JP2002238241A - Linear motor - Google Patents
Linear motorInfo
- Publication number
- JP2002238241A JP2002238241A JP2001033712A JP2001033712A JP2002238241A JP 2002238241 A JP2002238241 A JP 2002238241A JP 2001033712 A JP2001033712 A JP 2001033712A JP 2001033712 A JP2001033712 A JP 2001033712A JP 2002238241 A JP2002238241 A JP 2002238241A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic pole
- permanent magnet
- inductor
- magnetic
- permanent magnets
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Linear Motors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば工作機械や
半導体製造装置などのFA分野で、高速・高加減速の直
線運動が要求されるリニアモータに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear motor requiring high speed and high acceleration / deceleration linear motion in the field of factory automation (FA) such as machine tools and semiconductor manufacturing equipment.
【0002】[0002]
【従来の技術】従来、工作機械や半導体製造装置などの
FA分野で、高速・高加減速の直線運動が要求されるリ
ニアモータは、モータ体格に対し大きな最大推力が得ら
れるものが望まれている。例えば、このようなリニアモ
ータとして、特公平5−34901号公報に開示されて
いるものがある。図8は従来のリニアモータであって、
(a)は、その側断面図を示したもの、(b)は(a)
における磁極の拡大図を示したものである。なお、図中
矢印の向き(↑↓)は各永久磁石の磁化方向を示してい
る。図において、1は固定子、2は誘導子、3は誘導子
歯、10は可動子、11は電機子、12は電機子コア、
13はティース、14は継鉄、15は電機子巻線、16
は磁極、18は永久磁石である。固定子1は、進行方向
に所定間隔λで誘導子歯3が形成された磁性体からなる
誘導子2によって構成され、例えば、この磁性体は、積
層された電磁鋼板が用いられる。可動子10は、3つの
ティース13とそれらをつなぐ継鉄14が一体となった
電機子コア12、3つのティース13に集中巻された3
相(U、V、W)の電機子巻線15、各ティース13先
端に設けられた磁極16から成る電機子11によって構
成される。例えば、電機子コア12の材料には積層され
た電磁鋼板が用いられる。6極から成る1個の磁極16
は、そのピッチPmがλ/2となるように、隣接するも
のどうしが互いに異極になるように永久磁石18が6個
配置されている。つまり、隣り合った永久磁石18の磁
化方向の角度差θは180度で、1極当たりの磁極に使
われる永久磁石数nは1である。隣接するティース13
間の間隔は、ティース13の幅3×λとティース13間
の幅λ+λ/3を足し合わせた4×λ+λ/3である。
また、可動子10は図示しないリニアガイド等によっ
て、その進行方向に移動自在に支持されている。次に動
作原理について説明する。永久磁石18の磁束は、ティ
ース13、継鉄14、空隙、誘導子歯3によって構成さ
れる磁気回路を流れる。各相のティース13の位相差が
電気角で120度なので、可動子10を動かすと互いに
電気角120度差の磁束が各相電機子巻線15に鎖交
し、電機子巻線15には3相の誘起電圧が発生する。逆
に各相の電機子巻線15に3相の正弦波電流を通電する
と3相同期モータとして推力を発生し、可動子10が固
定子1上を直線移動する。2. Description of the Related Art Conventionally, in the field of factory automation (FA) such as machine tools and semiconductor manufacturing equipment, linear motors requiring high-speed and high-acceleration linear motion are required to have a large maximum thrust with respect to the motor size. I have. For example, as such a linear motor, there is one disclosed in Japanese Patent Publication No. 5-34901. FIG. 8 shows a conventional linear motor,
(A) is a side sectional view thereof, (b) is (a)
3 shows an enlarged view of the magnetic pole in FIG. The direction of the arrow (↑ ↓) in the figure indicates the magnetization direction of each permanent magnet. In the figure, 1 is a stator, 2 is an inductor, 3 is an inductor tooth, 10 is a mover, 11 is an armature, 12 is an armature core,
13 is a tooth, 14 is a yoke, 15 is an armature winding, 16
Is a magnetic pole, and 18 is a permanent magnet. The stator 1 is composed of an inductor 2 made of a magnetic material having inductor teeth 3 formed at predetermined intervals λ in the traveling direction. For example, the magnetic material is a laminated electromagnetic steel plate. The armature 10 includes an armature core 12 in which three teeth 13 and a yoke 14 connecting them are integrated, and three teeth 13 concentratedly wound around the three teeth 13.
It is composed of an armature winding 15 of a phase (U, V, W) and an armature 11 composed of a magnetic pole 16 provided at the tip of each tooth 13. For example, a laminated electromagnetic steel sheet is used as the material of the armature core 12. One magnetic pole 16 consisting of 6 poles
The six permanent magnets 18 are arranged such that the pitch Pm is λ / 2 and the adjacent magnets have different polarities. That is, the angle difference θ between the magnetization directions of the adjacent permanent magnets 18 is 180 degrees, and the number n of the permanent magnets used for the magnetic pole per pole is one. Adjacent teeth 13
The interval between the teeth 13 is 4 × λ + λ / 3, which is the sum of the width 3 × λ of the teeth 13 and the width λ + λ / 3 between the teeth 13.
The mover 10 is supported by a linear guide (not shown) or the like so as to be movable in the traveling direction. Next, the operation principle will be described. The magnetic flux of the permanent magnet 18 flows through a magnetic circuit constituted by the teeth 13, the yoke 14, the air gap, and the inductor teeth 3. Since the phase difference between the teeth 13 of each phase is 120 degrees in electrical angle, when the mover 10 is moved, magnetic fluxes having an electrical angle difference of 120 degrees interlink with the armature windings 15 in each phase. A three-phase induced voltage is generated. Conversely, when a three-phase sine wave current is applied to the armature winding 15 of each phase, a thrust is generated as a three-phase synchronous motor, and the mover 10 moves linearly on the stator 1.
【0003】[0003]
【発明が解決しようとする課題】従来技術のリニアモー
タでは、電機子巻線15に通電する電流と推力の関係に
おいて、電流が大きくなると、電流の増加に応じて推力
が発生しなくなり所定の最大推力を得られない、いわゆ
る図2に示すごとく、推力が飽和する非線形の領域が存
在する。この推力の飽和現象は、電機子巻線15の作る
磁束に永久磁石18の磁束が重畳した磁束(発生推力に
比例した磁束を意味し、以下、「主磁束」という。)が
誘導子歯3で飽和するために起こる。電流が小さければ
推力は線形性を確保するものの、誘導子歯3の飽和磁束
密度を超える主磁束に相当した電流が流れると推力は非
線形になる。さらに、電流を大きくすると誘導子歯3を
通る磁束は完全に飽和し、電流を幾ら大きくしても推力
が全く変わらなくなる。このため、従来技術のリニアモ
ータの場合、上記の推力飽和の現象が原因となり、要求
された加減速性能を出しきれず、モータ体格に対して充
分な最大推力を得ることができないという問題があっ
た。そこで、リニアモータの推力の線形性を向上するに
は、誘導子歯3の磁気飽和を抑えるか、電機子11と誘
導子2間における空隙の磁束密度を高める磁極構造を採
用するかの何れかの対策が必要である。前者は、推力の
線形性を向上する誘導子歯3の歯幅が検討され、すでに
公知技術である。後者は、最近の希土類系高性能永久磁
石により可能となるが、飛躍的な向上は見られず、別の
改善策が必要な状況にある。本発明は上記課題を解決す
るためになされたものであり、電機子と誘導子間におけ
る空隙の磁束密度を高め、従来に比べて最大推力を大幅
に向上することが可能な磁極構造を有したリニアモータ
を提供することを目的とする。In the linear motor of the prior art, in the relationship between the current flowing through the armature winding 15 and the thrust, when the current increases, the thrust is not generated in accordance with the increase in the current, and a predetermined maximum value is obtained. As shown in FIG. 2, there is a non-linear region where the thrust is saturated where thrust cannot be obtained. This saturation phenomenon of the thrust is caused by a magnetic flux in which the magnetic flux of the permanent magnet 18 is superimposed on the magnetic flux generated by the armature winding 15 (meaning a magnetic flux proportional to the generated thrust, hereinafter referred to as “main magnetic flux”). Happens to saturate at. If the current is small, the thrust ensures linearity, but if a current corresponding to the main magnetic flux exceeding the saturation magnetic flux density of the inductor teeth 3 flows, the thrust becomes non-linear. Further, when the current is increased, the magnetic flux passing through the inductor teeth 3 is completely saturated, and the thrust does not change at all even if the current is increased. For this reason, in the case of the conventional linear motor, there is a problem that the required acceleration / deceleration performance cannot be obtained due to the above-described thrust saturation phenomenon, and a sufficient maximum thrust cannot be obtained for the motor size. Was. Therefore, in order to improve the linearity of the thrust of the linear motor, either the magnetic saturation of the inductor teeth 3 is suppressed or a magnetic pole structure that increases the magnetic flux density of the air gap between the armature 11 and the inductor 2 is adopted. Measures are needed. In the former case, the tooth width of the inductor teeth 3 for improving the linearity of the thrust is studied, and is already known. The latter is made possible by recent rare earth-based high-performance permanent magnets, but has not seen a dramatic improvement, and there is a need for another improvement. The present invention has been made to solve the above problems, and has a magnetic pole structure capable of increasing the magnetic flux density of the air gap between the armature and the inductor and greatly improving the maximum thrust as compared with the conventional art. An object is to provide a linear motor.
【0004】[0004]
【課題を解決するための手段】上記問題を解決するた
め、請求項1の本発明は、電磁鋼板を積層してなる電機
子コアのティースに巻装された電機子巻線と前記ティー
ス先端に配置された複数の磁極(1極当たりの長さを磁
極ピッチPm)とを有する電機子と、前記磁極と空隙を
介して対向配置されると共に磁性体からなる誘導子歯を
有する誘導子とを備え、前記電機子と前記誘導子の何れ
か一方を可動子に、他方を固定子として相対移動を行う
リニアモータにおいて、1極当たりの前記磁極を、交互
に磁化方向が異なるように隣接して配置されたn個(n
は2以上の整数)の永久磁石で構成したものである。請
求項2の本発明は、請求項1記載のリニアモータにおい
て、前記1極当たりの磁極内に配置されるn個の隣り合
う永久磁石同志の磁化方向の角度差θを、互いにθ=1
80°/nずつずらしたものである。請求項3の本発明
は、請求項1記載のリニアモータにおいて、前記1極当
たりの磁極内に前記永久磁石を2個配置したときに、磁
極ピッチ方向の幅をWaとする一方の永久磁石の磁化方
向を可動子の進行方向と一致させると共に、磁極ピッチ
方向の幅をWbとする他方の永久磁石の磁化方向を前記
一方の永久磁石の磁化方向に対して90°の角度だけず
らし、磁極ピッチと前記他方の永久磁石の幅Wbとの関
係を、0.3≦Wb/Pm<1.0としたものである。
請求項4の本発明は、請求項1記載のリニアモータにお
いて、前記1極当たりの磁極内に前記永久磁石を2個配
置したときに、一方の永久磁石の磁化方向η1を可動子
の進行方向に対して0°<η1<90°の角度だけずら
すと共に、他方の永久磁石の磁化方向η2を一方の永久
磁石の磁化方向η1に対して、η2=180°―η1の
角度だけずらし、前記2個の永久磁石の磁極ピッチ方向
における幅を等しくしたものである。請求項5の本発明
は、電磁鋼板を積層してなる電機子コアのティースに巻
装された電機子巻線と前記ティース先端に配置された複
数の磁極(1極当たりの長さを磁極ピッチPm)とを有
する電機子と、前記磁極と空隙を介して対向配置される
と共に磁性体からなる誘導子歯を有する誘導子とを備
え、前記電機子と前記誘導子の何れか一方を可動子に、
他方を固定子として相対移動を行うリニアモータにおい
て、前記複数の磁極を、可動子の進行方向に向かって磁
化方向が円弧状となるように多極着磁された永久磁石で
構成したものである。In order to solve the above-mentioned problems, the present invention according to claim 1 is directed to an armature winding wound around the teeth of an armature core formed by laminating electromagnetic steel sheets and a tip end of the teeth. An armature having a plurality of arranged magnetic poles (the length per pole is a magnetic pole pitch Pm), and an inductor having an inductor tooth made of a magnetic material and opposed to the magnetic pole via a gap. In a linear motor that performs relative movement with one of the armature and the inductor as a mover and the other as a stator, the magnetic poles per pole are adjacent to each other such that the magnetization directions are alternately different. N (n
Is an integer of 2 or more). According to a second aspect of the present invention, in the linear motor according to the first aspect, the angle difference θ between the magnetization directions of n adjacent permanent magnets arranged in the magnetic pole per pole is set to θ = 1.
It is shifted by 80 ° / n. According to a third aspect of the present invention, in the linear motor according to the first aspect, when two permanent magnets are arranged in the magnetic pole per pole, one of the permanent magnets whose width in the magnetic pole pitch direction is Wa is used. The magnetization direction is made to coincide with the traveling direction of the mover, and the magnetization direction of the other permanent magnet whose width in the magnetic pole pitch direction is Wb is shifted by 90 ° with respect to the magnetization direction of the one permanent magnet. And the width Wb of the other permanent magnet is 0.3 ≦ Wb / Pm <1.0.
According to a fourth aspect of the present invention, in the linear motor according to the first aspect, when two permanent magnets are arranged in the magnetic pole per pole, the magnetization direction η1 of one permanent magnet is changed to the moving direction of the mover. And the magnetization direction η2 of the other permanent magnet is shifted by an angle of η2 = 180 ° −η1 with respect to the magnetization direction η1 of one of the permanent magnets. The width of each of the permanent magnets in the magnetic pole pitch direction is equal. According to a fifth aspect of the present invention, there is provided an armature winding wound around teeth of an armature core formed by laminating electromagnetic steel sheets and a plurality of magnetic poles (the length per pole is defined as a magnetic pole pitch). Pm), and an inductor having an inductor tooth made of a magnetic material and opposed to the magnetic pole with a gap therebetween, and one of the armature and the inductor is a mover. To
In a linear motor that performs relative movement using the other as a stator, the plurality of magnetic poles are constituted by permanent magnets that are multipolarly magnetized so that the magnetization direction becomes an arc toward the moving direction of the mover. .
【0005】[0005]
【発明の実施の形態】以下、本発明の実施例を図に基づ
いて説明する。図1は本発明の第1の実施例を示すリニ
モータであって、(a)はその側断面図、(b)は
(a)における磁極の拡大図である。なお、図中矢印の
向き(↑↓等)は各永久磁石の磁化方向を示している。
また、本発明の構成要素が従来技術と同じ構成要素につ
いては、同一符号を付してその説明を省略し、異なる点
のみ説明する。図において、17aは磁極ピッチ方向の
幅をWaとする永久磁石、17bは磁極ピッチ方向の幅
をWbとする永久磁石を示している。本発明が従来技術
と基本的に異なる点は、以下のとおりである。1極当た
りの磁極を交互に磁化方向が異なるようにn個(nは2
以上の整数)の永久磁石を隣接して配置し、隣り合う永
久磁石同志の磁化方向の角度差θを、互いにθ=180
°/nずつずらした点である。図1に1極当たりの磁極
をn=2個の永久磁石17a、17bで構成し、磁化方
向の角度差θを、90度に設定した場合を示している。
具体的には、一方の永久磁石17aの磁化方向を可動子
の進行方向と一致させると共に、他方の永久磁石17b
の磁化方向を永久磁石17aの磁化方向に対して90°
の角度だけずらし、磁極ピッチPmと永久磁石17bの
幅Wbとの関係を、0.3≦Wb/Pm<1.0とした
ものである。なお、リニアモータの動作については、従
来技術と基本的に同じなので省略する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIGS. 1A and 1B show a linear motor according to a first embodiment of the present invention, wherein FIG. 1A is a side sectional view, and FIG. 1B is an enlarged view of a magnetic pole in FIG. The direction of the arrow (矢 印 ↓, etc.) in the figure indicates the magnetization direction of each permanent magnet.
In addition, the same reference numerals are given to the same components as those of the related art, and the description thereof will be omitted, and only different points will be described. In the figure, reference numeral 17a denotes a permanent magnet whose width in the magnetic pole pitch direction is Wa, and 17b denotes a permanent magnet whose width in the magnetic pole pitch direction is Wb. The differences between the present invention and the prior art are as follows. The number of magnetic poles per pole is n (n is 2 so that the magnetization direction is alternately different).
(The above integers) are disposed adjacent to each other, and the angle difference θ between the magnetization directions of the adjacent permanent magnets is set to θ = 180
This is a point shifted by ° / n. FIG. 1 shows a case where a magnetic pole per pole is composed of n = 2 permanent magnets 17a and 17b, and the angle difference θ in the magnetization direction is set to 90 degrees.
Specifically, the magnetization direction of one permanent magnet 17a is made to coincide with the traveling direction of the mover, and the other permanent magnet 17b
Is 90 ° with respect to the magnetization direction of the permanent magnet 17a.
And the relationship between the magnetic pole pitch Pm and the width Wb of the permanent magnet 17b is set to 0.3 ≦ Wb / Pm <1.0. The operation of the linear motor is basically the same as that of the prior art, and therefore will not be described.
【0006】次に、本発明の実施例による推力特性の効
果の確認を図2、図3を用いて以下に説明する。図2は
本発明と従来技術のリニアモータ電機子巻線に通電する
電流と推力の関係を示した図である。図3は本発明の実
施例による磁極と誘導子歯間における主磁束の流れを示
した説明図であって、(a)は第1の実施例、(b)は
従来技術の場合である。従来技術における主磁束は、図
3(b)に示すごとく誘導子歯3の側面と先端に分かれ
て流れ込む。誘導子歯3の先端に流れ込む主磁束は、そ
の磁極構造から、可動子の進行方向に向いて流れる主磁
束の分布が疎になっている。つまり、推力は小さいこと
を意味している。これに対して、第1の実施例では、図
3(a)に示すごとく磁化方向を可動子の進行方向とな
る永久磁石17aにより、誘導子歯3の側面と先端部に
流れ込む主磁束の分布が密になっている。つまり、従来
技術よりも大きな推力を得ることを意味している。した
がって、本発明の第1の実施例は上記の磁極構造を採用
することで、永久磁石17a、17bによる空隙の磁束
密度を、図2に示すように、従来技術よりも各電流値に
おける推力及び最大推力を大幅に向上することができ
る。Next, confirmation of the effect of the thrust characteristics according to the embodiment of the present invention will be described below with reference to FIGS. FIG. 2 is a diagram showing the relationship between the current flowing through the armature winding of the linear motor of the present invention and the prior art and the thrust. 3A and 3B are explanatory diagrams showing the flow of a main magnetic flux between a magnetic pole and an inductor tooth according to an embodiment of the present invention. FIG. 3A shows the first embodiment, and FIG. 3B shows the case of the prior art. As shown in FIG. 3B, the main magnetic flux in the prior art flows into the side and tip of the inductor tooth 3 separately. Due to the magnetic pole structure of the main magnetic flux flowing into the tip of the inductor tooth 3, the distribution of the main magnetic flux flowing in the moving direction of the mover is sparse. That is, the thrust is small. On the other hand, in the first embodiment, as shown in FIG. 3A, the distribution of the main magnetic flux flowing into the side surface and the tip of the inductor tooth 3 is controlled by the permanent magnet 17a whose magnetization direction is the traveling direction of the mover. Is dense. That is, it means that a larger thrust is obtained than in the prior art. Therefore, the first embodiment of the present invention employs the above-described magnetic pole structure to reduce the magnetic flux density of the air gap formed by the permanent magnets 17a and 17b, as shown in FIG. The maximum thrust can be greatly improved.
【0007】また、次に、永久磁石の幅と最大推力の関
係における効果の確認について説明する。図4は、磁極
ピッチPmに対する永久磁石17bのWbの比(Wb/
Pm)と従来技術に対する本発明の最大推力比の関係を
グラフに表したものである。図において、Wb/Pm<
0.3では従来技術よりも低下し、0.3≦Wb/Pm
<1.0の範囲では従来技術よりも大きな最大推力を得
ることを確認することができる。特に、Wb/Pm=
0.6付近で最大推力は10%向上する。Next, the confirmation of the effect in the relationship between the width of the permanent magnet and the maximum thrust will be described. FIG. 4 shows the ratio (Wb / Wb / Wb) of the permanent magnet 17b to the magnetic pole pitch Pm.
6 is a graph showing the relationship between Pm) and the maximum thrust ratio of the present invention with respect to the prior art. In the figure, Wb / Pm <
At 0.3, it is lower than the prior art, and 0.3 ≦ Wb / Pm
In the range of <1.0, it can be confirmed that a maximum thrust greater than that of the related art is obtained. In particular, Wb / Pm =
Near 0.6, the maximum thrust increases by 10%.
【0008】次に第2の実施例について説明する。図5
は、本発明の第2の実施例における磁極の拡大図であっ
て、第1の実施例の図1(b)に相当するものである。
なお、図中矢印の向きは、第1の実施例と同様に各永久
磁石の磁化方向を示している。第2の実施例が第1の実
施例と異なる点は、1極当たりの磁極内に2個の永久磁
石17c、17dを配置したときに、一方の永久磁石1
7cの磁化方向η1を可動子の進行方向に対して0°<
η1<90°の角度だけずらすと共に、他方の永久磁石
17dの磁化方向η2を一方の永久磁石17cの磁化方
向η1に対して、η2=180°―η1の角度だけずら
し、永久磁石17c、17dの磁極ピッチ方向における
幅Wc、Wdを等しくした点である。第2の実施例は、
第1の実施例と同様に電機子と誘導子間における空隙の
磁束密度が高まるため、従来技術よりも最大推力を向上
することができる。また、第1の実施例で用いた永久磁
石が、可動子の進行方向と同じ磁化方向を持つ一方の永
久磁石17aおよびこの永久磁石17aと磁化方向を9
0°ずらした他方の永久磁石17bの2種類が必要であ
ったのに対して、第2の実施例では可動子の進行方向に
対して磁化方向が対称な1種類の永久磁石で構成できる
ので、部品点数を少なくでき、磁極の組み立てを容易に
することができる。なお、リニアモータの動作は従来例
と同じであり、推力向上の理由は第1の実施例と基本的
に同じなので説明を省略する。Next, a second embodiment will be described. FIG.
FIG. 5 is an enlarged view of a magnetic pole according to the second embodiment of the present invention, and corresponds to FIG. 1B of the first embodiment.
The direction of the arrow in the drawing indicates the magnetization direction of each permanent magnet, as in the first embodiment. The second embodiment is different from the first embodiment in that when two permanent magnets 17c and 17d are arranged in one magnetic pole, one permanent magnet 1c is disposed.
7c with respect to the moving direction of the mover at 0 ° <
While shifting by an angle of η1 <90 °, the magnetization direction η2 of the other permanent magnet 17d is shifted by an angle of η2 = 180 ° −η1 with respect to the magnetization direction η1 of one of the permanent magnets 17c. The point is that the widths Wc and Wd in the magnetic pole pitch direction are made equal. A second embodiment is:
Since the magnetic flux density in the air gap between the armature and the inductor increases as in the first embodiment, the maximum thrust can be improved as compared with the prior art. The permanent magnet used in the first embodiment has one permanent magnet 17a having the same magnetization direction as the moving direction of the mover, and the permanent magnet 17a has a magnetization direction of 9 mm.
Whereas two types of the other permanent magnet 17b shifted by 0 ° are required, the second embodiment can be constituted by one type of permanent magnet whose magnetization direction is symmetric with respect to the moving direction of the mover. The number of parts can be reduced, and the assembly of the magnetic pole can be facilitated. The operation of the linear motor is the same as that of the conventional example, and the reason for the improvement of the thrust is basically the same as that of the first embodiment.
【0009】次に第3の実施例について説明する。図6
は、本発明の第3の実施例における磁極の拡大図であっ
て、第1の実施例の図1(b)に相当するものである。
なお、図中矢印の向きは、第1、2の実施例と同様に各
永久磁石の磁化方向を示している。第3の実施例が、第
1および第2の実施例と異なる点は、1極あたりの磁極
が、互いに磁化方向の異なる4個の永久磁石17e、1
7f、17g、17hを隣接して配置した点である。第
3の実施例は、第1及び第2の実施例と同様に、電機子
と誘導子間における空隙の磁束密度が高まるため、従来
技術よりも最大推力を向上することができる。また、第
3の実施例は、第1の実施例において直交する磁化方向
を有する永久磁石17aと17b間で起き易い逆磁界に
よる不可逆的減磁作用の無い磁極構造となっている。第
1の実施例では、隣接する永久磁石17aと17bの磁
化方向が90度であるため、永久磁石17aが逆磁界起
磁力源となり、永久磁石17bに部分的に逆磁界を与え
ている。そこで、第3の実施例では、永久磁石17eと
17gの間に45°の傾斜方向を磁化方向とする永久磁
石17fを挿入している。この結果、隣接する永久磁石
の磁化方向は滑らかな変化となり、不可逆的減磁作用の
無い磁極構造を構成することができる。なお、リニアモ
ータの動作は従来例と同じであり、推力向上の理由は第
1の実施例と基本的に同じなので説明を省略する。Next, a third embodiment will be described. FIG.
FIG. 6 is an enlarged view of a magnetic pole according to the third embodiment of the present invention, and corresponds to FIG. 1B of the first embodiment.
The direction of the arrow in the figure indicates the magnetization direction of each permanent magnet, as in the first and second embodiments. The third embodiment is different from the first and second embodiments in that the magnetic poles per pole have four permanent magnets 17e, 1e,
7f, 17g, and 17h are arranged adjacent to each other. In the third embodiment, as in the first and second embodiments, the magnetic flux density in the air gap between the armature and the inductor is increased, so that the maximum thrust can be improved as compared with the related art. Further, the third embodiment has a magnetic pole structure in which there is no irreversible demagnetizing effect due to a reverse magnetic field which easily occurs between the permanent magnets 17a and 17b having the orthogonal magnetization directions in the first embodiment. In the first embodiment, since the magnetization directions of the adjacent permanent magnets 17a and 17b are 90 degrees, the permanent magnet 17a serves as a source of a reverse magnetic field magnetomotive force, and partially applies a reverse magnetic field to the permanent magnet 17b. Therefore, in the third embodiment, a permanent magnet 17f whose magnetization direction is a 45 ° tilt direction is inserted between the permanent magnets 17e and 17g. As a result, the magnetization direction of the adjacent permanent magnet changes smoothly, and a magnetic pole structure without irreversible demagnetization can be formed. The operation of the linear motor is the same as that of the conventional example, and the reason for the improvement of the thrust is basically the same as that of the first embodiment.
【0010】次に第4の実施例について説明する。図7
は、本発明の第4の実施例における磁極の拡大図であっ
て、第1の実施例の図1(b)に相当するものである。
なお、図中矢印の向きは、第1〜3の実施例と同様に各
永久磁石の磁化方向を示している。第4の実施例が、第
1〜第3の実施例と異なる点は、複数の磁極内に配置さ
れる永久磁石は、可動子の進行方向に向かって磁化方向
が円弧状となるように多極着磁されたものであって、6
極着磁した1個の永久磁石17iによって構成した点で
ある。第4の実施例は、第1〜第3の実施例と同様に従
来技術に対し最大推力を向上させることができる。ま
た、第4の実施例では複数の磁極を1個の永久磁石で構
成しているので、部品点数を大幅に少なくできると共に
磁極の組み立てを容易にし、磁極の機械的強度も増す利
点を備えている。なお、リニアモータの動作は従来例と
同じであり、推力向上の理由については、第1の実施例
と基本的に同じなので省略する。Next, a fourth embodiment will be described. FIG.
FIG. 4 is an enlarged view of a magnetic pole according to a fourth embodiment of the present invention, and corresponds to FIG. 1B of the first embodiment.
The direction of the arrow in the drawing indicates the magnetization direction of each permanent magnet as in the first to third embodiments. The fourth embodiment is different from the first to third embodiments in that permanent magnets arranged in a plurality of magnetic poles are arranged so that the magnetization direction becomes an arc toward the moving direction of the mover. Polarized, 6
The point is that it is constituted by one pole-magnetized permanent magnet 17i. In the fourth embodiment, the maximum thrust can be improved with respect to the prior art as in the first to third embodiments. Further, in the fourth embodiment, since the plurality of magnetic poles are constituted by one permanent magnet, the number of parts can be significantly reduced, and the assembling of the magnetic poles is facilitated, and the mechanical strength of the magnetic poles is increased. I have. Note that the operation of the linear motor is the same as that of the conventional example, and the reason for the improvement of the thrust is basically the same as that of the first embodiment, and therefore will not be described.
【0011】なお、上記の実施例では可動子に電機子を
配置させた構造としたが、これを固定子側とし、誘導子
を可動子に配置させた構造としても、本発明の効果を同
じく発揮できることは言うまでもない。また、3つのテ
ィースで構成される電機子を示したが、それらを複数個
つなげたり、1個の電機子において複数個のティースを
持つものであっても同様の効果を得ることができる。In the above embodiment, the armature is arranged on the mover. However, the effect of the present invention can also be obtained by adopting a structure in which the armature is arranged on the stator side and the inductor is arranged on the mover. Needless to say, it can be demonstrated. Further, although the armature constituted by three teeth is shown, a similar effect can be obtained by connecting a plurality of them or a single armature having a plurality of teeth.
【0012】[0012]
【発明の効果】以上のような構成により、以下の効果を
得ることができる。 (1)第1の実施例によれば、1極当たりの磁極内に配
置されるn個の隣り合う永久磁石同志の磁化方向の角度
差θを、互いにθ=180°/nずつずらす構成にし。
また、1極当たりの磁極内に永久磁石を2個配置したと
きに、磁極ピッチ方向の幅をWaとする一方の永久磁石
の磁化方向を可動子の進行方向と一致させ、磁極ピッチ
方向の幅をWbとする他方の永久磁石の磁化方向を一方
の永久磁石の磁化方向に対して90°の角度だけずらし
てあり、磁極ピッチPmと他方の永久磁石の幅Wbとの
関係を、 0.3≦Wb/Pm<1.0 とした構成を
とったため、磁化方向を可動子の進行方向に対して90
°反転させた永久磁石により、誘導子歯の側面と先端部
に流れ込む主磁束が増えることから、電機子と誘導子間
における空隙の磁束密度を高め、従来技術よりも各電流
値における推力及び最大推力を向上することができる。
特に、他方の永久磁石の幅Wbが磁極ピッチの0.6倍
の場合、従来技術に比べ最大推力を10%向上すること
ができる。 (2)第2の実施例によれば、1極当たりの磁極内に2
個の永久磁石を配置したときに、一方の永久磁石の磁化
方向η1を可動子の進行方向に対して0°<η1<90
°の角度だけずらすと共に、他方の永久磁石の磁化方向
η2を一方の永久磁石の磁化方向η1に対して、η2=
180°―η1の角度だけずらし、2個の永久磁石の磁
極ピッチ方向における幅Wc、Wdを等しくしたため、
第1の実施例と同様に電機子と誘導子間における空隙の
磁束密度が高まることから、従来技術よりも最大推力を
向上することができる。さらに、すべて同じ永久磁石に
よって構成できるため、部品点数を少なくし、磁極の組
み立てを容易にすることができる。 (3)第3の実施例によれば、1極あたりの磁極を、互
いに磁化方向の異なる4個の永久磁石を用いて隣接して
配置したため、第1及び第2の実施例と同様に、電機子
と誘導子間における空隙の磁束密度が高まるため、従来
技術よりも最大推力を向上することができる。さらに、
進行方向と垂直方向を磁化方向とする永久磁石間に起こ
る不可逆的減磁作用を防ぐ効果がある。 (4)第4の実施例によれば、複数の磁極内に配置され
る永久磁石は、可動子の進行方向に向かって磁化方向が
円弧状となるように多極着磁された構成を取ったため、
第1〜第3の実施例と同様に従来技術に対し最大推力を
向上させることができる。さらに、複数の磁極を1個の
永久磁石で構成しているため、部品点数を大幅に少なく
できると共に磁極の組み立てを容易にし、磁極の機械的
強度も増すことができる。According to the above configuration, the following effects can be obtained. (1) According to the first embodiment, the angle difference θ between the magnetization directions of n adjacent permanent magnets arranged in one magnetic pole is shifted from each other by θ = 180 ° / n. .
When two permanent magnets are arranged in the magnetic pole per pole, the width in the magnetic pole pitch direction is set to Wa, and the magnetization direction of one permanent magnet is made to coincide with the moving direction of the mover, and the width in the magnetic pole pitch direction is set. Is set to Wb, the magnetization direction of the other permanent magnet is shifted by an angle of 90 ° with respect to the magnetization direction of the one permanent magnet, and the relationship between the magnetic pole pitch Pm and the width Wb of the other permanent magnet is 0.3 ≦ Wb / Pm <1.0, so that the magnetization direction is 90 degrees with respect to the moving direction of the mover.
° The inverted permanent magnet increases the main magnetic flux that flows into the side and tip of the inductor teeth, thus increasing the magnetic flux density in the air gap between the armature and the inductor, increasing the thrust and maximum force at each current value compared to the conventional technology. Thrust can be improved.
In particular, when the width Wb of the other permanent magnet is 0.6 times the magnetic pole pitch, the maximum thrust can be improved by 10% as compared with the related art. (2) According to the second embodiment, the number of magnetic poles per pole is 2
When the permanent magnets are arranged, the magnetization direction η1 of one permanent magnet is set to 0 ° <η1 <90 with respect to the moving direction of the mover.
In addition to shifting the magnetization direction η2 of the other permanent magnet with respect to the magnetization direction η1 of one permanent magnet,
Because the widths Wc and Wd of the two permanent magnets in the magnetic pole pitch direction were made equal by shifting by 180 ° -η1,
Since the magnetic flux density in the air gap between the armature and the inductor increases as in the first embodiment, the maximum thrust can be improved as compared with the prior art. Furthermore, since all of them can be constituted by the same permanent magnet, the number of parts can be reduced and the assembly of the magnetic pole can be facilitated. (3) According to the third embodiment, the magnetic poles per pole are arranged adjacent to each other by using four permanent magnets having different magnetization directions from each other. Therefore, similar to the first and second embodiments, Since the magnetic flux density in the air gap between the armature and the inductor increases, the maximum thrust can be improved as compared with the related art. further,
This has the effect of preventing irreversible demagnetization between the permanent magnets whose magnetization direction is the traveling direction and the perpendicular direction. (4) According to the fourth embodiment, the permanent magnets arranged in the plurality of magnetic poles are multipolar magnetized so that the magnetization direction becomes an arc toward the moving direction of the mover. Because
Like the first to third embodiments, the maximum thrust can be improved with respect to the prior art. Furthermore, since the plurality of magnetic poles are constituted by one permanent magnet, the number of parts can be significantly reduced, the assembling of the magnetic poles is facilitated, and the mechanical strength of the magnetic poles can be increased.
【図1】本発明の第1の実施例を示すリニモータであっ
て、(a)はその側断面図、(b)は(a)における磁
極の拡大図である。FIG. 1 is a linear motor showing a first embodiment of the present invention, wherein (a) is a side sectional view and (b) is an enlarged view of a magnetic pole in (a).
【図2】本発明と従来技術のリニアモータ電機子巻線に
通電する電流と推力の関係を示した図である。FIG. 2 is a diagram showing a relationship between a current flowing through an armature winding of a linear motor according to the present invention and a prior art and a thrust.
【図3】本発明の実施例による磁極と誘導子歯間におけ
る主磁束の流れを示した説明図であって、(a)は本実
施例、(b)は従来技術の場合である。FIGS. 3A and 3B are explanatory diagrams showing a flow of a main magnetic flux between a magnetic pole and an inductor tooth according to an embodiment of the present invention, wherein FIG. 3A shows the embodiment and FIG.
【図4】本発明の第1実施例における、磁極ピッチPm
に対する永久磁石17bのWbの比(Wb/Pm)と従
来技術に対する本発明の最大推力比との関係をグラフに
表したものである。FIG. 4 shows a magnetic pole pitch Pm in the first embodiment of the present invention.
4 is a graph showing the relationship between the ratio of Wb of the permanent magnet 17b to the conventional technology (Wb / Pm) and the maximum thrust ratio of the present invention with respect to the prior art.
【図5】本発明の第2の実施例における磁極の拡大図で
あって、第1の実施例の図1(b)に相当するものであ
る。FIG. 5 is an enlarged view of a magnetic pole according to the second embodiment of the present invention, and corresponds to FIG. 1B of the first embodiment.
【図6】本発明の第3の実施例における磁極の拡大図で
あって、第1の実施例の図1(b)に相当するものであ
る。FIG. 6 is an enlarged view of a magnetic pole according to a third embodiment of the present invention, and corresponds to FIG. 1B of the first embodiment.
【図7】本発明の第4の実施例における磁極の拡大図で
あって、第1の実施例の図1(b)に相当するものであ
る。FIG. 7 is an enlarged view of a magnetic pole according to a fourth embodiment of the present invention, and corresponds to FIG. 1B of the first embodiment.
【図8】従来技術のリニモータであって、(a)はその
側断面図、(b)は(a)における磁極の拡大図であ
る。8 (a) is a side sectional view of a conventional linear motor, and FIG. 8 (b) is an enlarged view of a magnetic pole in FIG. 8 (a).
1 固定子 2 誘導子 3 誘導子歯 10 可動子 11 電機子 12 電機子コア 13 ティース 14 継鉄 15 電機子巻線 16 磁極 17a、17b、17c、17d、17e、17f、1
7g、17h、17i永久磁石DESCRIPTION OF SYMBOLS 1 Stator 2 Inductor 3 Inductor tooth 10 Mover 11 Armature 12 Armature core 13 Teeth 14 Yoke 15 Armature winding 16 Magnetic pole 17a, 17b, 17c, 17d, 17e, 17f, 1
7g, 17h, 17i permanent magnet
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H641 BB10 GG02 GG03 GG04 GG08 HH02 HH03 HH05 HH08 HH10 HH12 HH14 HH16 HH20 JA09 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H641 BB10 GG02 GG03 GG04 GG08 HH02 HH03 HH05 HH08 HH10 HH12 HH14 HH16 HH20 JA09
Claims (5)
ィースに巻装された電機子巻線と前記ティース先端に配
置された複数の磁極(1極当たりの長さを磁極ピッチP
m)とを有する電機子と、前記磁極と空隙を介して対向
配置されると共に磁性体からなる誘導子歯を有する誘導
子とを備え、前記電機子と前記誘導子の何れか一方を可
動子に、他方を固定子として相対移動を行うリニアモー
タにおいて、 1極当たりの前記磁極を、交互に磁化方向が異なるよう
に隣接して配置されたn個(nは2以上の整数)の永久
磁石で構成したことを特徴とするリニアモータ。An armature winding wound around teeth of an armature core formed by laminating electromagnetic steel sheets and a plurality of magnetic poles (the length per pole is defined as a magnetic pole pitch P)
m), and an inductor having an inductor tooth made of a magnetic material and opposed to the magnetic pole with a gap therebetween, and one of the armature and the inductor is a mover. In a linear motor that performs relative movement using the other as a stator, n (n is an integer of 2 or more) permanent magnets are arranged such that the magnetic poles per pole are alternately arranged adjacently so as to have different magnetization directions. A linear motor characterized by comprising:
個の隣り合う永久磁石同志の磁化方向の角度差θを、互
いにθ=180°/nずつずらしたことを特徴とする請
求項1に記載のリニアモータ。2. n arranged in the magnetic pole per pole
2. The linear motor according to claim 1, wherein angular differences θ between the magnetization directions of two adjacent permanent magnets are shifted from each other by θ = 180 ° / n.
を2個配置したときに、磁極ピッチ方向の幅をWaとす
る一方の永久磁石の磁化方向を可動子の進行方向と一致
させると共に、磁極ピッチ方向の幅をWbとする他方の
永久磁石の磁化方向を前記一方の永久磁石の磁化方向に
対して90°の角度だけずらし、 磁極ピッチと前記他方の永久磁石の幅Wbとの関係を、 0.3≦Wb/Pm<1.0 としたことを特徴とする請求項1記載のリニアモータ。3. When two permanent magnets are arranged in the magnetic pole per pole, the magnetization direction of one of the permanent magnets whose width in the magnetic pole pitch direction is Wa is made to coincide with the traveling direction of the mover. The magnetization direction of the other permanent magnet whose width in the magnetic pole pitch direction is Wb is shifted by 90 ° with respect to the magnetization direction of the one permanent magnet, and the relationship between the magnetic pole pitch and the width Wb of the other permanent magnet. 2. The linear motor according to claim 1, wherein 0.3 ≦ Wb / Pm <1.0. 3.
を2個配置したときに、一方の永久磁石の磁化方向η1
を可動子の進行方向に対して0°<η1<90°の角度
だけずらすと共に、他方の永久磁石の磁化方向η2を一
方の永久磁石の磁化方向η1に対して、η2=180°
―η1の角度だけずらし、 前記2個の永久磁石の磁極ピッチ方向における幅を等し
くしたことを特徴とする請求項1記載のリニアモータ。4. When two permanent magnets are arranged in the magnetic pole per pole, the magnetization direction η1 of one of the permanent magnets
Is shifted by an angle of 0 ° <η1 <90 ° with respect to the traveling direction of the mover, and the magnetization direction η2 of the other permanent magnet is set to η2 = 180 ° with respect to the magnetization direction η1 of one permanent magnet.
2. The linear motor according to claim 1, wherein the two permanent magnets are shifted by an angle of [eta] 1, and the widths of the two permanent magnets in the magnetic pole pitch direction are made equal.
ィースに巻装された電機子巻線と前記ティース先端に配
置された複数の磁極(1極当たりの長さを磁極ピッチP
m)とを有する電機子と、前記磁極と空隙を介して対向
配置されると共に磁性体からなる誘導子歯を有する誘導
子とを備え、前記電機子と前記誘導子の何れか一方を可
動子に、他方を固定子として相対移動を行うリニアモー
タにおいて、 前記複数の磁極を、可動子の進行方向に向かって磁化方
向が円弧状となるように多極着磁された永久磁石で構成
したことを特徴とするリニアモータ。5. An armature winding wound around teeth of an armature core formed by laminating electromagnetic steel sheets and a plurality of magnetic poles (the length per pole is defined as a magnetic pole pitch P).
m), and an inductor having an inductor tooth made of a magnetic material and opposed to the magnetic pole with a gap therebetween, and one of the armature and the inductor is a mover. In the linear motor performing relative movement with the other being a stator, the plurality of magnetic poles are constituted by multi-pole magnetized permanent magnets such that a magnetization direction becomes an arc shape toward a moving direction of the mover. A linear motor characterized by the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001033712A JP4600712B2 (en) | 2001-02-09 | 2001-02-09 | Linear motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001033712A JP4600712B2 (en) | 2001-02-09 | 2001-02-09 | Linear motor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002238241A true JP2002238241A (en) | 2002-08-23 |
JP4600712B2 JP4600712B2 (en) | 2010-12-15 |
Family
ID=18897420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001033712A Expired - Fee Related JP4600712B2 (en) | 2001-02-09 | 2001-02-09 | Linear motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4600712B2 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1447902A2 (en) * | 2003-02-13 | 2004-08-18 | Canon Kabushiki Kaisha | Linear motor, stage apparatus, exposure apparatus and device manufacturing method |
JP2005185061A (en) * | 2003-12-22 | 2005-07-07 | Okuma Corp | Linear motor |
WO2006035835A1 (en) * | 2004-09-29 | 2006-04-06 | Nikon Corporation | Magnetic field generation device, electromagnetic actuator, stage device, exposure device, and device manufacturing method |
JP2006191093A (en) * | 2004-12-29 | 2006-07-20 | Asml Netherlands Bv | Lithographic apparatus and actuator |
US7154198B2 (en) | 2004-10-07 | 2006-12-26 | Okuma Corporation | Linear motor |
JP2007221911A (en) * | 2006-02-16 | 2007-08-30 | Asmo Co Ltd | Rotor and motor |
KR100757733B1 (en) | 2004-12-30 | 2007-09-12 | 한국전기연구원 | Permanent magnet exited transverse flux linear motor with E-type mover core |
JP2007251128A (en) * | 2005-12-27 | 2007-09-27 | Asml Netherlands Bv | Magnet assembly, linear actuator, flat motor and lithography device |
JP2008173004A (en) * | 2008-03-24 | 2008-07-24 | Canon Inc | Manufacturing method of linear motor |
JP2010104136A (en) * | 2008-10-23 | 2010-05-06 | Mitsubishi Electric Corp | Linear motor |
WO2012066868A1 (en) * | 2010-11-16 | 2012-05-24 | 株式会社安川電機 | Linear motor |
EP2587646A3 (en) * | 2011-10-28 | 2017-01-11 | Sanyo Denki Co., Ltd. | Electric machine with linear mover |
WO2017030004A1 (en) * | 2015-08-19 | 2017-02-23 | 日立金属株式会社 | Actuator |
EP3155712A4 (en) * | 2014-06-14 | 2018-02-21 | The University Of British Columbia | Displacement devices, moveable stages for displacement devices and methods for fabrication, use and control of same |
JP2020019007A (en) * | 2018-08-03 | 2020-02-06 | エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd | Linear vibration motor |
JP6804705B1 (en) * | 2020-03-10 | 2020-12-23 | 三菱電機株式会社 | Movables and linear servo motors |
CN115837841A (en) * | 2023-01-03 | 2023-03-24 | 西南交通大学 | High-temperature superconducting magnetic suspension system and calculation method of coil size thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02114852A (en) * | 1988-10-25 | 1990-04-26 | Shinko Electric Co Ltd | Permanent magnet-type linear pulse motor |
JPH03124259A (en) * | 1989-10-05 | 1991-05-27 | Shinko Electric Co Ltd | Pulse motor |
JPH1094202A (en) * | 1996-09-13 | 1998-04-10 | Matsushita Electric Ind Co Ltd | Permanent magnet motor and rotor magnetizing device |
JPH11308793A (en) * | 1998-04-24 | 1999-11-05 | Matsushita Electric Ind Co Ltd | Outer rotor type permanent magnet motor |
JP2001028873A (en) * | 1999-07-12 | 2001-01-30 | Matsushita Electric Ind Co Ltd | Linear actuator |
-
2001
- 2001-02-09 JP JP2001033712A patent/JP4600712B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02114852A (en) * | 1988-10-25 | 1990-04-26 | Shinko Electric Co Ltd | Permanent magnet-type linear pulse motor |
JPH03124259A (en) * | 1989-10-05 | 1991-05-27 | Shinko Electric Co Ltd | Pulse motor |
JPH1094202A (en) * | 1996-09-13 | 1998-04-10 | Matsushita Electric Ind Co Ltd | Permanent magnet motor and rotor magnetizing device |
JPH11308793A (en) * | 1998-04-24 | 1999-11-05 | Matsushita Electric Ind Co Ltd | Outer rotor type permanent magnet motor |
JP2001028873A (en) * | 1999-07-12 | 2001-01-30 | Matsushita Electric Ind Co Ltd | Linear actuator |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7348695B2 (en) | 2003-02-13 | 2008-03-25 | Canon Kabushiki Kaisha | Linear motor, moving stage system, exposure apparatus, and device manufacturing method |
JP2004248400A (en) * | 2003-02-13 | 2004-09-02 | Canon Inc | Linear motor |
EP1447902A3 (en) * | 2003-02-13 | 2006-11-08 | Canon Kabushiki Kaisha | Linear motor, stage apparatus, exposure apparatus and device manufacturing method |
EP1447902A2 (en) * | 2003-02-13 | 2004-08-18 | Canon Kabushiki Kaisha | Linear motor, stage apparatus, exposure apparatus and device manufacturing method |
JP2005185061A (en) * | 2003-12-22 | 2005-07-07 | Okuma Corp | Linear motor |
WO2006035835A1 (en) * | 2004-09-29 | 2006-04-06 | Nikon Corporation | Magnetic field generation device, electromagnetic actuator, stage device, exposure device, and device manufacturing method |
US7154198B2 (en) | 2004-10-07 | 2006-12-26 | Okuma Corporation | Linear motor |
DE102005047819B4 (en) * | 2004-10-07 | 2017-12-14 | Okuma Corporation | linear motor |
JP2006191093A (en) * | 2004-12-29 | 2006-07-20 | Asml Netherlands Bv | Lithographic apparatus and actuator |
JP4528260B2 (en) * | 2004-12-29 | 2010-08-18 | エーエスエムエル ネザーランズ ビー.ブイ. | Lithographic apparatus and actuator |
KR100757733B1 (en) | 2004-12-30 | 2007-09-12 | 한국전기연구원 | Permanent magnet exited transverse flux linear motor with E-type mover core |
JP2007251128A (en) * | 2005-12-27 | 2007-09-27 | Asml Netherlands Bv | Magnet assembly, linear actuator, flat motor and lithography device |
JP2007221911A (en) * | 2006-02-16 | 2007-08-30 | Asmo Co Ltd | Rotor and motor |
JP2008173004A (en) * | 2008-03-24 | 2008-07-24 | Canon Inc | Manufacturing method of linear motor |
JP4653189B2 (en) * | 2008-03-24 | 2011-03-16 | キヤノン株式会社 | Linear motor manufacturing method |
JP2010104136A (en) * | 2008-10-23 | 2010-05-06 | Mitsubishi Electric Corp | Linear motor |
JP5527426B2 (en) * | 2010-11-16 | 2014-06-18 | 株式会社安川電機 | Linear motor |
WO2012066868A1 (en) * | 2010-11-16 | 2012-05-24 | 株式会社安川電機 | Linear motor |
EP2587646A3 (en) * | 2011-10-28 | 2017-01-11 | Sanyo Denki Co., Ltd. | Electric machine with linear mover |
EP3155712A4 (en) * | 2014-06-14 | 2018-02-21 | The University Of British Columbia | Displacement devices, moveable stages for displacement devices and methods for fabrication, use and control of same |
WO2017030004A1 (en) * | 2015-08-19 | 2017-02-23 | 日立金属株式会社 | Actuator |
TWI618337B (en) * | 2015-08-19 | 2018-03-11 | Hitachi Metals Ltd | Actuator |
JPWO2017030004A1 (en) * | 2015-08-19 | 2018-03-29 | 日立金属株式会社 | Actuator |
JP2020019007A (en) * | 2018-08-03 | 2020-02-06 | エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd | Linear vibration motor |
JP6804705B1 (en) * | 2020-03-10 | 2020-12-23 | 三菱電機株式会社 | Movables and linear servo motors |
WO2021181516A1 (en) * | 2020-03-10 | 2021-09-16 | 三菱電機株式会社 | Mover and linear servomotor |
KR20220124293A (en) * | 2020-03-10 | 2022-09-13 | 미쓰비시덴키 가부시키가이샤 | mover and linear servo motors |
CN115280654A (en) * | 2020-03-10 | 2022-11-01 | 三菱电机株式会社 | Movable element and linear servo motor |
KR102523909B1 (en) * | 2020-03-10 | 2023-04-20 | 미쓰비시덴키 가부시키가이샤 | Mover and linear servo motor |
CN115280654B (en) * | 2020-03-10 | 2023-07-21 | 三菱电机株式会社 | Movable member and linear servo motor |
CN115837841A (en) * | 2023-01-03 | 2023-03-24 | 西南交通大学 | High-temperature superconducting magnetic suspension system and calculation method of coil size thereof |
CN115837841B (en) * | 2023-01-03 | 2023-04-28 | 西南交通大学 | High-temperature superconducting magnetic suspension system and coil size calculation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4600712B2 (en) | 2010-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8446054B2 (en) | Periodic magnetic field generation device, and linear motor and rotary motor using the same | |
JP2002238241A (en) | Linear motor | |
US7230355B2 (en) | Linear hybrid brushless servo motor | |
US20030098620A1 (en) | Permanent magnet synchronous linear motor | |
US20180069464A1 (en) | Linear Motor | |
JP3344645B2 (en) | Motor using permanent magnet | |
JP3916048B2 (en) | Linear motor | |
JP2004357368A (en) | Motor using permanent magnet | |
US6548919B2 (en) | Linear motor | |
JP2006081377A (en) | Rotor of rotary electric machine | |
JP2002209371A (en) | Linear motor | |
JPH0135592B2 (en) | ||
JP2002186244A (en) | Permanent magnet linear motor | |
JP4720024B2 (en) | Permanent magnet synchronous motor | |
JPH11313475A (en) | Linear motor | |
JP2785406B2 (en) | Linear servo motor | |
JP7466475B2 (en) | Linear motor | |
JPS62126856A (en) | Linear motor | |
JP2002101636A (en) | Linear motor | |
JP2663533B2 (en) | Pulse motor | |
JP2001008391A (en) | Dynamo-electric machine | |
JP2001008432A (en) | Linear motor | |
JPS60200757A (en) | Hybrid type linear pulse motor | |
JP3824061B2 (en) | Linear motor | |
JP2024006584A (en) | linear motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100610 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100617 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100803 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100902 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100915 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131008 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141008 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |