WO2004085692A1 - PROCESS OF WORKING Mg ALLOY AND Mg ALLOY - Google Patents

PROCESS OF WORKING Mg ALLOY AND Mg ALLOY Download PDF

Info

Publication number
WO2004085692A1
WO2004085692A1 PCT/JP2004/001885 JP2004001885W WO2004085692A1 WO 2004085692 A1 WO2004085692 A1 WO 2004085692A1 JP 2004001885 W JP2004001885 W JP 2004001885W WO 2004085692 A1 WO2004085692 A1 WO 2004085692A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
strain
applying
steps
temperature
Prior art date
Application number
PCT/JP2004/001885
Other languages
French (fr)
Japanese (ja)
Inventor
Taku Sakai
Original Assignee
Campus Create Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Campus Create Co., Ltd. filed Critical Campus Create Co., Ltd.
Priority to JP2005503982A priority Critical patent/JP4632949B2/en
Publication of WO2004085692A1 publication Critical patent/WO2004085692A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the present invention relates to a method for processing a magnesium (Mg) alloy and a Mg alloy.
  • Mg alloys have the lowest density among practical metals and are therefore lightweight. In addition, Mg alloy is excellent in terms of Hiyumi Musume, ⁇ shearing properties, recyclability, etc.
  • Mg alloys have few slip systems in order to take the closest hexagonal lattice protection. For this reason, Mg alloys are low-growth and
  • Mg alloy refers to an alloy having Mg as a maximum component and having a close-packed hexagonal structure, and includes neat Mg.
  • the shape of the Mg alloy does not matter. Disclosure of the invention
  • the present invention has been made in view of the circumstances of liflB.
  • An object of the present invention is to ⁇ improvement of 3 ⁇ 4 Ru processing method Oyohi Roe highly Mg alloy workability of M g alloy.
  • the working of the Mg alloy according to the invention comprises the following steps:
  • the method may further include the following steps:
  • the directions of the return distortion in the tfrt self-steps (1) to (3) may be substantially crossed with each other.
  • the tiff self step (1) to (3) can be repeated or all steps can be repeated.
  • the true strain in Fujiji strain is preferably 0.3 or more L ⁇ 9
  • the value of the Mg alloy in the self-step (1) is preferably in the range of 500 K to 700 K.
  • the value of Mg alloy in the Fujimi step (2) is preferably within the range of 40 OK: up to 60 OK.
  • the temperature of the Mg alloy in the self-step (3) be in the range of 30 OK to 50 OK.
  • the ⁇ 1 ⁇ 2 strain is, for example, a la strain.
  • the Mg alloy according to the present invention has been processed by one of the following processes.
  • the workpiece according to the present invention is obtained by processing a tiftSM g alloy.
  • the Mg alloy according to the present invention is an alloy having Mg as a maximum component and having a force and a P structure.
  • the crystal grain size may be reduced to 1 ⁇ m or less by applying ⁇ T.
  • the crystal grain size of the Mg alloy may be 0.2 m or less.
  • the Mg alloy may have a Vickers hardness at room temperature of 100 OMPa or more, and a breaking elongation of 150% or more in a tensile test at 150 ° C. of 300% or more.
  • the Mg alloy according to the present invention is an alloy having a dense hexagonal structure with Mg as a maximum component, having a crystal grain size of 1 ⁇ m or less and a Vickers hardness at room temperature of 100 ⁇ m. OMPa or more and the elongation at break in a tensile test at 150 ° C. may be 300% or more.
  • the Mg alloy according to the present invention is an alloy having a fine hexagonal structure with Mg as a maximum component
  • the crystal grain size is 1 ⁇ m or less, the hardness at room temperature is 100 OMPa or more, and the elongation at break in a tensile test at 150 ° C is 300% or more.
  • a configuration may be used.
  • FIG. 1 is a block diagram showing an outline of an arrangement according to another embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a Mg alloy to be added.
  • FIG. 3 is a flowchart for explaining a processing method according to one embodiment of the present invention.
  • FIG. 4 is a graph showing actual results in an experimental example of the present invention. In this graph, the horizontal axis is cumulative strain and the vertical axis is (K).
  • FIG. 5 is a graph showing experimental results in an experimental example of the present invention.
  • the horizontal axis is the cumulative strain
  • the vertical axis is the true stress.
  • FIG. 6 is a graph showing actual results in an experimental example of the present invention.
  • the abscissa indicates the cumulative strain (3 ⁇ 4 "number display")
  • the ordinate indicates the calo: force (constant state force) (logarithmic display).
  • FIG. 7 is a graph showing actual results in an experimental example of the present invention.
  • the horizontal axis represents the crystal grain size D as D- 1 .
  • the vertical axis is the Vickers hardness at room temperature.
  • FIG. 8 is a graph showing actual i ⁇ results in an experimental example of the present invention. In this Dallaf, 1 $ is the nominal strain and the vertical axis is the true stress.
  • FIG. 9 is an optical micrograph of the Mg alloy obtained in the experiment of the present invention.
  • Figure (c) is after the fourth stage (cumulative strain). This is a photograph of a yarn fiber with a strain of 3.2).
  • This apparatus includes a processing section 1, a heater 2, and a control section 3.
  • the caroe part 1 is designed to be able to add strength to the Mg alloy A (see Fig. 2) from ⁇ ⁇ directions.
  • the heater 2 heats the Mg alloy A to a predetermined temperature.
  • the control unit 3 automatically or manually reduces the heating of the Mg alloy A by the heater when the processing direction (that is, the strain direction) of the working of the processing unit 1 on the Mg alloy A changes.
  • the temperature of the Mg alloy body is increased to 473 K or more by heater 2. More preferably, the temperature of the Mg alloy is in the range of 500K to 70 OK. Note that if the temperature of the Mg alloy is sufficiently high in the inverted state, there is no need to heat the heater 2 with calorie.
  • iBf stress is applied to the Mg alloy in the X-axis direction in FIG.
  • This strain is a compression strain in this embodiment. Strain, 1X10 one 3 within the range of ⁇ 1 X 10+ 1 s one 1, is more favorable Mashiku the range of 1 X 10- 2 ⁇ 1 X 10 + 1 s- 1 is preferred.
  • the true strain is 0.3 or more More preferably, the force is 0.4 or more. By setting the strain conditions within these ranges, it is expected that the crystal grains after processing will be favorably reduced.
  • the content of the Mg alloy is reduced.
  • the load stress may be released while fi3 ⁇ 4 is decreasing.
  • the value of the Mg alloy is preferably in the range of 400K to 60OK.
  • strain is applied to the Mg alloy from the Y-axis direction (ie, a direction substantially perpendicular to the direction).
  • the strain conditions are the same as in IB Step 3-1. After completing the strain processing in step 3-1, proceed to step 3-2! /
  • the time until the strain is added is preferably within 3 minutes, more preferably within 2 minutes. The same applies to the subsequent steps.
  • the hardness of the Mg alloy is further reduced.
  • the load stress strain may be released during the temperature drop.
  • the S of the Mg alloy is preferably in the range of 30 OK to 500 °, and the force S is preferable.
  • the Z axis direction that is, the X axis and Therefore, strain is applied to the Mg alloy.
  • the conditions of the distortion are the same as those of Step 3-1.
  • the temperature of the Mg alloy can be further lowered, and strain from the X or Y-axis direction can be applied to the Mg alloy.
  • the crystal grains grow with the increase in the number of processing steps. It is possible to obtain Mg alloy with high bow jewel and large elongation of the product.
  • the Mg alloy is strained from three directions, the crystal grain size can be further reduced. As a result, the deformation of the Mg alloy after processing
  • the directions of the strain in each stage do not necessarily have to be orthogonal to each other. The point is that any direction may be used as long as it contributes to the refinement of the crystal grain size in the Mg alloy.
  • Mg alloy AZ31 Mg alloy containing 3% by mass of A1, 0 % by mass of Zn
  • Shape of Mg alloy Rectangular machine with height of 13mm, length of 12mm, width of 7mm (length direction is extrusion direction)
  • Figure 6 shows the crystal grain size at the contact stage and the hiding of the stress at that time.
  • the symbols (a) to (d) in the figure correspond to the first to fourth stages of leakage.
  • the crystal grain size is an average value of crystal grain sizes in a certain range in the yarn.
  • the crystal grain sizes in the examples (a) to (d) are as follows.
  • ⁇ in the figure shows data on the Mg alloy processed only from the uniaxial direction.
  • the crystal grain size is much smaller than the conventional one. It can also be seen that the higher the stress, the smaller the crystal grain size.
  • FIG. 7 shows the H of the crystal grain size and the room temperature hardness.
  • the right side of the horizontal axis in the figure indicates a smaller crystal grain size toward the right. According to this, it can be seen that the smaller the crystal, the higher the hardness, and the number of bows of the Mg alloy doubles due to the change in the yarn. For example, depending on the particle size, a Vickers hardness at room temperature of 100 OMPa can be obtained. As a result, we can see the power of improving the bow girl of the work using this alloy.
  • Figure 8 shows the results of 3 ⁇ 4 "Ru pull test to M g alloy has finished processing the four stages were ⁇ . In this test, the conditions of strain Kura ⁇ , 8. 3 X 10 ⁇ 3 s ⁇ ⁇ 8. 3 X 10- 4 s one 1, 8.3
  • Figure 9 is a photograph of Crystal Paper. It turns out that it is fine crystal separation. It is to be noted that the description of the hate state is merely an example, and does not indicate a configuration essential to the present invention. Is not limited to the above as long as the gist of the present invention can be obtained.
  • the function blocks in the ti S3 ⁇ 4EC device are combined into one function block.
  • the function of one function block may be performed in cooperation with a plurality of function blocks. Potential use of production

Abstract

A process of working a Mg alloy, which has the steps of: (3-1) applying a strain in the X direction to the Mg alloy, while maintaining the temperature of the alloy at a temperature of 473 K or higher, and then lowering the temperature of the alloy; (3-2) applying a strain in the Y direction and then further lowering the temperature of the alloy; and (3-3) applying a strain in the Z direction. After the three steps, one or more of the above steps may be repeated. The process of working a Mg alloy allows the conversion of crystal grains of the Mg alloy to further fine grains, which leads to the production of a Mg alloy having improved formability.

Description

M g合金の加工方法およひ ¼ g合金 擁分野 Processing method of Mg alloy and 合金g alloy
本発明は、 マグネシウム (Mg) 合金の加工方法および Mg合金に関するものである。 背景擁  The present invention relates to a method for processing a magnesium (Mg) alloy and a Mg alloy. Background
Mg合金は、実用金属中において密度カ最小であり、 このため軽量である。 さらに、 Mg合 金は、 比弓娘、 ββ断性、 リサイクノレ性などの面で優れている。  Mg alloys have the lowest density among practical metals and are therefore lightweight. In addition, Mg alloy is excellent in terms of Hiyumi Musume, ββ shearing properties, recyclability, etc.
しかしながら、 M g合金は、最密六方格子衞查をとるためにすベり系が少な ヽ。 このため M g合金 ίま、 低延生であり、 ||¾卩ェ材料である。  However, Mg alloys have few slip systems in order to take the closest hexagonal lattice protection. For this reason, Mg alloys are low-growth and ||
なお、.この明細書において、 Mg合金とは、 Mgを最大成分とし、かつ、最密六^子構造 をとる合金をいい、嫩辛な Mgを含むものとする。 Mg合金の形状は問わない。 発明の開示  In this specification, the term “Mg alloy” refers to an alloy having Mg as a maximum component and having a close-packed hexagonal structure, and includes neat Mg. The shape of the Mg alloy does not matter. Disclosure of the invention
本発明は、 liflBの事情に鑑みてなされたものである。本発明の目的は、 Mg合金の加工性を 向上さ¾ る加工方法およひロェ性の高い Mg合金を赚することである。 The present invention has been made in view of the circumstances of liflB. An object of the present invention is to赚improvement of ¾ Ru processing method Oyohi Roe highly Mg alloy workability of M g alloy.
本発明に係る Mg合金の加工施は、 次のステップを備えている:  The working of the Mg alloy according to the invention comprises the following steps:
( 1 ) Mg合金の を 4 7 3 K以上に膽しながら、 ttilBMg合金に対して少なくとも一方 向へのひずみを加えるステップ;  (1) applying a strain in at least one direction to the ttilBMg alloy while keeping the Mg alloy to 473 K or more;
(2) その後、 tOfBMg合金の を低下させ、 つ、 tiflBMg合金に対して、謙己一方向と は異なる方向へのひずみを加えるステップ。  (2) Thereafter, a step of lowering the of of the tOfBMg alloy and applying a strain to the tiflBMg alloy in a direction different from one direction.
前記ステップ ( 2) の後に、 次のステップをさらに備えることができる:  After step (2), the method may further include the following steps:
(3 ) tiJfSMg合金の をさらに低下させ、 力つ、嫌己ステップ(1 ) および(2) におけ るひずみの方向とはさらに異なる方向へのひずみを嫌 BM g合金に対して加えるステツプ。  (3) A step in which the strain of the tiJfSMg alloy is further reduced, and strain is applied to the disfavorable BM g alloy in a direction different from the direction of the strain in the force and disgust steps (1) and (2).
tfrt己ステップ (1) 〜 (3) における歸己ひずみの方向を、 互いにほ ίίίί交させてもよい。 ttflBステップ (1 ) 〜 (3) の後、 tiff己ステップ (1 ) 〜 (3) のレヽずれかまたは全てのス テップを繰り返すこともできる。 The directions of the return distortion in the tfrt self-steps (1) to (3) may be substantially crossed with each other. After the ttflB step (1) to (3), the tiff self step (1) to (3) can be repeated or all steps can be repeated.
藤路ひずみにおける真ひずみ量は 0. 3以上が好ま L ヽ9 The true strain in Fujiji strain is preferably 0.3 or more L ヽ9
ItitSひずみを加えてから 3分以内に、次のステップにおけるひずみを加えることが好ま L 、  It is preferable to apply strain in the next step within 3 minutes after applying ItitS strain L,
ΙίίΙ己ステップ( 1 )における M g合金の? は、 5 0 0 K〜 7 0 0 Κの範囲内であることが 好ましい。 The value of the Mg alloy in the self-step (1) is preferably in the range of 500 K to 700 K.
藤己ステップ(2)における Mg合金の は、 4 0 O K:〜 6 0 O Kの範囲内であることが 好ましい。  The value of Mg alloy in the Fujimi step (2) is preferably within the range of 40 OK: up to 60 OK.
ΙίίΙ己ステップ(3)における Mg合金の温度は、 3 0 O K〜5 0 O Kの範囲内であることが 好ましい。  It is preferable that the temperature of the Mg alloy in the self-step (3) be in the range of 30 OK to 50 OK.
廳2 ひずみにおけるひずみ 3¾ は 1 X 1 0— 3〜 1 X 1 0 + 1 s一1の範囲内であること力 s好 ましい。 3¾ strain at Hall 2 strain that force s successful preferable in the range of 1 X 1 0- 3 ~ 1 X 1 0 + 1 s one 1.
ΐίη½·ひずみは例えば laひずみである。  The ΐίη½ strain is, for example, a la strain.
本発明に係る Mg合金は、 藤己したいずれかの加工^去により加工されたものである。 本発明に係る加工物は、 tiftSM g合金を加工して得られたものである。  The Mg alloy according to the present invention has been processed by one of the following processes. The workpiece according to the present invention is obtained by processing a tiftSM g alloy.
本発明に係る Mg合金は、 Mgを最大成分とし、 力 、 糸艢六;^ P構造をとる合金であつ て、  The Mg alloy according to the present invention is an alloy having Mg as a maximum component and having a force and a P structure.
(1) Mg合金の温度を 473K以上に維寺しながら、前記 Mg合金に対して少なくとも一方向へのひ ずみを加えるステップ;  (1) applying a strain in at least one direction to the Mg alloy while maintaining the temperature of the Mg alloy at 473 K or more;
(2)その後、 嫌己 Mg合金の? ½を低下させ、 力 、 廳己 Mg合金に対して、 t&|S—方向とは異 なる方向へのひずみを加えるステップ;  (2) Thereafter, a step of reducing the temperature of the disgusting Mg alloy and applying a force to the Mg alloy in a direction different from the t & | S- direction;
(3)嫌己 Mg合金の ¾gをさらに低下させ、かつ、鍵己ステップ (1)および (2)におけるひずみ の方向とはさらに異なる方向へのひずみを tilt己 Mg合金に対して加えるステップ、  (3) further reducing the ¾g of the disgusting Mg alloy and applying a strain to the tilting Mg alloy in a direction different from the direction of the strain in the key steps (1) and (2);
を^ Tることにより、 その結晶粒径を 1 μ m以下とした構成であっても良い。 この Mg合金の結晶粒径は、 0. 2 m以下であってもよい。 The crystal grain size may be reduced to 1 μm or less by applying ΔT. The crystal grain size of the Mg alloy may be 0.2 m or less.
さらに、 この Mg合金は、室温でのビッカース硬さを 1 0 0 OMP a以上とし、 1 5 0°Cで の引張試験の破断伸びを 3 0 0 %以上とした構成であっても良い。  Further, the Mg alloy may have a Vickers hardness at room temperature of 100 OMPa or more, and a breaking elongation of 150% or more in a tensile test at 150 ° C. of 300% or more.
本発明に係る M g合金は、 Mgを最大成分とした細密六^?"構造をとる合金であって、 そ の結晶粒径を 1 μ m以下とし、室温でのビッカース硬さを 1 0 0 OMP a以上とし、かつ、 1 5 0°Cでの引張試験の破断伸ぴを 3 0 0 %以上とした構成であっても良い。  The Mg alloy according to the present invention is an alloy having a dense hexagonal structure with Mg as a maximum component, having a crystal grain size of 1 μm or less and a Vickers hardness at room temperature of 100 μm. OMPa or more and the elongation at break in a tensile test at 150 ° C. may be 300% or more.
本発明に係る M g合金は、 Mgを最大成分とした細密六方ネ好構 をとる合金であって、 The Mg alloy according to the present invention is an alloy having a fine hexagonal structure with Mg as a maximum component,
(1) Mg合金の を 473K以上に維持しながら、編己 Mg合金に対して少なくとも一方向へのひ ずみを加えるステップ; (1) adding strain in at least one direction to the knitted Mg alloy while maintaining the Kg of the Mg alloy at 473K or higher;
(2)その後、 謝 3 Mg合金の離を低下させ、 つ、 lift己 Mg合金に対して、 ΙϋΙΒ—方向とは異 なる方向へのひずみを加えるステップ; . を^ "Τることにより、  (2) Thereafter, the step of reducing the separation of the 3 Mg alloy and applying a strain to the lift self Mg alloy in a direction different from the 己-direction;
結晶粒径を 1 μ m以下とし、室温でのピツカ一ス硬さを 1 0 0 O MP a以上とし、 つ、 1 5 0°Cでの引張試験の破断伸びを 3 0 0 %以上とした構成であっても良い。 図面の簡単な説明 The crystal grain size is 1 μm or less, the hardness at room temperature is 100 OMPa or more, and the elongation at break in a tensile test at 150 ° C is 300% or more. A configuration may be used. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明のー« ^態に係る加: r¾置の概要を示すプロック図である。  FIG. 1 is a block diagram showing an outline of an arrangement according to another embodiment of the present invention.
図 2は、加: となる M g合金を示 明図である。  FIG. 2 is a diagram illustrating a Mg alloy to be added.
図 3は、 本発明の一^ ¾^態に係る加工方法を説明するためのフローチヤ一トである。 図 4は、本発明の実験例における実 結果を示すグラフである。 このグラフにおいて横軸は 累積ひずみ、 縦軸は (K) である。  FIG. 3 is a flowchart for explaining a processing method according to one embodiment of the present invention. FIG. 4 is a graph showing actual results in an experimental example of the present invention. In this graph, the horizontal axis is cumulative strain and the vertical axis is (K).
図 5は、本発明の実験例における実験結果を示すグラフである。このグラフにおいて横軸は 累積ひずみ、 縦軸は真応力である。  FIG. 5 is a graph showing experimental results in an experimental example of the present invention. In this graph, the horizontal axis is the cumulative strain, and the vertical axis is the true stress.
図 6は、本発明の実験例における実 結果を示すグラフである。このグラフにぉ 、て横軸は 累積ひずみ (¾"数表示)、 縦軸は、カロ: 力 (定 状態 力) (対数表示) である。 図 7は、本発明の実験例における実 結果を示すグラフである。このグラフにおいて横軸は 結晶粒径 Dを D一1 として表示したものである。 縦軸は室温ビッカース硬さである。 FIG. 6 is a graph showing actual results in an experimental example of the present invention. In this graph, the abscissa indicates the cumulative strain (¾ "number display"), and the ordinate indicates the calo: force (constant state force) (logarithmic display). FIG. 7 is a graph showing actual results in an experimental example of the present invention. In this graph, the horizontal axis represents the crystal grain size D as D- 1 . The vertical axis is the Vickers hardness at room temperature.
図 8は、本発明の実験例における実 i ^結果を示すダラフである。このダラフにぉ ヽてネ 1$由は 公称ひずみ、 縦軸は真応力である。  FIG. 8 is a graph showing actual i ^ results in an experimental example of the present invention. In this Dallaf, 1 $ is the nominal strain and the vertical axis is the true stress.
図 9は、本発明の実験'例にぉレヽて得られた M g合金の光学顕微鏡写真である。 図 (a) は第 1段階終了後 (累積ひずみ =0. 8)、 図 (b) は第 2段階終了後(累積ひずみ =1. 6)、 図 (c) は第 4段階終了後 (累積ひずみ =3. 2) の糸纖の写真である。 発明を するための最良の形態  FIG. 9 is an optical micrograph of the Mg alloy obtained in the experiment of the present invention. Figure (a) is after the first stage (cumulative strain = 0.8), Figure (b) is after the second stage (cumulative strain = 1.6), and Figure (c) is after the fourth stage (cumulative strain). This is a photograph of a yarn fiber with a strain of 3.2). BEST MODE FOR CARRYING OUT THE INVENTION
本発明の一^^態に係る、 Mg合金の加工^去を、 謝の図面を参照しながら説明する。 まず、 この;^去に用いる加 ¾置の概要を説明する。 この装置は、加工部 1とヒータ 2と制御 部.3とを備えている。カロェ部 1は、 Mg合金 A (図 2参照) に対して、 ±^向から謹力を加 えることができるようになっている。 この装置では、 Mg合金 Aの位置を変える (例えば回転 させる) ことにより、 Mg合金の 3方向 (Mg合金上での X, Υ, Z方向) 力らひずみを加え ることができるようになつている。ヒータ 2は、 Mg合金 Aを所定の に加熱するものであ る。制御部 3は、加工部 1による M g合金 Aへの加工方向 (つまりひずみ方向) 力変わるとき に、 自動または手動により、 ヒータによる Mg合金 Aの加熱 を低下させるものである。 つぎに、 本^^態における Mg合金の加工方法を説明する。 According to one ^^ state of the present invention, the machining ^ removed by the M g alloy, it will be described with reference to Xie drawings. First, the outline of the repair used in this process will be described. This apparatus includes a processing section 1, a heater 2, and a control section 3. The caroe part 1 is designed to be able to add strength to the Mg alloy A (see Fig. 2) from ± ^ directions. In this device, by changing (for example, rotating) the position of the Mg alloy A, it is possible to apply strains in three directions of the Mg alloy (X, M, Z directions on the Mg alloy). I have. The heater 2 heats the Mg alloy A to a predetermined temperature. The control unit 3 automatically or manually reduces the heating of the Mg alloy A by the heater when the processing direction (that is, the strain direction) of the working of the processing unit 1 on the Mg alloy A changes. Next, a method of processing the Mg alloy in the present embodiment will be described.
(図 3のステップ 3— 1)  (Step 3-1 in Figure 3)
まず、 ヒータ 2により、 Mg合金の躯を 473 K以上とする。 より好ましくは、 Mg合金 の温度を 500K〜70 OKの範囲内とする。なお、 翻状態において Mg合金の温度が十分 に高温であれば、 ヒータ 2によりカロ熱する必要はない。ついで、カロ工部 1により、 Mg合金に 対して、図 2中 X軸方向への iBf応力を加え、ひずみを発生させる。 このひずみは、 この 形態では圧縮ひずみである。 ひずみ は、 1X10一3〜 1 X 10+1 s一1の範囲内、 より好 ましくは 1 X 10— 2〜1 X 10 +1 s—1の範囲内が好ましい。 また、真ひずみ量は 0. 3以上 、 より好ましくは 0. 4以上であること力 S好ましい。ひずみの条件をこれらの範囲内とするこ とにより、加工後の結晶粒の良好な猶田化が期待できる。 First, the temperature of the Mg alloy body is increased to 473 K or more by heater 2. More preferably, the temperature of the Mg alloy is in the range of 500K to 70 OK. Note that if the temperature of the Mg alloy is sufficiently high in the inverted state, there is no need to heat the heater 2 with calorie. Next, iBf stress is applied to the Mg alloy in the X-axis direction in FIG. This strain is a compression strain in this embodiment. Strain, 1X10 one 3 within the range of ~ 1 X 10+ 1 s one 1, is more favorable Mashiku the range of 1 X 10- 2 ~1 X 10 + 1 s- 1 is preferred. The true strain is 0.3 or more More preferably, the force is 0.4 or more. By setting the strain conditions within these ranges, it is expected that the crystal grains after processing will be favorably reduced.
(図 3のステップ 3— 2)  (Step 3-2 in Figure 3)
ついで、加工部 1による X軸方向への画を解除した後、 M g合金の を低下させる。た だし、 fi¾低下中に負荷応力を解除しても良い。 ここでの Mg合金の? は、 4 0 0 K〜6 0 O Kの範囲内であることが好ましい。ついで、 Mg合金に対して、 Y軸方向(すなわち 向とほぼ直交する方向)から、 Mg合金に対してのひずみを加える。ひずみの条件は IBステ ップ 3— 1と同様とする。ステップ 3—1でのひずみ加工終了後、ステップ 3— 2にお!/、てひ ずみを加えるまでの時間は、 3分以内、より好ましくは 2分以内であること力 S好ましい。以降 のステップにおいても同様である。  Then, after releasing the image in the X-axis direction by the processing part 1, the content of the Mg alloy is reduced. However, the load stress may be released while fi¾ is decreasing. Here, the value of the Mg alloy is preferably in the range of 400K to 60OK. Next, strain is applied to the Mg alloy from the Y-axis direction (ie, a direction substantially perpendicular to the direction). The strain conditions are the same as in IB Step 3-1. After completing the strain processing in step 3-1, proceed to step 3-2! / The time until the strain is added is preferably within 3 minutes, more preferably within 2 minutes. The same applies to the subsequent steps.
(図 3のステップ 3— 3)  (Step 3-3 in Figure 3)
ついで、 Y軸方向への画を解除した後、 Mg合金の? ¾をさらに低下させる。ただし、温 度低下中に負荷応力ひずみを解除しても良い。ここでの Mg合金の? Sは、 3 0 O K〜5 0 0 Κの範囲内であること力 S好ましい。ついで、 Mg合金に対して、 Z軸方向(すなわち X軸およ
Figure imgf000007_0001
から、 Mg合金に対してのひずみを加える。ひずみの条件は 嫌己ステップ 3— 1と同様とする。
Then, after releasing the image in the Y-axis direction, the hardness of the Mg alloy is further reduced. However, the load stress strain may be released during the temperature drop. Here, the S of the Mg alloy is preferably in the range of 30 OK to 500 °, and the force S is preferable. Then, with respect to the Mg alloy, the Z axis direction (that is, the X axis and
Figure imgf000007_0001
Therefore, strain is applied to the Mg alloy. The conditions of the distortion are the same as those of Step 3-1.
その後、 Z軸方向への負荷応力を解除した後、 Mg合金の温度をさらに低下させて、 Xまた は Y軸方向からのひずみを M g合金に加えても良レ、。  Then, after releasing the applied stress in the Z-axis direction, the temperature of the Mg alloy can be further lowered, and strain from the X or Y-axis direction can be applied to the Mg alloy.
本^^態の^去によれば、加工ステップ数の増加に伴い結晶粒が観田ィはる。その製品の 弓嫉並びに伸び量の大きい M g合金を得ることができる。  According to this embodiment, the crystal grains grow with the increase in the number of processing steps. It is possible to obtain Mg alloy with high bow jewel and large elongation of the product.
また、本難形態では、 3方向から Mg合金にひずみを加えているので、結晶粒径をさらに 鶴化することができる。 これにより、加工後の M g合金における変形 OS力に ¾~Τるひずみ In the present difficult embodiment, since the Mg alloy is strained from three directions, the crystal grain size can be further reduced. As a result, the deformation of the Mg alloy after processing
) の異方性を抑えることができる。ただし、異方性を許容できるのであれば、 2方向のみから のひずみを加える方法を採用することも可能である。また、 4方向以上からのひずみを Mg合 金に加える構成としても良い。その齢も、段階を経る毎に Mg合金の を低下させること が必要であると考えられる。 ) Can be suppressed. However, if anisotropy can be tolerated, it is also possible to adopt a method of applying strain from only two directions. Also, a configuration may be adopted in which strains from four or more directions are applied to the Mg alloy. The age of the alloy must be reduced at each stage. Is considered necessary.
また、各段階におけるひずみの方向は、必ずしも互いに直交していなくてもよい。要は、 M g合金における結晶粒径の微細化に寄与する方向であればよい。  Also, the directions of the strain in each stage do not necessarily have to be orthogonal to each other. The point is that any direction may be used as long as it contributes to the refinement of the crystal grain size in the Mg alloy.
溪験例)  River test example)
廳己 形態の;^去に沿って、 下記条件の下で実験を行った。  The experiment was conducted under the following conditions in accordance with the cafeteria;
牛)  Cow)
材料: M g合金 A Z 3 1 (A 1を 3質量%、 Z nを 1質量0/。を含む M g合金) Material: Mg alloy AZ31 (Mg alloy containing 3% by mass of A1, 0 % by mass of Zn)
Mg合金の形 法:丸柳し出し材から切り出し  Form of Mg alloy: Cut out from Maruyanagi bark
Mg合金(試験片) の形状:高さ 1 3mm、縦 1 2mm、横 7 mmの直方ィ械(長さ方向を 押し出し方向とした)  Shape of Mg alloy (specimen): Rectangular machine with height of 13mm, length of 12mm, width of 7mm (length direction is extrusion direction)
ひずみ艇 ε : 3 X 10-3 S -1 (一定) Strain boat ε: 3 X 10- 3 S - 1 ( constant)
各段階での B鶴ひずみ量 : 0. 8 (一定)  B crane strain at each stage: 0.8 (constant)
—段階目 (X車肪向) ひずみでの] ϊβ^Τ: 673Κ  —At the stage (X car fat direction) strain] ϊβ ^ Τ: 673Κ
階目 (Υ軸方向) ひずみでの J¾|? T: 523K  Floor (Υ axis direction) J¾ |? T at strain: 523K
階目 (Z軸方向) ひずみでの纖離 T: 473K  Floor (Z-axis direction) Fiber separation under strain T: 473K
四段階目 (X軸方向) ひずみでの j¾|UgT: 433K  Fourth stage (X-axis direction) j¾ | UgT at strain: 433K
すなわち、 この難形態では、歸己ステップ 3— 1の後、 X軸方向からもう一度ひずみを M g合金に加えた。離と累積ひずみとの関係を図 4に示す。 なお、 この猫形態では、各段階 が終了した時点で水 ^λ^Ιを行い、 さらに試験片を研磨成形し、その後、次の段階での ¾^ 件にて 0. 6〜0. 78 k s (キロ秒) 離再加熱してから、試 にひずみを加えた。 結果を図 5〜図 9に示す。図 5は、累積ひずみと、ひずみを加えたときの応力との関係を示 している。各段階において、 Δ ε =0. 8という大きなひずみを得られている。 また、 Τ=4 In other words, in this difficult form, after the return step 3-1, another strain was applied to the Mg alloy from the X-axis direction. Figure 4 shows the relationship between separation and cumulative strain. In this cat form, water ^ λ ^ Ι was applied at the end of each step, and the test piece was further polished and formed.Then, in the next step, 0.6 ~ 0.78 ks (Kiloseconds) After heating after separation, strain was applied to the test. The results are shown in FIGS. Figure 5 shows the relationship between cumulative strain and stress when strain is applied. At each stage, a large strain of Δ ε = 0.8 was obtained. Also, Τ = 4
73Κや 433 Κという低い加熱 においても、大きなひずみを得ることができている。こ のときの応力はかなり高くなる力 S破断しない。図 5における赚は比較例である。 Τ=473Even at a low heating temperature of 73Κ or 433Κ, large strains can be obtained. The stress at this time becomes a considerably high force S does not fracture.赚 in FIG. 5 is a comparative example. Τ = 473
Κで加工を開始すると、 急激に応力が上昇し、 0. 3 の真ひずみで破壊する。 図 6は、觸路段階での結晶粒径と、そのときの応力との隱、を示してレ、る。図中符号 ( a )〜(d) が漏した第 1〜第 4段階での加工に対応している。 ここで、結晶粒径とは、糸赚 における一定範囲での結晶粒径の平均値である。 (a)〜 (d) の例のおける結晶粒径は、 以 下のようになった。 When processing is started at Κ, the stress rises sharply and breaks at a true strain of 0.3. Figure 6 shows the crystal grain size at the contact stage and the hiding of the stress at that time. The symbols (a) to (d) in the figure correspond to the first to fourth stages of leakage. Here, the crystal grain size is an average value of crystal grain sizes in a certain range in the yarn. The crystal grain sizes in the examples (a) to (d) are as follows.
^a) 3. 5 i m  ^ a) 3.5 im
(b) 1. 9 m  (b) 1.9 m
( c ) 0. 5 5 μΐ  (c) 0.5 5 μΐ
(d) 0. 1 8 μτη  (d) 0.1 8 μτη
また、 図中〇は、 一軸方向のみから加工を行った Mg合金についてのデータである。  In addition, 〇 in the figure shows data on the Mg alloy processed only from the uniaxial direction.
これらから、この実験例では、従来よりも非常に小さい結晶粒径となっていることがわかる 。 また、 応力が高いほど小さい結晶粒径となることもわかる。  From these results, it can be seen that in this experimental example, the crystal grain size is much smaller than the conventional one. It can also be seen that the higher the stress, the smaller the crystal grain size.
図 7は、結晶粒径と室温硬さとの H、を示している。図中横軸においては、右に行くほど小 さい結晶粒径であることを意味する。 これによれば、結晶雖が小さいほど硬さが増し,糸啦 化によって Mg合金の弓娘が倍増することカ判る。例えば、粒径によっては、室温でのビッカ ース硬さ 100 OMP aを得ることもできる。これにより、この合金を使った加工物の弓娘を 向上さ ること力 S判る。  FIG. 7 shows the H of the crystal grain size and the room temperature hardness. The right side of the horizontal axis in the figure indicates a smaller crystal grain size toward the right. According to this, it can be seen that the smaller the crystal, the higher the hardness, and the number of bows of the Mg alloy doubles due to the change in the yarn. For example, depending on the particle size, a Vickers hardness at room temperature of 100 OMPa can be obtained. As a result, we can see the power of improving the bow girl of the work using this alloy.
図 8は、 膽己した 4段階の加工を終了した Mg合金に ¾ "る引 験の結果を示している。 この試験では、 ひずみ藏 εの条件を、 8. 3 X 10~3 s~\ 8. 3 X 10— 4 s一1、 8. 3Figure 8 shows the results of ¾ "Ru pull test to M g alloy has finished processing the four stages were膽己. In this test, the conditions of strain Kura ε, 8. 3 X 10 ~ 3 s ~ \ 8. 3 X 10- 4 s one 1, 8.3
X 10— 5 s— 1の 3通りとした。 その結果、 例えば 8. 3 X 1 0—5 s—1のひずみSgでは、 3X 10 — 5 s — 1 In result, for example, 8. 3 X 1 0- 5 s- 1 strain Sg, 3
00 %近レ、、非常に高レ、伸ぴを得ることができた。 このときの ¾ ^件は 423 K (つまり約Nearly 00%, very high, and stretch could be obtained. ¾ ^ at this time is 423 K (that is, about
1 50°C) である。 また、 8. 3 X 1 0— 3 s—1という速いひずみ艇においても、 100% 禾 の伸ぴを得ることができた。 この結果から、本発明に従って得られる Mg合金は、誰加 ェ可能な特 を有していることが判る。すなわち、 M g合金にぉレヽては従来困—難であった塑性 加工が可能となっている。 1 50 ° C). Also in fast strain boat that 8. 3 X 1 0- 3 s- 1 , could be obtained Shinpi 100%禾. From these results, it can be seen that the Mg alloy obtained according to the present invention has characteristics that can be added. In other words, plastic working, which was conventionally difficult with Mg alloys, is now possible.
図 9は、 結晶紙熾の写真である。 細な結晶離であることがわかる。 なお、嫌己 態の記載は単なる一例に過ぎず、本発明に必須の構成を示したものではな い。 の構成は、 本発明の趣旨を戴できるものであれば、 上記に限らない。 Figure 9 is a photograph of Crystal Paper. It turns out that it is fine crystal separation. It is to be noted that the description of the hate state is merely an example, and does not indicate a configuration essential to the present invention. Is not limited to the above as long as the gist of the present invention can be obtained.
また、 ti S¾EC¾置における機能プロックどうしが複合して一つの機能プロックに集約され ても良 ヽ。また、一つの機能プロックの機能が複数の機能プロックの協働により »されても 良 ヽ。 産 の利用の可能性  Also, it is acceptable if the function blocks in the ti S¾EC device are combined into one function block. Also, the function of one function block may be performed in cooperation with a plurality of function blocks. Potential use of production
本発明によれば、 M g合金の加工性を向上さ t る加工:^去を できる。 また、加工性の 高い M g合金を»できる。  According to the present invention, it is possible to improve the workability of Mg alloy. In addition, a Mg alloy having high workability can be obtained.

Claims

請 求 の 範 囲 ' The scope of the claims '
1. 次のステップを備えることを糊敷とする Mg合金の加工^去: - 1. Machining Mg alloy with the following steps:-
(1) Mg合金の を 473K以上に膽しながら、 t&fBMg合金に対して少なくとも一方 向へのひずみを加えるステップ; (1) applying a strain in at least one direction to the t & fBMg alloy while keeping the temperature of the Mg alloy above 473K;
(2) その後、 tiftSMg合金の を低下させ、力つ、 fiitBMg合金に対して、謝 S—方向と は異なる方向へのひずみを加えるステップ。  (2) After that, the step of lowering the tiftSMg alloy and applying a strain to the force and fiitBMg alloy in a direction different from the S-direction.
2. ΙίίΙΒステップ (2) の後に、 次のステップをさらに備えることを糊敷とする M g合金の 加工施:  2. ΙίίΙΒ Step (2), after the step (2), the following steps are further performed:
(3) 編 3Mg合金の をさらに低下させ、 かつ、 lijf己ステップ(1) および(2) におけ るひずみの方向とはさらに異なる方向へのひずみを tiJtSMg合金に対して加えるステップ。 (3) Step of further reducing the 3Mg alloy and applying a strain to the tiJtSMg alloy in a direction different from the direction of the strain in the lijf self-steps (1) and (2).
3. 藤 Sステップ (1) 〜 (3) における廳己ひずみの方向は、 互いにほほ 1Ϊ交しているこ とを糊敷とする請求項 2記載の加工方法。 3. The processing method according to claim 2, wherein the direction of the self-distortion in the wisteria S step (1) to (3) is approximately 1 degree intersecting with each other.
4. 編己ステップ (1) 〜 (3) の後、 嫌己ステップ (1) 〜 (3) のレヽずれかまたは全て のステップを繰り返すことを樹敫とする請求項 2または 3に記載の加: 去。  4. The method according to claim 2 or 3, wherein after the self-editing steps (1) to (3), the step of repeating the all-or-nothing steps (1) to (3) or all steps are repeated. : Leave.
5. 編己各ひずみにおける真ひずみ量は 0. 3以上であることを糊敷とする請求項 1〜3の V、ずれか 1項記載の加工施。  5. The processing according to claim 1 or 2, wherein the true strain amount in each knitting strain is 0.3 or more.
6. ΙίίΙΒひずみを加えてから 3分以内に、 次のステップにおけるひずみを加えることを ί敷 とする請求項 1〜 5のレヽずれか 1項記載の加工:^去。  6. Applying the strain in the next step within 3 minutes after applying the strain, processing according to any one of claims 1 to 5, or removing.
7. 前記ステップ (1) における Mg合金の温度は、 500K〜700Kの範囲内であるこ とを樹敷とする請求項 〜 6の ヽずれか 1項記載の加工; ^去。  7. The processing according to any one of claims 6 to 6, wherein the temperature of the Mg alloy in the step (1) is within a range of 500K to 700K.
8. 前記ステップ (2) における Mg合金の温度は、 400K〜600Kの範囲内であるこ とを糊敷とする請求項 1〜 7のレ、ずれか 1項記載の加工;^去。  8. The process according to claim 1, wherein the temperature of the Mg alloy in the step (2) is in the range of 400K to 600K, and the processing is performed according to any one of claims 1 to 7.
9. 前記ステップ ( 3 ) における M g合金の は、 300 — 500 Kの範囲内であるこ とを樹敷とする請求項 2〜 8のいずれか 1項記載の加工方法。  9. The processing method according to any one of claims 2 to 8, wherein the Mg alloy in the step (3) is in a range of 300 to 500K.
10. 前記各ひずみにおけるひずみ速度は 1X 10— 3〜 1 X 10+1 s 1の範囲内であるこ とを赚とする請求項 1〜 9の ヽずれか 1項記載の加工^去。 10. This said strain rate in each strain is in the range of 1X 10- 3 ~ 1 X 10+ 1 s 1 The process according to any one of claims 1 to 9, wherein
1 1. ΙίίΙ路ひずみは ]¾ずみであることを赚とする請求項 1〜: L 0のいずれか 1 ¾fE 載の加工规 . 1 1. The circuit strain shall be abrupt. Claims 1 to 1: Any one of L 0 1 Machining with fE.
1 2. 請求項 1〜 1 1記載の加工方法により加工された M g合 1 2. Mg alloy processed by the processing method described in claims 1 to 11
1 3 . 請求項 1 2記載の M g合金を加工して得られたカロェ物。  13. A caroe obtained by processing the Mg alloy according to claim 12.
1 4. Mgを最大成分とし、 つ、 糸瞎六^子構造をとる合金であって、  1 4. An alloy that has a maximum composition of Mg and has a sperm structure.
(1) Mg合金の を 473K以上に維持しな力 Sら、 ffjfB Mg合金に対して少なくとも一方向へのひ ずみを加えるステップ;  (1) A step of applying strain to the ffjfB Mg alloy in at least one direction;
(2)その後、 tGlBMg合金の を低下させ、 かつ、 謝己 Mg合金に対して、 藤己一方向とは異 なる方向へのひずみを加えるステップ;  (2) Thereafter, the step of reducing the temperature of the tGlBMg alloy and applying a strain to the Mg alloy in a direction different from the Fujimi direction;
(3) 1515 Mg合金の ¾gをさらに低下させ、 つ、肅己ステップ(1)および (2)におけるひずみ の方向とはさらに異なる方向へのひずみを肅己 Mg合金に対して加えるステップ、  (3) further reducing the ¾g of the 1515 Mg alloy, and applying a strain to the Sukki alloy in a direction different from that of the strain in the Sukki steps (1) and (2);
を ることにより、 その結晶 #立径を 1 μ m以下としたことを樹敫とする M g合 As a result, it is determined that the crystal diameter is 1 μm or less.
1 5 . 膽酷晶粒径を 0 . 2 μ m以下としたことを赚とする請求項 1 4項記載の M g合金  15. The Mg alloy according to claim 14, wherein the crystal grain size is 0.2 μm or less.
1 6 . さらに、 室温でのビッカース硬さを 1 0 0 0 MP a以上とし、 1 5 0 °Cでの引張試験 の破断伸びを 3 0 0 %以上としたことを樹敫とする請求項 1 4記載の M g合 16. Further, the Vickers hardness at room temperature should be 100 MPa or more, and the elongation at break in a tensile test at 150 ° C. should be 300% or more. 4 Mg total
1 7. Mgを最大成分とした細密六^? "構造をとる合金であって、その結晶; ¾を 1 m以 下とし、室温でのビッカース硬さを 1 0 0 O MP a以上とし、 つ、 1 5 0 °Cでの引張試験の 破断伸ぴを 3 0 0 %以上としたことを f敷とする M g合^ 0 1 7. Fine 6 ^ with Mg as the largest component? An alloy having a structure, its crystal; ¾ not more than 1 m, Vickers hardness at room temperature not less than 100 OMPa, and breaking elongation in a tensile test at 150 ° C. M g total ^ 0 where敷 is set to 3 0% or more as f
1 8 . Mgを最大成分とした糸赠六 子構造をとる合金であって、  1 8. An alloy that has a string structure with Mg as the largest component.
(1) Mg合金の鍵を 473K以上に維持しながら、 ItjfE Mg合金に対して少なくとも一方向へのひ ずみを加えるステップ;  (1) straining the ItjfE Mg alloy in at least one direction while maintaining the Mg alloy key at 473K or higher;
(2)その後、 編 g合金の ¾gを低下させ、 力 、 嫌 SMg合金に対して、 廳3—方向とは異 なる方向へのひずみを加えるステップ; を^ ることにより、 (2) Afterwards, reducing the さ せ g of the g alloy and applying a strain to the force and the unfavorable SMg alloy in a direction different from the direction of the hall; By ^
結晶粒径を 1 β m以下とし、室温でのビッカース硬さを 1 0 0 OMP a以上とし、 つ、 1 5 0。Cでの引 験の破断伸ぴを 3 0 0 %以上としたことを糊敷とする Mg合 The crystal grain size is 1 βm or less, and the Vickers hardness at room temperature is 100 OMPa or more. It is assumed that the elongation at break in the test in C is 300% or more.
PCT/JP2004/001885 2003-03-26 2004-02-19 PROCESS OF WORKING Mg ALLOY AND Mg ALLOY WO2004085692A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005503982A JP4632949B2 (en) 2003-03-26 2004-02-19 Processing method of Mg alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003085886 2003-03-26
JP2003-085886 2003-03-26

Publications (1)

Publication Number Publication Date
WO2004085692A1 true WO2004085692A1 (en) 2004-10-07

Family

ID=33095043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001885 WO2004085692A1 (en) 2003-03-26 2004-02-19 PROCESS OF WORKING Mg ALLOY AND Mg ALLOY

Country Status (2)

Country Link
JP (1) JP4632949B2 (en)
WO (1) WO2004085692A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291488A (en) * 2006-03-30 2007-11-08 Univ Of Electro-Communications Method and device for producing magnesium alloy material, and magnesium alloy material
JP2008156725A (en) * 2006-12-25 2008-07-10 Nagaoka Univ Of Technology Magnesium thin sheet for flattening and method for producing magnesium thin sheet for flattening
JP2010065252A (en) * 2008-09-09 2010-03-25 Mitsubishi Materials Corp Method for producing fine crystal grain copper material, the fine crystal grain copper material, and sputtering target
JP2010116618A (en) * 2008-11-14 2010-05-27 Univ Of Electro-Communications Method for manufacturing magnesium alloy material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112941435A (en) * 2019-12-10 2021-06-11 通用汽车环球科技运作有限责任公司 Method of forming magnesium-based alloy articles at high strain rates

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109454A (en) * 1994-10-12 1996-04-30 Masumoto Takeshi High strength metallic material and its production
JP2000271693A (en) * 1999-03-26 2000-10-03 Ykk Corp Production of magnesium alloy material
JP2000271695A (en) * 1999-03-26 2000-10-03 Ykk Corp Production of magnesium alloy material
JP2000313948A (en) * 1999-04-27 2000-11-14 Ykk Corp Manufacture of forming material and formed article
JP2003277899A (en) * 2002-03-25 2003-10-02 Kurimoto Ltd Magnesium alloy member and its production method
JP2004099941A (en) * 2002-09-05 2004-04-02 Japan Science & Technology Corp Magnesium-base alloy and production method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221142A (en) * 1984-04-05 1985-11-05 Kobe Steel Ltd Forging of mg-zn-zr alloy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109454A (en) * 1994-10-12 1996-04-30 Masumoto Takeshi High strength metallic material and its production
JP2000271693A (en) * 1999-03-26 2000-10-03 Ykk Corp Production of magnesium alloy material
JP2000271695A (en) * 1999-03-26 2000-10-03 Ykk Corp Production of magnesium alloy material
JP2000313948A (en) * 1999-04-27 2000-11-14 Ykk Corp Manufacture of forming material and formed article
JP2003277899A (en) * 2002-03-25 2003-10-02 Kurimoto Ltd Magnesium alloy member and its production method
JP2004099941A (en) * 2002-09-05 2004-04-02 Japan Science & Technology Corp Magnesium-base alloy and production method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291488A (en) * 2006-03-30 2007-11-08 Univ Of Electro-Communications Method and device for producing magnesium alloy material, and magnesium alloy material
JP2008156725A (en) * 2006-12-25 2008-07-10 Nagaoka Univ Of Technology Magnesium thin sheet for flattening and method for producing magnesium thin sheet for flattening
JP2010065252A (en) * 2008-09-09 2010-03-25 Mitsubishi Materials Corp Method for producing fine crystal grain copper material, the fine crystal grain copper material, and sputtering target
JP2010116618A (en) * 2008-11-14 2010-05-27 Univ Of Electro-Communications Method for manufacturing magnesium alloy material

Also Published As

Publication number Publication date
JPWO2004085692A1 (en) 2006-06-29
JP4632949B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
EP2113579B1 (en) Magnesium base alloy wire
JP5658609B2 (en) Magnesium alloy materials and engine parts
JP4189687B2 (en) Magnesium alloy material
JP5557121B2 (en) Magnesium alloy
JP2010126777A (en) Copper alloy sheet, and method for producing the same
WO2008069049A1 (en) Magnesium alloy material and process for production thereof
JP6860235B2 (en) Magnesium-based alloy wrought material and its manufacturing method
WO2008117890A1 (en) Magnesium alloys and process for producing the same
JP6489576B2 (en) Method for producing a magnesium-based alloy extension material
WO2004085692A1 (en) PROCESS OF WORKING Mg ALLOY AND Mg ALLOY
US20220251674A1 (en) Metallic components with enhanced mechanical strength through surface mechanical grinding
Wei et al. Effect of heat treatment on microstructures and mechanical properties of extruded-rolled AZ31 Mg alloys
JP2008075169A (en) Magnesium alloy extruded member and its manufacturing method
Mabuchi et al. Tensile properties of directionally solidified AZ91 Mg alloy
EP2210964A1 (en) Magnesium alloy
Bazarnik et al. The strength and ductility of 5483 aluminium alloy processed by various SPD methods
JP4864413B2 (en) High strength magnesium alloy extruded material
JP5540306B2 (en) Method for producing a magnesium alloy material
JP2004176134A (en) Method of producing aluminum and aluminum alloy material having hyperfine crystal grain
JP6214217B2 (en) Method for producing titanium alloy
Ding et al. Effect of finish-rolling conditions on mechanical properties and texture characteristics of AM50 alloy sheet
EP3070183A1 (en) Heat treatment of titanium alloy
KR102084304B1 (en) Magnesium alloy having excellent strength and corrosion resistance and manufacturing method for the same
JP2010222645A (en) Mg ALLOY MEMBER
JP2011225972A (en) Magnesium alloy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005503982

Country of ref document: JP

122 Ep: pct application non-entry in european phase