JP2003277899A - Magnesium alloy member and its production method - Google Patents

Magnesium alloy member and its production method

Info

Publication number
JP2003277899A
JP2003277899A JP2002083827A JP2002083827A JP2003277899A JP 2003277899 A JP2003277899 A JP 2003277899A JP 2002083827 A JP2002083827 A JP 2002083827A JP 2002083827 A JP2002083827 A JP 2002083827A JP 2003277899 A JP2003277899 A JP 2003277899A
Authority
JP
Japan
Prior art keywords
forging
magnesium alloy
forging step
alloy member
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002083827A
Other languages
Japanese (ja)
Other versions
JP3768909B2 (en
Inventor
Masayoshi Kitagawa
眞好 喜多川
Yoshisada Michiura
吉貞 道浦
Keiichi Maekawa
恵一 前川
Toshihiko Adachi
年彦 足立
Kenji Azuma
健司 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Meishin KK
Original Assignee
Kurimoto Ltd
Meishin KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd, Meishin KK filed Critical Kurimoto Ltd
Priority to JP2002083827A priority Critical patent/JP3768909B2/en
Publication of JP2003277899A publication Critical patent/JP2003277899A/en
Application granted granted Critical
Publication of JP3768909B2 publication Critical patent/JP3768909B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a magnesium alloy having stable fine crystal grain structure and excellent formability by solving such problem as coarsening of crystal grains, obstruction to formability and increase of energy consumption and to provide a magnesium alloy member. <P>SOLUTION: After applying a solution-treatment to the magnesium alloy, in a first forging process, a pre-strain of not less than at least 0.4 is given in a temperature range of 250-400°C and thereafter, an ageing treatment is applied and successively, a secondary forging is performed at a necessary temperature of not higher than the forging temperature. In this way, the fine grains of magnesium compound after ageing-treatment are precipitated and the coarsening of the crystal grains is prevented during the heating process in the secondary forging process. Further, the formed product having about ≤10 μm average crystal grain diameter and the stable fine crystal grain structure of ≤5 μm average crystal grain diameter under a suitable condition with a fining action by forging, and the material excellent in formability for the following working process, can be obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、自動車部品、鉄
道車両部品、または家電部品等に用いられるマグネシウ
ム合金部材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a magnesium alloy member used for automobile parts, railroad car parts, home electric appliance parts and the like.

【0002】[0002]

【従来の技術】マグネシウム合金は、比重が小さく比強
度が高いうえに、電磁遮蔽性やリサイクル性に優れるこ
とから、軽量化を目的とする上記の車両用部品への用途
をはじめとして、家電分野でも、AV機器、ノート型パ
ソコンなどの電子機器の部品など、様々な用途への展開
が進められている。一方、マグネシウム合金は、難加工
性材料の一種であるために、マグネシウム合金部材の製
造方法としては、一般に、ダイカスト法やチクソモール
ディング法などの鋳造法が用いられている。
2. Description of the Related Art Magnesium alloy has a small specific gravity and a high specific strength, as well as excellent electromagnetic shielding and recyclability. However, it is being developed for various purposes such as AV equipment and parts of electronic equipment such as notebook computers. On the other hand, since a magnesium alloy is a kind of difficult-to-process material, a casting method such as a die casting method or a thixomolding method is generally used as a method for manufacturing a magnesium alloy member.

【0003】前記ダイカスト法では、化学的活性が高い
マグネシウム合金の溶湯を取り扱うなど、また、前記チ
クソモールディング法では、最適成形温度範囲が狭いな
ど、それぞれの不利な点があるうえに、成形時に発生す
る欠陥に対する後処理に多くの工程を要し、また歩留り
も低いなどの問題点がある。
The die casting method has disadvantages such as handling a molten magnesium alloy having high chemical activity, and the thixomolding method has a narrow optimum molding temperature range. There are problems that many steps are required for post-processing for such defects and the yield is low.

【0004】このような問題点を解消するために、難加
工性材料であるマグネシウム合金においても、鍛造、圧
延、押出しなどの各種の塑性加工方法が検討されてお
り、これらの塑性加工に供する素材としては、一般に、
鋳造材を押出し加工した材料が用いられる。
In order to solve such problems, various plastic working methods such as forging, rolling and extrusion have been studied for magnesium alloys which are difficult to work, and the materials used for these plastic workings have been studied. As a general rule,
A material obtained by extruding a cast material is used.

【0005】[0005]

【発明が解決しようとする課題】しかし、マグネシウム
合金部材を塑性加工、例えば、鍛造加工により成形する
場合には、難加工性であるために、加工毎に、所要の加
工温度に加熱する必要があり、加熱・冷却が繰り返され
るために、結晶粒が粗大化し、鍛造加工を施したにもか
かわらず、強度が向上しなく、また、所要の形状に仕上
げるために、多くの加工数が必要なために、エネルギー
消費も多くなるという問題点があった。さらに、前記の
押出し加工により得られる素材に存在する成分偏析によ
って、成形性が阻害されるという問題点があった。
However, when a magnesium alloy member is formed by plastic working, for example, forging, it is difficult to work, so it is necessary to heat it to a required working temperature for each working. Yes, due to repeated heating and cooling, the crystal grains become coarse, and despite the forging process, the strength does not improve, and a large number of processes are required to finish the product into the required shape. Therefore, there is a problem that energy consumption increases. Further, there is a problem that the moldability is hindered by the segregation of the components existing in the material obtained by the above-mentioned extrusion processing.

【0006】このような問題点を解消するために、特開
平6−248402号公報では、マグネシウム合金部材
を鍛造加工により製造する方法において、荒地形状の鍛
造素材を鋳造により造り、この鍛造素材に先に溶体化処
理を施した後に、鍛造による仕上げ加工を行い、この仕
上げ加工後に時効処理を行う方法が示されている。この
方法では、鍛造加工前に行う溶体化処理によって、組織
内に存在するマグネシウム化合物を固溶させるため、成
分偏析が改善されて鍛造成形性が向上するという利点な
どはあるもの、結晶粒に関しては、鍛造加工後に溶体化
処理を実施する従来の方法に比べて、結晶粒の粗大化を
防止できるという程度にとどまり、熱間や温間加工域に
おいて微細結晶粒を安定維持し、それによって、成形性
や、室温強度および延性などの機械的性質の向上をもた
らすまでには至っていない。
In order to solve such a problem, Japanese Unexamined Patent Publication (Kokai) No. 6-248402 discloses a method of manufacturing a magnesium alloy member by forging, in which a rough forged material is cast, It is disclosed that a solution treatment is applied to the steel, a finishing work is performed by forging, and an aging treatment is performed after the finishing work. In this method, the solution treatment carried out before the forging process causes the magnesium compound existing in the structure to form a solid solution, so that there is an advantage that the component segregation is improved and the forgeability is improved. Compared to the conventional method of carrying out solution treatment after forging, it is only to the extent that coarsening of crystal grains can be prevented and stably maintains fine crystal grains in the hot or warm working region, thereby forming Properties and mechanical properties such as room temperature strength and ductility have not yet been improved.

【0007】そこで、この発明の課題は、結晶粒の粗大
化や成形性の阻害、消費エネルギーの増大などの問題点
を解消するとともに、安定な微細結晶粒組織を有する成
形性に優れたマグネシウム合金の製造方法とそれにより
得られるマグネシウム合金部材を提供することである。
Therefore, an object of the present invention is to solve the problems such as coarsening of crystal grains, obstruction of formability, increase of energy consumption, and the like, and a magnesium alloy having a stable fine crystal grain structure and excellent formability. And a magnesium alloy member obtained thereby.

【0008】[0008]

【課題を解決するための手段】前記の課題を解決するた
めに、この発明では以下の構成を採用したのである。
In order to solve the above problems, the present invention adopts the following configuration.

【0009】即ち、マグネシウム合金部材を、マグネシ
ウム合金素材の溶体化処理工程と、予歪を与えるための
第1の鍛造加工工程と、この鍛造加工後の時効処理工程
と、次いで、結晶粒を微細化するための第2の鍛造加工
工程とからなる工程によって製造するようにしたのであ
る。
That is, a magnesium alloy member is subjected to a solution treatment process of a magnesium alloy material, a first forging process for giving a pre-strain, an aging treatment process after the forging process, and then a fine crystal grain. It was manufactured by a process consisting of a second forging process for making the material.

【0010】このような工程によれば、まず、溶体化処
理工程によって、素材として、市販の押出し材などを用
いる場合に、素材中に不均一に析出しているマグネシウ
ム化合物を十分に組織中に固溶させて、成分偏析をなく
すことができる。
According to such a process, first, when a commercially available extruded material or the like is used as a material in the solution treatment step, the magnesium compound which is nonuniformly precipitated in the material is sufficiently dispersed in the structure. It is possible to form a solid solution to eliminate segregation of components.

【0011】そして、第1の鍛造工程で、この素材に所
要の予歪を与えることにより、次工程の時効処理によっ
て、球状、またはアスペクト比が小さいマグネシウム化
合物の微細粒子を析出させ、組織を均質化することがで
きる。そして、この析出した微細粒子により、第2の鍛
造加工工程において、素材の加工温度への加熱過程にお
いて結晶粒の成長が妨げられ、加工による結晶粒の微細
化作用により、安定した微細結晶粒組織が生成し、所望
の形状の仕上げ成形品、または、例えば板材などの、2
次加工用の素材に成形することができる。
Then, in the first forging step, the material is pre-strained in a required manner, and by the aging treatment of the next step, fine particles of a magnesium compound having a spherical shape or a small aspect ratio are precipitated to homogenize the structure. Can be converted. Then, the precipitated fine particles prevent the growth of crystal grains in the heating process of the material to the processing temperature in the second forging process step, and the crystal grain refining action by the processing stabilizes the fine grain structure. To produce the desired shape of the finished molded article, or 2
It can be formed into a material for subsequent processing.

【0012】また、前記第1の鍛造加工工程において、
加工温度が250℃から400℃の温度域にあり、予歪
が真歪で0.4以上であることが望ましい。
In the first forging step,
It is desirable that the processing temperature is in the temperature range of 250 ° C. to 400 ° C. and the pre-strain is 0.4 or more in true strain.

【0013】第1の鍛造加工工程において、加工温度が
400℃を超えると予歪を与える効果がなくなってしま
うこと、および溶体化処理後の組織が粗大化しやすくな
り、また、鍛造作業性がわるくなり、金型寿命が低下
し、さらに、加熱エネルギー消費も多くなって好ましく
ない。一方、加工温度が250℃よりも低くなると、被
加工材の変形抵抗が増加して、加工荷重が増大し過ぎて
好ましくない。
In the first forging step, if the processing temperature exceeds 400 ° C., the effect of prestrain is lost, and the structure after solution treatment is likely to become coarse, and the forgeability is poor. And the life of the mold is shortened, and the heating energy consumption is increased, which is not preferable. On the other hand, when the processing temperature is lower than 250 ° C., the deformation resistance of the material to be processed increases and the processing load increases too much, which is not preferable.

【0014】これらの加工温度域で、予歪が0.4より
も小さくなると、被加工材中への加工歪の導入が不十分
となり、後続の時効処理工程で、球状、またはアスペク
ト比が小さいマグネシウム化合物の微細粒子を析出させ
ることが難しくなる。
If the pre-strain is less than 0.4 in these working temperature regions, the introduction of the working strain into the material to be worked becomes insufficient, and in the subsequent aging treatment step, the spherical shape or the aspect ratio becomes small. It becomes difficult to deposit fine particles of the magnesium compound.

【0015】さらに、時効工程において、平均粒子径が
5nmから100nmの範囲にある微細粒子が、平均分
布間隔が5nmから200nmを析出させることが望ま
しい。
Further, in the aging step, it is desirable to deposit fine particles having an average particle size in the range of 5 nm to 100 nm with an average distribution interval of 5 nm to 200 nm.

【0016】このようにマグネシウム化合物の微細粒子
を析出させれば、前述のように、時効処理前工程に引き
続く第2の鍛造加工工程で得られる成形体の組織を、平
均結晶粒径が10μm以下の安定した微細結晶粒組織と
することが可能となる。
By thus precipitating fine particles of the magnesium compound, as described above, the structure of the compact obtained in the second forging step following the preaging step has an average crystal grain size of 10 μm or less. It becomes possible to obtain a stable fine grain structure.

【0017】そして、第2の鍛造加工工程において、加
工温度が、前記第1の鍛造加工工程での加工温度以下で
あり、かつ、歪速度が10-1-1以下であることが望ま
しい。
In the second forging step, it is desirable that the processing temperature is equal to or lower than the processing temperature in the first forging step, and the strain rate is 10 -1 s -1 or less.

【0018】このように、第2の鍛造加工工程における
加工温度を、第1の鍛造加工工程における加工温度を超
えないようにしておけば、時効処理工程で析出したマグ
ネシウム化合物の微細粒子の作用により、加工温度への
加熱過程で結晶粒の粗大化が防止され、歪速度が10-1
-1以下となるように加工速度を遅くすれば、第2の鍛
造加工工程で動的再結晶が生じて、平均結晶粒径が10
μm以下で、好適な条件では、平均結晶粒径が5μm以
下の高速超塑性も発現するような微細な安定した組織を
実現することが可能となる。
As described above, if the working temperature in the second forging step is set not to exceed the working temperature in the first forging step, the fine particles of the magnesium compound precipitated in the aging step will work. , The coarsening of crystal grains is prevented during the heating process to the processing temperature, and the strain rate is 10 -1.
If the processing speed is slowed down to s -1 or less, dynamic recrystallization occurs in the second forging step, and the average grain size becomes 10
Under suitable conditions, it is possible to realize a fine and stable structure in which the average crystal grain size is 5 μm or less and high-speed superplasticity is also exhibited.

【0019】前記第2の鍛造加工工程で得られた成形体
を、第3の鍛造加工工程で仕上げ成形を行うことも可能
である。
It is also possible to finish-mold the molded body obtained in the second forging step in the third forging step.

【0020】上述のように、第2の鍛造加工工程では、
仕上げ成形品とともに、安定した微細結晶粒組織の次加
工工程用の素材が得られるので、第3の鍛造加工工程に
おいて、加熱過程において結晶粒が粗大化せず、難加工
性材料であるマグネシウム合金の成形性が向上し、加工
荷重も低減して、加工中に欠陥が発生せずに微細結晶粒
組織を有するの仕上げ成形品が得られ、強度や延性など
の機械的性質の向上も可能となる。また、従来よりも高
加工速度で、超塑性鍛造を行ない、加工性の大幅な向上
を実現することも可能となる。
As mentioned above, in the second forging step,
Since a material for the next processing step with a stable fine crystal grain structure can be obtained together with the finish molded product, the crystal grains do not coarsen during the heating process in the third forging processing step, and a magnesium alloy that is a difficult-to-process material. Moldability is improved, the processing load is also reduced, a finished molded product with a fine grain structure can be obtained without causing defects during processing, and mechanical properties such as strength and ductility can also be improved. Become. In addition, superplastic forging can be performed at a higher processing speed than in the past, and the workability can be significantly improved.

【0021】また、このような微細結晶粒組織のマグネ
シウム合金では、その成形性に及ぼす歪速度の依存性が
大きくなるために、歪速度が10-1-1以下で鍛造加工
を施すと、前記動的再結晶が生じるとともに、成形性が
向上し、加工中の欠陥の発生などを防止することがで
き、また、加工荷重も低減するなど加工上の利点もあ
る。
Further, in such a magnesium alloy having a fine grain structure, the dependency of the strain rate on the formability thereof becomes large, so that when the strain rate is 10 -1 s -1 or less, forging is performed. While the dynamic recrystallization occurs, the formability is improved, defects during processing can be prevented from occurring, and the processing load is reduced, which is an advantage in processing.

【0022】このような製造方法を用いて、第2の鍛造
加工工程により得られた成形体の平均結晶粒径が0.2
μmから10μmの範囲にあるマグネシウム合金部材を
製造することができる。
By using such a manufacturing method, the average crystal grain size of the molded body obtained by the second forging step is 0.2.
It is possible to manufacture a magnesium alloy member in the range of μm to 10 μm.

【0023】このように第2の鍛造加工工程で得られる
成形体の平均結晶粒径が0.2μmから10μmの範囲
にあるようにしておけば、この成形体を素材として、次
加工工程に供する場合に、前述のように、難加工性材料
であるマグネシウム合金の成形性が向上し、鍛造荷重も
低下する。この粒径の範囲で、結晶粒が微細になるにつ
れて、超塑性現象が現れるようになるため、成形性が大
幅に向上し、鍛造荷重も大きく低下する。
If the average crystal grain size of the molded body obtained in the second forging step is in the range of 0.2 μm to 10 μm, the molded body is used as a raw material in the next processing step. In this case, as described above, the formability of the magnesium alloy, which is a difficult-to-work material, is improved, and the forging load is also reduced. Within this grain size range, as the crystal grains become finer, a superplastic phenomenon appears, so the formability is greatly improved and the forging load is also greatly reduced.

【0024】また、前記成形体が仕上げ成形品となる場
合には、マグネシウム合金の機械的性質は結晶粒径に大
きく依存するために、このような微細結晶粒組織によっ
て、強度および延性などの機械的性質が向上する。
Further, when the molded body is a finished molded product, the mechanical properties of the magnesium alloy largely depend on the crystal grain size. Therefore, such a fine grain structure makes it possible to improve the mechanical properties such as strength and ductility. Physical properties are improved.

【0025】[0025]

【発明の実施の形態】以下にこの発明の実施形態を、添
付の図1から図4に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying FIGS. 1 to 4.

【0026】図1は、この発明の製造方法の流れを示し
たもので、マグネシウム合金部材の市販のマグネシウム
合金ZK60(Mg−Zn−Zr系合金)などの押出し
材を素材とし、この素材を500℃近辺の所要の温度域
に昇温し、この温度域に2時間程度保持後、水冷または
空冷などにより溶体化処理を施してマグネシウム化合物
を素材の組織中に固溶させた後、第1の鍛造加工工程
で、この素材を250℃〜400℃の加工温度域に再加
熱し、アプセット加工により、歪量が、0.4以上の所
要の予歪を与える。そして、この予歪を導入した成形用
素材を、通常、150℃〜250℃の範囲の所要の温度
域に加熱し、10時間から500時間の範囲で所要時間
保持して時効処理を行った後、第2の鍛造加工工程に供
する。
FIG. 1 shows a flow of the manufacturing method of the present invention. An extruded material such as a commercially available magnesium alloy ZK60 (Mg-Zn-Zr type alloy) of a magnesium alloy member is used as a raw material, and this raw material is used as a material. After raising the temperature to a required temperature range around ℃ and maintaining this temperature range for about 2 hours, solution treatment is performed by water cooling or air cooling to dissolve the magnesium compound into the structure of the material, and then the first In the forging step, this material is reheated to a processing temperature range of 250 ° C. to 400 ° C. and the upset process gives a required prestrain of 0.4 or more. After the pre-strain-introduced molding material is usually heated to a required temperature range of 150 ° C. to 250 ° C. and held for a required time of 10 hours to 500 hours, the aging treatment is performed. , The second forging process step.

【0027】前記ZK60の押出し材で、直径32m
m、高さ30mmの素材に前記の溶体化処理を施した
後、第1の鍛造加工工程で、この素材を250℃に加熱
し、初期歪速度がおよそ10-2-1となる圧下速度0.
3mm/sで、予歪量、即ち圧縮量を種々変化させて、
それぞれの予歪量を与えた被加工材を、180℃に50
0時間保持して時効処理を行った。そして、第2の鍛造
加工工程で、第1の鍛造加工工程と同じ加工温度250
℃で、初期歪み速度がおよそ2×10-2-1となる圧下
速度0.2mm/sでさらに圧縮して、加工歪(ε2
−1.56)を与え、歪み取り等を目的として、250
℃から300℃の範囲で30分間焼鈍処理を行った。表
1は、この焼鈍処理後の顕微鏡組織から、結晶粒の安定
性を調査した結果を示したものである。
The extruded material of ZK60 has a diameter of 32 m.
After subjecting the material with m and height of 30 mm to the solution treatment described above, in the first forging step, the material is heated to 250 ° C., and the reduction rate at which the initial strain rate becomes about 10 −2 s −1. 0.
At 3 mm / s, the amount of prestrain, that is, the amount of compression is changed variously,
The material to which each pre-strain was given is
The aging treatment was performed by holding for 0 hour. Then, in the second forging step, the same processing temperature 250 as in the first forging step.
At 0 ° C., the initial strain rate is about 2 × 10 −2 s −1, and the working strain (ε 2 =
-1.56) is given, and for the purpose of removing distortion, 250
Annealing treatment was performed in the range of 300 to 300 ° C. for 30 minutes. Table 1 shows the results of investigating the stability of crystal grains from the microstructure after the annealing treatment.

【0028】[0028]

【表1】 [Table 1]

【0029】ここで、結晶粒の安定性は、第1の鍛造加
工工程における予歪量の適否を判断する尺度とし、第2
の鍛造加工工程後に施した前記の焼鈍処理後に、粗大化
した結晶粒が認められない場合に安定性ありとして○印
で、粗大化した結晶粒が認められる場合は安定性なしと
して×印で、一部に粗大化した結晶粒が認められる場合
には△印で、それぞれ表示している。
Here, the stability of the crystal grains is used as a scale for judging the adequacy of the pre-strain amount in the first forging process, and the second
After the annealing treatment performed after the forging step, is marked with stability when coarse grain is not observed, and is marked with stability when coarse grain is observed, with x, When coarsened crystal grains are observed in a part, each is indicated by a triangle.

【0030】表1から、結晶粒の安定性は、第1の加工
工程において、加工温度を250℃と一定とした場合
に、予歪量のほかに焼鈍温度の影響も受け、焼鈍温度が
250℃と低い場合には、予歪を与えなくても前記の時
効処理によるマグネシウム化合物の析出により、結晶粒
の安定性は良好である。しかし、焼鈍温度が275℃に
上昇すると、結晶粒を安定させるためには予歪の導入が
必要であり、この焼鈍温度では、予歪量が0.4以上で
あれば、粗大化は確実に防止され、結晶粒は安定する。
予歪が0.4以上の範囲では、一例を図2に示すよう
に、結晶粒の粗大化が認められず、安定性は良好で、平
均結晶粒が10μm以下の安定な微細結晶粒組織が保た
れている。これは、素材に導入される予歪が0.4より
も大きくなると、一例を図3に示すように、MgZnな
どのマグネシウム化合物が、時効処理後に、およそ10
0nm以下の微細粒子となって析出するために、これら
の微細粒子のピンニング効果によって結晶粒の成長を抑
制される作用による。一方、焼鈍温度が300℃に上昇
すれば、いかに予歪を与えても結晶粒は安定しない。
From Table 1, the stability of crystal grains is affected by the annealing temperature in addition to the amount of pre-strain when the processing temperature is kept constant at 250 ° C. in the first processing step, and the annealing temperature is 250. When the temperature is as low as 0 ° C., the stability of the crystal grains is good due to the precipitation of the magnesium compound by the above-mentioned aging treatment without prestraining. However, when the annealing temperature rises to 275 ° C., it is necessary to introduce a prestrain in order to stabilize the crystal grains. At this annealing temperature, if the prestrain amount is 0.4 or more, coarsening is surely performed. It is prevented and the crystal grains are stable.
When the pre-strain is in the range of 0.4 or more, as shown in FIG. 2, no coarsening of crystal grains is observed, the stability is good, and a stable fine crystal grain structure having an average crystal grain of 10 μm or less is obtained. It is kept. This is because when the pre-strain introduced into the material becomes larger than 0.4, magnesium compounds such as MgZn are about 10 after the aging treatment as shown in FIG.
Since fine particles of 0 nm or less are deposited, the pinning effect of these fine particles suppresses the growth of crystal grains. On the other hand, if the annealing temperature rises to 300 ° C, the crystal grains will not be stable no matter how much prestrain is applied.

【0031】前記第1の鍛造加工工程での加工温度25
0℃は、鍛造荷重や金型負荷などの点から、実用上の下
限温度に相当し、通常は、250℃よりも高い加工温度
が採用される。前記予歪は、同一歪量であれば、加工温
度が高い程、その導入効果が小さくなるため、250℃
よりも高い加工温度を採用し、それに伴って、250℃
よりも高い焼鈍温度を採用すれば、結晶粒を安定させる
ための予歪量は、少なくとも、表1に示した、焼鈍温度
が275℃の場合に結晶粒の安定のために必要な予歪
0.4以上は必要である。実用上の熱処理温度では、焼
鈍温度を250℃より高く設定しようとすれば、設定精
度等の点から、25℃程度の温度幅を見ておく必要があ
るからである。
Processing temperature in the first forging step 25
0 ° C. corresponds to a practical lower limit temperature in terms of forging load and die load, and a working temperature higher than 250 ° C. is usually adopted. As for the pre-strain, if the pre-strain is the same, the effect of introducing the pre-strain becomes smaller as the processing temperature becomes higher.
Higher processing temperature is adopted, and accordingly, 250 ℃
If a higher annealing temperature is adopted, the amount of prestrain for stabilizing the crystal grains is at least 0 shown in Table 1 when the annealing temperature is 275 ° C. .4 or more is required. This is because, in a practical heat treatment temperature, if the annealing temperature is set to be higher than 250 ° C., it is necessary to consider a temperature range of about 25 ° C. from the viewpoint of setting accuracy and the like.

【0032】なお、前記焼鈍温度は、マグネシウム合金
の中でも、その合金系によってある程度異なるものの、
前記予歪量については、マグネシウム化合物の微細析出
に及ぼす導入効果の点から、合金系によって大差がな
い。
Although the annealing temperature differs to some extent among magnesium alloys depending on the alloy system,
Regarding the amount of prestrain, there is no great difference depending on the alloy system in terms of the effect of introduction on the fine precipitation of the magnesium compound.

【0033】前記第1の鍛造加工工程で0.4以上の予
歪が導入された成形用素材が、第2の鍛造加工工程にお
いて、250℃から400℃の温度範囲の、第1の鍛造
加工工程における加工温度を超えない温度に加熱され、
加熱された金型内に装入されて、被加工材の断面内の平
均の歪速度がおよそ10-2-1程度、またはそれ以下と
なるように加圧速度が設定された成形機により成形さ
れ、所望の形状の成形品、または、さらに次加工工程用
の素材が成形される。そして、必要に応じてこれらの成
形品および次加工工程用素材は、250℃から300℃
の温度範囲に加熱され、所要の時間保持されて、焼鈍処
理が施される。
In the second forging step, the forming material into which the prestrain of 0.4 or more is introduced in the first forging step is the first forging step in the temperature range of 250 ° C to 400 ° C. It is heated to a temperature that does not exceed the processing temperature in the process,
By a molding machine that is loaded into a heated mold and the pressurization speed is set so that the average strain rate in the cross section of the work material is about 10 -2 s -1 or less. A molded product having a desired shape or a raw material for the next processing step is molded. And, if necessary, these molded products and materials for the next processing step should be heated at 250 to 300 ° C.
Is heated for a required time and annealed.

【0034】図4は、ZK60合金の円柱素材を、50
0℃に2時間保持後、水冷して溶体化処理を施した後、
加工温度が275℃、初期歪速度が0.5×10-2-1
となるように、加工速度が設定された成形機により、圧
縮加工して予歪ε1 =−1.1を与えた後、この素材を
180℃に500時間保持して時効処理を行い、その後
に、加工温度が275℃、初期歪速度1.6×10-2
-1で、閉塞鍛造した歯車1を示したものである。
FIG. 4 shows a cylindrical material of ZK60 alloy,
After holding at 0 ° C for 2 hours, cooling with water and solution treatment,
Processing temperature is 275 ℃, initial strain rate is 0.5 × 10 -2 s -1
To give a pre-strain ε 1 = -1.1 by a molding machine with a processing speed set so that the material is held at 180 ° C for 500 hours for aging treatment. In addition, the processing temperature is 275 ℃, the initial strain rate is 1.6 × 10 -2 s.
-1 shows the gear 1 which is closed forged.

【0035】図4に示したように、時効処理工程で析出
したマグネシウム化合物の微細粒子の作用により、加工
温度への加熱過程で、結晶粒の粗大化が防止され、さら
に、この第2の鍛造加工工程で結晶粒が微細化されるた
め、加工性が良好となって、被加工材に欠陥が発生せず
に、金型内に歯先2まで完全充満した歯車成形品が得ら
れる。
As shown in FIG. 4, the action of the fine particles of the magnesium compound deposited in the aging treatment step prevents the coarsening of the crystal grains during the heating process to the processing temperature, and further, the second forging. Since the crystal grains are miniaturized in the processing step, the workability becomes good, and a gear molded product in which the tooth tips 2 are completely filled in the mold without producing defects in the material to be processed can be obtained.

【0036】この第2の鍛造加工工程で、前記歯車のよ
うな成形品に仕上げる代わりに、第3の鍛造加工工程に
供するプリフォームなどの成形用素材を形成することも
できる。このような成形用素材にも、前述のような安定
した微細結晶粒組織が生成されるため、次工程での成形
性がが向上し、鍛造荷重も低減するのに加えて、従来よ
りも高加工速度で、超塑性鍛造を行ない、加工性の大幅
な向上を実現することも可能である。
In this second forging step, instead of finishing into a molded product such as the gear, it is possible to form a forming material such as a preform for use in the third forging step. Since the stable fine crystal grain structure as described above is also generated in such a forming material, the formability in the next step is improved, the forging load is reduced, and in addition, it is higher than before. It is also possible to perform superplastic forging at a processing speed and achieve a significant improvement in workability.

【0037】上述のマグネシウム合金部材の製造方法
は、ZK60などのMg−Zn−Zr系合金のみなら
ず、AZ61AなどのMg−Al−Zn系合金やMg−
Mn系合金などの他の合金にも適用が可能であり、一般
に、標準的な機械的性質を得るために必要な固溶元素で
あるAl、Mn、ピンニング粒子として高温での結晶粒
の安定化に効果がある高融点元素のMn、Zrを含む合
金系が望ましく、これらの合金系では、前記の時効処理
により、Mgと、AlおよびZnなどの合金元素との化
合物の微細粒子が析出して、前記第2の鍛造加工工程
で、加工による微細化作用や動的再結晶を生じるなどし
て、安定な微細結晶粒組織が生成する。なお、Ce、
Y、Thなどの耐熱性を向上させる希土類元素を含む合
金系にも適用が可能である。
The above magnesium alloy member manufacturing method is not limited to Mg-Zn-Zr-based alloys such as ZK60, but Mg-Al-Zn-based alloys such as AZ61A and Mg-.
It can be applied to other alloys such as Mn-based alloys, and in general, Al, Mn, which is a solid solution element necessary for obtaining standard mechanical properties, and stabilization of crystal grains at high temperatures as pinning particles. It is desirable to use an alloy system containing high melting point elements Mn and Zr, which have an effect on the above. In the second forging process step, a stable fine crystal grain structure is generated due to, for example, a refining action due to processing and dynamic recrystallization. In addition, Ce,
It is also applicable to alloy systems containing rare earth elements such as Y and Th that improve heat resistance.

【0038】[0038]

【発明の効果】以上のように、この発明によれば、マグ
ネシウム合金素材を溶体化処理した後に、所要の予歪を
与えて時効処理を施し、この時効処理後に、鍛造加工等
の塑性加工により、マグネシウム合金部材を製造するよ
うにしたので、この予歪の導入によって、時効処理工程
で、およそ100nm以下のマグネシウム化合物の微細
粒子が析出した、均質化された組織が得られる。それに
より、その後の鍛造加工工程で、結晶粒の成長が抑制さ
れ、加工による微細化作用や動的再結晶により、およそ
10μm以下の、好適な条件では、平均結晶粒径が5μ
m以下の高速超塑性も発現するような安定した微細結晶
粒組織を有する、成形性が向上した2次加工用素材、お
よび強度や延性などの機械的性質が向上した仕上げ成形
品を得ることができる。
As described above, according to the present invention, the magnesium alloy material is subjected to the solution heat treatment, and then subjected to an aging treatment by giving a required pre-strain, and after this aging treatment, a plastic working such as a forging work Since the magnesium alloy member is manufactured, the introduction of this pre-strain makes it possible to obtain a homogenized structure in which fine particles of a magnesium compound of about 100 nm or less are precipitated in the aging treatment step. As a result, in the subsequent forging step, the growth of crystal grains is suppressed, and due to the refining effect due to processing and dynamic recrystallization, the average crystal grain size is 5 μm or less under suitable conditions of about 10 μm or less.
It is possible to obtain a material for secondary processing having a stable fine crystal grain structure that also expresses high-speed superplasticity of m or less and having improved formability, and a finished formed product having improved mechanical properties such as strength and ductility. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施形態の製造方法の流れを示す説
明図
FIG. 1 is an explanatory diagram showing a flow of a manufacturing method according to an embodiment of the present invention.

【図2】実施形態の製造方法における第2の鍛造加工工
程後の微細結晶粒組織を示す顕微鏡写真
FIG. 2 is a micrograph showing a fine grain structure after a second forging step in the manufacturing method of the embodiment.

【図3】実施形態の製造方法における時効処理後の微細
粒子の析出状態を示すTEM写真
FIG. 3 is a TEM photograph showing the precipitation state of fine particles after aging treatment in the manufacturing method of the embodiment.

【図4】同上の第2の鍛造加工工程で成形された歯車の
正面図
FIG. 4 is a front view of a gear formed in the second forging step described above.

【符号の説明】[Explanation of symbols]

1 歯車 2 歯先 1 gear 2 addendum

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 673 C22F 1/00 673 683 683 691 691B 691C 694 694A 694B (72)発明者 喜多川 眞好 大阪市西区北堀江1丁目12番19号 株式会 社栗本鐵工所内 (72)発明者 道浦 吉貞 大阪市西区北堀江1丁目12番19号 株式会 社栗本鐵工所内 (72)発明者 前川 恵一 大阪市西区北堀江1丁目12番19号 株式会 社栗本鐵工所内 (72)発明者 足立 年彦 大阪市旭区太子橋1丁目27番6号 名神株 式会社内 (72)発明者 東 健司 大阪府富田林市寺池台3丁目4番9号 Fターム(参考) 4E087 BA03 CB02 DA02 GA02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22F 1/00 673 C22F 1/00 673 683 683 683 691 691B 691C 694 694A 694B (72) Inventor Kitagawa Makoto Osaka 1-12-19 Kitahorie, Nishi-ku, Tokyo, Kurimoto Iron Works Co., Ltd. (72) Inventor Yoshisada Dora 12-1, 19 Kitahorie, Nishi-ku, Osaka (72) Inventor Keiichi Maekawa 1-12-19 Kitahorie, Nishi-ku, Osaka-shi Kurimoto Iron Works Co., Ltd. (72) Inventor Toshihiko Adachi 1-27-6 Taishibashi, Asahi-ku, Osaka-shi Meishin Stock Company (72) Inventor Kenji Higashi Osaka 3-4-9 Teraikedai, Tomitabayashi-shi, F term (reference) 4E087 BA03 CB02 DA02 GA02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 マグネシウム合金素材の溶体化処理工程
と、予歪を与えるための第1の鍛造加工工程と、この鍛
造加工後の時効処理工程と、次いで、結晶粒を微細化す
るための第2の鍛造加工工程とからなるマグネシウム合
金部材の製造方法。
1. A solution treatment step of a magnesium alloy material, a first forging step for giving a prestrain, an aging treatment step after the forging step, and then a first step for refining crystal grains. 2. A method for manufacturing a magnesium alloy member, which comprises the forging step of 2.
【請求項2】 前記第1の鍛造加工工程において、加工
温度が250℃から400℃の温度域にあり、予歪が真
歪で0.4以上である請求項1に記載のマグネシウム合
金部材の製造方法。
2. The magnesium alloy member according to claim 1, wherein in the first forging step, the processing temperature is in the temperature range of 250 ° C. to 400 ° C. and the pre-strain is 0.4 or more in true strain. Production method.
【請求項3】 前記時効処理工程において、平均粒子径
が5nmから100nmの範囲にある微細粒子が、平均
分布間隔が5nmから200nmで析出する請求項1ま
たは2に記載のマグネシウム合金部材の製造方法。
3. The method for producing a magnesium alloy member according to claim 1, wherein in the aging treatment step, fine particles having an average particle size in the range of 5 nm to 100 nm are precipitated with an average distribution interval of 5 nm to 200 nm. .
【請求項4】 前記第2の鍛造加工工程において、加工
温度が、前記第1の鍛造加工工程での加工温度以下で、
かつ、歪速度が10-1-1以下である請求項1から3の
いずれかに記載のマグネシウム合金部材の製造方法。
4. In the second forging step, the processing temperature is equal to or lower than the processing temperature in the first forging step,
The method for producing a magnesium alloy member according to claim 1 , wherein the strain rate is 10 -1 s -1 or less.
【請求項5】 前記時効処理後の第2の鍛造加工工程で
得られた成形体を、第3の鍛造加工工程で仕上げ成形を
行う請求項1から4のいずれかに記載のマグネシウム合
金部材の製造方法。
5. The magnesium alloy member according to claim 1, wherein the formed body obtained in the second forging step after the aging treatment is finish-formed in the third forging step. Production method.
【請求項6】 請求項1から5のいずれかに記載した製
造方法における第2の鍛造加工工程により得られた成形
体の平均結晶粒径が0.2μmから10μmの範囲にあ
るマグネシウム合金部材。
6. A magnesium alloy member having an average crystal grain size of 0.2 μm to 10 μm in a molded body obtained by the second forging step in the manufacturing method according to claim 1.
JP2002083827A 2002-03-25 2002-03-25 Magnesium alloy member and manufacturing method thereof Expired - Fee Related JP3768909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002083827A JP3768909B2 (en) 2002-03-25 2002-03-25 Magnesium alloy member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002083827A JP3768909B2 (en) 2002-03-25 2002-03-25 Magnesium alloy member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003277899A true JP2003277899A (en) 2003-10-02
JP3768909B2 JP3768909B2 (en) 2006-04-19

Family

ID=29231431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002083827A Expired - Fee Related JP3768909B2 (en) 2002-03-25 2002-03-25 Magnesium alloy member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3768909B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004085692A1 (en) * 2003-03-26 2004-10-07 Campus Create Co., Ltd. PROCESS OF WORKING Mg ALLOY AND Mg ALLOY
WO2005123972A1 (en) 2004-06-15 2005-12-29 Toudai Tlo, Ltd. High toughness magnesium-base alloy, drive component using same, and method for producing high toughness magnesium-base alloy material
JP2007291488A (en) * 2006-03-30 2007-11-08 Univ Of Electro-Communications Method and device for producing magnesium alloy material, and magnesium alloy material
CN101880845A (en) * 2010-06-11 2010-11-10 燕山大学 Method for thinning AM60B cast magnesium alloy grains
US7909948B2 (en) 2004-03-15 2011-03-22 Gohsyu Co., Ltd. Alloy powder raw material and its manufacturing method
CN102513484A (en) * 2011-12-13 2012-06-27 重庆大学 Forging cogging method of magnesium alloy plate
CN103192013A (en) * 2013-04-15 2013-07-10 太原科技大学 Method for controlling forging state 316LN steel forging crack initiation
DE112005001529B4 (en) * 2004-06-30 2014-05-22 National Institute For Materials Science Magnesium alloy with high strength and high ductility and process for its preparation
CN104018050A (en) * 2014-06-18 2014-09-03 中国科学院长春应用化学研究所 Preparation method for rear-earth magnesium alloy
JP2016026887A (en) * 2011-06-28 2016-02-18 国立大学法人電気通信大学 Method for producing high-strength magnesium alloy material and rod made of magnesium alloy
CN105586553A (en) * 2016-03-18 2016-05-18 成都青元泛镁科技有限公司 Magnesium alloy stepped cooling multi-direction forging process
CN105642804A (en) * 2016-02-03 2016-06-08 中南大学 Forging method for improving evenness of structures of large-size magnesium alloy forged discs
CN113846298A (en) * 2021-09-27 2021-12-28 宁波江丰热等静压技术有限公司 Preparation method of terbium target blank

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107649628B (en) * 2017-09-19 2018-08-31 陕西华镁特材科技有限公司 A kind of processing method of ZK61 high-strength magnesium alloys forging

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004085692A1 (en) * 2003-03-26 2006-06-29 株式会社キャンパスクリエイト Processing method of Mg alloy and Mg alloy
WO2004085692A1 (en) * 2003-03-26 2004-10-07 Campus Create Co., Ltd. PROCESS OF WORKING Mg ALLOY AND Mg ALLOY
JP4632949B2 (en) * 2003-03-26 2011-02-16 株式会社キャンパスクリエイト Processing method of Mg alloy
US7909948B2 (en) 2004-03-15 2011-03-22 Gohsyu Co., Ltd. Alloy powder raw material and its manufacturing method
US7922967B2 (en) 2004-06-15 2011-04-12 Toudai TLD, Ltd. High-strength and high-toughness magnesium based alloy, driving system part using the same and manufacturing method of high-strength and high-toughness magnesium based alloy material
WO2005123972A1 (en) 2004-06-15 2005-12-29 Toudai Tlo, Ltd. High toughness magnesium-base alloy, drive component using same, and method for producing high toughness magnesium-base alloy material
JP2006002184A (en) * 2004-06-15 2006-01-05 Toudai Tlo Ltd High-toughness magnesium-base alloy, drive system part using the same, and method for manufacturing high-toughness magnesium-base alloy material
EP1770180A1 (en) * 2004-06-15 2007-04-04 Toudaitlo, Ltd. High toughness magnesium-base alloy, drive component using same, and method for producing high toughness magnesium-base alloy material
EP1770180A4 (en) * 2004-06-15 2008-02-20 Toudaitlo Ltd High toughness magnesium-base alloy, drive component using same, and method for producing high toughness magnesium-base alloy material
DE112005001529B4 (en) * 2004-06-30 2014-05-22 National Institute For Materials Science Magnesium alloy with high strength and high ductility and process for its preparation
JP2007291488A (en) * 2006-03-30 2007-11-08 Univ Of Electro-Communications Method and device for producing magnesium alloy material, and magnesium alloy material
CN101880845A (en) * 2010-06-11 2010-11-10 燕山大学 Method for thinning AM60B cast magnesium alloy grains
JP2016026887A (en) * 2011-06-28 2016-02-18 国立大学法人電気通信大学 Method for producing high-strength magnesium alloy material and rod made of magnesium alloy
CN102513484A (en) * 2011-12-13 2012-06-27 重庆大学 Forging cogging method of magnesium alloy plate
CN103192013A (en) * 2013-04-15 2013-07-10 太原科技大学 Method for controlling forging state 316LN steel forging crack initiation
CN104018050A (en) * 2014-06-18 2014-09-03 中国科学院长春应用化学研究所 Preparation method for rear-earth magnesium alloy
CN105642804A (en) * 2016-02-03 2016-06-08 中南大学 Forging method for improving evenness of structures of large-size magnesium alloy forged discs
CN105642804B (en) * 2016-02-03 2016-11-16 中南大学 A kind of forging method improving large scale magnesium alloy forging cake structural homogenity
CN105586553A (en) * 2016-03-18 2016-05-18 成都青元泛镁科技有限公司 Magnesium alloy stepped cooling multi-direction forging process
CN113846298A (en) * 2021-09-27 2021-12-28 宁波江丰热等静压技术有限公司 Preparation method of terbium target blank
CN113846298B (en) * 2021-09-27 2023-11-07 宁波江丰热等静压技术有限公司 Preparation method of terbium target blank

Also Published As

Publication number Publication date
JP3768909B2 (en) 2006-04-19

Similar Documents

Publication Publication Date Title
US10030293B2 (en) Aluminum material having improved precipitation hardening
JP2003277899A (en) Magnesium alloy member and its production method
JPS58213840A (en) Metal composition suitable for producing semi-solid semi-liquid state and manufacture
JPH06172949A (en) Member made of magnesium alloy and its production
JP5515167B2 (en) Commercial magnesium alloy sheet with improved room temperature formability and method for producing the same
TW589233B (en) Sputtering target and production method therefor
US10407745B2 (en) Methods for producing titanium and titanium alloy articles
RU2678111C1 (en) METHOD FOR PROCESSING MAGNESIUM ALLOY OF Mg-Y-Nd-Zr SYSTEM BY EQUAL CHANNEL ANGULAR PRESSING
WO2016060117A1 (en) Method for producing aluminum alloy member, and aluminum alloy member obtained by same
CN107488800B (en) Al-Zn alloy containing precipitates with improved strength and elongation and method for producing same
US20160228950A1 (en) Methods for relieving stress in an additively manufactured alloy body
JP4332889B2 (en) Method for producing magnesium-based alloy compact
EP3191611B1 (en) Alloys for highly shaped aluminum products and methods of making the same
JP6385683B2 (en) Al alloy casting and manufacturing method thereof
JP3523500B2 (en) Pressed part of magnesium alloy and method of manufacturing the same
JP6726058B2 (en) Manufacturing method of Al alloy casting
JP2002520486A (en) Heat treatment of aluminum alloy sheet products
CN116179908A (en) Ultra-strong high-toughness corrosion-resistant aluminum alloy annular forging for spaceflight and preparation method thereof
JP2002266057A (en) Method for producing magnesium alloy sheet having excellent press formability
JPH05247574A (en) Production of aluminum alloy for forging and forged product of aluminum alloy
KR101680046B1 (en) Method for manufacturing high-strength wrought magnesium alloy by conducting aging treatment prior to plastic working and high-strength wrought magnesium alloy manufactured thereby
JPH06248402A (en) Production of member made of magnesium alloy
US20210332462A1 (en) Aluminum alloy and manufacturing method thereof
JP2775164B2 (en) Forged titanium product and method for producing the same
JPH06228720A (en) Production of member made of magnesium alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060202

R150 Certificate of patent or registration of utility model

Ref document number: 3768909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees