JPH08109454A - High strength metallic material and its production - Google Patents

High strength metallic material and its production

Info

Publication number
JPH08109454A
JPH08109454A JP6271889A JP27188994A JPH08109454A JP H08109454 A JPH08109454 A JP H08109454A JP 6271889 A JP6271889 A JP 6271889A JP 27188994 A JP27188994 A JP 27188994A JP H08109454 A JPH08109454 A JP H08109454A
Authority
JP
Japan
Prior art keywords
phase
atomic
alloy
amorphous
metal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6271889A
Other languages
Japanese (ja)
Other versions
JP3229500B2 (en
Inventor
Akihisa Inoue
明久 井上
Jiyunichi Nagahora
純一 永洞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Yoshida Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp, Yoshida Kogyo KK filed Critical YKK Corp
Priority to JP27188994A priority Critical patent/JP3229500B2/en
Publication of JPH08109454A publication Critical patent/JPH08109454A/en
Application granted granted Critical
Publication of JP3229500B2 publication Critical patent/JP3229500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE: To impart excellent mechanical properties and toughness to a metallic material by subjecting an amorphous alloy to heat treatment thereby obtaining a fine structure having grain size of a nano-unit. CONSTITUTION: At first, an amorphous alloy contg. any of Al, Mg and Ni and contg. the elements to be added selected from rare earths including Y and Mm, Ni, Fe, Co, Cu, Sn, Zn, Si and B is obtd. Next, it is subjected to primary heat treatment at a temp. of T1 to T2 +10K to T2 , i.e., the precipitating temp. of supersaturated solid solution contg. the elements of the alloy to be added and T2 , i.e., the temp. at which the residual amorphous phase after the precipitation of Cp is decomposed and precipitated into a metallic phase C1 and intermetallic compounds C2 using the main element as a base to largely precipitate Cp having grain size of several tens nm or below into the amorphous phase and simultaneously to form the precipitated embryos of C1 and C2 in the residual amorphous phase. After that, as the secondary heat treatment, it is rapidly heated to a temp. of >=T2 to decompose the residual amorphous phase into C1 and C2 having grain size of several tens nm, which is thereafter heated to a temp. higher than T2 to grow each precipited phase to <=100nm, and stabilization is executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、機械的強度、靭性に優
れた金属材料およびその製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a metal material having excellent mechanical strength and toughness and a method for producing the same.

【0002】[0002]

【従来の技術】本発明者等は強度、耐食性に優れるAl
基非晶質合金、Mg基非晶質合金を発明し、それぞれ特
開昭64−47831号、特開平3−10041号等に
より開示している。これらの公開公報に記載されている
合金は非晶質単相を狙ったものである。その後、非晶質
中に主元素からなる微細過飽和固溶体の結晶相を分散さ
せることによって強度および靭性の改善ができることを
発明し、特開平3−260037号として特許出願し
た。Ni基非晶質合金においても同様の発明がなされ、
特開平5−70903号として特許出願した。又、非晶
質合金に熱を加えて主元素からなる過飽和固溶体を析出
させるときに大きな延性を示すことを見出し、その製造
方法を特開平5−345961号として特許出願した。
更に非晶質相に析出する過飽和固溶体が完全結晶であ
り、強度および靭性が著しく改善されることを見出し、
特開平6−41703号として出願した。
2. Description of the Related Art The present inventors have found that Al, which has excellent strength and corrosion resistance,
Amorphous amorphous alloys and Mg-based amorphous alloys have been invented and disclosed in JP-A-64-47831 and JP-A-3-10041, respectively. The alloys described in these publications are aimed at an amorphous single phase. After that, the inventors invented that the strength and toughness can be improved by dispersing the crystal phase of a fine supersaturated solid solution containing the main element in an amorphous state, and filed a patent application as Japanese Patent Laid-Open No. 260037/1993. A similar invention was made in a Ni-based amorphous alloy,
A patent application was filed as Japanese Patent Laid-Open No. 5-70303. Further, it was found that when an amorphous alloy is heated to precipitate a supersaturated solid solution composed of a main element, it exhibits great ductility, and a patent for its production method was filed as Japanese Patent Laid-Open No. Hei 5-345961.
Furthermore, it was found that the supersaturated solid solution precipitated in the amorphous phase is a complete crystal, and the strength and toughness are remarkably improved,
The application was filed as JP-A-6-41703.

【0003】[0003]

【発明が解決しようとする課題】特開平6−41703
号に記載の合金は非晶質相中に100nm以下の過飽和
固溶体が均一に析出分散した合金について述べている。
本発明者等は同特許に記載されている残留非晶質相を、
更に安定な結晶質相に変換させる研究を進めた結果、適
当な熱処理を施すことによって主元素からなる金属相、
金属間化合物等全ての相が100nm以下の微細結晶粒
からなるナノクリスタル合金ができることを発見し、本
発明に至った。
[Patent Document 1] Japanese Patent Laid-Open No. 6-41703
The alloy described in the publication describes an alloy in which a supersaturated solid solution of 100 nm or less is uniformly precipitated and dispersed in an amorphous phase.
The present inventors have identified the residual amorphous phase described in the patent as:
As a result of further research to convert to a more stable crystalline phase, a metal phase composed of the main element,
It was discovered that a nanocrystal alloy in which all phases such as intermetallic compounds are composed of fine crystal grains of 100 nm or less can be formed, and the present invention has been completed.

【0004】[0004]

【課題を解決するための手段】本発明は、主元素と添加
元素とで構成される非晶質合金を形成する組成の合金を
熱処理して得られる合金が、主元素を母体にした添加元
素を含む過飽和固溶体(Cp相)、主元素をベースにし
た金属相(C1相)および金属間化合物(C2相)を含む
合金組織であって、それぞれの相の粒径が100nm以
下である高強度金属材料である。かかる本発明に適用さ
れる合金は、非晶質相を形成すると共に、その結晶化過
程で比較的低い温度で熱処理することによって、非晶質
相中に主元素からなる粒径数nm〜数十nmの結晶中に
添加元素を過飽和に含んだ微細粒子を析出分散し、続く
より高い温度で残留する非晶質相がさらにCp相とC2
相に分解析出する2段の変態過程をもつものに限られ
る。又、Cp相は完全結晶であるとよい。完全結晶とは
過飽和固溶体で、しかもひずみ、転位等の欠陥が入って
いないものをいう。
According to the present invention, an alloy obtained by heat-treating an alloy having a composition forming an amorphous alloy composed of a main element and an additive element is an additive element having the main element as a matrix. An alloy structure containing a supersaturated solid solution (C p phase) containing, a metal phase (C 1 phase) based on the main element, and an intermetallic compound (C 2 phase), and the grain size of each phase is 100 nm or less. It is a high strength metal material. The alloy applied to the present invention forms an amorphous phase and is heat-treated at a relatively low temperature in the crystallization process, so that the amorphous phase has a particle size of several nm to several nm. Fine particles containing an additive element in a supersaturated state are precipitated and dispersed in a 10 nm crystal, and the amorphous phase remaining at a higher temperature is further separated into Cp phase and C 2 phase.
It is limited to those that have a two-step transformation process that decomposes and precipitates into phases. Also, the Cp phase is preferably a perfect crystal. A perfect crystal is a supersaturated solid solution that is free of defects such as strain and dislocation.

【0005】かかる合金の一つは主元素がAlで85〜
99.8原子%であり、第1の添加元素がY,Mmを含
む希土類元素の少なくとも1種で0.1〜5原子%であ
り、第2の添加元素がNi,Fe,Co,Cuから選ば
れる少なくとも1種の元素で0.1〜12原子%であっ
て、かつ第1の添加元素の濃度が第2の添加元素の濃度
以下である合金である。他の合金の一つは、主元素がM
gで80〜90原子%であり、第1の添加元素がY,M
mを含む希土類元素で0.1〜5原子%であり、第2の
添加元素がCu,Ni,Sn,Znから選ばれる少なく
とも1種の元素で8〜15原子%である合金である。さ
らに主元素がNiで79〜89原子%であり、第1の添
加元素がSiで5〜14原子%であり、第2の添加元素
がBで6〜15原子%である合金である。残りの合金
は、主元素がNiで74〜88.5原子%であり、第1
の添加元素がSiで5〜14原子%、第2の添加元素が
Bで6〜15原子%であり、第3の添加元素がFe,M
n,Ti,Zr,Al,V,Mo,Nbから選ばれる少
なくとも1種の元素で、0.5〜5原子%である合金で
ある。
One of such alloys is Al whose main element is 85-85.
99.8 atom%, the first additive element is at least one kind of rare earth elements including Y and Mm, and is 0.1 to 5 atom%, and the second additive element is Ni, Fe, Co, Cu. It is an alloy in which the concentration of at least one selected element is 0.1 to 12 atomic%, and the concentration of the first additive element is not more than the concentration of the second additive element. In one of the other alloys, the main element is M
80 to 90 atomic% in g, and the first additive element is Y, M
It is an alloy in which the rare earth element containing m is 0.1 to 5 atomic% and the second additive element is 8 to 15 atomic% of at least one element selected from Cu, Ni, Sn and Zn. Further, it is an alloy in which the main element is Ni at 79 to 89 atom%, the first additive element is Si at 5 to 14 atom%, and the second additive element is B at 6 to 15 atom%. The rest of the alloys have a main element of Ni of 74 to 88.5 at.
The additional element of Si is 5 to 14 atomic%, the second additional element is B of 6 to 15 atomic%, and the third additional element is Fe and M.
It is an alloy containing at least one element selected from n, Ti, Zr, Al, V, Mo and Nb and having an amount of 0.5 to 5 atom%.

【0006】本発明にかかる合金の製造方法はつぎのと
おりである。すなわち、主元素と他の添加元素とで構成
され、非晶質合金を形成する合金であって、かつ、ある
温度(T1)で非晶質相中に主元素に添加元素を含む過
飽和固溶体(Cp)を分解析出し、さらにT1より高い温
度(T2)で残留非晶質相が主元素をベースにする金属
相(C1)と金属間化合物(C2)に分解析出する性質を
持つ合金を、T1より高くT2+10Kより低い温度で第
一段の熱処理を行い、非晶質中に主元素をベースにした
添加元素を含む数nm〜数十nmの粒径のCpを多量に
均一分散させると同時に残留非晶質相にC1とC2に分解
するための萌芽を均一に析出準備させ、しかる後T2
り高い温度まで急速に加熱し、残留非晶質相を構成元素
からなるそれぞれ粒径数nm〜数十nmのC1とC2に分
解析出させることによって少なくとも3相以上の混合組
織からなる高強度金属材料を得る高強度金属材料の製造
方法である。又、更に各析出相を熱的に安定化させるた
めに第2段の熱処理温度より高い温度で熱処理し、最終
的に各析出相が粒径100nm以下まで成長させる方法
である。本発明方法の第1ステップはT1以上T2+10
Kより低い温度で熱処理することによって非晶質中に粒
径数nm〜数十nmの主元素をベースとするCp相を多
量にしかも均一に析出させると同時に、残留非晶質相が
さらにCp相とC2相に分解するための核になる萌芽を形
成、準備させることにある。第2ステップは第1ステッ
プを終了した合金を温度T2以上で保持し、第1ステッ
プで生じた萌芽を核にして残留非晶質相を分解させる。
理想的には第1ステップで生じた萌芽の数だけ結晶が生
じ、非常に微細(数nm以下)な組織を生じる。
The method for producing the alloy according to the present invention is as follows. That is, an oversaturated solid solution which is an alloy composed of a main element and another additive element and which forms an amorphous alloy, and which contains the additive element as the main element in the amorphous phase at a certain temperature (T 1 ). (C p ) is decomposed and precipitated, and at a temperature (T 2 ) higher than T 1 , the residual amorphous phase is decomposed and precipitated into a metal phase (C 1 ) based on the main element and an intermetallic compound (C 2 ). The alloy having the above property is subjected to a first-stage heat treatment at a temperature higher than T 1 and lower than T 2 + 10K to obtain a grain size of several nm to several tens nm including an additive element based on the main element in an amorphous state. Of C p is uniformly dispersed and at the same time, sprouting for decomposing into C 1 and C 2 in the residual amorphous phase is uniformly prepared and then rapidly heated to a temperature higher than T 2 to remove residual non-phase. By decomposing and precipitating the crystalline phase into C 1 and C 2 which are composed of constituent elements and have a particle size of several nm to several tens nm respectively It is a method for producing a high-strength metal material, which obtains a high-strength metal material having a mixed structure of at least three phases. In addition, in order to thermally stabilize each precipitated phase, a heat treatment is performed at a temperature higher than the second stage heat treatment temperature, and finally each precipitated phase grows to a grain size of 100 nm or less. The first step of the method of the present invention is T 1 or more and T 2 +10.
By heat-treating at a temperature lower than K, a large amount of the C p phase based on the main element having a grain size of several nm to several tens nm is uniformly precipitated in the amorphous material, and at the same time, the residual amorphous phase is further increased. It is to form and prepare the germination that becomes the nucleus for decomposing into C p phase and C 2 phase. In the second step, the alloy that has undergone the first step is kept at a temperature of T 2 or higher, and the residual amorphous phase is decomposed with the sprouting generated in the first step as a nucleus.
Ideally, crystals are generated by the number of sprouting generated in the first step, and a very fine (several nm or less) structure is generated.

【0007】非晶質相がCp相を析出する際にCp相から
溶質を排出するため、残留非晶質相は溶質濃度が増加
し、分解温度を上昇させるため、より安定な萌芽を数多
く形成するためには、第1ステップの熱処理は温度T2
近傍より低温側で行うことが望ましい。通常は(T2
70K)〜(T2+10K)の範囲で15秒〜30分の
保持時間の範囲で行われる。特にAl合金の場合(T2
−30K)〜(T2+5K)の範囲で1〜30分の保持
時間の範囲で行うことが好ましい。周知のとおり非晶質
相の分解過程は温度と時間が析出する粒径、粒子の数に
影響する。あまり低い温度で処理すると萌芽の数は多い
が安定な萌芽を得るためには長時間を要し、経済的では
ない。T2+10Kを大きく越えた温度で熱処理すると
安定ではあるが萌芽の数が減少し、第2ステップ熱処理
時の結晶粒径を粗大化させる。又、非晶質相中に過飽和
固溶体を析出分散させるためには合金液体を急冷して非
晶質化させる際に冷却速度を比較的緩く制御することに
よっても可能であり、第1ステップの熱処理は残留非晶
質相の分解のための萌芽を形成準備させるためにだけ利
用されることもある。又、第1ステップの熱処理は主元
素をベースにしたCpのみを析出させる工程と残留非晶
質相分解の萌芽を準備させる工程に分けることもでき
る。要は均一な核を形成させることが重要なのである。
図1に第1ステップの熱処理後の組織の模式図を示す。
[0007] Since the amorphous phase to discharge the solute from C p phase during the precipitation of C p phase, the residual amorphous phase is increased solute concentration, to raise the decomposition temperature, the more stable sprouting In order to form a large number, the heat treatment in the first step is performed at the temperature T 2
It is desirable to carry out at a temperature lower than the vicinity. Normally (T 2
70 K) to (T 2 +10 K) and a holding time of 15 seconds to 30 minutes. Especially in the case of Al alloy (T 2
The holding time is preferably in the range of −30 K) to (T 2 +5 K) for 1 to 30 minutes. As is well known, the decomposition process of the amorphous phase affects the particle size and the number of particles at which temperature and time are deposited. When treated at a too low temperature, the number of sprouts is large, but it takes a long time to obtain stable sprouts, which is not economical. Heat treatment at a temperature far exceeding T 2 + 10K is stable, but the number of sprouting is reduced, and the crystal grain size during the second step heat treatment is coarsened. Further, in order to precipitate and disperse the supersaturated solid solution in the amorphous phase, it is also possible to control the cooling rate relatively slowly when the alloy liquid is rapidly cooled to become amorphous. Is sometimes used only to prepare sprouts for the decomposition of residual amorphous phase. Further, the heat treatment of the first step can be divided into a step of precipitating only Cp based on the main element and a step of preparing sprouts of residual amorphous phase decomposition. The point is to form a uniform nucleus.
FIG. 1 shows a schematic diagram of the structure after the first step heat treatment.

【0008】第2ステップの熱処理は第1ステップの熱
処理温度からできるだけ速やかに昇温することが望まし
い。通常は1K/秒〜30K/秒の範囲で昇温する。第
2ステップの熱処理温度は非晶質合金を20K/分の昇
温速度で行った示差熱分析の残留非晶質相が分解する発
熱が終了する温度近傍がとっている。通常はT2+(2
0〜120K)の範囲である。保持時間は15秒〜30
分の範囲が好ましい。特にAl合金の場合、T2+(2
0〜120K)の範囲で1〜30分の保持時間の範囲が
好ましい。昇温速度を限定するのは第1ステップの萌芽
を有効に利用し、好ましくない粗大な結晶成長と発生を
抑制するためであり、温度と時間を限定するのも同様の
理由である。この一連の熱処理によって大きな結晶の発
生及び成長を抑制し、結晶粒の適度な融合、合体、凝集
を生じさせ、準平衡ではありながら(パラ平衡効果を残
存しながら)過飽和固溶体の溶質を排出することによっ
て結晶粒成長の化学ポテンシャルを低下させ、全ての相
が粒径100nm以下の組織からなる金属材料を得るこ
とができる。第2ステップの熱処理後の組織の模式図を
図2に示す。
In the second step heat treatment, it is desirable to raise the temperature from the first step heat treatment temperature as quickly as possible. Usually, the temperature is raised in the range of 1 K / sec to 30 K / sec. The heat treatment temperature of the second step is close to the temperature at which the exothermic decomposition of the residual amorphous phase in the differential thermal analysis performed on the amorphous alloy at a temperature rising rate of 20 K / min ends. Usually T 2 + (2
The range is from 0 to 120K). Hold time is 15 seconds to 30
The range of minutes is preferred. Especially in the case of Al alloy, T 2 + (2
The range of 0 to 120K) and the retention time of 1 to 30 minutes are preferable. The reason for limiting the rate of temperature increase is to effectively use the germination of the first step and suppress undesired coarse crystal growth and generation, and the reason for limiting the temperature and time is also the same. This series of heat treatments suppresses the generation and growth of large crystals, causes proper fusion, coalescence, and aggregation of crystal grains, and discharges the solute of supersaturated solid solution while maintaining quasi-equilibrium (while maintaining the para-equilibrium effect). As a result, the chemical potential for crystal grain growth can be reduced, and a metal material can be obtained in which all the phases have a structure with a grain size of 100 nm or less. A schematic diagram of the structure after the second step heat treatment is shown in FIG.

【0009】又、本発明の合金を製造するためには一連
の工程を短時間で終了させる必要がある。そのため急速
加熱、高速加工が要求される。急速加熱には合金への直
接加熱、赤外光収束加熱等、高速加工には高速押出、高
速鍛造等が適している。しかし、この目的を達せられる
ものであればこれらの手法に限定はない。又、同じ目的
のため、一連の工程は複合化される。その一例として、
第2ステップの熱処理温度では合金が軟化状態にあるた
め、熱処理と同時に急冷合金(粉末、薄帯、線など)の
固化、成形が行う等がある。結晶粒は若干大きくなるが
高温、長期間の安定性を保つために更に第2ステップの
熱処理条件よりも高い温度、長い保持時間の熱処理を行
うことも有効である。この熱処理後の組織の模式図を図
3に示す。なお、本発明で用いられる非晶質合金は少な
くとも、示差走査熱分析(DSC)で2箇所の発熱ピー
クを示す合金である。T2は非平衡相が変態する温度
(具体的には結晶化温度)であり、T1はT2よりも低温
側で発熱反応が生じる温度である。
Further, in order to manufacture the alloy of the present invention, it is necessary to complete a series of steps in a short time. Therefore, rapid heating and high speed processing are required. For rapid heating, direct heating to the alloy, infrared light converging heating, etc., and for high speed processing, high speed extrusion, high speed forging, etc. are suitable. However, these methods are not limited as long as this purpose can be achieved. Also, for the same purpose, a series of steps are combined. As an example,
Since the alloy is in the softened state at the heat treatment temperature of the second step, there is a case where the quenching alloy (powder, ribbon, wire, etc.) is solidified and molded simultaneously with the heat treatment. Although the crystal grains become slightly larger, it is also effective to perform heat treatment at a temperature higher than the heat treatment condition of the second step and a long holding time in order to maintain stability at high temperature for a long period of time. A schematic diagram of the structure after this heat treatment is shown in FIG. The amorphous alloy used in the present invention is an alloy that exhibits at least two exothermic peaks by differential scanning calorimetry (DSC). T 2 is the temperature at which the non-equilibrium phase transforms (specifically, the crystallization temperature), and T 1 is the temperature at which an exothermic reaction occurs on the lower temperature side than T 2 .

【0010】[0010]

【実施例】【Example】

実施例1 Al88.5Ni8Mm3.5の組成からなる母合金をアーク溶
解炉で溶製し、一般的に用いられる単ロール式液体急冷
装置(メルトスピニング装置)によって薄帯(厚さ:2
0μm、幅:1.5mm)を製造した。その際のロール
は直径200mmの銅製、回転数は4000rpm、雰
囲気は10-3Torr以下のArである。製造した薄帯
を通常のX線回折法(ディフラクトメーター)によって
構造分析を、示差走査熱分析法によって急冷層の分解温
度を測定した。薄帯のX線回折の結果、回折パターンは
非晶質相特有のハローのみを示し、薄帯は非晶質単相で
あった。この薄帯を示差走査熱分析によって毎分20K
の昇温速度で分析を行った。その結果を図4に示す。図
に示すように400K(T1)で立ち上がる第一ピーク
と570K(T2)で立ち上がる第2ピークがある。X
線回折の結果第一ピークは非晶質相からAl(FCC)
が分解析出する変態に対応し、第2ピークは残留非晶質
相が金属間化合物の析出を伴う分解に対応する変態であ
る。この非晶質合金を545Kの温度に保持された2枚
の鋼製ブロックに挾み3分間第1ステップの熱処理を施
し、同じく620Kに保持されたブロックで2分間第2
ステップの熱処理を施すとAlマトリックス、金属間化
合物ともに30〜80nmの結晶粒子になっていること
が分かる。その電子顕微鏡写真を図5に示す。本合金の
各ステップ処理後の機械的性質を測定した。その結果を
表1に示す。第2ステップの熱処理の結果、特に実用上
有益な伸びが改善されていることが分かる。
Example 1 A master alloy having a composition of Al 88.5 Ni 8 Mm 3.5 was melted in an arc melting furnace, and a ribbon (thickness: 2) was formed by a commonly used single roll type liquid quenching device (melt spinning device).
0 μm, width: 1.5 mm) was produced. At that time, the roll is made of copper having a diameter of 200 mm, the rotation speed is 4000 rpm, and the atmosphere is Ar of 10 −3 Torr or less. The produced ribbon was subjected to structural analysis by a usual X-ray diffraction method (diffractometer) and decomposition temperature of the quenched layer was measured by a differential scanning calorimetry. As a result of X-ray diffraction of the ribbon, the diffraction pattern showed only halo peculiar to the amorphous phase, and the ribbon was an amorphous single phase. This ribbon is 20K per minute by differential scanning calorimetry
The analysis was performed at the temperature rising rate of. FIG. 4 shows the results. As shown in the figure, there is a first peak rising at 400 K (T 1 ) and a second peak rising at 570 K (T 2 ). X
As a result of line diffraction, the first peak is from amorphous phase to Al (FCC)
Corresponds to a transformation in which the residual amorphous phase is decomposed and precipitated, and the second peak is a transformation in which the residual amorphous phase corresponds to the decomposition accompanied by the precipitation of the intermetallic compound. This amorphous alloy is sandwiched between two steel blocks held at a temperature of 545K and subjected to a first step heat treatment for 3 minutes, and a second block is also held for 2 minutes at a temperature of 620K.
It can be seen that, when the heat treatment of the step is performed, both the Al matrix and the intermetallic compound have crystal grains of 30 to 80 nm. The electron micrograph is shown in FIG. The mechanical properties of this alloy after each step treatment were measured. Table 1 shows the results. As a result of the heat treatment in the second step, it can be seen that the elongation, which is particularly useful in practice, is improved.

【0011】[0011]

【表1】 [Table 1]

【0012】実施例2 Mg83Zn12Ce5合金を実施例1と同様にして、非晶
質相からなる薄帯を製造した。示差走査熱分析によると
本合金のMg(hcp)相の析出温度(T1)は358
K、残留非晶質相の金属間化合物とAl相への分解温度
(T2)は480Kであった。そこで第一ステップの熱
処理を430K40秒間、第2ステップの熱処理を51
0Kで15秒間行った。TEMによる組織観察の結果、
第2ステップ処理後の合金はMgマトリックス相及び金
属間化合物相ともに結晶粒径は20〜90nmの範囲で
あった。その機械的性質を表2に示す。
Example 2 A Mg 83 Zn 12 Ce 5 alloy was prepared in the same manner as in Example 1 to produce a ribbon composed of an amorphous phase. According to the differential scanning calorimetry, the precipitation temperature (T1) of the Mg (hcp) phase of this alloy is 358.
K, the decomposition temperature (T2) of the residual amorphous phase into the intermetallic compound and the Al phase was 480K. Therefore, the heat treatment of the first step is 430K for 40 seconds, and the heat treatment of the second step is 51 seconds.
It was performed at 0K for 15 seconds. As a result of the structure observation by TEM,
The alloy after the second step treatment had a crystal grain size in the range of 20 to 90 nm for both the Mg matrix phase and the intermetallic compound phase. Its mechanical properties are shown in Table 2.

【0013】[0013]

【表2】 [Table 2]

【0014】実施例3 Ni80Si812合金を実施例1と同様にして、非晶質
相からなる薄帯を製造した。示差走査熱分析によると本
合金のNi(fcc)相の析出温度(T1)は648
K、残留非晶質相の分解温度(T2)は760Kであっ
た。そこで、第一ステップの熱処理を690Kで3分
間、第2ステップの熱処理を820K、2分間で行っ
た。TEMによる組織観察の結果、第2ステップ処理後
の合金はNiマトリックス相及び金属間化合物相とも1
0〜60nmの結晶粒径であった。その機械的性質を表
3に示す。
Example 3 A Ni 80 Si 8 B 12 alloy was produced in the same manner as in Example 1 to produce a ribbon composed of an amorphous phase. According to the differential scanning calorimetry, the precipitation temperature (T1) of the Ni (fcc) phase of this alloy is 648.
K, the decomposition temperature (T2) of the residual amorphous phase was 760K. Therefore, the heat treatment of the first step was performed at 690K for 3 minutes, and the heat treatment of the second step was performed at 820K for 2 minutes. As a result of the structure observation by TEM, the alloy after the second step treatment has both Ni matrix phase and intermetallic compound phase.
The crystal grain size was 0 to 60 nm. Its mechanical properties are shown in Table 3.

【0015】[0015]

【表3】 [Table 3]

【0016】[0016]

【発明の効果】本発明によれば結晶粒径100nm以下
のナノクリスタル合金が得られる。この合金は高強度材
料として広範囲な用途に供することができると期待され
る。
According to the present invention, a nanocrystal alloy having a crystal grain size of 100 nm or less can be obtained. This alloy is expected to have a wide range of applications as a high strength material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のAl合金の第1ステップ熱処理後の組
織の模式図である。
FIG. 1 is a schematic view of a structure of an Al alloy of the present invention after a first step heat treatment.

【図2】本発明のAl合金の第2ステップ熱処理後の組
織の模式図である。
FIG. 2 is a schematic view of the structure of the Al alloy of the present invention after the second step heat treatment.

【図3】本発明のAl合金の第2ステップよりも高い温
度で熱処理した後の組織の模式図である。
FIG. 3 is a schematic view of the structure of the Al alloy of the present invention after heat treatment at a temperature higher than the second step.

【図4】実施例で得られた薄帯の示差走査熱分析結果を
示すグラフである。
FIG. 4 is a graph showing the results of differential scanning calorimetry of the ribbon obtained in the example.

【図5】実施例で得られた材料の金属組織を示す電子顕
微鏡写真である。
FIG. 5 is an electron micrograph showing the metal structure of the material obtained in the example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 45/04 Z C22F 1/04 A 1/06 1/10 A (72)発明者 井上 明久 宮城県仙台市青葉区川内無番地川内住宅11 −806 (72)発明者 永洞 純一 宮城県仙台市泉区七北田字町110−1─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C22C 45/04 Z C22F 1/04 A 1/06 1/10 A (72) Inventor Akihisa Inoue Miyagi 11-806 (72) Inventor, Junichi Eito, 110-1, Nachikita-ji, Izumi-ku, Sendai-shi, Miyagi Prefecture

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 主元素と添加元素とで構成される非晶質
合金を形成する組成の合金を熱処理して得られる合金
が、主元素を母体にした添加元素を含む過飽和固溶体
(Cp相)、主元素をベースにした金属相(C1相)およ
び金属間化合物(C2相)を含む合金組織であって、そ
れぞれの相の粒径が100nm以下であることを特徴と
する高強度金属材料。
1. An alloy obtained by heat-treating an alloy having a composition that forms an amorphous alloy composed of a main element and an additive element is a supersaturated solid solution (C p phase) containing the additive element with the main element as a matrix. ), An alloy structure containing a metal phase (C 1 phase) and an intermetallic compound (C 2 phase) based on the main element, and the grain size of each phase is 100 nm or less, high strength. Metal material.
【請求項2】 Cp相が完全結晶である請求項1記載の
高強度金属材料。
2. The high-strength metallic material according to claim 1, wherein the C p phase is a perfect crystal.
【請求項3】 主元素がAlで85〜99.8原子%で
あり、第1の添加元素がY,Mmを含む希土類元素の少
なくとも1種で0.1〜5原子%であり、第2の添加元
素がNi,Fe,Co,Cuから選ばれる少なくとも1
種の元素で0.1〜12原子%であって、かつ、第1の
添加元素の濃度が第2の添加元素の濃度以下である請求
項1又は請求項2記載の高強度金属材料。
3. The main element is Al in an amount of 85 to 99.8 atomic%, and the first additional element is 0.1 to 5 atomic% in at least one kind of rare earth element containing Y and Mm. The additive element of at least 1 selected from Ni, Fe, Co and Cu
The high-strength metal material according to claim 1 or 2, wherein the seed element is 0.1 to 12 atomic% and the concentration of the first additive element is not more than the concentration of the second additive element.
【請求項4】 Alの一部をTi,Mn,Mo,Cr,
Zr,V,Nb,Taから選ばれる少なくとも1種の元
素によって0.2〜3原子%の範囲まで置換されてなる
請求項3記載の高強度金属材料。
4. A part of Al is Ti, Mn, Mo, Cr,
The high-strength metal material according to claim 3, wherein the high-strength metal material is substituted with at least one element selected from Zr, V, Nb, and Ta to a range of 0.2 to 3 atomic%.
【請求項5】 主元素がMgで80〜90原子%であ
り、第1の添加元素がY,Mmを含む希土類元素の少な
くとも1種で0.1〜5原子%であり、第2の添加元素
がCu,Ni,Sn,Znから選ばれる少なくとも1種
の元素で8〜15原子%である請求項1又は請求項2記
載の高強度金属材料。
5. The main element is Mg in an amount of 80 to 90 atomic%, the first additive element is at least one kind of rare earth elements including Y and Mm in an amount of 0.1 to 5 atomic%, and the second additive is added. The high-strength metal material according to claim 1 or 2, wherein the element is at least one element selected from Cu, Ni, Sn, and Zn and is 8 to 15 atom%.
【請求項6】 Mgの一部をAl,Si,Caから選ば
れる少なくとも1種の元素によって1〜5原子%の範囲
まで置換されてなる請求項5記載の高強度金属材料。
6. The high-strength metal material according to claim 5, wherein a part of Mg is replaced by at least one element selected from Al, Si and Ca in a range of 1 to 5 atomic%.
【請求項7】 主元素がNiで79〜89原子%であ
り、第1の添加元素がSiで5〜14原子%であり、第
2の添加元素がBで6〜15原子%である請求項1又は
請求項2記載の高強度金属材料。
7. The main element is Ni at 79 to 89 atomic%, the first additive element is Si at 5 to 14 atomic%, and the second additive element is B at 6 to 15 atomic%. The high-strength metal material according to claim 1 or 2.
【請求項8】 主元素がNiで74〜88.5原子%で
あり、第1の添加元素がSiで5〜14原子%であり、
第2の添加元素がBで6〜15原子%であり、第3の添
加元素がFe,Mn,Ti,Zr,Al,V,Mo,N
bから選ばれる少なくとも1種の元素で0.5〜5原子
%であることを特徴とする請求項1又は請求項2記載の
高強度金属材料。
8. The main element is Ni at 74 to 88.5 atomic%, and the first additive element is Si at 5 to 14 atomic%.
The second additive element is 6 to 15 atomic% of B, and the third additive element is Fe, Mn, Ti, Zr, Al, V, Mo, N.
The high-strength metal material according to claim 1 or 2, wherein the content of at least one element selected from b is 0.5 to 5 atom%.
【請求項9】 主元素と他の添加元素とで構成され、非
晶質合金を形成する合金であって、かつ、ある温度(T
1)で非晶質相中に主元素に添加元素を含む過飽和固溶
体(Cp)を分解析出し、さらにT1より高い温度
(T2)で残留非晶質相が主元素をベースにする金属相
(C1)と金属間化合物(C2)に分解析出する性質を持
つ合金を、T1より高くT2+10Kより低い温度で第一
段の熱処理を行い、非晶質中に主元素をベースにした添
加元素を含む数nm〜数十nmの粒径のCpを多量に均
一分散させると同時に残留非晶質相にC1とC2に分解す
るための萌芽を均一に析出準備させ、しかる後T2より
高い温度まで急速に加熱し、残留非晶質相を構成元素か
らなるそれぞれ粒径数nm〜数十nmのC1とC2に分解
析出させることによって少なくとも3相以上の混合組織
からなる高強度金属材料を得ることを特徴とする高強度
金属材料の製造方法。
9. An alloy which is composed of a main element and another additive element and which forms an amorphous alloy at a certain temperature (T
In 1 ), a supersaturated solid solution (C p ) containing an additive element as a main element is decomposed and precipitated in the amorphous phase, and the residual amorphous phase is based on the main element at a temperature higher than T 1 (T 2 ). An alloy having a property of decomposing and precipitating into a metal phase (C 1 ) and an intermetallic compound (C 2 ) is subjected to a first-stage heat treatment at a temperature higher than T 1 and lower than T 2 + 10K, and mainly in an amorphous state. A large amount of C p having a particle diameter of several nm to several tens of nm including an additional element based on an element is uniformly dispersed, and at the same time, a sprout for decomposing into C 1 and C 2 in a residual amorphous phase is uniformly deposited. was prepared, thereafter T to a temperature higher than 2 is rapidly heated, at least 3 by decomposition deposit on the residual C 1 of each particle diameter of several nm~ tens nm consisting of constituent elements of the amorphous phase and C 2 A method for producing a high-strength metallic material, characterized in that a high-strength metallic material having a mixed structure of phases or more is obtained.
【請求項10】 さらに各析出相を熱的に安定化させる
ために第2段の熱処理温度より高い温度で熱処理し、最
終的に各析出相が粒径100nm以下まで成長させる請
求項9記載の高強度金属材料の製造方法。
10. The method according to claim 9, further comprising heat-treating each precipitation phase at a temperature higher than the heat treatment temperature of the second stage to thermally stabilize each precipitation phase, and finally each precipitation phase grows to a grain size of 100 nm or less. Manufacturing method of high strength metal material.
【請求項11】 主元素がAl,Mg,Niのいずれか
であり、添加元素がY,Mmを含む希土類元素、Ni,
Fe,Co,Cu,Ti,Mn,Mo,Cr,Zr,
V,Nb,Ta,Sn,Zn,Al,Si,Ca,Bよ
り選択されたものである請求項9又は請求項10記載の
高強度金属材料の製造方法。
11. A rare earth element containing Y, Mm as a main element, which is one of Al, Mg, and Ni, and Ni,
Fe, Co, Cu, Ti, Mn, Mo, Cr, Zr,
The method for producing a high-strength metal material according to claim 9 or 10, which is selected from V, Nb, Ta, Sn, Zn, Al, Si, Ca, and B.
JP27188994A 1994-10-12 1994-10-12 High-strength metal material and method for manufacturing the same Expired - Fee Related JP3229500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27188994A JP3229500B2 (en) 1994-10-12 1994-10-12 High-strength metal material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27188994A JP3229500B2 (en) 1994-10-12 1994-10-12 High-strength metal material and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08109454A true JPH08109454A (en) 1996-04-30
JP3229500B2 JP3229500B2 (en) 2001-11-19

Family

ID=17506315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27188994A Expired - Fee Related JP3229500B2 (en) 1994-10-12 1994-10-12 High-strength metal material and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3229500B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004085692A1 (en) * 2003-03-26 2004-10-07 Campus Create Co., Ltd. PROCESS OF WORKING Mg ALLOY AND Mg ALLOY
CN104099506A (en) * 2014-08-06 2014-10-15 杨攀 Multicomponent heat-resistant magnesium alloy and production method thereof
CN106191586A (en) * 2016-07-31 2016-12-07 余姚市婉珍五金厂 Alloy material that a kind of machine cut blade is special and preparation method thereof
CN108251767A (en) * 2018-01-26 2018-07-06 深圳市锆安材料科技有限公司 A kind of non-crystaline amorphous metal stent and preparation method thereof
CN109897991A (en) * 2019-04-28 2019-06-18 中国矿业大学 A kind of nanometer crystal alloy powder and preparation method thereof of high entropy crystal boundary modification
CN110564996A (en) * 2019-09-29 2019-12-13 浙江海洋大学 High-strength magnesium alloy material and preparation method thereof
JP2020033598A (en) * 2018-08-30 2020-03-05 昭和電工株式会社 Al-Fe-Er-based aluminum alloy
CN111647831A (en) * 2020-05-21 2020-09-11 范语楠 Device and method for preparing Al-Cu-Mg alloy nanocrystalline grain structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004085692A1 (en) * 2003-03-26 2004-10-07 Campus Create Co., Ltd. PROCESS OF WORKING Mg ALLOY AND Mg ALLOY
JPWO2004085692A1 (en) * 2003-03-26 2006-06-29 株式会社キャンパスクリエイト Processing method of Mg alloy and Mg alloy
JP4632949B2 (en) * 2003-03-26 2011-02-16 株式会社キャンパスクリエイト Processing method of Mg alloy
CN104099506A (en) * 2014-08-06 2014-10-15 杨攀 Multicomponent heat-resistant magnesium alloy and production method thereof
CN106191586A (en) * 2016-07-31 2016-12-07 余姚市婉珍五金厂 Alloy material that a kind of machine cut blade is special and preparation method thereof
CN108251767A (en) * 2018-01-26 2018-07-06 深圳市锆安材料科技有限公司 A kind of non-crystaline amorphous metal stent and preparation method thereof
JP2020033598A (en) * 2018-08-30 2020-03-05 昭和電工株式会社 Al-Fe-Er-based aluminum alloy
CN109897991A (en) * 2019-04-28 2019-06-18 中国矿业大学 A kind of nanometer crystal alloy powder and preparation method thereof of high entropy crystal boundary modification
CN110564996A (en) * 2019-09-29 2019-12-13 浙江海洋大学 High-strength magnesium alloy material and preparation method thereof
CN111647831A (en) * 2020-05-21 2020-09-11 范语楠 Device and method for preparing Al-Cu-Mg alloy nanocrystalline grain structure

Also Published As

Publication number Publication date
JP3229500B2 (en) 2001-11-19

Similar Documents

Publication Publication Date Title
JP2619118B2 (en) Particle-dispersed high-strength amorphous aluminum alloy
Taylor et al. A study of the ageing behaviour of a cobalt based implant alloy
JPH04218637A (en) Manufacture of high strength and high toughness aluminum alloy
JP2005528530A5 (en)
JP2005113235A (en) High strength magnesium alloy, and its production method
JPH0641701A (en) High strength amorphous magnesium alloy and its manufacture
JPH0693363A (en) High tensile strength and heat resistant aluminum base alloy
CN111575571B (en) Cr-V-Co-Ni alloy and preparation method thereof
JP3229500B2 (en) High-strength metal material and method for manufacturing the same
JP2710948B2 (en) Ultrafine crystalline Fe-based alloy with excellent corrosion resistance and method for producing the same
EP0530844B1 (en) Process for producing amorphous alloy materials having high toughness and high strength
JPH05125474A (en) Aluminum-base alloy combining high strength with high toughness
JPS6132386B2 (en)
JP3475236B2 (en) Manufacturing method of wrought aluminum alloy
JP4208156B2 (en) Manufacturing method of high strength aluminum alloy extruded material
EP0875593B1 (en) Aluminium alloy and its production process
JPH0748646A (en) High strength magnesium base alloy and production thereof
JPH04235262A (en) Manufacture of ti-al intermetallic compound-series ti alloy excellent in strength and ductility
JPH0517819A (en) Production of soft-magnetic alloy having fine crystal
JP2003306736A (en) Niobium silicide based composite material and production method thereof
JPH07252561A (en) Ti-zr alloy
JP2006274311A (en) Aluminum based alloy
JP2004211117A (en) High strength and high heat resistant aluminum alloy hardened material, and its producing method
JPH03130351A (en) Production of titanium and titanium alloy having fine and equiaxial structure
JPH0730430B2 (en) Aluminum alloy plate for drawing and manufacturing method thereof

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070907

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees