JPS6098863A - Linear motor - Google Patents

Linear motor

Info

Publication number
JPS6098863A
JPS6098863A JP20791783A JP20791783A JPS6098863A JP S6098863 A JPS6098863 A JP S6098863A JP 20791783 A JP20791783 A JP 20791783A JP 20791783 A JP20791783 A JP 20791783A JP S6098863 A JPS6098863 A JP S6098863A
Authority
JP
Japan
Prior art keywords
stator
magnetic pole
mover
cores
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20791783A
Other languages
Japanese (ja)
Inventor
Tsutomu Hamada
力 浜田
Hidetoshi Kawa
川 秀俊
Hiromi Onodera
博美 小野寺
Noriaki Wakabayashi
若林 則章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20791783A priority Critical patent/JPS6098863A/en
Publication of JPS6098863A publication Critical patent/JPS6098863A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To largely improve the performance of a linear motor having a large thrust force by forming a stator and a core of a mover by laminating thin plates made of a magnetic material, and setting the laminating direction to the direction perpendicular to the teeth surfaces of the poles of the stator. CONSTITUTION:Pole teeth 1X, 1Y of a stator are formed on both side surfaces of a stator 2. A mover 3 is formed of a plurality of cores 6X, 6Y formed with pole teeth 8a-8c of the mover oppositely in the vicinity of the pole teeth rows of the stator, and a magnetic circuit for supplying the magnetic fluxes generated by permanent magnets 5X, 5Y and drive cois 7a-7c at the cores 6X, 6Y. The stator 2 and the cores 6X, 6Y are formed by laminating the thin plates of the magnetic material, and the laminating direction is perpendicular to the magnetic flux forming surface of the stator.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は直交座標系ロボットや多点位置決め用X−Yテ
ーブルなどに用いられる磁極歯を有するリニアモータに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a linear motor having magnetic pole teeth used in orthogonal coordinate system robots, X-Y tables for multi-point positioning, and the like.

従来例の構成とその問題点 従来の磁極歯を有するリニアモータは第1図にその具体
構成を示ず」二うに、等ピンチでかつ複数列のステータ
磁極歯列IX、IYを有するステータ2と、ステータ磁
極歯列1x、1Y上を図示しない空隙(以下ギャップと
記す。)保持手段により適切なギャップを保持しつつ図
示しない走行手段により矢印入方向へ走行可能に設けら
れたムーバ−3よシ構成される。ムーバ−、l[2のコ
ア4、永久磁石5X、5Y、第1のコア6X、6Y。
Structure of the conventional example and its problems A conventional linear motor having magnetic pole teeth does not show its specific structure in FIG. , the mover 3 is installed so that it can run in the direction indicated by the arrow by a traveling means (not shown) while maintaining an appropriate gap (hereinafter referred to as "gap") on the stator magnetic pole tooth rows 1x, 1Y by a holding means. configured. Mover, l [2 core 4, permanent magnets 5X, 5Y, first core 6X, 6Y.

第1(D)76X、6Y間を巻装された駆動コイル7a
、7b、7cよシ構成され、更に第1のコア6X、6Y
にはステータ磁極歯列1x、1Yと同ピツチでかつステ
ータ?1栽極爾列1x、1Yに対向してムーバ−磁極歯
8a、ab、8cが形成される。
Drive coil 7a wound between the first (D) 76X and 6Y
, 7b, 7c, and the first cores 6X, 6Y
Is the stator magnetic pole tooth row 1x, 1Y the same pitch and stator? Mover magnetic pole teeth 8a, ab, 8c are formed opposite to the single-pole rows 1x, 1Y.

このような磁極歯を有するりニアモータのステ−り磁極
歯列1X、1Yとムーバ−磁極歯8a。
Stay magnetic pole tooth rows 1X, 1Y and mover magnetic pole teeth 8a of a linear motor having such magnetic pole teeth.

ab、8cの相対位置は以下の通りである。ステータ磁
極歯列IX、IYは1Xに対し1Yがエビノチずらせて
配置され、〜方ムーバー磁極@8a。
The relative positions of ab and 8c are as follows. The stator magnetic pole tooth rows IX and IY are arranged such that 1Y is shifted by a notch from 1X, and the mover magnetic pole is 8a.

ab、8cばそれぞれの間が−ピッチずらせて設けられ
る。なおムーバ−磁極歯8a、ab、8cけ第1のコア
6X、6Y双方に設けられるが、この間は同相である。
ab and 8c, the distance between them is shifted by -pitch. Note that the mover magnetic pole teeth 8a, ab, and 8c are provided on both the first cores 6X and 6Y, and these teeth are in the same phase.

従ってステータ磁極歯列1X。Therefore, the stator magnetic pole tooth row is 1X.

1Yに対しムーバ−磁極歯8a、ab、sCは工ピッチ
ずれて設けられた磁極歯群が6群あることが容易に理解
できる。
It can be easily understood that there are six groups of magnetic pole teeth 8a, ab, and sC of the mover magnetic pole teeth 8a, ab, and sC provided at different pitches with respect to 1Y.

このようなリニアモータの動作原理は、ステル夕磁極(
“行列1X、IYとムーバ−磁極歯a a 、 sb。
The operating principle of such a linear motor is that the stellate magnetic pole (
“Matrix 1X, IY and mover-pole teeth aa, sb.

80間に発生する永久磁石5X、5Yと駆動コイル7a
、yb、7cとの合成磁束による磁気力を利用するもの
であり、詳細は特開昭57−25161に記載されてい
るものと同等であるので省略する。
Permanent magnets 5X, 5Y and drive coil 7a generated between 80
, yb, and 7c, and the details are the same as those described in JP-A-57-25161, so the details will be omitted.

−」−記説明より明らかなように、同一大きさのりニア
モータ始動推力(以下静推カと記す)を向上させるには
上記合成磁束址を太きぐするすなわちステータ2と第1
のコアeX、6Yを飽和磁束密度の高い材料を使うこと
か有効である。よって従来、ステータ2と第2のコア6
X、6Yを高飽和磁束密度でかつ加工慴が良く、圧絞的
安価な純鉄を用いることが多く、”j1実静推力1 K
yの比較的小型のりニアモータ特性1−L、1′(ジ大
速度4 in/S 最大加速度10Gの性能が達成され
ている。
-''- As is clear from the explanation, in order to improve the starting thrust (hereinafter referred to as static thrust) of a linear motor of the same size, the above composite magnetic flux should be made thicker, that is, the stator 2 and the first
It is effective to use materials with high saturation magnetic flux density for the cores eX and 6Y. Therefore, conventionally, the stator 2 and the second core 6
X and 6Y are often made of pure iron, which has a high saturation magnetic flux density, is easy to process, and is inexpensive to press, and the actual static thrust is 1 K.
Comparatively small linear motor characteristics 1-L, 1' (high speed 4 in/s, maximum acceleration 10G performance have been achieved).

しかしながら上記と全く同一の磁性材料、磁極歯ピッチ
、ギャップを設定した静推力は15に2の比較的大型の
りニアモータでは最大速度1m/S。
However, with the same magnetic material, magnetic pole tooth pitch, and gap as above, the static thrust of a relatively large linear motor of 15:2 has a maximum speed of 1 m/s.

最大加速度4Gの性能しか得られない。この原因は磁気
回路に発生する渦電流損を主にした鉄損による影響が大
きい1、事実、第1のコア6X、eYを鉄損に対し最も
効果がある珪素鋼板による積層構造とするだけで最大速
度1 、4 m/S 、、最大加速度5Gまで性能を向
」二させることかできる。
Performance can only be achieved with a maximum acceleration of 4G. The reason for this is that iron loss, mainly eddy current loss, that occurs in the magnetic circuit has a large influence1.In fact, simply making the first core 6X, eY a laminated structure made of silicon steel plates, which is most effective against iron loss, Performance can be improved to a maximum speed of 1.4 m/s and a maximum acceleration of 5G.

以上のことより第1図に示すリニアモータの構成のまま
で渦電流を主とする鉄損が減少できるなら大型のリニア
モータでも大幅な性能向上がはかれることは明らかであ
る。しかし現実にはステータ2部を単純にケイ素鋼板に
よる積層構造とすることができないので第1図に示す構
成では大幅な性能向上は達成できない。この理由は磁路
にあり以下更に詳細に説明する。第2図は第1図をムー
バ−走行方向より示したものであり、永久磁石5X。
From the above, it is clear that if iron loss, mainly caused by eddy current, can be reduced while maintaining the configuration of the linear motor shown in FIG. 1, even large-sized linear motors can be significantly improved in performance. However, in reality, the stator 2 section cannot simply have a laminated structure of silicon steel plates, so the configuration shown in FIG. 1 cannot achieve a significant performance improvement. The reason for this lies in the magnetic path and will be explained in more detail below. FIG. 2 shows FIG. 1 from the moving direction of the mover, and shows the permanent magnet 5X.

5Yによる磁束は矢印B方向へ流れるが、各ギャップ部
での磁束量はステータ磁極歯列1X、1Yとムーバ−磁
極歯8a、ab、8cと相対位置による磁気抵抗変化に
伴い変動する。(永久磁石5X。
The magnetic flux due to 5Y flows in the direction of arrow B, but the amount of magnetic flux at each gap varies with changes in magnetic resistance due to the relative positions of the stator magnetic pole teeth 1X, 1Y and the mover magnetic pole teeth 8a, ab, 8c. (Permanent magnet 5X.

5Yからでる磁束の総量は変らない。)一方第3図は第
1図を側面より示したものであるが、駆動コイル7a、
7b、γCによる磁束は駆動コイル7a、7b、7cに
流す電流の方向により矢印Cの9口〈双方向へ流れる。
The total amount of magnetic flux coming out of 5Y remains unchanged. ) On the other hand, FIG. 3 is a side view of FIG. 1, and shows that the drive coil 7a,
The magnetic flux due to 7b and γC flows in both directions (9 points of arrow C) depending on the direction of the current flowing through the drive coils 7a, 7b, and 7c.

以上のことよりステータ2においては磁束が立体的に流
れ、かつ変化していることがわかる。従ってステータ2
を単純に珪素鋼板による積層構造とするとき、第4図に
示すように積層方向からの磁束の変化により渦電流損か
発生するだけでなく、積層方向への磁気抵抗が大幅に増
大するだめ、モータ性能も大幅に低下してし捷う。尚、
図中、矢印Xは磁束方向、矢印Yは渦電流方向を示す。
From the above, it can be seen that the magnetic flux flows three-dimensionally and changes in the stator 2. Therefore stator 2
When simply forming a laminated structure using silicon steel plates, as shown in Fig. 4, not only eddy current loss occurs due to changes in magnetic flux from the lamination direction, but also magnetic resistance in the lamination direction increases significantly. Motor performance will also drop significantly. still,
In the figure, arrow X indicates the direction of magnetic flux, and arrow Y indicates the direction of eddy current.

以上の説明より明らかなように、第1図r(示ず従来の
りニアモータ構成では特にステータ2部での渦電流撰対
策が困難であるため、モータ性能を大幅に向上させるこ
とかできないという欠点を有していた。
As is clear from the above explanation, the conventional linear motor configuration shown in Figure 1r (not shown) has the drawback that it is difficult to take measures against eddy currents, especially in the second part of the stator, and therefore the motor performance cannot be significantly improved. had.

発明の目的 本発明は上記欠点に鑑みなされたもので、渦電流損の発
生を最小限に押え得る構成とすることによシ、大推力な
がら高性能のリニアモータを捉供するものである。
OBJECTS OF THE INVENTION The present invention was devised in view of the above-mentioned drawbacks, and it is an object of the present invention to provide a high-performance linear motor with a large thrust by using a structure that can minimize the occurrence of eddy current loss.

発明の構成 本発明はステーク両面にステータ磁イ至歯列を形成し、
一方ム〜バーを、ステータ磁極歯列に近接対向してムー
バ−磁(版画全形成した複数の第1のコアと、これに永
久磁石による磁束および複数の駆動コイルによる磁束を
供給する磁気回路で構成し、更にステータ及び複数の第
1のコアを同じ方向へ磁性体よりなる薄体で積層形成し
、かつ積層方向をステータ磁極歯形成面に対し垂直方向
へ積層した構成とすることにより、大推力ながら高性能
のりニアモータが実現できるという特有の効果を有する
Structure of the Invention The present invention forms tooth rows on both sides of the stake,
On the other hand, the mover is connected to a mover magnet (a plurality of first cores formed entirely of prints, and a magnetic circuit that supplies magnetic flux from a permanent magnet and magnetic flux from a plurality of drive coils to the mover magnets), which are closely opposed to the stator magnetic pole tooth row. Furthermore, the stator and the plurality of first cores are laminated in the same direction with thin magnetic bodies, and the lamination direction is perpendicular to the stator pole tooth forming surface, thereby achieving a large It has the unique effect of realizing a high-performance linear motor with high thrust.

実施例の説明 以下本発明の実施例について図面を参照しながら説明す
る。第5図は本発明における実施例の斜視図であり、第
1図に示す従来例と同機能部品には同一番号を伺して以
下説明する。ステータ2は磁性体よりなる薄板(通常珪
素鋼板がよく用いられるので以下珪素鋼板と記す。)を
図示した方向へ積層して形成され、更にステータ2の両
面にステータ2の長手方向へ等ピッチのステータ磁極歯
列1X、1Yが設けられる。一方ムーバ〜3は第2のコ
ア4、永久磁石5X、 5Y、珪素鋼板を図示した方向
へ積層して形成された第1のコア6X。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 5 is a perspective view of an embodiment of the present invention, and parts with the same functions as those in the conventional example shown in FIG. 1 are designated by the same reference numerals and will be described below. The stator 2 is formed by laminating thin plates made of magnetic material (silicon steel plates are commonly used, so hereinafter referred to as silicon steel plates) in the direction shown in the figure, and furthermore, the stator 2 is formed by laminating thin plates made of magnetic material (silicon steel plates are often used, so they will be referred to as silicon steel plates hereinafter) in the direction shown in the figure. Stator magnetic pole tooth rows 1X and 1Y are provided. On the other hand, mover 3 is a first core 6X formed by laminating a second core 4, permanent magnets 5X, 5Y, and silicon steel plates in the direction shown.

6Y、第1のコア6X、6Yに巻装された駆動コイル7
a、7b、7c、第1のコアeX、6Yに形成され、ス
テータ磁極歯列1X、1Yと同ピツチでかつステータ磁
極歯列1X、1Yと対向して設けられたムーバ−磁極歯
Ba、sb、8cJ、シ構成される。更にムーバ−3は
それ’c h ム−バー磁極歯8a、sb、+30とス
テータ磁極歯列1X。
6Y, first core 6X, drive coil 7 wound around 6Y
a, 7b, 7c, mover magnetic pole teeth Ba, sb formed in the first cores eX, 6Y and provided at the same pitch as the stator magnetic pole tooth rows 1X, 1Y and facing the stator magnetic pole tooth rows 1X, 1Y; , 8cJ, is composed of shi. Further, the mover 3 has mover magnetic pole teeth 8a, sb, +30 and a stator magnetic pole tooth row 1X.

1Y間に適切なギャップを保持しつつ矢印入方向へ走行
できるよう図示しないギャップ保持手段及び図示しない
走行手段を有する。
It has a gap holding means (not shown) and a traveling means (not shown) so that it can travel in the direction of the arrow while maintaining an appropriate gap between Y and Y.

以上のように構成ざtたリニアモータにおけるステータ
磁極歯列IX、IYとムーバ−磁極歯8a。
Stator magnetic pole tooth rows IX, IY and mover magnetic pole teeth 8a in the linear motor configured as described above.

sb、8cの相対[☆:置量関係従来例と全く同一に構
成される。すなわちステータ磁極歯列1X、1Yは1X
に対し1Yか7ヒノチずらせて配置され、一方ムーバー
磁極歯8a、+3b、8cはそれぞれ1 。
Relative of sb and 8c [☆: Placement relationship is configured exactly the same as the conventional example. In other words, stator magnetic pole tooth rows 1X and 1Y are 1X
The mover magnetic pole teeth 8a, +3b, and 8c are each shifted by 1Y or 7 hinops from the other hand.

百ヒツチずらせて設けられる。なおムーバ−磁極歯8 
a 、 8 b 、 8 Cは第1のコア6X、6Y双
方に設けられるが、この間は同相である。従ってステー
タ磁極歯列iX、1Yに対しムーバ−磁極歯s a 、
 a b + 8 c 1l−i、ヒツチずれて設けら
れた磁極歯群が6群あることが容易に理解できる。
They are staggered by 100 hits. Furthermore, the mover magnetic pole tooth 8
a, 8b, and 8C are provided in both the first cores 6X and 6Y, but they are in phase. Therefore, for the stator magnetic pole teeth iX, 1Y, the mover magnetic pole teeth s a ,
a b + 8 c 1l-i, it can be easily understood that there are six groups of magnetic pole teeth arranged at different positions.

このようなリニアモータの動作原理は従来例及び特開昭
57−2516.1と全く同一であり省略する。
The operating principle of such a linear motor is completely the same as that of the conventional example and Japanese Patent Application Laid-open No. 57-2516.1, and therefore will not be described here.

以上のように構成された本実施例におけるリニアモータ
の磁路について以下更に説明する。第6図は第5図をム
ーバ−3の走行方向より示したもので永久磁石sX、5
Yによる磁束は矢印Bの如く流れるが、各ギャップ部で
のこの量はステータ磁極歯列1x、1Yとムーバ−磁極
歯sa、sb。
The magnetic path of the linear motor in this embodiment configured as above will be further explained below. Figure 6 shows Figure 5 from the running direction of the mover 3, with permanent magnets sX, 5
The magnetic flux due to Y flows as shown by arrow B, and the amount at each gap is between the stator magnetic pole tooth rows 1x and 1Y and the mover magnetic pole teeth sa and sb.

8Cとの相対位置による磁気抵抗の変化に伴い変動する
。(永久磁石5X、5Yからでる磁束の聡J11は変ら
ない。)一方第6図は第4図を1限り面より示したもの
であるが、駆動コイル7a、7b、7cによる磁束は駆
動コイル7a、7b、7cに流す電流の方向により矢印
Cの如く双方向へ流れる。
It fluctuates as the magnetic resistance changes depending on the relative position to 8C. (The magnetic flux J11 coming out of the permanent magnets 5X and 5Y does not change.) On the other hand, FIG. 6 shows FIG. , 7b, 7c, the current flows in both directions as shown by arrow C.

以上のことよりステータ2および第1のコア6X。From the above, the stator 2 and the first core 6X.

6Yいずれにおいても磁束は平面的に流れるのみてあり
、それぞれ第4図の如く珪素鋼板を積層することにより
渦電流損をほぼ無くすることができ、リニアモータ性能
を大幅に向上できる。なお本実施例におけるリニアモー
タ性能は、雇人速度3.2m/S 最大加速度7Gが得
られた。
6Y, the magnetic flux only flows in a plane, and by laminating silicon steel plates in each case as shown in FIG. 4, eddy current loss can be almost eliminated, and the performance of the linear motor can be greatly improved. As for the performance of the linear motor in this example, a worker speed of 3.2 m/s and a maximum acceleration of 7 G were obtained.

以上のように本実施例によれば、珪素鋼板を第4図に示
す如く積層して形成したステータ2の両面にステータ磁
イシ1別列1X、1Yを設け、一方ムーバー3は、ステ
ータ磁極歯列1X、1Yにそれぞれ対向してムーバ−磁
極歯8a、sb、8cを形成しかつ第4図に示す如く珪
素鋼板を積層した第1のコア6X、6Yと、第1のコア
6X、6Yに接して設けらfl、 lこ永久磁石5X、
5Y、永久磁石5X、5Y間に接して設けられた第2の
コア4、オJ:、 (j ?ljf、 1のコアeX、
6Yに巻装された駆動コイル7a、7b、7cより構成
することにより、特に大推力リニアモータの性能を大幅
に向上することができる。
As described above, according to this embodiment, separate rows 1X and 1Y of stator magnetic poles 1 are provided on both sides of the stator 2 formed by laminating silicon steel plates as shown in FIG. First cores 6X, 6Y are formed with mover magnetic pole teeth 8a, sb, 8c facing each other in rows 1X, 1Y, and are laminated with silicon steel plates as shown in FIG. Permanent magnets 5X,
5Y, the second core 4 provided in contact with the permanent magnets 5X, 5Y: (j?ljf, 1 core eX,
By configuring the drive coils 7a, 7b, and 7c wound around 6Y, the performance of a large thrust linear motor in particular can be greatly improved.

なお本実施例において、ステータ2、第1のコア6X、
6Y素拐を珪素鋼板としたが描然他の素材を用いても良
く、ステータ磁極歯列6X、6Yとムーバ−磁極歯8a
、sb、8Gの相対位置、およびモータ相数も本実施例
に限定するものではない。更に永久磁石5X、5Yの数
は磁気回路的に等価であれば増、減が容易に可能であり
、これに伴い第2のコア4の数も増、減できることは明
白である。更にステータ3と、第1のコア6X。
Note that in this embodiment, the stator 2, the first core 6X,
6Y is made of silicon steel plate, but other materials may be used.Stator magnetic pole tooth rows 6X, 6Y and mover magnetic pole tooth 8a
, sb, and 8G, and the number of motor phases are not limited to the present embodiment. Furthermore, it is obvious that the number of permanent magnets 5X, 5Y can be easily increased or decreased as long as they are equivalent in terms of magnetic circuit, and that the number of second cores 4 can also be increased or decreased accordingly. Furthermore, a stator 3 and a first core 6X.

6Yの積層方向も本実施例に限定するものでなく本実施
例に沿って変形することも可能である。
The stacking direction of 6Y is also not limited to this example, and may be modified along this example.

発明の効果 以」二のJ:うに本発明はステータ両面にステータ磁(
夕歯を形成し、一方ムーバーを、ステータ磁極歯列に近
接対向してムーバ−磁極歯を形成した複数の第1のコア
と、これに永久磁石および複数の駆動コイルによる磁束
を供給する磁気回路で構成し、更にステータ及び複数の
第1のコアを同じ方向へ磁性体よりなる薄板で積層形成
し、かつその方向をステータ磁束形成面に対し垂直方向
へ積層した構成することにより、特に大推力のりニアモ
ータの性能を大幅に向上でき、その実用的効果は犬なる
ものがある。
Effects of the Invention 2.J: The present invention has stator magnets (on both sides of the stator).
a plurality of first cores forming evening teeth and a mover forming mover magnetic pole teeth in close opposition to a stator magnetic pole tooth row; and a magnetic circuit supplying magnetic flux to the first cores by a permanent magnet and a plurality of drive coils. Furthermore, the stator and the plurality of first cores are laminated with thin plates made of magnetic material in the same direction, and the direction is perpendicular to the stator magnetic flux forming surface, thereby achieving a particularly large thrust. The performance of linear motors can be greatly improved, and its practical effects are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のりニアモータの斜視図、第2図。 第3図は第1図の正面図および側面図、第4図は渦電流
発生の説明図、第5図は本発明の一実施例におけるリニ
アモータの斜視図、第6図、第7図は第5図の正面図お
」:び側面図である。 IX、IY・ ・ステータ磁極歯列、2 ・・ステータ
、3・・・ムーバ−14−・・第2のコア、6X。 5Y・・・・・永久磁石、6X、eY 第1のコア、7
a、7b、7c 駆動コイル、8a、sb。 8c−・・・ムーバ−磁極1:4:i L)代理人の氏
名 弁]]j士 中 尾 敏 男 ほか1名第1図 ? 第2図 第3図 第4図 第5図 第6図 第7図
FIG. 1 is a perspective view of a conventional linear motor, and FIG. 2 is a perspective view of a conventional linear motor. 3 is a front view and a side view of FIG. 1, FIG. 4 is an explanatory diagram of eddy current generation, FIG. 5 is a perspective view of a linear motor in an embodiment of the present invention, and FIGS. 6 and 7 are FIG. 5 is a front view and a side view of FIG. IX, IY...Stator magnetic pole tooth row, 2...Stator, 3...Mover-14-...Second core, 6X. 5Y...Permanent magnet, 6X, eY first core, 7
a, 7b, 7c drive coil, 8a, sb. 8c-...Mover-magnetic pole 1:4:i L) Agent's name Dictionary]] J Officer Toshi Nakao Male and 1 other figure 1? Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] ステータ両面に長手方向へ等ピッチで設けられたステー
タ磁極歯列と、前記ステータ磁極歯列にそれぞれ対向す
る面に適切な空隙を保持しつつ前記ステータ長手方向へ
走行可能に設けられたムーバ−より構成され、前記ムー
バ−は、前記ステータ磁極歯列にそれぞれ対向してムー
バ−磁極歯を有する複数の第1のコアと、前記複数の第
1のコアに永久磁石による磁束を供給するだめの磁気回
路を構成する永久磁石および第2のコアと、前記複数の
第1のコアに巻装された駆動コイルよりなり、前記ステ
ータと前記複数の第1のコアを同じ方向へ磁性体よりな
る薄板で積層、形成し、かつ、積層方向を前記ステータ
磁極歯面に対し垂直方向へ積層したリニアモータ。
From stator magnetic pole tooth rows provided on both sides of the stator at equal pitches in the longitudinal direction, and a mover that is provided so as to be movable in the stator longitudinal direction while maintaining an appropriate gap on the surfaces facing the stator magnetic pole tooth rows. The mover includes a plurality of first cores each having mover magnetic pole teeth facing the stator magnetic pole tooth row, and a magnet for supplying magnetic flux by a permanent magnet to the plurality of first cores. The circuit includes a permanent magnet and a second core, and a drive coil wound around the plurality of first cores, and the stator and the plurality of first cores are connected in the same direction with a thin plate made of a magnetic material. A linear motor in which the layers are laminated, and the lamination direction is perpendicular to the stator magnetic pole tooth surface.
JP20791783A 1983-11-04 1983-11-04 Linear motor Pending JPS6098863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20791783A JPS6098863A (en) 1983-11-04 1983-11-04 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20791783A JPS6098863A (en) 1983-11-04 1983-11-04 Linear motor

Publications (1)

Publication Number Publication Date
JPS6098863A true JPS6098863A (en) 1985-06-01

Family

ID=16547698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20791783A Pending JPS6098863A (en) 1983-11-04 1983-11-04 Linear motor

Country Status (1)

Country Link
JP (1) JPS6098863A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63283835A (en) * 1987-05-13 1988-11-21 Yaskawa Electric Mfg Co Ltd Linear moving device
EP0845851A1 (en) * 1996-11-29 1998-06-03 Daimler-Benz Aktiengesellschaft Synchronous linearmotor with passive stator
JP2006180690A (en) * 2004-11-25 2006-07-06 Sanyo Denki Co Ltd Linear motor
JP2007267497A (en) * 2006-03-28 2007-10-11 Yokogawa Electric Corp Double-sided pulse motor and stage employing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332042A (en) * 1976-09-06 1978-03-25 Fujikura Ltd Preparation of glass fiber of multi-ingredient system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332042A (en) * 1976-09-06 1978-03-25 Fujikura Ltd Preparation of glass fiber of multi-ingredient system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63283835A (en) * 1987-05-13 1988-11-21 Yaskawa Electric Mfg Co Ltd Linear moving device
EP0845851A1 (en) * 1996-11-29 1998-06-03 Daimler-Benz Aktiengesellschaft Synchronous linearmotor with passive stator
JP2006180690A (en) * 2004-11-25 2006-07-06 Sanyo Denki Co Ltd Linear motor
JP2007267497A (en) * 2006-03-28 2007-10-11 Yokogawa Electric Corp Double-sided pulse motor and stage employing the same

Similar Documents

Publication Publication Date Title
JP3700915B2 (en) Linear motor
US7230355B2 (en) Linear hybrid brushless servo motor
JP3916048B2 (en) Linear motor
JP2002238241A (en) Linear motor
JP2004364374A (en) Linear motor
JPH0687651B2 (en) Linear pulse motor
JPH11206100A (en) Linear motor
JP2004297977A (en) Linear motor
TWI609556B (en) Synchronous linear motor
JPS6098863A (en) Linear motor
JP3944799B2 (en) Linear motor
JP2001211630A (en) Linear slider
JP2785406B2 (en) Linear servo motor
JPH11313475A (en) Linear motor
JPH02246762A (en) Linear motor
JPS60131069A (en) Linear motor
JPS60131071A (en) Linear motor
JP2001008432A (en) Linear motor
JPS60131068A (en) Linear motor
JP3793874B2 (en) Permanent magnet type linear motor
JPS6028763A (en) Linear motor
JP2531408B2 (en) Stepping motor
JP4352439B2 (en) Linear motor
JPS61277362A (en) Three-phase linear inductor type synchronous motor
JPS6395849A (en) Linear pulse motor