JPS58165656A - Permanent magnet type linear stepping motor - Google Patents

Permanent magnet type linear stepping motor

Info

Publication number
JPS58165656A
JPS58165656A JP4873782A JP4873782A JPS58165656A JP S58165656 A JPS58165656 A JP S58165656A JP 4873782 A JP4873782 A JP 4873782A JP 4873782 A JP4873782 A JP 4873782A JP S58165656 A JPS58165656 A JP S58165656A
Authority
JP
Japan
Prior art keywords
permanent magnet
inductor
stator
type
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4873782A
Other languages
Japanese (ja)
Other versions
JPH0324148B2 (en
Inventor
Nagahiko Nagasaka
長坂 長彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP4873782A priority Critical patent/JPS58165656A/en
Publication of JPS58165656A publication Critical patent/JPS58165656A/en
Publication of JPH0324148B2 publication Critical patent/JPH0324148B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Abstract

PURPOSE:To improve efficiency density such as output torque and a power rate by a method wherein a certain number of stator units are arranged along the migration axis of a needle and only the tooth of an inductor of the needle is integrately formed to make it in the form of a beam. CONSTITUTION:A stator is composed of a coil 4, a yoke 5 composed of a magnetic substance and a field yoke 9, whereas a needle is composed of an inductor tooth 6 and resin 7. Regarding the stator, the number of units corresponding to the needles thereof along their moving axes and the unit is provided with the field of the permanent magnet multitudinously magnetized in the direction of a single phase armature and its moving direction. Moreover, only the inductor tooth 6 of the needle is uniformly formed in a beam form. The unit in each phase is so arrange that the field magnetic pole makes a certain phase difference angle against the inductor tooth 6.

Description

【発明の詳細な説明】 本発明は、単位重量あたり、単位容積あた9の出力、ト
ルク、・譬ワレイトなどの性能密度があらゆる常温使用
の電気機械の中で最龜高い構造をなし九永久磁石形ステ
ッピングモータに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention has a structure that has the highest performance density such as output, torque, and weight per unit weight and unit volume among all electric machines used at room temperature, and has a structure that has the highest performance density per unit weight and volume. It relates to a magnet type stepping motor.

電磁機械の力発生の原理は ■ 嵯磁石同志の吸引1反撥、 ■ 電磁石が鉄心を吸引する。The principle of force generation in electromagnetic machines is ■Attraction 1 repulsion of comrade magnets, ■ The electromagnet attracts the iron core.

O電磁石と永久磁石の吸引1反撥、 に分けられる。O attraction and repulsion of electromagnet and permanent magnet, It can be divided into

■は二つの電磁石が別々の電源で励磁されるものと、電
源は一つで他方の電磁石は一方から電磁−導により励磁
されるものに分れる。
Type (2) is divided into two types: those in which two electromagnets are excited by separate power sources, and those in which one power source is used and the other electromagnet is excited from one side by electromagnetic conduction.

■とのは一方の電磁石に対して、他方は鉄心や永久磁石
のように励磁銅損を発生しないものを用いているので、
電磁石は大きなアンペアターンがとれるため有利である
■ means that one electromagnet uses a material that does not generate excitation copper loss, such as an iron core or a permanent magnet, for the other.
Electromagnets are advantageous because they can take large ampere turns.

しかし実lIIは、Oは鉄心の飽和、○は電機子反作用
による永久磁石の減磁により最大電磁力が抑えられてし
まう欠点がある。
However, Real II has the drawback that the maximum electromagnetic force is suppressed due to saturation of the iron core in O, and demagnetization of the permanent magnet due to armature reaction in O.

θでは、この対策として永久磁石の高さを高くし、抗磁
力の大きい永久磁石(材料)を使うなどするが、材料費
、マシンサイズが大きくなって経済的ではない。
For θ, countermeasures include increasing the height of the permanent magnet and using a permanent magnet (material) with a large coercive force, but this increases material costs and machine size, making it uneconomical.

以上説明した電磁機械は、回転子表面の単位面積当たり
のam力σ、が、空−磁束密度By  と電機子の円周
方向の単位長さI!jえりの電流導体数aCの積 e t =BII・(a c ) で表わされるもので、 89く2万ガウス 畠c < 1,000アンペア/センチメートルとする
と、 #tく2キログラム/平方センチメートルである。
In the electromagnetic machine described above, the am force σ per unit area of the rotor surface is the air-magnetic flux density By and the unit length in the circumferential direction of the armature I! It is expressed as the product of the number of current conductors aC in the j area, e t =BII・(ac), and if 89 × 20,000 Gauss c < 1,000 amperes/cm2, then #t × 2 kg/cm2 be.

実際はこの1/4  ぐらいがリミットで、σt=1キ
ログラム/平方センチメートルは非常に大容量のマシン
(1000KW以上)でなければ実現できない。
In reality, the limit is about 1/4 of this, and σt = 1 kilogram/square centimeter can only be achieved by a very large capacity machine (1000KW or more).

小容量の小形マシンで、接線力gt を連続時間定格で
IQwt/cm”K近ずける方法は、誘導子電磁石を用
いる以外にない。
In a small machine with a small capacity, the only way to bring the tangential force gt close to IQwt/cm''K in continuous time rating is to use an inductor electromagnet.

誘導子電磁石を用いたものを上の分類にならって、■’
 、@’ 、θ°とすると。
Following the above classification, those using inductor electromagnets are classified as ■'
, @', and θ°.

[相]’VR(/?グリアルリラクタンス)形θ’  
PM(・ダーマネントマグネット)形に分けられる。0
′ の中で永久磁石を使った鍔導子形界磁を用いた本の
を、H9(ハイブリッド)形とステツピンダモータでは
名ずけている。
[Phase] 'VR (/?Glial reluctance) type θ'
It is divided into PM (Dermanent Magnet) type. 0
', a book that uses a flange conductor type field magnet using a permanent magnet is named the H9 (hybrid) type and Stetspinder motor.

VR形とHa(ハイブリッド)形は、空一部で鉄心の歯
同志が対向する構造なので、この歯の根元で磁気飽和が
おきるために、この空隙部に与えることのできる起磁力
が低下してしまって、接線力−の@度は理論的最大値が
約800VcIIL2  である。実際はこの1/4 
として接線力の平均は200!i/cIIL2が限度で
あると考えられる。
The VR type and Ha (hybrid) type have a structure in which the teeth of the iron core face each other in the air space, so magnetic saturation occurs at the roots of these teeth, reducing the magnetomotive force that can be applied to this air gap. In fact, the theoretical maximum value of the tangential force is about 800 VcIIL2. Actually 1/4 of this
The average tangential force is 200! i/cIIL2 is considered to be the limit.

これは、空隙磁束量[Bg = 1万ガウス、電11 
    1導体数−c=200^/cm の接線力σ、
に対応するもので、誘導子を使わない限り、小形モータ
ではなかなか出せない値である。
This is the air gap magnetic flux [Bg = 10,000 Gauss, electric 11
Tangential force σ of 1 conductor number - c = 200^/cm,
This is a value that is difficult to achieve with small motors unless an inductor is used.

PM形は、空隙部で着磁された永久磁石の磁極と電機子
鉤導子鉄心の歯が対向する構造である。
The PM type has a structure in which the magnetic pole of a permanent magnet magnetized in the gap faces the teeth of the armature hook conductor core.

PM形の電機子からみた磁気ギャップPPM  は磁石
厚みとクリアランスの和であり、VR形の空1IIIv
RK〈らぺて10倍近く大きい。
The magnetic gap PPM seen from the armature of the PM type is the sum of the magnet thickness and the clearance, and the gap of the VR type is 1IIIv.
It's nearly 10 times bigger than RK<Rapete.

ではこれを図によって説明しよう。Let's explain this using a diagram.

第1図はVR形(Ha形を含め、これで代表させる)の
初期位置図、菖2図はその最終位置図、第3図はPM形
の初期位置図、第4図はその最終位置図である。1は固
定子、2ti可動子、3は永久磁石からなる可動子であ
る。
Figure 1 is the initial position of the VR type (including the Ha type, which is representative), Figure 2 is its final position, Figure 3 is the initial position of the PM type, and Figure 4 is its final position. It is. 1 is a stator, 2ti is a mover, and 3 is a mover made of a permanent magnet.

磁石の抗磁力をHC1磁石の高さLnlで表わすとき、
磁石の起磁力Hc−Lmと電機子起磁力を等しいとし、
’pM″=−Lm と考えると、第1図、纂3図から分
るように、初期位置におけるPM形の磁束はVR形の半
分である。
When the coercive force of the magnet is expressed by the height Lnl of the HC1 magnet,
Assuming that the magnetomotive force Hc-Lm of the magnet and the armature magnetomotive force are equal,
Considering 'pM''=-Lm, as can be seen from Figures 1 and 3, the magnetic flux of the PM type at the initial position is half that of the VR type.

レアアース磁石の残留磁束密fil、=1万ガウスとす
ると、最終位置におけるPM形(第4図)の磁束量f 
BIiが2万ガウスになるためには、電機子起磁力はI
Jc1万ガウメガウスイヤツflipMK通す必要があ
る。この起磁力は磁気ギャップgvRKzカガウス通す
VR形(第2図)の起磁力にくらべて約5倍も大きいこ
とがわかる。
Assuming that the residual magnetic flux density fil of the rare earth magnet is 10,000 Gauss, the amount of magnetic flux f of the PM type (Fig. 4) at the final position is
In order for BIi to be 20,000 Gauss, the armature magnetomotive force must be I
It is necessary to pass the Jc10,000 Gauge ear ear flip MK. It can be seen that this magnetomotive force is about five times larger than the magnetomotive force of the VR type (Fig. 2), which passes through the magnetic gap gvRKz Kagauss.

なお、第2図のN、Sの歯の根元で磁気飽和が起きるが
、94図の固定子IKおけるNの歯の根元では磁気飽和
はしない。従ってこの最終位置における磁束は両者では
y相等しい。
Although magnetic saturation occurs at the roots of teeth N and S in FIG. 2, magnetic saturation does not occur at the roots of teeth N in stator IK in FIG. 94. Therefore, the magnetic fluxes at this final position are equal in the y-phase in both cases.

しかして、初期位置から最終位置まで動く関に変化する
電磁コエネルギが機械工ネルゼに変換される。この値は
PM形では電機子起磁力と、この間に変化した磁束量の
積である。これに対し。
Thus, the changing electromagnetic co-energy is converted into mechanical energy as the link moves from the initial position to the final position. In the PM type, this value is the product of the armature magnetomotive force and the amount of magnetic flux that changed during this time. Against this.

VR形は飽和の影響(III2図)が入るのでむずかし
いが、大体、電機子起磁力X変化磁束×1/2である。
The VR type is difficult because it is affected by saturation (Fig. III-2), but it is roughly equal to armature magnetomotive force x changing magnetic flux x 1/2.

従ってPM形の電磁力はVR形の9倍出せることがわか
る。更に磁石の高さLmは歯ピッチ万に比例させてもこ
の電磁力は変らないから、歯ピッチTtを小さくして磁
石の使用量を少なくすることができる。
Therefore, it can be seen that the electromagnetic force of the PM type is 9 times that of the VR type. Furthermore, even if the height Lm of the magnet is made proportional to the tooth pitch 10,000, this electromagnetic force will not change, so the amount of magnets used can be reduced by decreasing the tooth pitch Tt.

ms図は本発明の基本原理を示す平行形銹導子の平面図
、第6図はそのx−xe 断面図である。
ms diagram is a plan view of a parallel type conductor showing the basic principle of the present invention, and FIG. 6 is an x-xe sectional view thereof.

ms図において−と溝を区別するために溝部に魚群t−
施している。
In order to distinguish between - and groove in the ms diagram, a school of fish t- is placed in the groove.
are giving.

この原理図において、4は励磁コイルで、固定子^およ
び固定子B工、82には歯を形成し^とBよ。
In this principle diagram, 4 is an excitation coil, stator ^ and stator B, and teeth are formed at 82, ^ and B.

Bg  とは歯と溝がひつくり返っている逆ピッチで電
気角で180°ずれており、^がS極のときBよ。
Bg is an opposite pitch in which the teeth and grooves are reversed and deviated by 180 degrees in electrical angle, and when ^ is the south pole, it is B.

B2 はN&に励磁される。B2 is excited to N&.

第7図は本発明の基本原理を示す直角形−導子の平面図
である。
FIG. 7 is a plan view of a rectangular conductor illustrating the basic principle of the present invention.

その原理図において、ここで4.A部と8よ、82部の
歳と溝は逆ピッチで電気角で180°ずれている。
In the principle diagram, 4. Parts A and 8, the grooves and grooves of parts 82 and 82 are at opposite pitches and deviate by 180 degrees in electrical angle.

1m8図は本発明の一実施例(平行形誘導子の場合)の
備断面図である。
Figure 1m8 is a cross-sectional view of one embodiment of the present invention (in the case of a parallel inductor).

5は磁性体からなるヨーク、6ti可動子(豹導子−)
、7Fiたとえばレジン(ステンレスでよい)郷でこれ
により6の誘導子歯相互を固着成形させている。8は誘
導子歯に対向して着磁された永久磁石、9は界磁ヨーク
である。
5 is a yoke made of magnetic material, 6ti mover (leopard conductor)
, 7Fi, for example, resin (stainless steel may be used) is used to securely mold the 6 inductor teeth to each other. 8 is a permanent magnet magnetized opposite to the inductor teeth, and 9 is a field yoke.

コイル4.ヨーク5および界磁−−り9Vrもって固定
子11を構成し、lI誘導[6とレノン7が可動子12
を形成するつ つまり、第5図の誘導子歯の部分を切り放し、この梯子
形の一1!16を可動子とし、コイル4及び界磁ヨーク
9と永久磁石8の界磁部は固定子となる。
Coil 4. The stator 11 is composed of the yoke 5 and the field 9Vr, and the lI induction [6 and Lennon 7 are the movable element 12].
In other words, the part of the inductor teeth shown in FIG. Become.

もつとも、この可動子12と固定子11は相対的な関係
(あり、12を固定し11を可動としてもよい。
However, the movable element 12 and the stator 11 have a relative relationship (there is a relative relationship, and 12 may be fixed and 11 may be movable).

梯子状の可動子6は、この移動方向に並ぶ歯のピッチが
一定でなければならないので、これに対応して、永久磁
石8の界磁部が、コイル4の内側と外側に対向する場所
で、同じ割出ピッチに対応する磁極の極性が逆になるう 第8図で、^の範囲の界磁のN極が可動子−6と一致す
る時は、Sl、S2 の範囲ではS極が−6と一致する
ように永久磁石8が着磁されている。
In the ladder-shaped mover 6, the pitch of the teeth arranged in the direction of movement must be constant. , the polarity of the magnetic poles corresponding to the same index pitch is reversed.In Figure 8, when the N pole of the field in the range ^ coincides with mover -6, the S pole in the range Sl and S2 is reversed. The permanent magnet 8 is magnetized to match -6.

第9図は、第8図の実施例の斜視図である。FIG. 9 is a perspective view of the embodiment of FIG. 8.

@10図、第11図、第12図は1本発明の他の実施例
([角形鰐導子の場合)の部分平面図である。
Figures 10, 11, and 12 are partial plan views of another embodiment of the present invention (in the case of a rectangular crocodile conductor).

全体の構成は第8図・第9図のような形態をとる。ただ
し、#!8図のコイル4とその向きが直角方向に異なる
。lilOwJと第12図は固定子、第11図は可動子
を表わす。
The overall configuration is as shown in FIGS. 8 and 9. however,#! The coil 4 in FIG. 8 is different from the coil 4 in its direction at right angles. lilOwJ and FIG. 12 represent the stator, and FIG. 11 represents the mover.

この場合は、可動子の歯部を移、動方向に平行な三9の
部分(81,A、8.)VC分け、AIF)mが8.。
In this case, the teeth of the mover are moved, and 39 parts (81, A, 8.) VC divided, AIF) m parallel to the moving direction are 8. .

82部の溝に一致する割出しで歯を配列する。このよう
にすれば磁石8の磁極は、 t*、 S動方向にそって
一定ピッチで着磁すれば亀い。
Arrange the teeth with an index that corresponds to the groove in section 82. In this way, the magnetic poles of the magnet 8 can be magnetized at a constant pitch along the t*, S movement direction.

また、可動子の−を^部とBよ、8□部で、半ピツチず
らせる代りに、磁石8の磁極なA部と81.B。
Also, instead of shifting the - of the mover by half a pitch between the ^ part and the B part, and the 8□ part, the magnetic pole A part of the magnet 8 and the 81. B.

部で牛ピッチずらせる構造も可能である。この場合は、
第8図の平行形−導子と全く同じ考え方になる。
It is also possible to have a structure in which the pitch of the cow is shifted in the section. in this case,
The idea is exactly the same as the parallel type conductor in Figure 8.

第13図は本発明になる巣極1f14子歯電機子の場合
の応用例の断面図、第14図はそのx−×°およびY−
Y’断面図である。
Fig. 13 is a sectional view of an application example of the nest pole 1f14 child tooth armature according to the present invention, and Fig. 14 is its x-x° and Y-
It is a Y' sectional view.

lOは非磁性体、11はたとえば産業機械である。IO is a non-magnetic material, and 11 is an industrial machine, for example.

左伺のコイル4t−^相、右側のコイル4をB相とした
とき、この場合は−セットで^相、B相電機子が構成さ
れる。
When the coil 4 on the left side is set to the t-^ phase and the coil 4 on the right side is set to the B phase, in this case, the - set constitutes the ^-phase and B-phase armatures.

x −x’の誘導子歯6とY −Y’の誘導子歯6は1
/4 歯ピッチずらしである。なお、誘導子歯6でなく
磁極8の着磁を1/2ピツチずらピてもよい。
The inductor tooth 6 of x-x' and the inductor tooth 6 of Y-Y' are 1
/4 This is tooth pitch shift. Note that the magnetization of the magnetic pole 8 instead of the inductor tooth 6 may be shifted by 1/2 pitch.

915図は本発明のさらに他の実施例の斜視図である。FIG. 915 is a perspective view of still another embodiment of the present invention.

この鍔導子形電機子の構造は、固定子5と可動子6の対
向面に喬厘な方向のマシン寸法(d工、d2)が最小に
できるので、多板形のクラッチのように沢山のりニヤモ
ータを並列に1槓層して大容量化できる。
The structure of this flange type armature allows the machine dimensions (d-work, d2) in the direction of the opposite sides of the stator 5 and mover 6 to be minimized. Larger capacity can be achieved by arranging one layer of linear motors in parallel.

かくして、本発明によれば、性能密度が極めて高い調性
が強く軽量のりニヤステッピングモータが得られる。
Thus, according to the present invention, a stepping motor with strong tonality and light weight and extremely high performance density can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はVR形の初期位置図、第2図はその最終位置図
、第3図はPM形の初期位flt園、第4図はその最終
位置図、第5図は平行形誘導子の平面図、第6図はその
x −x’断面図、!7図は直角形誘導子の平面図、第
8図は本発明の一実施例の側断面図、第9図はその斜視
図、第1O図、第11図。 第12図は本発明の他の実施例の部分平面図、鯖13図
は応用例の断面図、鎮14図はその×−x′およびY−
Y’断面図、第15図Fi禾発明のさらに他の実施例の
斜視図である。 1.11・・・固定子。 2.12・・・可動子。 3・・・永久磁石(可動子)、 4・・・励磁コイル。 5・・・ヨーク、 6・・・可動子(n導子−)、 7・・・非磁性充填剤(たとえば、レジン、ステンレス
)。 8・・・永久磁石。 9・・・界磁3−り。 10・・・非磁性体。 U・・・産業機械。 馬1図 馬2図 第3図 豚p        ( 馬5図     壓7図 鷺6図 第8図 馬9図      第10図 苓11図 第12図
Figure 1 shows the initial position of the VR type, Figure 2 shows its final position, Figure 3 shows the initial position of the PM type, Figure 4 shows its final position, and Figure 5 shows the parallel type inductor. The plan view and FIG. 6 are the x-x' cross-sectional views. 7 is a plan view of a right-angled inductor, FIG. 8 is a side sectional view of an embodiment of the present invention, FIG. 9 is a perspective view thereof, FIG. 1O, and FIG. 11. Fig. 12 is a partial plan view of another embodiment of the present invention, Fig. 13 is a sectional view of an applied example, and Fig. 14 is a partial plan view of the
FIG. 15 is a perspective view of still another embodiment of the invention. 1.11...Stator. 2.12...Movable element. 3...Permanent magnet (mover), 4...Exciting coil. 5... Yoke, 6... Mover (n conductor), 7... Non-magnetic filler (for example, resin, stainless steel). 8...Permanent magnet. 9...Field 3-ri. 10...Nonmagnetic material. U...Industrial machinery. Horse 1 Figure Horse 2 Figure 3 Pig p

Claims (1)

【特許請求の範囲】 電機子を誘導子とし界磁を多極に着磁した永久磁石とす
る永久磁石形ステッピングモータに2いて。 固定子は、WJ動子の移動軸に沿って相数個のユニット
を配置し、このユニットはそれぞれ単相の電機子および
移動軸方向に多極着磁された永久磁石の界磁を備え。 可動子は、sI誘導子部分のみを一体KI!を形して。 ビーム状に構成し、各相ユニットは界磁磁極がこのI導
子−に対し一定の相差角をなすように配置された ことを%黴とする永久磁石形リニヤステッピングモータ
[Claims] A permanent magnet type stepping motor in which the armature is an inductor and the field is a multi-pole magnetized permanent magnet. The stator has several units arranged along the moving axis of the WJ mover, and each unit is equipped with a single-phase armature and a permanent magnet field magnetized with multiple poles in the direction of the moving axis. For the mover, only the sI inductor part is integrated! Shape it. A permanent magnet type linear stepping motor configured in a beam shape, and each phase unit is arranged such that the field magnetic pole makes a constant phase difference angle with respect to the I conductor.
JP4873782A 1982-03-26 1982-03-26 Permanent magnet type linear stepping motor Granted JPS58165656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4873782A JPS58165656A (en) 1982-03-26 1982-03-26 Permanent magnet type linear stepping motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4873782A JPS58165656A (en) 1982-03-26 1982-03-26 Permanent magnet type linear stepping motor

Publications (2)

Publication Number Publication Date
JPS58165656A true JPS58165656A (en) 1983-09-30
JPH0324148B2 JPH0324148B2 (en) 1991-04-02

Family

ID=12811595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4873782A Granted JPS58165656A (en) 1982-03-26 1982-03-26 Permanent magnet type linear stepping motor

Country Status (1)

Country Link
JP (1) JPS58165656A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193553A (en) * 1986-02-18 1987-08-25 Yaskawa Electric Mfg Co Ltd Linear electromagnetic actuator of permanent magnet type
JP2002335666A (en) * 2001-05-10 2002-11-22 Smc Corp Linear motor
JP2003534759A (en) * 2000-04-07 2003-11-18 エービービー アクチボラゲット Electric machine
JP2006180690A (en) * 2004-11-25 2006-07-06 Sanyo Denki Co Ltd Linear motor
WO2006108513A1 (en) * 2005-04-15 2006-10-19 Compact Dynamics Gmbh Linear actuator
US7385329B2 (en) * 2000-08-31 2008-06-10 Wolfgang Hill Electric machine for high magnetic reversal frequencies
JP2009190813A (en) * 2008-02-12 2009-08-27 Honda Motor Co Ltd Belt device
US7841309B2 (en) 2005-04-15 2010-11-30 Compact Dynamics Gmbh Gas exchange valve actuator for a valve-controlled internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828605A (en) * 1971-08-19 1973-04-16
JPS56118588U (en) * 1980-02-13 1981-09-10

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828605A (en) * 1971-08-19 1973-04-16
JPS56118588U (en) * 1980-02-13 1981-09-10

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193553A (en) * 1986-02-18 1987-08-25 Yaskawa Electric Mfg Co Ltd Linear electromagnetic actuator of permanent magnet type
JP2003534759A (en) * 2000-04-07 2003-11-18 エービービー アクチボラゲット Electric machine
US7385329B2 (en) * 2000-08-31 2008-06-10 Wolfgang Hill Electric machine for high magnetic reversal frequencies
JP2002335666A (en) * 2001-05-10 2002-11-22 Smc Corp Linear motor
JP2006180690A (en) * 2004-11-25 2006-07-06 Sanyo Denki Co Ltd Linear motor
WO2006108513A1 (en) * 2005-04-15 2006-10-19 Compact Dynamics Gmbh Linear actuator
US7841309B2 (en) 2005-04-15 2010-11-30 Compact Dynamics Gmbh Gas exchange valve actuator for a valve-controlled internal combustion engine
US7989991B2 (en) 2005-04-15 2011-08-02 Compact Dynamics, GmbH Linear actuator
JP2009190813A (en) * 2008-02-12 2009-08-27 Honda Motor Co Ltd Belt device

Also Published As

Publication number Publication date
JPH0324148B2 (en) 1991-04-02

Similar Documents

Publication Publication Date Title
US4563602A (en) Permanent magnet type stepping motor
US4629924A (en) Multiphase motor with magnetized rotor having N/2 pairs of poles at its periphery
US7116028B2 (en) Motor utilizing basic factor and having generator function
JP2003158866A (en) Forcer and three-phase linear motor system
US2816240A (en) High speed composite electro-magnet and permanent magnet generator
US6548919B2 (en) Linear motor
JPS58165656A (en) Permanent magnet type linear stepping motor
JPH0135592B2 (en)
CN108880182B (en) Split-tooth modular vernier permanent magnet linear motor
JP3487102B2 (en) Pulse motor
CN112688517B (en) Mixed excitation axial magnetic field permanent magnet motor
JPS62126856A (en) Linear motor
JPH0147114B2 (en)
JPS6111542B2 (en)
JP2003522511A (en) Electromagnetic device
JP2531408B2 (en) Stepping motor
WO2024135211A1 (en) Electromagnetic rotating power machine
JPS627362A (en) Ladder type inductor
RU191798U1 (en) LINEAR ELECTRIC MOTOR
CN106961202B (en) A kind of magnetic-field modulation-type linear motor
JPS6395849A (en) Linear pulse motor
JPH0365040A (en) Same polarity induction generator
JP3045936B2 (en) PM type stepping motor
JP2805640B2 (en) Bobbin winding motor
JPS626865Y2 (en)