JP2002218730A - Linear motor fitted with core, its manufacturing method, cooling member used for its production, and its manufacturing method - Google Patents

Linear motor fitted with core, its manufacturing method, cooling member used for its production, and its manufacturing method

Info

Publication number
JP2002218730A
JP2002218730A JP2001009608A JP2001009608A JP2002218730A JP 2002218730 A JP2002218730 A JP 2002218730A JP 2001009608 A JP2001009608 A JP 2001009608A JP 2001009608 A JP2001009608 A JP 2001009608A JP 2002218730 A JP2002218730 A JP 2002218730A
Authority
JP
Japan
Prior art keywords
pipe
magnetic poles
cooling
wound
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001009608A
Other languages
Japanese (ja)
Inventor
Taro Hasegawa
太郎 長谷川
Yoshinori Onishi
嘉範 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodick Co Ltd
Original Assignee
Sodick Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Co Ltd filed Critical Sodick Co Ltd
Priority to JP2001009608A priority Critical patent/JP2002218730A/en
Publication of JP2002218730A publication Critical patent/JP2002218730A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a coil cooling means which deals with heavy-load operation, under severe conditions, of a linear motor fitted with cores and composed of a moving element of an armature and a stator, where fields consisting of permanent magnets are formed. SOLUTION: The moving element of an armature has constituting, having specified gaps between adjoining magnetic poles around which coils, are wound. A cooling means for the coils and the magnetic poles of the moving element is composed of two sets of cooling pipes for pipelines, which are in the shape of a ladder as a whole and are composed of coolant supply pipes and discharging pipes placed in parallel, and crossover pipes for pipelines which are arranged perpendicularly to the direction of the supply pipes and the discharging pipes being in parallel, have the same pitch as that of the magnetic poles, have a thickness which enables them to fit very closely into the gaps between adjoining magnetic poles around which the coils are wound, and are connected to the supply pipes and the discharging pipes at their both ends. The supply pipe and the discharging pipe of each set of cooling pipes stretch and are brought in contact with side surfaces of the armature perpendicular to magnetic pole surfaces of each armature means along the direction of movement, and each crossover pipe is inserted into each gap between the magnetic poles from the magnetic pole side and is fitted closely, to form them into a combined body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、2個の固
定子が対向し、その間を可動子が対向方向と直角方向に
移動するようなコア付き型式のリニアモータ、特に高加
減速度で高速度の移動を頻繁に繰り返し、高負荷であり
ながら高精度位置決めを要求される、例えば工作機械や
FA機器などに用いられるリニアモータ及びその製造方
法、並びに前記リニアモータの生産に使用する冷却部材
及びその製作方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear motor of a core type in which, for example, two stators face each other and a mover moves between them in a direction perpendicular to the facing direction. Frequent movement of speed is repeated, and high-precision positioning is required even with high load, for example, a linear motor used for a machine tool or FA equipment and a method for manufacturing the same, and a cooling member used for producing the linear motor and It relates to the manufacturing method.

【0002】[0002]

【従来の技術】前記のようなコア付きリニアモータは、
ギャップ吸引力キャンセル構造であるので、機械的変形
が相殺できて精度が良く、電機子コア分割型とすること
により材料歩留まりが良くなるとともに生産性も向上す
る。更に、分割コア構造を利用してコイルをコアに直接
整列巻きする高密度巻線方式(単巻き)として、発熱を
低減させ得るなどの利点が多く利用が広まってきてい
る。
2. Description of the Related Art A linear motor with a core as described above is
Since the gap suction force canceling structure is used, the mechanical deformation can be canceled and the accuracy is good. By using the armature core split type, the material yield is improved and the productivity is improved. Furthermore, the use of a high-density winding system (single winding) in which a coil is aligned and wound directly on a core using a split core structure has many advantages, such as reduced heat generation, and the use thereof has been widespread.

【0003】そして、この種のコア付きリニアモータと
しては、複数の永久磁石が移動方向に沿って順次異極と
なるように内側に等間隔に固着された左右の平行な界磁
形成手段と、コイルを巻回した磁極を移動方向に並べて
形成するとともに、前記界磁形成手段の中央に配置され
て移動方向に相対的に移動可能に支持され、前記並べて
形成した磁極面が前記永久磁石とエアギャップを介して
対面するように形成された電機子手段とからなる構造、
型式のリニアモータがある。また、前記の界磁形成手段
が、長手方向に直角な断面がT字状のヨーク材からな
り、長手方向に板状に延びるヨーク材柱部の両面に永久
磁石を長手方向に沿って固着することによって構成さ
れ、他方の電機子手段が、前記両面の永久磁石に夫々エ
アギャップを介してコイルを巻回した磁極が対向するよ
うに長手方向に沿って磁極を並べた少なくとも一対の電
機子手段からなる構造、型式のリニアモータがある。
[0003] Such a cored linear motor includes left and right parallel field forming means in which a plurality of permanent magnets are fixed at equal intervals inside so as to be sequentially different in polarity along the moving direction; The magnetic poles around which the coils are wound are formed side by side in the moving direction, and are arranged at the center of the field forming means and supported so as to be relatively movable in the moving direction. A structure comprising armature means formed to face each other via the gap,
There is a type of linear motor. Further, the field forming means comprises a yoke member having a T-shaped cross section perpendicular to the longitudinal direction, and a permanent magnet is fixed along the longitudinal direction to both surfaces of a yoke material column extending in a plate shape in the longitudinal direction. At least one pair of armature means in which the other armature means are arranged along the longitudinal direction such that the magnetic poles each having a coil wound therethrough via an air gap face the permanent magnets on both sides thereof. There is a linear motor of a structure and a type consisting of

【0004】しかし、このような構成のリニアモータに
おいて、コギング力の発生や推力リップルの発生を低減
させる技術手段は、既に種々開発されているが、熱対策
としては発熱を少なくする前述コイルの巻き方等の外、
発生した熱の除去のために冷媒および冷却管等を種々の
構成および態様で使用することが提案されている。しか
し、構成が簡単で組み立て、製作作業が容易であって、
冷却が確実で効率的であるように構成されたリニアモー
タは未だ無かった。このため、高推力での高負荷状態で
の移動を頻繁に繰り返す使用等には問題があった。
However, in the linear motor having such a configuration, various technical means for reducing the generation of cogging force and the generation of thrust ripple have already been developed. Outside,
It has been proposed to use a refrigerant, a cooling pipe, and the like in various configurations and modes for removing generated heat. However, the structure is simple, assembly and production work is easy,
There has not yet been a linear motor configured for reliable and efficient cooling. For this reason, there has been a problem in the use and the like which frequently moves under a high load state with a high thrust.

【0005】この従来例につき説明するに、前述前者の
型式と同種のリニアモータとしては、例えば、特開平1
0−257,750号公報に記載のものがある。そし
て、これによれば、永久磁石を備えた2本の界磁ヨーク
からなる固定子と、該界磁ヨークの間を移動可能に支持
されて鉄芯と巻線を備えた可動子とからなるリニアモー
タであって、前記永久磁石に対面する両側の磁極にエッ
ジを備えるとともに、該磁極の間に連結部を設け、該連
結部にそれぞれ巻線が巻回された略T字形の複数の分割
コアが、前記連結部で互いに剛に結合されて1つの可動
子を形成した構成となっている。そしてこのリニアモー
タに対する冷却部材の構成として、(a)前記巻線は樹
脂でモールドされるとともに非磁性のキャンで覆われ、
前記モールド樹脂表面とキャンの間の隙間に冷媒が流さ
れる構成としたもの、(b)前記巻線は樹脂でモールド
されるとともに前記可動子の進行方向に伸びる平面状の
冷媒導管を前記可動子両側面のモールド樹脂表面に固着
した構成としたもの、及び、(c)前記可動子ベースの
可動部材に冷媒の通路を形成した構成のもの、がそれぞ
れ開示されている。
To explain this conventional example, as a linear motor of the same type as the former type, for example, Japanese Patent Laid-Open No.
No. 0-257,750. According to this, the stator comprises two field yokes provided with permanent magnets, and a mover provided movably supported between the field yokes and provided with an iron core and windings. A linear motor, comprising a plurality of substantially T-shaped divided parts each having an edge on each of magnetic poles on both sides facing the permanent magnet, providing a connecting part between the magnetic poles, and winding each of the windings around the connecting part. The core is rigidly connected to each other at the connecting portion to form one mover. And as a configuration of a cooling member for this linear motor, (a) the winding is molded with resin and covered with a non-magnetic can,
(B) the winding is molded with a resin and a planar refrigerant conduit extending in the traveling direction of the mover is connected to the mover. Disclosed are a structure in which the structure is fixed to the mold resin surfaces on both sides, and a structure in which (c) a coolant passage is formed in the movable member of the mover base.

【0006】また、前述後者の型式と同種のリニアモー
タとしては、例えば、特開平11−27,926号公報
に記載のものがある。そして、これによれば、平板状の
ヨーク部と、前記ヨーク部長手方向に交互に異極が現れ
るように配置した複数の永久磁石と、該永久磁石に空隙
を介して対向する複数の電機子鉄芯に電機子コイルを巻
回して形成した電機子部とを備えたリニアモータであっ
て、前記ヨーク部は長手方向が平板状のベース部に沿っ
て伸びるように固定してあり、前記永久磁石は前記ヨー
ク部の両側面に互いに背中合わせに固定し、前記電機子
部は前記ベース部に平行に設けたテーブルに固定した構
成となっている。そしてこのリニアモータに対する冷却
部材の構成として、(d)前記電機子部の電機子コイル
の表面に近接して冷媒通路を設けた構成のもの、(e)
前記(d)に記載の冷媒通路を、前記テーブルの前記電
機子コイルに対向する面に設けた冷却用溝の中に冷媒導
管を装着して形成した構成としたもの、(f)前記冷媒
通路を、前記冷却用溝の開口部をシール板で覆い、前記
シール板と前記テーブルの間にOリングを装着した構成
としたもの、(g)前記冷媒通路を、前記電機子コイル
のテーブル側と反対側の側面に接触させて設けた冷媒導
管からなる構成としたもの、(h)前記冷媒通路を、前
記電機子鉄芯の前記永久磁石と対向する面に固定した冷
媒導管からなる構成としたもの、及び、(i)前記
(h)に記載の冷媒導管と前記電機子コイルとの間の空
間に熱伝導性の高い樹脂を充填した構成としたもの、が
夫々開示されている。
As a linear motor of the same type as the latter type, there is, for example, one described in Japanese Patent Application Laid-Open No. 11-27,926. According to this, a flat yoke portion, a plurality of permanent magnets arranged so that different poles alternately appear in the longitudinal direction of the yoke portion, and a plurality of armatures opposed to the permanent magnet via a gap. A linear motor having an armature portion formed by winding an armature coil around an iron core, wherein the yoke portion is fixed so that its longitudinal direction extends along a flat base portion, The magnets are fixed to both sides of the yoke part back to back, and the armature part is fixed to a table provided in parallel with the base part. As a configuration of the cooling member for the linear motor, (d) a configuration in which a refrigerant passage is provided in proximity to the surface of the armature coil of the armature portion;
A refrigerant passage according to (d) formed by mounting a refrigerant conduit in a cooling groove provided on a surface of the table facing the armature coil; and (f) the refrigerant passage. A structure in which an opening of the cooling groove is covered with a seal plate, and an O-ring is mounted between the seal plate and the table. (G) The refrigerant passage is connected to a table side of the armature coil. (H) a refrigerant conduit fixed to a surface of the armature iron core facing the permanent magnet; and (h) a refrigerant conduit fixed to a surface of the armature iron core facing the permanent magnet. And (i) a configuration in which a space between the refrigerant conduit and the armature coil described in (h) is filled with a resin having high thermal conductivity is disclosed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前述前
者の文献に開示された前記(a)では、移動する長手方
向に所定の間隔を置いて位置するモールドされた巻線部
分をいちいち部分的にキャンでシールドした状態に覆っ
たり、さらに覆って形成された隙間を隣接するものの間
で冷媒が流通可能に連結等することは、極めて困難で実
用的でない。また、前記(b)では、冷却導管と巻線と
は離隔していて冷却効率が悪いだけでなく、冷却導管は
リニアモータのエアギャップ間に介設されている構成で
あるから、前記エアギャップは大きくなりリニアモータ
の効率等特性を著しく損なったものとなっていて到底採
用し得ざるものである。また、前記(c)では、冷媒通
路が巻線位置から大きく離隔しており、巻線を冷却する
効果を期待することが出来ない。
However, in the case of (a) disclosed in the former document, the molded winding portions located at predetermined intervals in the moving longitudinal direction are partially canceled. It is extremely difficult and impractical to cover in a shielded state or to connect a refrigerant so that a coolant can be circulated between adjacent ones. Further, in the above (b), not only the cooling conduit is separated from the winding and the cooling efficiency is poor, but also the cooling conduit is interposed between the air gaps of the linear motor. Has become large and the characteristics such as the efficiency of the linear motor have been significantly impaired, and cannot be adopted at all. In (c), the refrigerant passage is largely separated from the winding position, and the effect of cooling the winding cannot be expected.

【0008】また、前述後者の文献に開示された前記
(d)の、冷却通路を電機子部の電機子コイルの表面に
近接して設ける具体的構成配置の前記(e)または
(f)では、冷媒通路または冷媒導管はテーブルの電機
子コイルと対向する面に形成された冷却用溝中に設けら
れた構成で、電機子コイルとはその一部分と近接及至は
接触しているに過ぎず、これでは電機子コイルを冷却す
ることはできない。また、前記(g)では、前述(e)
および(f)のテーブルすら冷却することができない。
また、前記(h)さらには(i)のものでは、前述した
(b)と同断のものであるから、到底採用し得ない。ま
た、さらに前記(e)または(f)と前記(g)および
前記(h)、さらに(i)のものを組み合せ備えた構成
のものとしても、冷却手段を設けたことによる冷却効果
が充分期待できず、当該リニアモータを目的の優れた特
性のアクチュエータとして作動させられないこと明らか
である。
Further, in the above (e) or (f), which is a specific configuration in which the cooling passage is provided close to the surface of the armature coil of the armature portion, as described in the above (d) disclosed in the latter document. The refrigerant passage or refrigerant conduit is provided in a cooling groove formed on the surface of the table facing the armature coil, and the armature coil is only in close proximity to a part thereof, In this case, the armature coil cannot be cooled. In the above (g), the above (e)
And even the table of (f) cannot be cooled.
Further, the above (h) and further (i) are the same as those of the above (b), and therefore cannot be adopted at all. In addition, the cooling effect provided by the cooling means can be sufficiently expected even in a configuration having a combination of the above (e) or (f), the above (g), the above (h), and further (i). Obviously, the linear motor cannot be operated as an actuator having excellent characteristics.

【0009】そして、またさらに、特開2000−22
8,860号公報には、前述前者の形式と同型のリニア
モータにおいて、前述特開平11−27,926号公報
の可動子に設けた上下4本の冷媒導管(e)(g)を、
可動子に一筆書きに連結して設けた物が開示されている
が、隣接磁極間のコイル側面に対する冷却が行なわれて
いないため、全体としての冷却は、依然不十分なもので
あった。また、さらに、特開平9−238,449号公
報には、複数のコア付き駆動コイルを各独立に冷却する
冷却管を格子状に連結した構成のものが開示されている
が、励磁コイルと冷却管との接触構成配置に充分配慮し
たものとは言えず、冷却効率が良いとは言えないもので
あった。
Further, Japanese Patent Laid-Open No. 2000-22
No. 8,860 discloses a linear motor of the same type as the former type, in which four upper and lower refrigerant conduits (e) and (g) provided on a mover of the above-mentioned Japanese Patent Application Laid-Open No. 11-27,926 are provided.
Although there is disclosed an arrangement in which the mover is connected in a single stroke, cooling on the side of the coil between adjacent magnetic poles is not performed, so that the cooling as a whole is still insufficient. Furthermore, Japanese Patent Application Laid-Open No. 9-238,449 discloses a configuration in which cooling tubes for individually cooling a plurality of cored drive coils are connected in a grid pattern. It cannot be said that the arrangement for contact with the pipe was sufficiently considered, and the cooling efficiency was not good.

【0010】本発明は、上記問題点を解消するためにな
されたものであり、コンパクトな構造により、コア付き
型リニアモータの電機子コイルに発生する熱を除去する
ことができ、高応答、高加減速での高速移動を高負荷で
のステップ移動や方向変換を頻繁に繰り返しながら高精
度の位置決め制御特性を確保するコア付き型リニアモー
タ、およびその製造方法、並びに前記コア付きリニアモ
ータを生産する際に機能部品として用いられる冷却部
材、およびより好ましい冷却部材の機能的な製作方法を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has a compact structure capable of removing heat generated in an armature coil of a cored linear motor, resulting in high response and high response. Producing a cored linear motor that ensures high-accuracy positioning control characteristics while frequently repeating high-speed movements during acceleration / deceleration and step movements and direction changes under high loads, a method of manufacturing the same, and the cored linear motor. It is an object of the present invention to provide a cooling member used as a functional component and a more preferable method of manufacturing a cooling member.

【0011】[0011]

【課題を解決するための手段】前述の本発明の目的は、
(1)複数の永久磁石を移動長手方向に沿って順次異極
となるように並べて固着した2組の界磁形成手段と、コ
イルを巻回した積層電磁鋼板からなる磁極を移動方向に
並べて形成した電機子手段とを備え、磁石と磁極との対
向によって形成される2つのエアギャップが移動方向に
平行で並列に、かつ両エアギャップの磁気吸引力が相殺
されるように配設され、前記両手段が前記移動方向に相
対的に直線に移動するよう組み合されたコア付きリニア
モータにおいて、前記電機子手段のコイルを巻回した移
動方向に並ぶ磁極は、移動方向に隣接する磁極間に移動
方向と直角な方向にほぼ平行な所定間隔の隙間を有せし
めて形成されており、前記磁極およびその巻回コイルか
ら成る2組の電機子手段に対する冷却手段が、平行に位
置する冷却液供給管と排出管と、該給排管の平行な方向
と直角で、前記磁極と同一ピッチ、かつ前記コイルが巻
回してある隣接磁極間の隙間にほぼ密着して嵌り込む厚
みを有し、前記給排管に両端が連結された渡し配管とか
ら成る全体として梯子状をした2組の冷却配管からな
り、前記各冷却配管の供給管と排出管とが、前記各電機
子手段の磁極面と直角な背向する電機子側面に移動方向
に沿って接触して延在すると共に、前記各渡し配管が前
記磁極間の各隙間に磁極面側から嵌合密装する結合体に
構成することにより達成される。
SUMMARY OF THE INVENTION The above-mentioned object of the present invention is as follows.
(1) Two sets of field forming means in which a plurality of permanent magnets are arranged and fixed in sequence along the moving longitudinal direction so as to have different polarities, and magnetic poles made of laminated electromagnetic steel sheets wound with coils are formed in the moving direction. Armature means, and two air gaps formed by opposing magnets and magnetic poles are arranged in parallel and parallel to the moving direction, and arranged so that the magnetic attraction of both air gaps is offset. In a cored linear motor in which both means are moved linearly relative to the moving direction, the magnetic poles arranged in the moving direction in which the coil of the armature means is wound are located between magnetic poles adjacent in the moving direction. Cooling means for the two sets of armature means comprising the magnetic poles and the wound coils thereof is provided with a gap provided at predetermined intervals substantially parallel to the direction perpendicular to the moving direction, and the cooling means is provided in parallel with the coolant supply. A right angle to a direction parallel to the supply and discharge pipes, the same pitch as the magnetic poles, and a thickness that fits almost closely into a gap between adjacent magnetic poles around which the coil is wound. The cooling pipe is composed of two sets of cooling pipes each having a ladder shape, which is composed of a crossing pipe having both ends connected to a discharge pipe, and a supply pipe and a discharge pipe of each of the cooling pipes are perpendicular to a magnetic pole surface of each of the armature means. This is achieved by forming a connecting body that extends in contact with the armature side surface facing the opposite side along the moving direction, and that each of the crossover pipes is fitted and tightly fitted in each gap between the magnetic poles from the magnetic pole surface side. Is done.

【0012】また、前述の本発明の目的は、(2)複数
の永久磁石を移動長手方向に沿って順次異極となるよう
に内側に固着された左右の平行な界磁形成手段と、前記
平行な界磁形成手段の対向方向および相対移動方向に直
交する方向に電磁鋼板が積層固着され、前記界磁形成手
段の左右中央に移動方向に相対的に直線に移動するよう
に組み合された電機子手段であって、前記左右両側の各
磁石と相対向して所定のエアギャップを形成するととも
に移動方向に並べて所定のピッチで所定の隙間を有する
ように形成されたコイル巻回磁極列を前記界磁対向方向
に背向させて有する電機子手段とから形成されたコア付
きリニアモータにおいて、前記電機子手段のコイルを巻
回した移動方向に並ぶ磁極は、移動方向に隣接する磁極
間に移動方向と直角な方向にほぼ平行な所定間隔の隙間
を有せしめて形成されており、前記磁極およびその巻回
コイルから成る2組の電機子手段に対する冷却手段が、
平行に位置する冷却液供給管と排出管と、該給排管の平
行な方向と直角で、前記磁極と同一ピッチ、かつ前記コ
イルが巻回してある隣接磁極間の隙間にほぼ密着して嵌
り込む厚みを有し、前記給排管に両端が連結された渡し
配管とから成る全体として梯子状をした2組の冷却配管
からなり、前記2組の冷却配管の給排管と渡し配管と
を、前記電機子手段の背向する各磁極列の外周側面と隙
間とに各両磁極面側から嵌合密装して結合体に構成した
リニアモータとすることにより達成される。
Further, the above-mentioned object of the present invention is to provide: (2) left and right parallel field forming means in which a plurality of permanent magnets are fixed inside so as to be sequentially different poles along the longitudinal direction of movement; Electromagnetic steel sheets are laminated and fixed in a direction orthogonal to the opposing direction and the relative movement direction of the parallel field forming means, and are combined so as to move linearly relative to the center of left and right of the field forming means in the moving direction. Armature means, a coil-wound magnetic pole array formed so as to form a predetermined air gap facing each of the magnets on the left and right sides and to have a predetermined gap at a predetermined pitch arranged in the moving direction. In the linear motor with a core formed from the armature means having the armature means facing backward in the field opposing direction, the magnetic poles arranged in the moving direction in which the coil of the armature means is wound are between magnetic poles adjacent in the moving direction. Direction of movement Such direction are formed by allowed have a gap of substantially parallel predetermined intervals, the cooling means for the two sets of armature means comprising the magnetic pole and the winding coil,
A coolant supply pipe and a discharge pipe which are positioned in parallel, and which are perpendicular to the parallel direction of the supply and discharge pipes, have the same pitch as the magnetic poles, and are fitted in close contact with gaps between adjacent magnetic poles around which the coil is wound. And two sets of cooling pipes having a ladder shape as a whole, comprising a supply pipe having both ends connected to the supply / discharge pipe. The supply / discharge pipe and the supply pipe of the two sets of cooling pipes are This is attained by providing a linear motor which is fitted and tightly fitted to the outer peripheral side surface and the gap of each magnetic pole row facing the armature means from both magnetic pole face sides to form a combined body.

【0013】また、前述の本発明の目的は、(3)前記
冷却液供給管と排出管の各一端にマニホルドが設けら
れ、冷却液が冷却液供給源、供給管側マニホルド、供給
管、各渡し配管、排出管、及び排出管側マニホルドへと
順次に流通する前記(1)または(2)に記載のリニア
モータとすることにより達成される。
The object of the present invention is as described above. (3) A manifold is provided at one end of each of the coolant supply pipe and the discharge pipe, and the coolant is supplied from a coolant supply source, a supply pipe side manifold, a supply pipe, and the like. This is achieved by the linear motor according to the above (1) or (2), which sequentially flows to the transfer pipe, the discharge pipe, and the discharge pipe side manifold.

【0014】また、前述の本発明の目的は、(4)前記
電機子手段の隣接するコイル巻回磁極間の隙間が磁極面
側に拡開するテーパに形成されているのに対し、前記冷
却配管の渡し配管が前記磁極間の隙間に嵌合する方向に
先細のテーパに形成されている、前記(1)または
(2)に記載のリニアモータとすることにより達成され
る。
It is another object of the present invention to provide (4) a method in which the gap between adjacent coil-wound magnetic poles of the armature means is formed in a tapered shape expanding toward the magnetic pole surface, This is achieved by the linear motor according to the above (1) or (2), wherein the crossover pipe of the pipe is formed to have a tapered shape in a direction fitting into the gap between the magnetic poles.

【0015】また、前述の本発明の目的は、(5)左右
の両側にコイルを巻回した磁極を背向させて移動方向に
並べた電機子手段を有するリニアモータの製造方法にお
いて、前記電機子手段の鉄芯となる電磁鋼板を、所定の
形状、寸法であって、磁極対応部分が僅かに先細のテー
パに形成された打ち抜き鋼板を所定枚数積層し、接着ま
たは溶接してコア状鉄芯を形成するステップと、前記磁
極に巻回コイルとして嵌合装着するように所定の寸法、
形状および巻回数巻かれたコイル体を巻型枠を用いて所
定個数製作するステップと、前記鉄芯を有する電機子手
段の移動方向の長さとほぼ等しい長さを有し、端部にマ
ニホルドを取り付けた冷却液の供給管と排出管とを、前
記電機子手段の移動方向と直角な鋼板積層方向のコイル
を巻回した電極の幅を隔てて平行に備え、該両給排管間
に前記コイルを巻回した磁極間の移動方向の隙間に嵌合
する相補の形状を有する渡し配管がろう付け連結して設
けられている全体として梯子状をした冷却部材が用意さ
れるステップと、移動ベースに位置決め固定した前記コ
ア状鉄芯の各磁極に対し、前記コイル体を嵌挿装着した
後、該コア状鉄芯に対して前記冷却部材の一対を両側か
ら位置合わせ嵌挿装着するステップと、前記冷却部材端
部のマニホルドの位置決め取り付けと各磁極巻回コイル
体のリード線の引き廻し処置後に移動ベースに対する鉄
芯側の全体を所定の寸法、形状に樹脂モールドをするス
テップと、を有するコア付きリニアモータの製造方法と
することにより達成される。
Further, the object of the present invention is to provide (5) a method of manufacturing a linear motor having armature means arranged in the moving direction with magnetic poles wound with coils on the left and right sides facing backward. A core steel core is formed by laminating a predetermined number of punched steel sheets, each having a predetermined shape and dimensions, and a portion corresponding to a magnetic pole formed into a slightly tapered taper, and bonding or welding an electromagnetic steel sheet serving as an iron core of the child means. Forming a predetermined dimension to fit and fit as a wound coil on the magnetic pole,
A step of manufacturing a predetermined number of coil bodies having the shape and the number of windings using a winding form, having a length substantially equal to the length of the armature means having the iron core in the moving direction, and having a manifold at an end portion. The attached cooling liquid supply pipe and discharge pipe are provided in parallel with a width of an electrode wound with a coil in a steel sheet laminating direction perpendicular to the movement direction of the armature means, and the cooling liquid supply pipe and the discharge pipe are provided between the supply and discharge pipes. A step of providing a generally ladder-shaped cooling member provided with a braided connecting pipe having a complementary shape that fits into a gap in the moving direction between the magnetic poles around which the coil is wound; and a moving base. After each of the magnetic poles of the core-shaped iron core positioned and fixed, after inserting and mounting the coil body, a step of aligning and inserting a pair of the cooling member from both sides to the core-shaped iron core, Of the manifold at the end of the cooling member A method of manufacturing a linear motor with a core having a step of resin-molding the whole of the iron core side with respect to the moving base to a predetermined size and shape after the fixed mounting and the routing of the lead wire of each magnetic pole wound coil body, and It is achieved by doing.

【0016】また、前述の本発明の目的は、(6)コイ
ルを巻回した積層電磁鋼板から成る磁極を移動方向に所
定のピッチで所定の間隔を置いて配置するリニアモータ
1次側部材に組み込まれる冷却部材であって、冷却液の
供給管と排出管とが前記コイルを巻回した磁極の鋼板積
層方向の幅の間隔を置いて平行に設けられ、該給排管間
に前記コイルを巻回した磁極間の移動方向の隙間に相補
の形状を有する渡し配管が連結して設けられることによ
り全体として梯子状に構成され、前記渡し配管は、横断
面が磁極列に対し嵌挿する方向に先細テーパ状の長方形
であって、隣接する磁極の相対向する側面のコイル外周
面の一部以上を覆って嵌挿されている冷却部材の構成と
することにより達成される。
Another object of the present invention is to provide (6) a linear motor primary member in which magnetic poles made of laminated electromagnetic steel sheets wound with coils are arranged at a predetermined pitch at a predetermined pitch in the moving direction. A cooling member to be incorporated, in which a supply pipe and a discharge pipe for a cooling liquid are provided in parallel with a gap of a width in a steel sheet laminating direction of a magnetic pole around which the coil is wound, and the coil is disposed between the supply and discharge pipes. A crossover pipe having a complementary shape is connected to and provided in a gap in the moving direction between the wound magnetic poles, so that the crossover pipe is configured as a whole in a ladder shape, and the cross section of the crossover direction is inserted into the magnetic pole row. The cooling member has a tapered rectangular shape, and is fitted so as to cover at least a part of the outer peripheral surface of the coil on the opposing side surface of the adjacent magnetic pole.

【0017】また、前述の本発明の目的は、(7)前記
渡し配管は、横断面の外周と内周の形状が、磁極間の隙
間に対して嵌挿する方向に先細テーパ状の長方形であっ
て、さらに、該内周中空の流通路が、長さ方向の中間部
において横断するリブにより内壁間が連結されていて仕
切られた前記(6)に記載のリニアモータ用の冷却部材
の構成とすることにより達成される。
Further, the object of the present invention is as follows. (7) The cross-sectional shape of the crossover pipe is such that the shape of the outer periphery and the inner periphery of the cross section is a tapered rectangular shape tapering in the direction of insertion into the gap between the magnetic poles. The cooling member for a linear motor according to the above (6), wherein the inner peripheral hollow flow passage is further partitioned by separating the inner walls by a transverse rib at an intermediate portion in the longitudinal direction. Is achieved by:

【0018】また、前述の本発明の目的は、(8)前記
(6)または(7)に記載の渡し配管の製作方法を、母
材地金板上に低融点ろう付け用合金を被覆材として載置
し、高温圧延することによりクラッドして両者のクラッ
ド材を製作するステップと、前記クラッド材を圧延する
ことにより前記被覆材側にI字またはE字状に凸状の前
記渡し配管の縦断条片を製作するステップと、前記縦断
条片の一対を凸側に会合密着させて加熱することにより
接着させて後所定長に切断するステップと、から成る製
作方法とすることにより達成される。
Further, the object of the present invention is to provide (8) a method of manufacturing a crossover pipe as described in (6) or (7) above, wherein the base metal plate is coated with a low melting point brazing alloy. And cladding by hot rolling to produce both clad materials, and rolling the clad material so that the I- or E-shaped crossover pipe is convex toward the coating material side. This is achieved by a manufacturing method comprising a step of manufacturing a longitudinal strip, and a step of bringing a pair of the longitudinal strips into close contact with the convex side, bonding them by heating, and then cutting them to a predetermined length. .

【0019】[0019]

【発明の実施の形態】以下、本発明の実施形態につい
て、図示した一実施例により説明する。この実施例のコ
ア付きリニアモータの構造は、前述の永久磁石を備えた
2本の界磁形成手段からなる固定子と、該一対の界磁形
成手段間を移動可能に支持されて鉄芯とコイルを備えた
可動子から成る型式のもので、図1は正面図、図2は長
手方向中間部分の正断面図(図4x−x線切断矢視)、
図3は一部を切り欠いて示した下方からの水平断面図、
図4は電機子手段部分の一部を断面で示す側面図、図5
は界磁形成手段を電機子手段との関係で示す模式図、図
6はベース、スペーサ、および磁極の配設状態を示す側
面図、及び図7は電機子鉄芯の平面図に、コイル断面図
を付加して示したもの、また、図8はコイルが捲回装着
された磁極が並ぶ電機子手段に組み込まれ使用される冷
却部材全体の外観斜視図、図9及び図10(A)、
(B)は冷却部材の構成を説明するための正断面図(図
8Y−Y線切断矢視)と部分断面図(図9Z−Z線切断
矢視)である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to an illustrated embodiment. The structure of the cored linear motor of this embodiment includes a stator comprising two field forming means provided with the aforementioned permanent magnets, and an iron core supported movably between the pair of field forming means. FIG. 1 is a front view, FIG. 2 is a front sectional view of a longitudinally intermediate portion (viewed along the line xx in FIG. 4), and FIG.
FIG. 3 is a horizontal cross-sectional view from below, with a portion cut away.
FIG. 4 is a side view showing a part of the armature means in section, and FIG.
FIG. 6 is a schematic diagram showing the field forming means in relation to the armature means, FIG. 6 is a side view showing the arrangement of the base, spacers and magnetic poles, and FIG. FIG. 8 is an additional perspective view, and FIG. 8 is an external perspective view of the entire cooling member used by being incorporated in an armature means in which magnetic poles on which coils are wound and mounted are arranged, and FIGS. 9 and 10 (A).
(B) is a front sectional view (a sectional view taken along the line Y-Y in FIG. 8) and a partial sectional view (a sectional view taken along the line Z-Z in FIG. 9) for explaining the configuration of the cooling member.

【0020】1は、各複数の永久磁石2A、2Bが内側
の移動長手方向に沿って順次にNSNS…と異極となる
ように等間隔に固着された界磁鉄芯で、左右の平行に相
対向する界磁形成手段の側壁1A、1Bを有するリニア
モータの固定子を構成する。該固定子は、図示のように
両側壁1A、2Bが繋がる全体としてU字状をした一体
物であっても良い。
Reference numeral 1 denotes a field iron core in which a plurality of permanent magnets 2A and 2B are fixed at regular intervals along the inner moving longitudinal direction so as to have different polarities with NSNS. The stator of the linear motor having the side walls 1A and 1B of the opposing field forming means is constituted. As shown in the figure, the stator may be an integrally U-shaped unit that connects both side walls 1A and 2B.

【0021】3は、前記平行な固定子側壁1A、1Bの
対向方向に直角で、かつ長手方向に直交する方向に積層
された電機子鉄芯で、周知の分割コアの結合体等とする
ことができるが、本実施例では、図7の平面図で示すよ
うな両側櫛歯形状で、所定の寸法に打ち抜かれた硅素鋼
等から成る薄い電磁鋼板3pを、所定枚数積層し、加圧
状態で接着または溶接し、密なコア状鉄芯に形成した電
機子鉄芯である。該電機子鉄芯3は、磁極3A,3
A,...および3B、3B、...を左右の前記固定
子の永久磁石2A、2Bとそれぞれ1mm前後程度以下
の微小な所定のエアギャップを隔てるとともに、移動長
手方向に所定の間隔を置いて並べて形成され、それぞれ
コイルが巻回された状態にコイル体4A、4Bを嵌挿装
着することにより磁極3A、および3Bの各列を移動方
向に形成する電機子手段に構成される。
Reference numeral 3 denotes an armature iron core laminated in a direction perpendicular to the longitudinal direction and perpendicular to the direction in which the parallel stator side walls 1A and 1B are opposed to each other. In the present embodiment, a predetermined number of thin electromagnetic steel sheets 3p made of silicon steel or the like and punched to predetermined dimensions in a comb shape on both sides as shown in the plan view of FIG. Is an armature iron core formed into a dense core iron core by bonding or welding. The armature iron core 3 has magnetic poles 3A, 3A.
A,. . . And 3B, 3B,. . . Are formed side by side with the permanent magnets 2A and 2B of the left and right stators at a small predetermined air gap of about 1 mm or less, and at predetermined intervals in the moving longitudinal direction, and each of the coils is wound. Armature means for forming each row of the magnetic poles 3A and 3B in the moving direction by inserting and inserting the coil bodies 4A and 4B in the state.

【0022】そして、この電機子手段3は、その鉄芯部
分が、前面側にスペーサヘッド5Aを有するスペーサ5
を介して移動ベース7に結合保持され、該移動ベース7
が、前記固定子1の側壁1A、1B、または該側壁1
A、1Bとの一体物に対し、例えば、直線レールとベア
リングボールまたはローラを内蔵した軸受との組み合わ
せから成る長手方向に伸びる図示しない直線移動案内装
置6A、6Bを介して結合、保持されて、移動ベース7
と一体に連結結合されることにより、リニアモータの可
動子を構成している。上記直動軸受の外、クロスローラ
ガイド、エアスライダ、V溝、およびすべり摺動等の直
線移動案内が用いられる。なお、8は、該可動子の電機
子手段3全体を、好ましくはエポキシ等の、熱伝導性が
良い樹脂で一体にモールドしたモールド樹脂を表わして
いるものである。
The armature means 3 includes a spacer 5 having a spacer head 5A on the front side.
The moving base 7 is connected to and held by the moving base 7
Are the side walls 1A and 1B of the stator 1 or
A and 1B are connected to and held by an unillustrated linear movement guide device 6A, 6B extending in the longitudinal direction, which is composed of a combination of a linear rail and a bearing with a built-in bearing ball or roller, for example. Moving base 7
And a movable element of a linear motor. In addition to the linear bearing, a linear movement guide such as a cross roller guide, an air slider, a V-groove, and sliding sliding is used. Reference numeral 8 denotes a molding resin in which the armature means 3 of the movable element is entirely molded with a resin having good thermal conductivity, preferably epoxy.

【0023】前記可動子電機子手段3は、例えば、前述
前者の型式のリニアモータのように、各磁極3A、およ
び3B部分に対応するように分割された分割コアの結合
体(例えば、特開平5−83,923号公報参照)であ
ってもよいが、図7の本実施例の場合、全体として一体
物として打ち抜かれた電磁鋼板3pの積層結合体であ
る。そして製作工数を減じて製作し易くするために、さ
らに図7の本実施例の場合、各磁極3A、3Bは根元か
ら先端にかけて稀かに先細のテーパ面3Cに形成してあ
る。これは、コイル体4A、4Bを各磁極3A、3Bに
先端側から、前述テーパ面3Cを利用して所望に嵌着さ
せるためである。そして前記コイル体4A、4Bは別
途、各磁極3A、3Bと同一形状で、ほぼ同寸乃至は僅
かに大きく作られた巻型枠に、通常銅線の表面に樹脂を
焼き付けたエナメル線を用いて巻回し、必要に応じて少
量の樹脂を用いて成形状態に固化して取り外すことによ
り、コイル体4A、4Bとして個別に製作されている。
The mover armature means 3 is, for example, a combined body of split cores divided to correspond to the magnetic poles 3A and 3B like a linear motor of the former type (for example, Japanese Unexamined Patent Application Publication No. However, in the case of the present embodiment shown in FIG. 7, it is a laminated joined body of electromagnetic steel sheets 3p punched as a whole as a whole. Further, in order to reduce the number of manufacturing steps and facilitate manufacturing, in the case of the present embodiment shown in FIG. 7, each of the magnetic poles 3A and 3B is formed on a tapered surface 3C which is rarely tapered from the root to the tip. This is because the coil bodies 4A and 4B are desirably fitted to the magnetic poles 3A and 3B from the front end side by using the tapered surface 3C. The coil bodies 4A and 4B are separately formed in the same shape as each of the magnetic poles 3A and 3B, and are generally made of the same size or slightly larger. It is individually manufactured as coil bodies 4A and 4B by solidifying it into a molded state using a small amount of resin and removing it as necessary.

【0024】そして、後述するように、各磁極列3A、
および3Bは、前述コイル体4A、4Bを嵌挿装着させ
た状態において、移動方向に隣接する磁極3Aと3A、
および3Bと3B間のコイル体表面間の隙間が、磁極先
端側へ向けて僅かに広がったテーパ状となる様にするも
のである。このコイル体表面間のテーパは、主として前
述各磁極3A、および3Bの先細テーパ3Cの構成に依
存して形成されるが、必要ならば前記コイル体4A、4
Bのモールド等の包皮絶縁テープや成形形状、更には前
記コイル体と嵌挿磁極側面間や、後述する隣接コイル体
間の隙間に嵌設される冷却配管の渡し配管と当該コイル
体との間に必要に応じて介接されるフィルムまたは薄板
状の絶縁材によって増加形成させることができる。ま
た、例えば、図2に示した構成において、磁極3A、お
よび3Bの移動方向と直角な上下方向の幅を、各磁極3
A、および3Bが先端へ行くに従って先細のテーパの鉄
芯とするには、例えば、移動方向に延びる継鉄部に、移
動方向に電磁鋼板を積層した関係に構成した磁極3A、
および3Bを所定のピッチで列設した分割鉄芯等の構成
とすれば可能となる。
As will be described later, each magnetic pole row 3A,
And 3B are magnetic poles 3A and 3A adjacent to each other in the moving direction when the coil bodies 4A and 4B are fitted and mounted.
And the gap between the coil body surfaces between 3B and 3B has a tapered shape slightly widened toward the tip of the magnetic pole. The taper between the coil body surfaces is formed mainly depending on the configuration of the tapered taper 3C of each of the magnetic poles 3A and 3B.
B between the coil body and the foreskin insulating tape such as mold or the like, and further between the coil body and the inserted magnetic pole side surface, or between a cooling pipe passing pipe fitted in a gap between adjacent coil bodies described later and the coil body. If necessary, it can be increased by a film or a thin insulating material interposed therebetween. Further, for example, in the configuration shown in FIG. 2, the width in the vertical direction perpendicular to the moving direction of the magnetic poles 3A and 3B is set to each magnetic pole 3A.
In order to make the iron core of A and 3B tapered toward the tip end, for example, magnetic poles 3A, which are formed by laminating electromagnetic steel sheets in the movement direction on yoke portions extending in the movement direction,
And 3B can be realized by a configuration such as a divided iron core in which a predetermined pitch is arranged.

【0025】しかして、本発明は、前記各磁極列3Aお
よび3Bの磁極に、コイル体4A、4Bを嵌着した状態
において、移動方向に隣接する各磁極3A、3A間、お
よび3B、3B間に移動方向と直角な方向にほぼ平行な
所定幅の隙間9A、9Bを有するように磁極3A、3B
の寸法およびピッチと、コイル体4A、4Bの巻き重ね
厚さ等の寸法が設定されている。そして、前記磁極3
A、3Bおよびその巻装コイル体4A、4Bに対する冷
却手段は、全体を冷却液が流通する冷却管から構成さ
れ、全体として、梯子状をした冷却部材10からなり、
図2、図3および図4に示すように、前記左右両側の各
磁極列3A、3A、3A、…および3B、3B、3B、
…に対し、全体を上下から梯子の長い材で挟みつけると
共に、前記隣接する磁極間の各隙間9A、9Bに横木が
丁度埋め込まれたか嵌め込んだ状態に嵌め込む構成とし
たものである。
Thus, according to the present invention, in a state where the coil bodies 4A, 4B are fitted to the magnetic poles of the magnetic pole rows 3A, 3B, the magnetic poles 3A, 3A and 3B, 3B adjacent to each other in the moving direction. The magnetic poles 3A, 3B have gaps 9A, 9B of a predetermined width substantially parallel to the direction perpendicular to the moving direction.
Are set, and the dimensions such as the winding thickness of the coil bodies 4A and 4B are set. And the magnetic pole 3
A, 3B and the cooling means for the wound coil bodies 4A, 4B are entirely constituted by cooling pipes through which a coolant flows, and are composed of a ladder-shaped cooling member 10 as a whole,
As shown in FIGS. 2, 3 and 4, the magnetic pole arrays 3A, 3A, 3A,... And 3B, 3B, 3B,.
..., the whole is sandwiched from above and below by a long material of a ladder, and the rungs are just embedded or fitted in the gaps 9A and 9B between the adjacent magnetic poles.

【0026】即ち、前記長い材と横木から成る各冷却部
材10Aおよび10Bは、図8〜10に示すように、2
本の長い材が平行に位置する冷却液供給管10A1、1
0B1と排出管10A2、10B2からなり、横木が、
前記給排管10A1、10B1、10A2、10B2の
平行な方向と直角で、前記磁極列3A、3A、3A、
…、3B、3B、3B、…と同ピッチ、かつ前記コイル
体4A、4Bが装着してある隣接磁極間の隙間9A、9
Bに密着して嵌り込むように先細のテーパと厚みとを有
し、前記供給管10A1、10B1と排出管10A2、
10B2間に両端が連結された複数の渡し配管10Cと
から成り、全体を一体の梯子状としたものである。そし
て前記給排管10A1、10B1、10A2、10B2
の各一端にはマニホルドブロック11A1、11A2、
11B1、11B2が設けられている。
That is, as shown in FIGS. 8 to 10, the cooling members 10A and 10B made of
Cooling liquid supply pipes 10A1, 1
0B1 and discharge pipes 10A2, 10B2,
At right angles to the parallel direction of the supply / discharge pipes 10A1, 10B1, 10A2, 10B2, the magnetic pole arrays 3A, 3A, 3A,
, 3B, 3B, 3B,... And the gaps 9A, 9 between adjacent magnetic poles on which the coil bodies 4A, 4B are mounted.
B has a tapered taper and a thickness so as to be fitted in close contact with B, and the supply pipes 10A1, 10B1 and the discharge pipes 10A2,
It consists of a plurality of crossover pipes 10C, both ends of which are connected between 10B2, and the whole is in the form of an integrated ladder. And the supply and discharge pipes 10A1, 10B1, 10A2, 10B2
Each end of the manifold block 11A1, 11A2,
11B1 and 11B2 are provided.

【0027】そして、冷却部材10A、10Bの構成
が、上述したような全部が冷却管を使用して構成された
梯子状の構造であって、コイルを巻回した磁極列を有す
る上述のような可動子電機子手段に組み込まれると、各
磁極はその巻回コイルの全外周面を、給排管10A1、
10B1、10A2、10B2と渡し配管10Cとによ
って取り囲まれた構成となるので、発熱コイル体4A、
4Bの冷却構造としては、ほぼ完全なものということが
できる。そして、さらに必要ならば、例えば図2におい
て、供給管10A1、10B1をベース7とより近接ま
たは接触する構成として、テーブル側原因の発熱をベー
ス7冷却により同時に除去することもできる。
The structure of the cooling members 10A and 10B is a ladder-like structure in which all the cooling members are formed by using the cooling pipes, and has the above-described magnetic pole array in which coils are wound. When incorporated in the armature armature means, each magnetic pole covers the entire outer peripheral surface of its wound coil with a supply / discharge tube 10A1,
10B1, 10A2, and 10B2 and the bridge 10C, the heating coil body 4A,
The cooling structure of 4B can be said to be almost perfect. Further, if necessary, for example, in FIG. 2, the supply pipes 10A1 and 10B1 can be configured to be closer to or in contact with the base 7 so that the heat generated by the table side can be simultaneously removed by cooling the base 7.

【0028】前記梯子形状の冷却部材10A、10B
は、図9に正断面図(8図x−x線断面矢視図)とし示
すように、その供給管10A1、10B1、および排出
管10A2、10B2は断面がほぼ長方形であって、こ
の給排管の流路断面積は、渡し配管10Cの流路断面積
よりも十分大きく形成され、それぞれの渡し配管10C
に冷却液がより均等に流れるように造られている。図示
実施例の冷却部材10A、および10Bに於いては、マ
ニホルドブロック11A1、11B1、11A2、11
B2を全てリニアモータの電機子手段3の移動方向の一
端側に設け、冷却液の給排配管が一端側でまとまるよう
にしているが、供給管10A1、10B1、排出管10
A2、10B2および各渡し配管10C内の冷却液の流
れ方によっては、例えば、排出管10A2、10B2側
のマニホルドブロック11A2、11B2を移動方向の
他端側に設ける等して、部分的な冷却状態の均一化を計
る工夫をしたり、逆に部分的な発熱部を集中的に冷却す
る冷却液の流通を計るように構成することもできる。例
えば、図8のように渡し配管10Cは、必ずしも全部を
設ける必要は無く、リニアモータの使用励磁の態様等に
よって発熱が少ない部分とか、放熱容易な部分等の渡し
配管10Cを省略した構成としても良い。
The ladder-shaped cooling members 10A, 10B
As shown in FIG. 9 as a front sectional view (a sectional view taken along the line xx in FIG. 8), the supply pipes 10A1, 10B1 and the discharge pipes 10A2, 10B2 have a substantially rectangular cross section. The cross-sectional area of the flow passage of the pipe is formed sufficiently larger than the cross-sectional area of the flow of the transfer pipe 10C.
The cooling liquid is made to flow more evenly. In the cooling members 10A and 10B of the illustrated embodiment, the manifold blocks 11A1, 11B1, 11A2, 11
B2 is provided at one end in the moving direction of the armature means 3 of the linear motor so that the supply and discharge pipes for the coolant are integrated at one end, but the supply pipes 10A1, 10B1 and the discharge pipe 10 are provided.
Depending on the flow of the coolant in the A2, 10B2 and each of the transfer pipes 10C, for example, the manifold blocks 11A2, 11B2 on the discharge pipes 10A2, 10B2 side are provided at the other end side in the moving direction, and the partial cooling state. It is also possible to devise the uniformity of the temperature, or to measure the flow of the cooling liquid for concentratingly cooling the partial heat generating portion. For example, as shown in FIG. 8, it is not necessary to provide the entirety of the transfer pipe 10 </ b> C, and a configuration in which the transfer pipe 10 </ b> C such as a portion that generates less heat depending on the mode of excitation of the linear motor or a portion that easily dissipates heat may be omitted. good.

【0029】前記渡し配管10Cは、図10の断面図
(A)、(B)(図9Z−Z線断面矢視図)に示すよう
にほぼ長方形で、コイル体4A、4Bが嵌着した磁極3
A、および3B間の隙間9A、9Bに磁極頂部側から嵌
挿して行く方向の幅が、各コイル体4A、4Bの隙間側
の面を覆う長さの幅を有するとともに、前記隙間9A、
9Bを埋めて嵌り込む厚さを有し、かつ前記嵌挿幅方向
に先細のテーパに構成されているものである。図10
(A)の渡し配管10Cは断面流路10Dが全体に中空
なのに対し、(B)の渡し配管10Cの場合は、前記流
路10Dが中間部において横断するリブ10Eにより内
壁間が仕切られた2つの流路10D1、10D2を形成
する構成としたもので、これは流通冷却液の圧力による
渡し配管10Cの膨張変形によるコイル体4A、4B損
傷を防止する方策であるとともに、前記リブ10Eによ
り、内部を流通する冷却液と渡し配管10Cとの接触面
積が増大するところから、冷却効率を高める方策をとも
なっているものである。
As shown in the cross-sectional views (A) and (B) of FIG. 10 (a sectional view taken along the line Z-Z in FIG. 9), the crossover pipe 10C is substantially rectangular, and has magnetic poles on which the coil bodies 4A and 4B are fitted. 3
A, and the width of the direction in which the magnetic poles are inserted into the gaps 9A, 9B between the tops of the magnetic poles has a width that covers the gap-side surfaces of the coil bodies 4A, 4B.
9B, and has a thickness that can be embedded and fitted, and has a taper that tapers in the insertion width direction. FIG.
In the case of (A), the cross-sectional flow path 10D is hollow as a whole, whereas in the case of (B), the cross-sectional flow path 10D has an inner wall partitioned by a rib 10E which crosses the flow path 10D in the middle. The two flow paths 10D1 and 10D2 are formed to prevent damage to the coil bodies 4A and 4B due to expansion and deformation of the transfer pipe 10C due to the pressure of the flowing cooling liquid. Since the contact area between the cooling liquid flowing through and the transfer pipe 10C increases, a measure is taken to increase the cooling efficiency.

【0030】前記冷却部材10A、および10Bは、各
供給管10A1、10B1の接続マニホルドブロック1
1A1、11B1が、配線引出孔12等を有していて配
線及び配管の入出力ターミナルであるスペーサヘッド部
5Aに取り付けられ、供給された冷却液を各マニホルド
ブロック11A1、11B1から各供給管10A1、1
0B1、該供給管から夫々の冷却部材10A、および1
0Bの渡し配管10Cを経て排出管10A2、10B
2、該排出管のマニホルドブロック11A2、11B2
から外部へと流通させて各磁極3A、および3Bのコイ
ル体4A、4Bを外周から冷却する。
The cooling members 10A and 10B are connected to the connecting manifold blocks 1 of the supply pipes 10A1 and 10B1.
1A1 and 11B1 each have a wiring outlet hole 12 or the like and are attached to a spacer head 5A which is an input / output terminal for wiring and piping, and supply the supplied cooling liquid from each manifold block 11A1 and 11B1 to each supply pipe 10A1. 1
0B1, the respective cooling members 10A and 1
Discharge pipes 10A2, 10B via the transfer pipe 10C of 0B
2. Manifold blocks 11A2, 11B2 of the discharge pipe
To the outside to cool the coil bodies 4A and 4B of the magnetic poles 3A and 3B from the outer periphery.

【0031】前記の冷却部材10A、10Bの管部材、
あるいは更にマニホルドブロック等としては、常磁性体
で、磁束に殆ど影響を与えず、熱伝導の良好な、そして
折り曲げ形成等の容易なアルミニウム合金製の押出し成
形中空管やダイキャスト体等が好適なものとして用いら
れる。また、同じく熱伝導が良好で磁束に殆ど影響を与
えない反磁性体の銅合金製のものも、油系のみでなく水
または水系冷媒の使用を容易に許容するところから有用
である。
The cooling members 10A and 10B have pipe members,
Alternatively, as the manifold block or the like, an aluminum alloy extruded hollow tube or a die-cast body made of an aluminum alloy, which is a paramagnetic material, has little effect on magnetic flux, has good heat conduction, and is easy to bend and form. Used as Similarly, a diamagnetic copper alloy which has good heat conduction and hardly affects the magnetic flux is also useful because not only oil-based but also water or water-based refrigerant can be easily used.

【0032】そして、前記の梯子状をした冷却部材10
A、および10Bは、所定の断面形状、寸法に成形する
と共に、渡し配管10C取り付け穴及びマニホルドブロ
ックの取り付け端を加工形成した供給管10A1、10
B1と排出管10A2、10B2に対し、渡し配管10
Cとマニホルドブロック11A1、11B1、11A
2、10B2とを夫々所定個数製作して用意し、両者を
位置決め固定してろう付け取り付けることにより製作さ
れるものである。
The ladder-shaped cooling member 10
A and 10B are supply pipes 10A1 and 10B formed into predetermined cross-sectional shapes and dimensions, and formed with processing pipe 10C mounting holes and mounting ends of manifold blocks.
B1 and discharge pipes 10A2 and 10B2,
C and manifold block 11A1, 11B1, 11A
2, 10B2 are prepared and prepared in a predetermined number, and both are positioned, fixed, and brazed to be manufactured.

【0033】次に、前記図10の(A)、(B)、特に
(B)に図示説明した渡し配管10Cの好ましい製作方
法につき説明する。この方法は、先ず、アルミニウム合
金等の母材地金板上に低融点ろう付け用合金を被覆材と
して載置し、高温圧延することによりクラッドして両者
のクラッド材を製作するステップと、前記クラッド材を
圧延成形することにより前記被覆材側にI字またはE字
状に凸状の前記渡し配管の左右の縦断条片を製作するス
テップと、前記左右縦断条片の一対を凸側に会合密着さ
せて加熱することにより接着させて管材とした後に所定
長に切断するステップとを経るものである。この方法に
よって渡し配管10Cとして、耐膨張リブ10Eを中空
流路内に有する管を、簡単で確実に得ることができる。
Next, a preferred method of manufacturing the transfer pipe 10C shown and described in FIGS. 10A and 10B, particularly, FIG. 10B will be described. This method comprises, first, a low melting point brazing alloy is placed as a coating material on a base metal base plate such as an aluminum alloy, and clad by hot rolling to produce both clad materials; Manufacturing the left and right vertical strips of the I-shaped or E-shaped convex pipe on the coating material side by rolling and forming a clad material; and associating a pair of the left and right vertical strips with the convex side. And then cutting the tube into a predetermined length after the tube material is adhered to the tube by heating. By this method, a pipe having the expansion-resistant rib 10E in the hollow flow path can be simply and reliably obtained as the transfer pipe 10C.

【0034】以上のようにして、本発明のコア付きリニ
アモータの可動子電機子手段は、以下の如き手順により
製作されるのである。電機子手段の鉄芯となる電磁鋼板
を、所定の形状、寸法であって、磁極対応部分が先細の
テーパに形成された打ち抜き鋼板を所定枚数積層し、接
着または溶接してコア状鉄芯を形成するステップと、前
記磁極に巻回コイルとして嵌合装着するように所定の寸
法、形状および巻回数巻かれたコイル体を巻型枠を用い
て所定個数製作するステップと、前記鉄芯を有する電機
子手段の移動方向の長さとほぼ等しい長さを有し、端部
にマニホルドを取り付けた冷却液の供給管と排出管と
を、前記電機子手段の移動方向と直角な鋼板積層方向の
コイルを巻回した磁極の幅を隔てて平行に備え、該両給
排管間に前記コイルを巻回した磁極間の移動方向の隙間
に嵌合する相補の形状を有する渡し配管がろう付け連結
して設けられている全体として梯子状をした冷却部材が
用意されるステップと、ベースに位置決め固定した前記
コア状鉄芯の各磁極に対し、前記コイル体の嵌挿装着し
た後、該コア状鉄芯に対して前記冷却部材の一対を両側
から位置合わせ嵌挿装着するステップと、前記冷却部材
端部のマニホルドの位置決め取り付けと各磁極巻回コイ
ル体のリード線の引き廻し処置後にベースに対する鉄芯
側の全体を所定の寸法、形状に伝熱性の良いエポキシ樹
脂等の熱硬化性樹脂で、樹脂モールド8するステップと
を経ることにより製作されるものである。
As described above, the mover armature means of the cored linear motor of the present invention is manufactured by the following procedure. An electromagnetic steel sheet serving as an iron core of the armature means is formed in a predetermined shape and dimensions, and a predetermined number of punched steel sheets each having a magnetic pole corresponding portion formed into a tapered taper are laminated and bonded or welded to form a core iron core. Forming; forming a predetermined number of coil bodies having a predetermined size, shape, and number of turns by using a winding form so as to be fitted and mounted as a wound coil on the magnetic pole; and having the iron core. A cooling liquid supply pipe and a discharge pipe having a length substantially equal to the length of the armature means in the moving direction and having a manifold attached to an end thereof, and a coil in a steel sheet laminating direction perpendicular to the moving direction of the armature means. A transfer pipe having a complementary shape fitted between the supply and discharge pipes and fitted in a gap in the moving direction between the magnetic poles on which the coil is wound is brazed and connected. Ladder shape as a whole A step of providing a cooling member, and after inserting and mounting the coil body with respect to each magnetic pole of the core-shaped iron core positioned and fixed to the base, a pair of the cooling members are placed on both sides of the core-shaped iron core. After the step of positioning, fitting, and mounting of the manifold at the end of the cooling member, and the routing of the lead wire of each magnetic pole wound coil body, the whole of the iron core side with respect to the base is transmitted to a predetermined size and shape. It is a thermosetting resin such as an epoxy resin having a good thermal property, and is manufactured through a step of forming a resin mold 8.

【0035】[0035]

【発明の効果】以上詳述したように、本発明のリニアモ
ータの構成によれば、電機子手段のコイル体およびその
巻回磁極に対する冷却手段の構成が、コンパクトながら
冷却部材はコイル体の表面の大部分の領域と充分に接触
しているから、冷却は効率よく、かつ確実に行なわれ、
従って、高応答、高加減速で高速移動するリニアモータ
を、高負荷で、方向変換を頻繁に繰り返しながら高精度
の位置決め作動を可能とし、その高制御性を確実に確保
させ得る。
As described above in detail, according to the structure of the linear motor of the present invention, the structure of the coil body of the armature means and the cooling means for the wound magnetic poles is compact, but the cooling member is formed on the surface of the coil body. Cooling is efficient and reliable because it is in full contact with most areas of
Therefore, the linear motor that moves at high speed with high response and high acceleration / deceleration can perform high-precision positioning operation with high load and frequent repetition of the direction change, thereby ensuring high controllability.

【0036】また、本発明のコア付きリニアモータの製
造方法によれば、高負荷で、過酷な条件下で使用可能な
リニアモータを製作容易にして、所定の性能のものを確
実に製作し得るようになるものである。
According to the method of manufacturing a linear motor with a core according to the present invention, a linear motor which can be used under severe conditions under a high load can be easily manufactured, and a motor having a predetermined performance can be manufactured reliably. It is something that will be.

【0037】また、本発明のコア付きリニアモータ可動
子電機手段に組み込まれ製作の用に供される冷却部材の
構成によれば、磁極巻回コイルの全外周を囲むように冷
却管が存在する梯子状構造体と言う比較的簡単な構成
で、確実な冷却作用を発揮するものである。
Further, according to the structure of the cooling member incorporated in the cored linear motor mover electric means of the present invention and provided for manufacturing, the cooling pipe is present so as to surround the entire outer periphery of the magnetic pole wound coil. It has a relatively simple configuration called a ladder-like structure and exhibits a reliable cooling action.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施例のリニアモータの構成を説明
するための正面図。
FIG. 1 is a front view for explaining the configuration of a linear motor according to one embodiment of the present invention.

【図2】同じく、長手方向中間部分の正断面図(図4x
−x線断面矢視図)。
FIG. 2 is a front sectional view of a longitudinally intermediate portion (FIG. 4x).
-X-ray sectional view).

【図3】同じく、一部を切り欠いた下方からの水平断面
図。
FIG. 3 is a horizontal cross-sectional view from below with a part cut away.

【図4】同じく、電機子手段部分の一部を断面で示す側
面図。
FIG. 4 is a side view similarly showing a part of an armature means in a cross section.

【図5】同じく、界磁形成手段の一部を電機子手段との
関係で示す模式図。
FIG. 5 is a schematic view similarly showing a part of the field forming means in relation to an armature means.

【図6】同じく、電機子手段部分のベース、スペーサ、
および磁極配設状態を示す側面図。
FIG. 6 is also a diagram showing a base, a spacer,
FIG. 4 is a side view showing a state in which the magnetic poles are provided.

【図7】同じく、電機子鉄芯の平面図にコイル断面を付
加して示した図。
FIG. 7 is a diagram showing a plan view of an armature iron core with a coil cross section added thereto.

【図8】同じく、本発明に用いる冷却部材の全体構成の
外観斜視図。
FIG. 8 is an external perspective view of the entire configuration of the cooling member used in the present invention.

【図9】同じく、冷却部材の正断面図(図8Y−Y線断
面矢視図)。
FIG. 9 is a front cross-sectional view of the cooling member (a cross-sectional view taken along the line YYY in FIG. 8).

【図10】同じく、(A)、(B)は部分の断面図(図
9Z−Z線断面矢視図)で、異なる構成例のものであ
る。
10A and 10B are cross-sectional views of a portion (a cross-sectional view taken along the line Z-Z in FIG. 9), which is a different configuration example.

【符号の説明】[Explanation of symbols]

1, 界磁形成手段固定子 1A,1B 固定子側壁 2A,2B 永久磁石 3 電機子手段可動子 3p 電磁鋼板 3A,3B 磁極 4A,4B コイル体 5 スペーサ 5A スペーサヘッド部 6A,6B 直線移動案内装置 7 テーブル等の移動側ベース 8 樹脂モールド 9A,9B 隙間 10A,10B 冷却部材 10A1,10B1 供給管 10A2,10B2 排出管 10C 渡し配管 11A1,11B1 供給管側マニホルドブロック 11A2,11B2 排出管側マニホルドブロック Reference Signs List 1, field forming means stator 1A, 1B stator side wall 2A, 2B permanent magnet 3 armature means mover 3p electromagnetic steel plate 3A, 3B magnetic pole 4A, 4B coil body 5 spacer 5A spacer head 6A, 6B linear movement guide device 7 Moving side base such as table 8 Resin mold 9A, 9B Clearance 10A, 10B Cooling member 10A1, 10B1 Supply pipe 10A2, 10B2 Discharge pipe 10C Crossover pipe 11A1, 11B1 Supply pipe side manifold block 11A2, 11B2 Discharge pipe side manifold block

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H609 BB08 PP08 PP09 QQ16 QQ17 RR26 RR37 RR42 5H615 AA01 BB01 BB07 BB16 PP12 RR01 5H641 BB06 BB12 BB14 BB18 GG03 GG04 GG19 HH02 HH13 JA02 JA09 JB05 JB09  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 複数の永久磁石を移動長手方向に沿って
順次異極となるように並べて固着した2組の界磁形成手
段と、コイルを巻回した積層電磁鋼板からなる磁極を移
動方向に並べて形成した電機子手段とを備え、磁石と磁
極との対向によって形成される2つのエアギャップが移
動方向に平行で並列に、かつ両エアギャップの磁気吸引
力が相殺されるように配設され、前記両手段が前記移動
方向に相対的に直線に移動するよう組み合されたコア付
きリニアモータにおいて、 前記電機子手段のコイルを巻回した移動方向に並ぶ磁極
は、移動方向に隣接する磁極間に移動方向と直角な方向
にほぼ平行な所定間隔の隙間を有せしめて形成されてお
り、 前記磁極およびその巻回コイルから成る2組の電機子手
段に対する冷却手段が、平行に位置する冷却液供給管と
排出管と、該給排管の平行な方向と直角で、前記磁極と
同一ピッチ、かつ前記コイルが巻回してある隣接磁極間
の隙間にほぼ密着して嵌り込む厚みを有し、前記給排管
に両端が連結された渡し配管とから成る全体として梯子
状をした2組の冷却配管からなり、 前記各冷却配管の供給管と排出管とが、前記各電機子手
段の磁極面と直角な背向する電機子側面に移動方向に沿
って接触して延在すると共に、前記各渡し配管が前記磁
極間の各隙間に磁極面側から嵌合密装する結合体に構成
されて成ることを特徴とするリニアモータ。
1. Two sets of field forming means in which a plurality of permanent magnets are arranged and fixed in sequence in the moving longitudinal direction so as to have different polarities, and a magnetic pole made of a laminated electromagnetic steel sheet wound with a coil is moved in the moving direction. Armature means formed side by side, wherein two air gaps formed by facing magnets and magnetic poles are arranged in parallel and parallel to the moving direction, and so that the magnetic attraction of both air gaps is offset. In a linear motor with a core, wherein the two means are moved relatively linearly in the moving direction, the magnetic poles arranged in the moving direction in which the coil of the armature means is wound are magnetic poles adjacent to the moving direction. A cooling means for the two sets of armature means comprising the magnetic poles and the winding coils thereof is provided with a gap between them at predetermined intervals substantially parallel to a direction perpendicular to the moving direction. A liquid supply pipe and a discharge pipe, which are perpendicular to a direction parallel to the supply and discharge pipe, have the same pitch as the magnetic poles, and have a thickness that fits almost closely into a gap between adjacent magnetic poles around which the coil is wound; A cooling pipe comprising two sets of cooling pipes each having a ladder shape, each of which is composed of a supply pipe and a connecting pipe having both ends connected to the supply and discharge pipe, and a supply pipe and a discharge pipe of each of the cooling pipes are magnetic poles of each of the armature means. The crossover pipe extends and comes into contact with the armature side surface facing perpendicularly to the surface along the moving direction, and the connecting pipe is configured to fit tightly into each gap between the magnetic poles from the magnetic pole surface side. A linear motor comprising:
【請求項2】 複数の永久磁石を移動長手方向に沿って
順次異極となるように内側に固着された左右の平行な界
磁形成手段と、前記平行な界磁形成手段の対向方向およ
び相対移動方向に直交する方向に電磁鋼板が積層固着さ
れ、前記界磁形成手段の左右中央に移動方向に相対的に
直線に移動するように組み合された電機子手段であっ
て、前記左右両側の各磁石と相対向して所定のエアギャ
ップを形成するとともに移動方向に並べて所定のピッチ
で所定の隙間を有するように形成されたコイル巻回磁極
列を前記界磁対向方向に背向させて有する電機子手段と
から形成されたコア付きリニアモータにおいて、 前記電機子手段のコイルを巻回した移動方向に並ぶ磁極
は、移動方向に隣接する磁極間に移動方向と直角な方向
にほぼ平行な所定間隔の隙間を有せしめて形成されてお
り、 前記磁極およびその巻回コイルから成る2組の電機子手
段に対する冷却手段が、平行に位置する冷却液供給管と
排出管と、該給排管の平行な方向と直角で、前記磁極と
同一ピッチ、かつ前記コイルが巻回してある隣接磁極間
の隙間にほぼ密着して嵌り込む厚みを有し、前記給排管
に両端が連結された渡し配管とから成る全体として梯子
状をした2組の冷却配管からなり、 前記2組の冷却配管の給排管と渡し配管とを、前記電機
子手段の背向する各磁極列の外周側面と隙間とに各両磁
極面側から嵌合密装して結合体に構成して成ることを特
徴とするリニアモータ。
2. A left and right parallel field forming means fixed to the inside such that a plurality of permanent magnets become sequentially different poles along a moving longitudinal direction, and opposing directions and relative directions of the parallel field forming means. An electromagnetic steel sheet is laminated and fixed in a direction perpendicular to the moving direction, and armature means combined to move linearly relatively to the moving direction at the center of the left and right of the field forming means, wherein A coil-wound magnetic pole array formed so as to face each magnet to form a predetermined air gap and to be arranged in the moving direction and to have a predetermined gap at a predetermined pitch and to face in the field opposing direction. In the cored linear motor formed by the armature means, the magnetic poles arranged in the moving direction in which the coil of the armature means is wound are arranged in parallel with each other in a direction substantially perpendicular to the moving direction between magnetic poles adjacent to the moving direction. Gaps in intervals The cooling means for the two sets of armature means comprising the magnetic poles and the wound coils thereof comprises a cooling liquid supply pipe and a discharge pipe located in parallel, and a direction parallel to the supply and discharge pipes. At right angles to the magnetic poles, and having a thickness that fits in close contact with the gap between adjacent magnetic poles around which the coil is wound, and a crossover pipe connected at both ends to the supply / discharge pipe. It is composed of two sets of cooling pipes having a ladder shape as a whole, and the supply and discharge pipes and the transfer pipes of the two sets of cooling pipes are respectively connected to the outer peripheral side face and the gap of each magnetic pole row facing the armature means. A linear motor characterized in that it is fitted and tightly mounted from the magnetic pole surface side to form a combined body.
【請求項3】 前記冷却液供給管と排出管の各一端にマ
ニホルドが設けられ、冷却液が冷却液供給源、供給管側
マニホルド、供給管、各渡し配管、排出管、及び排出管
側マニホルドへと順次に流通するものであることを特徴
とする請求項1、または2に記載のリニアモータ。
3. A manifold is provided at one end of each of the cooling liquid supply pipe and the discharge pipe, and the cooling liquid is supplied to a cooling liquid supply source, a supply pipe side manifold, a supply pipe, each passing pipe, a discharge pipe, and a discharge pipe side manifold. The linear motor according to claim 1, wherein the linear motor is sequentially circulated.
【請求項4】 前記電機子手段の隣接するコイル巻回磁
極間の隙間が磁極面側に拡開するテーパに形成されてい
るのに対し、前記冷却配管の渡し配管が前記磁極間の隙
間に嵌合する方向に先細のテーパに形成されている、前
記請求項1、または2に記載のリニアモータ。
4. A gap between adjacent coil-wound magnetic poles of the armature means is formed in a taper expanding toward a magnetic pole surface, whereas a cooling pipe is provided in a gap between the magnetic poles. The linear motor according to claim 1, wherein the linear motor is formed to have a tapered shape in a fitting direction.
【請求項5】 左右の両側にコイルを巻回した磁極を背
向させて移動方向に所定の間隔を置いて並べた電機子手
段を有するリニアモータの製造方法において、 前記電機子手段の鉄芯となる電磁鋼板を、所定の形状、
寸法であって、磁極対応部分が先細のテーパに形成され
た打ち抜き鋼板を所定枚数積層し、接着または溶接して
コア状鉄芯を形成するステップと、 前記磁極に巻回コイルとして嵌合装着するように所定の
寸法、形状および巻回数巻かれたコイル体を巻型枠を用
いて所定個数製作するステップと、 前記鉄芯を有する電機子手段の移動方向の長さとほぼ等
しい長さを有し、端部にマニホルドを取り付けた冷却液
の供給管と排出管とを、前記電機子手段の移動方向と直
角な鋼板積層方向のコイルを巻回した磁極の幅を隔てて
平行に備え、該両給排管間に前記コイルを巻回した磁極
間の移動方向の隙間に嵌合する相補の形状を有する渡し
配管が連結して設けられている全体として梯子状をした
冷却配管が用意されるステップと、 移動ベースに位置決め固定した前記コア状鉄芯の各磁極
に対し、前記コイル体を嵌挿装着した後、該コア状鉄芯
に対して前記冷却配管の一対を両側から位置合わせ嵌挿
装着するステップと、 前記冷却配管端部のマニホルドの位置決め取り付けと各
磁極巻回コイル体のリード線の引き廻し処置後に移動ベ
ースに対する鉄芯側の全体を所定の寸法、形状に樹脂モ
ールドをするステップと、 を有することを特徴とするリニアモータの製造方法。
5. A method for manufacturing a linear motor having armature means arranged with predetermined intervals in the direction of movement with magnetic poles having coils wound on the right and left sides facing backward, wherein the iron core of the armature means is provided. The electromagnetic steel sheet that becomes the specified shape,
A step of laminating a predetermined number of punched steel sheets having a tapered tapered portion corresponding to the magnetic pole and forming a core iron core by bonding or welding; fitting and mounting the magnetic pole as a wound coil Manufacturing a predetermined number of coil bodies having a predetermined size, shape and number of turns using a winding form, and having a length substantially equal to the length of the armature means having the iron core in the moving direction. A coolant supply pipe and a discharge pipe having a manifold attached to an end thereof are provided in parallel with a magnetic pole wound around a coil wound in a steel sheet laminating direction perpendicular to a moving direction of the armature means, A step of preparing a cooling pipe having a ladder shape as a whole, which is provided with a connecting pipe having a complementary shape which fits in a gap in a moving direction between magnetic poles wound with the coil between the supply and discharge pipes. And positioning on the moving base After inserting and mounting the coil body to each magnetic pole of the fixed core-shaped iron core, aligning and inserting a pair of the cooling pipes from both sides to the core-shaped iron core; After the positioning and mounting of the manifold at the pipe end and the routing of the lead wire of each magnetic pole wound coil body, resin molding the entire iron core side with respect to the moving base to a predetermined size and shape. Method of manufacturing a linear motor.
【請求項6】 コイルを巻回した積層電磁鋼板から成る
磁極を移動方向に所定のピッチで所定の間隔を置いて配
置するリニアモータ1次側部材に組み込まれる冷却部材
であって、 冷却液の供給管と排出管とが前記コイルを巻回した磁極
の鋼板積層方向の幅の間隔を置いて平行に設けられ、該
給排管間に前記コイルを巻回した磁極間の移動方向の隙
間に相補の形状を有する渡し配管が連結して設けられる
ことにより全体として梯子状に構成され、前記渡し配管
は、 横断面が磁極列に対し嵌挿する方向に先細テーパ状の長
方形であって、隣接する磁極の相対向する側面のコイル
外周面の一部以上を覆って嵌挿されている構成であるこ
とを特徴とするリニアモータ用冷却部材。
6. A cooling member incorporated in a primary side member of a linear motor in which magnetic poles made of laminated electromagnetic steel sheets wound with coils are arranged at a predetermined pitch at a predetermined pitch in a moving direction. A supply pipe and a discharge pipe are provided in parallel at intervals of the width of the magnetic pole around which the coil is wound in the direction of lamination of the steel plates, and are provided between the supply and discharge pipes in a gap in the moving direction between the magnetic poles around which the coil is wound. A crossover pipe having a complementary shape is connected and provided so as to form a ladder shape as a whole, and the crossover section has a tapered rectangular shape whose cross section is tapered in a direction of insertion into the magnetic pole row, and is adjacent to the crossover pipe. A cooling member for a linear motor, wherein the cooling member is fitted so as to cover at least a part of an outer peripheral surface of a coil on opposite side surfaces of a magnetic pole.
【請求項7】 前記渡し配管は、横断面の外周と内周の
形状が、磁極間の隙間に対して嵌挿する方向に先細テー
パ状の長方形であって、さらに、該内周中空の流通路
が、長さ方向の中間部において横断するリブにより内壁
間が連結されていて仕切られた構成であることを特徴と
する請求項6に記載のリニアモータ用冷却部材。
7. The crossover pipe has a cross-sectional outer and inner periphery that is tapered and rectangular in a direction in which it is inserted into the gap between the magnetic poles. 7. The cooling member for a linear motor according to claim 6, wherein the path has a configuration in which the inner walls are connected and partitioned by a transverse rib at a middle portion in the longitudinal direction.
【請求項8】 前記請求項6、または7に記載の渡し配
管の製作方法であって、 母材地金板上に低融点ろう付け用合金を被覆材として載
置し、高温圧延することによりクラッドして両者のクラ
ッド材を製作するステップと、 前記クラッド材を圧延することにより前記被覆材側にI
字またはE字状に凸状の前記渡し配管の縦断条片を製作
するステップと、 前記縦断条片の一対を凸側に会合密着させて加熱するこ
とにより接着させて後所定長に切断するステップと、か
ら成ることを特徴とするリニアモータ用冷却部材の製作
方法。
8. The method according to claim 6, wherein the low melting point brazing alloy is placed on a base metal plate as a coating material and hot rolled. Cladding to produce both clad materials; and rolling the clad material so that I
Manufacturing a vertical strip of the crossover pipe having a convex shape in the shape of a letter or an E, and a step of associating a pair of the vertical strips with each other on a convex side, heating and adhering to each other, and then cutting into a predetermined length. A method for manufacturing a cooling member for a linear motor, comprising:
JP2001009608A 2001-01-18 2001-01-18 Linear motor fitted with core, its manufacturing method, cooling member used for its production, and its manufacturing method Pending JP2002218730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001009608A JP2002218730A (en) 2001-01-18 2001-01-18 Linear motor fitted with core, its manufacturing method, cooling member used for its production, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001009608A JP2002218730A (en) 2001-01-18 2001-01-18 Linear motor fitted with core, its manufacturing method, cooling member used for its production, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002218730A true JP2002218730A (en) 2002-08-02

Family

ID=18877059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001009608A Pending JP2002218730A (en) 2001-01-18 2001-01-18 Linear motor fitted with core, its manufacturing method, cooling member used for its production, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002218730A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005237059A (en) * 2004-02-17 2005-09-02 Sanyo Denki Co Ltd Armature winding cooling structure
US6977451B2 (en) * 2002-11-05 2005-12-20 Sodick Co., Ltd. Ironless AC linear motor
CN101931307A (en) * 2009-06-19 2010-12-29 株式会社安川电机 Linear motor armature and linear motor
CN102158043A (en) * 2011-05-18 2011-08-17 哈尔滨工业大学 Liquid-cooled flat linear permanent magnet synchronous motor
EP2404366A2 (en) * 2009-03-05 2012-01-11 CPM Compact Power Motors GMBH Dual-rotor motor having heat dissipation
CN103178687A (en) * 2011-12-26 2013-06-26 上海磁浮交通发展有限公司 Bilateral mixed excitation type high-thrust linear synchronous motor
JP2014193045A (en) * 2013-03-27 2014-10-06 Tokyo Seimitsu Co Ltd Probing device
WO2016146003A1 (en) * 2015-03-16 2016-09-22 中国科学院宁波材料技术与工程研究所 Heat insulating device of motor
WO2019074931A1 (en) * 2017-10-10 2019-04-18 Mts Systems Corporation Linear motor with armature cooling channels
CN110247498A (en) * 2019-07-03 2019-09-17 珠海格力电器股份有限公司 Cooling component, linear motor rotor, linear motor and the lathe of linear motor rotor
CN111371262A (en) * 2020-04-15 2020-07-03 中车株洲电机有限公司 Magnetic pole assembling method and system
EP3826152A1 (en) * 2019-11-19 2021-05-26 Etel S.A. Liquid-cooled core assembly for linear motors and linear motor comprising such core assembly

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6977451B2 (en) * 2002-11-05 2005-12-20 Sodick Co., Ltd. Ironless AC linear motor
CN100433511C (en) * 2002-11-05 2008-11-12 沙迪克株式会社 Coreless AC linear motor
JP2005237059A (en) * 2004-02-17 2005-09-02 Sanyo Denki Co Ltd Armature winding cooling structure
JP4560303B2 (en) * 2004-02-17 2010-10-13 山洋電気株式会社 Armature winding cooling structure
EP2404366A2 (en) * 2009-03-05 2012-01-11 CPM Compact Power Motors GMBH Dual-rotor motor having heat dissipation
CN101931307A (en) * 2009-06-19 2010-12-29 株式会社安川电机 Linear motor armature and linear motor
JP2011004555A (en) * 2009-06-19 2011-01-06 Yaskawa Electric Corp Linear motor armature and linear motor
CN102158043A (en) * 2011-05-18 2011-08-17 哈尔滨工业大学 Liquid-cooled flat linear permanent magnet synchronous motor
CN103178687A (en) * 2011-12-26 2013-06-26 上海磁浮交通发展有限公司 Bilateral mixed excitation type high-thrust linear synchronous motor
JP2014193045A (en) * 2013-03-27 2014-10-06 Tokyo Seimitsu Co Ltd Probing device
WO2016146003A1 (en) * 2015-03-16 2016-09-22 中国科学院宁波材料技术与工程研究所 Heat insulating device of motor
WO2019074931A1 (en) * 2017-10-10 2019-04-18 Mts Systems Corporation Linear motor with armature cooling channels
CN111279596A (en) * 2017-10-10 2020-06-12 Mts系统公司 Linear motor with armature cooling channel
US10992193B2 (en) 2017-10-10 2021-04-27 Mts Systems Corporation Linear motor with armature cooling channels
CN111279596B (en) * 2017-10-10 2022-10-04 Mts系统公司 Linear motor with armature cooling channel
CN110247498A (en) * 2019-07-03 2019-09-17 珠海格力电器股份有限公司 Cooling component, linear motor rotor, linear motor and the lathe of linear motor rotor
EP3826152A1 (en) * 2019-11-19 2021-05-26 Etel S.A. Liquid-cooled core assembly for linear motors and linear motor comprising such core assembly
US11588378B2 (en) 2019-11-19 2023-02-21 Etel S.A. Liquid-cooled core assembly for linear motors and linear motor comprising such core assembly
CN111371262A (en) * 2020-04-15 2020-07-03 中车株洲电机有限公司 Magnetic pole assembling method and system

Similar Documents

Publication Publication Date Title
JP5292707B2 (en) Moving magnet type linear motor
US6856049B2 (en) Voice coil linear actuator, apparatus using the actuator, and method for manufacturing the actuator
KR100702821B1 (en) Linear motor coil assembly and method for manufacturing the same
JP5423392B2 (en) Canned linear motor armature and canned linear motor
JP2002218730A (en) Linear motor fitted with core, its manufacturing method, cooling member used for its production, and its manufacturing method
JP4216046B2 (en) Coreless AC linear motor
WO2002043228A1 (en) Linear motor
JP2007180140A (en) Magnetic component
CN101292413A (en) Linear motor and method of manufacturing the same
WO2001063733A1 (en) Canned linear motor
WO2005060076A1 (en) Linear motor and attraction-compensating type linear motor
JP3907912B2 (en) Primary member for linear DC motor and linear DC motor
JP2008306836A (en) Linear actuator
JP2002044928A (en) Linear motor
JP3539493B2 (en) Canned linear motor armature and canned linear motor
TWI272755B (en) Cooling structure of a linear motor
JP3694821B2 (en) Linear motor
JP3856057B2 (en) Linear motor
JP4372319B2 (en) Linear motor and manufacturing method thereof
KR100790001B1 (en) Linear motor and the manufacturing method
JP2505857B2 (en) Movable magnet type multi-phase linear motor
JP2585817Y2 (en) Synchronous linear motor
JP3838813B2 (en) Linear actuator
JP3786150B2 (en) Linear motor
JP4811550B2 (en) Linear motor armature and linear motor