WO2004088827A1 - Cooling structure for linear motor - Google Patents

Cooling structure for linear motor Download PDF

Info

Publication number
WO2004088827A1
WO2004088827A1 PCT/JP2004/004362 JP2004004362W WO2004088827A1 WO 2004088827 A1 WO2004088827 A1 WO 2004088827A1 JP 2004004362 W JP2004004362 W JP 2004004362W WO 2004088827 A1 WO2004088827 A1 WO 2004088827A1
Authority
WO
WIPO (PCT)
Prior art keywords
armature
linear motor
cooling
mounting plate
intermediate plate
Prior art date
Application number
PCT/JP2004/004362
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Miyamoto
Takahisa Yamada
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Publication of WO2004088827A1 publication Critical patent/WO2004088827A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/197Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil in which the rotor or stator space is fluid-tight, e.g. to provide for different cooling media for rotor and stator

Definitions

  • the present invention relates to a linear motor cooling structure capable of improving cooling performance without increasing generation loss of a motor, suppressing thermal deformation of a table, and suppressing an increase in the shape of a motor mover.
  • FIG. 5 is a front sectional view of a linear motor showing the first related art.
  • reference numeral 1 denotes a fixed base
  • 2 denotes guide rails provided on both right and left ends of the fixed base 1
  • 3 denotes a slider that forms a linear guide in pairs with the guide rail 2.
  • 4 is a linear motor
  • 5 is a plate-shaped field yoke fixed to the fixed base 1 so as to face each other in the vertical direction
  • 6 is a field yoke 5 (in the direction perpendicular to the paper) that the magnetic poles are alternately different.
  • a plurality of permanent magnets are provided
  • 7 is an armature mounting plate for fixing the armature
  • 8 is provided opposite to the permanent magnet 6 via a magnetic gap, and is made of an I-shaped silicon steel plate, for example.
  • Reference numeral 9 denotes an armature coil wound around the winding accommodating portion of each armature core 8.
  • the field yoke 5 and the permanent magnet 6 constitute a stator (field section), and the armature core 8 and the armature coil 9 constitute a mover (armature section).
  • the above-mentioned armature unit is configured such that, after winding the armature coil 9 in the winding accommodating portion of each armature core 8, each armature core 8 is sequentially connected along a predetermined straight path. This is a completed block-build armature.
  • connection board made of a glass epoxy material for facilitating the connection process of the crossover and the neutral point of the coil conductor constituting the armature coil
  • 11 is A mold resin for fixing the armature coil 9 and the connection board 10
  • 15 is a table provided on the armature fixing plate 7.
  • the armature fixing plate 7 is secured by passing bolt screws 16 having male threads through the through holes 15a from the table 15 side, and then fixing the armature. It is screwed into the female screw 7 a provided on the plate 7 and fastened to the table 15.
  • the linear motor 4 is generally provided with an optical linear encoder composed of a linear scale and a sensor head in order to detect the position of the mover in the moving direction, but is not shown in FIG. I have.
  • the linear motor 4 when a current is applied to the armature coil 9 from a power source (not shown), the linear motor 4 generates a thrust along the longitudinal direction of the permanent magnet due to the electromagnetic action of the armature and the field. Perform a linear motion (see, for example, JP-A-2000-37070 and JP-A-2000-333432).
  • FIG. 6 is a plan view of a linear motor showing a second related art, and shows an overall configuration of an armature and a cooling member mounted on a base plate.
  • 30 is a linear motor armature
  • 31 is a base plate
  • 32 is an armature core
  • 33 is a coil
  • 34 is a flat cooling tube
  • 35 and 36 are a holder
  • 37 is a folded member.
  • the linear motor armature 30 includes a plurality of armature cores 32 each having an I-shaped electromagnetic steel sheet laminated thereon and a coil 33 wound around a concave portion thereof.
  • the armature blocks are arranged and arranged, and a cooling member for cooling the armature blocks is continuously S-shaped from one end 34 a to the other end 34 b so as to sew the gap between the adjacent armature blocks. It is constituted by a flat cooling pipe 34 of a flat hollow shape, which is disposed in a folded state.
  • both ends 34 a and 34 b of the elongate cooling pipe 34 are welded and connected to a first manifold 35 and a second manifold 36.
  • the armature core 32 is fixed to the base plate 31 with bolt screws (not shown).
  • the conventional cooling structure removes heat from the coil by flowing the refrigerant near the coil and transfers the coil to the outside of the motor.
  • the cooling performance of the armature is limited only by the flat cooling pipe near the coil, so the cooling performance is limited. In other words, part of the heat generated by the armature coil is transmitted to the armature core teeth on which the coil is wound, and is easily transferred to the armature mounting plate and the table. Was adversely affected.
  • the flat cooling pipe has a wavy shape as shown in the figure, and is arranged so as to sew between the coils.Therefore, the mover of the return motor is provided by the presence of the refrigerant pipe further outside both ends of the coil end. The shape (width dimension) was to be increased.
  • the present invention has been made to solve the above-described problems, and it is an object of the present invention to improve cooling performance without increasing motor generation loss, suppress thermal deformation of a table, and suppress an increase in motor mover shape. It is an object of the present invention to provide a cooling structure for a reversible motor that can perform the cooling operation.
  • the invention according to the cooling structure for a linear motor according to claim 1 is characterized in that two field yokes made of magnetic materials are disposed on a fixed base and are vertically opposed to each other. And a field part comprising a plurality of permanent magnets having different magnetic poles alternately along the field yoke; an armature core and an armature core arranged in parallel with the fixed base via a gap between the field parts; An armature portion comprising an armature coil wound around the armature; A linear motor, comprising: an armature mounting plate provided on an upper portion of the mounting plate for fixing the armature portion; and a table provided on the upper portion of the armature portion for mounting a work. An intermediate plate is provided between the armature mounting plate and the table, and is disposed inside the intermediate plate and the armature mounting plate so as to be continuously folded in the moving direction of the armature portion. A cooling passage is provided.
  • the refrigerant flowing through the cooling passage flows from the intermediate plate and is discharged from the armature mounting plate. It is.
  • the cooling passage is formed of a copper cooling pipe.
  • the table, the intermediate plate, and the armature mounting plate are integrally fastened by a Bonoleto screw. is there.
  • the intermediate plate and the armature mounting plate have a refrigerant inlet, a seventh medium outlet, and the intermediate medium.
  • a joint for connecting a refrigerant outlet of the plate and a refrigerant inlet of the armature mounting plate is provided. .
  • FIG. 1 is a front sectional view of a linear motor showing an embodiment of the present invention
  • FIG. 2 is a side view of a luer motor mover of FIG. 1.
  • the cross section along the line A is broken
  • Bonoreto 21 and 22 are the cross sections along the line BB and C-C in Figure 1, respectively.
  • Figure 3 shows the refrigerant passage in the linear motor mover.
  • FIG. 4 is a front view showing a state in which inlet and outlet joints are connected
  • FIG. 4 is a schematic view for explaining the flow of refrigerant in the refrigerant passage in the present embodiment
  • FIG. 5 is a linear motor showing the first prior art.
  • FIG. 6 is a plan view of a linear motor showing a second conventional technique, and shows an overall configuration of an armature mounted on a base plate and a cooling member.
  • FIG. 1 is a front sectional view of a linear motor showing an embodiment of the present invention.
  • FIG. 2 is a side view of the linear motor mover of FIG. 1, in which the refrigerant passage 17 has a cross-section taken along line A--A in FIG. 1, and the bolts 21 and 22 have The cross-sections along the lines B-B and 'C-C in Fig. 1 are broken.
  • FIG. 3 is a front view showing a state in which the joints at the inlet and outlet of the refrigerant passage in the linear motor mover are connected.
  • the same components as those of the related art are denoted by the same reference numerals and the description thereof will be omitted, and only different points will be described.
  • reference numeral 12 denotes an intermediate plate
  • reference numeral 17 denotes a cooling passage.
  • 17 a is a refrigerant inlet of the refrigerant passage 17 provided in the intermediate plate 12
  • 17 b is a refrigerant outlet of the intermediate plate 12 side
  • 17 c is provided in the armature mounting plate 7.
  • a refrigerant inlet of the refrigerant passage 17, 17 d is a refrigerant outlet on the armature mounting plate 7 side
  • 23 is a joint.
  • the intermediate plate 12 is provided between the armature mounting plate 7 and the table 15 and is continuously folded inside the intermediate plate 12 and the armature mounting plate 7 in the moving direction of the armature portion.
  • a cooling passage 17 is provided.
  • the refrigerant flowing into the cooling passage 17 flows into the intermediate plate 12 and is discharged from the armature mounting plate 7.
  • the cooling passage 1 mm is made up of a copper cooling pipe.
  • the table 15, the intermediate plate 12 and the armature mounting plate 7 are fastened to the body by bolt screws 21 and 22.
  • the armature mounting plate 7 is provided with female screws 7a.Bolt screws 21 and 22 are screwed into each female screw 7a, and the table 15, intermediate plate 12 and armature mounting plate 7 are integrated. You.
  • the refrigerant inlet 17 b of the intermediate plate 12 and the refrigerant inlet 17 c of the armature mounting plate 7 are connected to the refrigerant inlet and the refrigerant outlet of the intermediate plate 12 and the armature mounting plate 7. Joints 23 are provided.
  • FIG. 4 is a schematic diagram for explaining the flow of the refrigerant in the refrigerant passage in this embodiment.
  • the refrigerant inlets 17a, 17c, 17b, 17d are circled. The part enclosed by is shown.
  • the refrigerant flows into the refrigerant inlet 17a of the intermediate plate 12 from an external refrigerant supply source (not shown), the refrigerant cools the intermediate plate 12 and then flows out of the refrigerant outlet 17b.
  • the refrigerant flowing out from the refrigerant outlet 17b enters the refrigerant inlet 17c of the armature mounting plate 7, cools the armature mounting plate 7, and flows out from the refrigerant outlet 17d.
  • the armature mounting plate 7 is cooled later.
  • the intermediate plate 12 is provided between the armature mounting plate 7 and the table 15, and the armature portion is provided inside the intermediate plate 12 and inside the armature mounting plate 7. Since the cooling passages 17 are provided so as to be continuously folded in the moving direction, heat generated by the armature coil 9 of the linear motor is cooled by the cooling passages provided in the intermediate plate 12 and the armature mounting plate 7, respectively. The refrigerant is removed by flowing the refrigerant through the cooling medium 17, thereby improving the cooling performance without increasing the generation loss of the motor and suppressing the thermal deformation of the table 15. As a result, it is possible to minimize the influence of deterioration in accuracy due to thermal deformation due to the temperature rise in Table 15. In addition, the linear guide attached to the table 15 ⁇ can maintain good positioning accuracy of the table 15 without adversely affecting a linear scale (not shown).
  • the intermediate plate 12 having a small heat exchange amount by the refrigerant is cooled first.
  • the temperature rise due to the heat exchange of the refrigerant in the intermediate plate 12 that directly contacts the table 15 is minimized. Can be suppressed.
  • the cooling passage 17 is formed of a copper cooling pipe, the danger of electrolytic corrosion can be eliminated even when water is used as the refrigerant.
  • the table 15, the intermediate plate 12 and the armature mounting plate 7 are integrally fastened by the bolt screws 21 and 22, the contact thermal resistance between each member can be improved, and the heat generated in the armature portion The generated heat can be effectively radiated to the cooling passage 17.
  • the refrigerant inlet and outlet of the intermediate plate 12 and the armature mounting plate 7 are Since the joint for connecting the refrigerant inlet and the outlet is provided, the connection structure of the refrigerant inlet and the outlet of the intermediate plate 12 and the armature mounting plate 7 can be made compact and simple.
  • the present invention relates to a linear motor cooling structure, and is particularly useful as a cooling structure for a linear motor mover having a magnetic attraction force canceling structure.

Abstract

A cooling structure for a linear motor (4) comprising field system portions constituted of two field yokes (5) made from a magnetic body oppositely arranged on a stationary base (1) with vertical intervals and permanent magnets (6) having different magnetic poles alternating along the field yokes (5); armature portions constituted of armature cores (8) arranged parallel to the stationary base (1), between the field system portions with a gap in between, and armature coils (9) wound on the armature cores (8); an armature installation plate (7) provided above the armature portion and on which the armature portion is fixed; and a table (15) provided above the armature installation plate (7) and on which work is mounted, wherein an intermediate plate (12) is provided between the armature installation plate (7) and the table (15), and a cooling path (17) is provided inside the intermediate plate (12) and the armature installation plate (7) so as to be continuously folded in the moving direction of the armature portions.

Description

リニアモータの冷却構造  Linear motor cooling structure
[技術分野]  [Technical field]
本発明はモータの発生損失を増大させることなく冷却性能を向上させ、 テープ ルの熱変形を抑制し、 モータ可動子形状の増大を抑制することができるリニァモ ータの冷却構造に関する。  The present invention relates to a linear motor cooling structure capable of improving cooling performance without increasing generation loss of a motor, suppressing thermal deformation of a table, and suppressing an increase in the shape of a motor mover.
[背景技術]  [Background technology]
従来、 ワークを搭載するためのテーブルを固定台に対して自在に移動させるこ とのできる吸引力相殺形のリニアモータは、 図 5のようになっている。 なお、 図 5は第 1従来技術を示すリニアモータの正断面図である。  Conventionally, a suction force canceling type linear motor that can freely move a table on which a work is mounted with respect to a fixed base is shown in Fig. 5. FIG. 5 is a front sectional view of a linear motor showing the first related art.
図 5において、 1は固定台、 2は固定台 1上で左右両端に設けたガイドレール、 3はガイドレール 2と対でリニアガイドを構成するスライダである。 4はリニア モータ、 5は固定台 1と垂直方向に互いに対向して固定した平板状の界磁ヨーク、 6は界磁ヨーク 5上に沿って (紙面と垂直方向) 交互に磁極が異なるように複数 配設した永久磁石、 7は電機子を固定するための電機子取付板、 8は永久磁石 6 と磁気的空隙を介して対向して設けられ、 かつ、 I字状の例えば珪素鋼板からな る電磁鋼板を永久磁石 6の高さ方向に積層して成る電機子コアで、 該コアを積層 した後は溶接または接着することにより構成されている。 9は 1つ 1つの電機子 コア 8の卷線収納部に卷回して成る電機子コイルである。 界磁ヨーク 5と永久磁 石 6とで固定子 (界磁部) を構成し、 電機子コア 8と電機子コィノレ 9とで可動子 (電機子部) を構成している。 なお、 上記電機子部は 1つ 1つの電機子コア 8の 巻線収納部に電機子コイル 9を卷回した後、 1つ 1つの電機子コア 8を、 所定の 直線路に沿って順次繋がいでプロックビルド形の電機子を完成したものとなって いる。  In FIG. 5, reference numeral 1 denotes a fixed base, 2 denotes guide rails provided on both right and left ends of the fixed base 1, and 3 denotes a slider that forms a linear guide in pairs with the guide rail 2. 4 is a linear motor, 5 is a plate-shaped field yoke fixed to the fixed base 1 so as to face each other in the vertical direction, and 6 is a field yoke 5 (in the direction perpendicular to the paper) that the magnetic poles are alternately different. A plurality of permanent magnets are provided, 7 is an armature mounting plate for fixing the armature, 8 is provided opposite to the permanent magnet 6 via a magnetic gap, and is made of an I-shaped silicon steel plate, for example. An armature core formed by laminating magnetic steel sheets in the height direction of the permanent magnets 6, and after laminating the cores, is formed by welding or bonding. Reference numeral 9 denotes an armature coil wound around the winding accommodating portion of each armature core 8. The field yoke 5 and the permanent magnet 6 constitute a stator (field section), and the armature core 8 and the armature coil 9 constitute a mover (armature section). In addition, the above-mentioned armature unit is configured such that, after winding the armature coil 9 in the winding accommodating portion of each armature core 8, each armature core 8 is sequentially connected along a predetermined straight path. This is a completed block-build armature.
また、 1 0は電機子の下部に設け.られ、 電機子コイルを構成するコイル導体の 渡り線及び中性点の接続処理を容易にするためのガラスエポキシ材でできた結線 基板、 1 1は電機子コイル 9および結線基板 1 0を固定するモールド樹脂、 1 5 は電機子固定板 7の上に設けたテーブルである。 電機子固定板 7は、 テーブル 1 5側から雄ねじを有するボルトねじ 1 6を貫通穴 1 5 aに通した後、 電機子固定 板 7に設けた雌ねじ 7 aにねじ込んでテーブル 1 5に締結される。 それから、 電 機子コア 8は電機子コア 8の下部側からボルトねじ 1 3を貫通穴 8 aに通して電 機子固定板 7に設けた雌ねじ 7 bにねじ込み、 電機子固定板 7に締結される。 な お、 リニアモータ 4は可動子の移動方向の位置を検出するために、 一般にリニア スケールとセンサへッドより構成される光学式リニアエンコーダが設けられるが、 図 5ではその図示を省略している。 In addition, 10 is provided at the lower part of the armature, and a connection board made of a glass epoxy material for facilitating the connection process of the crossover and the neutral point of the coil conductor constituting the armature coil, and 11 is A mold resin for fixing the armature coil 9 and the connection board 10, and 15 is a table provided on the armature fixing plate 7. The armature fixing plate 7 is secured by passing bolt screws 16 having male threads through the through holes 15a from the table 15 side, and then fixing the armature. It is screwed into the female screw 7 a provided on the plate 7 and fastened to the table 15. Then, the armature core 8 is screwed from the lower side of the armature core 8 into the female screw 7 b provided on the armature fixing plate 7 by passing the bolt screw 13 through the through hole 8 a and fastened to the armature fixing plate 7. Is done. The linear motor 4 is generally provided with an optical linear encoder composed of a linear scale and a sensor head in order to detect the position of the mover in the moving direction, but is not shown in FIG. I have.
このような構成のリニアモータ 4において、 図示しない電源より電機子コイル 9に電流を印加すると、 電機子と界磁の電磁作用により、 リニアモータ 4は永久 磁石の長手方向に沿って推力を発生し、 直線運動を行う (例えば、 特開 2000 -37070号公報、 特開 2000— 333432号公報参照) 。  In the linear motor 4 having such a configuration, when a current is applied to the armature coil 9 from a power source (not shown), the linear motor 4 generates a thrust along the longitudinal direction of the permanent magnet due to the electromagnetic action of the armature and the field. Perform a linear motion (see, for example, JP-A-2000-37070 and JP-A-2000-333432).
し力、しながら、 特開 2000— 37070号公報、 特開 2000— 33343 2号公報のリユアモータでは、 モータの推力を上げて電機子部のコィル導体の発 熱量が増加した場合、 電機子コイル 9で生じた熱の大半は電機子コア 8、 電機子 取付板 7を介して、 テーブル 1 5に熱伝導する。 該リニアモータ 4は、 何の冷却 対策も講じていないため冷却性能に限界があり、 テーブル 1 5が電機子コイル 9 からの熱伝導により温度上昇して熱変形を生じたり、 テーブル 1 5に取り付けた リユアガイドゃ図示しないリニアスケール等に悪影響を与え、 テーブル 1 5の位 置決め精度の誤差が生じるといった問題があった。  However, in the case of the reversing motor disclosed in JP-A-2000-37070 and JP-A-2000-333342, when the amount of heat generated by the coil conductor in the armature portion is increased by increasing the thrust of the motor, the armature coil 9 Most of the heat generated in the step is conducted to the table 15 via the armature core 8 and the armature mounting plate 7. The cooling performance of the linear motor 4 is limited because no cooling measures are taken, and the temperature of the table 15 rises due to the heat conduction from the armature coil 9 to cause thermal deformation, or the linear motor 4 is attached to the table 15. Also, there was a problem that the lower guide adversely affected a linear scale and the like (not shown), resulting in an error in the positioning accuracy of Table 15.
上記の特開 2000-37070号公報、 特開 2000— 333432号公報 の問題を解消するため、 ブロックビルド形の電機子を有するリニァモータに対し て、 電機子に発生する熱を効率的に冷却し、 高精度の位置決め制御特性が得られ るよう、電機子コア自体に冷却構造を付加したリユアモータが提案されている (例 えば、 特開 2001— 1 28438号公報参照) 。  In order to solve the problems described in JP-A-2000-37070 and JP-A-2000-333432, for a linear motor having a block-build type armature, heat generated in the armature is efficiently cooled, In order to obtain high-accuracy positioning control characteristics, a recurring motor in which a cooling structure is added to the armature core itself has been proposed (for example, see JP-A-2001-128438).
図 6は第 2従来技術を示すリニアモータの平面図であり、 ベースプレート上に 取り付けられた電機子と冷却部材との全体的な構成が示されている。  FIG. 6 is a plan view of a linear motor showing a second related art, and shows an overall configuration of an armature and a cooling member mounted on a base plate.
図において、 30はリニアモータ電機子、 3 1はベースプレート、 32は電機 子コア、 33はコイル、 34は扁平冷却管であり、 35、 36はマ-ホールド、 37は折り返し部材である。 リニァモータ電機子 30は、 I字状の電磁鋼板が積 層された電機子コア 32とその凹部に卷回されたコイル 33とからなる複数個の 電機子ブロックを整列配置させ、 該電機子ブロックを冷却する冷却部材が、 隣り 合う前記電機子プロックの間隙を縫うように一端 3 4 aから他端 3 4 bに向かつ て連続的に S字状に折り返されて配設された扁平中空状の扁平冷却配管 3 4によ り構成されている。 なお、 該羸平冷却配管 3 4の両端 3 4 aおよび 3 4 bは、 第 1のマ-ホールド 3 5、 第 2のマ二ホールド 3 6に溶接されて配管されている。 また、 電機子コア 3 2はベースプレート 3 1に図示しないボルトねじで固定され ている。 このように、 従来の冷却構造は、 コイル近傍に冷媒を流すことによりコ ィルの発熱を除去しモータ外部へ移送するものである。 ' In the figure, 30 is a linear motor armature, 31 is a base plate, 32 is an armature core, 33 is a coil, 34 is a flat cooling tube, 35 and 36 are a holder, and 37 is a folded member. The linear motor armature 30 includes a plurality of armature cores 32 each having an I-shaped electromagnetic steel sheet laminated thereon and a coil 33 wound around a concave portion thereof. The armature blocks are arranged and arranged, and a cooling member for cooling the armature blocks is continuously S-shaped from one end 34 a to the other end 34 b so as to sew the gap between the adjacent armature blocks. It is constituted by a flat cooling pipe 34 of a flat hollow shape, which is disposed in a folded state. In addition, both ends 34 a and 34 b of the elongate cooling pipe 34 are welded and connected to a first manifold 35 and a second manifold 36. The armature core 32 is fixed to the base plate 31 with bolt screws (not shown). As described above, the conventional cooling structure removes heat from the coil by flowing the refrigerant near the coil and transfers the coil to the outside of the motor. '
ところが、 第 2従来技術である特開 2 0 0 1— 1 2 8 4 3 8号公報の冷却構造 において、 下記のような問題が存在した。  However, the cooling structure disclosed in Japanese Patent Application Laid-Open No. 2000-128384, which is the second prior art, has the following problems.
( 1 )電機子部は、扁平冷却管でコィル近傍のみしか冷却されることになるので、 冷却性能に限界がある。つまり、電機子コイルで発生した熱の一部はコイルが卷か れている電機子コアティースへ伝わり、 容易に電機子取付板、 テーブル部へ伝熱 されることになり、 熱変形による精度面への悪影響をおよぼした。  (1) The cooling performance of the armature is limited only by the flat cooling pipe near the coil, so the cooling performance is limited. In other words, part of the heat generated by the armature coil is transmitted to the armature core teeth on which the coil is wound, and is easily transferred to the armature mounting plate and the table. Was adversely affected.
( 2 ) 扁平冷却管が、 電機子コィルの配置スペースに存在するため、 導体の占積 率を犠牲にしており、 モータの発生損失を増大させているという問題があった。  (2) Since the flat cooling pipe is located in the space where the armature coil is arranged, there is a problem that the space factor of the conductor is sacrificed, and the generation loss of the motor is increased.
( 3 ) 扁平冷却管が、 図示のように波状をしており、 コイル間を縫うように配置 固定されているのでコイルェンド両端のさらに外側に、 前記冷媒管が存在するこ とでリユアモータの可動子形状 (幅寸法) を増大させることとなった。  (3) The flat cooling pipe has a wavy shape as shown in the figure, and is arranged so as to sew between the coils.Therefore, the mover of the return motor is provided by the presence of the refrigerant pipe further outside both ends of the coil end. The shape (width dimension) was to be increased.
本発明は上記課題を解決するためになされたものであり、 モータの発生損失を 増大させることなく冷却性能を向上させ、 テーブルの熱変形を抑制し、 モータ可 動子形状の増大を抑制することができるリユアモータの冷却構造を提供すること を目的とする。  SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and it is an object of the present invention to improve cooling performance without increasing motor generation loss, suppress thermal deformation of a table, and suppress an increase in motor mover shape. It is an object of the present invention to provide a cooling structure for a reversible motor that can perform the cooling operation.
[発明の開示]  [Disclosure of the Invention]
• 上記問題を解決するため、 請求項 1に記載のリニアモータの冷却構造に係る発 明は、 固定台上に垂直方向に互いに間隔を置いて対向配設した磁性体からなる二 つの界磁ヨークと該界磁ヨークに沿って交互に磁極が異なる複数の永久磁石より なる界磁部と、 前記界磁部間に空隙を介して前記固定台と平行に配置した電機子 コアと該電機子コ了に卷装された電機子コイルよりなる電機子部と、 前記電機子 取付板の上部に設けられ、 該電機子部を固定するための電機子取付板と、 前記電 機子部の上部に設けられ、 ワークを搭載するためのテーブルと、 を備えたリニア モータにおいて、 前記電機子取付板と前記テーブルの間に中間プレートが設けら れ、 前記中間プレートの内部および前記電機子取付板の内部に前記電機子部の移 動方向に連続的に折り返されて配設された冷却通路を設けたものである。 • In order to solve the above problem, the invention according to the cooling structure for a linear motor according to claim 1 is characterized in that two field yokes made of magnetic materials are disposed on a fixed base and are vertically opposed to each other. And a field part comprising a plurality of permanent magnets having different magnetic poles alternately along the field yoke; an armature core and an armature core arranged in parallel with the fixed base via a gap between the field parts; An armature portion comprising an armature coil wound around the armature; A linear motor, comprising: an armature mounting plate provided on an upper portion of the mounting plate for fixing the armature portion; and a table provided on the upper portion of the armature portion for mounting a work. An intermediate plate is provided between the armature mounting plate and the table, and is disposed inside the intermediate plate and the armature mounting plate so as to be continuously folded in the moving direction of the armature portion. A cooling passage is provided.
請求項 2に記載の発明は、請求項 1記載のリニァモ -タの冷却構造において、前 記冷却通路に流す冷媒を、 前記中間プレートから流入し、 前記電機子取付板から 吐出する構造にしたものである。  According to a second aspect of the present invention, in the cooling structure for a linear motor according to the first aspect, the refrigerant flowing through the cooling passage flows from the intermediate plate and is discharged from the armature mounting plate. It is.
請求項 3に記載の発明は、 請求項 1または 2記載のリニアモータの冷却構造に おいて、 前記冷却通路は、 銅製の冷却管で構成されたものである。  According to a third aspect of the present invention, in the cooling structure for a linear motor according to the first or second aspect, the cooling passage is formed of a copper cooling pipe.
請求項 4に記載の発明は、 請求項 1〜 3の何れか 1項に記載のリニァモータの 冷却構造において、 前記テーブル、 前記中間プレートおよび前記電機子取付板を ボノレトねじにより一体に締結したものである。  According to a fourth aspect of the present invention, in the cooling structure for a linear motor according to any one of the first to third aspects, the table, the intermediate plate, and the armature mounting plate are integrally fastened by a Bonoleto screw. is there.
請求項 5に記載の発明は、 請求項 1〜 4の何れか 1項に記載のリニァモータの 冷却構造において、 前記中間プレートおよび前記電機子取付板の冷媒入口、 7令媒 出口には、 前記中間プレートの冷媒出口および前記電機子取付板の冷媒入口を結 合するジョイントを設けたものである。 .  According to a fifth aspect of the present invention, in the cooling structure for a linear motor according to any one of the first to fourth aspects, the intermediate plate and the armature mounting plate have a refrigerant inlet, a seventh medium outlet, and the intermediate medium. A joint for connecting a refrigerant outlet of the plate and a refrigerant inlet of the armature mounting plate is provided. .
[図面の簡単な説明]  [Brief description of drawings]
図 1は、 本発明の実施例を示すリニアモータの正断面図、 図 2は、 図 1のリュ ァモータ可動子の側面図であり、 このうち、 冷媒通路 1 7の部分は図 1の A— A 線に沿う断面を破断したもの、 ボノレト 2 1、 2 2の部分は夫々図 1の B— B線、 C一 C線に沿う断面を破断したもの、 図 3は、 リニァモータ可動子における冷媒 通路入口、 出口のジョイントを接続した状態を示す正面図、 図 4は、 本実施例に おける冷媒通路の冷媒の流れを説明するための模式図、 図 5は、 第 1従来技術を 示すリニアモータの正断面図、 図 6は、 第 2従来技術を示すリニアモータの平面 図であり、 ベースプレート上に取り付けられた電機子と冷却部材との全体的な構 成を示している。  FIG. 1 is a front sectional view of a linear motor showing an embodiment of the present invention, and FIG. 2 is a side view of a luer motor mover of FIG. 1. In FIG. The cross section along the line A is broken, Bonoreto 21 and 22 are the cross sections along the line BB and C-C in Figure 1, respectively.Figure 3 shows the refrigerant passage in the linear motor mover. FIG. 4 is a front view showing a state in which inlet and outlet joints are connected, FIG. 4 is a schematic view for explaining the flow of refrigerant in the refrigerant passage in the present embodiment, and FIG. 5 is a linear motor showing the first prior art. FIG. 6 is a plan view of a linear motor showing a second conventional technique, and shows an overall configuration of an armature mounted on a base plate and a cooling member.
[発明を実施するための最良の形態]  [Best Mode for Carrying Out the Invention]
[第 1の実施の形態] 以下、 本発明の実施例を図に基づいて説明する。 [First Embodiment] Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は本発明の実施例を示すリニアモータの正断面図である。 図 2は図 1のリ ニァモータ可動子の側面図であり、 このうち、 冷媒通路 1 7の部分は図 1の A— A線に沿う断面を破断したもの、ボルト 2 1、 2 2の部分は夫々図 1の B— B線、 ' C一 C線に沿う断面を破断したものとなっている。 図 3はリニァモータ可動子に おける冷媒通路入口、 出口のジョイントを接続した状態を示す正面図である。 な お、 本発明の構成要素が従来技術と同じものについては、 同一符号を付してその 説明を省略し、 異なる点のみ説明する。  FIG. 1 is a front sectional view of a linear motor showing an embodiment of the present invention. FIG. 2 is a side view of the linear motor mover of FIG. 1, in which the refrigerant passage 17 has a cross-section taken along line A--A in FIG. 1, and the bolts 21 and 22 have The cross-sections along the lines B-B and 'C-C in Fig. 1 are broken. FIG. 3 is a front view showing a state in which the joints at the inlet and outlet of the refrigerant passage in the linear motor mover are connected. The same components as those of the related art are denoted by the same reference numerals and the description thereof will be omitted, and only different points will be described.
図 1、 2において、 1 2は中間プレート、 1 7は冷却通路である。 また、 図 3 において、 1 7 aは中間プレート 1 2に設けた冷媒通路 1 7の冷媒入口、 1 7 b は中間プレート 1 2側の冷媒出口、 1 7 cは電機子取付板 7に設けた冷媒通路 1 7の冷媒入口、 1 7 dは電機子取付板 7側の冷媒出口、 2 3はジョイントである。 本発明が従来技術と異なる点は、 以下のとおりである。  1 and 2, reference numeral 12 denotes an intermediate plate, and reference numeral 17 denotes a cooling passage. In FIG. 3, 17 a is a refrigerant inlet of the refrigerant passage 17 provided in the intermediate plate 12, 17 b is a refrigerant outlet of the intermediate plate 12 side, and 17 c is provided in the armature mounting plate 7. A refrigerant inlet of the refrigerant passage 17, 17 d is a refrigerant outlet on the armature mounting plate 7 side, and 23 is a joint. The differences between the present invention and the prior art are as follows.
すなわち、電機子取付板 7とテーブル 1 5の間に中間プレート 1 2が設けられ、 中間プレート 1 2の内部および電機子取付板 7の内部に電機子部の移動方向に連 続的に折り返されて配設された冷却通路 1 7を設けた点である。  That is, the intermediate plate 12 is provided between the armature mounting plate 7 and the table 15 and is continuously folded inside the intermediate plate 12 and the armature mounting plate 7 in the moving direction of the armature portion. A cooling passage 17 is provided.
また、 冷却通路 1 7に流す冷媒を、 中間プレート 1 2から流入し、 電機子取付 板 7から吐出する構造にしたものとなっている。  Further, the refrigerant flowing into the cooling passage 17 flows into the intermediate plate 12 and is discharged from the armature mounting plate 7.
また、 冷却通路 1 Ίは、 銅製の冷却管で構成されたものとなっている。  The cooling passage 1 mm is made up of a copper cooling pipe.
さらに、 テーブル 1 5、 中間プレート 1 2および電機子取付板 7をボルトねじ 2 1、 2 2により—体に締結したものである。 なお、 電機子取付板 7には雌ねじ 7 aが設けられ、 各雌ねじ 7 aにボルトねじ 2 1、 2 2がねじ込まれてテーブル 1 5、 中間プレート 1 2および電機子取付板 7が一体化される。  Further, the table 15, the intermediate plate 12 and the armature mounting plate 7 are fastened to the body by bolt screws 21 and 22. The armature mounting plate 7 is provided with female screws 7a.Bolt screws 21 and 22 are screwed into each female screw 7a, and the table 15, intermediate plate 12 and armature mounting plate 7 are integrated. You.
またさらに、 中間プレート 1 2および電機子取付板 7の冷媒入口、 冷媒出口に は、 中間プレ^ "ト 1 2の冷媒出口 1 7 bおよび電機子取付板 7の冷媒入口 1 7 c を結合するジョイント 2 3を設けてある。  Further, the refrigerant inlet 17 b of the intermediate plate 12 and the refrigerant inlet 17 c of the armature mounting plate 7 are connected to the refrigerant inlet and the refrigerant outlet of the intermediate plate 12 and the armature mounting plate 7. Joints 23 are provided.
次に動作を説明する。  Next, the operation will be described.
図 4は本実施例における冷媒通路の冷媒の流れを説明するための模式図である。 なお、 図において、 冷媒入口 1 7 a、 1 7 c、 .冷媒入口 1 7 b、 1 7 dは、 丸印 で囲んだ部分を示している。 FIG. 4 is a schematic diagram for explaining the flow of the refrigerant in the refrigerant passage in this embodiment. In the figure, the refrigerant inlets 17a, 17c, 17b, 17d are circled. The part enclosed by is shown.
まず、 冷媒が外部の冷媒供給源 (不図示) より中間プレート 1 2の冷媒入口 1 7 aに流入すると、 冷媒は中間プレート 1 2を冷却した後、 冷媒出口 1 7 bから 流出する。 次に冷媒出口 1 7 bから出た冷媒は、 電機子取付板 7の冷媒入口 1 7 cに入り、 電機子取付板 7を冷却した後、 冷媒出口 1 7 dから流出する。 このよ うに、 冷媒により中間プレート 1 2が先に冷却された後、 電機子取付板 7が後に 冷却される。  First, when the refrigerant flows into the refrigerant inlet 17a of the intermediate plate 12 from an external refrigerant supply source (not shown), the refrigerant cools the intermediate plate 12 and then flows out of the refrigerant outlet 17b. Next, the refrigerant flowing out from the refrigerant outlet 17b enters the refrigerant inlet 17c of the armature mounting plate 7, cools the armature mounting plate 7, and flows out from the refrigerant outlet 17d. As described above, after the intermediate plate 12 is first cooled by the refrigerant, the armature mounting plate 7 is cooled later.
したがって、 本発明の実施例は電機子取付板 7とテーブル 1 5の間に中間プレ ート 1 2を設け、 中間プレート 1 2の内部おょぴ電機子取付板 7の内部に電機子 部の移動方向に連続的に折り返されて配設された冷却通路 1 7を設けるようにし たので、 リニァモータの電機子コイル 9の発熱を中間プレート 1 2と電機子取付 板 7に夫々設けられた冷却通路 1 7に冷媒を流すことにより除去し、 モータの発 生損失を増大させることなく冷却性能を向上させ、 テーブル 1 5の熱変形を抑制 することができる。 その結果、 テーブル 1 5の温度上昇に伴う熱変形よる精度悪 化の影響を極力小さくすることができる。 また、 テーブル 1 5に取り付けたリニ ァガイドゃ図示しないリニアスケール等に悪影響を与えることなく、 テーブル 1 5の位置決め精度を良好に保つことができる。  Therefore, in the embodiment of the present invention, the intermediate plate 12 is provided between the armature mounting plate 7 and the table 15, and the armature portion is provided inside the intermediate plate 12 and inside the armature mounting plate 7. Since the cooling passages 17 are provided so as to be continuously folded in the moving direction, heat generated by the armature coil 9 of the linear motor is cooled by the cooling passages provided in the intermediate plate 12 and the armature mounting plate 7, respectively. The refrigerant is removed by flowing the refrigerant through the cooling medium 17, thereby improving the cooling performance without increasing the generation loss of the motor and suppressing the thermal deformation of the table 15. As a result, it is possible to minimize the influence of deterioration in accuracy due to thermal deformation due to the temperature rise in Table 15. In addition, the linear guide attached to the table 15 ゃ can maintain good positioning accuracy of the table 15 without adversely affecting a linear scale (not shown).
さらに、 冷却通路 1 7に流す冷媒を、 中間プレート 1 2から流入し、 電機子取 付板 7から吐出する構造にしたので、 冷媒による熱交換量の小さい中間プレート 1 2を先に冷却し、 中間プレート 1 2に比べて冷媒による熱交換量の大きい電機 子取付板 7を後に冷却するようことで、 テーブル 1 5に直接接触する中間プレー ト 1 2における冷媒の熱交換による温度上昇を最小限に抑制することができる。 またさらに、 冷却通路 1 7を、 銅製の冷却管で構成するようしたので、 冷媒に 水を使用した場合ても、 電食の危険性を無くすことができる。  Furthermore, since the refrigerant flowing through the cooling passage 17 flows from the intermediate plate 12 and is discharged from the armature mounting plate 7, the intermediate plate 12 having a small heat exchange amount by the refrigerant is cooled first. By cooling the armature mounting plate 7, which has a greater amount of heat exchange with the refrigerant than the intermediate plate 12 later, the temperature rise due to the heat exchange of the refrigerant in the intermediate plate 12 that directly contacts the table 15 is minimized. Can be suppressed. Further, since the cooling passage 17 is formed of a copper cooling pipe, the danger of electrolytic corrosion can be eliminated even when water is used as the refrigerant.
そして、 テーブル 1 5、 中間プレート 1 2および電機子取付板 7をボルトねじ 2 1、 2 2により一体に締結したので、 各部材間の接触熱抵抗を向上させること ができ、 電機子部で発生する熱を効果的に冷却通路 1 7に放熱させることができ る。  Since the table 15, the intermediate plate 12 and the armature mounting plate 7 are integrally fastened by the bolt screws 21 and 22, the contact thermal resistance between each member can be improved, and the heat generated in the armature portion The generated heat can be effectively radiated to the cooling passage 17.
それから、 中間プレート 1 2および電機子取付板 7の冷媒入口、 出口には、 該 冷媒入口、 出口を結合するジョイントを設けたので、 中間プレート 1 2および電 機子取付板 7の冷媒入口、 出口の接続構造をコンパクトにかつ簡単にすることが できる。 Then, the refrigerant inlet and outlet of the intermediate plate 12 and the armature mounting plate 7 are Since the joint for connecting the refrigerant inlet and the outlet is provided, the connection structure of the refrigerant inlet and the outlet of the intermediate plate 12 and the armature mounting plate 7 can be made compact and simple.
[産業上の利用可能性]  [Industrial applicability]
以上のように本発明は、 リニアモータ 冷却構造に関し、 特に磁気吸引力相殺 構造のリニァモータ可動子の冷却構造としで有用である。  INDUSTRIAL APPLICABILITY As described above, the present invention relates to a linear motor cooling structure, and is particularly useful as a cooling structure for a linear motor mover having a magnetic attraction force canceling structure.

Claims

請求の範囲 The scope of the claims
1 . 固定台上に垂直方向に互いに間隔を置いて対向配設した磁性体からなる二つ の界磁ヨークと該界磁ヨークに沿って交互に磁極が異なる複数の永久磁石よりな る界磁部と、 '  1. Two field yokes made of a magnetic material and arranged opposite to each other in the vertical direction on a fixed base and a plurality of permanent magnets having different magnetic poles along the field yoke alternately. Department and the '
前記界磁部間に空隙を介して前記固定台と平行に配置した電機子コアと該電機 子コアに卷装された電機子コイルよりなる電機子部と、  An armature core including an armature core disposed in parallel with the fixed base via an air gap between the field portions, and an armature coil wound on the armature core;
前記電機子部の上部に設けられ、該電機子部を固定するための電機子取付板と、 前記電機子取付板の上部に設けられ、 ワークを搭載するためのテーブルと、 を備えたリニアモータにおいて、  A linear motor provided on an upper portion of the armature portion and fixing the armature portion; and a table provided on the upper portion of the armature mounting plate for mounting a work. At
前記電機子取付板と前記テーブルの間に中間プレートが設けられ、  An intermediate plate is provided between the armature mounting plate and the table,
前記中間プレートの内部および前記電機子取付板の内部に前記電機子部の移動 方向に連続的に折り返されて配設された冷却通路を設けたことを特徴とするリニ ァモータの冷却構造。 .  A cooling structure for a linear motor, wherein cooling passages are provided inside the intermediate plate and inside the armature mounting plate so as to be continuously folded back in the moving direction of the armature portion. .
2 . 前記冷却通路に流す冷媒を、 前記中間プレートから流入し、 前記電機子取付 板から吐出する構造にしたことを特徴とする請求項 1記載のリ二ァモ-タの冷却  2. The cooling of the linear motor according to claim 1, wherein the refrigerant flowing through the cooling passage flows from the intermediate plate and is discharged from the armature mounting plate.
3 . 前記冷却通路は、 銅製の冷却管で構成されていることを特徴とする請求項 1 または 2記載のリニアモータの冷却構造。 3. The cooling structure for a linear motor according to claim 1, wherein the cooling passage is formed of a copper cooling pipe.
4 . 前記テーブル、 前記中間プレートおよび前記電機子取付板をボルトねじによ り一体に締結したことを特徴とする請求項 1〜 3の何れか 1項に記載のリニァモ ータの冷却構造。  4. The cooling structure for a linear motor according to any one of claims 1 to 3, wherein the table, the intermediate plate, and the armature mounting plate are integrally fastened by bolt screws.
5 . 前記中間プレートおよび前記電機子取付板の冷媒入口、 冷媒出口には、 前記 中間プレートの冷媒出口および前記電機子取付板の冷媒入口を結合するジョイン トを設けたことを特徴とする請求項 1〜4の何れか 1項に記載のリニアモータの 冷却構造。  5. The refrigerant inlet and the refrigerant outlet of the intermediate plate and the armature mounting plate are provided with joints for connecting the refrigerant outlet of the intermediate plate and the refrigerant inlet of the armature mounting plate. The cooling structure for a linear motor according to any one of claims 1 to 4.
PCT/JP2004/004362 2003-03-31 2004-03-26 Cooling structure for linear motor WO2004088827A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-095413 2003-03-31
JP2003095413A JP2004304932A (en) 2003-03-31 2003-03-31 Cooling structure of linear motor

Publications (1)

Publication Number Publication Date
WO2004088827A1 true WO2004088827A1 (en) 2004-10-14

Family

ID=33127437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004362 WO2004088827A1 (en) 2003-03-31 2004-03-26 Cooling structure for linear motor

Country Status (3)

Country Link
JP (1) JP2004304932A (en)
TW (1) TWI272755B (en)
WO (1) WO2004088827A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016146003A1 (en) * 2015-03-16 2016-09-22 中国科学院宁波材料技术与工程研究所 Heat insulating device of motor
US20190109501A1 (en) * 2017-10-10 2019-04-11 Mts Systems Corporation Linear motor with armature cooling channels

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5029830B2 (en) * 2007-12-27 2012-09-19 株式会社安川電機 Linear motor and table feeding device having the same
JP5460991B2 (en) * 2008-09-29 2014-04-02 オークマ株式会社 Linear motor stator
KR101302789B1 (en) 2012-01-31 2013-09-02 주식회사 효성 End plate for motor
JP2014042423A (en) 2012-08-23 2014-03-06 Sanyo Denki Co Ltd Linear motor
JP5908819B2 (en) * 2012-09-19 2016-04-26 オークマ株式会社 Linear motor
EP2808986B1 (en) 2013-05-27 2016-03-09 Etel S. A.. Cooling body for a linear motor
CN107666211A (en) * 2016-07-27 2018-02-06 大银微系统股份有限公司 The heat transfer mechanism of motor primary side

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11504199A (en) * 1996-02-08 1999-04-06 クラウス−マツフアイ アクチエンゲゼルシヤフト Linear motor
JP2002044928A (en) * 2000-07-21 2002-02-08 Sodick Co Ltd Linear motor
JP2002165433A (en) * 2000-11-21 2002-06-07 Yaskawa Electric Corp Linear motor
WO2003005538A1 (en) * 2001-07-06 2003-01-16 Samick Lms Co.,Ltd. Linear motor including cooling system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11504199A (en) * 1996-02-08 1999-04-06 クラウス−マツフアイ アクチエンゲゼルシヤフト Linear motor
JP2002044928A (en) * 2000-07-21 2002-02-08 Sodick Co Ltd Linear motor
JP2002165433A (en) * 2000-11-21 2002-06-07 Yaskawa Electric Corp Linear motor
WO2003005538A1 (en) * 2001-07-06 2003-01-16 Samick Lms Co.,Ltd. Linear motor including cooling system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016146003A1 (en) * 2015-03-16 2016-09-22 中国科学院宁波材料技术与工程研究所 Heat insulating device of motor
US20190109501A1 (en) * 2017-10-10 2019-04-11 Mts Systems Corporation Linear motor with armature cooling channels
US10992193B2 (en) * 2017-10-10 2021-04-27 Mts Systems Corporation Linear motor with armature cooling channels

Also Published As

Publication number Publication date
JP2004304932A (en) 2004-10-28
TW200507416A (en) 2005-02-16
TWI272755B (en) 2007-02-01

Similar Documents

Publication Publication Date Title
KR100726533B1 (en) Linear motor
TWI288521B (en) Coreless linear motor
KR100844759B1 (en) Coreless linear motor
KR101509285B1 (en) Linear motor armature and linear motor
JP2007180140A (en) Magnetic component
JPWO2008152876A1 (en) Canned linear motor armature and canned linear motor
KR101321253B1 (en) Magnet movable linear motor
WO2001063733A1 (en) Canned linear motor
WO2004088827A1 (en) Cooling structure for linear motor
US8664808B2 (en) Linear motor coil assembly with cooling device
US20050231048A1 (en) Actuator coil cooling system
JPH09154272A (en) Cooling structure of linear motor
JP2001218444A (en) High thrust linear motor and method of manufacturing the same
JP2000217334A (en) Linear motor
JP3539493B2 (en) Canned linear motor armature and canned linear motor
JP2002218730A (en) Linear motor fitted with core, its manufacturing method, cooling member used for its production, and its manufacturing method
JP3694821B2 (en) Linear motor
JP3856057B2 (en) Linear motor
JP3856134B2 (en) Linear slider
JP4372319B2 (en) Linear motor and manufacturing method thereof
JP2002165433A (en) Linear motor
JP2505857B2 (en) Movable magnet type multi-phase linear motor
JP2657192B2 (en) Linear DC brushless motor
JPH1118407A (en) Table feeder of machine tool
JP2001224159A (en) Linear slider

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase