JPH0324148B2 - - Google Patents
Info
- Publication number
- JPH0324148B2 JPH0324148B2 JP57048737A JP4873782A JPH0324148B2 JP H0324148 B2 JPH0324148 B2 JP H0324148B2 JP 57048737 A JP57048737 A JP 57048737A JP 4873782 A JP4873782 A JP 4873782A JP H0324148 B2 JPH0324148 B2 JP H0324148B2
- Authority
- JP
- Japan
- Prior art keywords
- yoke
- inductor
- permanent magnet
- armature
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011295 pitch Substances 0.000 claims description 25
- 230000005284 excitation Effects 0.000 claims description 20
- 239000003302 ferromagnetic material Substances 0.000 claims description 13
- 239000000696 magnetic material Substances 0.000 claims description 8
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 7
- 150000002910 rare earth metals Chemical class 0.000 claims description 7
- 230000006698 induction Effects 0.000 claims description 3
- 238000004804 winding Methods 0.000 claims description 2
- 230000005291 magnetic effect Effects 0.000 description 39
- 230000004907 flux Effects 0.000 description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000012762 magnetic filler Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 210000004508 polar body Anatomy 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K41/00—Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
- H02K41/02—Linear motors; Sectional motors
- H02K41/03—Synchronous motors; Motors moving step by step; Reluctance motors
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Linear Motors (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、単位重量あたり、単位容積あたりの
出力、トルク、パワレイトなどの性能密度があら
ゆる常温使用の電気機械の中で最も高い構造をな
した永久磁石形リニヤステツピングモータに関す
る。[Detailed Description of the Invention] [Industrial Application Field] The present invention has a structure that has the highest performance density such as output per unit weight and unit volume, torque, and power rate among all electric machines used at room temperature. This invention relates to a permanent magnet type linear stepping motor.
電磁機械の力発生の原理は 電磁石同志の吸引、反発、 電磁石が鉄心を吸引する、 電磁石と永久磁石の吸引、反発 に分けられる。 The principle of force generation in electromagnetic machines is Attraction and repulsion between electromagnets, The electromagnet attracts the iron core, Attraction and repulsion of electromagnets and permanent magnets It can be divided into
は二つの電磁石が別々の電源で励磁されるも
のと、電源は一つで他方の電磁石は一方から電磁
誘導により励磁されるものに分れる。 There are two types of electromagnets: those in which two electromagnets are excited by separate power sources, and those in which one power source is used and the other electromagnet is excited by electromagnetic induction from one side.
とは一方の電磁石に対して、他方は鉄心や
永久磁石のように励磁銅損を発生しないものを用
いているので、電磁石は大きなアンペアターンが
とれるため有利である。 This is advantageous because one electromagnet uses a material that does not generate excitation copper loss, such as an iron core or a permanent magnet, so the electromagnet can take a large ampere turn.
しかし実際は、の電磁石が鉄心を吸引するの
は鉄心の飽和があり、の電磁石と永久磁石の吸
引、反発をさせるのは電機子反作用による永久磁
石の減磁により最大電磁力が抑えられていまう欠
点がある。
However, in reality, the reason why the electromagnet attracts the iron core is due to the saturation of the iron core, and the reason why the electromagnet and the permanent magnet attract and repel each other is because the maximum electromagnetic force is suppressed due to demagnetization of the permanent magnet due to armature reaction. There is.
さらにそのでは、この対策として永久磁石の
高さを高くし、抗磁力の大きい永久磁石(材料)
を使うなどするが、材料費、マシンサイズが大き
くなつて経済的ではない。 Furthermore, as a countermeasure to this problem, the height of the permanent magnet is increased, and a permanent magnet (material) with a large coercive force is used.
However, it is not economical as the material cost and machine size increase.
ここにおいて、本発明は、これら従来技術の不
具合を克服した単位重量あたり、単位容積あたり
の出力、トルク、パワレイトなどの性能密度があ
らゆる常温使用の電気機械の中で最も高い構造を
なした永久磁石形リニヤステツピングモータを提
供することを、その目的とする。 Here, the present invention provides a permanent magnet having a structure that overcomes the drawbacks of these conventional technologies and has the highest performance density such as output, torque, and power rate per unit weight and volume among all electric machines used at room temperature. The object of the present invention is to provide a type linear stepping motor.
上記目的を達成するために、本発明は、
突起のあるヨークに励磁コイルを巻回した電機
子と、等ピツチで強磁性体と非磁性体を交互にバ
ー状に配置した誘導子を空〓を介し対向させた永
久磁石形リニヤステツピングモータにおいて、前
記誘導子と対向する面を平面に形成したヨーク
と、
このヨークと空〓を介し平行させて対向させ、
前記強磁性体のピツチと等しいピツチで隣接す
る極性が交互に入れ替りレアアース磁石およびそ
れと同等のものから成る永久磁石片を連続して貼
付した界磁ヨークとで電機子を構成し、
ヨークと界磁ヨークの間に、前記誘導子を間挿
した
ことを特徴とする永久磁石形リニヤステツピング
モータ
であり、また
前記ヨークをE形ヨークとし中央脚に集中巻線
をほどこした
永久磁石形リニヤステツピングモータ
であり、さらには
前記励磁コイルをE形ヨークの両脚に巻回し、
前記ヨークをこの両脚の内側面を平面に形成した
ものとし、前記界磁ヨークをE形ヨークの中央脚
の両側面に形成し、前記誘導子を、1対の強磁性
体間を非磁性体で連結しコ字形に形成し、強磁性
体の両内側面に等ピツチで歯切りしたものとし、
前記ヨークと励磁ヨークの間に、この誘導子を間
挿した永久磁石形リニヤステツピングモータであ
る。
In order to achieve the above object, the present invention comprises an armature in which an excitation coil is wound around a yoke with protrusions, and an inductor in which ferromagnetic materials and non-magnetic materials are alternately arranged in a bar shape at equal pitches. In the permanent magnet type linear stepping motor, the yoke has a flat surface facing the inductor, and the yoke faces the yoke parallel to the yoke with an air gap in between, and has a pitch equal to the pitch of the ferromagnetic material. An armature is constituted by a field yoke to which permanent magnet pieces made of rare earth magnets and equivalent magnets are successively attached, the polarities of which are adjacent to each other alternately, and the inductor is placed between the yoke and the field yoke. A permanent magnet type linear stepping motor characterized in that the yoke is an E-type yoke and a concentrated winding is applied to the central leg, furthermore, the excitation is Wrap the coil around both legs of the E-shaped yoke,
The yoke has both legs formed with flat inner surfaces, the field yoke is formed on both sides of the central leg of the E-shaped yoke, and the inductor is made of a non-magnetic material between a pair of ferromagnetic materials. The ferromagnetic material is connected to form a U-shape, and the teeth are cut at equal pitches on both inner surfaces of the ferromagnetic material.
This is a permanent magnet linear stepping motor in which this inductor is inserted between the yoke and the excitation yoke.
本発明は、上記の構成であるから、
単位重量あたり、単位容積あたりの出力、トル
ク、パワレイトなどの性能密度があらゆる常温使
用の電気機械の中で最も高い構造をなしており、
言うならば性能密度が極めて高い剛性が強く軽
量のた永久磁石形リニヤステツピングモータとし
ての動作をなす。
Since the present invention has the above configuration, it has a structure with the highest performance density such as output, torque, and power rate per unit weight and unit volume among all electric machines used at room temperature. It operates as a permanent magnet linear stepping motor with extremely high density, rigidity, and light weight.
ここで、本発明の内容を述べるにあたり、これ
までに説明した電磁機械の一般的な構成理論から
本発明の原理的理論を試みる。
Here, in describing the content of the present invention, the basic theory of the present invention will be attempted from the general construction theory of electromagnetic machines explained so far.
以上説明した電磁機械は、回転子表面の単位面
積当りの接線力σtが、空〓磁束密度Bgと電機子
の円周方向の単位長さ当りの電流導体数acの積
σt=Bg・(ac)
で表されるもので、
Bg<2万ガウス
ac<1000アンペア/センチメートル
とすると、
σt<2キログラム/平方センチメートル
である。 In the electromagnetic machine explained above, the tangential force σt per unit area of the rotor surface is the product of the empty magnetic flux density Bg and the number of current conductors ac per unit length in the circumferential direction of the armature σt = Bg・(ac ), and if Bg<20,000 gauss and ac<1000 ampere/cm2, then σt<2 kg/cm2.
実際は、この1/4ぐらいすなわち、
σt=0.5キログラム/平方センチメートル
ぐらいがリミツトであり、
σt=1キログラム/平方センチメートル
は非常に大容量のマシン(1000KW以上)でなけ
れば実現できない。 In reality, the limit is about 1/4 of this, that is, σt = 0.5 kg/cm2, and σt = 1 kg/cm2 can only be achieved with a very large capacity machine (1000KW or more).
小容量の小形マシンで、接線力σtを連続時間定
格で1KgWt/cm2に近づける方法は、誘導子電磁
石を用いる以外にない。 Using an inductor electromagnet is the only way to make the tangential force σt close to 1 KgWt/cm 2 in a continuous time rating in a small machine with a small capacity.
誘導子電磁石を用いたものを前記の〜の分
類にならつて、′、′、′とすると、
′ VR(バリアブルリラクタンス)形
′ PM(パーマネントマグネツト)形
に分けられる。 If we use inductor electromagnets according to the above-mentioned classifications, we can classify them into ``VR (variable reluctance) type'' and PM (permanent magnet) type.
′の中で永久磁石を使つた誘導子形界磁を用い
たものを、HB(ハイブリツド)形とステツピン
グモータでは名付けている。Stepping motors that use an inductor field using permanent magnets are called the HB (hybrid) type.
VR(バリアブルリラクタンス)形とHB(ハイ
ブリツド)形は、空〓部で鉄心の歯[鉄心の端面
である空〓対向面に凹凸を刻設したその凸部を歯
と呼称している]同志が対向する構造なので、こ
の歯の根元で磁気飽和が起きる[なぜならば、歯
の先端部からの磁束と歯の側部から漏洩する磁束
との総和磁束が歯の根元を通過するから磁気飽和
が早く生起する]がために、この空〓部に与える
ことのできる起磁力が低下してしまつて、接線力
σtの限度は理論的最大値が約800g/cm2である。 In the VR (variable reluctance) type and the HB (hybrid) type, the teeth of the iron core are formed in the hollow part [the protrusions carved on the opposite surface of the hollow, which is the end face of the iron core, are called teeth]. Because of the opposing structures, magnetic saturation occurs at the root of this tooth [because the total magnetic flux of the magnetic flux from the tip of the tooth and the magnetic flux leaking from the side of the tooth passes through the root of the tooth, so magnetic saturation occurs quickly. Therefore, the magnetomotive force that can be applied to this cavity is reduced, and the theoretical maximum value of the tangential force σt is about 800 g/cm 2 .
実際はこの1/4として接線力σtの平均値は200
g/cm2が限度であると考えられる。 Actually, the average value of tangential force σt is 200 as 1/4 of this.
g/cm 2 is considered to be the limit.
これは、空〓磁束密度=1万ガウス、
電流導体数=200アンペア(A)/cm2
の接線力σtに対応するもので、誘導子を使わない
限り、小形モータではなかなか出せない値であ
る。 This corresponds to the tangential force σt of the air magnetic flux density = 10,000 Gauss and the number of current conductors = 200 amperes (A)/ cm2 , which is a value that is difficult to achieve with a small motor unless an inductor is used. .
PM(パーマネントマグネツト)形は、空〓部
で着磁された永久磁石の磁極と電機子誘導子鉄心
の歯が対向する構造である。 The PM (permanent magnet) type has a structure in which the magnetic poles of a permanent magnet magnetized in the air and the teeth of the armature inductor core face each other.
PM形の電機子からみた磁気ギヤツプは磁石厚
みとクリアランス(cliarancc)の和であり、VR
(バリアブルリラクタンス)形の空〓gVRに比べ
10倍近く大きい。この数値は、実際値として空〓
gVRは約0.3mmでありPM(パーマネントマグネツ
ト)の厚みは最小値として3mmぐらいであり、
PM形の永久磁石はレアアース(rereearth希上
類)磁石であるからその内部透磁率は空気透磁率
にほぼ等しいから、結局、約10倍となる。 The magnetic gap seen from the PM type armature is the sum of the magnet thickness and clearance (clearancc), and VR
(variable reluctance) shaped sky = compared to gVR
Almost 10 times larger. This number is empty as the actual value.
gVR is approximately 0.3 mm, and the minimum thickness of PM (permanent magnet) is approximately 3 mm.
Since the PM type permanent magnet is a rare earth magnet, its internal magnetic permeability is approximately equal to the air permeability, which is approximately 10 times higher.
では、これを図によつて説明する。 This will now be explained using a diagram.
第1図はVR形(HB形を含め、これで代表さ
せる)の初期位置図、第2図はその最終図、第3
図はPM形の初期位置図、第4図はその最終図で
ある。 Figure 1 is the initial position of the VR type (including the HB type, which is representative), Figure 2 is its final position, and Figure 3 is the final position.
The figure shows the initial position of the PM type, and Figure 4 shows its final position.
そして、1は電機子(固定子)、2は誘導子
(可動子)、3は永久磁石からなる可動子である。 1 is an armature (stator), 2 is an inductor (mover), and 3 is a mover made of a permanent magnet.
永久磁石3の抗磁力をHc、磁石の高さをLmで
表わすとき、永久磁石3の起磁力Hc・Lmと電機
子起磁力を等しいとし、
磁気ギヤツプgpM=Lmと考えると、第1図、
第3図から分かるように、初期位置におけるPM
形の磁束はVR形の半分である。 When the coercive force of the permanent magnet 3 is expressed by Hc and the height of the magnet is expressed by Lm, assuming that the magnetomotive force of the permanent magnet 3, Hc・Lm, and the armature magnetomotive force are equal, and considering that the magnetic gap gpM=Lm, Fig. 1,
As can be seen from Figure 3, PM at the initial position
The magnetic flux of the shape is half that of the VR shape.
レアアース磁石の残留磁束密度を
Br=1万ガウスとすると、最終位置における
PM形(第4図)の磁束密度Bgが2万ガウスにな
るためには、電機子起磁力は更に1万ガウスを磁
気ギヤツプgpMに通す必要がある。 If the residual magnetic flux density of the rare earth magnet is Br = 10,000 Gauss, then at the final position
In order for the magnetic flux density Bg of the PM type (Fig. 4) to become 20,000 Gauss, the armature magnetomotive force must pass an additional 10,000 Gauss through the magnetic gap gpM.
この電機子起磁力は磁気ギヤツプ(空〓)
gVRに2万ガウス通すVR形(第2図)の電機子
磁力に比べて、これまでの例示的説明から明らか
なように約5倍も大きいことがわかる。 This armature magnetomotive force is a magnetic gap (empty)
Compared to the armature magnetic force of the VR type (Figure 2), which passes 20,000 Gauss through gVR, it is found to be about five times larger, as is clear from the exemplary explanations given above.
なお、第2図のN,Sの歯の根元では前述のよ
うに漏洩磁束と有効磁束の総和が通過するので磁
気飽和が起きるが、第4図の誘導子(固定子)1
におけるNの歯の根元では磁気飽和はしない、な
ぜならばNの歯の側部からの漏洩磁束なるものは
対向する永久磁石の磁極性が皆同じNであるから
相反発して発生しない。 Note that magnetic saturation occurs at the roots of teeth N and S in Figure 2, as the sum of leakage magnetic flux and effective magnetic flux passes through them as described above, but inductor (stator) 1 in Figure 4
There is no magnetic saturation at the root of the N tooth in , because the leakage magnetic flux from the side of the N tooth does not conflict with each other because the magnetic polarities of the opposing permanent magnets are all the same N.
従つて、この最終位置における磁束は両者でほ
ぼ等しい。 Therefore, the magnetic flux at this final position is approximately equal in both.
しかして、初期位置から最終位置まで動く間に
変化する電磁エネルギが機械エネルギに変換され
る。 Thus, the electromagnetic energy that changes during movement from the initial position to the final position is converted into mechanical energy.
この値はPM形では電機子起磁力と、この間に
変化した磁束量の積である。 For the PM type, this value is the product of the armature magnetomotive force and the amount of magnetic flux that changed during this time.
これに対し、VR形は飽和の影響(第2図)が
入るのでむずかしいが、大体、
電機子×変化磁束×1/2
である。 On the other hand, the VR type is difficult because it is affected by saturation (Figure 2), but it is roughly equal to armature x changing magnetic flux x 1/2.
ここで、例えば励磁コイルの自己インダクタン
スをL、励磁電流をiとすれば発生する電磁エネ
ルギはぼほ(1/2)Li2であるが、VR形では1次
電流(励磁電流)をi1、2次電流(永久磁石によ
る等価励磁電流)をi2、相互インダクタンスをM
とすれば発生する電磁エネルギはほぼMi1i2であ
る。 Here, for example, if the self-inductance of the excitation coil is L and the excitation current is i, the electromagnetic energy generated is approximately (1/2) Li 2 , but in the VR type, the primary current (excitation current) is i 1 , secondary current (equivalent excitation current due to permanent magnet) is i 2 , mutual inductance is M
Then, the electromagnetic energy generated is approximately Mi 1 i 2 .
従つて、前述の例示的数値からPM形の電磁力
は、VR形の10倍出せることがわかる。 Therefore, from the above-mentioned exemplary values, it can be seen that the electromagnetic force of the PM type can be produced 10 times that of the VR type.
更に、永久磁石3の高さLmは歯ピツチτtに比
例させても、この電磁力はかわらないから、歯ピ
ツチτtを小さくして、永久磁石3の使用量を少な
くすることができる。 Furthermore, even if the height Lm of the permanent magnet 3 is made proportional to the tooth pitch τt, this electromagnetic force does not change, so the tooth pitch τt can be made smaller and the amount of the permanent magnet 3 used can be reduced.
第5図は本発明の基本原理を示す平行形誘導子
の平面図、第6図は号のX−X′断面図である。 FIG. 5 is a plan view of a parallel inductor showing the basic principle of the present invention, and FIG. 6 is a cross-sectional view taken along line X-X'.
第5図において歯と溝を区別するために溝部に
点群を施している。 In FIG. 5, a group of points is applied to the groove to distinguish between the tooth and the groove.
この原理図において、4は励磁コイルで、固定
子Aおよび固定子B1,B2には歯を形成しAと
B1,B2とは歯と溝がひつくり返つている逆ピ
ツチで電気角で180°ずれており、AがS極のとき
B1,B2はN極に励磁される。 In this principle diagram, 4 is an excitation coil, stator A and stators B1 and B2 have teeth, and A, B1, and B2 are opposite pitches in which the teeth and grooves are reversed, making it 180 degrees in electrical angle. When A is the south pole, B1 and B2 are excited to the north pole.
この誘導子(固定子)1はいわゆる突起のある
ヨークであり、誘導子(固定子)1に空隙を介し
て対向し、区分着磁されている永久磁石3からな
る可動子(図示していない)が、左から右あるい
は右から左へと、励磁コイル4への通電により駆
動される。その作用は第3図、第4図で述べてい
る。 This inductor (stator) 1 is a so-called yoke with protrusions, and is opposed to the inductor (stator) 1 with an air gap in between. ) is driven from left to right or right to left by energizing the excitation coil 4. Its action is described in FIGS. 3 and 4.
第7図は本発明の基本原理を示す直角形誘導子
の平面図である。 FIG. 7 is a plan view of a right-angled inductor showing the basic principle of the present invention.
その第7図原理図において、ここでも、A部と
B1、B2部の歯と溝は逆ピツチで電気角で
180°ずれている。 In the principle diagram shown in FIG. 7, the teeth and grooves in section A and sections B1 and B2 are also at opposite pitches and deviated by 180 degrees in electrical angle.
この場合は、図示を省略した永久磁石3の可動
子が上から下へあるいは下から上の方向へ駆動さ
れる。 In this case, the movable element of the permanent magnet 3 (not shown) is driven from top to bottom or from bottom to top.
第8図は本発明の一実施例(平行形誘導子の場
合)の側断面図である。 FIG. 8 is a side sectional view of one embodiment of the present invention (in the case of a parallel inductor).
6は誘導子歯、7は例えばレジン(ステンレス
でよい)等で、これにより6の誘導子歯相互を固
着成形させて可動子を形成させている。 Reference numeral 6 indicates an inductor tooth, and 7 indicates, for example, a resin (stainless steel may be used) or the like, whereby the inductor teeth 6 are fixedly molded to each other to form a movable member.
5は磁性体からなる(電機子)ヨークで、永久
磁石3は誘導子歯6に対向して着磁され、9は界
磁ヨークである。 5 is an (armature) yoke made of a magnetic material, the permanent magnet 3 is magnetized to face the inductor teeth 6, and 9 is a field yoke.
励磁コイル4、(電機子)ヨーク5および界磁
ヨーク9をもつて固定子を形成する。 An excitation coil 4, an (armature) yoke 5, and a field yoke 9 form a stator.
つまり、第5図に表した誘導子(固定子)1の
可動子への対向面に形成されている誘導子歯の部
分を、その根元から切り放し、誘導子(固定子)
1の可動子への対向面は平滑面とするとともに、
切り放した誘導子歯の溝部分に例えばレジン、ス
テンレスなどの非磁性充填材7を充填固形し、こ
のこの誘導子歯6とともに可動子を形成し、(電
機子)ヨーク5と励磁コイル4及び界磁ヨーク9
と永久磁石3の界磁部で固定子を形成する。 In other words, the part of the inductor tooth formed on the surface of the inductor (stator) 1 facing the movable element shown in FIG. 5 is cut away from its root, and the inductor (stator)
The surface facing the movable element 1 is a smooth surface, and
A non-magnetic filler 7, such as resin or stainless steel, is filled and solidified into the groove of the cut-out inductor tooth, and together with the inductor tooth 6, a mover is formed, and the (armature) yoke 5, excitation coil 4, and field magnetic yoke 9
and the field part of the permanent magnet 3 form a stator.
固定子の励磁コイル4からの電機子起磁力によ
る磁束に基づき、破線で示すある瞬時の磁力線の
経路と矢印で表すその方向のように、(電機子)
ヨーク5の平滑な脚部端面から、可動子の誘導子
歯6へ磁気誘導を行い、それをN極あるいはS極
に励磁し、この誘導磁極と、界磁ヨーク9の可動
子の移動方向に等ピツチに隣接磁極が交互に異極
性になるように区分磁化された永久磁石3とで、
第3図および第4図に示す電磁力が働き、可動子
は矢印に表す方向に直線運動をする。 Based on the magnetic flux due to the armature magnetomotive force from the excitation coil 4 of the stator, the path of the instantaneous line of magnetic force shown by the broken line and its direction shown by the arrow, (armature)
Magnetic induction is performed from the smooth end face of the leg of the yoke 5 to the inductor tooth 6 of the mover, and it is excited to the north or south pole, and this induced magnetic pole and the field yoke 9 are connected in the moving direction of the mover. Permanent magnets 3 are segmented and magnetized so that adjacent magnetic poles alternately have different polarities at equal pitches,
The electromagnetic force shown in FIGS. 3 and 4 acts, and the mover moves linearly in the direction shown by the arrow.
もつとも、この可動子と固定子は相対的な関係
にあり、その可動子を固定しその固定子を可動と
してもよい。 However, the movable element and the stator are in a relative relationship, and the movable element may be fixed and the stator movable.
梯子状の可動子は、この移動方向に並ぶ誘導子
歯6のピツチが一定でなければならないので、こ
れに対応して、永久磁石3の界磁部が、励磁コイ
ル4の内側と外側に対向する場所で、同じ割出ピ
ツチに対応する磁極の磁性が逆になる。 In the ladder-shaped mover, the pitch of the inductor teeth 6 arranged in the direction of movement must be constant. The magnetic properties of the magnetic poles corresponding to the same index pitch are reversed at the location where the index pitch is.
第8図で、Aの範囲の界磁のN極が誘導子歯6
と一致する時は、B1,B2の範囲ではS極が誘
導子歯6と一致するように永久磁石3が着磁され
ている。 In Fig. 8, the N pole of the field in the range A is the inductor tooth 6.
When they match, the permanent magnet 3 is magnetized so that the S pole matches the inductor teeth 6 in the range of B1 and B2.
第9図は、第8図の実施例の斜視図で、11は
(電機子)ヨーク5と永久磁石8・界磁ヨーク9
からなる電機子(固定子)であり、12は誘導子
歯6と非磁性充填材7からなる可動子である。 FIG. 9 is a perspective view of the embodiment shown in FIG.
12 is a movable element consisting of inductor teeth 6 and non-magnetic filler 7.
第10図、第11図、第12図は、本発明の他
の実施例(直角形誘導子の場合)の部分平面図で
ある。 10, 11, and 12 are partial plan views of other embodiments of the present invention (in the case of a right-angled inductor).
全体の構成は第8図・第9図のような形態をと
る。ただし、第8図の励磁コイル4とその向きが
直角方向に異なる。 The overall configuration is as shown in FIGS. 8 and 9. However, the direction of the excitation coil 4 in FIG. 8 is different from that in the right angle direction.
第10図と第12図は固定子、第11図は可動
子を表す。 10 and 12 show the stator, and FIG. 11 shows the mover.
この場合は、可動子の誘導子歯6部を移動方向
に平行な三つの部分B1,A,B2に分け、A部
の誘導子歯6がB1,B2部の溝に一致する割り
出しで誘導子歯6を配列する。このようにすれば
永久磁石3の磁極は、唯、移動方向に沿つて一定
ピツチで着磁すればよい。 In this case, the inductor teeth 6 of the mover are divided into three parts B1, A, and B2 parallel to the moving direction, and the inductor teeth 6 of the A part are indexed so that they match the grooves of the B1 and B2 parts. Arrange the teeth 6. In this way, the magnetic poles of the permanent magnet 3 only need to be magnetized at constant pitches along the moving direction.
また、可動子の誘導子歯6部をA部とB1,B
2部で半ピツチずらせる代りに、永久磁石3の磁
極をA部とB1,B2部で半ピツチずらせる構造
も可能である。 In addition, the 6 parts of the inductor teeth of the mover are connected to parts A, B1, and B.
Instead of shifting the magnetic poles of the permanent magnet 3 by half a pitch between the two parts, it is also possible to shift the magnetic poles of the permanent magnet 3 by half a pitch between the A part and the B1 and B2 parts.
この場合は、第8図の平行形誘導子と全く同じ
考え方になる。 In this case, the concept is exactly the same as the parallel type inductor shown in FIG.
第13図は本発明になる単極誘導歯電機子の場
合の応用例の断面図、第14図はそのX−X′お
よびY−Y′断面図である。 FIG. 13 is a cross-sectional view of an applied example of a monopolar induction tooth armature according to the present invention, and FIG. 14 is a cross-sectional view thereof along X-X' and Y-Y'.
10は非極性体、13は例えば産業機械であ
る。左側の励磁コイル4をA相、右側の励磁コイ
ル4をB相としたとき、この場合は一セツトでA
相,B相電機子ユニツトが構成される。 10 is a non-polar body, and 13 is, for example, an industrial machine. When the excitation coil 4 on the left side is set to A phase and the excitation coil 4 on the right side is set to B phase, in this case, one set is A phase.
Phase and B phase armature units are constructed.
X−X′の誘導子歯6とY−Y′の誘導子歯6は
1/4ピツチずらしてある。 The inductor teeth 6 at X-X' and the inductor teeth 6 at Y-Y' are shifted by 1/4 pitch.
なお、誘導子歯6ではなく、永久磁石3の着磁
を1/2ピツチずらしてもよい。 Note that instead of the inductor teeth 6, the magnetization of the permanent magnet 3 may be shifted by 1/2 pitch.
第15図は本発明のさらなる他の実施例の斜視
図である。 FIG. 15 is a perspective view of still another embodiment of the present invention.
この誘導子形電機子の構造は、固定子[(電機
子)ヨーク5などからなる]と可動子[誘導子歯
6などからなる]の対向面に垂直な方向のマシン
寸法d1,d2が最小にできるので、多板形のク
ラツチのように沢山のリニヤモータを並列に積層
して大容量化できる。 The structure of this inductor type armature has minimum machine dimensions d1 and d2 in the direction perpendicular to the opposing surfaces of the stator [(armature) consisting of yoke 5 etc.] and the movable element [consisting of inductor teeth 6 etc.] Therefore, it is possible to increase the capacity by stacking many linear motors in parallel like a multi-plate clutch.
かくして、本発明によれば、
突起のあるヨークに励磁コイルを巻回した電機
子と、等ピツチで強磁性体と非磁性体を交互にバ
ー状に配置した誘導子を空隙を介し対向させたて
おり、
その強磁性体のピツチと等しいピツチで隣接す
る極性が交互に入れ替りレアアース磁石およびそ
れと同等のものから成る永久磁石片を連続して貼
付した界磁ヨークとで電機子を構成したので、こ
の新規な構成とレアアース磁石などの特性と相俟
つて性能密度が極めて高いモータが得られる。
Thus, according to the present invention, an armature in which an excitation coil is wound around a yoke with protrusions, and an inductor in which ferromagnetic materials and non-magnetic materials are alternately arranged in a bar shape at equal pitches are opposed to each other through an air gap. The armature was constructed with a field yoke to which permanent magnet pieces made of rare earth magnets and equivalent magnets were successively attached, and the adjacent polarities alternated at a pitch equal to the pitch of the ferromagnetic material. This new configuration, combined with the characteristics of rare earth magnets, results in a motor with extremely high performance density.
それを少しく敷衍すればこうである。すなわ
ち、
VR形は強い電磁力をヨークに加えると、これ
は可動子に鉄心を使つているだけでヨークの歯の
根元で磁束が飽和してしまつて、なかなかに大き
な単位当たりの推力(パワー/重量)が出せな
い。 If we expand on this a little further, it is as follows. In other words, with the VR type, when a strong electromagnetic force is applied to the yoke, the magnetic flux becomes saturated at the root of the yoke teeth simply by using an iron core for the mover, resulting in a rather large thrust per unit (power/power). weight) cannot be produced.
また、従来のPM形でも永久磁石にフエライト
を採用しているので、抗磁力Hcは略2000〜3000
エルステツド、残留磁束密度Brも略2000〜3000
ガウスであり、強い電磁力をヨークに加えると、
かえつて永久磁石は減磁され、電磁力を強められ
ない。 In addition, since the conventional PM type also uses ferrite for the permanent magnet, the coercive force Hc is approximately 2000 to 3000.
Oersted, residual magnetic flux density Br is also approximately 2000 to 3000
Gaussian, and when a strong electromagnetic force is applied to the yoke,
On the contrary, the permanent magnet is demagnetized and cannot strengthen its electromagnetic force.
ところが本発明は、永久磁石にレアアース磁石
等を適用しているから、抗磁石Hcは略10000〜
12000エルステツドであり、定格値を出力する推
力、トルク、パワー、パワーレイトの単位面積、
単位重量あたりに示す性能の数値が高いのであ
り、因みに実験値で表すとたとえば単位重量当た
りの推力(パワー)が、本発明はVR形の約2.5倍
である。 However, in the present invention, since a rare earth magnet or the like is used as a permanent magnet, the anti-magnet Hc is approximately 10,000~
The unit area of thrust, torque, power, and power rate that outputs the rated value is 12000 oersted,
The performance value per unit weight is high, and when expressed in experimental values, for example, the thrust (power) per unit weight of the present invention is about 2.5 times that of the VR type.
しかも、本発明は固定部の突起のあるヨークに
励磁コイルを巻回した電機子と、可動部の等ピツ
チで強磁性体と非磁性体を交互にバー状に配置し
た誘導子を空〓を介し対向させた構造であり、バ
ー状可動部は強磁性体(例えば鉄)と非磁性体
(例えばステンレス)を強靭な接着剤で固着され
たバー状金属体とすることができ、その剛性が強
く、かつ軽量の永久磁石形リニヤステツピングモ
ータと言える。 Furthermore, the present invention uses an armature in which an excitation coil is wound around a yoke with protrusions in the fixed part, and an inductor in which ferromagnetic materials and non-magnetic materials are alternately arranged in a bar shape at equal pitches in the movable part. The bar-shaped movable part can be made of a bar-shaped metal body made of a ferromagnetic material (e.g. iron) and a non-magnetic material (e.g. stainless steel) fixed with a strong adhesive, and its rigidity is It can be said to be a strong and lightweight permanent magnet type linear stepping motor.
第1図はVR形の初期位置図、第2図はその最
終位置図、第3図はPM形の初期位置図、第4図
はその最終位置図、第5図は平行形誘導子の平面
図、第6図はX−X′断面図、第7図は直角形誘
導子の平面図、第8図は本発明の一実施例の側断
面図、第9図はその斜視図、第10図、第11
図、第12図は本発明の他の実施例の部分平面
図、第13図は応用例の断面図、第14図はその
X−X′およびY−Y′断面図、第15図は本発明
のさらなる他の実施例の斜視図である。
1,11……電機子、2,6,12……誘導
子、3,8……永久磁石、4……励磁コイル、5
……(電機子)ヨーク、7……非磁性充填材(例
えば、レジン、ステンレス)、9……界磁ヨーク、
10……非磁性体、13……産業機械。
Figure 1 is the initial position of the VR type, Figure 2 is its final position, Figure 3 is the initial position of the PM type, Figure 4 is its final position, and Figure 5 is the plane of the parallel inductor. 6 is a sectional view taken along line X-X', FIG. 7 is a plan view of a right-angled inductor, FIG. 8 is a side sectional view of an embodiment of the present invention, FIG. 9 is a perspective view thereof, and FIG. Figure, 11th
12 is a partial plan view of another embodiment of the present invention, FIG. 13 is a cross-sectional view of an applied example, FIG. 14 is a cross-sectional view of X-X' and Y-Y', and FIG. FIG. 7 is a perspective view of yet another embodiment of the invention. 1, 11... Armature, 2, 6, 12... Inductor, 3, 8... Permanent magnet, 4... Exciting coil, 5
... (armature) yoke, 7 ... non-magnetic filler (e.g. resin, stainless steel), 9 ... field yoke,
10...Nonmagnetic material, 13...Industrial machinery.
Claims (1)
機子と、等ピツチで強磁性体と非磁性体を交互に
バー状に配置した誘導子を空〓を介し対向させた
永久磁石形リニヤステツピングモータにおいて、 前記誘導子と対向する面を平面に形成したヨー
クと、 このヨークと空〓を介し平行させて対向させ、 前記強磁性体のピツチと等しいピツチで隣接す
る極性が交互に入れ替りレアアース磁石およびそ
れと同等のものから成る永久磁石片を連続して貼
付した界磁ヨークとで電機子を構成し、 ヨークと界磁ヨークの間に、前記誘導子を間挿
した ことを特徴とする永久磁石形リニヤステツピング
モータ。 2 前記ヨークをE形ヨークとし中央脚に集中巻
線をほどこした 特許請求の範囲第1項記載の永久磁石形リニヤス
テツピングモータ。 3 前記励磁コイルをE形ヨークの両脚に巻回
し、前記ヨークをこの両脚の内側面を平面に形成
したものとし、前記界磁ヨークをE形ヨークの中
央脚の両側面に形成し、前記誘導子を、1対の強
磁性体間を非磁性体で連結しコ字形に形成し、強
磁性体の両内側面に等ピツチで歯切りしたものと
し、前記ヨークと励磁ヨークの間に、この誘導子
を間挿した特許請求の範囲第2項記載の永久磁石
形リニヤステツピングモータ。[Claims] 1. An armature in which an excitation coil is wound around a yoke with projections, and an inductor in which ferromagnetic materials and non-magnetic materials are alternately arranged in a bar shape at equal pitches are opposed to each other with an air gap between them. In a permanent magnet type linear stepping motor, a yoke whose surface facing the inductor is formed into a flat surface, and a yoke which faces the yoke parallel to the yoke with an air gap in between, and which have adjacent polarities at a pitch equal to the pitch of the ferromagnetic material. The armature is constituted by a field yoke to which permanent magnet pieces made of rare earth magnets and equivalent magnets are successively affixed alternately, and the inductor is interposed between the yoke and the field yoke. A permanent magnet type linear stepping motor featuring: 2. The permanent magnet type linear stepping motor according to claim 1, wherein the yoke is an E-shaped yoke and a concentrated winding is applied to the central leg. 3. The excitation coil is wound around both legs of an E-shaped yoke, the inner surfaces of both legs of the yoke are formed into flat surfaces, the field yoke is formed on both sides of the central leg of the E-shaped yoke, and the induction coil is A pair of ferromagnetic materials are connected with a non-magnetic material to form a U-shape, and teeth are cut at equal pitches on both inner surfaces of the ferromagnetic materials. A permanent magnet type linear stepping motor according to claim 2, wherein an inductor is inserted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4873782A JPS58165656A (en) | 1982-03-26 | 1982-03-26 | Permanent magnet type linear stepping motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4873782A JPS58165656A (en) | 1982-03-26 | 1982-03-26 | Permanent magnet type linear stepping motor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58165656A JPS58165656A (en) | 1983-09-30 |
JPH0324148B2 true JPH0324148B2 (en) | 1991-04-02 |
Family
ID=12811595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4873782A Granted JPS58165656A (en) | 1982-03-26 | 1982-03-26 | Permanent magnet type linear stepping motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58165656A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62193553A (en) * | 1986-02-18 | 1987-08-25 | Yaskawa Electric Mfg Co Ltd | Linear electromagnetic actuator of permanent magnet type |
SE521607C2 (en) * | 2000-04-07 | 2003-11-18 | Abb Ab | A linear electric machine |
DE10043120A1 (en) * | 2000-08-31 | 2002-04-11 | Wolfgang Hill | Electrical machine for high magnetic reversal frequencies |
JP4788986B2 (en) * | 2001-05-10 | 2011-10-05 | Smc株式会社 | Linear motor |
JP4846350B2 (en) * | 2004-11-25 | 2011-12-28 | 山洋電気株式会社 | Linear motor |
DE102005017481B4 (en) | 2005-04-15 | 2007-08-30 | Compact Dynamics Gmbh | Linear Actuator |
DE102005017482B4 (en) | 2005-04-15 | 2007-05-03 | Compact Dynamics Gmbh | Gas exchange valve actuator for a valve-controlled internal combustion engine |
JP2009190813A (en) * | 2008-02-12 | 2009-08-27 | Honda Motor Co Ltd | Belt device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4828605A (en) * | 1971-08-19 | 1973-04-16 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56118588U (en) * | 1980-02-13 | 1981-09-10 |
-
1982
- 1982-03-26 JP JP4873782A patent/JPS58165656A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4828605A (en) * | 1971-08-19 | 1973-04-16 |
Also Published As
Publication number | Publication date |
---|---|
JPS58165656A (en) | 1983-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4563602A (en) | Permanent magnet type stepping motor | |
US6960862B2 (en) | Electric machine with soft magnetic teeth | |
CA1081756A (en) | Synchronous motor | |
US6087742A (en) | Hybrid linear motor | |
EP1058372B1 (en) | Motor utilizing hybrid magnet and having generator function | |
EP0889574A1 (en) | Reluctance type rotating machine with permanent magnets | |
JP3280896B2 (en) | Permanent magnet type reluctance type rotating electric machine | |
KR20100134678A (en) | Permanent magnet rotor with flux concentrating pole pieces | |
MXPA00003737A (en) | An alternating current machine. | |
US3502922A (en) | Laminated stator core structure | |
US6548919B2 (en) | Linear motor | |
JPH0324148B2 (en) | ||
JPH0135592B2 (en) | ||
WO2017008085A1 (en) | An improved electric linear motor/generator | |
JPS61106058A (en) | Ultrafine displacement linear electromagnetic actuator | |
JP3487102B2 (en) | Pulse motor | |
JPH0337285B2 (en) | ||
JP7228179B2 (en) | Cylindrical linear motor | |
JP2005513998A (en) | Electric machine | |
JPH0147114B2 (en) | ||
Harris et al. | Electric motors with heteropolar permanent magnets and homopolar windings: computational study of performance limits | |
JP3814119B2 (en) | Linear actuator | |
JPS61277362A (en) | Three-phase linear inductor type synchronous motor | |
KR100320218B1 (en) | Linear motor | |
KR100332807B1 (en) | Moving parts of linear motor |