WO2001088562A1 - Capteur de champ magnetique utilisant la magnetoresistance, et procede de fabrication - Google Patents

Capteur de champ magnetique utilisant la magnetoresistance, et procede de fabrication Download PDF

Info

Publication number
WO2001088562A1
WO2001088562A1 PCT/FR2001/001321 FR0101321W WO0188562A1 WO 2001088562 A1 WO2001088562 A1 WO 2001088562A1 FR 0101321 W FR0101321 W FR 0101321W WO 0188562 A1 WO0188562 A1 WO 0188562A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
anisotropy
sensor
magnetic field
magnetic
Prior art date
Application number
PCT/FR2001/001321
Other languages
English (en)
Inventor
Frédéric NGUYEN VAN DAU
Henri Jaffres
Daniel Lacour
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to US10/276,693 priority Critical patent/US7094480B2/en
Priority to JP2001584902A priority patent/JP2003533895A/ja
Publication of WO2001088562A1 publication Critical patent/WO2001088562A1/fr

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1107Magnetoresistive
    • Y10T428/1114Magnetoresistive having tunnel junction effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1107Magnetoresistive
    • Y10T428/1121Multilayer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1107Magnetoresistive
    • Y10T428/1143Magnetoresistive with defined structural feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1157Substrate composition

Definitions

  • the present invention relates to magnetic field sensors which use the phenomenon of magnetoresistance, ie the variation of the electrical resistance of a conductor under the effect of the magnetic field which is applied to it. It makes it possible to make sensors such as magnetometers, compasses or current sensors. It also relates to the methods of manufacturing such sensors.
  • the entirely metallic magnetic sensors known to date are essentially those which use either anisotropic magnetoresistance (AMR) or giant magnetoresistance (GMR). In all these cases, the resolution of sensors of this type is limited by two noise sources, one linked to the resistance fluctuation also known as Johnson noise, and the other to thermal drift.
  • Anisotropic magnetoresistance results from the anisotropic nature of the resistivity of a ferromagnetic metallic material as a function of the angle defined by its magnetization and the direction of the current.
  • the inventors have developed a system using the planar Hall effect, which in particular makes it possible to considerably reduce the noise of thermal drift.
  • the maximum variation in resistance due to this effect is around 1% of the resistance in the active area.
  • the giant magnetoresistance was discovered in 1988 and comes from the spin dependence of the resistance of an artificial magnetic structure having a different magnetic configuration depending on the applied magnetic field. It is then possible to reach a variation in total resistance of the order of ten% of the active area.
  • the inventors have previously developed a patented device using this giant magnetoresistance effect, which makes it possible to obtain various advantages compared to the magnetic sensors of the old generation. In particular, it is thus possible to obtain an increase in the amplitude of the signal, as well as an increase in the signal / noise ratio which can reach an order of magnitude.
  • tunnel magnetoresistance translates the dependence of the current in a tunnel junction as a function of the relative orientation of the magnetizations located on either side of the barrier. insulating forming this junction. This phenomenon corresponds to the conservation of the spin of the electrons when they cross this barrier by tunnel effect.
  • JS Moodera et al Phys.Rev.Lett. 74 (16), 3273 (1995) on these ferromagnetic tunnel junctions at room temperature.
  • the invention proposes a magnetic field sensor using the magnetoresistance, mainly characterized in that it comprises a first ferromagnetic layer having a first magnetic anisostropy in a first direction, a second ferromagnetic layer having a second anisotropy magnetic in a second direction and an insulating layer separating the two ferromagnetic layers and whose thickness makes it possible to form a tunnel junction between these two ferromagnetic layers.
  • the two directions of anisotropy are perpendicular.
  • the first anisotropy is induced by a substrate supporting the first ferromagnetic layer.
  • the second anisotropy is induced by an antiferromagnetic layer AF superimposed on the second ferromagnetic layer
  • the two anisotropies have substantially different values so that one is "soft” and the other is “strong".
  • the "soft" ferromagnetic layer is the first.
  • the senor comprises two sensors of the CAP + type and two sensors of the CAP- type assembled for form a Wheastone bridge in which each sensor of one type is adjacent to a sensor of the other type.
  • the first ferromagnetic layer is deposited on a disoriented substrate to induce the first magnetic anisotropy via the form energy.
  • the second ferromagnetic layer is heated beyond the Néel temperature of the AF layer in contact and allowed to cool below this temperature by applying to it a saturation magnetic field directed according to the second direction.
  • - Figure 5 a perspective view showing the influence of a weak magnetic field depending on its orientation
  • - Figure 6 a perspective view of two opposite electrical response sensors
  • FIG. 1 shows the thickness structure of a magnetic field sensor according to the invention.
  • This structure comprises a stack of four layers supported by a substrate, not shown.
  • a first layer FMI 101 is formed from a film of ferromagnetic material, such as for example cobalt, iron, or a nickel / iron or cobalt / iron alloy.
  • a second FM 102 layer is formed from a ferromagnetic material which may be of different composition or nature from that of the FMI layer.
  • a third layer 103 is formed of an insulating material which can be deposited under an extremely thin thickness to produce the tunnel junction. This material will for example be aluminum oxide.
  • a fourth layer AF 104 is formed from a material such as a magnetic oxide, or from a metallic antiferromagnetic material such as an iron / manganese or iridium / manganese alloy. It can be relatively thick compared to the three preceding layers, which are relatively thin, see very thin for layer I. If one wants to obtain a reversible and linear response of the signal in weak field, it is necessary to use a particular magnetic configuration, called perpendicular geometry, in which the two magnetizations are oriented perpendicularly to each other in zero field.
  • the invention proposes to use, in a manner similar to that used in giant magnetoresistance sensors, the properties of the disoriented vicinal silicon Si (III) surfaces, to induce a preferential direction of magnetization in the FMI electrode in contact with the substrate on which the sensor is manufactured.
  • the disorientation of the direction of growth manifests itself by the appearance of terraces which induce a uniaxial magnetic anisotropy, coming from form energy. This particular direction is fixed by the geometry of the substrate as explained more particularly in the article by Sussiau, F. Nguyen Van Dau, P. Galtier, A. Schuhl, published in Applied Physic letter, volume 69, 857 (1996).
  • the invention proposes to use the exchange anisotropy which is created when this layer FM2 is covered with the antiferromagnetic layer AF.
  • This phenomenon is described for example in the article by J. Noguès, Ivan K. Schuller, J. Magn published in Magn. Mater, vol 192. 203-232 (1999).
  • the anisotropy axis corresponds to the direction of the exchange field which appears below the antiferromagnetic-paramagnetic transition temperature of the material constituting this AF layer. This transition temperature is also known as the Néel temperature, known as T N.
  • T N Néel temperature
  • the invention proposes, as shown in FIG. 3, to heat the device above the temperature TN and then to allow it to cool while applying a saturating magnetic field 302 whose direction is orthogonal to the direction of the nominal easy axis 301 induced in the layer 101 by the substrate as explained above.
  • the anisotropy fields obtained for the two electrodes FMI and FM 2 generally have substantially different values.
  • a so-called "soft" layer will therefore be defined as being that which has the weakest anisotropy field, that is to say that which is most easily magnetized by the action of an external field.
  • the soft layer is that which corresponds to the FMI electrode, which does not entail any restriction on the generality of the invention, the description and the operation being strictly identical, at the change of role of the two layers close, otherwise.
  • this field h a is directed perpendicular to the axis 301 of easy magnetization of the soft layer FMI 101. It is therefore parallel to the direction 302 of easy magnetization of the hard layer FM2 102, as shown in FIG. 4.
  • the relative angle between the magnetizations of the two layers is therefore modulated by the external magnetic field, which therefore results in a reversible variation in the magnetoresistance of the device, and therefore in the signal obtained by measuring the resistance of the assembly.
  • the variation in magnetoresistance is substantially linear, that is to say
  • the sensitivity of the device which represents the variation of the measurement signal per unit of field, is inversely proportional to the anisotropy field Hk 1 .
  • Such a sensor can also be used to determine the orientation of the magnetic field in which it is immersed, when this field remains constant while varying orientation in the plane of the sensor, that is to say in the plane of the junction. We then speak of the angular response of this sensor.
  • this field ha is strong, that is to say when it is between Hk 1 and Hk 2 , this field is large enough to be able to saturate the FMI layer 101 in its direction.
  • this strong field then rotates in the plane of the layers, the magnetization of FMI describes the whole plane while the magnetization of FM2 remains blocked by the exchange anisotropy. Under these conditions the antiparallel magnetic state between the two layers can be reached and a maximum magnetoresistive response is then obtained.
  • the value of the applied field must not become greater than the value of the anisotropy field of FM2, i.e. h a is greater than H k 2 , because in this case the two magnetizations tend to align in parallel, which leads to a decrease in the magnetoresistive signal and an angular distortion of the response of the sensor.
  • the field h a 403 In the configuration CAP +, the field h a 403, arbitrarily qualified as positive in the configuration of the figure, causes an increase in the relative angle between the two magnetizations, which causes a variation of the magnetoresistive signal, itself arbitrarily qualified as positive.
  • the same positive field h a is in the opposite direction to the magnetization of the layer FM2 102, which causes a reduction in the relative angle between the two magnetizations of the two layers and therefore a variation of the signal magnetoresistive, of opposite sign to that obtained with the CAP + cell, which will be arbitrarily qualified as negative.
  • This bridge is supplied from a voltage source by two terminals 708 and 709 located respectively between the cells 702 and 703 on the one hand, and 701 and 704 on the other hand.
  • the unbalance voltage of the bridge is then available on two terminals 705 and 706 located respectively between cells 701 and 703 on the one hand and
  • V + and V- thus obtained is directly proportional to the difference of the signals delivered by the sensors CAP + and CAP- and it is therefore proportional to the useful signal.
  • the problem then consists in obtaining the adequate orientations of the magnetizations of the hard layers of these cells.
  • the invention therefore proposes to apply to each cell a local field whose orientation is opposite to that applied to adjacent cells, during the cell polarization process, that is to say during cooling which makes it possible to freeze in the layer lasts the magnetizations thus determined.
  • One of the means for obtaining these distinct fields consists, as shown in FIG. 8, of using an insulated conducting line 801 which separates into two branches 811 and 821 which pass over the CAP cells 701 to 704 in such a way that the magnetic fields 802 induced by the four arms of these two branches 811 and 821 passing above the CAP cells have the desired directions to polarize these cells in the desired manner.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

L'invention concerne les capteurs de champs magnétique dans lesquels on utilise la magnétorésistance comme phénomène physique pour détecter et mesurer le champ magnétique. Elle consiste à réaliser un empilement comportant une première couche ferromagnétique (101), une couche isolante (103), une deuxième couche ferromagnétique (102) et une couche antiferromagnétique (104). Les deux couches ferromagnétiques présentent des anisotropies magnétiques croisées et elles forment avec la couche isolante une jonction tunnel. L'anisotropie de la première couche est obtenue à partir de l'énergie de forme du substrat sur lequel elle repose et qui est légèrement désorientée par rapport à elle. L'anisotropie de la deuxième couche est obtenue par l'action de la couche antiferromagnétique. Le champ magnétique à mesurer, dans lequel est plongé le capteur, modifie les caractéristiques de la jonction tunnel, et donc le courant qui passe dans celle-ci lorsque les couches magnétiques sont alimentées par une source de tension, dans des proportions bien plus grandes que celles obtenues avec les autres systèmes.

Description

CAPTEUR DE CHAMP MAGNETIQUE UTILISANT LA MAGNETORESISTANCE, ET PROCEDE DE FABRICATION
La présente invention se rapporte aux capteurs de champ magnétique qui utilisent le phénomène de magnetoresistance, c'est à dire la variation de la résistance électrique d'un conducteur sous l'effet du champ magnétique qui lui est appliqué. Elle permet de réaliser des capteurs tels que des magnétomètres, des compas ou des capteurs de courant. Elle concerne également les procédés de fabrication de tels capteurs Les capteurs magnétiques entièrement métalliques connus à ce jour sont essentiellement ceux qui utilisent soit la magnetoresistance anisotrope (AMR), soit la magnetoresistance géante (GMR). Dans tous ces cas, la résolution des capteurs de ce type est limitée par deux sources de bruit, liées l'une à la fluctuation de résistance connue également sous le nom de bruit Johnson, et l'autre à la dérive thermique.
La magnetoresistance anisotrope résulte du caractère anisotrope de la résistivité d'un matériau métallique ferromagnétique en fonction de l'angle défini par son aimantation et la direction du courant. Pour utiliser au mieux cet effet, les inventeurs ont mis au point un système utilisant l'effet Hall planaire, qui permet notamment de réduire de manière considérable le bruit de dérive thermique. La variation maximale de la résistance, due à cet effet, est de l'ordre de 1% de la résistance de la zone active.
La magnetoresistance géante a été découverte en 1988 et provient de la dépendance en spin de la résistance d'une structure magnétique artificielle présentant une configuration magnétique différente suivant le champ magnétique appliqué. On peut alors atteindre une variation de résistance totale de l'ordre d'une dizaine de % de la zone active. Les inventeurs ont précédemment mis au point un dispositif breveté utilisant cet effet de magnetoresistance géante, qui permet d'obtenir différents avantages par rapport aux capteurs magnétiques de l'ancienne génération. En particulier on peut ainsi obtenir une augmentation de l'amplitude du signal, ainsi qu'une augmentation du rapport signal/bruit pouvant atteindre un ordre de grandeur.
On connaît enfin le phénomène de magnetoresistance tunnel, qui traduit la dépendance du courant dans une jonction tunnel en fonction de l'orientation relative des aimantations situées de part et d'autre de la barrière isolante formant cette jonction. Ce phénomène correspond à la conservation du spin des électrons lorsqu'ils traversent cette barrière par effet tunnel. On citera sur ce sujet les mesures effectuées par J.S Moodera et al, Phys.Rev.Lett.74 (16),3273 (1995) sur ces jonctions tunnel ferromagnétiques à température ambiante.
Avec ce dernier phénomène, on peut espérer obtenir une variation totale de la résistance de l'ordre de quelques dizaines de % de la résistance de la zone active. Cette résistance de la zone active est elle même supérieure de plusieurs décades à la résistance des capteurs connus entièrement métalliques. Au total la sensibilité magnétique d'un tel capteur peut donc être supérieure de plusieurs ordres de grandeur à la sensibilité des capteurs conventionnels.
Pour pouvoir effectivement obtenir ces résultats, l'invention propose un capteur de champ magnétique utilisant la magnetoresistance, principalement caractérisé en ce qu'il comprend une première couche ferromagnétique présentant une première anisostropie magnétique selon une première direction, une deuxième couche ferromagnétique présentant une deuxième anisotropie magnétique selon une deuxième direction et une couche isolante séparant les deux couches ferromagnétiques et dont l'épaisseur permet de constituer une jonction tunnel entre ces deux couches ferromagnétiques.
Selon une autre caractéristique, les deux directions d' anisotropie sont perpendiculaires.
Selon une autre caractéristique, la première anisotropie est induite par un substrat supportant la première couche ferromagnétique .
Selon une autre caractéristique, la deuxième anisotropie est induite par une couche antiferromagnétique AF superposée sur la deuxième couche ferromagnétique
Selon une autre caractéristique, les deux anisotropies présentent des valeurs sensiblement différentes pour que l'une soit "douce" et l'autre soit "forte".
Selon une autre caractéristique, la couche ferromagnétique "douce" est la première.
Selon une autre caractéristique, le capteur comprend deux capteurs de type CAP+ et deux capteurs de type CAP- assemblés pour former un pont de Wheastone dans lequel chaque capteur d'un type est adjacent à un capteur de l'autre type.
Selon une autre caractéristique, la première couche ferromagnétique est déposée sur un substrat désorienté pour induire la première anisotropie magnétique par l'intermédiaire de l'énergie de forme.
Selon une autre caractéristique, pour obtenir la deuxième anisotropie magnétique on chauffe la deuxième couche ferromagnétique au delà de la température de Néel de la couche AF en contact et on la laisse refroidir en dessous de cette température en lui appliquant un champ magnétique de saturation dirigé selon la deuxième direction.
Selon une autre caractéristique, pour obtenir la deuxième anisotropie magnétique des quatres capteurs formant le pont de Wheastone, on chauffe l'ensemble de ces capteurs au delà de la température de Néel de la deuxième couche ferromagnétique et on applique à chaque capteur un champ magnétique de saturation dirigé dans le sens des deuxièmes directions d'anisotropie en plaçant au dessus de ces quatres capteurs un circuit électrique dont la configuration permet d'obtenir localement les directions souhaitées.
D'autres particularités et avantages de l'invention apparaîtront clairement dans la description suivante, faite de manière non limitative en regard des figures annexées qui représentent :
- la figure 1, une vue en perspective d'un empilement de couches permettant d'obtenir un capteur selon l'invention
- la figure 2, deux graphiques de la variation de la magnetoresistance en fonction du champ appliqué, l'un dans une géométrie parallèle, et l'autre dans une géométrie perpendiculaire.
- - la figure 3, une vue en perspective permettant d'expliquer la manière d'obtenir une orientation correcte des aimantations pendant la fabrication des couches sensibles;
- la figure 4, une vue en perspective montrant l'influence du champ magnétique en régime linéaire;
- la figure 5, une vue en perspective montrant l'influence d'un faible champ magnétique en fonction de son orientation; - la figure 6, une vue en perspective de deux capteurs de réponses électriques opposées;
- la figure 7, le schéma d'un dispositif en pont de Wheastone utilisant des capteurs individuels du type de ceux de la figure 6; et
- la figure 8, un schéma explicitant la manière de polariser les cellules du pont de Wheastone de la figure 7.
On a représenté sur la figure 1 la structure en épaisseur d'un capteur de champ magnétique selon l'invention. Cette structure comprend un empilement de quatre couches supportées par un substrat non représenté. Une première couche FMI 101 est formée d'un film de matériau ferromagnétique, tel que par exemple du cobalt, du fer, ou un alliage de nickel/fer ou de cobalt/fer.
Une deuxième couche FM 102 est formée d'un matériau ferromagnétique pouvant être de composition ou de nature différentes de celui de la couche FMI.
Une troisième couche I 103 est formée d'un matériau isolant pouvant être déposé sous une épaisseur extrêmement mince pour réaliser la jonction tunnel. Ce matériau sera par exemple de l'oxyde d'aluminium. Enfin une quatrième couche AF 104 est formée d'un matériau tel qu'un oxyde magnétique, ou d'un matériau antiferromagnétique métallique tel qu'un alliage fer/manganèse ou iridium/manganèse. Elle peut être relativement épaisse par rapport aux trois couches précédentes, qui sont quant à elles relativement minces, voir très minces pour la couche I. Si l'on veut obtenir une réponse réversible et linéaire du signal en champ faible, il est nécessaire d'utiliser une configuration magnétique particulière, dite géométrie perpendiculaire, dans laquelle les deux aimantations s'orientent perpendiculairement l'une par rapport à l'autre en champ nul. En effet, comme on le voit sur le haut sur la figure 2, lorsque ces deux orientations sont parallèles l'une par rapport à l'autre en champ nul, le changement de sens de l'orientation de ces deux couches 101 et 102 entre un champ positif et un champ négatif s'effectue pour une valeur particulière du champ, ici dans la zone négative de celui-ci, par la réorientation de l'une puis de l'autre des couches dans une fourchette donnée de ce champ. Ce fonctionnement bistable introduit un changement brutal et important de la valeur de la résistance R dans l'intervalle de la fourchette. Cet effet non linéaire pourrait éventuellement être utilisé pour d'autres applications, mais il ne permet pas de mesurer le champ, comme recherché dans l'invention.
Pour obtenir la structure en géométrie perpendiculaire, il faut donc bien contrôler les anisotropies afin de créer dans chacune des couches FMI et FM2 une direction de facile aimantation qui soit perpendiculaire par rapport à celle de l'autre couche et qui permet une variation linéaire et réversible de la valeur de MR, comme on le voit sur le bas de la figure 2.
Pour cela, l'invention propose d'utiliser, d'une manière semblable à celle utilisée dans les capteurs à magnetoresistance géante, les propriétés des surfaces vicinales de silicium Si(lll) désorientées, pour induire une direction d'aimantation préférentielle dans l'électrode FMI en contact avec le substrat sur lequel est fabriqué le capteur. La désorientation de la direction de croissance, de l'ordre de quelques degrés, se manifeste par l'apparition de terrasses qui induisent une anisotropie magnétique uniaxiale, provenant de l'énergie de forme. Cette direction particulière est fixée par la géométrie du substrat comme explicité plus particulièrement dans l'article de Sussiau, F. Nguyen Van Dau, P. Galtier, A. Schuhl, paru dans Applied Physic letter, volume 69, 857 (1996). Pour fixer la direction de facile aimantation de la couche, ou électrode, supérieure FM2, l'invention propose d'utiliser l'anisotropie d'échange qui se crée lorsque l'on recouvre cette couche FM2 par la couche antiferromagnétique AF. Ce phénomène est décrit par exemple dans l'article de J. Noguès, Ivan K. Schuller, J.Magn paru dans Magn. Mater, vol 192. 203- 232 (1999). L'axe d'anisotropie correspond à la direction du champ d'échange qui apparaît en dessous de la température de transition antiferromagnétique-paramagnétique du matériau constituant cette couche AF. Cette température de transition est également connue sous le nom de température de Néel, dite TN. La direction en question est déterminée par la direction de l'aimantation de la couche FM2 en contact avec la couche AF, au voisinage de TN.
Donc pour obtenir la configuration magnétique souhaitée, l'invention propose, comme représenté sur la figure 3, de chauffer le dispositif au delà de la température TN puis de le laisser refroidir tout en lui appliquant un champ magnétique saturant 302 dont la direction est orthogonale à la direction de l'axe facile nominal 301 induit dans la couche 101 par le substrat comme explicité plus haut.
Dans ces conditions, les champs d'anisotropie obtenus pour les deux électrodes FMI et FM 2 ont des valeurs en général sensiblement différentes. On définira donc une couche dite "douce", comme étant celle dont le champ d'anisotropie est le plus faible, c'est à dire celle qui s'aimante le plus facilement sur l'action d'un champ extérieur. Pour la suite de la description on supposera que la couche douce est celle qui correspond à l'électrode FMI, ce qui n'entraîne aucune restriction sur la généralité de l'invention, la description et le fonctionnement étant strictement identiques, au changement de rôle des deux couches près, dans le cas contraire.
On est alors amené à définir les paramètres suivants :
- hc le champ de retournement de FMi
- hk1 le champ d'anisotropie agissant sur FMi, - h 2 et hexc les champs d'anisotropies et d'échange agissant sur
FM2, - le champ extérieur appliqué, celui qui doit être détecté ou mesuré, sera appelé ha. On va maintenant décrire le fonctionnement du capteur dans son régime linéaire, c'est à dire expliciter le signal obtenu en réponse à un champ magnétique ha dont la direction est fixée et l'amplitude variable.
Pour obtenir une sensibilité maximale, ce champ ha est dirigé perpendiculairement à l'axe 301 de facile aimantation de la couche douce FMI 101 . Il est donc parallèle à la direction 302 de facile aimantation de la couche dure FM2 102, comme représenté sur la figure 4.
Dans ces conditions, lorsque le champs ha est nul, l'aimantation
401 de la couche douce 101 est parallèle à la direction 301, et l'aimantation
402 de la couche dure 102 est parallèle à la direction 302.
Lorsque le champ à mesurer ha 403, appliqué parallèlement à la direction 302, prend une valeur qui n'est pas nulle, l'aimantation 411 dans la couche douce 101 s'écarte de la direction précédente (lorsque ce champ était nul) pour prendre un angle ε par rapport à la direction 301. Cette rotation de l'aimantation dans le plan de la couche FMI 101 est d'autant plus marquée que la valeur du champ ha est grande, comme on le voit sur la figure 4. L'aimantation de la couche FM2 102 reste quant à elle bloquée selon son axe facile 302, puisque, selon les définitions données plus haut, celle-ci est plus "dure" que la couche 101. Ce blocage de l'aimantation de FM2 persiste jusqu'à ce que ha atteigne le champ de retournement de celle- ci. En jouant sur la composition des matériaux des deux couches, et sur l'écart d'aimantation entre la couche douce et la couche dure, on peut facilement respecter cette dernière condition.
L'angle relatif entre les aimantations des deux couches est donc modulé par le champ magnétique extérieur, ce qui entraîne donc une variation réversible de la magnetoresistance du dispositif, et donc du signal obtenu en mesurant la résistance de l'ensemble.
Pour de faibles champs, c'est à dire lorsque ha est très inférieur à Hk1, la variation de magnetoresistance est sensiblement linéaire, c'est à dire
Figure imgf000009_0001
La sensibilité du dispositif, qui représente la variation du signal de mesure par unité de champ est quant à elle inversement proportionnelle au champ d'anisotropie Hk1.
Un tel capteur peut également être utilisé pour déterminer l'orientation du champ magnétique dans lequel il est plongé, lorsque ce champ reste constant tout en variant d'orientation dans le plan du capteur c'est à dire dans le plan de la jonction. On parle alors de réponse angulaire de ce capteur.
Celui-ci présente en fait deux régimes de fonctionnement distincts selon que le champ dans lequel il est plongé est "faible" ou "fort ". Dans le cas d'un champ faible, c'est à dire lorsque ha<hc, l'application de ce champ faible a pour effet, comme déjà représenté sur la figure 4, de moduler l'angle relatif entre l'aimantation de la couche douce et l'aimantation de la couche dure, ce qui entraîne une modulation de la réponse magnétorésistive. Dans ces conditions, on peut définir deux axes PE et PA orthogonaux entre eux et parallèles respectivement aux directions d'aimantation des couches dures et douces en l'absence de champ.
Comme représenté sur la figure 5a, lorsque le champ ha est parallèle à l'axe PE on obtient une rotation importante de l'aimantation 411 de la couche FMI 101. Inversement, lorsque le champ ha est, comme sur la figure 5b, parallèle à la direction PA, l'influence de ce champ ha 413 est sensiblement nulle puisque le fort champ d'anistropie Hk2 bloque l'aimantation de la couche FM2 102. Dans ces conditions, seule la composante du champ selon PE aura pour effet de moduler l'angle relatif entre les deux aimantations, et donc le signal magnétorésitif. Il en résulte que lorsque le champ ha tout en étant constant, change d'orientation dans le plan du capteur, la variation du signal magnétorésistif correspondante est représentée par une fonction cosinus. Les variations de ce signal sont alors de quelques % de la magnetoresistance totale.
Lorsque par contre ce champ ha est fort, c'est à dire lorsqu'il est compris entre Hk1 et Hk2, ce champ est suffisamment important pour pouvoir saturer la couche FMI 101 selon sa direction. Lorsque ce champ fort tourne alors dans le plan des couches, l'aimantation de FMI décrit tout le plan alors que l'aimantation de FM2 reste bloquée par l'anisotropie d'échange. Dans ces conditions l'état magnétique antiparallèle entre les deux couches peut être atteint et l'on obtient alors une réponse magnétorésistive maximale.
Il ne faut cependant pas que la valeur du champ appliqué devienne supérieure à la valeur du champ d'anisotropie de FM2, c'est à dire que ha soit supérieure à Hk 2, parce que dans ce cas les deux aimantations ont tendance à s'aligner parallèlement, ce qui conduit à une diminution du signal magnétorésistif et à une distorsion angulaire de la réponse du capteur.
Comme on l'a dit plus haut, la sensiblité d'un tel capteur est limitée en particulier par le bruit de dérive thermique. Pour réduire celui-ci, on a proposé, dans le cas des capteurs de type GMR, d'utiliser une structure en pont de Wheastone qui permet de soustraire la composante continue de la résistance sans affecter le signal utile. On citera plus particulièrement les travaux de J.K Spong et al, paru dans IEEE Transactions on magnetics, vol.32,2 (1996).
Pour cela, on se place dans le cas représenté sur la figure 6, où le signal à mesurer ha 403 est parallèle à la direction d'aimantation de la couche FM2 102. La direction d'aimantation 301 de la couche douce 101 étant perpendiculaire à la direction de l'aimantation 402, on se trouve dans une géométrie dite CAP. Dans ces conditions, il existe, comme représenté sur cette figure 6, deux types de configuration CAP, notées respectivement CAP + et CAP - .
Dans la configuration CAP+, le champ ha 403, qualifié arbitrairement de positif dans la configuration de la figure, entraine une augmentation de l'angle relatif entre les deux aimantations, ce qui entraine une variation du signal magnétorésistif, elle-même arbitrairement qualifiée de positive.
Dans la configuration CAP-, le même champ positif ha est dans le sens contraire de l'aimantation de la couche FM2 102, ce qui entraîne une diminution de l'angle relatif entre les deux aimantations des deux couches et donc une variation du signal magnétorésistif, de signe opposé à celui obtenu avec la cellule CAP+, qui sera arbitrairement qualifié de négatif.
Ceci permet, en regroupant deux cellules CAP + 701 et 702 et deux cellules CAP - 703 et 704, de former un pont de Wheastone dans lequel ces cellules sont disposées de manière à ce que les aimantations des couches dures de deux cellules adjacentes soit antiparallèles. Ce pont est alimenté depuis une source de tension par deux bornes 708 et 709 situées respectivement entre les cellules 702 et 703 d'une part, et 701 et 704 d'autre part. La tension de déséquilibre du pont est alors disponible sur deux bornes 705 et 706 situées respectivement entre les cellules 701 et 703 d'une part et
702 et 704 d'autre part. La différence de tension entre V+ et V- ainsi obtenue est directement proportionnelle à la différence des signaux délivrés par les capteurs CAP+ et CAP- et elle est donc proportionnelle au signal utile.
Pour obtenir des mesures correctes, surtout avec une bonne précision et pour des champs de valeurs faibles, il n'est pas dans la pratique possible de réaliser quatres cellules de mesure distinctes puis de les assembler pour obtenir le pont de la figure 7. En effet les dispersions de fabrication d 'une part, et les erreurs sur l'alignement des plans des quatres cellules d'autres part, ainsi que leur éloignement, ne permettraient pas alors d'obtenir des résultats satisfaisants.
On est donc amené à réaliser un dispositif monolithique comportant un substrat unique sur lequel les quatres couches, définies par rapport à la figure 1, sont déposées simultanément. L'ensemble est ensuite gravé par voie chimique, ou par faisceau d'ions, pour isoler les quatres cellules. On obtient ainsi une homogénéité et une disposition géométrique tout à fait satisfaisantes.
Le problème consiste alors à obtenir les orientations adéquates des aimantations des couches dures de ces cellules. L'invention propose pour cela d'appliquer à chaque cellule un champ local dont l'orientation est inverse de celui appliqué aux cellules adjacentes, pendant le processus de polarisation des cellules, c'est à dire lors du refroidissement qui permet de figer dans la couche dure les aimantations ainsi déterminées. L'un des moyens pour obtenir ces champs distincts consiste, comme représenté sur la figure 8, à utiliser une ligne conductrice isolée 801 qui se sépare en deux branches 811 et 821 qui viennent passer au dessus des cellules CAP 701 à 704 de telle manière que les champs magnétiques 802 induits par les quatres bras de ces deux branches 811 et 821 passant au dessus des cellules CAP aient les sens voulus pour polariser ces cellules de la manière désirée.
Une manière de faire consiste à réaliser ces deux branches 811 et 821 sous une forme d'un carré permettant aux bras de passer au dessus des cellules dans le bon sens. Le champ magnétique local nécessaire pour saturer les aimantations dures des cellules étant de l'ordre de quelques dizaines d'Oersted, le courant à faire circuler dans le circuit électrique peut ne pas être très important ce qui peut parfaitement être compatible avec une technologie de type microélectronique

Claims

REVENDICATIONS
-Capteur de champ magnétique utilisant la magnetoresistance, caractérisé en ce qu'il comprend une première couche ferromagnétique (101) présentant une première anisostropie magnétique selon une première direction (301), une deuxième couche ferromagnétique (102) présentant une deuxième anisotropie magnétique selon une deuxième direction (302) et une couche isolante (103) séparant les deux couches ferromagnétiques et dont l'épaisseur permet de constituer une jonction tunnel entre ces deux couches ferromagnétiques.
- Capteur selon la revendication 1, caractérisé en ce que les deux directions d' anisotropie (301,302) sont perpendiculaires.
- Capteur selon l'une quelconque des revendications 1 et 2, caractérisé en ce que la première anisotropie est induite par un substrat supportant la première couche ferromagnétique (101).
- Capteur selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la deuxième anisotropie est induite par une couche antiferromagnétique AF (104) superposée sur la deuxième couche ferromagnétique (102).
- Capteur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les deux anisotropies présentent des valeurs sensiblement différentes pour que l'une soit "douce" et l'autre soit "forte".
- Capteur selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la couche ferromagnétique "douce" est la première (101).
- Capteur selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comprend deux capteurs de type CAP+ (701,702) et deux capteurs de type CAP- (703,704) assemblés pour former un pont de Wheastone dans lequel chaque capteur d'un type est adjacent à un capteur de l'autre type.
Procédé de fabrication d'un capteur selon l'une quelconque des revendications 3 à 7, caractérisé en ce que la première couche ferromagnétique (101) est déposée sur un substrat désorienté pour induire la première anisotropie magnétique par l'intermédiaire de l'énergie de forme.
- Procédé selon la revendication 8, caractérisé en ce que pour obtenir la deuxième anisotropie magnétique on chauffe la deuxième couche ferromagnétique (102) au delà de la température de Néel de la couche AF en contact et qu'on la laisse refroidir en dessous de cette température en lui appliquant un champ magnétique de saturation dirigé selon la deuxième direction(302).
- Procédé de fabrication d'un capteur selon la revendication 7, caractérisé en ce que pour obtenir la deuxième anisotropie magnétique des quatres capteurs (701-704) formant le pont de Wheastone, on chauffe l'ensemble de ces capteurs au delà de la température de Néel de la deuxième couche ferromagnétique et que l'on applique à chaque capteur un champ magnétique de saturation dirigé dans le sens des deuxièmes directions d'anisotropie en plaçant au dessus de ces quatres capteurs un circuit électrique dont la configuration permet d'obtenir localement les directions souhaitées.
PCT/FR2001/001321 2000-05-19 2001-04-27 Capteur de champ magnetique utilisant la magnetoresistance, et procede de fabrication WO2001088562A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/276,693 US7094480B2 (en) 2000-05-19 2001-04-27 Magnetic field sensor using magnetoresistance and method for making same
JP2001584902A JP2003533895A (ja) 2000-05-19 2001-04-27 磁気抵抗を用いた磁界センサとその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/06453 2000-05-19
FR0006453A FR2809185B1 (fr) 2000-05-19 2000-05-19 Capteur de champ magnetique utilisant la magneto resistance, et procede de fabrication

Publications (1)

Publication Number Publication Date
WO2001088562A1 true WO2001088562A1 (fr) 2001-11-22

Family

ID=8850430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/001321 WO2001088562A1 (fr) 2000-05-19 2001-04-27 Capteur de champ magnetique utilisant la magnetoresistance, et procede de fabrication

Country Status (5)

Country Link
US (1) US7094480B2 (fr)
JP (1) JP2003533895A (fr)
KR (1) KR20030034073A (fr)
FR (1) FR2809185B1 (fr)
WO (1) WO2001088562A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7002194B2 (en) * 2003-07-18 2006-02-21 International Business Machines Corporation Via AP switching
US7196875B2 (en) * 2004-03-24 2007-03-27 Honeywell International Inc. Permalloy sensor having individual permalloy resist pattern runners with lengths perpendicular to a wafer level anisotropy
JP2008514914A (ja) * 2004-09-27 2008-05-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ センサ装置
TW200630632A (en) * 2004-10-11 2006-09-01 Koninkl Philips Electronics Nv Non-linear magnetic field sensors and current sensors
FR2879349B1 (fr) * 2004-12-15 2007-05-11 Thales Sa Dispositif a electronique de spin a commande par deplacement de parois induit par un courant de porteurs polarises en spin
FR2880131B1 (fr) * 2004-12-23 2007-03-16 Thales Sa Procede de mesure d'un champ magnetique faible et capteur de champ magnetique a sensibilite amelioree
US7379321B2 (en) * 2005-02-04 2008-05-27 Hitachi Global Storage Technologies Netherlands B.V. Memory cell and programmable logic having ferromagnetic structures exhibiting the extraordinary hall effect
US7257882B2 (en) * 2005-05-19 2007-08-21 International Business Machines Corporation Multilayer coil assembly and method of production
KR100704856B1 (ko) * 2005-06-13 2007-04-09 (주) 아모센스 교류자기저항효과를 이용한 극소형 미세자계검출센서 및그의 제조방법
WO2008012959A1 (fr) * 2006-07-26 2008-01-31 Alps Electric Co., Ltd. Capteur magnétique
FR2911690B1 (fr) 2007-01-19 2009-03-06 Thales Sa Dispositif d'amplification magnetique comportant un capteur magnetique a sensibilite longitudinale
JP4194110B2 (ja) * 2007-03-12 2008-12-10 オムロン株式会社 磁気カプラ素子および磁気結合型アイソレータ
JP4890401B2 (ja) * 2007-09-20 2012-03-07 アルプス電気株式会社 原点検出装置
CN102288927A (zh) * 2011-06-28 2011-12-21 钱正洪 巨磁阻自旋阀磁敏传感器及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0710850A2 (fr) * 1994-11-04 1996-05-08 International Business Machines Corporation Capteur de champ magnétique et son procédé de fabrication
US5650958A (en) * 1996-03-18 1997-07-22 International Business Machines Corporation Magnetic tunnel junctions with controlled magnetic response
WO2000079297A1 (fr) * 1999-06-18 2000-12-28 Koninklijke Philips Electronics N.V. Procede de fabrication d'un dispositif de capteur magnetique

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2734058B1 (fr) 1995-05-12 1997-06-20 Thomson Csf Amperemetre
FR2750769B1 (fr) 1996-07-05 1998-11-13 Thomson Csf Capteur de champ magnetique en couche mince
EP0959475A3 (fr) * 1998-05-18 2000-11-08 Canon Kabushiki Kaisha Mémoire magnétique à film mince et méthode d'enregistrement et de reproduction et appareil utilisant une telle mémoire
US6185079B1 (en) * 1998-11-09 2001-02-06 International Business Machines Corporation Disk drive with thermal asperity reduction circuitry using a magnetic tunnel junction sensor
US6259586B1 (en) * 1999-09-02 2001-07-10 International Business Machines Corporation Magnetic tunnel junction sensor with AP-coupled free layer
US6574079B2 (en) * 2000-11-09 2003-06-03 Tdk Corporation Magnetic tunnel junction device and method including a tunneling barrier layer formed by oxidations of metallic alloys
US6710987B2 (en) * 2000-11-17 2004-03-23 Tdk Corporation Magnetic tunnel junction read head devices having a tunneling barrier formed by multi-layer, multi-oxidation processes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0710850A2 (fr) * 1994-11-04 1996-05-08 International Business Machines Corporation Capteur de champ magnétique et son procédé de fabrication
US5650958A (en) * 1996-03-18 1997-07-22 International Business Machines Corporation Magnetic tunnel junctions with controlled magnetic response
WO2000079297A1 (fr) * 1999-06-18 2000-12-28 Koninklijke Philips Electronics N.V. Procede de fabrication d'un dispositif de capteur magnetique

Also Published As

Publication number Publication date
US7094480B2 (en) 2006-08-22
FR2809185B1 (fr) 2002-08-30
JP2003533895A (ja) 2003-11-11
KR20030034073A (ko) 2003-05-01
FR2809185A1 (fr) 2001-11-23
US20030157368A1 (en) 2003-08-21

Similar Documents

Publication Publication Date Title
EP2167984B1 (fr) Capteur de champ magnétique à faible bruit
EP1055259B1 (fr) Magnetoresistance a effet tunnel et capteur magnetique utilisant une telle magnetoresistance
EP0406060B1 (fr) Capteur à effet magnétorésistif
WO2001088562A1 (fr) Capteur de champ magnetique utilisant la magnetoresistance, et procede de fabrication
JP5731873B2 (ja) 磁気抵抗磁界センサーと電子処理回路とを有する計測アセンブリ
EP2038671B1 (fr) Procede et systeme pour ajuster la sensibilite d&#39;un capteur magnetoresistif
JP2003121197A (ja) 回転角度センサ
EP0853766A1 (fr) Capteur de champ magnetique a pont de magnetoresistances
WO2006067100A1 (fr) Procede de mesure d&#39;un champ magnetique faible et capteur de champ magnetique a sensibilite amelioree
FR2918762A1 (fr) Capteur de champ magnetique a faible bruit utilisant un transfert de spin lateral.
FR2729790A1 (fr) Magnetoresistance geante, procede de fabrication et application a un capteur magnetique
EP2597480A1 (fr) Capteur de champ magnétique
EP0660128B1 (fr) Détecteur de champ magnétique en couches minces
FR2692711A1 (fr) Transducteur magnétorésistif.
EP1046021B1 (fr) Capteur angulaire lineaire a magnetoresistances
EP3009853B1 (fr) Capteur de champ magnetique pour la detection d&#39;au moins deux composantes de champ magnetique
FR2710753A1 (fr) Capteur de courant comprenant un ruban magnétorésistif et son procédé de réalisation.
FR2787197A1 (fr) Capteur de champ magnetique a magnetoresistance geante
JP2007536745A (ja) 電子のスピンの位置および符号を利用する半導体デバイス
US9341597B2 (en) Nanoscale spintronic chemical sensor
FR3068476B1 (fr) Dispositif de mesure de champs magnetiques faibles
FR2963432A1 (fr) Capteur integre de mesure de tension ou de courant a base de magnetoresistances

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020027015549

Country of ref document: KR

Ref document number: 10276693

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020027015549

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWW Wipo information: withdrawn in national office

Ref document number: 1020027015549

Country of ref document: KR