EP0853766A1 - Capteur de champ magnetique a pont de magnetoresistances - Google Patents

Capteur de champ magnetique a pont de magnetoresistances

Info

Publication number
EP0853766A1
EP0853766A1 EP97936752A EP97936752A EP0853766A1 EP 0853766 A1 EP0853766 A1 EP 0853766A1 EP 97936752 A EP97936752 A EP 97936752A EP 97936752 A EP97936752 A EP 97936752A EP 0853766 A1 EP0853766 A1 EP 0853766A1
Authority
EP
European Patent Office
Prior art keywords
magnetoresistors
sensor
oriented
sensor according
compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97936752A
Other languages
German (de)
English (en)
Inventor
Line Vieux-Rochaz
Jean-Marc Fedeli
Robert Cuchet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0853766A1 publication Critical patent/EP0853766A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance

Definitions

  • the present invention relates to a magnetic field sensor with a magnetoresistor bridge. It finds an application in the measurement of magnetic fields, in particular weak fields, that is to say of the order of a few tens of Oersteds.
  • Field sensors consist of four magnetoresistors mounted on a WHEATSTONE bridge.
  • Figure 1 attached shows an example.
  • the four magnetoresistors each have the shape of an elongated bar and are mounted in electrical opposition two by two in the bridge (respectively RI and R2), terminals being located respectively between the magnetoresistors.
  • the input voltage (or supply) applied between two terminals of the bridge is denoted Ve, and the output (or measurement) voltage taken between the two other terminals is denoted Vs.
  • Ve The input voltage (or supply) applied between two terminals of the bridge
  • Vs the output (or measurement) voltage taken between the two other terminals.
  • only two of the magnetoresistors must be sensitive to the magnetic field to be measured (for example the R2 magnetoresistors) otherwise the bridge would remain balanced under all circumstances.
  • One of the solutions consists in placing a magnetic screen in front of two of the magnetoresistors, the RI magnetoresistors in FIG. 2, where the screen bears the reference Ec.
  • a magnetic screen is placed in front of two of the magnetoresistors, the RI magnetoresistors in FIG. 2, where the screen bears the reference Ec.
  • Such a sensor is described, for example, in the article by J. DAUGHTON et al. titled "Magnetic
  • the present invention recommends orienting two of the magnetoresistors longitudinally and transversely the other two, the orientations being taken with respect to the direction of the field to be measured.
  • the two magnetoresistors mounted transversely are insensitive to the variation of the applied field and are therefore neutralized. Only the longitudinally mounted magnetoresistors are sensitive to the applied field. The desired neutralization function is therefore obtained, and this only by the orientation of the magnetoresistors, without recourse to any additional means.
  • the present invention relates to a magnetic field sensor comprising, on the one hand, at least four magnetoresistors mounted in bridge of HEATSTONE, each agnoresistor having on at least one part an elongated bar shape with a longitudinal direction and a transverse direction, the four magnetoresistors being in electrical opposition two by two in the bridge, and, on the other hand, means for supplying voltage to the bridge and means for measuring the unbalance voltage of the bridge, this sensor being characterized by the fact that the magnetoresistors are of the multilayer type and that two of the opposite magnetoresistors in the bridge have their longitudinal direction oriented parallel to a direction which is that of the field to be measured, the other two having their transverse direction oriented parallel to this same direction.
  • Magnetoresistors of the multilayer type are understood to mean magnetoresistors constituted by a stack of several bilayers, a bilayer comprising a ferromagnetic layer and a non-magnetic layer, the first and last layers of the stack being both ferromagnetic.
  • the longitudinal magnetoresistors are said to be active and the transverse magnetoresistors are said to be passive.
  • the senor further comprises a polarization means capable of applying at least to the two magnetoresistors oriented longitudinally a magnetic polarization field.
  • This polarization means can be a winding or a conductor traversed by a polarization current, or a permanent magnet.
  • the winding can surround the two longitudinal magnetoresistors or surround all of the magnetoresistors.
  • the sensor further comprises a compensation means capable of applying a compensating magnetic field at least to the two magnetoresistors oriented longitudinally.
  • This compensation means may comprise a winding traversed by a compensation current or a conductor traversed by a compensation current.
  • the senor can comprise a compensation means capable of applying a field to the two magnetoresistors mounted transversely.
  • the multilayer type magnetoresistors are based on FeNi / Ag.
  • FIG. 3 shows the resistance variations of a giant effect multilayer magnetoresistor as a function of a magnetic field applied parallel to the longitudinal axis of the magnetoresistance
  • - Figure 4 shows the resistance variations of a giant effect multilayer magnetoresistor as a function of a magnetic field applied parallel to the transverse axis of the magnetoresistance;
  • - Figure 5 illustrates the general structure of a sensor 1 according to the invention;
  • FIG. 8 illustrates an embodiment with double polarization and compensation winding
  • FIG. 9a, 9b, 9c illustrate an embodiment of the sensor of the invention.
  • FIGs 3 and 4 show the operating principle of the multilayer magnetoresistors used according to the invention. These magnetoresistors are sometimes called "giant effect" ("Giant
  • the magnetoresistance can be polarized to operate it around a point M away from the top of the curve.
  • FIG. 4 illustrates the behavior of such a magnetoresistance as a function of an applied field perpendicular to the magnetoresistant bar (field note __).
  • a tray between two critical values -Hcr and + Hcr plateau along which the resistance does not vary. On either side of this plateau, the resistance decreases almost linearly with the field.
  • the magnetoresistors, which are mounted one longitudinally, the other transversely, according to one of the essential characteristics of the invention, will therefore operate differently according to their orientation.
  • the point of operation of the bridge will be defined by the point M for the two longitudinal magnetoresistors and by the point P, middle of the plate, for the two transverse magnetoresistors (which are not polarized in this particular case).
  • the application of a magnetic field to all four magnetoresistors will therefore reduce or increase the resistance of the two longitudinal magnetoresistors
  • the variation in resistance as a function of the applied field, of a multilayer stack of the type in which there is a succession of bilayers (a bilayer comprising a ferromagnetic layer and a non-magnetic layer), the assembly being observed full layer is an isotropic variation, in the sense that, whatever the direction of the applied field, the response is identical and triangular in shape. If we engrave in this full layer of the bars, an anisotropy can appear in the response of the bar according to the direction of the applied field, by appropriately choosing the dimensions of the bar.
  • the theory provides that if the thickness of the bar increases, the extent of the plate increases, the width of the bar remaining constant otherwise, because the extent of the plate is in fact proportional to t / w or t is the thickness and w the width of the bar.
  • this plateau effect is used to make a WHEATSTONE bridge of four magnetoresistors in which two magnetoresistors at least have a t / w ratio giving a plateau effect
  • FIG. 5 shows the respective orientation of the magnetoresistive bars.
  • the bars GMR1 and GMR2 have their longitudinal axis L parallel to a direction D, which is that of the field H to be measured, while the bars GMR3, GMR4 have their transverse axis T parallel to this direction.
  • the applied field H is therefore longitudinal for GMRl and GMR2 and transverse for GMR3 and GMR4.
  • FIG 6 shows the electrical connections for building a WHEATSTONE bridge.
  • the magnetoresistors are represented by their resistance.
  • the resistors R (GMR1) and R (GMR2) are mounted in opposition, as are the resistors R (GMR3) and R (GMR4).
  • the measurement voltage Vs is taken between the points SI and S2 located between R (GMR1) and R (GMR4), on the one hand, and R (GMR3) and R (GMR2) on the other hand.
  • the supply voltage Ve is applied between on the one hand R (GMR1) and R (GMR3) and on the other hand R (GMR4) and R (GMR2).
  • FIG. 6 refers to the electrical resistances and not to the magnetoresistive bars themselves, as for FIG. 5.
  • the orientation of the resistors R (GMR1) in the electrical diagram of FIG. 6 therefore has no connection with the orientation of the corresponding bars GMRl ... of FIG. 5.
  • the senor is provided with a compensation means constituted by any means and comprising, for example, a winding or a flat conductor traversed by a suitable current.
  • FIG. 7 thus schematically shows a comparison and detection circuit 10, the inputs of which receive the unbalance voltage Vs of the bridge, and the output supplies a compensation winding 12.
  • the diagram in FIG. 7 also shows a winding 14 which is the polarization winding of the longitudinal magnetoresistors.
  • Figure 8 shows a possible practical arrangement.
  • the magnetic field to be measured is that which results from the circulation of a current in a flat conductor 20.
  • the sensor shown comprises two windings 12 and 14, the first of compensation, the second of polarization. These two windings surround the magnetoresistors GMRl and GMR2.
  • the polarization winding can be replaced by a polarization magnet 16 or a planar conductor.
  • the bias winding and / or the compensation winding may surround all of the magnetoresistors.
  • the sensor of the invention only works correctly if the field applied to the transverse magnetoresistors does not exceed the critical value limiting the plateau along which the resistance of the magnetoresistors remains constant. If this is not the case, provision is made to provide the sensor with a second compensation means comprising, for example, by a winding or a flat conductor traversed by a current.
  • the compensation field thus created lowers the total field and makes it possible to bring the latter to a value corresponding to the plateau, or even to a zero value.
  • the means for compensating the transverse magnetoresistors can also act on the longitudinal magnetoresistors. It may be, for example, a single flat conductor passing above (or below) the four magnetoresistors and traversed by a current or a single winding surrounding the four magnetoresistors.
  • FIG. 9a it can be seen that one starts from a substrate 30, for example made of silicon on which a layer of conductive material, for example gold, copper or the like, is deposited. This layer is etched to form a sheet of lower conductors 32.
  • a substrate 30 for example made of silicon on which a layer of conductive material, for example gold, copper or the like, is deposited. This layer is etched to form a sheet of lower conductors 32.
  • an insulating layer 34 (see FIG. 9b) is deposited, for example silica, then a layer 36 of conductive material, for example a CrAu alloy. This material is etched so as to leave only two connection tabs on either side of the space reserved for future magnetoresistors. After etching, the sub-assembly therefore comprises eight connection tabs.
  • a magnetoresistive multilayer stack is deposited on the assembly and this stack is etched to leave two bars oriented in one direction and two others oriented perpendicular to this direction. That of the bars which is shown in FIG. 9b bears the reference 38. The ends of these bars rest on the connection tabs 36 already produced.
  • a layer of insulating material 40 is then deposited. This layer is engraved with openings to the right of the ends of the lower conductors 32 as well as to the right of the rear of the connection tabs.
  • a layer of conductive material for example gold or copper, is deposited. This material fills the openings made and thus makes contact with the sheet of lower conductors 32 and the connection tabs 36.
  • This conductive layer is then etched to obtain a layer of upper conductors 42 and connections 44 for the magnetoresistors.
  • the magnetoresistors which have been described so far are rectangular bars. These bars may have a width less than 40 ⁇ m and a thickness greater than 0.01 ⁇ m so as to have a plateau effect. However, advantageously, the narrower this width, the wider the plate and may give, for example, critical H values of the order of 150 Oe (or even more), for widths of 1 ⁇ m or less.
  • the two magnetoresistors GMR1, GMR2 oriented longitudinally can have identical structures and compositions and the two magnetoresistors GMR3, GMR4 oriented transversely can have structures and compositions also identical.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

Le capteur de l'invention comprend deux magnétorésistances multicouches montées longitudinalement (GMR1, GMR2) et deux magnétorésistances multicouches montées transversalement (GMR3, GMR4). Les premières seules sont sensibles au champ magnétique à mesurer (H). Application à la mesure des champs magnétiques, notamment des champs faibles.

Description

CAPTEUR DE CHAMP MAGNETIQUE A PONT DE MAGNETORESISTANCES
DESCRIPTION
Domaine technique
La présente invention a pour objet un capteur de champ magnétique à pont de magnétorésistances. Elle trouve une application dans la mesure des champs magnétiques, notamment des champs faibles, c'est-à-dire de l'ordre de quelques dizaines d'Oersteds.
Etat de la technique
On connaît des capteurs de champ constitués de quatre magnétorésistances montées en pont de WHEATSTONE. La figure 1 annexée en montre un exemple. Les quatre magnétorésistances présentent chacune la forme de barreau allongé et sont montées en opposition électrique deux à deux dans le pont (respectivement RI et R2 ) , des bornes étant situées respectivement entre les magnétorésistances. La tension α' entrée (ou d'alimentation) appliquée entre deux bornes du pont est notée Ve, et la tension de sortie (ou de mesure) prise entre les deux autres bornes est notée Vs . Dans un tel montage, deux des magnétorésistances seulement doivent être sensibles au champ magnétique à mesurer (par exemple les magnétorésistances R2 ) sinon le pont resterait équilibré en toutes circonstances. L'une des solutions consiste à disposer un écran magnétique devant deux des magnétorésistances, les magnerorésistances RI sur la figure 2, où l'écran porte la référence Ec. Un tel capteur est décrit, par exemple, dans l'article de J. DAUGHTON et al. intitulé "Magnetic
Field Sensors Using GMR Multilayer" publié dans la revue "IEEE Trans on Magnetics", vol. 30, n°2, mars 1994.
Bien que donnant satisfaction à certains égards, ces capteurs restent complexes à réaliser en raison des moyens destinés à rendre passives deux des magnétorésistances. La présente invention a justement pour but de remédier à cet inconvénient en évitant le recours à cet écran.
Exposé de 1 ' invention
A cette fin, la présente invention préconise d'orienter longitudinalement deux des magnétorésistances et transversalement les deux autres, les orientations étant prises par rapport à la direction du champ à mesurer. Sous certaines conditions qui seront précisées plus loin, les deux magnétorésistances montées transversalement sont insensibles à la variation du champ appliqué et sont donc neutralisées. Seules les magnerorésistances montées longitudinalement sont sensibles au champ appliqué. On obtient donc bien la fonction de neutralisation recherchée et cela uniquement par l'orientation des magnétorésistances, sans recours à un quelconque moyen supplémentaire.
De façon précise, la présente invention a pour objet un capteur de champ magnétique comprenant, d'une part, au moins quatre magnétorésistances montées en pont de HEATSTONE, chaque agnétorésistance présentant sur au moins une partie une forme de barreau allongé avec une direction longitudinale et une direction transversale, les quatre magnétorésistances étant en opposition électrique deux à deux dans le pont, et, d'autre part, des moyens d'alimentation en tension du pont et des moyens de mesure de la tension de déséquilibre du pont, ce capteur étant caractérisé par le fait que les magnétorésistances sont du type multicouches et que deux des magnétorésistances opposées dans le pont ont leur direction longitudinale orientée parallèlement à une direction qui est celle du champ à mesurer, les deux autres ayant leur direction transversale orientée parallèlement à cette même direction.
On entend par magnétorésistances du type multicouches des magnétorésistances constituées par un empilement de plusieurs bicouches, une bicouche comprenant une couche ferromagnétique et une couche non magnétique, la première et la dernière couches de l'empilement étant toutes deux ferromagnétiques. Les magnétorésistances longitudinales sont dites actives et les magnétorésistances transversales sont dites passives.
De manière avantageuse, le capteur comprend en outre un moyen de polarisation apte à appliquer au moins aux deux magnétorésistances orientées longitudinalement un champ magnétique de polarisation. Ce moyen de polarisation peut être un enroulement ou un conducteur parcouru par un courant de polarisation, ou un aimant permanent. L'enroulement peut entourer les deux magnétorésistances longitudinales ou entourer l'ensemble des magnétorésistances. De manière avantageuse encore, le capteur comprend en outre un moyen de compensation apte à appliquer un champ magnétique de compensation au moins aux αeux magnétorésistances orientées longitudinalement. Ce moyen de compensation peut comprendre un enroulement parcouru par un courant de compensation ou un conducteur parcouru par un courant de compensation.
Selon un autre mode de réalisation, le capteur peut comprendre un moyen de compensation apte à appliquer un champ aux deux magnétorésistances montées transversalement .
De façon préférentielle, les magnétorésistances de type multicouche sont a base de FeNi/Ag.
Brève description des dessins
- la figure 1, déjà décrite, illustre la structure générale d'un capteur de l'art antérieur à quatre magnétorésistances montées en pont ; - la figure 2, déjà décrite, montre un écran rendant insensibles deux des magnétorésistances du pont ;
- la figure 3 montre les variations de résistance d'une magnétoresistance multicouches a effet géant en fonction d'un champ magnétique applique parallèlement a l'axe longitudinal de la magnétoresistance ;
- la figure 4 montre les variations de résistance d'une magnétoresistance multicouches a effet géant en fonction d'un champ magnétique applique parallèlement a l'axe transversal de la magnétoresistance ; - la figure 5 illustre la structure générale d'un capteur selon 1 ' invention ;
- la figure 6 illustre le montage électrique en pont de WHEATSTONE ; - la figure 7 illustre un mode de réalisation d'un circuit de compensation ;
- la figure 8 illustre un mode de réalisation à double enroulement de polarisation et de compensation ; - les figures 9a, 9b, 9c illustrent un exemple de réalisation du capteur de l'invention.
Description de modes particuliers de réalisation
Les figures 3 et 4 montrent le principe de fonctionnement des magnétorésistances multicouches utilisées selon l'invention. Ces magnétorésistances sont dites quelquefois "à effet géant" ("Giant
Magnétoresistance" en anglais).
Sur la figure 3, on voit la variation de la résistance R d'une telle magnétoresistance en fonction du champ magnétique applique parallèlement au barreau
(champ noté H//) . La résistance décroît sensiblement linéairement avec le champ, de part et d'autre de la valeur obtenue à champ nul. Par application d'un champ magnétique permanent Hpolar, on peut polariser la magnétoresistance pour la faire fonctionner autour d'un point M écarté du sommet de la courbe.
La figure 4 illustre le comportement d'une telle magnétoresistance en fonction d'un champ applique perpendiculairement au barreau magnetoresistant (champ note __ ) . On voit, sur cette figure 4, un plateau compris entre deux valeurs critiques -Hcr et +Hcr, plateau le long duquel la résistance ne varie pas. De part et d'autre de ce plateau, la résistance décroît quasi-linéairement avec le champ. Les magnétorésistances, qui sont montées les unes longitudinalement, les autres transversalement, selon l'une des caractéristiques essentielles de l'invention, vont donc fonctionner différemment selon leur orientation. Si l'on applique un champ de polarisation uniquement sur les magnétorésistances longitudinales, le point de fonctionnement du pont sera défini par le point M pour les deux magnétorésistances longitudinales et par le point P, milieu du plateau, pour les deux magnétorésistances transversales (qui ne sont pas polarisées dans ce cas particulier). L'application d'un champ magnétique à l'ensemble des quatre magnétorésistances va donc réduire ou augmenter la résistance des deux magnétorésistances longitudinales
(selon le sens du champ) mais laisser inchangée la résistance des deux magnétorésistances transversales si le champ est compris entre -Hcr et rHcr. Des lors, le pont se trouvera déséquilibre et la tension de déséquilibre reflétera la valeur du champ appliqué.
D'une façon générale, la variation de résistance en fonction du champ appliqué, d'un empilement multicouches du type où l'on a une succession de bicouches (une bicouche comprenant une couche ferromagnétique et une couche non magnétique) , l'ensemble étant observé pleine couche, est une variation isotrope, en ce sens que, quelle que soit la direction du champ appliqué, la réponse est identique et de forme triangulaire. Si l'on grave dans cette pleine couche des barreaux, on peut faire apparaître une anisotropie dans la réponse du barreau suivant la direction du champ appliqué, en choisissant de manière appropriée les dimensions du barreau. Lorsque le champ est appliqué parallèlement à la longueur du barreau, la réponse reste triangulaire comme pour la réponse pleine couche ; par contre, lorsque le champ est appliqué transversalement à la longueur du barreau, la réponse fait apparaître un plateau en son sommet : c'est "l'effet plateau".
Cet effet plateau est décrit dans une publication intitulée "Magnétoresistance of microscopic strips of thm (NiFe/Ag) multilayers with large bi-quadratic coupling" de S. Young et al., publiée dans "Journal of Magnetism and Magnetic Materials" 162 (1996) 38-42. Dans le paragraphe 3 de cette publication, on donne les résultats expérimentaux obtenus sur des barreaux de longueur 500 μm, d'épaisseur 0,05 μm et de différentes largeurs . Ces résultats montrent que le plateau est observe uniquement dans le cas ou le champ est applique transversalement a la longueur du barreau et que l'étendue du plateau varie linéairement avec l'inverse de la largeur du barreau, pour une épaisseur donnée, comme le montre la figure 1 du document.
La théorie prévoit que si l'épaisseur du barreau augmente, l'étendue du plateau augmente, la largeur du barreau restant constante par ailleurs, car l'étendue du plateau est en fait proportionnelle a t/w ou t est l'épaisseur et w la largeur du barreau.
Dans la présente invention, on utilise cet effet plateau pour réaliser un pont de WHEATSTONE de quatre magnétorésistances dans lequel deux magnétorésistances au moins ont un rapport t/w donnant un effet plateau
(par exemple largeur inférieure à 40 μm pour une épaisseur d'environ 0,05 μm) et sont positionnées de telle façon que leur longueur soit perpendiculaire au champ appliqué. Les deux autres magnétorésistances sont placées de façon que leur longueur soit parallèle en champ appliqué, leur largeur pouvant être du même ordre que celle des deux autres, mais pouvant être également plus grande ou plus étroite (cela n'a en effet aucune incidence sur la forme de la réponse qui reste toujours triangulaire puisque le champ est parallèle a la longueur de ces barreaux) .
Le capteur de 1 ' invention se présente alors comme illustré sur les figures 5 et 6. La figure 5, tout d'abord, montre l'orientation respective des barreaux magnetoresistifs . Les barreaux GMRl et GMR2 ont leur axe longitudinal L parallèle à une direction D, qui est celle du champ H à mesurer, tandis que les barreaux GMR3, GMR4 ont leur axe transversal T parallèle a cette direction. Le champ applique H est donc longitudinal pour GMRl et GMR2 et transversal pour GMR3 et GMR4.
La figure 6 montre les connexions électriques permettant de constituer un pont de WHEATSTONE. Les magnétorésistances sont représentées par leur résistance. Les résistances R(GMR1) et R(GMR2) sont montées en opposition, de même que les résistances R(GMR3) et R(GMR4). La tension de mesure Vs est prise entre les points SI et S2 situes entre R(GMR1) et R(GMR4), d'une part, et R(GMR3) et R(GMR2) d'autre part. La tension d'alimentation Ve est appliquée entre d'une part R(GMR1) et R(GMR3) et d'autre part R(GMR4) et R(GMR2) .
On observera que la figure 6 se réfère aux résistances électriques et non aux barreaux magnetoresistants eux mêmes, comme pour la figure 5. L'orientation des résistances R(GMR1) dans le schéma électrique de la figure 6 n'a donc aucun lien avec l'orientation des barreaux correspondants GMRl ... de la figure 5.
Selon un mode de réalisation avantageux, on munit le capteur d'un moyen de compensation constitué par tout moyen et comprenant, par exemple, un enroulement ou un conducteur plan parcouru par un courant convenable. La figure 7 montre ainsi, de manière schématique, un circuit 10 de comparaison et de détection, dont les entrées reçoivent la tension Vs de déséquilibre du pont, et la sortie alimente un enroulement 12 de compensation. Ces moyens permettent d'obtenir au niveau de deux magnétorésistances longitudinales, un champ global nul (méthode dite du zéro), auquel cas c'est le signal de compensation qui constitue le signal de mesure.
Le schéma de la figure 7 montre aussi un enroulement 14 qui est l'enroulement de polarisation des magnétorésistances longitudinales.
La figure 8 montre une disposition pratique possible. Dans ce mode de réalisation, le champ magnétique à mesurer est celui qui résulte de la circulation d'un courant dans un conducteur plat 20. Le capteur représenté comprend deux enroulements 12 et 14, le premier de compensation, le second de polarisation. Ces deux enroulements entourent les magnétorésistances GMRl et GMR2. L'enroulement de polarisation peut être remplacé par un aimant de polarisation 16 ou un conducteur plan. En outre, l'enroulement de polarisation et/ou l'enroulement de compensation peuvent entourer l'ensemble des magnétorésistances.
Le capteur de l'invention ne fonctionne correctement que si le champ appliqué aux magnétorésistances transversales n'excède pas la valeur critique limitant le plateau le long duquel la résistance des magnétorésistances demeure constante. Si ce n'est pas le cas, il est prévu de munir le capteur d'un deuxième moyen de compensation comprenant, par exemple, par un enroulement ou un conducteur plan parcouru par un courant. Le champ de compensation ainsi créé abaisse le champ total et permet de ramener celui- ci à une valeur correspondant au plateau, voire à une valeur nulle. Le moyen de compensation des magnétorésistances transversales peut également agir sur les magnétorésistances longitudinales. Il peut s'agir, par exemple, d'un conducteur plat unique passant au-dessus (ou au-dessous) des quatre magnétorésistances et parcouru par un courant ou d'un enroulement unique entourant les quatre magnétorésistances.
Les figures 9a, 9b et 9c illustrent un exemple de réalisation d'un capteur selon l'invention. Ces figures sont des coupes passant par l'une des deux magnétorésistances longitudinales, celles-ci étant supposées entourées d'un enroulement commun de polarisation et de compensation. En se référant d'abord à la figure 9a, on voit qu'on part d'un substrat 30, par exemple en silicium sur lequel on dépose une couche de matériau conducteur, par exemple en or, cuivre ou autre. On grave cette couche pour former une nappe de conducteurs inférieurs 32.
Sur ce premier sous-ensemble, on dépose une couche d'isolant 34 (cf Fig. 9b), par exemple de la silice, puis une couche 36 de matériau conducteur, par exemple un alliage CrAu . On grave ce matériau pour ne laisser subsister que deux pattes de connexion de part et d'autre de l'emplacement réservé aux futures magnétorésistances. Après gravure, le sous-ensemble comprend donc huit pattes de connexion. On dépose ensuite sur l'ensemble un empilement multicouches magnetoresistif et l'on grave cet empilement pour laisser subsister deux barreaux orientés selon une direction et deux autres orientés perpendiculairement à cette direction. Celui des barreaux qui est représenté sur la figure 9b porte la référence 38. Les extrémités de ces barreaux reposent sur les pattes de connexion 36 déjà réalisées.
Conformément à la figure 9c, on dépose ensuite une couche de matériau isolant 40. On grave dans cette couche des ouvertures au droit des extrémités des conducteurs inférieurs 32 ainsi qu'au droit de l'arrière des pattes de connexion. On dépose ensuite une couche de matériau conducteur, par exemple de l'or ou du cuivre. Ce matériau vient remplir les ouvertures pratiquées et prend ainsi contact avec la nappe de conducteurs inférieurs 32 et les pattes de connexion 36. On grave ensuite cette couche conductrice pour obtenir une nappe de conducteurs supérieurs 42 et des connexions 44 pour les magnétorésistances.
Les magnétorésistances qui ont été décrites jusqu'ici sont des barreaux rectangulaires. Ces barreaux peuvent avoir une largeur inférieure à 40 μm et une épaisseur supérieure à 0,01 μm de manière à présenter un effet plateau. Mais, avantageusement, plus cette largeur sera faible plus le plateau sera large et pourra donner, par exemple, des valeurs de H critique de l'ordre de 150 Oe (voire davantage), pour des largeurs de 1 μm ou moins.
Il va de soi qu'on ne sortirait pas du cadre de l'invention en utilisant des formes plus complexes, dès lors qu'au moins une partie des magnétorésistances est dirigée longitudinalement. Une autre partie peut être éventuellement dirigée transversalement, puisqu'elle n'aura alors pas d'effet sur le changement de résistance de l'ensemble. On peut alors utiliser par exemple des magnétorésistances en forme de grecque ou de tout autre motif.
Les deux magnétorésistances GMRl, GMR2 orientées longitudinalement peuvent avoir des structures et des compositions identiques et les deux magnétorésistances GMR3, GMR4 orientées transversalement peuvent avoir des structures et des compositions également identiques.

Claims

REVENDICATIONS
1. Capteur de champ magnétique comprenant, d'une part, au moins quatre magnétorésistances (RI, R2, R3, R4) montées en pont de WHEATSTONE, chaque magnétoresistance présentant sur au moins une partie une forme de barreau allongé avec une direction longitudinale et une direction transversale, les quatre magnétorésistances étant en opposition électrique deux à deux dans le pont, et, d'autre part, des moyens d'alimentation en tension (Ve) du pont et des moyens de mesure de la tension (Vs) de déséquilibre du pont, caractérisé par le fait que les magnétorésistances sont du type multicouches et que deux des magnétorésistances opposées dans le pont (GMRl, GMR2) ont leur direction longitudinale (L) orientée parallèlement à une direction (D) qui est celle du champ à mesurer (H), les deux autres (GMR3, GMR4) ayant leur direction transversale (T) orientée parallèlement à cette même direction.
2. Capteur selon la revendication 1, dans lequel les magnétorésistances multicouches sont des empilements de plusieurs bicouches, une bicouche comprenant une couche ferromagnétique et une couche non magnétique, la première et la dernière couches de l'empilement étant ferromagnétiques.
3. Capteur selon la revendication 1, dans lequel les deux magnétorésistances ayant leur direction transversale (T) orientée parallèlement à la direction du champ à mesurer présentent un effet plateau.
4. Capteur selon la revendication 1, comprenant en outre un moyen de polarisation (14) apte a appliquer au moins aux deux magnétorésistances orientées longitudinalement (GMRl, GMR2) un champ magnétique de polarisation (Hpolar) dirigé longitudinalement.
5. Capteur selon la revendication 4, dans lequel le moyen de polarisation est un enroulement (14) parcouru par un courant de polarisation.
6. Capteur selon la revendication 5, dans lequel l'enroulement entoure les deux magnétorésistances orientées longitudinalement.
7. Capteur selon la revendication 5, dans lequel l'enroulement entoure l'ensemble des magnétorésistances .
8. Capteur selon la revendication 4, dans lequel le moyen de polarisation est un aimant permanent (16).
9. Capteur selon la revendication 1, comprenant en outre un premier moyen de compensation (10, 12) apte a appliquer au moins un champ magnétique de compensation longitudinal aux deux magnétorésistances orientées longitudinalement (GMRl, GMR2) .
10. Capteur selon la revendication 7, dans lequel le moyen de compensation comprend un comparateur (10) recevant la tension de déséquilibre et délivrant une tension qui est appliquée a un enroulement de compensation (12) entourant au moins les deux magnétorésistances orientées longitudinalement
11. Capteur selon la revendication 10, dans lequel l'enroulement de compensation entoure les quatre magnétorésistances .
12. Capteur selon la revendication 1, comprenant en outre un second moyen de compensation apte à appliquer un champ de compensation transversal aux deux magnétorésistances orientées transversalement (GMR3, GMR4) .
13. Capteur selon les revendications 9 ou 12, dans lequel le moyen de compensation comprend un conducteur parcouru par un courant, ce conducteur passant au- dessus desdites magnétorésistances à compenser.
14. Capteur selon la revendication 4, dans lequel le moyen de polarisation comprend un conducteur (10) passant au-dessus des quatre magnétorésistances (GMRl, GMR2, GMR3, GMR4 ) , ce conducteur étant parcouru par un courant normal à l'axe longitudinal (L) des deux magnétorésistances (GMRl, GMR2) orientées longitudinalement et à l'axe transversal (T) des deux magnétorésistances (GMR3, GMR4 ) orientées transversalement.
15. Capteur selon la revendication 1, dans lequel les deux magnétorésistances (GMRl, GMR2) orientées longitudinalement ont des structures et des compositions identiques entre elles et les deux magnétorésistances (GMR3, GMR4 ), orientées transversalement ont des structures et des compositions identiques entre elles.
16. Capteur selon la revendication 12, dans lequel les magnétorésistances sont des barreaux dont la largeur est inférieure à 40 μm.
17. Capteur selon la revendication 16, dans lequel les magnétorésistances sont des barreaux dont l'épaisseur est supérieure à 0,01 μm.
18. Capteur selon la revendication 1, dans lequel les magnétorésistances sont à base de FeNi/Ag.
EP97936752A 1996-08-08 1997-08-07 Capteur de champ magnetique a pont de magnetoresistances Withdrawn EP0853766A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9610004A FR2752302B1 (fr) 1996-08-08 1996-08-08 Capteur de champ magnetique a pont de magnetoresistances
FR9610004 1996-08-08
PCT/FR1997/001465 WO1998007042A1 (fr) 1996-08-08 1997-08-07 Capteur de champ magnetique a pont de magnetoresistances

Publications (1)

Publication Number Publication Date
EP0853766A1 true EP0853766A1 (fr) 1998-07-22

Family

ID=9494921

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97936752A Withdrawn EP0853766A1 (fr) 1996-08-08 1997-08-07 Capteur de champ magnetique a pont de magnetoresistances

Country Status (5)

Country Link
US (1) US6069476A (fr)
EP (1) EP0853766A1 (fr)
JP (1) JPH11513128A (fr)
FR (1) FR2752302B1 (fr)
WO (1) WO1998007042A1 (fr)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6529114B1 (en) * 1998-05-27 2003-03-04 Honeywell International Inc. Magnetic field sensing device
JP2002522866A (ja) * 1998-08-14 2002-07-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ スピントンネル接合素子を具える磁界センサ
FR2787197B1 (fr) * 1998-12-11 2001-02-23 Thomson Csf Capteur de champ magnetique a magnetoresistance geante
EP1074815A1 (fr) * 1999-08-04 2001-02-07 FESTO AG & Co Capteur magnétique biaxial de position
DE10122468C1 (de) * 2001-05-09 2003-03-20 Heusler Isabellenhuette Elektrischer Widerstand und Verfahren zu seiner Herstellung
JP3603872B2 (ja) * 2001-05-16 2004-12-22 松下電器産業株式会社 磁気センサとこれを用いた紙幣識別装置
US6949927B2 (en) 2001-08-27 2005-09-27 International Rectifier Corporation Magnetoresistive magnetic field sensors and motor control devices using same
US6771472B1 (en) 2001-12-07 2004-08-03 Seagate Technology Llc Structure to achieve thermally stable high sensitivity and linear range in bridge GMR sensor using SAF magnetic alignments
DE10213941A1 (de) * 2002-03-28 2003-10-30 Bosch Gmbh Robert Sensorelement und Gradiometeranordnung, deren Verwendung zum Messen von Magnetfeldgradienten und Verfahren hierzu
DE602004030160D1 (de) 2004-02-19 2010-12-30 Mitsubishi Electric Corp Magnetfelddetektor und stromdetektionseinrichtung, positionsdetektionseinrichtung und rotationsdetektionseinrichtung mit dem magnetfelddetektor
DE102004047770B4 (de) * 2004-09-30 2014-08-21 Infineon Technologies Ag Sensor zum Erzeugen eines Ausgangssignals aufgrund eines Messmagnetfelds sowie Verfahren zum Abgleichen und zum Betrieb eines solchen
FR2880131B1 (fr) * 2004-12-23 2007-03-16 Thales Sa Procede de mesure d'un champ magnetique faible et capteur de champ magnetique a sensibilite amelioree
US20100001723A1 (en) * 2004-12-28 2010-01-07 Koninklijke Philips Electronics, N.V. Bridge type sensor with tunable characteristic
DE102005047413B8 (de) * 2005-02-23 2012-06-06 Infineon Technologies Ag Magnetfeldsensorelement und Verfahren zum Durchführen eines On-Wafer-Funktionstests, sowie Verfahren zur Herstellung von Magnetfeldsensorelementen und Verfahren zur Herstellung von Magnetfeldsensorelementen mit On-Wafer-Funktionstest
JP4406632B2 (ja) * 2006-08-31 2010-02-03 アルプス電気株式会社 磁気検出装置およびその製造方法
KR101107668B1 (ko) * 2006-09-07 2012-01-25 알프스 덴키 가부시키가이샤 자기검출장치
JP4639216B2 (ja) * 2007-06-07 2011-02-23 アルプス電気株式会社 磁気センサ
JP5244805B2 (ja) * 2007-09-03 2013-07-24 アルプス電気株式会社 磁気検出装置
DE102007044485A1 (de) * 2007-09-18 2009-04-02 Infineon Technologies Ag Magnetfeldsensor mit einem Sensorelement und Sensormodul mit einem Magnetfeldsensor
US7923987B2 (en) 2007-10-08 2011-04-12 Infineon Technologies Ag Magnetic sensor integrated circuit with test conductor
US8559139B2 (en) 2007-12-14 2013-10-15 Intel Mobile Communications GmbH Sensor module and method for manufacturing a sensor module
US8080993B2 (en) * 2008-03-27 2011-12-20 Infineon Technologies Ag Sensor module with mold encapsulation for applying a bias magnetic field
US7724566B1 (en) 2008-08-27 2010-05-25 The United States Of America As Represented By The Secretary Of The Navy Magnetoresistive resistor memory cell
US9470764B2 (en) 2011-12-05 2016-10-18 Hercules Technology Growth Capital, Inc. Magnetic field sensing apparatus and methods
US9529060B2 (en) 2014-01-09 2016-12-27 Allegro Microsystems, Llc Magnetoresistance element with improved response to magnetic fields
DE102014205949A1 (de) * 2014-03-31 2015-10-01 Siemens Aktiengesellschaft Durchflusskammer für einen Durchflusszytometer sowie Durchflusszytometer
KR102488536B1 (ko) 2015-06-05 2023-01-13 알레그로 마이크로시스템스, 엘엘씨 자기장들에 대한 향상된 반응을 갖는 스핀 밸브 자기저항 요소
CN106597326B (zh) * 2015-10-16 2020-01-07 爱盛科技股份有限公司 磁场感测装置
US10620279B2 (en) 2017-05-19 2020-04-14 Allegro Microsystems, Llc Magnetoresistance element with increased operational range
US11022661B2 (en) 2017-05-19 2021-06-01 Allegro Microsystems, Llc Magnetoresistance element with increased operational range
JP2019087688A (ja) * 2017-11-09 2019-06-06 Tdk株式会社 磁気センサ
KR20200068539A (ko) 2018-02-16 2020-06-15 아날로그 디바이시즈 글로벌 언리미티드 컴퍼니 위치 센서 및 위치 감지 방법
US11719771B1 (en) 2022-06-02 2023-08-08 Allegro Microsystems, Llc Magnetoresistive sensor having seed layer hysteresis suppression

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576962Y2 (fr) * 1974-07-26 1982-02-09
US4447781A (en) * 1981-10-13 1984-05-08 Honeywell Inc. Magnetoresistive transducer apparatus
US4533872A (en) * 1982-06-14 1985-08-06 Honeywell Inc. Magnetic field sensor element capable of measuring magnetic field components in two directions
US5287238A (en) * 1992-11-06 1994-02-15 International Business Machines Corporation Dual spin valve magnetoresistive sensor
US5617071A (en) * 1992-11-16 1997-04-01 Nonvolatile Electronics, Incorporated Magnetoresistive structure comprising ferromagnetic thin films and intermediate alloy layer having magnetic concentrator and shielding permeable masses
US5569544A (en) * 1992-11-16 1996-10-29 Nonvolatile Electronics, Incorporated Magnetoresistive structure comprising ferromagnetic thin films and intermediate layers of less than 30 angstroms formed of alloys having immiscible components
US5351005A (en) * 1992-12-31 1994-09-27 Honeywell Inc. Resetting closed-loop magnetoresistive magnetic sensor
FR2715507B1 (fr) * 1994-01-25 1996-04-05 Commissariat Energie Atomique Magnétorésistance multicouche polarisée.
JPH08511873A (ja) * 1994-04-15 1996-12-10 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 磁界センサ、そんなセンサを具えた装置及びそんなセンサを製造する方法
US5561368A (en) * 1994-11-04 1996-10-01 International Business Machines Corporation Bridge circuit magnetic field sensor having spin valve magnetoresistive elements formed on common substrate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9807042A1 *

Also Published As

Publication number Publication date
WO1998007042A1 (fr) 1998-02-19
JPH11513128A (ja) 1999-11-09
US6069476A (en) 2000-05-30
FR2752302B1 (fr) 1998-09-11
FR2752302A1 (fr) 1998-02-13

Similar Documents

Publication Publication Date Title
WO1998007042A1 (fr) Capteur de champ magnetique a pont de magnetoresistances
EP2038671B1 (fr) Procede et systeme pour ajuster la sensibilite d'un capteur magnetoresistif
EP1435006B1 (fr) Structure pour capteur et capteur de champ magnetique
EP2597480B1 (fr) Capteur de champ magnétique
EP1153312B1 (fr) Micromagnetometre a porte de flux a detection perpendiculaire et son procede de realisation
FR2750769A1 (fr) Capteur de champ magnetique en couche mince
EP0721670B1 (fr) Capteur de courant comprenant un ruban magnetoresistif et son procede de realisation
FR2852400A1 (fr) Capteur magnetoresistif comprenant un element sensible ferromagnetique/antiferromagnetique
EP1852707B1 (fr) Micromagnetometre de type fluxgate a bobinage d'excitation ameliore
EP3009853B1 (fr) Capteur de champ magnetique pour la detection d'au moins deux composantes de champ magnetique
FR2817622A1 (fr) Micromagnetometre a porte de flux
WO2001088562A1 (fr) Capteur de champ magnetique utilisant la magnetoresistance, et procede de fabrication
WO2000036429A1 (fr) Capteur de champ magnetique a magnetoresistance geante
EP2834658B1 (fr) Procede et dispositif de mesure d'un champ magnetique et de la temperature d'un transducteur magneto-resistif
EP0497069B1 (fr) Procédé de fabrication de capteurs magnéto-résistifs, et dispositif magnétique réalisé suivant un tel procédé
EP1419506A2 (fr) Dispositif de commande de renversement de sens d'aimentation sanschamp magnetique externe
FR2709855A1 (fr) Tête magnétique de lecture et d'écriture à élément magnétorésistant compensé en écriture.
EP0703460B1 (fr) Capteur de courant à magnétorésistance
FR3068476B1 (fr) Dispositif de mesure de champs magnetiques faibles
FR2769401A1 (fr) Procede de polarisation d'un element magnetoresistant a double ruban
WO1994000774A1 (fr) Detecteur de champ magnetique
FR2659146A1 (fr) Dispositif de mesure d'un champ magnetique a l'aide d'au moins un barreau magnetoresistant.
FR2837984A1 (fr) Procede de fabrication d'un dispositif en couche mince realise sur un substrat notamment un capteur, ainsi que dispositif en couche mince
FR2772966A1 (fr) Tete magnetique de lecture a element magneto resistant et a grande sensibilite
FR2892232A1 (fr) Procede de fabrication d'un capteur a magneto-impedance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980313

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050608