JP2007291488A - Method and device for producing magnesium alloy material, and magnesium alloy material - Google Patents

Method and device for producing magnesium alloy material, and magnesium alloy material Download PDF

Info

Publication number
JP2007291488A
JP2007291488A JP2006251358A JP2006251358A JP2007291488A JP 2007291488 A JP2007291488 A JP 2007291488A JP 2006251358 A JP2006251358 A JP 2006251358A JP 2006251358 A JP2006251358 A JP 2006251358A JP 2007291488 A JP2007291488 A JP 2007291488A
Authority
JP
Japan
Prior art keywords
metal material
temperature
processing
pass
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006251358A
Other languages
Japanese (ja)
Other versions
JP5050199B2 (en
Inventor
Hiromi Miura
博己 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electro Communications NUC
Original Assignee
University of Electro Communications NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electro Communications NUC filed Critical University of Electro Communications NUC
Priority to JP2006251358A priority Critical patent/JP5050199B2/en
Publication of JP2007291488A publication Critical patent/JP2007291488A/en
Application granted granted Critical
Publication of JP5050199B2 publication Critical patent/JP5050199B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a magnesium metallic material having high strength and easily subjected to refining. <P>SOLUTION: A metallic material stock made of an AZ61Mg alloy is subjected to temperature dropping multiaxis forging, so as to obtain a worked metallic material having a refined crystal structure. In this way, the magnesium alloy material having high strength, and also having satisfactory workability can be obtained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、マグネシウム合金材料製造方法及び装置並びにマグネシウム合金材料に関し、特に高強度で、かつ加工性が良いマグネシウム合金材料を得ようとするものである。   The present invention relates to a method and apparatus for producing a magnesium alloy material and a magnesium alloy material. In particular, an object of the present invention is to obtain a magnesium alloy material having high strength and good workability.

マグネシウム合金は軽量、高強度な構造材料として期待されているが、加工性が悪いために実用化が遅れている。   Magnesium alloys are expected as lightweight and high-strength structural materials, but their practical application is delayed due to poor workability.

その中でも、AZ31マグネシウム合金(これをAZ31Mg合金と呼ぶ)については、加工時に1パスごとに温度を下げながら多軸鍛造加工(Multi−directional forging(MDF))をすることにより、結晶粒をサブミクロン以下に制御し、これにより強度と加工性とを同時に両立させようとした降温多軸鍛造法が提案されている(特許文献1参照)。   Among them, for AZ31 magnesium alloy (referred to as AZ31Mg alloy), the crystal grains are submicron by performing multi-axis forging (MDF) while lowering the temperature for each pass during processing. A temperature-decreasing multi-axis forging method has been proposed which is controlled as follows and thereby tries to achieve both strength and workability simultaneously (see Patent Document 1).

ここで、AZ31Mg合金は、マグネシウム(Mg)に、アルミニウム(Al)及び亜鉛(Zn)を、それぞれ質量比で約3〔%〕及び約1〔%〕含み、添加元素として鉄(Fe)やマンガン(Mn)を微量に含むマグネシウム合金である。
国際公開番号WO2004/085692A1
Here, the AZ31Mg alloy contains magnesium (Mg), aluminum (Al) and zinc (Zn) in a mass ratio of about 3% and about 1%, respectively, and iron (Fe) or manganese as additive elements. A magnesium alloy containing a small amount of (Mn).
International Publication Number WO2004 / 085692A1

しかしながら、AZ31Mg合金を実用の構造材料として適用しようとした場合、比強度が未だ低く、耐腐食性も低いことから、より高強度かつ高耐腐食性をもつマグネシウム合金が求められている。   However, when an AZ31Mg alloy is applied as a practical structural material, the specific strength is still low and the corrosion resistance is low, so a magnesium alloy having higher strength and higher corrosion resistance is required.

AZ31Mg合金よりも、強度が大きく、しかも高い耐腐食性をもつマグネシウム合金として、AZ61マグネシウム合金(これをAZ61Mg合金と呼ぶ)があるが、AZ31Mg合金より、加工性がさらに悪いために加工性の向上に関する研究がほとんど行われていなかった。   There is AZ61 magnesium alloy (this is called AZ61Mg alloy) as a magnesium alloy having higher strength and higher corrosion resistance than AZ31Mg alloy. However, the workability is worse than AZ31Mg alloy, so the workability is improved. There has been little research on.

ここで、AZ61Mg合金は、マグネシウム(Mg)に、アルミニウム(Al)及び亜鉛(Zn)をそれぞれ質量比で約6〔%〕及び約1〔%〕含み、添加元素として鉄(Fe)やマンガン(Mn)などを含むマグネシウム合金である。   Here, the AZ61Mg alloy contains magnesium (Mg) with aluminum (Al) and zinc (Zn) in a mass ratio of about 6% and 1%, respectively, and iron (Fe) or manganese ( Mn) and the like.

本発明は以上の点を考慮してなされたもので、実用の構造材料として十分に適用し得るように加工性を改善したAZ61Mg合金材料を提供できるようにしようとするものである。   The present invention has been made in consideration of the above points, and is intended to provide an AZ61Mg alloy material with improved workability so that it can be sufficiently applied as a practical structural material.

かかる課題を解決するため本発明においては、マグネシウムに、アルミニウム及び亜鉛をそれぞれ質量比で約6〔%〕及び約1〔%〕含むと共に、添加元素として少なくとも鉄及びマンガンを含むマグネシウム合金でなる金属材料素材を、降温多軸鍛造加工することによって微細化された結晶組織を有する加工金属材料を得るようにする。   In order to solve such a problem, in the present invention, magnesium is made of a magnesium alloy containing aluminum and zinc in a mass ratio of about 6% and 1%, respectively, and at least iron and manganese as additive elements. A processed metal material having a refined crystal structure is obtained by subjecting the material material to a temperature-decreasing multi-axis forging process.

本発明によれば、マグネシウムに、アルミニウム及び亜鉛をそれぞれ質量比で約6〔%〕及び約1〔%〕含むと共に、添加元素として少なくとも鉄及びマンガンを含むマグネシウム合金でなる金属材料素材を、降温多軸鍛造加工することによって微細化された結晶組織を有する加工金属材料を得るようにしたことにより、高強度で、高い耐腐食性を有し、かつ加工性が良いマグネシウム合金材料を実現できる。   According to the present invention, a metal material made of a magnesium alloy containing aluminum and zinc in a mass ratio of about 6 [%] and about 1 [%] in magnesium and containing at least iron and manganese as additive elements is cooled. By obtaining a machined metal material having a refined crystal structure by multi-axis forging, a magnesium alloy material having high strength, high corrosion resistance and good workability can be realized.

以下図面について、本発明の一実施の形態を詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

(1)全体の構成
図1において、1は全体として金属材料製造システムを示し、結晶粒微細化加工装置2に金属材料素材3としてAZ61Mg合金バルク材を受け入れると共に、結晶粒微細化加工装置2において加工して得られた加工金属材料4を、製品化装置5の加工処理部6において製品化処理した後実用構造製品7として送り出す。
(1) Overall Configuration In FIG. 1, reference numeral 1 denotes a metal material manufacturing system as a whole. In the crystal grain refinement processing apparatus 2, an AZ61Mg alloy bulk material is received as the metal material raw material 3 and The processed metal material 4 obtained by processing is commercialized in the processing unit 6 of the productizing apparatus 5 and then sent out as a practical structure product 7.

金属材料素材3は、例えば図2に示すような成分を有するサンプル番号1又は2のうちの一方、例えばサンプル番号1のAZ61Mg合金を用いる。   As the metal material 3, for example, one of sample numbers 1 and 2 having components as shown in FIG. 2, for example, AZ61Mg alloy of sample number 1 is used.

結晶粒微細化加工装置2は、4段の微細化加工部、すなわち第1段ないし第4段微細化加工部11A〜11Dを有し、第1段ないし第4段微細化加工部11A〜11Dにおいて、それぞれ1パス分の多軸鍛造加工を行う。   The crystal grain refinement processing apparatus 2 has four stages of refinement processing parts, that is, first to fourth stage refinement process parts 11A to 11D, and the first to fourth stage refinement process parts 11A to 11D. , Multi-axis forging for one pass is performed.

多軸鍛造加工は、図3(A)に示すように、X軸、Y軸及びZ軸方向の寸法比が2.22:1.49:1.0の加工対象金属材料8に対して、先ずX軸方向に圧縮力を加えることにより、図3(B)に示すように、X軸、Y軸及びZ軸方向の寸法比が1.0:2.22:1.49になるように圧縮加工し、続いて図3(C)に示すように、X軸、Y軸及びZ軸方向の寸法比が1.49:1.0:2.22になるようにY軸方向に圧縮力を加え、その後図3(A)に示すように、X軸、Y軸及びZ軸方向の寸法比が2.22:1.49:1.0になるようにZ軸方向に圧縮力を加える。   In the multi-axis forging process, as shown in FIG. 3 (A), the dimensional ratio in the X-axis, Y-axis, and Z-axis directions is 2.22: 1.49: 1.0 for the metal material 8 to be processed. First, by applying a compressive force in the X-axis direction, the dimensional ratio in the X-axis, Y-axis, and Z-axis directions is 1.0: 2.22: 1.49, as shown in FIG. Next, as shown in FIG. 3C, the compression force is applied in the Y-axis direction so that the dimensional ratio in the X-axis, Y-axis, and Z-axis directions is 1.49: 1.0: 2.22. After that, as shown in FIG. 3A, a compressive force is applied in the Z-axis direction so that the dimensional ratio in the X-axis, Y-axis, and Z-axis directions is 2.22: 1.49: 1.0. .

かくして、加工対象金属材料8の加工軸を回転させながら、1サイクル分の多軸鍛造加工を行うことができ、X軸、Y軸及びZ軸方向に順次圧縮力を加える1回の鍛造処理を「パス」と呼ぶ。   Thus, the multi-axis forging process for one cycle can be performed while rotating the processing axis of the metal material 8 to be processed, and one forging process in which a compressive force is sequentially applied in the X-axis, Y-axis, and Z-axis directions. This is called “pass”.

図1の実施の形態の場合、図3(A)に示す加工を行う1パスと、図3(B)に示す加工を行う2パスと、図3(C)に示す加工を行う3パスと、図3(A)に示す加工を再度行う4パスとを第1段、第2段、第3段及び第4段微細化加工部11A、11B、11C及び11Dにおいて順次行った後、図3(B)に示す加工を再度行う5パス圧縮加工を製品化装置5の加工処理部6において行うことにより、各パスごとにひずみ量Δε=0.8の強圧縮加工をする。   In the case of the embodiment of FIG. 1, one pass for performing the processing shown in FIG. 3A, two passes for performing the processing shown in FIG. 3B, and three passes for performing the processing shown in FIG. 3A is performed in the first stage, the second stage, the third stage, and the fourth stage miniaturization processing unit 11A, 11B, 11C, and 11D in order, and then the four passes for performing the process shown in FIG. By performing the 5-pass compression process in which the process shown in (B) is performed again in the processing unit 6 of the productizing device 5, a strong compression process with a strain amount Δε = 0.8 is performed for each pass.

第1段ないし第4段微細化加工部11A〜11Dは、それぞれ治具12内に形成された圧縮加工室13内に入れた加工対象金属材料14を圧縮加工工具15によって強圧縮加工をする。   The first-stage to fourth-stage refinement processing units 11 </ b> A to 11 </ b> D perform strong compression processing of the metal material 14 to be processed placed in the compression processing chamber 13 formed in the jig 12 with the compression processing tool 15.

加工対象金属材料14は、圧縮加工室13に入れられる前に、保温炉16において第1段ないし第4段微細化加工部11A〜11Dに割り当てられた降下加工温度になるように加熱保温される。   Before being put into the compression processing chamber 13, the metal material 14 to be processed is heated and kept in a heat-retaining furnace 16 so as to have a lowering processing temperature assigned to the first to fourth stage refinement processing portions 11 </ b> A to 11 </ b> D. .

当該加熱された加工対象金属材料14は矢印a1によって示すように保温炉16から圧縮加工室13に入れられ、かくして圧縮加工された加工対象金属材料14は矢印a2によって示すように圧縮加工室13から取り出されて次段の微細化加工部の保温炉16に送り込まれる。   The heated metal material 14 to be processed is put into the compression processing chamber 13 from the heat insulation furnace 16 as indicated by an arrow a1, and the metal material 14 thus processed is compressed from the compression processing chamber 13 as indicated by an arrow a2. It is taken out and sent to the heat retaining furnace 16 of the next micronization processing section.

この実施の形態の場合、第1段ないし第4段微細化加工部11A〜11Dは、1パスから4パスの圧縮加工の際に、図4の曲線K1、K2、K3及びK4で示す真応力−累積ひずみ曲線が得られるような、圧縮加工温度、623〔K〕、573〔K〕、523〔K〕及び503〔K〕に設定される。   In the case of this embodiment, the first-stage to fourth-stage refinement processing units 11A to 11D perform the true stress indicated by the curves K1, K2, K3, and K4 in FIG. 4 during the compression process from one pass to four passes. The compression processing temperature is set to 623 [K], 573 [K], 523 [K], and 503 [K] so that a cumulative strain curve can be obtained.

かくして、第1段微細化加工部11Aから第4段微細化加工部11Dまで、順次加工対象金属材料14を1パス目から4パス目まで圧縮加工をする際の圧縮加工温度を、次第に降下させながら多軸鍛造加工を行う(これを降温多軸鍛造加工(MDF)法と呼ぶ)ことにより、加工対象金属材料14に割れを起させることなく、しかも加工対象金属材料14であるAZ61Mg合金の結晶粒を1〔μm〕程度にまで微細化し、これにより高強度で、かつ加工性が良い加工金属材料4を結晶粒微細化加工装置2から送り出す。   In this way, the compression processing temperature when the metal material 14 to be processed is sequentially compressed from the first pass to the fourth pass from the first stage refinement processing unit 11A to the fourth stage refinement processing unit 11D is gradually lowered. However, by performing multi-axis forging (referred to as a temperature-decreasing multi-axis forging (MDF) method), the crystal of the AZ61Mg alloy which is the metal material 14 to be processed without causing cracks in the metal material 14 to be processed The grain is refined to about 1 [μm], and thereby the processed metal material 4 having high strength and good workability is sent out from the grain refinement processing apparatus 2.

この実施の形態の場合、結晶粒微細化加工装置2から得られた加工金属材料4は、製品化装置5の加工処理部6において5パス目の圧縮加工処理をされ、これにより結晶粒の粒径が1〔μm〕以下の超微細化組織をもち、従って実用上高強度な実用構造製品7として送り出される。   In the case of this embodiment, the processed metal material 4 obtained from the crystal grain refining processing apparatus 2 is subjected to the compression processing of the fifth pass in the processing unit 6 of the productizing apparatus 5, whereby the crystal grain It has an ultra-fine structure with a diameter of 1 [μm] or less, and is therefore sent out as a practical structural product 7 that is practically high in strength.

(2)微細化加工結果
以上の構成によれば、第1段、第2段、第3段及び第4段微細化加工部11A、11B、11C及び11Dにおいて加工温度を各パスごとに順次623〔K〕、573〔K〕、523〔K〕及び503〔K〕に下げながら多軸鍛造加工を行うことにより、加工対象金属材料14に全く割れを起こさずに、図4に示すように、加工対象金属材料14内にひずみを累積させ、これにより結晶粒を容易に微細化できた。
(2) Refinement processing result According to the above configuration, the processing temperature is sequentially set to 623 for each pass in the first, second, third, and fourth-stage refinement processing units 11A, 11B, 11C, and 11D. By performing multi-axis forging while lowering to [K], 573 [K], 523 [K], and 503 [K], as shown in FIG. Strain was accumulated in the metal material 14 to be processed, whereby the crystal grains could be easily refined.

各パスにおける微細化組織の発達状態は、図5に示す通りであった。   The development state of the fine structure in each pass was as shown in FIG.

図5の光学顕微鏡組織写真において、直線横断法によって平均結晶粒径を測定したところ、多軸鍛造加工前の金属材料素材3においては累積ひずみ量がε=0の状態において38.5〔μm〕(図5(A))であったのに対して、2パス目において累積ひずみ量がε=1.6の状態(図5(B))を経て、4パス目において累積ひずみ量ε=3.2になった状態(図5(C))において、約1〔μm〕まで微細化した結晶組織になっていることが確認できた。   In the photomicrograph of the optical microscope in FIG. 5, when the average crystal grain size was measured by the linear crossing method, the metal material material 3 before multiaxial forging was 38.5 [μm] in a state where the cumulative strain amount was ε = 0. (FIG. 5A), the cumulative strain amount is ε = 1.6 in the second pass (FIG. 5B), and the cumulative strain amount ε = 3 in the fourth pass. 2 (FIG. 5C), it was confirmed that the crystal structure was refined to about 1 [μm].

かくして結晶粒微細化加工装置2から、割れを起こさずに、しかも僅か4パス分の加工をするだけで、平均結晶粒径が38.5〔μm〕から1〔μm〕にまで超微細化された結晶組織を有する加工金属材料4を得ることができ、これにより高強度の実用の構造製品を製品化する目的に適したバルク材を供給できる。   Thus, the crystal grain refining apparatus 2 can be made ultrafine from 38.5 [μm] to 1 [μm] with only 4 passes of processing without causing cracks. Thus, a processed metal material 4 having a crystal structure can be obtained, whereby a bulk material suitable for the purpose of commercializing a high-strength practical structural product can be supplied.

このバルク材としての加工金属材料4を実用構造製品7を得ることを想定した製品化装置5において、さらに5パス目として、図4の曲線K5で示すように加工温度503〔K〕で真ひずみ0.8の強加工を行った結果得られる微細粒組織は、累積ひずみε=4.0の状態で、図5(D)に示すように、光学顕微鏡では確認できないほどの超微細粒となることが分かった。   In the commercialization apparatus 5 assuming that the processed metal material 4 as the bulk material is obtained as a practical structure product 7, as the fifth pass, the true strain is obtained at the processing temperature 503 [K] as shown by the curve K5 in FIG. As shown in FIG. 5D, the fine grain structure obtained as a result of the strong processing of 0.8 becomes an ultrafine grain that cannot be confirmed with an optical microscope in a state of cumulative strain ε = 4.0. I understood that.

この5パス目の微細粒組織を有する実用構造製品7は結晶粒が超微細であることにより、その強度は一段と大きいと評価できる。   The practical structural product 7 having the fine grain structure of the fifth pass can be evaluated as having a much higher strength because the crystal grains are ultrafine.

(3)異なる成分の金属材料素材の場合
上述の実施の形態においては、図2のサンプル番号1のAZ61Mg合金を用いてこれを結晶粒微細化加工装置2によって降温多軸鍛造加工をした場合として述べたが、金属材料素材3としてサンプル番号1とは多少成分が異なるサンプル番号2のAZ61Mg合金を用いて同じ結晶粒微細化加工装置2によって降温多軸鍛造加工をしたところ、得られた加工金属材料4は、図6に示すように、平均結晶粒径が約1〔μm〕の均一な超微細組織となることが分かった。
(3) In the case of metal material materials having different components In the above-described embodiment, as a case where the AZ61Mg alloy of sample number 1 in FIG. As described above, when the temperature-decreasing multi-axis forging process was performed by the same grain refinement processing apparatus 2 using the AZ61Mg alloy of the sample number 2 which is slightly different from the sample number 1 as the metal material 3, the obtained processed metal As shown in FIG. 6, the material 4 was found to have a uniform ultrafine structure having an average crystal grain size of about 1 [μm].

これにより、金属材料素材3として添加元素が多少違っても、上述の実施の形態による降温多軸鍛造法による加工によれば、同じような微細化組織が得られることが確認できた。   Thus, it was confirmed that even if the additive element as the metal material 3 is slightly different, the same refined structure can be obtained by the temperature-decreasing multiaxial forging method according to the above-described embodiment.

(4)硬さの変化
硬さ試験によれば、結晶粒微細化加工装置2が降温多軸鍛造加工をしている間に加工対象金属材料14に生ずる硬さは、図7の直線K11に示すように、累積ひずみεの増加に比例するように増加する。
(4) Change of hardness According to the hardness test, the hardness generated in the metal material 14 to be processed while the crystal grain refining processing device 2 is performing the temperature-decreasing multi-axis forging is represented by a straight line K11 in FIG. As shown, it increases in proportion to the increase in cumulative strain ε.

当該硬さ変化曲線K11との比較例として、AZ31Mg合金を同じ条件で降温多軸鍛造加工をした場合の硬さの変化を曲線K12によって示す。   As a comparative example with respect to the hardness change curve K11, a change in hardness when the AZ31Mg alloy is subjected to temperature-decreasing multi-axis forging under the same conditions is indicated by a curve K12.

上述の実施の形態の場合の硬さ変化曲線K11は、累積ひずみ量εが増加するとほぼ比例して硬さが増加し、4パス目では1200MPAまで上昇し、5パス目には更に上昇した。   In the case of the above-described embodiment, the hardness change curve K11 increases in proportion to the increase in the cumulative strain amount ε, increases to 1200 MPa in the fourth pass, and further increases in the fifth pass.

この硬さ変化曲線K11は、比較例であるAZ31Mg合金の硬さ変化曲線K12と比較して、累積ひずみ量の増加(従って結晶粒微細化の進行)に伴う硬さの増加割合が高く、結局累積ひずみ量の増加に対して30〔%〕以上も高強度化されていることが分かる。   This hardness change curve K11 has a higher rate of increase in hardness with an increase in the cumulative strain amount (and hence progress of crystal grain refinement) than the hardness change curve K12 of the AZ31Mg alloy as a comparative example. It can be seen that the strength is increased by 30 [%] or more with respect to the increase in the accumulated strain amount.

因に、従来、AZ31Mg、AZ61Mg合金は、ともに室温での塑性加工性が著しく低いため、加工、整形は熱間・温間で行われる。鍛造によれば強度の向上が期待できるが、例えばAZ31Mgの場合で20〔%〕以下(約500〔MPa〕から約600〔MPa〕以下への上昇)に過ぎない。   Incidentally, conventionally, since AZ31Mg and AZ61Mg alloys have extremely low plastic workability at room temperature, processing and shaping are performed hot and warm. Forging can be expected to improve the strength, but it is only 20% or less (increase from about 500 [MPa] to about 600 [MPa]) in the case of AZ31Mg, for example.

これに対して、降温多軸鍛造法によって結晶粒を超微細化すれば、比較例として図7において変化曲線K12で示すように、AZ31Mg合金の強度は、850〔MPa〕程度まで上昇し、この結果70〔%〕は増加する。   On the other hand, if the crystal grains are refined by a temperature-decreasing multiaxial forging method, as shown by a change curve K12 in FIG. 7 as a comparative example, the strength of the AZ31Mg alloy increases to about 850 [MPa]. The result 70% increases.

このAZ31Mg合金の場合と比較して、上述の実施の形態についてAZ61Mg合金について降温多軸鍛造法により結晶粒を超微細化した場合は、図7において変化曲線K11で示すように、結晶粒微細化によって著しい強度向上が得られ、累積ひずみ4で比較するとその強度は超微細粒AZ31Mg合金よりさらに60〔%〕高い。   Compared to the case of this AZ31Mg alloy, in the case of the above-described embodiment, when the crystal grains of the AZ61Mg alloy are ultrafinened by the temperature-decreasing multiaxial forging method, as shown by the change curve K11 in FIG. As a result, the strength is 60% higher than that of the ultrafine-grained AZ31Mg alloy.

図7において、AZ61Mg合金の直線の傾きがより大きく、このことはAZ61Mg合金の強度上昇がAZ31Mg合金に比べてより顕著であることを示している。従って強度差は加工ひずみの増加とともにさらに大きくなる。   In FIG. 7, the slope of the straight line of the AZ61Mg alloy is larger, which indicates that the strength increase of the AZ61Mg alloy is more remarkable than that of the AZ31Mg alloy. Accordingly, the difference in strength becomes larger as the processing strain increases.

このように、AZ61Mg合金を降温多軸鍛造加工することにより得られる加工金属材料の硬さは、AZ31Mg合金の場合と比較して一段と高強度化されている。   As described above, the hardness of the processed metal material obtained by subjecting the AZ61Mg alloy to the temperature-lowering multiaxial forging is further increased as compared with the case of the AZ31Mg alloy.

(5)熱的安定性
図1の結晶粒微細化加工装置2によって得た加工金属材料4は、図8に示すように熱的安定性をもっている。
(5) Thermal stability The processed metal material 4 obtained by the crystal grain refining apparatus 2 shown in FIG. 1 has thermal stability as shown in FIG.

図8は、累積ひずみε=3.2を有する4パス目の加工金属材料4に、523〔K〕で15〔分〕間の焼鈍を行った後の超微細粒組織を示したもので、1〔μm〕にまで微細化された結晶粒は2.0〔μm〕まで粗大化したものの、焼鈍に伴う結晶粒粗大化は極めて小さい。   FIG. 8 shows an ultrafine-grained structure after annealing the processed metal material 4 in the fourth pass having a cumulative strain ε = 3.2 at 523 [K] for 15 minutes, Although the crystal grains refined to 1 [μm] are coarsened to 2.0 [μm], the grain coarsening accompanying annealing is extremely small.

また、図7で符号K13で示すように、この焼鈍を行うことにより生じた硬さの低下は、小さく、10〔%〕程度の強度低下に止まっていることを確認した。   Further, as indicated by reference numeral K13 in FIG. 7, the decrease in hardness caused by this annealing was small, and it was confirmed that the decrease in strength was about 10%.

これらの結果は、AZ61Mg合金を降温多軸鍛造加工した結果得られる加工金属材料4は、極めて熱的安定性に優れていることを示している。   These results indicate that the processed metal material 4 obtained as a result of the temperature-decreasing multiaxial forging of the AZ61Mg alloy is extremely excellent in thermal stability.

これに対して、AZ31Mg合金は、より低い温度での焼鈍でも容易に結晶粒の粗大化が起こってしまうことや、強ひずみ加工により得られた超微細粒材は熱的に不安定であることが知られている。   On the other hand, the AZ31Mg alloy is easily coarsened even when annealed at a lower temperature, and the ultrafine-grained material obtained by high strain processing is thermally unstable. It has been known.

この点からみて、上述の実施の形態による降温多軸鍛造加工により得られるAZ61Mg合金の微細化加工材の特性は、一段と向上している。   From this point of view, the characteristics of the AZ61Mg refined material obtained by the temperature-decreasing multi-axis forging process according to the above-described embodiment are further improved.

(6)引張試験
図9は上述の実施の形態によって降温多軸鍛造加工されたAZ61Mg合金の微細化加工材の引張試験結果を示すもので、引張軸は最終圧縮軸に対し垂直とした。
(6) Tensile test FIG. 9 shows the result of a tensile test of the AZ61Mg alloy refined material that has been subjected to temperature-decreasing multi-axis forging according to the above-described embodiment, and the tensile axis was perpendicular to the final compression axis.

これは、圧縮面に(0001)底面集合組織が形成されるため、最も延びが得られない方法である。   This is a method in which the most stretch is not obtained because a (0001) bottom texture is formed on the compression surface.

それにも関わらず、ひずみ速度8.3×10−3〔s−1〕の2パス材で50〔%〕以上、4パス材(累積ひずみ量ε=3.2)で極めて高い延性が観察された(図9(A))。 Nevertheless, extremely high ductility is observed in the 2-pass material with strain rate of 8.3 × 10 −3 [s −1 ] of 50% or more and the 4-pass material (cumulative strain amount ε = 3.2). (FIG. 9A).

特に、図9(B)において符号K21で示すように、ひずみ速度8.3×10−4〔s−1〕で加工した場合、4パス材(累積ひずみε=3.2)の引張試験温度473〔K〕では、約300〔%〕の超塑性延びが得られた。 In particular, as shown by symbol K21 in FIG. 9B, when processed at a strain rate of 8.3 × 10 −4 [s −1 ], a tensile test temperature of a 4-pass material (cumulative strain ε = 3.2). At 473 [K], a superplastic elongation of about 300 [%] was obtained.

これは、比較材として同じ条件下で引張試験を行った超微細粒AZ31Mg材に比べて、延びが約1.5〔倍〕、強度で約20〔%〕高いことが確認できた。   It was confirmed that the elongation was about 1.5 [times] and the strength was about 20 [%] higher than the ultrafine-grained AZ31Mg material which was subjected to a tensile test under the same conditions as a comparative material.

これにより、図4の累積ひずみの拡大結果を含め、AZ61Mg合金を4パス圧縮加工した超微細材は、高い加工性を有し、強度も高いことが分かった。   Accordingly, it was found that the ultrafine material obtained by compressing the AZ61Mg alloy by four passes including the result of increasing the cumulative strain in FIG. 4 has high workability and high strength.

さらには、降温多軸鍛造加工後の塑性加工性が極めて高いことから、降温多軸鍛造加工により結晶粒を超微細化加工することにより、結晶粒微細化加工装置2によって得られた加工金属材料4を製品化装置5において製品化加工する際に、図10において他の実施の形態として示すような圧延装置20を用いることができることを示している。   Furthermore, since the plastic workability after the temperature-decreasing multi-axis forging process is extremely high, the processed metal material obtained by the crystal grain refining apparatus 2 is obtained by performing ultra-fine grain processing by the temperature-decreasing multi-axis forging process. 4 shows that when the product 4 is commercialized by the productizing device 5, a rolling device 20 as shown in FIG. 10 as another embodiment can be used.

圧延装置20は、加工材21を案内ローラ22によって2段の圧延ローラ23A、23B及び24A、24B間を通すことにより、矢印bで示すように、圧延加工する。   The rolling device 20 rolls the workpiece 21 as indicated by an arrow b by passing the workpiece 21 between the two rolling rollers 23A, 23B and 24A, 24B by the guide roller 22.

この実施の形態の場合、圧延ローラ23A、23B及び24A、24Bの回転方向は、矢印cで示すように反転することにより、加工材21を矢印dで示すように圧延ローラ23A、23B及び24A、24Bを往復通過させ、これにより圧延設備を小規模にすることができる。   In the case of this embodiment, the rotation direction of the rolling rollers 23A, 23B and 24A, 24B is reversed as shown by the arrow c, so that the workpiece 21 is rolled by the rolling rollers 23A, 23B and 24A, as shown by the arrow d. 24B can be passed back and forth, thereby reducing the size of the rolling equipment.

(7)加工温度条件
図4について上述した降温多軸鍛造加工について、加工適正温度を確認するため、加工開始温度(623〔K〕)から加工終了温度(503〔K〕)になるまでの各パスの加工温度を、±20〔K〕変化させたところ、図11に示す真応力−累積ひずみ曲線が得られることが確認できた。
(7) Machining temperature conditions For the temperature-decreasing multi-axis forging process described above with reference to FIG. 4, in order to confirm the proper machining temperature, each process from the machining start temperature (623 [K]) to the machining end temperature (503 [K]) When the processing temperature of the pass was changed by ± 20 [K], it was confirmed that the true stress-cumulative strain curve shown in FIG. 11 was obtained.

ここで、各パスにおける加工温度を、±20〔K〕の範囲で変化させても、全く割れが起こらないまま強加工が実現できた。   Here, even when the processing temperature in each pass was changed within a range of ± 20 [K], strong processing could be realized without causing any cracks.

各パスにおける多軸鍛造加工温度は、前段のパスにおける多軸鍛造加工温度と同じでも結晶粒微細化が起こることが明らかになっているので、各パスごとの加工温度の降温側の限度が前段のパスにおける多軸鍛造加工温度以下に設定される。   It has been clarified that grain refinement occurs even if the multi-axis forging temperature in each pass is the same as the multi-axis forging temperature in the previous pass. The temperature is set below the multi-axis forging temperature in the pass.

この実験の結果における4パス後の最終微細化組織は、図12に示すように、加工開始温度と最終加工温度がそれぞれ20〔K〕ずつ異なった場合でも、4パス後(累積ひずみ量3.2)に得られた最終結晶粒径は約1〔μm〕である。   As shown in FIG. 12, the final refined structure after 4 passes in the result of this experiment is 4 passes (cumulative strain amount of 3 .times.) Even when the processing start temperature and the final processing temperature are different by 20 [K] respectively. The final crystal grain size obtained in 2) is about 1 [μm].

+20〔K〕の温度が高い方の微細化組織は、−20〔K〕の温度が低い方と比較して結晶粒径が大きいが、その差は僅かである。   The refined structure having a higher temperature of +20 [K] has a larger crystal grain size than that of the lower temperature of −20 [K], but the difference is slight.

この実験の範囲では、全く割れを起こさず、適用された全温度範囲で降温多軸鍛造加工が可能で、結晶粒は容易に微細化されることが確認できた。   In the range of this experiment, it was confirmed that the temperature-falling multi-axis forging process was possible in the whole applied temperature range without cracking at all, and the crystal grains were easily refined.

これと同時に、上述の実施の形態における降温多軸鍛造プロセスは、AZ61Mg合金に対して適用できる温度範囲が広いことが確認でき、このことは、当該降温多軸鍛造プロセスの向上化、実用化に大きな利点となることが分かった。   At the same time, the temperature-decreasing multi-axis forging process in the above-described embodiment can be confirmed to have a wide temperature range applicable to the AZ61Mg alloy, which is an improvement and practical application of the temperature-decreasing multi-axis forging process. It turned out to be a big advantage.

また、1パスから4パスに至るまでの加工温度は、図13に示す設定直線K31を中心として、±50〔K〕の曲線K32及びK33の間に設定すれば良い。   Further, the processing temperature from the first pass to the fourth pass may be set between the curves K32 and K33 of ± 50 [K] around the set straight line K31 shown in FIG.

実際上、1パス目に加工する前の金属材料素材3の粒径(すなわち初期粒径の大きさ)に応じて、適正な加工温度を設定すれば良い。   In practice, an appropriate processing temperature may be set according to the particle size (that is, the initial particle size) of the metal material 3 before processing in the first pass.

(8)他の実施の形態
図14は、他の実施の形態である金属材料製造システム31を示すもので、図1の第1段ないし第4段微細化加工部11A〜11Dの場合と同様に、治具32の圧縮加工室33に入れた加工対象金属材料34を圧縮加工工具35によって矢印P2で示す圧縮加工力によって圧縮加工を行うように、圧縮加工装置36が形成されている。
(8) Other Embodiments FIG. 14 shows a metal material manufacturing system 31 according to another embodiment, which is the same as the case of the first to fourth stage refinement processing portions 11A to 11D of FIG. Further, the compression processing device 36 is formed so that the metal material 34 to be processed placed in the compression processing chamber 33 of the jig 32 is compressed by the compression processing tool 35 with the compression processing force indicated by the arrow P2.

圧縮加工装置36には、前段保温炉42及び後段保温炉43が設けられ、AZ61Mg合金でなる金属材料加工素材41が加工対象金属材料34として前段保温炉42に入れられ、所定の加工温度に保温される。   The compression processing apparatus 36 is provided with a pre-stage heat-retaining furnace 42 and a post-stage heat-retaining furnace 43, and a metal material processing material 41 made of an AZ61Mg alloy is placed in the pre-stage heat-retaining furnace 42 as a processing target metal material 34, and is kept at a predetermined processing temperature. Is done.

1パス目の加工時、加工対象金属材料34は、前段保温炉42において所定の加工温度623〔K〕に保温されており、これが矢印a11で示すように圧縮加工室33に入れられて1パス目の圧縮加工がされた後、矢印a12で示すように、圧縮加工室33から後段保温炉43に保持される。   At the time of processing in the first pass, the metal material 34 to be processed is kept at a predetermined processing temperature 623 [K] in the pre-stage heat-retaining furnace 42, and this is put into the compression processing chamber 33 as shown by an arrow a11 and passes through one pass. After the eye is subjected to compression processing, as shown by an arrow a <b> 12, it is held from the compression processing chamber 33 to the second-stage warming furnace 43.

後段保温炉34は、2パス目の加工温度573〔K〕に加工対象金属材料34を保温する。   The post-stage heat insulation furnace 34 keeps the metal material 34 to be processed at the processing temperature 573 [K] in the second pass.

かくして前段保温炉42に入れられた全ての加工対象金属材料34について、1パス目の圧縮加工が終了すると、後段保温炉43において2パス目の加工温度573〔K〕に保温された加工対象金属材料34が、矢印a13によって示すように、圧縮加工室33に入れられて圧縮加工され、その後矢印a14で示すように圧縮加工室33から前段保温炉42に取り出される。   Thus, when the first pass compression process is completed for all the work target metal materials 34 put in the pre-stage heat-retaining furnace 42, the work-target metal kept at the second-pass heat treatment furnace 43 at the work temperature 573 [K] in the second pass. The material 34 is put into the compression processing chamber 33 and compressed as shown by an arrow a13, and then taken out from the compression processing chamber 33 to the pre-stage heat-retaining furnace 42 as shown by an arrow a14.

前段保温炉42には圧縮加工室33から取り出されてきた加工対象金属材料34を3パス目の加工温度523〔K〕に保温する。   In the pre-stage insulation furnace 42, the metal material 34 to be processed taken out from the compression processing chamber 33 is kept at the processing temperature 523 [K] in the third pass.

かくして後段保温炉43に入れられた全ての加工対象金属材料34についての加工が終了すると、続いて前段保温炉42において3パス目の加工温度523〔K〕に保温された加工対象金属材料34が、再度矢印a11で示すように、圧縮加工室33に入れられて圧縮加工された後、矢印a12で示すように、後段保温炉43に取り出される。   Thus, when the processing for all the processing target metal materials 34 put in the rear stage heat insulation furnace 43 is completed, the processing target metal material 34 that is subsequently kept at the processing temperature 523 [K] in the third pass in the front stage heat insulation furnace 42 is obtained. Then, as indicated by the arrow a11 again, after being put into the compression processing chamber 33 and subjected to the compression processing, it is taken out to the post-stage insulation furnace 43 as indicated by the arrow a12.

このとき後段保温炉43は加工対象金属材料34を4パス目の加工温度503〔K〕に保温し、かくして保温された加工対象金属材料34が、再度矢印a13で示すように、圧縮加工室33に入れられて圧縮加工をした後、矢印a14で示すように前段保温炉42に取り込まれる。   At this time, the post-stage heat insulation furnace 43 keeps the metal material 34 to be processed at the processing temperature 503 [K] in the fourth pass, and the heat-processed metal material 34 thus held again indicates the compression processing chamber 33 as indicated by an arrow a13. Then, after being compressed, it is taken into the pre-stage warming furnace 42 as indicated by an arrow a14.

このようにして1台の圧縮加工装置36を用いて、1パス目、2パス目、3パス目及び4パス目の圧縮加工を保温温度623〔K〕、573〔K〕、523〔K〕及び503〔K〕で加工することにより、4パス目の加工終了時に粒径が1〔μm〕にまで微細化された超微細組織を有する加工対象金属材料34が前段保温炉42に保持された状態が得られる。   In this way, by using one compression processing device 36, the first pass, the second pass, the third pass, and the fourth pass are subjected to the heat retention temperatures 623 [K], 573 [K], and 523 [K]. And 503 [K], the metal material 34 to be processed having an ultrafine structure whose particle size is refined to 1 [μm] at the end of the fourth pass is held in the pre-stage insulation furnace 42. A state is obtained.

この微細化加工が終了した加工対象金属材料34は、加工金属材料44として外部に設けられている製品化装置に送り出される。   The metal material 34 to be processed for which the microfabrication processing has been completed is sent out as a processed metal material 44 to a productizing apparatus provided outside.

以上の構成によれば、1台の圧縮加工装置36によって4パス分の降温多軸鍛造加工を行うことができることにより、比較的小規模な設備で少量生産する目的に適した金属材料生産システムを実現できる。   According to the above configuration, the temperature reduction multi-axis forging process for four passes can be performed by one compression processing apparatus 36, and thus a metal material production system suitable for the purpose of producing a small amount with a relatively small facility is provided. realizable.

かくするにつき、上述した場合と同様に、加工途中で割れることなく微細化加工ができることにより、硬さ特性、熱的安定性、延び特性が優れたAZ61Mg合成材料を実現できる。   Accordingly, as in the case described above, the AZ61Mg composite material having excellent hardness characteristics, thermal stability, and elongation characteristics can be realized by being able to be refined without cracking during the processing.

実用の構造製品材料に適したマグネシウム金属材料を得る場合に適用できる。   It can be applied to obtain a magnesium metal material suitable for a practical structural product material.

本発明の一実施の形態による金属材料製造システムを示す略線的系統図である。1 is a schematic system diagram showing a metal material manufacturing system according to an embodiment of the present invention. 金属材料素材に添加されている成分を示す図表である。It is a graph which shows the component added to the metal material raw material. (A)、(B)及び(C)はX軸、Y軸及びZ軸について圧縮加工する多軸鍛造加工の説明に供する略線的斜視図である。(A), (B), and (C) are the approximate line perspective views used for description of the multi-axis forging process which compresses about an X-axis, a Y-axis, and a Z-axis. 1パスないし5パスの圧縮加工時に生ずる真応力−累積ひずみを示す特性曲線図である。It is a characteristic curve figure which shows the true stress-cumulative distortion which arises at the time of the compression process of 1 pass thru | or 5 passes. (A)、(B)、(C)及び(D)は、圧縮加工前、2パス目、4パス目及び5パス目の圧縮加工によって微細化加工された微細化組織の発達状態を示す光学顕微鏡写真図である。(A), (B), (C), and (D) show the development state of the refined structure that has been refined by the compression process of the second pass, the fourth pass, and the fifth pass before the compression process. FIG. サンプル番号2のAZ61Mg合金において、降温多軸鍛造した結果微細化された微細化組織を示す光学顕微鏡写真図である。FIG. 5 is an optical micrograph showing a refined structure refined as a result of temperature-decreasing multiaxial forging in the AZ61Mg alloy of sample number 2. 降温多軸鍛造加工中のひずみ増加による硬さの変化を示す特性曲線図である。It is a characteristic curve figure which shows the change of the hardness by the strain increase during temperature-fall multi-axis forging process. 降温多軸鍛造加工後に金属材料を523〔K〕で15〔秒〕保持したときの微細化組織を示す光学顕微鏡写真図である。It is an optical microscope photograph figure which shows the refinement | miniaturization structure | tissue when a metal material is hold | maintained at 523 [K] for 15 [seconds] after temperature-fall multi-axis forging process. (A)及び(B)は引張試験結果を示す特性曲線図である。(A) And (B) is a characteristic curve figure which shows a tension test result. 製品化装置の他の実施の形態を示す略線的系統図である。It is a rough-line system diagram which shows other embodiment of a commercialization apparatus. 降温多軸鍛造加工の温度域を変化させたときに得られた真応力−累積ひずみ曲線を示す特性曲線図である。It is a characteristic curve figure which shows the true stress-cumulative strain curve obtained when changing the temperature range of temperature-fall multi-axis forging process. (A)及び(B)は降温多軸鍛造加工の温度域を変化させたとき得られた微細化組織を示す光学顕微鏡写真図である。(A) And (B) is an optical microscope photograph figure which shows the refinement | miniaturization structure | tissue obtained when the temperature range of temperature-fall multi-axis forging process was changed. 降温温度設定範囲を示す特性曲線図である。It is a characteristic curve figure which shows the temperature fall temperature setting range. 他の実施の形態の金属材料製造システムを示す略線的系統図である。It is a rough-line system diagram which shows the metal material manufacturing system of other embodiment.

符号の説明Explanation of symbols

1、31……金属材料製造システム、2……結晶粒微細化加工装置、3……金属材料素材、4……加工金属材料、5……製品化装置、6……加工処理部、7……実用構造製品、11A〜11D……第1段〜第4段微細化加工部、12、32……治具、13、33……圧縮加工室、14、34……加工対象金属材料、15、35……圧縮加工工具、16、36……保温炉、20……圧延装置、21……加工材、22……案内ローラ、23A、23B、24A、24B……圧延ローラ、41……金属材料素材、42……前段保温炉、43……後段保温炉、44……加工金属材料。   DESCRIPTION OF SYMBOLS 1, 31 ... Metal material manufacturing system, 2 ... Crystal grain refinement processing apparatus, 3 ... Metal material material, 4 ... Processed metal material, 5 ... Commercialization apparatus, 6 ... Processing part, 7 ... ... Practical structure products, 11A to 11D ... 1st stage to 4th stage refinement processing part, 12, 32 ... Jig, 13, 33 ... Compression processing chamber, 14, 34 ... Metal material to be processed, 15 35 ... Compression processing tool 16, 36 ... Incubator, 20 ... Rolling device, 21 ... Work material, 22 ... Guide roller, 23A, 23B, 24A, 24B ... Rolling roller, 41 ... Metal Material material 42... Pre-stage insulation furnace, 43...

Claims (3)

マグネシウムに、アルミニウム及び亜鉛をそれぞれ質量比で約6〔%〕及び約1〔%〕含むと共に、添加元素として少なくとも鉄及びマンガンを含むマグネシウム合金でなる金属材料素材を、降温多軸鍛造加工することによって微細化された結晶組織を有する加工金属材料を得る
ことを特徴とするマグネシウム合金材料製造方法。
Magnesium contains aluminum and zinc in a mass ratio of about 6% and 1%, respectively, and a metal material made of a magnesium alloy containing at least iron and manganese as additive elements is subjected to a multiaxial forging process. A processed metal material having a crystal structure refined by the method is obtained.
マグネシウムに、アルミニウム及び亜鉛をそれぞれ質量比で約6〔%〕及び約1〔%〕含むと共に、添加元素として少なくとも鉄及びマンガンを含むマグネシウム合金でなる金属材料素材を、降温多軸鍛造加工することによって微細化された結晶組織を有する加工金属材料を得る圧縮加工手段
を具えることを特徴とするマグネシウム合金材料製造装置。
Magnesium contains aluminum and zinc in a mass ratio of about 6% and 1%, respectively, and a metal material made of a magnesium alloy containing at least iron and manganese as additive elements is subjected to a multiaxial forging process. A magnesium alloy material manufacturing apparatus comprising compression processing means for obtaining a processed metal material having a crystal structure refined by the process.
マグネシウムに、アルミニウム及び亜鉛をそれぞれ質量比で約6〔%〕及び約1〔%〕含むと共に、添加元素として少なくとも鉄及びマンガンを含むマグネシウム合金でなる金属材料素材を、降温多軸鍛造加工することによって微細化された結晶組織を有する
ことを特徴とするマグネシウム合金材料。
Magnesium contains aluminum and zinc in a mass ratio of about 6% and 1%, respectively, and a metal material made of a magnesium alloy containing at least iron and manganese as additive elements is subjected to a multiaxial forging process. A magnesium alloy material characterized by having a crystal structure refined by.
JP2006251358A 2006-03-30 2006-09-15 Magnesium alloy material manufacturing method and apparatus, and magnesium alloy material Active JP5050199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006251358A JP5050199B2 (en) 2006-03-30 2006-09-15 Magnesium alloy material manufacturing method and apparatus, and magnesium alloy material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006093812 2006-03-30
JP2006093812 2006-03-30
JP2006251358A JP5050199B2 (en) 2006-03-30 2006-09-15 Magnesium alloy material manufacturing method and apparatus, and magnesium alloy material

Publications (2)

Publication Number Publication Date
JP2007291488A true JP2007291488A (en) 2007-11-08
JP5050199B2 JP5050199B2 (en) 2012-10-17

Family

ID=38762380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006251358A Active JP5050199B2 (en) 2006-03-30 2006-09-15 Magnesium alloy material manufacturing method and apparatus, and magnesium alloy material

Country Status (1)

Country Link
JP (1) JP5050199B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116618A (en) * 2008-11-14 2010-05-27 Univ Of Electro-Communications Method for manufacturing magnesium alloy material
DE112008002970T5 (en) 2007-11-09 2010-09-23 Panasonic Corporation, Kadoma-shi A component mounting apparatus and method for managing nozzle placement history data
WO2011114931A1 (en) * 2010-03-17 2011-09-22 独立行政法人物質・材料研究機構 Magnesium alloy
WO2012063504A1 (en) * 2010-11-11 2012-05-18 国立大学法人 電気通信大学 Method for subjecting difficult-to-process metal material to multiaxial forging, device for carrying out said method, and metal material
CN102581058A (en) * 2012-02-27 2012-07-18 江苏诚德钢管股份有限公司 Production method for forging magnesium alloy plate under conditions of temperature reduction and large pressing quantity
KR20150130961A (en) * 2013-03-15 2015-11-24 에이티아이 프로퍼티즈, 인코퍼레이티드 Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US9765420B2 (en) 2010-07-19 2017-09-19 Ati Properties Llc Processing of α/β titanium alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10287655B2 (en) 2011-06-01 2019-05-14 Ati Properties Llc Nickel-base alloy and articles
US10337093B2 (en) 2013-03-11 2019-07-02 Ati Properties Llc Non-magnetic alloy forgings
US10422027B2 (en) 2004-05-21 2019-09-24 Ati Properties Llc Metastable beta-titanium alloys and methods of processing the same by direct aging
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
CN113560482A (en) * 2021-06-29 2021-10-29 中信戴卡股份有限公司 Manufacturing method of magnesium alloy hub

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158544A (en) * 1985-12-28 1987-07-14 Komatsu Ltd Multiple spindle forging machine
JP2000135538A (en) * 1999-09-24 2000-05-16 Tokyo Seitankosho:Kk Magnesium alloy forged thin housing and manufacture thereof
JP2003268513A (en) * 2002-03-12 2003-09-25 Takata Corp Method of molding magnesium alloy
JP2003277899A (en) * 2002-03-25 2003-10-02 Kurimoto Ltd Magnesium alloy member and its production method
JP2004176134A (en) * 2002-11-27 2004-06-24 Chiba Inst Of Technology Method of producing aluminum and aluminum alloy material having hyperfine crystal grain
WO2004085692A1 (en) * 2003-03-26 2004-10-07 Campus Create Co., Ltd. PROCESS OF WORKING Mg ALLOY AND Mg ALLOY

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158544A (en) * 1985-12-28 1987-07-14 Komatsu Ltd Multiple spindle forging machine
JP2000135538A (en) * 1999-09-24 2000-05-16 Tokyo Seitankosho:Kk Magnesium alloy forged thin housing and manufacture thereof
JP2003268513A (en) * 2002-03-12 2003-09-25 Takata Corp Method of molding magnesium alloy
JP2003277899A (en) * 2002-03-25 2003-10-02 Kurimoto Ltd Magnesium alloy member and its production method
JP2004176134A (en) * 2002-11-27 2004-06-24 Chiba Inst Of Technology Method of producing aluminum and aluminum alloy material having hyperfine crystal grain
WO2004085692A1 (en) * 2003-03-26 2004-10-07 Campus Create Co., Ltd. PROCESS OF WORKING Mg ALLOY AND Mg ALLOY

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US10422027B2 (en) 2004-05-21 2019-09-24 Ati Properties Llc Metastable beta-titanium alloys and methods of processing the same by direct aging
DE112008002970T5 (en) 2007-11-09 2010-09-23 Panasonic Corporation, Kadoma-shi A component mounting apparatus and method for managing nozzle placement history data
JP2010116618A (en) * 2008-11-14 2010-05-27 Univ Of Electro-Communications Method for manufacturing magnesium alloy material
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
WO2011114931A1 (en) * 2010-03-17 2011-09-22 独立行政法人物質・材料研究機構 Magnesium alloy
KR101405079B1 (en) 2010-03-17 2014-06-10 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 Magnesium alloy
JP5557121B2 (en) * 2010-03-17 2014-07-23 独立行政法人物質・材料研究機構 Magnesium alloy
US9765420B2 (en) 2010-07-19 2017-09-19 Ati Properties Llc Processing of α/β titanium alloys
US10144999B2 (en) 2010-07-19 2018-12-04 Ati Properties Llc Processing of alpha/beta titanium alloys
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
WO2012063504A1 (en) * 2010-11-11 2012-05-18 国立大学法人 電気通信大学 Method for subjecting difficult-to-process metal material to multiaxial forging, device for carrying out said method, and metal material
US10287655B2 (en) 2011-06-01 2019-05-14 Ati Properties Llc Nickel-base alloy and articles
CN102581058A (en) * 2012-02-27 2012-07-18 江苏诚德钢管股份有限公司 Production method for forging magnesium alloy plate under conditions of temperature reduction and large pressing quantity
US10570469B2 (en) 2013-02-26 2020-02-25 Ati Properties Llc Methods for processing alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10337093B2 (en) 2013-03-11 2019-07-02 Ati Properties Llc Non-magnetic alloy forgings
KR20150130961A (en) * 2013-03-15 2015-11-24 에이티아이 프로퍼티즈, 인코퍼레이티드 Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
KR102039770B1 (en) * 2013-03-15 2019-11-01 에이티아이 프로퍼티즈 엘엘씨 Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US10370751B2 (en) 2013-03-15 2019-08-06 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
JP2016512173A (en) * 2013-03-15 2016-04-25 エイティーアイ・プロパティーズ・インコーポレーテッド Split pass free forging for strain path sensitive titanium and nickel alloys difficult to forge
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US11319616B2 (en) 2015-01-12 2022-05-03 Ati Properties Llc Titanium alloy
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10619226B2 (en) 2015-01-12 2020-04-14 Ati Properties Llc Titanium alloy
US10808298B2 (en) 2015-01-12 2020-10-20 Ati Properties Llc Titanium alloy
US11851734B2 (en) 2015-01-12 2023-12-26 Ati Properties Llc Titanium alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
US11745252B2 (en) 2021-06-29 2023-09-05 Citic Dicastal Co., Ltd. Method of producing a magnesium alloy wheel hub
CN113560482A (en) * 2021-06-29 2021-10-29 中信戴卡股份有限公司 Manufacturing method of magnesium alloy hub

Also Published As

Publication number Publication date
JP5050199B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5050199B2 (en) Magnesium alloy material manufacturing method and apparatus, and magnesium alloy material
EP3380639B1 (en) Processing of alpha-beta titanium alloys
EP2868759B1 (en) ALPHA + BETA TYPE Ti ALLOY AND PROCESS FOR PRODUCING SAME
JP4974362B2 (en) Ta sputtering target and manufacturing method thereof
JP6734890B2 (en) Method for treating titanium alloy
JP5758204B2 (en) Titanium alloy member and manufacturing method thereof
KR102224687B1 (en) Rolling and preparation method of magnesium alloy sheet
JP5527498B2 (en) Magnesium alloy plate excellent in room temperature formability and processing method of magnesium alloy plate
RU2544976C2 (en) Titanium material
CN108076645A (en) The heat treatment method of metal and metal alloy articles
Shaterani et al. The second phase particles and mechanical properties of 2124 aluminum alloy processed by accumulative back extrusion
Dhal et al. Influence of annealing on stain hardening behaviour and fracture properties of a cryorolled Al 2014 alloy
Liu et al. Influence of different rolling routes on mechanical anisotropy and formability of commercially pure titanium sheet
Lee et al. Enhanced yield symmetry and strength-ductility balance of caliber-rolled Mg–6Zn-0.5 Zr with ultrafine-grained structure and bulk dimension
Yu et al. Microstructure evolution of accumulative roll bonding processed pure aluminum during cryorolling
JP2004353067A (en) Magnesium-based alloy formed body manufacturing method
JPS62149859A (en) Production of beta type titanium alloy wire
JP2005048278A (en) Magnesium based alloy screw, and its production method
JP7179450B2 (en) Titanium target for sputtering, method for producing same, and method for producing titanium-containing thin film
JP5540306B2 (en) Method for producing a magnesium alloy material
JP6785366B2 (en) Titanium alloy material
JP2004176134A (en) Method of producing aluminum and aluminum alloy material having hyperfine crystal grain
JP2017057473A (en) α+β TYPE TITANIUM ALLOY SHEET AND MANUFACTURING METHOD THEREFOR
JP6623950B2 (en) Titanium plate excellent in balance between proof stress and ductility and method for producing the same
JPH01127653A (en) Manufacture of alpha+beta type titanium alloy cold rolled plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090615

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101109

A131 Notification of reasons for refusal

Effective date: 20101202

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150