JP2003209963A - Linear motor - Google Patents

Linear motor

Info

Publication number
JP2003209963A
JP2003209963A JP2002003461A JP2002003461A JP2003209963A JP 2003209963 A JP2003209963 A JP 2003209963A JP 2002003461 A JP2002003461 A JP 2002003461A JP 2002003461 A JP2002003461 A JP 2002003461A JP 2003209963 A JP2003209963 A JP 2003209963A
Authority
JP
Japan
Prior art keywords
magnetic pole
main magnetic
pole
width
traveling direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002003461A
Other languages
Japanese (ja)
Other versions
JP3916048B2 (en
Inventor
Kuniyoshi Nakahara
久仁義 中原
Toru Shikayama
透 鹿山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2002003461A priority Critical patent/JP3916048B2/en
Publication of JP2003209963A publication Critical patent/JP2003209963A/en
Application granted granted Critical
Publication of JP3916048B2 publication Critical patent/JP3916048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Linear Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a linear motor with high accuracy capable of minimizing the occurrence of thrust fluctuation without the risk of deteriorating magnetic field efficiency caused by the influence of end effects at both ends of a york. <P>SOLUTION: In a linear motor equipped with a field magnet pole 2 having a Halbach array structure provided on a york 1 and an armature 4 having an armature winding 3 disposed opposed to the field magnet pole 2 through a magnetic space, the width Wc in the advancing direction of a first main magnetic pole 2C disposed at each of both ends of the york 1 is made narrower than the width Wa in the advancing direction of a second main magnetic pole 2A disposed at each position other than both the ends of the york 1. The width Wd in the advancing direction of the first sub-magnetic pole 2D disposed adjacent to the first main magnetic pole 2C is made wider than the width Wb in the advancing direction of the second sub-magnetic pole 2D disposed opposed to the first sub-magnetic pole 2D of the second main magnetic pole 2A. When taking the distance between centers of the second main magnetic poles 2A as a pole pitch P and the distance between centers of the first main magnetic pole 2C and second main magnetic poles 2A as P', the relation between P an P' is shown as P'=1.03×P. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造装置や
工作機械などのFA機器に使用されると共に、特にハル
バッハ配列構造の界磁極を有するリニアモータに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear motor used in FA equipment such as semiconductor manufacturing equipment and machine tools, and particularly having a field pole having a Halbach array structure.

【0002】[0002]

【従来の技術】従来、半導体製造装置あるいは工作機械
などのFA機器においては、送りや加工の高速化・高精
度化を達成できるよう、界磁極を構成する永久磁石と当
該永久磁石の磁極面に磁気的空隙を介して対向した電機
子巻線を配置する電機子を備えたリニアモータの利用が
図られている。図3は従来のリニアモータの平断面図で
ある。図3において、1はヨークであり、互いに平行さ
せた強磁性体よりなる2個一対のもので構成されてい
る。2は界磁極であり、ヨーク1上の進行方向に沿って
隣接し、磁極の向きが異なる主磁極2Eと副磁極2Fで
構成された永久磁石からなるハルバッハ配列構造を有し
ている。3は界磁極2と磁気的空隙を介して対向するよ
うに配置した電機子巻線、4は電機子巻線3を備えた電
機子であって、界磁極2の長手方向に対して相対移動す
るものである。ここで、界磁極2においては、副磁極2
Fの進行方向の幅と主磁極2Eの進行方向の幅の比を、
0.75〜0.8としている。このような構成におい
て、リニアモータは電機子4を固定子に、界磁極2を相
対移動する可動子として、界磁極2を直線移動するよう
になっている。
2. Description of the Related Art Conventionally, in FA equipment such as semiconductor manufacturing equipment or machine tools, a permanent magnet forming a field pole and a magnetic pole surface of the permanent magnet are provided so as to achieve high-speed and high-accuracy feeding and machining. The use of linear motors with armatures in which the armature windings are arranged facing each other with a magnetic gap in between is being sought. FIG. 3 is a plan sectional view of a conventional linear motor. In FIG. 3, reference numeral 1 denotes a yoke, which is made up of a pair of two parallel ferromagnetic materials. Reference numeral 2 denotes a field pole, which has a Halbach array structure composed of permanent magnets that are adjacent to each other along the traveling direction on the yoke 1 and that are composed of a main magnetic pole 2E and an auxiliary magnetic pole 2F having different magnetic pole directions. Reference numeral 3 denotes an armature winding arranged so as to face the field pole 2 with a magnetic gap therebetween, and 4 denotes an armature provided with the armature winding 3, which is movable relative to the longitudinal direction of the field pole 2. To do. Here, in the field pole 2, the sub pole 2
The ratio of the width in the traveling direction of F to the width in the traveling direction of the main magnetic pole 2E is
It is set to 0.75 to 0.8. In such a configuration, the linear motor moves the field pole 2 linearly by using the armature 4 as a stator and the field pole 2 as a mover that relatively moves.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来技術で
は、ヨーク1の中心部に位置する主磁極2Eと副磁極2
Fの磁石幅の寸法比と,ヨーク1端に位置する主磁極2
Eと副磁極2Fの磁石幅の寸法比は同じであるため、ヨ
ーク1の両端部において、端効果のために磁路がヨーク
1の中心部と異なることとなり、磁界効率が悪化するた
め、推力の変動が発生する問題があった。その結果、リ
ニアモータを組み込んだ工作機械や半導体装置などにお
いては制御性能を劣化させる原因となっていた。本発明
は、上記課題を解決するためになされたものであり、ヨ
ークの両端部における端効果の影響により磁界効率が悪
化することなく、推力の変動の発生を極力低減できる高
精度なリニアモータを提供することを目的とする。
However, in the prior art, the main magnetic pole 2E and the auxiliary magnetic pole 2 located at the center of the yoke 1 are used.
The dimensional ratio of the magnet width of F and the main pole 2 located at the end of the yoke 1
Since the dimensional ratio of the magnet widths of E and the auxiliary magnetic pole 2F is the same, the magnetic path at both ends of the yoke 1 is different from the central part of the yoke 1 due to the end effect, and the magnetic field efficiency deteriorates. There was a problem that fluctuations occurred. As a result, control performance has deteriorated in machine tools and semiconductor devices incorporating a linear motor. The present invention has been made to solve the above problems, and a highly accurate linear motor capable of reducing the occurrence of thrust fluctuations as much as possible without deteriorating the magnetic field efficiency due to the effect of the end effect at both ends of the yoke. The purpose is to provide.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するた
め、請求項1の本発明は、互いに平行させた強磁性体で
構成してなる2個一対のヨークと、前記ヨーク上の進行
方向に沿って、磁極の向きが異なる主磁極と副磁極とか
ら構成されるハルバッハ配列構造を有する界磁極と、前
記界磁極と磁気的空隙を介して対向するように配置した
電機子巻線を有する電機子とを備え、前記界磁極と前記
電機子との何れか一方を相対移動する可動子に、他方を
固定子とするリニアモータにおいて、前記主磁極は、前
記ヨークの両端位置に配設した第1主磁極の進行方向の
幅Wcが、前記ヨークの両端を除く内側の位置に設けた
第2主磁極の進行方向の幅Waより狭くなるように形成
してあり、前記副磁極は、前記第1主磁極と隣り合わせ
に配置した第1副磁極の進行方向の幅Wdが、前記第2
主磁極の第1副磁極と反対側に配置した第2副磁極の進
行方向の幅Wbより広くなるように形成してあり、前記
第2主磁極同志の中心間の距離を極ピッチPとし、前記
第1主磁極と前記第2主磁極の中心間の距離をP’とす
るとき、P’=1.03×Pの関係を有したものであ
る。請求項2の本発明は、請求項1記載のリニアモータ
において、前記主磁極の極数が偶数である時、前記第1
主磁極の進行方向の幅を、前記第2主磁極の進行方向の
幅の0.45〜0.55としたものである。請求項3の
本発明は、請求項1記載のリニアモータにおいて、前記
主磁極の極数が奇数である時、前記第1主磁極の進行方
向の幅を、第2主磁極の進行方向の幅の0.75〜0.
85としたものである。
In order to solve the above-mentioned problems, the present invention according to claim 1 provides a pair of two yokes made of ferromagnetic materials parallel to each other and a moving direction on the yoke. An electric machine having a field pole having a Halbach array structure composed of a main pole and a sub pole having different magnetic pole directions, and an armature winding arranged to face the field pole via a magnetic gap. A linear motor having a child and a movable element that relatively moves one of the field pole and the armature, and the other as a stator, wherein the main magnetic pole is disposed at both ends of the yoke. The width Wc of the first main magnetic pole in the traveling direction is formed to be narrower than the width Wa of the second main magnetic pole provided at the inner position except both ends of the yoke in the traveling direction. 1st sub-magnet arranged next to 1 main pole Width Wd of the traveling direction of the second
It is formed so as to be wider than the width Wb in the traveling direction of the second auxiliary magnetic pole arranged on the side opposite to the first auxiliary magnetic pole of the main magnetic pole, and the distance between the centers of the second main magnetic poles is a pole pitch P, When the distance between the centers of the first main magnetic pole and the second main magnetic pole is P ′, there is a relation of P ′ = 1.03 × P. According to a second aspect of the present invention, in the linear motor according to the first aspect, when the number of poles of the main magnetic pole is an even number, the first
The width of the main magnetic pole in the advancing direction is 0.45 to 0.55 of the width of the second main magnetic pole in the advancing direction. According to a third aspect of the present invention, in the linear motor according to the first aspect, when the number of poles of the main magnetic pole is an odd number, the width of the first main magnetic pole in the traveling direction is set to the width of the second main magnetic pole in the traveling direction. 0.75 to 0.
It is set to 85.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施例を図に基づ
いて説明する。図1は本発明の実施例を示すリニアモー
タの平断面図である。なお、本発明の構成要素が従来技
術と同じものについてはその説明を省略し、異なる点の
み説明する。図において、2Cは第1主磁極、2Dは第
1副磁極、2Aは第2主磁極、2Bは第2副磁極であ
る。本発明の特徴は以下のとおりである。すなわち、界
磁極を構成する一方の主磁極は、ヨーク1の両端位置に
配設した第1主磁極2Cの進行方向の幅Wcが、ヨーク
1の両端を除く位置に設けた第2主磁極2Aの進行方向
の幅Waより狭くなるように形成してあり、他方の副磁
極は、第1主磁極2Cと隣り合わせに配置した第1副磁
極2Dの進行方向の幅Wdが、第2主磁極2Aの第1副
磁極2Dと反対側に配置した第2副磁極2Bの進行方向
の幅Wbより広くなるように形成してあり、第2主磁極
2A同志の中心間の距離を極ピッチPとし、第1主磁極
2Cと第2主磁極2Aの中心間の距離をP’とすると
き、P’=1.03×Pの関係を有した点である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a plan sectional view of a linear motor showing an embodiment of the present invention. It should be noted that description of the components of the present invention that are the same as those of the prior art will be omitted, and only different points will be described. In the figure, 2C is a first main magnetic pole, 2D is a first auxiliary magnetic pole, 2A is a second main magnetic pole, and 2B is a second auxiliary magnetic pole. The features of the present invention are as follows. That is, in one main magnetic pole forming the field pole, the width Wc of the first main magnetic pole 2C arranged at both ends of the yoke 1 in the traveling direction is the second main magnetic pole 2A provided at a position excluding both ends of the yoke 1. The width Wd of the second auxiliary magnetic pole 2A is smaller than the width Wa of the auxiliary auxiliary magnetic pole 2D in the moving direction of the first auxiliary magnetic pole 2D arranged adjacent to the first main magnetic pole 2C. Is formed so as to be wider than the width Wb in the traveling direction of the second auxiliary magnetic pole 2B arranged on the side opposite to the first auxiliary magnetic pole 2D, and the distance between the centers of the second main magnetic poles 2A is the pole pitch P, When the distance between the centers of the first main magnetic pole 2C and the second main magnetic pole 2A is P ′, the relationship is P ′ = 1.03 × P.

【0006】次に、本実施例に係るリニアモータの有限
要素法による磁界解析結果について説明する。図2は本
実施例におけるリニアモータの磁束分布を示す模式図で
ある。図では便宜上、リニアモータの進行方向に沿った
軸に対して2分の1にカットしたモデルとなっている。
従来に比べて、第1主磁極2Cの幅Wcを第2主磁極2
Aの幅Waより狭くし、第1副磁極2Dの幅Wdを、第
2副磁極2Bの幅Wbより広くすると共に、第1主磁極
2Cと第2主磁極2Aの中心間の距離を上式のように限
定すると、図2に示すようにヨーク1の両端部とヨーク
1の進行方向における中心位置での磁束の流れがほぼ同
じになり、リニアモータのストロークにおいて推力変動
がなくなる。
Next, the magnetic field analysis result of the linear motor according to this embodiment by the finite element method will be described. FIG. 2 is a schematic diagram showing the magnetic flux distribution of the linear motor in this embodiment. In the figure, for convenience, the model is cut in half with respect to the axis along the traveling direction of the linear motor.
Compared with the conventional one, the width Wc of the first main magnetic pole 2C is set to the second main magnetic pole 2C.
The width Wd of the first auxiliary magnetic pole 2D is made narrower than the width Wa of A, and the width Wd of the first auxiliary magnetic pole 2D is made wider than the width Wb of the second auxiliary magnetic pole 2B, and the distance between the centers of the first main magnetic pole 2C and the second main magnetic pole 2A is expressed by the above formula. With such a limitation, as shown in FIG. 2, the flow of the magnetic flux becomes substantially the same at both ends of the yoke 1 and the center position in the traveling direction of the yoke 1, so that there is no thrust fluctuation in the stroke of the linear motor.

【0007】したがって、本実施例は、界磁極を構成す
る一方の主磁極として、ヨーク1の両端位置に配設した
第1主磁極2Cの進行方向の幅Wcが、ヨーク1の両端
を除く位置に設けた第2主磁極2Aの進行方向の幅Wa
より狭くなるように形成し、また、他方の副磁極とし
て、第1主磁極2Cと隣り合わせに配置した第1副磁極
2Dの進行方向の幅Wdが、第2主磁極2Aの第1副磁
極2Dと反対側に配置した第2副磁極2Bの進行方向の
幅Wbより広くなるように形成し、さらに第2主磁極2
A同志の中心間の距離を極ピッチPとし、第1主磁極2
Cと第2主磁極2Aの中心間の距離をP’とするとき、
P’=1.03×Pの関係を有した構成にしたので、ヨ
ーク両端部における磁束の流れとヨーク中央部における
磁束の流れがほぼ一様となり、ヨーク1の両端部におけ
る端効果の影響により磁界効率が悪化することなく、推
力の変動の発生を極力低減することが可動で高精度なリ
ニアモータを提供することができる。そして、リニアモ
ータの推力の変動を抑制できることから、リニアモータ
を組み込んだ工作機械や半導体装置などにおいては制御
性を向上することができる。
Therefore, in this embodiment, the width Wc in the traveling direction of the first main magnetic poles 2C disposed at both end positions of the yoke 1 as one main magnetic pole constituting the field magnetic pole is at a position excluding both ends of the yoke 1. Width Wa of the second main magnetic pole 2A provided in
The width Wd in the traveling direction of the first auxiliary magnetic pole 2D, which is formed so as to be narrower and is arranged next to the first main magnetic pole 2C as the other auxiliary magnetic pole, has the first auxiliary magnetic pole 2D of the second main magnetic pole 2A. Is formed to be wider than the width Wb in the traveling direction of the second auxiliary magnetic pole 2B disposed on the opposite side to the second main magnetic pole 2
The pole pitch P is the distance between the centers of the two comrades, and the first main pole 2
When the distance between C and the center of the second main magnetic pole 2A is P ′,
Since the structure having the relation of P ′ = 1.03 × P is provided, the flow of magnetic flux at both ends of the yoke and the flow of magnetic flux at the center of the yoke become substantially uniform, and due to the influence of the end effect at both ends of the yoke 1. It is possible to provide a movable and highly accurate linear motor that can minimize the occurrence of thrust fluctuations without deteriorating the magnetic field efficiency. Since the fluctuation of the thrust of the linear motor can be suppressed, the controllability can be improved in a machine tool or a semiconductor device in which the linear motor is incorporated.

【0008】なお、上記実施例において、リニアモータ
の推力変動を抑制するために、解析と実験により最適な
主磁極と副磁極の幅の検討を行った。例えば、上記実施
例で示した条件に加え、主磁極の極数を偶数としたとき
に、第1主磁極2Cの進行方向の幅を、第2主磁極2A
の進行方向の幅の0.45〜0.55とすると、リニア
モータの推力変動を従来比15%〜20%減少できるこ
とを確認した。また、主磁極の極数を奇数としたとき
に、第1主磁極2Cの進行方向の幅を、第2主磁極2A
の進行方向の幅の0.75〜0.85とすると、リニア
モータの推力変動を従来比120%〜30%減少できる
ことを確認した。これにより、リニアモータの推力変動
を一層抑制することができる。
In the above embodiment, the optimum widths of the main magnetic pole and the auxiliary magnetic pole were examined by analysis and experiments in order to suppress the thrust fluctuation of the linear motor. For example, in addition to the conditions shown in the above embodiment, when the number of poles of the main magnetic pole is an even number, the width of the first main magnetic pole 2C in the traveling direction is set to the second main magnetic pole 2A.
It was confirmed that when the width in the traveling direction is set to 0.45 to 0.55, the thrust variation of the linear motor can be reduced by 15% to 20% compared to the conventional case. When the number of main magnetic poles is an odd number, the width of the first main magnetic pole 2C in the traveling direction is set to the second main magnetic pole 2A.
It was confirmed that when the width in the traveling direction is set to 0.75 to 0.85, the thrust variation of the linear motor can be reduced by 120% to 30% compared to the conventional case. As a result, it is possible to further suppress the thrust force variation of the linear motor.

【0009】[0009]

【発明の効果】以上述べたように、本発明によれば、界
磁極を構成する一方の主磁極として、ヨークの両端位置
に配設した第1主磁極の進行方向の幅Wcが、ヨークの
両端を除く位置に設けた第2主磁極の進行方向の幅Wa
より狭くなるように形成し、また、他方の副磁極とし
て、第1主磁極と隣り合わせに配置した第1副磁極の進
行方向の幅Wdが、第2主磁極の第1副磁極と反対側に
配置した第2副磁極の進行方向の幅Wbより広くなるよ
うに形成し、さらに第2主磁極同志の中心間の距離を極
ピッチPとし、第1主磁極と第2主磁極の中心間の距離
をP’とするとき、P’=1.03×Pの関係を有した
構成にしたため、ヨーク両端部における磁束の流れとヨ
ーク中央部における磁束の流れがほぼ一様となり、ヨー
クの両端部における端効果の影響により磁界効率が悪化
することなく、推力の変動の発生を極力低減することが
可動で高精度なリニアモータを提供することができる。
そして、リニアモータの推力の変動を抑制できることか
ら、リニアモータを組み込んだ工作機械や半導体装置な
どにおいては制御性を向上することができる。
As described above, according to the present invention, the width Wc in the traveling direction of the first main magnetic poles arranged at both ends of the yoke as one main magnetic pole constituting the field magnetic pole is equal to that of the yoke. Width Wa in the traveling direction of the second main pole provided at a position excluding both ends
The width Wd in the traveling direction of the first auxiliary magnetic pole, which is formed so as to be narrower and is arranged next to the first main magnetic pole as the other auxiliary magnetic pole, is on the side opposite to the first auxiliary magnetic pole of the second main magnetic pole. It is formed so as to be wider than the width Wb of the arranged second auxiliary pole in the traveling direction, and the distance between the centers of the second main poles is the pole pitch P, and the distance between the centers of the first main pole and the second main pole is When the distance is P ′, the structure is such that P ′ = 1.03 × P, so that the flow of magnetic flux at both ends of the yoke and the flow of magnetic flux at the center of the yoke are substantially uniform, and both ends of the yoke are It is possible to provide a movable and highly accurate linear motor capable of reducing the occurrence of thrust fluctuations as much as possible without deteriorating the magnetic field efficiency due to the influence of the end effect in FIG.
Since the fluctuation of the thrust of the linear motor can be suppressed, the controllability can be improved in a machine tool or a semiconductor device in which the linear motor is incorporated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すリニアモータの平断面図
である。
FIG. 1 is a plan sectional view of a linear motor showing an embodiment of the present invention.

【図2】本実施例におけるリニアモータの磁束分布を示
す模式図である。
FIG. 2 is a schematic diagram showing a magnetic flux distribution of a linear motor in this embodiment.

【図3】従来技術を示すリニアモータの平断面図であ
る。
FIG. 3 is a plan sectional view of a linear motor showing a conventional technique.

【符号の説明】[Explanation of symbols]

1 ヨーク 2 界磁極 2A 第2主磁極 2B 第2副磁極 2C 第1主磁極 2D 第1副磁極 3 電機子巻線 4 電機子 1 York 2 field magnetic pole 2A Second main pole 2B Second auxiliary magnetic pole 2C 1st main pole 2D first auxiliary pole 3 armature winding 4 armature

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】互いに平行させた強磁性体で構成してなる
2個一対のヨーク(1)と、前記ヨーク(1)上の進行
方向に沿って、磁極の向きが異なる主磁極と副磁極とか
ら構成されるハルバッハ配列構造を有する界磁極(2)
と、前記界磁極(2)と磁気的空隙を介して対向するよ
うに配置した電機子巻線(3)を有する電機子(4)と
を備え、前記界磁極(2)と前記電機子(4)との何れ
か一方を相対移動する可動子に、他方を固定子とするリ
ニアモータにおいて、 前記主磁極は、前記ヨーク(1)の両端位置に配設した
第1主磁極(2C)の進行方向の幅Wcが、前記ヨーク
(1)の両端を除く内側の位置に設けた第2主磁極(2
A)の進行方向の幅Waより狭くなるように形成してあ
り、 前記副磁極は、前記第1主磁極(2C)と隣り合わせに
配置した第1副磁極(2D)の進行方向の幅Wdが、前
記第2主磁極(2A)の第1副磁極(2D)と反対側に
配置した第2副磁極(2B)の進行方向の幅Wbより広
くなるように形成してあり、 前記第2主磁極(2A)同志の中心間の距離を極ピッチ
Pとし、前記第1主磁極(2C)と前記第2主磁極(2
A)の中心間の距離をP’とするとき、P’=1.03
×Pの関係を有することを特徴とするリニアモータ。
1. A pair of two yokes (1) made of ferromagnetic materials parallel to each other, and a main magnetic pole and a sub magnetic pole having different magnetic poles along the traveling direction on the yoke (1). Field pole having Halbach array structure composed of (2)
And an armature (4) having an armature winding (3) arranged to face the field pole (2) via a magnetic gap, the field pole (2) and the armature ( 4) In a linear motor in which one of the two is relative to a mover and the other is a stator, the main magnetic poles of the first main magnetic pole (2C) arranged at both ends of the yoke (1). A width Wc in the traveling direction is provided at a position inside the yoke (1) excluding both ends of the yoke (1).
A) is formed so as to be narrower than the width Wa in the traveling direction of A), and the auxiliary magnetic pole has a width Wd in the traveling direction of the first auxiliary magnetic pole (2D) arranged adjacent to the first main magnetic pole (2C). The second main magnetic pole (2A) is formed to be wider than the width Wb of the second auxiliary magnetic pole (2B) arranged on the side opposite to the first auxiliary magnetic pole (2D) in the traveling direction. The pole pitch P is the distance between the centers of the magnetic poles (2A), and the first main magnetic pole (2C) and the second main magnetic pole (2).
When the distance between the centers of A) is P ′, P ′ = 1.03
A linear motor having a relationship of × P.
【請求項2】 前記主磁極の極数が偶数である時、前記
第1主磁極(2C)の進行方向の幅を、前記第2主磁極
(2A)の進行方向の幅の0.45〜0.55としたこ
とを特徴とする請求項1記載のリニアモータ。
2. When the number of poles of the main magnetic pole is an even number, the width of the first main magnetic pole (2C) in the traveling direction is 0.45 to the width of the second main magnetic pole (2A) in the traveling direction. The linear motor according to claim 1, wherein the linear motor is 0.55.
【請求項3】 前記主磁極の極数が奇数である時、前記
第1主磁極(2C)の進行方向の幅を、第2主磁極(2
A)の進行方向の幅の0.75〜0.85としたことを
特徴とする請求項1記載のリニアモータ。
3. When the number of poles of the main magnetic pole is an odd number, the width of the first main magnetic pole (2C) in the traveling direction is set to the second main magnetic pole (2).
2. The linear motor according to claim 1, wherein the width in the traveling direction of A) is 0.75 to 0.85.
JP2002003461A 2002-01-10 2002-01-10 Linear motor Expired - Fee Related JP3916048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002003461A JP3916048B2 (en) 2002-01-10 2002-01-10 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002003461A JP3916048B2 (en) 2002-01-10 2002-01-10 Linear motor

Publications (2)

Publication Number Publication Date
JP2003209963A true JP2003209963A (en) 2003-07-25
JP3916048B2 JP3916048B2 (en) 2007-05-16

Family

ID=27643045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002003461A Expired - Fee Related JP3916048B2 (en) 2002-01-10 2002-01-10 Linear motor

Country Status (1)

Country Link
JP (1) JP3916048B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006067974A1 (en) * 2004-12-20 2006-06-29 Kyushu Institute Of Technology Non-contact convey device by superconducting magnetic levitation
JP2006191093A (en) * 2004-12-29 2006-07-20 Asml Netherlands Bv Lithographic apparatus and actuator
WO2007091727A1 (en) * 2006-02-08 2007-08-16 Honda Motor Co., Ltd. Rotor for electric motor
WO2006107486A3 (en) * 2005-04-01 2007-11-22 Engineering Matters Inc High intensity radial field magnetic actuator
JP2009106037A (en) * 2007-10-22 2009-05-14 Hitachi Metals Ltd Magnetic field generator
US8387945B2 (en) 2009-02-10 2013-03-05 Engineering Matters, Inc. Method and system for a magnetic actuator
ES2406191R1 (en) * 2011-11-29 2013-09-27 Consorci Escola Ind De Barcelona SYNCHRONOUS LINEAR ELECTRIC MACHINE FOR PERMANENT MAGNETS
CN103872876A (en) * 2012-12-07 2014-06-18 上海微电子装备有限公司 Linear motor and platform device
JP2014531189A (en) * 2011-10-27 2014-11-20 ザ・ユニバーシティ・オブ・ブリティッシュ・コロンビア Displacement device and method for manufacturing, using and controlling the displacement device
EP2882082A4 (en) * 2012-07-31 2015-12-09 Shanghai Microelectronics Equi Linear motor and platform device
US10056816B2 (en) 2014-06-07 2018-08-21 The University Of British Columbia Methods and systems for controllably moving multiple moveable stages in a displacement device
US10116195B2 (en) 2014-05-30 2018-10-30 The University Of British Columbia Displacement devices and methods for fabrication, use and control of same
US10222237B2 (en) 2013-08-06 2019-03-05 The University Of British Columbia Displacement devices and methods and apparatus for detecting and estimating motion associated with same
US10348177B2 (en) 2014-06-14 2019-07-09 The University Of British Columbia Displacement devices, moveable stages for displacement devices and methods for fabrication, use and control of same
US10763733B2 (en) 2015-07-06 2020-09-01 The University Of British Columbia Methods and systems for controllably moving one or more moveable stages in a displacement device
JP2021052456A (en) * 2019-09-24 2021-04-01 セイコーエプソン株式会社 Motor and robot
WO2023229051A1 (en) * 2022-05-27 2023-11-30 学校法人工学院大学 Electromagnetic device

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7352268B2 (en) * 2002-09-26 2008-04-01 Engineering Matters, Inc. High intensity radial field magnetic actuator
US7472786B2 (en) 2004-12-20 2009-01-06 Kyushu Institute Of Technology Non-contact conveying device using superconducting magnetic levitation
WO2006067974A1 (en) * 2004-12-20 2006-06-29 Kyushu Institute Of Technology Non-contact convey device by superconducting magnetic levitation
JP4543181B2 (en) * 2004-12-20 2010-09-15 国立大学法人九州工業大学 Non-contact transfer device by superconducting magnetic levitation
JPWO2006067974A1 (en) * 2004-12-20 2008-06-12 国立大学法人九州工業大学 Non-contact transfer device by superconducting magnetic levitation
JP2006191093A (en) * 2004-12-29 2006-07-20 Asml Netherlands Bv Lithographic apparatus and actuator
JP4528260B2 (en) * 2004-12-29 2010-08-18 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and actuator
JP2008536304A (en) * 2005-04-01 2008-09-04 エンジニアリング マターズ,インコーポレイテッド Magnetic actuator with high intensity radial magnetic field
WO2006107486A3 (en) * 2005-04-01 2007-11-22 Engineering Matters Inc High intensity radial field magnetic actuator
US7990011B2 (en) 2006-02-08 2011-08-02 Honda Motor Co., Ltd. Rotor for electric motor
WO2007091727A1 (en) * 2006-02-08 2007-08-16 Honda Motor Co., Ltd. Rotor for electric motor
JP2009106037A (en) * 2007-10-22 2009-05-14 Hitachi Metals Ltd Magnetic field generator
US8387945B2 (en) 2009-02-10 2013-03-05 Engineering Matters, Inc. Method and system for a magnetic actuator
US11936270B2 (en) 2011-10-27 2024-03-19 The University Of British Columbia Displacement devices and methods for fabrication, use and control of same
US11228232B2 (en) 2011-10-27 2022-01-18 The University Of British Columbia Displacement devices and methods for fabrication, use and control of same
US10554110B2 (en) 2011-10-27 2020-02-04 The University Of British Columbia Displacement devices and methods for fabrication, use and control of same
JP2014531189A (en) * 2011-10-27 2014-11-20 ザ・ユニバーシティ・オブ・ブリティッシュ・コロンビア Displacement device and method for manufacturing, using and controlling the displacement device
US10008915B2 (en) 2011-10-27 2018-06-26 The University Of British Columbia Displacement devices and methods for fabrication, use and control of same
ES2406191R1 (en) * 2011-11-29 2013-09-27 Consorci Escola Ind De Barcelona SYNCHRONOUS LINEAR ELECTRIC MACHINE FOR PERMANENT MAGNETS
EP2882082A4 (en) * 2012-07-31 2015-12-09 Shanghai Microelectronics Equi Linear motor and platform device
CN103872876A (en) * 2012-12-07 2014-06-18 上海微电子装备有限公司 Linear motor and platform device
US10222237B2 (en) 2013-08-06 2019-03-05 The University Of British Columbia Displacement devices and methods and apparatus for detecting and estimating motion associated with same
US11397097B2 (en) 2013-08-06 2022-07-26 The University Of British Columbia Displacement devices and methods and apparatus for detecting and estimating motion associated with same
US10704927B2 (en) 2013-08-06 2020-07-07 The University Of British Columbia Displacement devices and methods and apparatus for detecting and estimating motion associated with same
US10116195B2 (en) 2014-05-30 2018-10-30 The University Of British Columbia Displacement devices and methods for fabrication, use and control of same
US10056816B2 (en) 2014-06-07 2018-08-21 The University Of British Columbia Methods and systems for controllably moving multiple moveable stages in a displacement device
US10819205B2 (en) 2014-06-07 2020-10-27 The University Of British Columbia Methods and systems for controllably moving multiple moveable stages in a displacement device
US11342828B2 (en) 2014-06-07 2022-05-24 The University Of British Columbia Methods and systems for controllably moving multiple moveable stages in a displacement device
US10348178B2 (en) 2014-06-07 2019-07-09 The University Of British Columbia Methods and systems for controllably moving multiple moveable stages in a displacement device
US10958148B2 (en) 2014-06-14 2021-03-23 The University Of British Columbia Displacement devices, moveable stages for displacement devices and methods for fabrication, use and control of same
US10707738B2 (en) 2014-06-14 2020-07-07 The University Of British Columbia Displacement devices, moveable stages for displacement devices and methods for fabrication, use and control of same
US10348177B2 (en) 2014-06-14 2019-07-09 The University Of British Columbia Displacement devices, moveable stages for displacement devices and methods for fabrication, use and control of same
US10763733B2 (en) 2015-07-06 2020-09-01 The University Of British Columbia Methods and systems for controllably moving one or more moveable stages in a displacement device
US11196329B2 (en) 2015-07-06 2021-12-07 The University Of British Columbia Methods and systems for controllably moving one or more moveable stages in a displacement device
JP2021052456A (en) * 2019-09-24 2021-04-01 セイコーエプソン株式会社 Motor and robot
US11527929B2 (en) 2019-09-24 2022-12-13 Seiko Epson Corporation Motor for improving flux content and robot comprising the same
WO2023229051A1 (en) * 2022-05-27 2023-11-30 学校法人工学院大学 Electromagnetic device

Also Published As

Publication number Publication date
JP3916048B2 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
US6831379B2 (en) Permanent magnet synchronous linear motor
JP3916048B2 (en) Linear motor
JP2005168243A (en) Permanent magnet type synchronous linear motor
JP2002238241A (en) Linear motor
JP2004364374A (en) Linear motor
KR101489031B1 (en) Linear motor and table feed apparatus
JP2002165434A (en) Coreless linear motor
JP2001211630A (en) Linear slider
JP2003333823A (en) Voice coil type linear motor
JP2004297977A (en) Linear motor
TWI505608B (en) Linear motors and platform devices
JPH11313475A (en) Linear motor
US20070278863A1 (en) Moving Magnet Type Linear Actuator
JP5447308B2 (en) Linear motor
JP5135870B2 (en) Linear actuator
KR20190065454A (en) Linear motor
JP3793874B2 (en) Permanent magnet type linear motor
KR100931848B1 (en) Stator of permanent magnet excitation lateral flux motor with E type mover iron core
JP2004289895A (en) Linear motor
JP4756438B2 (en) Linear motor
JP2002058232A (en) Coreless linear motor
JPS6098863A (en) Linear motor
JP2004064874A (en) High acceleration type linear motor
JP5126262B2 (en) Linear motor and feeder
JP2005057822A (en) Linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070201

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150216

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees