WO2004083881A1 - Capteur magnetoresistif comprenant un element sensible ferromagnetique/antiferromagnetique - Google Patents
Capteur magnetoresistif comprenant un element sensible ferromagnetique/antiferromagnetique Download PDFInfo
- Publication number
- WO2004083881A1 WO2004083881A1 PCT/FR2004/000574 FR2004000574W WO2004083881A1 WO 2004083881 A1 WO2004083881 A1 WO 2004083881A1 FR 2004000574 W FR2004000574 W FR 2004000574W WO 2004083881 A1 WO2004083881 A1 WO 2004083881A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- magnetic
- magnetic field
- sensor according
- sensor
- Prior art date
Links
- 230000005294 ferromagnetic effect Effects 0.000 title description 12
- 230000005290 antiferromagnetic effect Effects 0.000 title description 7
- 230000005291 magnetic effect Effects 0.000 claims abstract description 94
- 239000002885 antiferromagnetic material Substances 0.000 claims abstract description 28
- 239000003302 ferromagnetic material Substances 0.000 claims abstract description 20
- 238000000926 separation method Methods 0.000 claims abstract description 12
- 230000005415 magnetization Effects 0.000 claims description 24
- 230000035945 sensitivity Effects 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 9
- 230000000903 blocking effect Effects 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- 230000004888 barrier function Effects 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 2
- 239000012777 electrically insulating material Substances 0.000 claims description 2
- 238000005259 measurement Methods 0.000 abstract description 8
- 239000010410 layer Substances 0.000 description 61
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 7
- 238000000151 deposition Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910017107 AlOx Inorganic materials 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910015136 FeMn Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910003289 NiMn Inorganic materials 0.000 description 1
- 229910019041 PtMn Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/093—Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
Definitions
- Maqnétoresistif sensor including a ferromagnetic / antiferroma ⁇ nically sensitive element
- the invention relates to a magnetoresistive magnetic field sensor and the use of such a sensor for measuring the intensity of a magnetic field.
- magnetoresistive sensors exploit the variation of electrical resistance of a single magnetic material which is induced by the variation of the magnetic field to be measured. This is the operating principle of anisotropic magnetoresistance sensors. However, the variation in resistance is small. Since the discovery of giant magnetoresistance (in 1988) and tunnel magnetoresistance at room temperature (1995), other sensor architectures have been imagined with resistance variations of more than 50% at room temperature.
- These sensors include the stack of a reference magnetic element, a separation element and a magnetic element sensitive to the magnetic field, said stack being arranged to present a variation in electrical resistance as a function of the magnetic field to be measured.
- the stack can comprise two magnetic structures respectively forming a reference element and a sensitive element which are separated by the separation element.
- the orientation of the magnetic moment of the reference element is arranged to be unchanged by the action of the magnetic field to be measured, while that of the sensitive element is modifiable by the action of said field.
- the separating element When the separating element is electrically conductive (a metallic or semi-conductive layer for example), the sensor exploits the giant magnetoresistance which translates the dependence of the current as a function of the relative orientation of the magnetizations of the magnetic structures. And, when the separating element is electrically insulating, the sensor uses the tunnel magnetoresistance which depends on the structure of interface bands of the spin up and down electrons and which for a given spin channel depends on the relative orientation of their magnetization. These sensors are very sensitive and can a priori be intended for magnetic field detection, the amplitude of which can vary by several orders of magnitude.
- Document FR-2 809 185 describes a sensor in which the sensitive element comprises a layer of ferromagnetic material, the magnetic anisotropy of which comes from the form energy, and the reference element comprises the superposition of a layer of material ferromagnetic and a layer of antiferromagnetic material whose anisotropy results from the exchange between these two layers.
- the form energy is therefore used to obtain the sensitive element
- the exchange anisotropy is used to obtain the reference element, that is to say to obtain a fixed magnetic moment in function of this field.
- the range of use of the known sensor is difficult to adapt, and that in any event it remains relatively limited.
- this range of use depends on the size of the sensor, which also affects the modularity of the sensor.
- the arrangement of the antiferromagnetic layer on the upper part of the stack poses problems of reliability of the measurement. Indeed, it has been shown that a texture of the antiferromagnetic layer is necessary for strong blocking and therefore for an operating range at high temperature. However, when the antiferromagnetic layer is placed on top of an amorphous insulating layer, the texture is lost, the blocking is less and the sensor no longer works for temperatures slightly above ambient temperature.
- the invention proposes a magnetoresistive sensor in which the magnetic anisotropy of the sensitive element is induced by the exchange which exists at an interface between a layer of ferromagnetic material and a layer of antiferromagnetic material.
- the invention provides a magnetoresistive magnetic field sensor comprising a stack of a reference element, a separation element and an element sensitive to the magnetic field, in which the reference element and the sensitive element respectively have a first and a second magnetic anisotropy in a first and a second direction.
- the sensitive element comprises the superposition of a layer of ferromagnetic material and a layer of antiferromagnetic material which is arranged to obtain a magnetic moment, the component of which is oriented in the direction of the field to be measured. varies linearly and reversibly as a function of the intensity of the magnetic field to be measured, and linearly within an adjustable field range.
- the invention proposes the use of such a sensor for measuring the intensity of a magnetic field, in which the direction of anisotropy of the reference element is arranged parallel to the direction of the magnetic field to be measured.
- FIGS. 1 and 2 are perspective views schematically showing respectively a first and a second embodiment of a stack of layers disposed on a substrate for the production of a sensor according to the invention
- Figure 3 is a diagram of the magnetic configuration of the anisotropy axes, magnetizations and the magnetic field to be measured in the stacks according to Figures 1 or 2;
- FIGS. 4a and 4b represent the variation, as a function of the magnetic field to be measured, of the magnetization respectively of the sensitive element and of the reference element according to the configuration of FIG. 3 and for the stack of FIG. 1 ;
- FIGS. 5a and 5b represent the variation, as a function of the magnetic field to be measured, of the magnetization respectively of the sensitive element and of the reference element according to the configuration of FIG. 3 and for the stack of FIG. 2 ;
- FIG. 6 represents the variation, as a function of the magnetic field to be measured, of the electrical resistance of the junction which results from the variations in magnetizations shown in FIGS. 4a and 4b;
- FIG. 7 represents the variation, as a function of the magnetic field to be measured, of the electrical resistance of the junction which results from the variations in magnetizations shown in FIGS. 5a and 5b;
- FIG. 8 illustrates the variations in the electrical and magnetic sensitivities of a sensor according to the invention as a function of the temperature
- FIG. 9 illustrates the variation of its total sensitivity with temperature
- FIG. 10 illustrates the variation of the total sensitivity of a sensor optimized with the temperature.
- the property which interests us here more particularly is the response obtained when a ferromagnetic material FM1 and an antiferromagnetic material AF1 have a common interface when the field is applied perpendicular to the magnetic axis exhibiting exchange.
- the process of reversing the magnetization by nucleation and propagation of walls is replaced by the reversible rotation of the magnetization (reversal when the field is applied perpendicular to the magnetic axis with exchange).
- the hysteretic behavior is then replaced by the reversible behavior of FIG. 4a.
- the signal is linear.
- the slope of the response of the magnetization with the applied field is given by:
- M s is the saturation magnetization of the ferromagnetic layer FM1
- t F is the thickness of the ferromagnetic layer FM1
- KF is the anisotropy constant of the ferromagnetic layer FM1
- J is the coupling existing between the ferromagnetic layer and the antiferromagnetic layer.
- the invention relates to a magnetoresistive magnetic field sensor which comprises a stack 1 of a reference element 2, of a separation element 3 and of an element sensitive to the magnetic field.
- the reference element 2 and the sensitive element 4 respectively have a first 5 and a second 6 magnetic anisotropy in a first and a second direction.
- This type of sensor is arranged so that, under the effect of the magnetic field to be measured, the direction of the magnetization 10 of the sensitive element 4 varies relative to that of the reference element 2, which induces a variation electrical resistance of the stack 1 as a function of the intensity of said field.
- the separation element 3 comprises a layer S of an electrically insulating material, for example based on oxidized and / or nitrated aluminum, oxidized gallium, oxidized tantalum, oxidized magnesium, titanate of oxidized strontium.
- the magnetoresistive sensor then exploits the tunnel magnetoresistance properties of the junction formed by the two magnetic elements 2, 4 separated by the insulating layer S. In this embodiment, the resistance measurements are carried out perpendicular to the plane of the layer S.
- the separation element 3 is formed of a layer S of electrically conductive material, for example based on metals such as copper or based on semiconductors.
- the magnetoresistive sensor then exploits the giant magnetoresistance properties of the "spin valve" formed by the two magnetic elements 2, 4 separated by the conductive layer S.
- the resistance measurements are carried out either perpendicular to the plane of the layer S either parallel to him.
- the magnetoresistive effect leads to a variation in the electrical resistance of the stack 1 as a function of the magnetic field to be measured, said variation being used in an electronic processing circuit to obtain the intensity of said field.
- the exploitation of the resistance variation is facilitated by providing that, in the absence of a magnetic field to be measured, the first anisotropy 5 is perpendicular to the second anisotropy 6.
- a first embodiment of the stack 1 which comprises a layer of ferromagnetic material FM2 as a reference element 2, and the superposition of a layer of a ferromagnetic material FM1 and a layer of an antiferromagnetic material AF1 as a sensitive element 4.
- the ferromagnetic materials FM1, FM2 are for example based on cobalt, iron, nickel or an alloy of these materials.
- the ferromagnetic materials of the reference element 2 and of the sensitive element 4 can be of identical or different nature depending on the characteristics desired for the sensor.
- the antiferromagnetic material can be based on IrMn, FeMn, PtMn, NiMn or other manganese-based compounds.
- the ferromagnetic layer FM1 When a ferromagnetic material and an antiferromagnetic material have a common interface, it is possible to observe an effect called "exchange bias" which manifests itself mainly by a displacement in magnetic field of the hysteresis cycle.
- the ferromagnetic layer FM1 then has an anisotropy direction 6 imposed by the antiferromagnetic material AF1.
- This direction of anisotropy 6 has the advantage of being controllable, either by saturating the magnetization of the ferromagnetic layer FM1 during the deposition of the layer AF1, or by a heat treatment under magnetic field after deposition where the sample is heated at a temperature higher than the blocking temperature of the antiferromagnetic material AF1 before being cooled below this temperature. During this cooling, it must be ensured that the magnetization of the ferromagnetic layer FM1 is saturated in the direction desired for the anisotropy of the layer.
- the stack 1 is deposited on a substrate 7, for example made of silicon or glass, the layer of antiferromagnetic material AF1 being disposed on the substrate.
- a substrate 7 for example made of silicon or glass
- the layer of antiferromagnetic material AF1 being disposed on the substrate.
- a sputtering technique under vacuum which allows to successively deposit thin layers of desired materials.
- a buffer layer for example an amorphous film of tantalum 8, which is intended to improve the state of the surface on which the antiferromagnetic material AF1 is arranged.
- the anisotropy 5 of the reference element 2 is obtained either by depositing the layer of ferromagnetic material FM2 under magnetic field so as to orient this anisotropy 5 in the direction of the applied magnetic field, or by inducing a shape anisotropy in the layer of ferromagnetic material FM2, for example by providing that the reference element 2 has a larger dimension in the direction of the anisotropy 5.
- the reference element 2 is arranged to have a higher coercive field than the range of field to be measured. Thus, by applying a magnetic field, it is possible to induce a modification of the orientation of the magnetic moment of the sensitive element 4 without modifying the magnetic moment of the reference element 2.
- the sensitive element is composed of the IrMn (10 nm) / Co (10 nm) bilayer.
- the Co (2 nm) / Co 80 Pt.2o (5 nm) reference element consists of cobalt with added platinum to increase the coercive field.
- the Pt layer (4nm) is a protective layer.
- the layers were deposited by sputtering at room temperature under a base pressure less than 5.10 "7 mbar.
- the Argon pressure during the deposition was 5.10 " 3 mbar.
- the oxidation was carried out after deposition of a metallic layer of 1.3 nm using a continuous luminescent discharge at 300 W for 35 seconds under pure oxygen plasma at 10 "1 mbar in a sputtering enclosure. The sample was transferred to this enclosure without breaking the vacuum.
- the sample was annealed for 30 minutes at 200 ° C in the presence of a magnetic field of 300 Oe in order to establish the "exchange bias" in the IrMn layer and to orient the direction of anisotropy of this layer perpendicular to the direction of anisotropy of the layer Co (2 nm) / Co 80 Pt 2 o (5 nm) / Pt (4nm).
- the conformation of the junction was carried out in a known manner by UV lithography and ion beam etching.
- the reference element 2 comprises the superposition of a layer of a ferromagnetic material FM2 and a layer of an antiferromagnetic material AF2, and the sensitive element 4 is similar to that shown in Figure 1.
- This embodiment provides greater stability of the reference element 2 vis-à-vis the magnetic field to be measured ( Figure 5b).
- the senor therefore comprises the stack AF1 / FM1 / S / FM2 / AF2, the antiferromagnetic materials AF1 and AF2 having blocking temperatures, respectively T1 and T2, which are different, for example with T1> T2 .
- the stack 1 is annealed at a temperature T> T1 under magnetic field so as to induce anisotropy respectively in the sensitive element 4 and in the reference element 2 which is parallel to the applied magnetic field; then
- the stack is annealed at a temperature T of between T1 and T2 under a magnetic field perpendicular to that applied in the previous step, so as to induce anisotropy 5 in the reference element 2 which is parallel to the applied magnetic field and therefore perpendicular to the anisotropy 6 of the sensitive element 4.
- the sensitive element 4 is arranged so that its magnetic moment 10 varies according to the magnetic field to be measured, and the reference element 2 is arranged so that the direction and the direction of its magnetic moment 9 are fixed according to the magnetic field to be measured.
- the thicknesses of the layers may be of the order of 10 nm and be arranged to obtain the desired junction, tunnel or giant magnetoresistance, and this within the intensity range of the magnetic field to be measured.
- FIG. 3 represents a possible magnetic configuration for the anisotropy axes 5, 6 and the magnetizations 9, 10 respectively of the reference 2 and sensitive elements 4.
- the magnetic moments 10, 9 are perpendicular .
- a magnetic field to be measured 11 is applied in a fixed direction parallel to the direction of the anisotropy 5 of the reference element 2, this results in a rotation of the magnetic moment 10 of the sensitive layer 4 (towards a position 10 '), while the magnetization 9 of the reference layer 2 remains fixed.
- the variation in the magnetization of the sensitive element 4 in the direction of the applied field is linear over a wide range of variation in the intensity of the field to be measured (between -50 and +50 Oe in FIGS. 4a and 4b) while the magnetization of the reference element 2 remains constant over this range (FIG. 4b and 5b).
- the coercive field which corresponds to the reversal of the magnetization under the effect of the field to be measured, is of the order of 100 Oe (FIG. 4b) or 300 Oe ( Figure 5b), well beyond the range of linearity of Figure 4a.
- the total sensitivity S of the sensor breaks down into an electrical sensitivity S e and a magnetic sensitivity S, n so that S ⁇
- Magnetic sensitivity varies linearly with temperature. Surprisingly, the same is true for electrical sensitivity. Thus, the total sensitivity also varies linearly (in this case it increases, as shown in Figure 9) with temperature.
- R (T) R (0) (lC- ⁇ T 2 ) ⁇
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Measuring Magnetic Variables (AREA)
- Hall/Mr Elements (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006505711A JP2006520538A (ja) | 2003-03-14 | 2004-03-10 | 強磁性/反強磁性検知要素を備えた磁気抵抗センサー |
CN200480012325.6A CN1784610B (zh) | 2003-03-14 | 2004-03-10 | 含有铁磁/反铁磁灵敏元件的磁致电阻传感器及其使用 |
US10/548,604 US7602178B2 (en) | 2003-03-14 | 2004-03-10 | Magnetoresistive sensor for measuring the strength of a magnetic field |
EP04718987A EP1604220A1 (fr) | 2003-03-14 | 2004-03-10 | Capteur magnetoresistif comprenant un element sensible ferromagnetique/antiferromagnetique |
KR1020057017161A KR101100841B1 (ko) | 2003-03-14 | 2004-03-10 | 강자성/반강자성 감지 요소를 포함하는 자기저항 센서 및 전자 처리 회로를 포함하는 측정 장치 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR03/03189 | 2003-03-14 | ||
FR0303189A FR2852399B1 (fr) | 2003-03-14 | 2003-03-14 | Capteur magnetoriesistif comprenant un element sensible ferromagnetique/antiferromagnetique |
FR03/50545 | 2003-09-16 | ||
FR0350545A FR2852400B1 (fr) | 2003-03-14 | 2003-09-16 | Capteur magnetoresistif comprenant un element sensible ferromagnetique/antiferromagnetique |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004083881A1 true WO2004083881A1 (fr) | 2004-09-30 |
Family
ID=32910289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2004/000574 WO2004083881A1 (fr) | 2003-03-14 | 2004-03-10 | Capteur magnetoresistif comprenant un element sensible ferromagnetique/antiferromagnetique |
Country Status (6)
Country | Link |
---|---|
US (1) | US7602178B2 (fr) |
EP (1) | EP1604220A1 (fr) |
JP (4) | JP2006520538A (fr) |
KR (1) | KR101100841B1 (fr) |
FR (1) | FR2852400B1 (fr) |
WO (1) | WO2004083881A1 (fr) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006049407A1 (fr) * | 2004-11-03 | 2006-05-11 | Korea Institute Of Science And Technology | Dispositif a magnetoresistance induite par courant |
US20120098077A1 (en) * | 2010-10-26 | 2012-04-26 | Centre National De La Recherche Scientifique | Writable Magnetic Element |
US8532194B2 (en) | 2003-02-18 | 2013-09-10 | Nokia Corporation | Picture decoding method |
EP2667214A1 (fr) | 2012-05-21 | 2013-11-27 | NTN-SNR Roulements | Procédé d ajustement de la résistance d un capteur |
US8670486B2 (en) | 2003-02-18 | 2014-03-11 | Nokia Corporation | Parameter for receiving and buffering pictures |
EP2784529A1 (fr) | 2013-03-29 | 2014-10-01 | NTN-SNR Roulements | Système de détermination d'au moins un paramètre de déplacement d'un organe mobile par rapport à une structure fixe |
US9124907B2 (en) | 2004-10-04 | 2015-09-01 | Nokia Technologies Oy | Picture buffering method |
EP2966414A1 (fr) | 2014-07-07 | 2016-01-13 | NTN-SNR Roulements | Montage d'un système de détermination de position angulaire sur un organe tournant |
EP3021089A1 (fr) | 2014-11-17 | 2016-05-18 | NTN-SNR Roulements | Système de détermination de la position absolue d'un organe |
EP3225956A1 (fr) | 2016-03-31 | 2017-10-04 | NTN-SNR Roulements | Capteur de détection d'un champ magnétique périodique |
WO2018051011A1 (fr) | 2016-09-13 | 2018-03-22 | Ntn-Snr Roulements | Système de détermination d'au moins un paramètre de rotation d'un organe tournant |
US10775196B2 (en) | 2018-03-12 | 2020-09-15 | Ntn-Snr Roulements | System for determining at least one rotation parameter of a rotary member |
EP3708964A1 (fr) | 2019-03-12 | 2020-09-16 | Ntn-Snr Roulements | Système de détermination d'au moins un paramètre de rotation d'un organe tournant |
EP3708963A1 (fr) | 2019-03-12 | 2020-09-16 | Ntn-Snr Roulements | Système de détermination d au moins un paramètre de rotation d'un organe tournant |
US10859402B2 (en) | 2017-07-18 | 2020-12-08 | Ntn-Snr Roulements | Assembly on a member of a system for determining the position of said member |
FR3143733A1 (fr) | 2022-12-19 | 2024-06-21 | Ntn-Snr Roulements | Système de détermination d’au moins un paramètre de rotation d’un organe tournant |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2948236B1 (fr) * | 2009-07-20 | 2011-07-01 | Commissariat Energie Atomique | Corps main gauche, dispositif de guidage d'ondes et antenne utilisant ce corps, procede de fabrication de ce corps |
US8405935B2 (en) * | 2010-12-28 | 2013-03-26 | Tdk Corporation | Magneto-resistive effect element having spacer layer including main spacer layer containing gallium oxide and nonmagnetic layer |
US8752437B2 (en) * | 2011-03-15 | 2014-06-17 | Kla-Tencor Corporation | Magnet strength measurement |
JP6204391B2 (ja) * | 2015-02-12 | 2017-09-27 | アルプス電気株式会社 | 磁気センサおよび電流センサ |
FR3073661B1 (fr) | 2017-11-10 | 2019-11-22 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Aimant permanent comprenant une couche antiferromagnetique et une couche ferromagnetique |
TWI780559B (zh) * | 2021-01-05 | 2022-10-11 | 大銀微系統股份有限公司 | 位置感測機構 |
US11543267B2 (en) | 2021-01-05 | 2023-01-03 | Hiwin Mikrosystem Corp. | Position sensing mechanism |
CN113029208B (zh) * | 2021-03-05 | 2022-10-21 | 江苏多维科技有限公司 | 一种用于磁阻器件的激光编程写入装置及方法 |
CN116008880B (zh) * | 2022-12-20 | 2024-01-30 | 广东工程职业技术学院 | 一种用于铁磁-反铁磁交换偏置体系的磁性测量方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001068759A (ja) * | 1999-08-30 | 2001-03-16 | Sony Corp | 磁気抵抗効果素子及びその製造方法 |
JP2001274478A (ja) * | 2000-03-27 | 2001-10-05 | Yamaha Corp | 磁気抵抗センサ |
US6452204B1 (en) * | 1998-12-08 | 2002-09-17 | Nec Corporation | Tunneling magnetoresistance transducer and method for manufacturing the same |
US20030011941A1 (en) | 1997-04-17 | 2003-01-16 | Yukie Nakazawa | Spin-valve type magnetoresistive element and its manufacturing method |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4103315A (en) * | 1977-06-24 | 1978-07-25 | International Business Machines Corporation | Antiferromagnetic-ferromagnetic exchange bias films |
JP3497573B2 (ja) * | 1994-09-16 | 2004-02-16 | 株式会社東芝 | 交換結合膜および磁気抵抗効果素子 |
JP3137598B2 (ja) * | 1996-12-27 | 2001-02-26 | ティーディーケイ株式会社 | 磁気抵抗効果素子、磁気変換素子および反強磁性膜 |
JPH10233540A (ja) * | 1997-02-19 | 1998-09-02 | Sanyo Electric Co Ltd | 磁気抵抗効果膜 |
US5898548A (en) * | 1997-10-24 | 1999-04-27 | International Business Machines Corporation | Shielded magnetic tunnel junction magnetoresistive read head |
JPH11134620A (ja) * | 1997-10-30 | 1999-05-21 | Nec Corp | 強磁性トンネル接合素子センサ及びその製造方法 |
JPH11214767A (ja) * | 1998-01-26 | 1999-08-06 | Victor Co Of Japan Ltd | 磁気抵抗効果素子及びその製造方法 |
JPH11296823A (ja) * | 1998-04-09 | 1999-10-29 | Nec Corp | 磁気抵抗効果素子およびその製造方法、ならびに磁気抵抗効果センサ,磁気記録システム |
JP3593472B2 (ja) * | 1998-06-30 | 2004-11-24 | 株式会社東芝 | 磁気素子とそれを用いた磁気メモリおよび磁気センサ |
WO2000079298A2 (fr) * | 1999-06-18 | 2000-12-28 | Koninklijke Philips Electronics N.V. | Systemes magnetiques aux caracteristiques irreversibles et procede pour fabriquer, reparer et exploiter ces systemes |
JP2001217482A (ja) * | 2000-02-03 | 2001-08-10 | Fujitsu Ltd | 磁気センサ及びそれを使用する磁気記憶装置 |
JP2002092829A (ja) * | 2000-09-21 | 2002-03-29 | Fujitsu Ltd | 磁気抵抗センサ及び磁気抵抗ヘッド |
JP3969002B2 (ja) | 2001-02-22 | 2007-08-29 | ヤマハ株式会社 | 磁気センサ |
JP2003067904A (ja) * | 2001-08-28 | 2003-03-07 | Hitachi Ltd | 磁気抵抗効果型磁気ヘッドおよびその製造方法 |
JP4178867B2 (ja) * | 2002-08-02 | 2008-11-12 | ソニー株式会社 | 磁気抵抗効果素子及び磁気メモリ装置 |
-
2003
- 2003-09-16 FR FR0350545A patent/FR2852400B1/fr not_active Expired - Lifetime
-
2004
- 2004-03-10 US US10/548,604 patent/US7602178B2/en active Active
- 2004-03-10 KR KR1020057017161A patent/KR101100841B1/ko not_active IP Right Cessation
- 2004-03-10 WO PCT/FR2004/000574 patent/WO2004083881A1/fr active Application Filing
- 2004-03-10 EP EP04718987A patent/EP1604220A1/fr not_active Ceased
- 2004-03-10 JP JP2006505711A patent/JP2006520538A/ja active Pending
-
2011
- 2011-03-30 JP JP2011076732A patent/JP5731873B2/ja not_active Expired - Fee Related
-
2013
- 2013-05-13 JP JP2013101197A patent/JP2013165295A/ja active Pending
-
2015
- 2015-04-09 JP JP2015079905A patent/JP2015159312A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030011941A1 (en) | 1997-04-17 | 2003-01-16 | Yukie Nakazawa | Spin-valve type magnetoresistive element and its manufacturing method |
US6452204B1 (en) * | 1998-12-08 | 2002-09-17 | Nec Corporation | Tunneling magnetoresistance transducer and method for manufacturing the same |
JP2001068759A (ja) * | 1999-08-30 | 2001-03-16 | Sony Corp | 磁気抵抗効果素子及びその製造方法 |
JP2001274478A (ja) * | 2000-03-27 | 2001-10-05 | Yamaha Corp | 磁気抵抗センサ |
Non-Patent Citations (2)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 20 10 July 2001 (2001-07-10) * |
PATENT ABSTRACTS OF JAPAN vol. 2002, no. 02 2 April 2002 (2002-04-02) * |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8532194B2 (en) | 2003-02-18 | 2013-09-10 | Nokia Corporation | Picture decoding method |
US8670486B2 (en) | 2003-02-18 | 2014-03-11 | Nokia Corporation | Parameter for receiving and buffering pictures |
US9124907B2 (en) | 2004-10-04 | 2015-09-01 | Nokia Technologies Oy | Picture buffering method |
WO2006049407A1 (fr) * | 2004-11-03 | 2006-05-11 | Korea Institute Of Science And Technology | Dispositif a magnetoresistance induite par courant |
US7626857B2 (en) | 2004-11-03 | 2009-12-01 | Korea Institute Of Science And Technology | Current induced magnetoresistance device |
US20120098077A1 (en) * | 2010-10-26 | 2012-04-26 | Centre National De La Recherche Scientifique | Writable Magnetic Element |
US8384171B2 (en) * | 2010-10-26 | 2013-02-26 | Centre National De La Recherche Scientifique | Writable magnetic element |
EP2667214A1 (fr) | 2012-05-21 | 2013-11-27 | NTN-SNR Roulements | Procédé d ajustement de la résistance d un capteur |
EP2784529A1 (fr) | 2013-03-29 | 2014-10-01 | NTN-SNR Roulements | Système de détermination d'au moins un paramètre de déplacement d'un organe mobile par rapport à une structure fixe |
EP2966414A1 (fr) | 2014-07-07 | 2016-01-13 | NTN-SNR Roulements | Montage d'un système de détermination de position angulaire sur un organe tournant |
EP3021089A1 (fr) | 2014-11-17 | 2016-05-18 | NTN-SNR Roulements | Système de détermination de la position absolue d'un organe |
FR3049704A1 (fr) * | 2016-03-31 | 2017-10-06 | Ntn-Snr Roulements | Capteur de detection d’un champ magnetique periodique |
EP3225956A1 (fr) | 2016-03-31 | 2017-10-04 | NTN-SNR Roulements | Capteur de détection d'un champ magnétique périodique |
US10168186B2 (en) | 2016-03-31 | 2019-01-01 | Ntn-Snr Roulements | Sensor for detecting a period magnetic field |
WO2018051011A1 (fr) | 2016-09-13 | 2018-03-22 | Ntn-Snr Roulements | Système de détermination d'au moins un paramètre de rotation d'un organe tournant |
CN110023720A (zh) * | 2016-09-13 | 2019-07-16 | Ntn-Snr轴承股份有限公司 | 确定转动构件的至少一转动参数的确定系统 |
CN110023720B (zh) * | 2016-09-13 | 2021-12-14 | Ntn-Snr轴承股份有限公司 | 确定转动构件的至少一转动参数的确定系统 |
US10969252B2 (en) | 2016-09-13 | 2021-04-06 | Ntn-Snr Roulements | System for determining at least one rotation parameter of a rotating member |
US10859402B2 (en) | 2017-07-18 | 2020-12-08 | Ntn-Snr Roulements | Assembly on a member of a system for determining the position of said member |
US10775196B2 (en) | 2018-03-12 | 2020-09-15 | Ntn-Snr Roulements | System for determining at least one rotation parameter of a rotary member |
FR3093798A1 (fr) | 2019-03-12 | 2020-09-18 | Ntn-Snr Roulements | Système de détermination d’au moins un paramètre de rotation d’un organe tournant |
FR3093799A1 (fr) | 2019-03-12 | 2020-09-18 | Ntn-Snr Roulements | Système de détermination d’au moins un paramètre de rotation d’un organe tournant |
EP3708963A1 (fr) | 2019-03-12 | 2020-09-16 | Ntn-Snr Roulements | Système de détermination d au moins un paramètre de rotation d'un organe tournant |
EP3708964A1 (fr) | 2019-03-12 | 2020-09-16 | Ntn-Snr Roulements | Système de détermination d'au moins un paramètre de rotation d'un organe tournant |
US11204260B2 (en) | 2019-03-12 | 2021-12-21 | Ntn-Snr Roulements | System for determining at least one rotation parameter of a rotating member |
US11598825B2 (en) | 2019-03-12 | 2023-03-07 | Ntn-Snr Roulements | System for determining at least one rotation parameter of a rotating member |
FR3143733A1 (fr) | 2022-12-19 | 2024-06-21 | Ntn-Snr Roulements | Système de détermination d’au moins un paramètre de rotation d’un organe tournant |
Also Published As
Publication number | Publication date |
---|---|
EP1604220A1 (fr) | 2005-12-14 |
KR20050109996A (ko) | 2005-11-22 |
JP2015159312A (ja) | 2015-09-03 |
JP5731873B2 (ja) | 2015-06-10 |
FR2852400A1 (fr) | 2004-09-17 |
JP2006520538A (ja) | 2006-09-07 |
JP2011159988A (ja) | 2011-08-18 |
KR101100841B1 (ko) | 2012-01-02 |
US20070159164A1 (en) | 2007-07-12 |
US7602178B2 (en) | 2009-10-13 |
FR2852400B1 (fr) | 2005-06-24 |
JP2013165295A (ja) | 2013-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1604220A1 (fr) | Capteur magnetoresistif comprenant un element sensible ferromagnetique/antiferromagnetique | |
EP1435101B1 (fr) | Dispositif magnetoresistif a vanne de spin a performances ameliorees | |
EP0724302B1 (fr) | Capteur magnétique à magnétorésistance géante, et son procédé de fabrication | |
EP2597480B1 (fr) | Capteur de champ magnétique | |
EP1055259A1 (fr) | Magnetoresistance a effet tunnel et capteur magnetique utilisant une telle magnetoresistance | |
US6329078B1 (en) | Magnetoresistive element and method of forming the same | |
FR2691839A1 (fr) | Capteur à Effet Hall. | |
WO1998001764A1 (fr) | Capteur de champ magnetique en couche mince | |
EP0642181B1 (fr) | Composant et capteur magnétorésistifs à motif géométrique répété | |
FR2771511A1 (fr) | Capteur de champ magnetique et procede de fabrication de ce capteur | |
EP1055132A1 (fr) | Capteur de champ magnetique a magnetoresistance geante | |
WO2001088562A1 (fr) | Capteur de champ magnetique utilisant la magnetoresistance, et procede de fabrication | |
FR2852399A1 (fr) | Capteur magnetoriesistif comprenant un element sensible ferromagnetique/antiferromagnetique | |
EP1195821A1 (fr) | Dispositif à vanne de spin à réflexion électronique spectaculaire dépendant du spin | |
FR3027404A1 (fr) | Capteur de champ magnetique pour la detection d'au moins deux composantes de champ magnetique | |
WO2007101943A1 (fr) | Composant sensible a un champ magnetique comportant un semi-conducteur magnetique dilue, dispositifs l'incorporant et procede de mise en oeuvre | |
FR2828001A1 (fr) | Dispositif de commande de renversement de sens d'aimantation sans champ magnetique externe | |
FR3068476B1 (fr) | Dispositif de mesure de champs magnetiques faibles | |
WO2019092333A1 (fr) | Aimant permanent comprenant une couche antiferromagnetique et une couche ferromagnetique | |
WO2007042649A1 (fr) | Procede de fabrication d'un capteur a magneto-impedance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004718987 Country of ref document: EP Ref document number: 2006505711 Country of ref document: JP Ref document number: 1020057017161 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20048123256 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 1020057017161 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2004718987 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007159164 Country of ref document: US Ref document number: 10548604 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 10548604 Country of ref document: US |