JP3694821B2 - Linear motor - Google Patents

Linear motor Download PDF

Info

Publication number
JP3694821B2
JP3694821B2 JP19511397A JP19511397A JP3694821B2 JP 3694821 B2 JP3694821 B2 JP 3694821B2 JP 19511397 A JP19511397 A JP 19511397A JP 19511397 A JP19511397 A JP 19511397A JP 3694821 B2 JP3694821 B2 JP 3694821B2
Authority
JP
Japan
Prior art keywords
armature
yoke portion
linear motor
armature coil
cooling plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19511397A
Other languages
Japanese (ja)
Other versions
JPH1127927A (en
Inventor
健一 青木
恭祐 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP19511397A priority Critical patent/JP3694821B2/en
Publication of JPH1127927A publication Critical patent/JPH1127927A/en
Application granted granted Critical
Publication of JP3694821B2 publication Critical patent/JP3694821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、工作機械のテーブルの駆動用等に用いられるリニアモータに関する。
【0002】
【従来の技術】
従来、テーブルの駆動用等に用いられるリニアモータは、例えば図6に示すように構成されているものが開示されている(例えば、特開平5−49230号公報)。
すなわち、固定部10は、断面がU字形で所定の長さを有する磁性体からなるヨーク部20と、ヨーク部20の両脚部210、220の内側面210a,220aに取り付けられて、界磁を構成する永久磁石30と、ヨーク部20の両脚部210、220の上面に長手方向に伸びるガイドレール40とから構成されている。
可動部50は、ガイドレール40の上に長手方向に沿って移動し得るように軸受部510によって支持されたテーブル520と、テーブル520の下面に取り付けられた電機子部60とで構成されている。
電機子部60は、ヨーク部20の両脚部210と220の間の空間に配置され、かつ両方の永久磁石30に対して空隙を介して対向するた積層鋼板からなる電機子鉄心610と、電機子鉄心610に巻回した電機子コイル620によって構成されている。
【0003】
【発明が解決しようとする課題】
ところが、上記従来技術では、熱発生源である電機子コイル540を巻回した電機子鉄心530が直接テーブル520に取り付けられているため、電機子コイル540で発生した熱がテーブル520に伝わり易く、半導体製造設備などの熱影響によるテーブルの位置決め精度の誤差が問題となる設備では使用が難しいという問題があった。
本発明は、電機子コイルからテーブルに伝達する熱を少なくして、高精度のリニアモータを提供することを目的とする。
【0004】
【課題を解決するための手段】
上記課題を解決するため、本発明は、平板状のヨーク部と、前記ヨーク部の長手方向に交互に異極が現れるように配置した複数の永久磁石と、前記永久磁石に空隙を介して対向する複数の電機子鉄心に電機子コイルを巻回して形成した電機子部と、前記電機子部に取り付けたテーブルとを備えたリニアモータにおいて、前記テーブルの前記電機子コイルに対向する面に設けた冷媒を通す冷媒導管と、前記電機子コイルの各側面に近接して設けた複数のフィン部と前記冷媒導管に接触させたベース部とからなる熱伝導率の高い金属材料からなる冷却板とを備えたものである。
また、前記冷却板は、前記ベース部が前記複数のフィン部毎に分割してあるものである。
また、前記ヨーク部はU字状に形成され、前記永久磁石は前記ヨーク部の両脚部の内側に対向するように固定されたものである。
また、前記ヨーク部は長方形に形成され、前記永久磁石は前記ヨーク部の両側面に背中合わせに固定されたものである。
【0005】
【発明の実施の形態】
以下、本発明の第1の実施例を図に基づいて説明する。
図1は本発明の実施例を示す正断面図、図2はA−A断面に沿う側断面図、図3は平断面図である。
図において、1は固定部で、断面がU字形で磁性体からなるヨーク部2と、ヨーク部2の両脚部21、22の内側面211,221に取り付けられて、界磁を構成する永久磁石3(3a,3b)と、ヨーク部2の両脚部21、22上面に長手方向に伸びるガイドレール4とから構成されている。
5は可動部で、ガイドレール4の上に長手方向に沿って移動し得るように軸受部51によって支持されたテーブル52と、ヨーク部2の脚部21と22の間の空間に配置されて、テーブル52の下面にボルト53によって取り付けられた電機子部6とから構成されている。
電機子部6は、図2および図3に示すように、永久磁石3に空隙を介して対向する電機子鉄心61と、電機子鉄心61に巻回した電機子コイル62(62a,62b)からなる単位電機子6Xを複数個、ガイドレール4の長手方向に沿って伸びるように係合して形成してある。
【0006】
電機子鉄心61は、図3に示すように、長方形の積層鋼板の一方の側面に凹部611を、反対側の側面に凸部612を設け、両方の先端よりの両側面にコイル装入溝613a,613bを設けて積層してある。
電機子コイル62aは電機子鉄心61の一方の先端側のコイル装入溝613aに巻回し、電機子コイル62bは他方の先端側のコイル装入溝613bに巻回してある。
すなわち、電機子鉄心61は、一方の単位電機子6Xの凹部611と他方の単位電機子6Xの凸部612を係合させて、順次複数の単位電機子6Xを一体に形成したものである。
【0007】
54はテーブル52の電機子コイル62a,62bに対向する面にガイドレール4の長手方向に沿って伸びる冷却用溝、7は冷却用溝54の中に装着した冷媒導管で、両端に開口部71を設け、一方の開口部71にはテーブル52の端部に設けたブラケット55の冷媒の供給口551に、他方の開口部はブラケット56の冷媒の排出口561に接続するようにしてある。
8は熱伝導率の高い金属材料である銅製またはアルミ合金性の冷却板で、電機子部6の各電機子コイル62の側面に近接し、隣接する電機子コイル62の間に挿入されたフィン部81と、電機子コイル62と冷媒導管7との間に挿入されたベース部82とからなり、ベース部82は冷媒導管7に接触して固定されている。また、冷却板8と電機子コイル62とはモールド樹脂9によって一体に形成してある。
このような構成により、電機子コイル62から発生した熱は、冷却板8を通り、冷媒導管7に伝達され、冷媒導管7内を流れる冷媒によって外部に排出される。したがって、テーブル52には熱が伝わりにくく、テーブル52の温度上昇は少なくなる。
【0008】
次に、本発明の第2の実施例について説明する。
図4は本発明の第2の実施例を示す側断面図である。
上記第1の実施例では冷却板8のベース部82が各フィン部82と一体になっていたが、この場合、冷却板8のベース部82がフィン部81毎に分割されている。
したがって、電機子鉄心61と電機子コイル62をモール度樹脂9によってモールド成形した後に冷却板8を挿入するときに、挿入作業が容易となる。
なお、このときは、モールド成形のとき、治具等により冷却板8を挿入する挿入穴を形成しておく。
【0009】
次に本発明の第3の実施例について説明する。
図5は本発明の第3の実施例を示す正断面図である。
この場合、永久磁石3a,3bを一つの長方形のヨーク部2の両側面に背中合わせに取り付け、電機子鉄心61を61aと61bに分割して、それぞれ永久磁石3aと3bに空隙を介して対向するようにテーブル52に固定し、電機子鉄心61a,61bにはそれぞれ電機子コイル62a,62bを巻回したものである。
なお、冷却板8の構成と冷媒導管7の構成は上記第1の実施例および第2の実施例と同様にしてある。
したがって、電機子コイル62から発生した熱は、冷却板8を通り、冷媒導管7に伝達され、冷媒導管7内を流れる冷媒によって外部に排出され、テーブル52の温度上昇は少なくなる。
また、二つの永久磁石3a,3bと電機子鉄心61a,61bに作用する吸引力は、一つのヨーク部2に対して反対方向に働く、すなわち、ヨーク部2に互いに相殺する方向に働くので、ヨーク部2の剛性が低くても変形したりすることはない。
【0010】
【発明の効果】
以上述べたように、本発明によれば、テーブルに冷媒を通す冷媒導管と、電機子コイルの側面に近接して設けたフィン部と冷媒導管に接触させたベース部とからなる熱伝導率の高い冷却板を設けてあるので、電機子コイルから発生する熱は冷却板を通り、冷媒導管を流れる冷媒によって外部に排出される。
したがって、テーブル52には熱が伝わりにくく、テーブル52の温度上昇は少なくなり、熱影響によるテーブルの位置決め精度の誤差を小さく抑えることができ、高精度のリニアモータを提供できる効果がある。
【図面の簡単な説明】
【図1】 本発明の第1の実施例を示す正断面図である。
【図2】 本発明の第1の実施例を示す側断面図である。
【図3】 本発明の第1の実施例を示す平断面図である。
【図4】 本発明の第2の実施例を示す側断面図である。
【図5】 本発明の第3の実施例を示す正断面図である。
【図6】 従来例を示す正断面図である。
【符号の説明】
1:固定部、2:ヨーク部、21、22:脚部、211:221:内側面、3、3a,3b:永久磁石、4:ガイドレール、5:可動部、51:軸受部、52:テーブル、53:ボルト、54:冷却用溝、55、56:ブラケット、551:供給口、561:排出口、6:電機子部、61、61a,61b:電機子鉄心、611:凹部、612:凸部、62,62a,62b:電機子コイル、63a,63b:コイル装入溝、7:冷媒導管、71:開口部、8:冷却板、81:フィン部、82:ベース部、9:モールド樹脂
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a linear motor used for driving a table of a machine tool.
[0002]
[Prior art]
Conventionally, a linear motor used for driving a table or the like has been disclosed, for example, as shown in FIG. 6 (for example, JP-A-5-49230).
That is, the fixed portion 10 is attached to the yoke portion 20 made of a magnetic body having a U-shaped cross section and a predetermined length, and to the inner side surfaces 210a and 220a of the both leg portions 210 and 220 of the yoke portion 20 so as to The permanent magnet 30 comprises a guide rail 40 extending in the longitudinal direction on the upper surfaces of both leg portions 210 and 220 of the yoke portion 20.
The movable portion 50 includes a table 520 supported by a bearing portion 510 so as to move along the longitudinal direction on the guide rail 40, and an armature portion 60 attached to the lower surface of the table 520. .
The armature part 60 is disposed in a space between the leg parts 210 and 220 of the yoke part 20 and is composed of an armature core 610 made of a laminated steel plate facing the permanent magnets 30 via a gap, The armature coil 620 is wound around the core 610.
[0003]
[Problems to be solved by the invention]
However, in the above prior art, since the armature core 530 around which the armature coil 540 that is a heat generation source is wound is directly attached to the table 520, the heat generated by the armature coil 540 is easily transmitted to the table 520, There has been a problem that it is difficult to use in equipment in which the error in positioning accuracy of the table due to the influence of heat, such as semiconductor manufacturing equipment, is a problem.
An object of the present invention is to provide a highly accurate linear motor by reducing heat transmitted from an armature coil to a table.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is directed to a flat yoke portion, a plurality of permanent magnets arranged so that different polarities appear alternately in the longitudinal direction of the yoke portion, and the permanent magnets facing each other through a gap. In a linear motor comprising an armature part formed by winding an armature coil around a plurality of armature cores and a table attached to the armature part, the linear motor is provided on a surface of the table facing the armature coil. A cooling plate made of a metal material having high thermal conductivity, comprising a refrigerant conduit through which the refrigerant passes, a plurality of fin portions provided close to each side surface of the armature coil, and a base portion in contact with the refrigerant conduit; It is equipped with.
Moreover, the said cooling plate has the said base part divided | segmented for every said several fin part.
Further, the yoke portion is formed in a U-shape, and the permanent magnet is fixed so as to face the inner sides of both leg portions of the yoke portion.
The yoke portion is formed in a rectangular shape, and the permanent magnet is fixed back to back on both side surfaces of the yoke portion.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
1 is a front sectional view showing an embodiment of the present invention, FIG. 2 is a side sectional view taken along the line AA, and FIG. 3 is a plan sectional view.
In the figure, reference numeral 1 denotes a fixed portion, a U-shaped cross section of a yoke portion 2 made of a magnetic material, and permanent magnets that are attached to the inner side surfaces 211 and 221 of both leg portions 21 and 22 of the yoke portion 2 to constitute a field magnet. 3 (3a, 3b) and guide rails 4 extending in the longitudinal direction on the upper surfaces of both leg portions 21, 22 of the yoke portion 2.
Reference numeral 5 denotes a movable portion, which is disposed in a space between the table 52 supported by the bearing portion 51 so as to move along the longitudinal direction on the guide rail 4 and the leg portions 21 and 22 of the yoke portion 2. The armature portion 6 is attached to the lower surface of the table 52 with bolts 53.
As shown in FIGS. 2 and 3, the armature portion 6 includes an armature core 61 that faces the permanent magnet 3 via a gap, and an armature coil 62 (62 a, 62 b) wound around the armature core 61. A plurality of unit armatures 6 </ b> X are engaged and formed so as to extend along the longitudinal direction of the guide rail 4.
[0006]
As shown in FIG. 3, the armature core 61 is provided with a recess 611 on one side surface of a rectangular laminated steel sheet and a projection 612 on the opposite side surface, and coil insertion grooves 613a on both side surfaces from both ends. , 613b are stacked.
The armature coil 62a is wound around the coil insertion groove 613a on one end side of the armature core 61, and the armature coil 62b is wound around the coil insertion groove 613b on the other end side.
That is, the armature core 61 is formed by sequentially integrating a plurality of unit armatures 6X by engaging a concave portion 611 of one unit armature 6X and a convex portion 612 of the other unit armature 6X.
[0007]
54 is a cooling groove extending along the longitudinal direction of the guide rail 4 on the surface of the table 52 facing the armature coils 62a and 62b, and 7 is a refrigerant conduit mounted in the cooling groove 54, with openings 71 at both ends. One opening 71 is connected to the refrigerant supply port 551 of the bracket 55 provided at the end of the table 52, and the other opening is connected to the refrigerant discharge port 561 of the bracket 56.
8 is a cooling plate made of copper or aluminum alloy, which is a metal material having high thermal conductivity, and is close to the side surface of each armature coil 62 of the armature portion 6 and is inserted between adjacent armature coils 62. And a base portion 82 inserted between the armature coil 62 and the refrigerant conduit 7. The base portion 82 is fixed in contact with the refrigerant conduit 7. Further, the cooling plate 8 and the armature coil 62 are integrally formed of the mold resin 9.
With such a configuration, the heat generated from the armature coil 62 passes through the cooling plate 8, is transmitted to the refrigerant conduit 7, and is discharged to the outside by the refrigerant flowing in the refrigerant conduit 7. Therefore, heat is not easily transmitted to the table 52, and the temperature rise of the table 52 is reduced.
[0008]
Next, a second embodiment of the present invention will be described.
FIG. 4 is a side sectional view showing a second embodiment of the present invention.
In the first embodiment, the base portion 82 of the cooling plate 8 is integrated with each fin portion 82. In this case, the base portion 82 of the cooling plate 8 is divided for each fin portion 81.
Therefore, when the cooling plate 8 is inserted after the armature core 61 and the armature coil 62 are molded with the molding resin 9, the insertion operation is facilitated.
In this case, an insertion hole for inserting the cooling plate 8 is formed by a jig or the like at the time of molding.
[0009]
Next, a third embodiment of the present invention will be described.
FIG. 5 is a front sectional view showing a third embodiment of the present invention.
In this case, the permanent magnets 3a and 3b are attached back to back on both side surfaces of one rectangular yoke portion 2, and the armature core 61 is divided into 61a and 61b, which are opposed to the permanent magnets 3a and 3b through a gap, respectively. The armature coils 61a and 61b are wound around the armature cores 61a and 61b, respectively.
The configuration of the cooling plate 8 and the configuration of the refrigerant conduit 7 are the same as those in the first and second embodiments.
Therefore, the heat generated from the armature coil 62 is transmitted to the refrigerant conduit 7 through the cooling plate 8 and discharged to the outside by the refrigerant flowing in the refrigerant conduit 7, and the temperature rise of the table 52 is reduced.
Also, the attractive force acting on the two permanent magnets 3a, 3b and the armature cores 61a, 61b works in the opposite direction with respect to one yoke part 2, that is, works in the direction of canceling each other on the yoke part 2. Even if the rigidity of the yoke portion 2 is low, it does not deform.
[0010]
【The invention's effect】
As described above, according to the present invention, the thermal conductivity of the refrigerant conduit that passes the refrigerant through the table, the fin portion provided close to the side surface of the armature coil, and the base portion that is in contact with the refrigerant conduit. Since the high cooling plate is provided, the heat generated from the armature coil passes through the cooling plate and is discharged to the outside by the refrigerant flowing through the refrigerant conduit.
Therefore, it is difficult for heat to be transmitted to the table 52, the temperature rise of the table 52 is reduced, the error in the positioning accuracy of the table due to the heat effect can be suppressed small, and there is an effect that a highly accurate linear motor can be provided.
[Brief description of the drawings]
FIG. 1 is a front sectional view showing a first embodiment of the present invention.
FIG. 2 is a side sectional view showing a first embodiment of the present invention.
FIG. 3 is a cross-sectional plan view showing a first embodiment of the present invention.
FIG. 4 is a side sectional view showing a second embodiment of the present invention.
FIG. 5 is a front sectional view showing a third embodiment of the present invention.
FIG. 6 is a front sectional view showing a conventional example.
[Explanation of symbols]
1: fixed portion, 2: yoke portion, 21, 22: leg portion, 211: 221: inner surface, 3, 3a, 3b: permanent magnet, 4: guide rail, 5: movable portion, 51: bearing portion, 52: Table, 53: Bolt, 54: Cooling groove, 55, 56: Bracket, 551: Supply port, 561: Discharge port, 6: Armature part, 61, 61a, 61b: Armature core, 611: Recess, 612: Convex part, 62, 62a, 62b: Armature coil, 63a, 63b: Coil insertion groove, 7: Refrigerant conduit, 71: Opening part, 8: Cooling plate, 81: Fin part, 82: Base part, 9: Mold resin

Claims (4)

平板状のヨーク部と、前記ヨーク部の長手方向に交互に異極が現れるように配置した複数の永久磁石と、前記永久磁石に空隙を介して対向する複数の電機子鉄心に電機子コイルを巻回して形成した電機子部と、前記電機子部に取り付けたテーブルとを備えたリニアモータにおいて、
前記テーブルの前記電機子コイルに対向する面に設けた冷媒を通す冷媒導管と、前記電機子コイルの各側面に近接して設けた複数のフィン部と前記冷媒導管に接触させたベース部とからなる熱伝導率の高い金属材料からなる冷却板とを備えたことを特徴とするリニアモータ。
A plate-shaped yoke portion, a plurality of permanent magnets arranged so that different polarities appear alternately in the longitudinal direction of the yoke portion, and an armature coil on a plurality of armature cores facing the permanent magnet via a gap In a linear motor comprising an armature part formed by winding and a table attached to the armature part,
A refrigerant conduit for passing a refrigerant provided on a surface of the table facing the armature coil, a plurality of fin portions provided in proximity to each side surface of the armature coil, and a base portion in contact with the refrigerant conduit. And a cooling plate made of a metal material having high thermal conductivity.
前記冷却板は、前記ベース部が前記複数のフィン部毎に分割してあることを特徴とする請求項1記載のリニアモータ。The linear motor according to claim 1, wherein the cooling plate has the base portion divided into the plurality of fin portions. 前記ヨーク部はU字状に形成され、前記永久磁石は前記ヨーク部の両脚部の内側に対向するように固定されたことを特徴とする請求項1または2記載のリニアモータ。3. The linear motor according to claim 1, wherein the yoke portion is formed in a U-shape, and the permanent magnet is fixed so as to oppose the inner sides of both leg portions of the yoke portion. 前記ヨーク部は長方形に形成され、前記永久磁石は前記ヨーク部の両側面に背中合わせに固定されたことを特徴とする請求項1または2記載のリニアモータ。The linear motor according to claim 1, wherein the yoke portion is formed in a rectangular shape, and the permanent magnets are fixed back to back on both side surfaces of the yoke portion.
JP19511397A 1997-07-04 1997-07-04 Linear motor Expired - Fee Related JP3694821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19511397A JP3694821B2 (en) 1997-07-04 1997-07-04 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19511397A JP3694821B2 (en) 1997-07-04 1997-07-04 Linear motor

Publications (2)

Publication Number Publication Date
JPH1127927A JPH1127927A (en) 1999-01-29
JP3694821B2 true JP3694821B2 (en) 2005-09-14

Family

ID=16335718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19511397A Expired - Fee Related JP3694821B2 (en) 1997-07-04 1997-07-04 Linear motor

Country Status (1)

Country Link
JP (1) JP3694821B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002034231A (en) * 2000-07-19 2002-01-31 Yaskawa Electric Corp Linear slider
JP3891545B2 (en) * 2001-07-10 2007-03-14 キヤノン株式会社 Linear motor
JP2003047230A (en) * 2001-07-26 2003-02-14 Ricoh Microelectronics Co Ltd Drive apparatus employing linear motor and beam machining apparatus
KR100757671B1 (en) * 2006-02-03 2007-09-10 창원대학교 산학협력단 Cooling Plate with Symmetrical Arrangement of Cooling Pipe for Linear Motors
JP2008220003A (en) * 2007-03-01 2008-09-18 Mitsubishi Electric Corp Linear motor
JP5575678B2 (en) * 2011-02-08 2014-08-20 住友重機械工業株式会社 Stage device and cooling unit
JP5908819B2 (en) * 2012-09-19 2016-04-26 オークマ株式会社 Linear motor
JP2016059117A (en) * 2014-09-08 2016-04-21 住友重機械工業株式会社 Armature for linear motor
WO2016189706A1 (en) 2015-05-27 2016-12-01 三菱電機株式会社 Electric motor

Also Published As

Publication number Publication date
JPH1127927A (en) 1999-01-29

Similar Documents

Publication Publication Date Title
TWI338431B (en)
US20040032170A1 (en) Linear motor
JP3694821B2 (en) Linear motor
US8664808B2 (en) Linear motor coil assembly with cooling device
JP4277337B2 (en) Linear motor and table feeder using the same
US6657327B2 (en) Linear direct current motor
CN110476340B (en) Linear motor
KR100786674B1 (en) Moving magnet type linear actuator
JP3478084B2 (en) Linear motor
JP2003209963A (en) Linear motor
JP2000217334A5 (en) Linear motor and table feed device using it
JP3856057B2 (en) Linear motor
JP3539493B2 (en) Canned linear motor armature and canned linear motor
JP3878939B2 (en) Air-cooled coil unit of linear motor
JPH10257750A (en) Linear motor
WO2004088827A1 (en) Cooling structure for linear motor
JP3856134B2 (en) Linear slider
JP3750793B2 (en) Linear motor
JP3539140B2 (en) Machine tool table feeder
JP3838813B2 (en) Linear actuator
JP4048557B2 (en) Linear motor cooling system
JP3818342B2 (en) Linear motor
JP2585818Y2 (en) Stator for canned linear motor
JP2001224159A (en) Linear slider
JP3786150B2 (en) Linear motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees