JPH0135592B2 - - Google Patents

Info

Publication number
JPH0135592B2
JPH0135592B2 JP57196642A JP19664282A JPH0135592B2 JP H0135592 B2 JPH0135592 B2 JP H0135592B2 JP 57196642 A JP57196642 A JP 57196642A JP 19664282 A JP19664282 A JP 19664282A JP H0135592 B2 JPH0135592 B2 JP H0135592B2
Authority
JP
Japan
Prior art keywords
permanent magnet
mover
stator
strips
stepping motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57196642A
Other languages
Japanese (ja)
Other versions
JPS5986469A (en
Inventor
Nagahiko Nagasaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP19664282A priority Critical patent/JPS5986469A/en
Publication of JPS5986469A publication Critical patent/JPS5986469A/en
Publication of JPH0135592B2 publication Critical patent/JPH0135592B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電機子を誘導子とし界磁を多極に着
磁した永久磁石とする永久磁石形のリニヤステツ
ピングモータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a permanent magnet type linear stepping motor in which the armature is an inductor and the field is a multi-pole magnetized permanent magnet.

〔従来の技術〕[Conventional technology]

従来、等ピツチの永久磁石磁極とコアに界磁コ
イルを巻回した電機子を空隙を介し対向させた同
一面内に空隙を設けたものとして、リニヤステツ
ピングモータは例えば、特開昭56−74080号公報
に開示されているが、固定子レールとして移動方
向に多極に着磁した永久磁石を用いるので、レー
ルが長くなると、コストが高くなることや、周囲
の鉄粉を吸引するのを防ぐ保護カバーなどが必要
となり保守上不便であつた。
Conventionally, a linear stepping motor has been developed as a linear stepping motor in which a gap is provided in the same plane in which permanent magnet magnetic poles of equal pitch and an armature with a field coil wound around the core are opposed to each other with a gap between them. As disclosed in Publication No. 74080, permanent magnets magnetized with multiple poles in the direction of movement are used as stator rails, so the longer the rails, the higher the cost, and the need to avoid attracting surrounding iron powder. This required a protective cover to prevent this, which was inconvenient for maintenance.

又同一線上に空隙を設けたものとしては、実開
昭56−118588号公報や、本出願人がさきに提案し
た特願昭57−48737号(永久磁石形リニヤステツ
ピングモータ)は、この点を解決しようと考えた
ものであるが、誘導子歯のみよりなるレールを電
機子電磁石と多極着磁の永久磁石で両側からはさ
んだ可動子構造とした。
In addition, as for a device in which air gaps are provided on the same line, Japanese Utility Model Application No. 56-118588 and Japanese Patent Application No. 57-48737 (permanent magnet type linear stepping motor) proposed earlier by the present applicant address this point. In order to solve this problem, we used a mover structure in which a rail consisting only of inductor teeth was sandwiched between an armature electromagnet and a multipolar magnetized permanent magnet.

この先行技術になる装置の正断面図を第5図
に、そのA−A′およびB−B′断面図を第6図に
表わす。
A front cross-sectional view of this prior art device is shown in FIG. 5, and FIG. 6 shows cross-sectional views along A-A' and B-B'.

1は継鉄2の両側に巻装されたコイル、3は誘
導子歯をそなえた磁性体からなる可動子、4は空
隙を介して可動子3に対向して継鉄2に貼布固着
された永久磁石、5は可動子3に固着され産業機
械6を支持する非磁性体である。
1 is a coil wound around both sides of the yoke 2, 3 is a mover made of a magnetic material with inductor teeth, and 4 is fixed to the yoke 2 with a tape facing the mover 3 through an air gap. The permanent magnet 5 is a non-magnetic material that is fixed to the movable element 3 and supports the industrial machine 6.

コイル1によつて誘起される可動子3に形成さ
れた誘導子歯の磁極と、永久磁石4の磁極との間
の反撥、吸引作用により、第5図の紙面に直角方
向つまり第6図の上下方向に可動子3が移動す
る。
Due to the repulsion and attraction between the magnetic poles of the inductor teeth formed on the movable element 3 and the magnetic poles of the permanent magnet 4, which are induced by the coil 1, the direction perpendicular to the paper plane of FIG. 5, that is, the direction of FIG. The movable element 3 moves in the vertical direction.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、空隙が2つあつて構造が複雑になり、
空隙値を保つため高い工作精度が要求される等の
欠点があつた。
However, there are two voids, making the structure complicated.
It had drawbacks such as requiring high machining accuracy to maintain the air gap value.

こゝにおいて本発明は、従来ならびに先行技術
の問題点を解消し、工作容易で低コストの永久磁
石形リニヤステツピングモータを提供すること
を、その目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a permanent magnet type linear stepping motor that is easy to work with and is inexpensive, solving the problems of the conventional and prior art techniques.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、等ピツチで歯切りされた強磁性体よ
りなる固定子と、永久磁石を付設したE形コアに
集中巻電機子巻線を巻回した可動子とを空隙を介
し対向させた永久磁石形リニヤステツピングモー
タにおいて、 E形コアの中央脚部の固定子対向平面に、固定
子の歯幅と同じ幅の永久磁石細片を進行方向と直
角に多数固定子の歯ピツチと同一ピツチで、相隣
り合う永久磁石細片の磁極のNSが交互になるよ
うに貼布し、E形コアの左右の脚部固定子対向平
面には固定子の歯幅と同じ幅の永久磁石細片を、
進行方向と直角でかつ同ピツチ線上で中央脚部に
貼布した永久磁石細片と磁性が逆になるよう多数
貼布し、電機子巻線の作る磁界に永久磁石細片の
作る磁界を重畳させて、等ピツチの波状磁界を生
起させ模擬の可動子磁極とした1相分の可動子電
子ユニツトとし、この電磁ユニツトを相数個歯切
された固定子の歯ピツチと一定の相差角をなすよ
うに配置された。
The present invention is a permanent magnet in which a stator made of a ferromagnetic material with teeth cut at equal pitches and a mover in which a concentrated armature winding is wound around an E-shaped core equipped with a permanent magnet are opposed to each other through an air gap. In a magnet-type linear stepping motor, a large number of permanent magnet strips with the same width as the tooth width of the stator are placed on the plane of the central leg of the E-shaped core facing the stator, perpendicular to the direction of movement, at the same pitch as the tooth pitch of the stator. Adjacent permanent magnet strips are pasted so that the NS of the magnetic poles are alternate, and permanent magnet strips with the same width as the tooth width of the stator are attached to the left and right legs of the E-shaped core on the plane facing the stator. of,
A large number of permanent magnet strips are attached at right angles to the traveling direction and on the same pitch line so that the magnetism is opposite to that of the permanent magnet strips attached to the center leg, and the magnetic field produced by the permanent magnet strips is superimposed on the magnetic field produced by the armature winding. The electromagnetic unit is made into a mover electronic unit for one phase by generating a wavy magnetic field of equal pitch and serving as a simulated mover magnetic pole, and this electromagnetic unit is set at a constant phase difference angle with the tooth pitch of the stator, which is geared by several phases. It was arranged like an eggplant.

永久弱形リニヤステツピングモータである。 It is a permanent weak type linear stepping motor.

〔作用〕[Effect]

電機子巻線の作る磁界に永久磁石細片から生ず
る磁界を重畳させて等ピツチの波状磁界を生起さ
せて、有効磁路長は最短で、永久磁石の利用率が
高く、可動子に強力な推力が発生する。
The magnetic field generated by the permanent magnet strips is superimposed on the magnetic field generated by the armature winding to generate an evenly pitched wavy magnetic field, resulting in the shortest effective magnetic path length, high utilization rate of permanent magnets, and a strong Thrust is generated.

〔実施例〕〔Example〕

第1図に本発明の一実施例の斜視図を示す。 FIG. 1 shows a perspective view of an embodiment of the present invention.

すべての図において、同じ符号は同一もしくは
相当部分を表わすものとする。
In all figures, the same reference numerals represent the same or corresponding parts.

可動子電磁石ユニツト20は1相分のみを示し
たが、これを相数個移動軸Z−Z′方向に直列また
は並列に配置し、一体に連結して可動子とする。
Although only one phase of the mover electromagnet unit 20 is shown, several phases are arranged in series or in parallel in the direction of the moving axis Z-Z' and connected together to form a mover.

ところで第1図では可動子電磁ユニツト(1相
分)20のZ−Z′軸方向が短くそれに直角方向が
長く画いているが、実際は電機子巻線1の直線部
分は長く形成し、Z−Z′軸方向の辺がその直角方
向の辺より長くしてある。
By the way, in FIG. 1, the Z-Z' axis direction of the movable electromagnetic unit (for one phase) 20 is short and the direction perpendicular to it is long, but in reality, the straight part of the armature winding 1 is formed long and the Z- The side in the Z'-axis direction is longer than the side in the perpendicular direction.

固定子レール30は移動軸Z−Z′方向に直角に
等ピツチに歯31(溝は32)を設けた積層鉄心
である。もつとも低速で使用するものはソリツド
の鉄心でも良い。
The stator rail 30 is a laminated iron core in which teeth 31 (grooves are 32) are provided at equal pitches at right angles to the movement axis Z-Z' direction. However, if it is used at low speeds, a solid iron core may be sufficient.

第2図は、第1図のX−X′軸を中心にして、
可動子電磁ユニツト20をθ方向に180゜回転して
裏返し、永久磁石4の着磁パターンを観たもので
ある。
Figure 2 is centered around the X-X' axis in Figure 1.
The magnetization pattern of the permanent magnet 4 is observed when the movable electromagnetic unit 20 is rotated 180 degrees in the θ direction and turned over.

可動子の継鉄2の固定子レール30と相対する
空隙面には、歯31と同一幅の細片薄板状の永久
磁石4を継鉄2の脚部平面に、固定子レール30
の誘導子歯31と平行に、電機子巻線1に囲まれ
るE形コアの中央脚部(A部)と、囲まれないE
形コアの左右の脚部(B部)の磁極の極性は逆に
なるように着磁してある。
On the gap surface of the movable yoke 2 facing the stator rail 30, a permanent magnet 4 in the shape of a thin strip having the same width as the teeth 31 is placed on the leg plane of the yoke 2, and the stator rail 30
The central leg part (A part) of the E-shaped core surrounded by the armature winding 1 is parallel to the inductor teeth 31 of the
The left and right legs (section B) of the shaped core are magnetized so that the polarities of the magnetic poles are opposite.

その動作は次のとおり。 Its operation is as follows.

可動子20のA部のN極が固定子レール30の
誘導子歯31に一致している位置では、電機子巻
線1には、 A部(N)→空隙→ 歯部31 →右空隙→右B部(S)→ 〓左空隙→右B部(S)〓継鉄2→ A部(N) と回る磁束φ鎖交する。
At the position where the N pole of part A of the mover 20 matches the inductor teeth 31 of the stator rail 30, the armature winding 1 has the following: part A (N) → gap → tooth part 31 → right gap → Right part B (S) → Left gap → Right part B (S) → Yoke 2 → Part A (N) The rotating magnetic flux φ interlinks.

可動子20が1/2歯ピツチ移動すると、A部の
S極が誘導子歯31と一致するので鎖交磁束は逆
転して−φになる。
When the movable element 20 moves by 1/2 tooth pitch, the S pole of the part A coincides with the inductor tooth 31, so the interlinkage magnetic flux is reversed and becomes -φ.

このようにして、可動子20が1歯ピツチ移動
すると鎖交磁束は1サイクルの変化をする。可動
子20が一定速度で動き続ければ、電機子巻線1
には√2πNφ・v/τtの単相交流電圧が発生す
る。(ここに、Nは巻線、vは速度、τtは歯ピツ
チ、φは磁束である。ただし、この磁束φは正弦
波状に変化すると仮定している。) これを電動機として動作させるには電機子巻線
1に電流を流す。巻線1のつくる起磁力は、永久
磁石4を非可逆的に減磁させることのないような
値以下にする。
In this way, when the mover 20 moves by one tooth pitch, the interlinkage magnetic flux changes by one cycle. If the mover 20 continues to move at a constant speed, the armature winding 1
A single-phase AC voltage of √2πNφ·v/τ t is generated. (Here, N is the winding, v is the speed, τ t is the tooth pitch, and φ is the magnetic flux. However, it is assumed that this magnetic flux φ changes in a sinusoidal manner.) To operate this as a motor A current is passed through the armature winding 1. The magnetomotive force generated by the winding 1 is set below a value that does not irreversibly demagnetize the permanent magnet 4.

巻線起磁力がA部をN極にする極性であるとす
れば、A部の細片永久磁石4のN極部は強めら
れ、S極部は弱められる。B部の細片永久磁石4
のS極部は強められ、N極部は弱められ、巻線起
磁力を基準とした波状磁界が生じる。
If the winding magnetomotive force has a polarity that makes part A the north pole, the north pole part of the strip permanent magnet 4 in part A will be strengthened, and the south pole part will be weakened. Part B strip permanent magnet 4
The S-pole portion of the coil is strengthened and the N-pole portion is weakened, producing a wavy magnetic field based on the winding magnetomotive force.

従つて可動子20は永久磁石4のA部のN極
部、またB部のS極部が誘導子歯31に一致する
方向に吸引されて動く。巻線起磁力を逆転させる
とA部のS極とB部のN極が誘導子歯31に一致
する方向に吸引され、単相同期機として動作す
る。
Therefore, the movable element 20 is attracted and moves in a direction in which the N pole part of the part A of the permanent magnet 4 and the S pole part of the part B coincide with the inductor teeth 31. When the winding magnetomotive force is reversed, the S pole of section A and the N pole of section B are attracted in the direction that coincides with the inductor teeth 31, and the machine operates as a single-phase synchronous machine.

そこで、可動子電磁石ユニツト20を相数個移
動軸Z−Z′方向に、直列または並列に固定子の歯
31に対し永久磁石4の磁極の関係位置を、一定
相差をもつよう配置すれば、多相の同期機が構成
される。
Therefore, if several phases of the mover electromagnet units 20 are arranged in series or in parallel in the direction of the moving axis Z-Z' so that the relative positions of the magnetic poles of the permanent magnets 4 with respect to the teeth 31 of the stator have a constant phase difference, A polyphase synchronous machine is constructed.

以上の構造、動作原理は、電機子巻線1の直線
部と誘導子歯31の歯切り方向が直角になるいわ
ゆる直角形インダクタを用いたもので説明した。
The above structure and operating principle have been explained using a so-called right-angled inductor in which the linear portion of the armature winding 1 and the cutting direction of the inductor teeth 31 are perpendicular to each other.

第3図は本発明の他の実施例の斜視図、第4図
はその可動子電磁石ユニツト20を第3図のY−
Y′軸を中心にして、θ方向に180゜回転して裏返し
て観た時の永久磁石4の着磁パターンと誘導子歯
31の関係図である。
FIG. 3 is a perspective view of another embodiment of the present invention, and FIG. 4 shows the movable electromagnet unit 20 shown in FIG.
It is a diagram showing the relationship between the magnetization pattern of the permanent magnet 4 and the inductor teeth 31 when the permanent magnet 4 is rotated 180 degrees in the θ direction around the Y' axis and viewed upside down.

この他の実施例は、電機子巻線1の直線部と誘
導子歯31の歯切方向が平行のもの(平行形イン
ダクタ)について、本発明の構造が適用されたも
のである。第3図では電機子巻線1の直線部の方
向(移動方向Z−Z′に直角な方向)が短かく表わ
しているが、実際は効率良くするため長くとる。
In this other embodiment, the structure of the present invention is applied to an inductor in which the straight portion of the armature winding 1 and the cutting direction of the inductor teeth 31 are parallel (parallel inductor). In FIG. 3, the direction of the straight part of the armature winding 1 (direction perpendicular to the direction of movement Z-Z') is shown as short, but in reality it is made long in order to improve efficiency.

〔効果〕〔effect〕

かくして本発明によれば、次に掲げる数多くの
格段の効果が認められる。
Thus, according to the present invention, the following many remarkable effects are recognized.

バイアス永久磁石細片が可動子の磁極を兼ね
るので、可動子に歯切りやこまかい突極を必要
とせず、E形コアそのままで良いから製作が容
易であるとともに、永久磁石の利用率が高いの
でコストが安くなる。
Since the bias permanent magnet strips also serve as the magnetic poles of the mover, there is no need for gear cutting or fine salient poles on the mover, and the E-shaped core can be used as is, making it easy to manufacture, and the utilization rate of permanent magnets is high. Cost is lower.

可動子電磁石ユニツト20を1相ごとにユニ
ツト化してあるので、移動軸Z−Z′に対し、直
列または並列に配置するなど構成の自由度が高
いため、空隙が同一面であることとあいまつて
機械側の要求に合せた取付けができる。
Since the mover electromagnet unit 20 is made into a unit for each phase, there is a high degree of freedom in configuration, such as arranging them in series or parallel to the moving axis Z-Z'. Can be installed according to machine requirements.

ハイブリツド形やバリアブルリアクタンス
(VR)形に比べると力率が高く、ピークトル
クが大きくとれるので、電源容量が小さく、制
御が容易である。
Compared to the hybrid type and variable reactance (VR) type, it has a higher power factor and larger peak torque, so the power supply capacity is smaller and control is easier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の斜視図、第2図は
第1図のX−X′軸を中心にして可動子電磁ユニ
ツトをθ方向に180゜回転して裏返して観た時の永
久磁石の着磁パターンと誘導子歯の関係図、第3
図は本発明の他の実施例の斜視図、第4図はその
可動電磁石ユニツトの永久磁石の着磁パターンと
誘導子歯の関係図、第5図は先に提案された装置
の正断面図、第6図はそのA−A′およびB−
B′断面図である。 1…電機子巻線、2…継鉄、3…可動子、4…
永久磁石、5…非磁性体、6…産業機械、20…
可動子電磁石ユニツト(1相分)、30…固定子
レール、31…誘導子歯、32…溝。
Figure 1 is a perspective view of one embodiment of the present invention, and Figure 2 is a view of the movable electromagnetic unit rotated 180 degrees in the θ direction and turned over around the X-X' axis in Figure 1. Relationship diagram between permanent magnet magnetization pattern and inductor teeth, 3rd
Figure 4 is a perspective view of another embodiment of the present invention, Figure 4 is a diagram showing the relationship between the magnetization pattern of the permanent magnet of the movable electromagnet unit and the inductor teeth, and Figure 5 is a front sectional view of the previously proposed device. , Figure 6 shows the A-A' and B-
B′ cross-sectional view. 1... Armature winding, 2... Yoke, 3... Mover, 4...
Permanent magnet, 5... Non-magnetic material, 6... Industrial machine, 20...
Mover electromagnet unit (for one phase), 30... Stator rail, 31... Inductor tooth, 32... Groove.

Claims (1)

【特許請求の範囲】 1 等ピツチで歯切りされた強磁性体の固定子
と、永久磁石を付設したE形コアに集中巻電機子
巻線を巻回した可動子とを空隙を介し対向させた
永久磁石形リニヤステツピングモータにおいて、 可動子の固定子に対向する空隙面のE形コア、
中央脚部平面には固定子歯幅と同じ幅の多数の永
久磁石細片を進行方向と直交させNS極が交互に
入れ換わる様に貼布し、左右の脚部平面には多数
の永久磁石細片を中央脚部に貼布した永久磁石細
片の極性と逆になるように貼布し1相分の可動子
電磁ユニツトを構成し、この可動子電磁ユニツト
を相数個固定子歯ピツチに対し、一定の相差角を
なすように配置したことを特徴とするリニヤステ
ツピングモータ。
[Claims] 1. A stator made of a ferromagnetic material with equally pitched gears and a mover in which a concentrated armature winding is wound around an E-shaped core equipped with a permanent magnet are opposed to each other with an air gap interposed therebetween. In a permanent magnet type linear stepping motor, an E-shaped core on the gap surface facing the stator of the mover,
On the central leg plane, a large number of permanent magnet strips with the same width as the stator tooth width are affixed perpendicular to the traveling direction so that the NS poles alternate, and on the left and right leg planes, a large number of permanent magnets are attached. The strips are attached to the center leg so that the polarity is opposite to that of the permanent magnet strips to form a mover electromagnetic unit for one phase, and this mover electromagnetic unit is connected to several phases of the stator tooth pitch. A linear stepping motor is characterized in that it is arranged so as to form a constant phase difference angle.
JP19664282A 1982-11-09 1982-11-09 Linear stepping motor Granted JPS5986469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19664282A JPS5986469A (en) 1982-11-09 1982-11-09 Linear stepping motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19664282A JPS5986469A (en) 1982-11-09 1982-11-09 Linear stepping motor

Publications (2)

Publication Number Publication Date
JPS5986469A JPS5986469A (en) 1984-05-18
JPH0135592B2 true JPH0135592B2 (en) 1989-07-26

Family

ID=16361161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19664282A Granted JPS5986469A (en) 1982-11-09 1982-11-09 Linear stepping motor

Country Status (1)

Country Link
JP (1) JPS5986469A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185286U (en) * 1985-05-09 1986-11-19
JPH0628503B2 (en) * 1985-07-01 1994-04-13 株式会社安川電機 Linear stepper motor
JPS62193553A (en) * 1986-02-18 1987-08-25 Yaskawa Electric Mfg Co Ltd Linear electromagnetic actuator of permanent magnet type
JPS62159176U (en) * 1986-03-28 1987-10-09
JPS62290341A (en) * 1986-06-09 1987-12-17 Yaskawa Electric Mfg Co Ltd Permanent magnet-type induction motor
JPS6395848A (en) * 1986-10-07 1988-04-26 Yaskawa Electric Mfg Co Ltd Permanent magnet type surface pulse motor
JP2002101636A (en) * 2000-09-20 2002-04-05 Yaskawa Electric Corp Linear motor
JP4788986B2 (en) * 2001-05-10 2011-10-05 Smc株式会社 Linear motor
DE102004045992A1 (en) * 2004-09-22 2006-04-06 Siemens Ag Electric machine
DE102005007489A1 (en) * 2005-02-17 2006-08-24 Siemens Ag Woodworking machine with linear direct drive
DE102005045348A1 (en) * 2005-09-22 2007-04-05 Siemens Ag Tooth module for a permanent magnet excited primary part of an electrical machine
DE102006013636B4 (en) * 2006-03-22 2012-02-09 Siemens Ag Printing machine or electric machine for a printing press
DE102006013590A1 (en) * 2006-03-22 2007-09-27 Siemens Ag Electric machine, in particular a generator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5674080A (en) * 1979-11-19 1981-06-19 Ricoh Co Ltd Linear pulse motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56118588U (en) * 1980-02-13 1981-09-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5674080A (en) * 1979-11-19 1981-06-19 Ricoh Co Ltd Linear pulse motor

Also Published As

Publication number Publication date
JPS5986469A (en) 1984-05-18

Similar Documents

Publication Publication Date Title
US4563602A (en) Permanent magnet type stepping motor
JPS63217965A (en) Linear motor
JP3344645B2 (en) Motor using permanent magnet
US20060131967A1 (en) Linear hybrid brushless servo motor
JP2004357368A (en) Motor using permanent magnet
JPH0135592B2 (en)
US5087844A (en) Linear motor
JP2002238241A (en) Linear motor
JPS6030195B2 (en) straight electric machine
JPH11178310A (en) Linear motor
JPS62126856A (en) Linear motor
JPS58165656A (en) Permanent magnet type linear stepping motor
JPH10174419A (en) Pulse motor
Basak et al. A DC linear motor with a square armature
JPH03207256A (en) Linear servo motor
JPS6111542B2 (en)
JP2642240B2 (en) Linear motor
WO1995012914A1 (en) A variable-reluctance linear or rotary synchronous electric motor with volumetric development of force
JP2526819B2 (en) Linear motor
JPS61277362A (en) Three-phase linear inductor type synchronous motor
JPH0147114B2 (en)
JPS6192158A (en) Linear motor
JPS6395849A (en) Linear pulse motor
JPS5843428Y2 (en) linear motion motor
JP2531408B2 (en) Stepping motor