JP2505857B2 - Movable magnet type multi-phase linear motor - Google Patents

Movable magnet type multi-phase linear motor

Info

Publication number
JP2505857B2
JP2505857B2 JP9753488A JP9753488A JP2505857B2 JP 2505857 B2 JP2505857 B2 JP 2505857B2 JP 9753488 A JP9753488 A JP 9753488A JP 9753488 A JP9753488 A JP 9753488A JP 2505857 B2 JP2505857 B2 JP 2505857B2
Authority
JP
Japan
Prior art keywords
linear motor
coil
magnet type
type multi
movable magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9753488A
Other languages
Japanese (ja)
Other versions
JPH01270763A (en
Inventor
伸茂 是永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9753488A priority Critical patent/JP2505857B2/en
Publication of JPH01270763A publication Critical patent/JPH01270763A/en
Application granted granted Critical
Publication of JP2505857B2 publication Critical patent/JP2505857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Linear Motors (AREA)
  • Motor Or Generator Cooling System (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は可動磁石型リニアモータ、特に半導体製造装
置、測定装置等の超精密機器の駆動機構として利用され
る可動磁石型リニアモータに関する。
TECHNICAL FIELD The present invention relates to a movable magnet type linear motor, and more particularly to a movable magnet type linear motor used as a drive mechanism for ultra-precision equipment such as semiconductor manufacturing equipment and measuring equipment.

[従来の技術] 従来より、多相リニアモータは知られている。第6図
は可動コイル型の多相リニアモータの一例を示すもの
で、この図の(a)はコイル31a〜31bを有する可動子B
を示し、(b)は可動子Bを組み込んだ固定子Aを示し
ている。固定子Aには可動子Bのコイル31a〜31bを上下
方向から挟むように磁石33〜35が設けられている。ま
た、両側励磁の可動磁石型の多相リニアモータも知られ
ている。第8図はこのようなリニアモータの一例を示す
もので、この図において、41a〜41fは支持部材42により
裏面が固定されて支持されている固定子A側のコイル、
45,46は可動子B側に設けられている磁石である。
[Prior Art] Conventionally, a multi-phase linear motor has been known. FIG. 6 shows an example of a moving coil type multi-phase linear motor, and FIG. 6 (a) shows a mover B having coils 31a to 31b.
And (b) shows a stator A incorporating a mover B. Magnets 33 to 35 are provided on the stator A so as to sandwich the coils 31a to 31b of the mover B from above and below. Further, a movable magnet type multi-phase linear motor with both-side excitation is also known. FIG. 8 shows an example of such a linear motor. In this figure, 41a to 41f are coils on the side of the stator A whose back surface is fixed and supported by a supporting member 42,
45 and 46 are magnets provided on the mover B side.

[発明が解決しようとしている問題点] しかしながら、このような従来例では、コイルの冷却
を考えると、次のような不都合があった。第6図の例で
は、 (1)コイル31a〜31cに接触しているコイルボビンの中
に冷却媒体を流すための冷却管路を設けることがほとん
ど不可能であり、効率良くコイル31a〜31cの発熱を吸収
することができない。なぜならば、もしコイルボビンの
中に冷却管路を設けても、現状のようにボビンの材質に
樹脂を使用すれば、樹脂はほとんど断熱材として作用す
るので、冷却の効果はほとんど期待できないし、一方、
ボビンの材質に金属を使用すれば、冷却作用については
効果が期待できるが、ボビン自体に流れるうず電流のた
めに、過渡的にリニアモータとしての推力特性を著しく
低下させることになるからである。
[Problems to be Solved by the Invention] However, in such a conventional example, when the cooling of the coil is considered, the following problems occur. In the example of FIG. 6, (1) it is almost impossible to provide a cooling pipe line for flowing the cooling medium in the coil bobbin which is in contact with the coils 31a to 31c, and the heat generation of the coils 31a to 31c is efficiently performed. Cannot be absorbed. This is because even if a cooling pipe is provided in the coil bobbin, if a resin is used as the material of the bobbin as in the present situation, the resin almost acts as a heat insulating material, so the cooling effect can hardly be expected, while ,
If a metal is used as the material of the bobbin, the cooling effect can be expected, but the eddy current flowing in the bobbin itself will transiently significantly reduce the thrust characteristics of the linear motor.

(2)また、第7図に示すように、コイル31a〜31cの周
囲に冷却管路29を設ける場合には、可動子全体の剛性が
低下すると共に、リニアモータ全体が大型化する。なぜ
ならば、このような構成では、可動子の占める体積,重
量が増加し、可動子の共振点を下げることになるからで
ある。
(2) Further, as shown in FIG. 7, when the cooling pipe 29 is provided around the coils 31a to 31c, the rigidity of the entire mover is reduced and the size of the entire linear motor is increased. This is because in such a structure, the volume and weight occupied by the mover are increased, and the resonance point of the mover is lowered.

また、第8図の例では、 (1)支持部材42に冷却管路43を設けることは可能であ
るが、この例の場合、支持部材42は磁気回路のヨークの
機能を兼ねるため鉄系の材料に限定されるので、冷却管
路43を設けるための構造及び加工が複雑になる。
In the example of FIG. 8, (1) it is possible to provide the cooling pipe 43 in the support member 42, but in the case of this example, the support member 42 also serves as a yoke of the magnetic circuit and is made of an iron-based material. Since the material is limited, the structure and processing for providing the cooling pipe 43 are complicated.

(2)支持部材42は板状であるため、これに冷却管路43
を設けると、その分だけ板厚が厚くなり、リニアモータ
全体の型さが増加する。
(2) Since the support member 42 is plate-shaped, the cooling pipe 43
By providing, the plate thickness becomes thicker by that amount, and the type of the entire linear motor increases.

(3)コイル鎖交磁束による鉄損のために、リニアモー
タの過渡的な推力特性が低下し、電力効率も悪化するの
で、容量の大きな電源が必要となる。
(3) The transient thrust characteristic of the linear motor deteriorates due to the iron loss due to the interlinkage magnetic flux of the coil, and the power efficiency also deteriorates. Therefore, a power source with a large capacity is required.

本発明はこのような事情に鑑みなされたもので、その
目的は、冷却を効率良く、且つ、支障なく行なうことの
できる小型の可動磁石型多相リニアモータを提供するこ
とにある。
The present invention has been made in view of such circumstances, and an object thereof is to provide a small-sized movable magnet type multi-phase linear motor that can perform cooling efficiently and without any trouble.

[問題点を解決するための手段] 本発明は、前述したような目的を達成するため、固定
子側の複数のコイルで可動子側の磁石に推力を与えるこ
とにより、前記可動子を前記固定子に対して移動させる
可動磁石型多相リニアモータにおいて、所定方向に配列
される前記コイルの両側を前記方向に沿って設けられる
棒状の支持部材で固定し、前記コイルの両側をそれぞれ
固定する前記支持部材の間に前記磁石を前記コイルに対
向させて配置し、前記支持部材の内部には冷媒を流すた
めの管路を前記方向に沿って設けている。そして、この
管路に冷媒を循環させることにより、コイルに与えられ
る駆動電流による発熱を効率良く除去することを可能に
すると共に、固定子にうず電流が発生するのを防止でき
るようにしている。また本発明は、支持部材の間に磁石
を配置することによって、リニアモータの全高を冷却管
路を設けないときと同程度としている。この場合にはコ
イルの磁石に対向する面からの支持部材の高さと磁石の
厚みを同程度とすることが望ましい。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention fixes the mover by fixing the mover-side magnet with thrust by a plurality of stator-side coils. In a movable magnet type multi-phase linear motor that moves relative to a child, both sides of the coils arranged in a predetermined direction are fixed by rod-shaped supporting members provided along the direction, and both sides of the coil are fixed. The magnet is arranged between the support members so as to face the coil, and a pipe line for flowing a coolant is provided inside the support member along the direction. By circulating the refrigerant through this pipe, it is possible to efficiently remove heat generated by the drive current applied to the coil and prevent eddy current from being generated in the stator. Further, in the present invention, by disposing the magnet between the supporting members, the total height of the linear motor is made approximately the same as that when the cooling pipeline is not provided. In this case, it is desirable that the height of the support member from the surface of the coil facing the magnet and the thickness of the magnet are approximately the same.

本発明では、可動磁石型を採用し、可動子を磁石と箱
形構造のヨークユニツトで構成することを可能にしてい
るので、コイルの冷却を可動子の剛性を低下させること
なく実施することが可能である。
In the present invention, since the movable magnet type is adopted and the mover can be configured by the magnet and the yoke unit having the box-shaped structure, the coil can be cooled without lowering the rigidity of the mover. It is possible.

[実施例] 以下、本発明を図に示した実施例に基づいて詳細に説
明する。
[Examples] Hereinafter, the present invention will be described in detail based on examples shown in the drawings.

第1図は本発明の可動磁石型多相リニアモータの一実
施例を示す図で、この図において、1a〜1fは固定子A側
のコイルで、コイル1a〜1fのそれぞれは略長方形状にコ
イルボビンに巻回され、Y軸方向に沿って支持部材2に
より配列されている。支持部材2は非磁性体、例えばア
ルミ系の材料で棒状に形成されている。支持部材2のそ
れぞれには、第3図に示す如く、コイル1a〜1fの側部が
挿入される姿穴21が形成されており、コイル1a〜1fはそ
のX方向に両側部が支持部材2のそれぞれ対応する姿穴
21に挿入された後、接着剤により固定される。また、支
持部材2のそれぞれには、第2図に示す如く、冷却用の
媒体、例えばフロン、水等を流すための冷却管路22がY
方向に沿って貫通して設けられている。冷却管路22は支
持部材2のそれぞれに2本づつ、姿穴21に挿入されたコ
イル1の上下(Z方向)を通るように設けられている。
FIG. 1 is a diagram showing an embodiment of a movable magnet type multi-phase linear motor of the present invention. In this figure, 1a to 1f are coils on the side of the stator A, and each of the coils 1a to 1f has a substantially rectangular shape. It is wound around a coil bobbin and arranged by the support member 2 along the Y-axis direction. The support member 2 is made of a non-magnetic material, for example, an aluminum-based material, and has a rod shape. As shown in FIG. 3, each of the support members 2 is formed with a figure hole 21 into which the side portion of the coil 1a to 1f is inserted, and the coil 1a to 1f has both side portions in the X direction. Each corresponding figure hole
After being inserted into 21, it is fixed with an adhesive. Further, as shown in FIG. 2, each of the support members 2 has a cooling pipe line 22 for flowing a cooling medium such as chlorofluorocarbon or water.
It is provided so as to penetrate along the direction. Two cooling pipes 22 are provided in each of the support members 2 so as to pass through the coil 1 inserted in the figure hole 21 above and below (Z direction).

支持部材2に設けられているガイド3はコイル1a〜1f
のそれぞれからのリード線を支持部材2の端部に固着さ
れているコネクタ7に案内し、両者の接続を可能にして
いる。配管用のコネクタ4,5はそれぞ支持部材2の冷却
管路22と冷却案内用のパイプ8,9を接続するために、支
持部材2の各端部に固着されている。パイプ8,9はそれ
ぞれフレキシブルな材料で形成されている。また、パイ
プ8,9のそれぞれはコネクタ4,5にニツプル6を介して接
続される。固定子Aを不図示のベースに取り付けるため
のアタツチメント10は、支持部材2のそれぞれの端部に
固着され、2本の支持部材2を図示の状態に保持してい
る。
The guide 3 provided on the support member 2 includes coils 1a to 1f.
The lead wires from each of the above are guided to the connector 7 fixed to the end portion of the support member 2 to enable connection between the two. The connectors 4 and 5 for piping are fixed to each end of the support member 2 in order to connect the cooling conduit 22 of the support member 2 and the pipes 8 and 9 for cooling guide. The pipes 8 and 9 are each made of a flexible material. Each of the pipes 8 and 9 is connected to the connectors 4 and 5 via the nipple 6. Attachments 10 for attaching the stator A to a base (not shown) are fixed to respective ends of the support member 2 and hold the two support members 2 in the illustrated state.

可動子Bは磁石11a〜11dを有する上ヨーク13と、磁石
12a〜12dを有する上下ヨーク14を側板15で連結すること
により箱型に構成されている。磁石11a〜11dと磁石12a
〜12dは互いに対向する磁石に対して極性が異なるよう
に配列されている。また、Y方向に関して隣合う磁石間
でも極性が異なっている。ヨーク13,14は鉄系の材料
で、また側板15は非磁性系の材料で構成されている。可
動子Bは固定子Aに対して、第2図に示すように、組み
付けられる。この時、各磁石11,12はX方向に関して支
持部材2の間に位置する。また、本実施例では、このよ
うな構造を可能とするため、コイル1の磁石対向面から
の支持部材2の高さ(Z方向)T1と磁石11,12の厚みT2
を略等しくしている。
The mover B includes an upper yoke 13 having magnets 11a to 11d and a magnet.
The upper and lower yokes 14 having 12a to 12d are connected by a side plate 15 to form a box shape. Magnets 11a-11d and magnet 12a
.About.12d are arranged so that the magnets facing each other have different polarities. In addition, the polarities are different between the adjacent magnets in the Y direction. The yokes 13 and 14 are made of an iron material, and the side plate 15 is made of a non-magnetic material. The mover B is assembled to the stator A as shown in FIG. At this time, the magnets 11 and 12 are located between the support members 2 in the X direction. Further, in this embodiment, in order to enable such a structure, the height (Z direction) T1 of the support member 2 from the magnet facing surface of the coil 1 and the thickness T2 of the magnets 11 and 12 are set.
Are almost equal.

不図示の電源からコネクタ7を介してコイル1a〜1fに
電流が供給されると、可動子Bは固定子Aに対してY方
向に移動する。この際の駆動シーケンスは周知の如く、
不図示の位置検出器、例えばレーザ干渉計を用いた側長
器で固定子Aに対する可動子Bの相対位置を検出し、そ
の検出値に応じてコイル1a〜1fのいずれかを選択し、そ
の値に応じて決まる方向に電流を流すことにより制御さ
れる。この電流によって磁石11,12は所定方向に推力を
受け、Y方向に沿って駆動される。この時、コイル1a〜
1fから発生するジュール熱は熱伝導により支持部材2の
内部の管路22を流れる冷媒に伝わり、この冷媒によりリ
ニアモータの外部に持ち去られる。冷媒は不図示の供給
源から常に供給されている。
When a current is supplied to the coils 1a to 1f from a power source (not shown) through the connector 7, the mover B moves in the Y direction with respect to the stator A. As is well known, the drive sequence at this time is
A relative position of the mover B with respect to the stator A is detected by a position detector (not shown), for example, a side length device using a laser interferometer, and one of the coils 1a to 1f is selected according to the detected value. It is controlled by passing a current in a direction determined according to the value. Due to this current, the magnets 11 and 12 receive thrust in a predetermined direction and are driven in the Y direction. At this time, coil 1a ~
The Joule heat generated from 1f is transferred to the refrigerant flowing through the pipe 22 inside the support member 2 by heat conduction, and is carried away to the outside of the linear motor by this refrigerant. The refrigerant is constantly supplied from a supply source (not shown).

[他の実施例] 第4図は本発明の他の実施例を示すもので、コイル1a
〜1fの両側部をそれぞれ2本の支持部材2a,2bで把持し
て固定するものである。この支持部材2a,2bは管路を構
成するために中空でアルミを押し出して造られている。
この実施例では、2本の支持部材2a,2bでコイル1a〜1f
を把持することにより、先の実施例のような姿穴21の加
工を不要としている。
[Other Embodiments] FIG. 4 shows another embodiment of the present invention.
Both side portions of 1f are held and fixed by two supporting members 2a and 2b, respectively. The support members 2a, 2b are hollow and are made of extruded aluminum to form a conduit.
In this embodiment, the coils 1a to 1f are composed of two supporting members 2a and 2b.
By grasping, it is not necessary to machine the figure hole 21 as in the previous embodiment.

また、第5図は本発明の更に他の実施例を示すもの
で、支持部材2のそれぞれを3本のアルミ又は銅の折り
曲げたパイプで構成したものである。この実施例は、第
4図の実施例と同様に姿穴21の加工を不要にすると共
に、冷却用パイプ8,9の設置場所を片側だけで済むよう
にしている。
Further, FIG. 5 shows still another embodiment of the present invention, in which each of the supporting members 2 is composed of three bent pipes of aluminum or copper. In this embodiment, like the embodiment shown in FIG. 4, it is not necessary to machine the figure hole 21, and the cooling pipes 8 and 9 can be installed on only one side.

[発明の効果] 以上説明したように本発明によれば、可動磁石型多相
リニアモータにおいて、効率良くコイルからの発熱を冷
却することができる。またこの場合、リニアモータの推
力特性に支障を与えることもない。更に、リニアモータ
の全高を低くでき、コイルユニットの構成を簡略化でき
るという効果もある。
[Effect of the Invention] As described above, according to the present invention, in the movable magnet type multi-phase linear motor, the heat generated from the coil can be efficiently cooled. Further, in this case, the thrust characteristics of the linear motor are not hindered. Further, there is an effect that the overall height of the linear motor can be reduced and the structure of the coil unit can be simplified.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の可動磁石型多相リニアモータの一実施
例を示す図、 第2図は第1図の実施例の断面を示す図、 第3図は第1図の実施例の固定子を詳細に示す図、 第4図,第5図はそれぞれ本発明の他の実施例を示す
図、 第6図,第7図,第8図はそれぞれ従来例を示す図であ
る。 1(a〜f)……コイル、2……支持部材、11,12(a
〜f)……磁石、21……姿穴、22……冷却管路、A……
固定子、B……可動子
FIG. 1 is a view showing an embodiment of a movable magnet type multi-phase linear motor of the present invention, FIG. 2 is a view showing a cross section of the embodiment of FIG. 1, and FIG. 3 is a fixing of the embodiment of FIG. FIG. 4 is a diagram showing a child in detail, FIGS. 4 and 5 are diagrams showing other embodiments of the present invention, and FIGS. 6, 7 and 8 are diagrams showing conventional examples. 1 (a to f) ... coil, 2 ... support member, 11, 12 (a
~ F) ... Magnet, 21 ... Figure hole, 22 ... Cooling conduit, A ...
Stator, B ... Movable element

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】固定子側の複数のコイルで可動子側の磁石
に推力を与えることにより、前記可動子を前記固定子に
対して移動させる可動磁石型多相リニアモータにおい
て、所定方向に配列される前記コイルの両側を前記方向
に沿って設けられる棒状の支持部材で固定し、前記コイ
ルの両側をそれぞ固定する前記支持部材の間に前記磁石
を前記コイルに対向させて配置し、前記支持部材の内部
には冷媒を流すための管路を前記方向に沿って設けるこ
とを特徴とする可動磁石型多相リニアモータ。
1. A movable magnet type multi-phase linear motor that moves the mover relative to the stator by applying thrust to a magnet on the mover side by a plurality of coils on the side of the stator, and arranged in a predetermined direction. The two sides of the coil are fixed by rod-shaped support members provided along the direction, and the magnets are arranged so as to face the coil between the support members that fix each side of the coil, A movable magnet type multi-phase linear motor characterized in that a pipeline for flowing a refrigerant is provided inside the support member along the direction.
【請求項2】前記支持部材は非磁性体で構成されている
ことを特徴とする特許請求の範囲第(1)項記載の可動
磁石型多相リニアモータ。
2. The movable magnet type multi-phase linear motor according to claim 1, wherein the support member is made of a non-magnetic material.
JP9753488A 1988-04-20 1988-04-20 Movable magnet type multi-phase linear motor Expired - Fee Related JP2505857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9753488A JP2505857B2 (en) 1988-04-20 1988-04-20 Movable magnet type multi-phase linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9753488A JP2505857B2 (en) 1988-04-20 1988-04-20 Movable magnet type multi-phase linear motor

Publications (2)

Publication Number Publication Date
JPH01270763A JPH01270763A (en) 1989-10-30
JP2505857B2 true JP2505857B2 (en) 1996-06-12

Family

ID=14194921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9753488A Expired - Fee Related JP2505857B2 (en) 1988-04-20 1988-04-20 Movable magnet type multi-phase linear motor

Country Status (1)

Country Link
JP (1) JP2505857B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6847132B2 (en) 2001-07-10 2005-01-25 Canon Kabushiki Kaisha Electromagnetic actuator having an armature coil surrounded by heat-conducting anisotropy material and exposure apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703420A (en) * 1994-10-11 1997-12-30 Canon Kabushiki Kaisha Moving magnet type multi-phase linear motor with vibration suppression and coil cooling means
US5751077A (en) * 1997-03-27 1998-05-12 Ford Global Technologies, Inc. Fluid-cooled linear motor armature
CN101010860B (en) * 2004-07-25 2010-12-08 Ts高频加热处理株式会社 Linear or curved mobile motor and its radiator
JP5292707B2 (en) 2007-03-06 2013-09-18 株式会社ジェイテクト Moving magnet type linear motor
CN111687680A (en) * 2020-05-26 2020-09-22 广州市昊志机电股份有限公司 Linear motor secondary cooling device and machine tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6847132B2 (en) 2001-07-10 2005-01-25 Canon Kabushiki Kaisha Electromagnetic actuator having an armature coil surrounded by heat-conducting anisotropy material and exposure apparatus

Also Published As

Publication number Publication date
JPH01270763A (en) 1989-10-30

Similar Documents

Publication Publication Date Title
KR100785192B1 (en) Coreless linear motor
JP6848050B2 (en) Electromechanical equipment
KR100726533B1 (en) Linear motor
US6661124B1 (en) Linear motor coils assembly and method for manufacturing the same
JP4672315B2 (en) Linear motor and linear moving stage device
JP5292707B2 (en) Moving magnet type linear motor
US20150137625A1 (en) Stator device for a linear motor and linear transport system
JP2007180140A (en) Magnetic component
JP3891545B2 (en) Linear motor
US7176593B2 (en) Actuator coil cooling system
KR101321253B1 (en) Magnet movable linear motor
JPH09154272A (en) Cooling structure of linear motor
JP2505857B2 (en) Movable magnet type multi-phase linear motor
JP6740088B2 (en) Linear motor
JPWO2017169908A1 (en) Linear motor, voice coil motor, stage device
JP5126652B2 (en) Moving coil linear motor
JPH08168233A (en) Moving magnet multiphase linear motor
JP2008220020A (en) Movable magnet type linear motor
JP2010213546A (en) Canned linear motor armature and canned linear motor
JPH10323012A (en) Linear motor
JP3446563B2 (en) Linear motor
JPS61271804A (en) Superconductive electromagnet
JP2002247831A (en) Linear motor
JP3786150B2 (en) Linear motor
JP2004064874A (en) High acceleration type linear motor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees