチレングリコール、 1 , 4—ブタンジオール、 1, 6—へキサンジオール、 ジエチレングリコール、 ジプ ロピレングリコール、 ネオペンチルグリコール、 グリセリン、 トリメチ口一ルプ 口パン、 ペンタエリスリトールなどの低分子量ポリオール:ポリエチレングリコ ール、 ポリプロピレングリコール、 ポリテトラメチレングリコール、 ビスフエノ ール Aポリエチレングリコールエーテルなどの線状又は分岐状ポリエーテルポリ オール; コハク酸、 アジピン酸、 ァゼライン酸、 セバシン酸、 マレイン酸、 シク 口へキサンジカルボン酸、 フタル酸、 イソフタル酸、 テレフタル酸などの有機ジ 力ルポン酸又はその無水物と、 上記低分子量ポリオールなどの有機ジオールとを 有機ジオール過剰の条件下で重縮合反応させてなるポリエステルポリオール: ブ チレンジァミン、 へキサメチレンジァミン、 テトラエチレンペンタミン、 ペンタ エチレンへキサミン、 モノエタノールァミン、 ジエタノールァミン、 卜リエタノ ールァミン、 モノ (2—ヒドロキシプロピル) ァミン、 ジ (2—ヒドロキシプロ ピル) ァミン、 1 , 3—ビスアミノメチルシクロへキサノン、 イソホロンジアミ ン、 キシリレンジァミン、 メタキシリレンジァミン、 ジアミノジフエ二ルメタン フエ二レンジァミン、 エチレンジァミン、 プロピレンジァミン、 ジエチレン卜リ ァミン、 トリエチレンテトラミンなどのアミン化合物; ピぺラジンやこれらのァ ミン化合物から誘導されるポリアミド、 ポリアミドアミン、 エポキシ化合物との アミンァダクト、 ケチミン、 アルジミンなどを挙げることができる。
上記 1分子中に 2個以上の活性水素含有基を有する化合物に付加反応せしめら れるカプロラクトンとしては、 r一力プロラクトン、 ど一力プロラクトン、 (5— 力プロラクトンなどが挙げられ、 特に ε—力プロラクトンが好適である。
上記 1分子中に 2個以上の活性水素含有基を有する化合物と力プロラクトンと の付加反応は、 それ自体既知の方法で行うことができ、 この付加反応によってポ リオール化合物が得られる。
上記ポリオール変性アミン付加エポキシ樹脂の製造に用いられるアミノ基含有 化合物は、 樹脂中にアミノ基を導入して、 該樹脂をカチオン性化するためのカチ オン性付与成分であり、 例えば、 エポキシ基と反応する活性水素を少なくとも 1 個有するものを使用することができる。 その具体例としては、 例えば、 前記 ( 1 ) のァミン付加エポキシ樹脂の製造に使用される第 1級モノ一及びポリァミ ン、 第 2級モノー及びポリアミン又は第 1、 2級混合ポリアミン;前記 (2 ) の ァミン付加エポキシ樹脂の製造に使用されるケチミン化された第 1級ァミノ基を 有する第 2級モノ一及びポリァミン;前記 ( 3 ) のアミン付加エポキシ樹脂の製 造に使用されるケチミン化された第 1級アミノ基を有するヒドロキシ化合物とし て使用可能なものを挙げることができる。
カチオン性樹脂は、 一般に、 数平均分子量が 7 0 0〜6 0 0 0、 特に 8 5 0〜 5 0 0 0、 さらに特に 1 0 0 0〜4 0 0 0の範囲内にあり、 カチオン性基を樹脂 1 k gあたり 0. 5〜3当量、 特に 0 . 6〜2 . 5当量、 さらに特に 0 . 7〜2 当量の範囲内の量で有することが好ましい。 また、 カチオン性樹脂は、 カチオン化可能な基としてアミノ基を有する場合に は、 ギ酸、 酢酸、 プロピオン酸、 乳酸などの有機カルボン酸;塩酸、 硫酸などの 無機酸などの酸によって中和することにより水溶化ないしは水分散化することが でき、 他方、 カチオン化可能な基としてアンモニゥム塩基、 スルホニゥム塩基又 はホスホニゥム塩基などのォニゥム塩基を有する場合には、 中和することなく、 そのまま水溶化ないしは水分散化することができる。
カチオン性樹脂は、 水溶化ないしは水分散化して使用してもよいし、 有機溶剤 溶液として使用してもよい。 カチオン性樹脂は、 酸によって中和し、 水性媒体中 に溶解ないしは分散することによって、 カチオン電着塗装可能にすることができ る。
さらに、 基体樹脂として、 キシレンホルムアルデヒド樹脂変性アミノ基含有ェ ポキシ樹脂を用いることもできる。 キシレンホルムアルデヒド樹脂変性アミノ基 含有エポキシ樹脂には、 エポキシ当量が 1 8 0〜3 0 0 0のエポキシ樹脂にキシ レンホルムアルデヒド樹脂及びアミノ基含有化合物を反応させて得られるァミノ 基含有ェポキシ樹脂が包含される。
上記アミノ基含有エポキシ樹脂の製造のための出発材料として用いられるェポ キシ樹脂としては、 前記のカチオン性樹脂について述べたものと同様のエポキシ 樹脂が好適である。
キシレンホルムアルデヒド樹脂は、 エポキシ樹脂の内部可塑化 (変性) に役立 つものであり、 例えば、 キシレン及びホルムアルデヒドならびにさらに場合によ リフエノ一ル類を酸性触媒の存在下に縮合反応させることにより製造することが できる。
上記のホルムアルデヒドとしては、 工業的に入手容易なホルマリン、 パラホル 厶アルデヒド、 トリォキサン等のホルムアルデヒドを発生する化合物などを例示 することができる。
さらに、 上記のフヱノール類には 2個又は 3個の反応サイ卜を持つ 1価もしく は 2価のフ: Eノール性化合物が包含され、 具体的には、 例えば、 フエノール、 ク レゾール、 パラ一ォクチルフエノール、 ノニルフエノール、 ビスフエノールプロ パン、 ビスフエノールメタン、 レゾゾレシン、 ピロカテコール、 ハイドロキノン、 パラ一 t e r t一ブチルフエノール、 ビスフ Iノ一ルスルホン、 ビスフエノール エーテル、 パラーフエニルフエノール等が挙げられ、 これらはそれぞれ単独で又 は 2種以上組合わせて用いることができる。 この中で特に、 フエノール、 クレゾ ールが好適である。
以上に述べたキシレン及びホルムアルデヒドならびにさらに場合によリフエノ ール類の縮合反応に使用される酸性触媒としては、 例えば、 硫酸、 塩酸、 バラト ルエンスルホン酸、 シユウ酸等が挙げられるが、 一般的には、 特に硫酸が好適で ある。
縮合反応は、 例えば、 反応系に存在するキシレン、 フエノール類、 水、 ホ (レマ リン等が還流する温度、 通常、 約 8 0〜約 1 0 0 °Cの温度に加熱することにより 行うことができ、 通常、 2〜 6時間程度で終了させることができる。
上記の条件下に、 キシレンとホルムアルデヒド及びさらに場合によリフエノー ル類を酸性触媒の存在下で加熱反応させることによって、 キシレンホルムアルデ ヒド樹脂を得ることができる。
かくして得られるキシレンホルムアルデヒド樹脂は、 一般に、 2 0〜 5 0 , 0 0 0センチボイズ (2 5 °C) 、 好ましくは 2 5〜 3 5 , 0 0 0センチポィズ (2 5 °C) 、 さらに好ましくは 3 0〜 "! 5 , 0 0 0センチボイズ (2 5 °C) の範囲内 の粘度を有することができ、 そして一般に 1 0 0〜5 0, 0 0 0、 特に 1 5 0〜 3 0 , 0 0 0、 さらに特に 2 0 0〜1 0 , 0 0 0の範囲内の水酸基当量を有して いることが好ましい。
ァミノ基含有化合物はエポキシ樹脂にァミノ基を導入して、 該エポキシ樹脂を カチオン性化するためのカチオン性付与成分であり、 前記カチオン性樹脂の製造 の際に用いたものと同様のものを用いることができる。
前記エポキシ樹脂に対する上記のキシレンホルムアルデヒド樹脂及びァミノ基 含有化合物の反応は任意の順序で行うことができるが、 一般には、 エポキシ樹脂 に対して、 キシレンホルムアルデヒド樹脂及びアミノ基含有化合物を同時に反応 させるのが好適である。
上記の付加反応は、 通常、 適当な溶媒中で、 約 8 0〜約 1 7 0 °C、 好ましくは 約 9 0〜約 1 5 0 °Cの温度で 1〜 6時間程度、 好ましくは 1〜 5時間程度行うこ とができる。 上記の溶媒としては、 例えば、 トルエン、 キシレン、 シクロへキサ ン、 n—へキサンなどの炭化水素系:酢酸メチル、 酢酸ェチル、 酢酸ブチルなど のエステル系;アセトン、 メチルエルケトン、 メチルイソプチルケトン、 メチル アミルケトンなどのケトン系:ジメチルホルムアミド、 ジメチルァセ卜アミドな どのアミド系; メタノ一ゾレ、 エタノール、 n—プロパノール、 i s o—プロパノ —ルなどのアルコール系; あるいはこれらの混合物などが挙げられる。
上記の付加反応における各反応成分の使用割合は、 厳密に制限されるものでは なく、 適宜変えることができるが、 エポキシ樹脂、 キシレンホルムアルデヒド樹 脂及びァミノ基含有化合物の 3成分の合計固形分重量を基準にして以下の範囲内 が適当である。 すなわち、 エポキシ樹脂は、 一般に 5 0〜9 0重量%、 好ましく は 5 0〜8 5重量%;キシレンホルムアルデヒド樹脂は、 一般に 5〜 4 5重量%、 好ましくは 6〜 4 3重量%;ァミノ基含有化合物は、 一般に 5〜 2 5重量%、 好 ましくは 6〜 2 0重量%の範囲内で用いることが好ましい。
以上に述べた基体樹脂と併用される硬化剤としては、 ポリイソシァネ ト化合 物とブロック剤とのほぼ化学理論量での付加反応生成物であるブロック化ポリイ ソシァネート化合物が硬化性、 防食性などの面から好ましい。
ここで使用されるポリイソシァネー卜化合物としては、 従来から知られている ものを使用することができ、 例えば、 トリレンジイソシァネート、 キシリレンジ イソシァネート、 フエ二レンジイソシァネート、 ジフエ二ルメタン _ 2, 4 ' 一 ジイソシァネー卜、 ジフエニルメタン一 4, 4 ' ージィソシァネー卜 (通常 「M D I J と呼ばれる) 、 クル一ド M D I、 ビス (ィソシァネートメチル) シクロへ キサン、 テトラメチレンジイソシァネート、 へキサメチレンジイソシァネート、 メチレンジイソシァネー卜、 イソホロンジイソシァネートなどの芳香族、 脂肪族 又は脂環族ポリイソシァネート化合物; これらのポリイシァネート化合物の環化 重合体、 イソシァネートビゥレツト体; これらのポリイソシァネート化合物の過 剰量にエチレングリコール、 プロピレングリコール、 トリメチロールプロパン、 へキサン卜リオール、 ヒマシ油などの低分子活性水素含有化合物を反応させて得 られる末端イソシァネー卜含有化合物などを挙げることができる。 これらはそれ ぞれ単独で又は 2種以上組合わせて使用することができる。 —方、 ブロック剤は、 ポリイソシァネート化合物のイソシァネート基に付加し てブロックするものであり、 そして付加によつて生成するブロックポリイソシァ ネート化合物は常温においては安定であるが、 塗膜の焼付け温度 (通常約 1 0 0 〜約 2 0 0 °C) に加熱した際、 ブロック剤が解離して遊離のイソシァネ一ト基を 再生しうるものであることが望ましい。
このような要件を満たすブロック剤としては、 例えば、 ど一力プロラクタム、 一ブチロラクタムなどのラクタム系化合物;メチルェチルケトォキシム、 シク 口へキサノンォキシムなどのォキシム系化合物; フエノール、 パラー t一ブチル フエノール、 クレゾ一ルなどのフエノール系化合物: n—ブタノール、 2—ェチ ルへキサノールなどの脂肪族アルコール類; フエ二ルカルビノール、 メチルフエ 二ルカルビノールなどの芳香族アルキルアルコール類;エチレングリコールモノ ブチルエーテル、 ジエチレングリコールモノェチルエーテルなどのエーテルアル コール系化合物等を挙げることができる。
これらのプロック剤の他に、 互いに反応性の異なる 2個の水酸基を有する分子 量 7 6〜 1 5 0のジオール又は分子量 1 0 6〜5 0 0の力ルポキシル基含有ジォ ールをブロック剤として用いたブロック化ポリイソシァネートも硬化剤として用 いることができる。
上記ジオールは、 反応性の異なる 2個の水酸基、 例えば、 第 1級水酸基と第 2 級水酸基、 第 1級水酸基と第 3級水酸基、 第 2級水酸基と第 3級水酸基との組み 合わせの 2個の水酸基を有し且つ 7 6〜 1 5 0の分子量を有するものであること ができ、 例えば、 プロピレングリコール、 ジプロピレングリコール、 1, 3—ブ タンジオール、 1 , 2—ブタンジオール、 3—メチルー 1 , 2 _ブタンジオール、 1 , 2—ペンタンジォ一ル、 1, 4—ペンタンジオール、 3—メチ Jレ一 4 , 3 - ペンタンジオール、 3—メチルー 4 , 5—ペンタンジオール、 2 , 2, 4—トリ メチルー 1, 3—ペンタンジオール、 1 , 5—へキサンジオール、 1, 4一へキ サンジオールなどの反応性の異なる 2個の水酸基を有するジオール類を挙げるこ とができる。
なかでもプロピレングリコールがプロック化ポリイシァネ一卜の反応性、 加熱 減量の低減、 塗料の貯蔵安定性などの観点から好適である。 これらのジオールは、 通常、 反応性の高いほうの水酸基からイソシァネート基と反応しイソシァネート 基をブロックする。
上記のカルボキシル基含有ジオールには、 分子量 1 0 6〜 5 0 0のカルポキシ ル基含有ジオールが包含され、 分子中にカルポキシル基を有することによって、 低温解離性が向上し低温での硬化性を向上させることができ、 特に、 硬化触媒と して、 有機錫化合物を使用した場合に低温での硬化性を大きく向上させることが できる。
力ルポキシル基含有ジオールとしては、 例えば、 2 , 2—ジメチロールプロピ オン酸、 2 , 2—ジメチロールブタン酸、 ジメチロール吉草酸、 グリセリン酸等 を挙げることができる。
以上に述べた墓体樹脂及び硬化剤は、 一般に、 両者の合計固形分を基準にして、 基体樹脂は 5 0〜 9 5重量%、 特に 6 0〜 9 0重量%、 さらに特に 6 5 ~ 8 5重 量%の範囲内、 硬化剤は 5〜 5 0重量%、 特に 1 0〜 4 0重量%、 さらに特に 1 5〜 3 5重量%の範囲内で使用することができる。
また、 カチオン電着塗料は、 基体樹脂及び硬化剤を合計固形分として、 1 0〜 4 0重量%、 特に 1 0〜3 0重量%、 さらに特に 1 5〜 2 5重量%の範囲内の濃 度で含有することができる。
カチオン電着塗料は、 基体樹脂及び硬化剤の基本的な 2成分に加えて、 必要に 応じて、 他の塗料用添加剤、 例えば、 着色顔料、 体質顏料、 防鑌顏料、 有機溶剤、 顔料分散剤、 表面調整剤、 界面活性剤、 酸、 触媒などを、 通常使用されている量 で含有することができる。
前述した本発明の重付加体 (A) は、 カチオン電着塗料の調製の任意の段階で、 カチオン電着塗料成分に配合することができ (以下、 「前添加法 J という) 、 或 いは予め調製されたカチオン電着塗料に添加することもできる (以下、 「後添加 法」 という) 。
前添加法においては、 例えば、 重付加体 (A ) を、 基体樹脂、 硬化剤及び場合 によりその他の塗料用添加剤とともに水性媒体中に分散し、 エマルシヨンを形成 せしめた後、 そのエマルシヨンと顔料分散ペーストを用いてカチオン電着塗料を 調製することができる。 上記のエマルシヨンを製造する場合、 重付加体 (A) 、 基体樹脂、 硬化剤及び 場合によりその他の塗^ ^用添加剤を一緒にし、 十分に混ぜ合わせて溶解ワニスを 作製し、 それに、 水性媒体中で、 ぎ酸、 酢酸、 乳酸、 プロピオン酸、 クェン酸、 リンゴ酸、 スルファミン酸、 それらの 2種もしくはそれ以上の混合物などから選 ばれる中和剤を添加して水分散化し、 カチオン電着塗料用エマルシヨンとするこ とができる。
重付加体 (A) の配合量は、 固形分として、 基体樹脂と硬化剤の合計固形分 1 00重量部あたり 0. 1〜20重量部、 特に 0. 5〜1 5重量部、 さらに特に 1 〜1 0重量部の範囲内が塗料安定性などの面から好適である。
また、 後添加法においては、 まず、 重付加体 (A) に、 その固形分 1 gあたり の mgKOH換算で、 1 0〜"! 00、 好ましくは 20〜70、 さらに好ましく は 30〜50の範囲内になるようにして、 酢酸、 ギ酸、 乳酸などの有機酸を加え て、 重付加体 (A) を水分散化することにより、 重付加体 (A) の水分散体を調 製する。
他方、 通常の方法に従い、 前記の基体樹脂、 硬化剤及び場合によりその他の塗 料用添加剤に中和剤を加えて水分散化することによリエマルシヨンを製造し、 そ れに顔料分散ペース卜を加え、 必要によリ水性媒体で希釈してカチオン電着塗料 を調製する。
このようにして予め調製されたカチオン電着塗料に上記の重付加体 (A) の水 分散体を、 固形分として、 基体樹脂と硬化剤の合計固形分 1 00重量部あたり 0. 1〜 20重量部、 特に 0. 5〜 1 5重量部、 さらに特に 1〜 1 0重量部の範囲内 で添加することにより、 本発明に従うカチオン電着塗料を得ることができる。 重 付加体 (A) の添加は、 力チォン電着塗装の段階で行なうことができる。
以上の如くして調製される本発明のカチオン電着塗料は、 カチオン電着塗装に よって所望の基材表面に塗装することができる。
電着塗装は、 一般に、 浴固形分濃度が約 5〜約 40重量%となるように脱ィォ ン水などで希釈し、 さらに pHが 5. 5〜9. 0の範囲内に調整されたカチオン 電着塗料浴を用い、 通常、 浴温 1 5〜 35 °C及び負荷電圧 1 00〜400Vの条 件下で行うことができる。 本発明のカチオン電着塗料を用いて形成されるカチオン電着塗膜の膜厚は、 特 に制限されるものではないが、 一般的には、 硬化塗膜に基づいて 1 0〜40 m、 特に 1 0〜25/ mの範囲内が好ましい。 また、 塗膜の焼き付け温度は、 被塗物 表面で一般に約 1 20〜約200¾、 好ましくは約 1 40〜約1 80°Cの範囲内 の温度が適しておリ、 焼き付け時間は 5〜 60分、 好ましくは 1 0〜 30分程度 が好ましい。
重付加体 (A) を含有する本発明のカチオン電着塗料は、 塗面の仕上がり性、 耐油ハジキ性、 耐水跡性、 耐コンタミ性などの塗装作業性や上塗り塗料との付着 性などに優れておリ、 特に、 複雑形状の自動車ボディをライン塗装する場合には、 本発明の重付加体 (A) は、 水分散体として、 塗装ラインの稼動停止時 (休み時 間、 勤務交代時の休憩時間、 休日など) に、 塗料の槽内へ直接添加することがで きるので、 塗装作業性の改良や調整が極めて容易になる。
また、 カチオン電着塗料中の顔料分を 5重量%〜1 8重量%まで下げた場合に は、 塗料の沈降性や再分散性は向上するものの一般に塗面がハジキ易くなる傾向 がみられるが、 重付加体 (A) は塗膜の防食性を低下させないので、 カチオン電 着塗料中に 0. 1〜20重量部の範囲内の幅広い量で添加することが可能となり、 塗装作業性が大いに改良される。 実施例
以下、 実施例を挙げて本発明をさらに具体的に説明するが、 本発明はこれら実 施例のみに限定されるものではない。 なお、 「部」 及び Γ%」 は 「重量部」 及び
「重量%」 である。 重付加体 (Α) の製造:
製造例 1
反応容器に、 「サンアミール TAP— 40」 (商品名、 三洋化成社製、 ポリエ 一テルアミン、 重量平均分子量 約 2300) 1 1 50部、 ΓΚΒΜ—403」
(商品名、 信越化学社製、 r—グリシドキシプロビルトリメ トキシシラン、 分子 量 約 240) 240部及びエチレングリコールモノブチルエーテル 345部を 加え、 90°Cに昇温した。 この温度を保ちながら 3時間攪拌し、 樹脂固形分 8 0%、 重量平均分子量 2, 800、 アミン価 4 Omg KOH/gの重付加体 N o.
1を得た。 製造例 2
反応容器に、 「ジ Xファーミン D— 200 OJ (商品名、 ハルツマン社製、 ポ リエ一亍ルァミン、 重量平均分子量 約 2, 000) 1 000部、 ΓΚΒΜ— 4 03」 240部及びエチレングリコールモノブチルエーテル 220部を加え、 9 0°Cに昇温した。 この温度を保ちながら 3時間攪拌し、 樹脂固形分 80%、 重量 平均分子量 2, 500、 アミン価 45mg KOH gの重付加体 N o. 2を得た。 水分散体の製造:
製造例 3
製造例 1で得た重付加体 N o. 1 1 735部に、 酢酸 45部 (樹脂固形分合 計 1 gあたりの mg KOH換算で 30に相当) 及び水 5 1 70部を加えて水分散 化し、 固形分 20 %の水分散体 N o. 1を得た。 製造例 4
製造例 2で得た重付加体 N o. 2 1 550部に、 酢酸 40部 (樹脂固形分合 計 1 gあたりの mgKOH換算で 30に相当) 及び水 46 1 0部を加えて水分散 化し、 固形分 20 %の水分散体 N o. 2を得た。 製造例 5
反応容器に、 ィソプロピルアルコール 320部を入れ、 攪拌しながら還流温度 (約 83°C) まで昇温した。 これに下記のモノマー及び重合開始剤:
スチレン 272部、 n—ブチルァクリレート 224部、 2—ヒドロキシェチ ルァクリレート 80部、 ジメチルアミノエチルメタクリレート 1 44部、 KB M— 503 (信越化学工業製、 商品名、 rーメタクリロキシプロビルトリメトキ シシラン、 分子量 約 250 ) 80部、 ァゾビスイソプチロニトリル 24部 の混合物を還流温度下 (約 83~87°C) で約 2時間かけて滴下した。
ついで、 さらに 30分間攪拌した後、 ァゾビスジメチ口バレロ二卜リル 8部を イソプロピルアルコール 1 20部に溶解した溶液を約 1時間かけて滴下し、 約 1 時間攪拌後、 イソプロピルアルコール 320部を投入し冷却した。 かくして固形 分 51 %、 アミン価 64、 水酸基価 48、 数平均分子量 約 20, 000のァクリル共 重合体ワニスを得た。
次に、 このアクリル共重合体ワニス 780部に酢酸 6. 4部を加え、 約 30°C で 5分間攪拌した後、 脱イオン水 1 1 56部を強く攪拌しながら約 30分間かけ て滴下した。 かくして、 固形分 20%の乳白色の水分散体 N o. 3を得た。 製造例 6 (特開 2002-2941 65公報の実施例 1に従う)
反応容器に、 ケミオール EP— 400P (三洋化成工業社製のポリプロピレン グリコールジグリシジルェ一テル、 エポキシ当量 297) 1 29. 7部、 パ一サ ダイム 21 6 (ヘンケル白水社製のダイマ一酸、 酸価 1 92) 99. 6部及びべ ンジルジメチルァミン 0. 6部を加え、 1 60°Cで酸価が 0. 5以下になるまで 反応させ、 エポキシ当量 2300のジエポキシドを得た。
次に、 この化合物に、 アミン価 255のアミノポリエ一テル (三洋化成社製の ジエチレン卜リアミン -プロピレンオキサイド付加物、 商品名: A P— 10, 分 子量 684) 41. 0部を添加し 80°Cで 4時間保温し、 数平均分子量 27, 0 00の化合物を得た。
別の容器で、 この化合物 261. 1部を、 50Q/6乳酸 1 2. 2部と脱イオン水 379. 1部の混合液に加えて攪拌し、 さらに脱イオン水で調整し、 固形分 2 0 %の水分散体 No. 4を得た。 製造例 7 (基体樹脂 No. 1の製造)
温度計、 還流冷却器及び撹拌機を備えた内容積 2リットルのセパラブルフラス コに、 50%ホルマリン 240 g、 フエノール 55 g、 98%工業用硫酸 1 01 g及びメタキシレン 21 2 gを仕込み、 84〜88 °Cで 4時間反応させる。 反応 終了後、 静置して樹脂相と硫酸水相とを分離し、 樹脂相を 3回水洗し、 20〜3 OmmH g/1 20〜1 30°Cの条件で 20分間未反応メタキシレンをストリツ ビングして、 粘度 1 050センチボイズ (25°C) のキシレンホルムアルデヒド 樹脂 1を得た。
別のフラスコに、 ェピコ一卜 828 EL (ジャパンエポキシレジン (株) 製、 商品名、 エポキシ樹脂、 エポキシ当量 1 90、 分子量 350) 1 000 g、 ビス フエノール A 400 g及びジメチルベンジルァミン 0. 2 gを加え、 1 30°C でエポキシ当量 750になるまで反応させた。
次に、 上記のキシレンホルムアルデヒド樹脂 1 300 g、 ジエタノールアミ ン 1 40 g及びジエチレントリァミンのケチミン化物 65 gを加え、 1 20°Cで 4時間反応させた後、 ブチルセ口ソルブ 420 g加え、 アミン価 52、 樹脂固形 分 80%のキシレンホルムアルデヒド樹脂変性アミノ基含有エポキシ樹脂である 基体樹脂 No. 1を得た。 製造例 8 (基体樹脂 No. 2の製造)
P P-400 (三洋化成社製、 商品名、 ポリプロピレングリコール、 分子量 4 00) 400 gに ど一力プロラクトン 300 gを加えて、 1 30°Cまで昇温し た。 その後、 テトラブトキシチタン 0.01 gを加え、 1 70°Cに昇温した。 こ の温度を保ちながら経時でサンプリングし、 赤外吸収スぺクトル測定にて未反応 の ε—力プロラクトン量を追跡し、 反応率が 98%以上になった時点で冷却し、 変性剤 1を得た。
別に、 ェピコ一ト 828 EL (ジャパンエポキシレジン (株) 製、 商品名、 X ポキシ樹脂 エポキシ当量 1 90、 分子量 350) l OOOgに、 ビスフエノー ル A 400 g及びジメチルベンジルァミン 0.2 gを加え、 1 30°Cでエポキシ 当量 750になるまで反応させた。
その中にノニルフ: πノール 1 20 gを加え、 1 30°Cでエポキシ当量が 1 00 0になるまで反応させた。 次いで、 変性剤 1 200 g、 ジエタノールァミン 9 5 g及びジエチレントリァミンのケチミン化物 65 g加え、 1 20°Cで 4時間反 応させた後、 プチルセ口ソルブ 41 4 gを加え、 アミン価 40、 樹脂固形分 8 0 %のノニルフ Iノ一ルが付加されたポリオール変性ァミノ基含有エポキシ樹脂 である基体樹脂 No. 2を得た。 製造例 9 (硬化剤の製造)
コスモネート M— 200 (三井化学株式会社製、 商品名、 クル一ド MD I ) 2 70 gにメチルイソブチルケトン 46 gを加え 70°Cに昇温した。 さらにジェチ レングリコールモノェチルエーテル 281 gをゆつくリ加えた後、 90°Cに昇温 した。
この温度を保ちながら、 経時でサンプリングし、 赤外吸収スぺクトル測定にて 未反応のィソシァネ一卜の吸収がなくなつたことを確認して反応を停止させ、 溶 剤量を調整し、 固形分 900/0のプロックポリイソシァネート硬化剤を得た。 製造例 1 0 (エマルシヨン N o . 1の製造)
製造例 1で得た重付加体 No. 1 6. 25部 (固形分 5部) 、 製造例 7で得 た基体樹脂 o. 1 87. 5部 (固形分 70部) 、 製造例 9で得た硬化剤 33. 3部 (固形分 30部) 、 サンニックス P P— 1000 5部 (注 1 ) 及び 10% ギ酸 8. 2部を配合して均一に攪拌した後、 脱イオン水 1 73. 8部を強く攪拌 しながら約 1 5分かけて滴下し、 固形分 34 %の力チォン電着塗料用エマルショ ン No. 1を得た。 製造例 1 1〜13 (エマルシヨン N o. 2〜4の製造)
表 1に示す配合にて、 製造例 1 0と同様にしてカチオン電着塗料用エマルショ ン No. 2〜4を得た。 表 1 エマルシヨンの配合内容
Figure imgf000025_0001
(固形分)
(注 1 ) サンニックス P P— 1 000 :三洋化成社製、 商品名、 ポリプロピレン グリコール 製造例 1 4 (顔料分散ペース卜の製造)
60。/ひの第 4級アンモニゥム塩型エポキシ樹脂 5. 83部 (固形分 3. 5部) 、 チタン白 1 4. 5部、 カーボンブラック 0. 3部、 体質顔料 7. 0部、 水酸化ビ スマス 1. 0部、 有機錫 1部及び脱イオン水 20部を混合し、 固形分 55. 0 重量%の顔-料分散ペース卜を得た。 実施例及び比較例
実施例 1 (カチオン電着塗料 N o. 1の製造)
カチオン電着塗料用エマルシヨン N o. 1 309部 (固形分 1 05部) に、 製造例 1 4で得た顔料分散ペースト 49. 6部 (固形分 27. 3部) 及び脱ィォ ン水 1 73. 8部を加え、 固形分 2 θο/οのカチオン電着塗料 N o. 1を得た。 実施例 2〜 4及び比較例 1〜 4
表 2に示す配合にて、 実施例 1と同様にしてカチオン電着塗料 N
8を得た。 力チオン電着塗料の塗料配合
Figure imgf000026_0001
試験板の作成
上記実施例及び比較例で得た各カチオン電着塗料を用い、 パルボンド #302 0 (日本パーカライジング社製、 商品名、 リン酸亜鉛処理剤) で化成処理した 1 5 OmmX 7 OmmX 0. 8 mmの冷延ダル鋼板及び亜鉛メツキ鋼板に電着塗装 を施した。 塗膜を電気熱風乾燥機中にて 1 70°Cで 20分間焼き付け試験板を得 た。
得られた試験板を以下の試験条件に従い試験した。 その結果を表 3に示す。 表 3 試験結果
Figure imgf000027_0001
(注 6) 仕上り性:電着塗膜の外板面の表面粗度を、 サーフテス卜 301
(MITSUT0Y0社製、 商品名、 表面粗度計) で R a値を測定した。
Oは Ra値が 0. 25 /m未満
△は Raの値が 0. 25〜0. 35 m
Xは Raの値が 0. 35 j«mを越えることを示す。
(注 7) 耐油ハジキ性:電着塗装後のゥエツ卜板上に、 王冠に 1 m Iの機械油を 入れたものを置いた。 その後、 1 70°C— 20分焼き付け塗面の状態を 観察した。
〇はへコミ、 ハジキがなく良好
厶は塗面の一部にへコミが散見される
Xは塗面の全体に素地まで達するハジキがみられることを示す。 (注 8) 水跡性:電着塗装後のゥヱッ卜板に脱イオン水を 1 m I滴らし、 その後 焼き付けた。
〇は水跡がほとんど見えず、 仕上がリ問題なし
Aは水跡が確認でき、 仕上がリ性に低下が見られる。
Xは水跡がはつきり確認でき、 仕上がリ性の低下が著しいことを示 す。
(注 9) シーラー付着性:各試験板の上に、 サンスター 1 065 T (サンスター 社製、 商品名、 シーラー) を 1 OmmX 6mmX 6mm (縦 X横 X厚 さ) で塗布し、 塗板を垂直に吊るして 1 2時間後のシーラーのづれを測 定した。 〇はずれがなく、 問題なし
△はシーラーのずれが 5 mm以下である
Xは塗板からシーラーがずリ落ちて落下したことを示す。
(注 1 0) 防食性:焼き付け温度 1 70°C— 20分間で得られた各電着塗板 (化 成処理亜鉛メツキ鋼板を使用) の電着塗膜に、 素地に達するようにナ ィフでクロスカット傷を入れた後、 JISZ— 2371に準じて 840時間耐 塩水噴霧試験を行い、 ナイフ傷からの鯖、 フクレ幅 (片側) の長さを 評価した。
〇は鲭、 フクレ幅が 3 mm未満 (片側)
厶は鲭、 フクレ幅が 3〜 4 mm未満 (片側)
Xは鲭、 フクレ幅が 4mmを越える (片側) ことを示す。
(注 1 1 ) 塗料安定性:ラボポンプを用いて、 塗料を 30°Cにて 1 2時間循環し た後、 400メッシュ濾過網を用いて濾過残さを測定した。 〇は 1 Omg/L以下
△は 1 1〜2 Omg/L
Xは 2 OmgZLを越えることを示す。

Claims

請求の範囲
1. ポリオキシアルキレン鎖を有するァミン化合物 (a i) とモノエポキシシ ラン (a2) との、 重量平均分子量が 250〜 1 0, 000の範囲内にある重付 加体。
2. ポリオキシアルキレン鎖を有するァミン化合物 (a,) が下記式 (1 ) 、 (2) 、 (3) 及び (4)
R0(CH2)aN(CH2)bNH2
(1)
(R^^— (R20)mR3
(式中、 R。は NH2又は OHを表し、 及び R2はそれぞれ C2H4又は C3 H6を表し、 R3は H、 C2H5又は C3 H7を表し、 a、 b及ぴ nはそれぞれ 1 以上の整数であり、 mは 0以上の整数である)
H2N(CH2)aO(R10)n-(R20)mR3 (2)
(式中、 及ぴ 2はそれぞれ G2H4又は G3H6を表し、 R3は H、 C2H5 又は G3H7を表し、 a及ぴ nはそれぞれ 1以上の整数であり、 mは 0以上の 整数である)
H2NCHCH2(R10)n-(R20)mNH2
I (3)
CH3
(式中、 R,及び R2はそれぞれ C2H4又は C3H6を表し、 nは 1以上の整数 であり、 mは 0以上の整数である)
Figure imgf000029_0001
(式中、 及び R2はそれぞれ C2H4又は C3H6を表し、 R3は H、 C2H5 又は C3H7を表し、 a、 b及び nはそれぞれ 1以上の整数であり、 mは 0以 上の整数である)
で示される化合物よりなる群から選ばれる請求の範囲第 1項に記載の重付加体。
3. モノエポキシシラン (a 2) が下記式 (5) 〜 (1 1)
)
Figure imgf000030_0001
CH3
H2C-CH-CH2-0-C3H6-Si— OC2H5 ( 7 )
0 OC2H5
O
OCCH3 O
H2C-CH-CH2- Ό一 C3H6— Si OCCH3 (8)
0 O
OCCH3
Figure imgf000030_0002
Figure imgf000031_0001
( 1 1 )
Figure imgf000031_0002
で示される化合物よりなる群から選ばれる請求の範囲第 1項に記載の重付加体
4. ポリオキシアルキレン鎖を有するァミン化合物 (a,) のァミノ基 1モル あたり、 モノエポキシシラン (a 2) を 0. 5〜 2モルの範囲内で開環付加反応 させることによリ得られる請求の範囲第 1項に記載の重付加体。
5. 1, 0 0 0〜3, 0 0 0の範囲内の重量平均分子量を有する請求の範囲第 1項に記載の重付加体。
6. 基体樹脂としてエポキシ樹脂にアミノ基含有化合物を付加反応させて得ら れるアミン付加エポキシ樹脂又はキシレンホルムアルデヒド樹脂変性ァミノ基含 有エポキシ樹脂及び硬化剤としてプロック化ポリィソシァネート化合物を含有す るカチオン電着塗料に、 その調製の任意の段階で、 請求の範囲第 1〜5項のいず れか 1項に記載の重付加体を、 基体樹脂と硬化剤の合計固形分 1 0 0重量部あた リ 0. 1〜2 0重量部配合してなるカチオン電着塗料。
7. 請求の範囲第 1〜 5項のいずれか 1項に記載の重付加体に、 固形分 1 g当 りの m g K O H換算で 1 0〜 1 0 0となるように有機酸を加え、 水分散化してな る水分散体を、 予め調製されたカチオン電着塗料に、 基体樹脂と硬化剤の合計固 形分 1 0 0重量部あたり 0 . 1〜2 0重量部添加してなるカチオン電着塗料。
8 . 請求の範囲第 6又は Ί項に記載のカチオン電着塗料を用いて電着塗装され た塗装物品。
PCT/JP2004/004500 2003-04-10 2004-03-30 重付加体及び該重付加体を含有するカチオン電着塗料 WO2004090055A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002521863A CA2521863A1 (en) 2003-04-10 2004-03-30 Polyaddition product and cationic electropaint containing the polyaddition product
US10/552,344 US20060131543A1 (en) 2003-04-10 2004-03-30 Polyaddition product and cationic electrodeposition coating comprising said polyaddition product
JP2005505206A JP4545092B2 (ja) 2003-04-10 2004-03-30 重付加体及び該重付加体を含有するカチオン電着塗料

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003106047 2003-04-10
JP2003/106047 2003-04-10
JP2003349810 2003-10-08
JP2003/349810 2003-10-08

Publications (1)

Publication Number Publication Date
WO2004090055A1 true WO2004090055A1 (ja) 2004-10-21

Family

ID=33161544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004500 WO2004090055A1 (ja) 2003-04-10 2004-03-30 重付加体及び該重付加体を含有するカチオン電着塗料

Country Status (4)

Country Link
US (1) US20060131543A1 (ja)
JP (1) JP4545092B2 (ja)
CA (1) CA2521863A1 (ja)
WO (1) WO2004090055A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031530A (ja) * 2005-07-26 2007-02-08 Toyota Motor Corp 塗膜形成方法及び塗装物品

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110117458B (zh) * 2019-06-11 2021-11-19 浙江铭孚金属涂装科技有限公司 一种环保型阳离子电泳涂料乳液的制备方法及其使用方法
CN114163630A (zh) * 2021-12-09 2022-03-11 江苏瑞洋安泰新材料科技有限公司 一种ms胶基础树脂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5209871A (en) * 1990-11-28 1993-05-11 Ford Motor Company Self-sealing liquid electrolyte useful in electrochromic device
US5789468A (en) * 1997-03-27 1998-08-04 E. I. Du Pont De Nemours And Company Internal anticratering agent for cathodic electrocoating compositions
JP2003510399A (ja) * 1999-09-23 2003-03-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 外観が改良され端部被覆が改良されクレーターが減少した陰極電着塗料組成物
JP2003128907A (ja) * 2001-10-17 2003-05-08 Konishi Co Ltd 一液湿気硬化型可撓性樹脂組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5021530A (en) * 1988-08-09 1991-06-04 Kansai Paint Co., Ltd. Finely divided gelled polymer and process for producing the same
US5723519A (en) * 1997-02-25 1998-03-03 E. I. Du Pont De Nemours And Company Cathodic electrocoating compositions containing an anticrater agent
JP4662213B2 (ja) * 1999-04-21 2011-03-30 関西ペイント株式会社 カチオン電着塗料
JP2002294165A (ja) * 2001-03-30 2002-10-09 Nippon Paint Co Ltd カチオン電着塗料用ハジキ防止方法及びハジキ防止剤

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5209871A (en) * 1990-11-28 1993-05-11 Ford Motor Company Self-sealing liquid electrolyte useful in electrochromic device
US5789468A (en) * 1997-03-27 1998-08-04 E. I. Du Pont De Nemours And Company Internal anticratering agent for cathodic electrocoating compositions
JP2003510399A (ja) * 1999-09-23 2003-03-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 外観が改良され端部被覆が改良されクレーターが減少した陰極電着塗料組成物
JP2003128907A (ja) * 2001-10-17 2003-05-08 Konishi Co Ltd 一液湿気硬化型可撓性樹脂組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031530A (ja) * 2005-07-26 2007-02-08 Toyota Motor Corp 塗膜形成方法及び塗装物品

Also Published As

Publication number Publication date
CA2521863A1 (en) 2004-10-21
JPWO2004090055A1 (ja) 2006-07-06
JP4545092B2 (ja) 2010-09-15
US20060131543A1 (en) 2006-06-22

Similar Documents

Publication Publication Date Title
JP3293633B2 (ja) ビスマスおよびアミノ酸材料を含む電着可能コーティング組成物および電着方法
JP3293836B2 (ja) 電着可能コーティング組成物およびカチオン性電着方法におけるこれらの使用
CA1261535A (en) Coating compositions comprising a non-gelled amine- epoxyde reaction product
CA2349139C (en) Cationic resin composition
RU2566145C2 (ru) Красящая композиция и способ формирования покрывной пленки с ее применением
JP3820594B2 (ja) カチオン電着塗料組成物
JP6608463B2 (ja) カチオン電着塗料組成物の製造方法
JP5110962B2 (ja) カチオン電着塗料組成物及び当該電着塗料を用いて塗装した物品
CN102653657B (zh) 阳离子电沉积涂料组合物
US10421874B2 (en) Electrodepositable coating composition having improved crater control
CN106905664B (zh) 一种功能聚胺改性的微凝胶、制备方法及其用途
US10717883B2 (en) Electrodepositable coating composition having improved crater control
EP1314768A2 (en) Cationic coating composition
JP3843250B2 (ja) カチオン性塗料組成物
CN101583681B (zh) 用于可电沉积涂料的阳离子微凝胶的制备方法和包含由该方法制备的阳离子微凝胶的可电沉积涂料组合物
JP2020180282A (ja) カチオン電着塗料組成物
WO2004090055A1 (ja) 重付加体及び該重付加体を含有するカチオン電着塗料
JP2006045560A (ja) 重付加体及び該重付加体を含有するカチオン電着塗料
JP2003306636A (ja) カチオン性塗料組成物
JP5631333B2 (ja) スルホ基又はスルファミル基を有するカソード電着樹脂
EP3478772B1 (en) Electrodepositable coating composition having improved crater control
US20060009593A1 (en) Polyaddition compound and cationic electrodeposition paint which contains polyaddition compound
JP2004339524A (ja) 熱硬化性カチオン性塗料組成物
EP3478773B1 (en) Electrodepositable coating composition having improved crater control
JP2001354910A (ja) カチオン電着塗料組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505206

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006131543

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2521863

Country of ref document: CA

Ref document number: 10552344

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048096333

Country of ref document: CN

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10552344

Country of ref document: US