WO2004083689A1 - 油圧走行駆動装置及び油圧走行車両 - Google Patents

油圧走行駆動装置及び油圧走行車両 Download PDF

Info

Publication number
WO2004083689A1
WO2004083689A1 PCT/JP2004/003572 JP2004003572W WO2004083689A1 WO 2004083689 A1 WO2004083689 A1 WO 2004083689A1 JP 2004003572 W JP2004003572 W JP 2004003572W WO 2004083689 A1 WO2004083689 A1 WO 2004083689A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
pressure
pump
drive device
displacement
Prior art date
Application number
PCT/JP2004/003572
Other languages
English (en)
French (fr)
Inventor
Yoichiro Yamazaki
Koichi Shimomura
Masanao Nakatsuka
Original Assignee
Kobelco Cranes Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003072929A external-priority patent/JP4120433B2/ja
Priority claimed from JP2003096035A external-priority patent/JP4120441B2/ja
Priority claimed from JP2003125133A external-priority patent/JP4069795B2/ja
Priority claimed from JP2003147679A external-priority patent/JP4069803B2/ja
Application filed by Kobelco Cranes Co., Ltd. filed Critical Kobelco Cranes Co., Ltd.
Priority to EP04721287.3A priority Critical patent/EP1610040B1/en
Publication of WO2004083689A1 publication Critical patent/WO2004083689A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/46Automatic regulation in accordance with output requirements
    • F16H61/462Automatic regulation in accordance with output requirements for achieving a target speed ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/4157Control of braking, e.g. preventing pump over-speeding when motor acts as a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • F16H61/431Pump capacity control by electro-hydraulic control means, e.g. using solenoid valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/02Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type

Definitions

  • the present invention relates to a hydraulic traveling drive device that hydraulically drives a traveling vehicle or the like.
  • HST Hydrostatic Transmission; hydrostatic stepless transmission
  • a closed circuit is configured by a variable displacement hydraulic pump driven by a prime mover and a hydraulic motor connected to traveling wheels via a transmission. And a displacement operation hydraulic pump whose discharge pressure rises with an increase in the rotation speed of the prime mover.
  • the variable displacement increases as the hydraulic pressure is increased by receiving the hydraulic pressure output from the displacement operation hydraulic pump.
  • a traveling drive device provided with a regular operation for increasing the capacity of a hydraulic pump.
  • the displacement of the variable displacement hydraulic pump is operated in accordance with the change in the number of revolutions of the prime mover, thereby realizing a stepless shift by static hydraulic pressure. Further, by changing the gear ratio of the transmission interposed between the hydraulic motor and the running wheels (for example, performing two-stage switching between a high speed stage and a low speed stage), the characteristic range of the vehicle speed and the output horsepower can be obtained. Can be greatly expanded.
  • Japanese Patent Application Laid-Open No. Hei 5-248511 discloses a device described in Japanese Patent Application Laid-Open No. Hei 6-265113.
  • relief is set in a bypass passage that bypasses a discharge pipe and a suction pipe of the hydraulic pump.
  • a relief valve operable to control the pressure is provided, and when the transmission interposed between the hydraulic motor and the traveling wheel is switched from a high speed stage to a low speed stage, the set pressure of the relief valve is temporarily reduced.
  • An object of the present invention is to solve such a problem. Disclosure of the invention
  • the present invention has adopted the following configuration.
  • the present invention provides a closed circuit including a variable displacement hydraulic pump driven by a prime mover and a hydraulic motor connected to a traveling wheel of a vehicle via a transmission, and The capacity of the variable displacement hydraulic pump is increased with the rotation speed of the prime mover And a displacement operating means for controlling the displacement of the variable displacement type hydraulic pump when the transmission is switched from a high speed stage to a low speed stage, compared to when the transmission is operated other than during low speed stage switching.
  • the pump capacity of the variable displacement hydraulic pump and thus the pump absorption flow rate are temporarily increased at the time of the low speed gear change, so that the increase of the motor discharge flow rate due to the sudden increase of the motor speed accompanying the low speed gear change is variable. It is absorbed in the form of engine braking through the rotation of the displacement hydraulic pump. That is, the increase in energy due to the sudden increase in the motor rotation speed can be effectively absorbed by using the driving torque of the prime mover.
  • the deceleration may temporarily decrease and the vehicle speed hardly decelerates.
  • the time required to absorb the flow rate increases from the high speed stage. Almost the same time as the transition period to the low gear is sufficient and insignificant, and there is almost no possibility that the driver will feel uncomfortable.
  • the engine brake since the engine brake is used, temperature rise in the closed circuit hardly occurs, and there is no danger of damaging hydraulic equipment.
  • the pump displacement increase timing may correspond roughly to the low-speed gear shift timing, but the variable displacement hydraulic pressure may be changed from the time when the transmission is switched from the high gear to the low gear or earlier. It is more preferable to start increasing the capacity of the pump and stop increasing the capacity of the variable displacement hydraulic pump at the end of switching to the low-speed stage or after a certain period of time has elapsed from the end of the switching.
  • the pump displacement is always increased during the transition period to the low-speed gear switching, so that the effect of absorbing the motor discharge flow rate at the time of the low-speed gear switching can be further ensured.
  • the capacity may be rapidly reduced. However, if the capacity is gradually reduced, the transition to the normal operation can be more smoothly performed.
  • the displacement control means may include, for example, a regulator that receives a supply of hydraulic pressure and increases the capacity of the variable displacement hydraulic pump as the hydraulic pressure increases.
  • a hydraulic pressure supply source for supplying hydraulic pressure to the regulator, and a hydraulic pressure supply source interposed between the hydraulic pressure supply source and the regulator, for receiving a hydraulic pressure supplied from the hydraulic pressure supply in response to a command signal input thereto.
  • a pressure control for inputting a command signal to the pressure reducing valve so as to increase the secondary pressure of the pressure reducing valve with an increase in the rotation speed of the prime mover.
  • the pressure control means temporarily controls the secondary pressure of the pressure reducing valve when the transmission is switched from a high speed stage to a low speed stage more than during normal operation other than during low speed stage switching. It is preferable to include a pressure increasing means for increasing the pressure.
  • the pressure control means stores a plurality of types of characteristics as characteristics of the command signal with respect to the rotation speed of the prime mover, and selects a characteristic corresponding to a driving state of a vehicle from among these characteristics to select the characteristic. If the configuration is such that the command signal is determined on the basis of the above, it is possible to perform pump displacement control that matches the actual operation state by selecting the characteristics.
  • the displacement control means is connected to the output shaft of the prime mover as a hydraulic supply source different from the hydraulic supply source connected to the pressure reducing valve, and the discharge pressure increases with an increase in the rotation speed of the prime mover.
  • a high-pressure selection unit that guides a higher one of the hydraulic pressure supplied from the hydraulic pump for displacement operation and the hydraulic pressure supplied from the secondary side of the pressure reducing valve to the regulator. More preferably, the characteristics of the secondary pressure are set such that the secondary pressure of the pressure reducing valve is always higher than the hydraulic pressure supplied from the displacement operation hydraulic pump.
  • the displacement operation means is connected to an output shaft of the prime mover, and a displacement operation hydraulic pump whose discharge pressure increases as the rotation speed of the prime mover increases; and And a regulator for controlling the capacity of the variable displacement hydraulic pump in response to the supply of hydraulic pressure, and for increasing the capacity as the hydraulic pressure increases.
  • a high-pressure supply source for supplying a higher oil pressure than the hydraulic pump, a state in which oil pressure is supplied from the capacity operation hydraulic pump to the regulator, and a state in which oil pressure is supplied from the high-pressure supply source.
  • Hydraulic pressure supply switching means for switching to a state where hydraulic pressure is supplied from the high-pressure supply source to the regulator when the transmission is switched from a high speed stage to a low speed stage; Switching operation means for operating the oil pressure supply switching means so as to switch to a state in which oil pressure is supplied from the displacement operation hydraulic pump to the regulator during an operation other than the time of switching to the low speed stage. It may be something.
  • a switching valve that switches between an allowable state in which supply of hydraulic pressure from the high-pressure supply source to the regulator and an interrupted state in which the supply is interrupted;
  • a high-pressure selector that guides a higher one of the hydraulic pressure output from the valve and the hydraulic pressure supplied from the displacement-operating hydraulic pump to the regulator, and the switching control means includes: It is preferable that the switching valve be switched to the above-described allowable state when switching from the second stage to the lower speed stage, and that the switching valve be switched to the shut-off state during operation other than when switching to the lower stage. According to this configuration, during normal operation other than during low-speed gear switching, the hydraulic pressure supply from the high-pressure supply source is shut off by the switching valve.
  • the pump capacity of the variable displacement hydraulic pump is operated.
  • the supply of hydraulic pressure from the high-pressure supply source to the high-pressure selection unit is permitted, and this hydraulic pressure is selected to a high level and is guided all the time, and the hydraulic pressure is used for the capacity operation. Since the hydraulic pressure is higher than the hydraulic pressure supplied from the hydraulic pump, the pump capacity of the variable displacement hydraulic pump is temporarily increased.
  • a variable displacement hydraulic motor is provided as the hydraulic motor, and a regulating device for controlling the capacity of the hydraulic motor is provided; and control means for controlling the operation of the regulating motor is provided.
  • the HST vehicle can have the same auxiliary braking function as a general heavy vehicle.
  • the HST vehicle uses the capacity increase effect of the hydraulic motor and the power absorption effect of the prime mover to perform the auxiliary braking function, so that additional equipment costs and remodeling costs can be reduced.
  • control means includes: an auxiliary braking operation detecting means for detecting that the auxiliary braking operation has been performed; and a regulating operation when the auxiliary braking operation is detected by the auxiliary braking operation detecting means.
  • the controller be constituted by a controller which outputs an operation command signal for operating in the motor capacity increasing direction.
  • the auxiliary braking operation detecting means detects the accelerator operation amount for commanding the rotation speed of the prime mover, and the controller performs the auxiliary braking operation when the detected degree of decrease in the accelerator operation amount exceeds a set value. Is configured to output an operation command signal as Are preferred.
  • the auxiliary braking operation detecting means detects the operation amount of the accelerator for commanding the rotation speed of the prime mover, and the control means performs the auxiliary braking operation when the detected accelerator operation amount becomes equal to or less than the set value.
  • the auxiliary braking operation detecting means may detect the braking operation, and the control means may determine that the auxiliary braking operation is performed when the braking operation is detected. It may be configured to output an operation command signal.
  • an auxiliary braking selection means is provided, and the control means operates the regulator in a direction to increase the motor capacity on condition that the selection to perform the auxiliary braking is performed by the auxiliary braking selection means.
  • the auxiliary braking function is activated only when the auxiliary braking is selected by the auxiliary braking selecting means (for example, when the switch is turned on). Selections can be made according to driving conditions and operator preferences, such as obtaining a smooth driving state without acting.
  • control means is configured to apply an exhaust brake of a prime mover when an auxiliary braking operation is performed, the control means is used in a general heavy vehicle when traveling on a steep long downhill or the like. Greater deceleration can be obtained by using the exhaust brake together.
  • control means is configured to operate the regulator in a direction to increase the motor capacity and to turn on the brake warning light at the same time, the brake during the auxiliary braking operation is performed. Since the warning light is turned on, the following vehicle is indicated to be in a large deceleration state, especially when driving on public roads, and dangers such as rear-end collision can be avoided.
  • abnormality detection means for detecting the presence or absence of an abnormality in the capacity operation by the capacity operation means, and connection of the hydraulic motor and the traveling wheel when the abnormality in the capacity operation is detected by the abnormality detection means. It is more preferable to provide a disconnection means for releasing.
  • the displacement control means controls the displacement of the variable displacement hydraulic pump by receiving a supply of a hydraulic pressure, a hydraulic supply source for supplying a hydraulic pressure to the regulation, and a hydraulic supply source. And a switching position interposed between the hydraulic pressure source and the hydraulic pressure supply source to allow the supply of hydraulic pressure to the power supply and the shutoff position for interrupting the supply of the hydraulic pressure.
  • the present invention also provides a hydraulic traveling vehicle comprising: a lower traveling body; an upper revolving body rotatably mounted on the lower traveling body; and the hydraulic traveling driving device as a device for driving the lower traveling body. It is.
  • a traveling hydraulic pump and a working hydraulic pump as the variable displacement hydraulic pump are provided on the upper revolving unit, and a working hydraulic pump is used as a hydraulic source with the working hydraulic pump.
  • a working circuit to be driven, an oil tank, and an oil cooler for cooling oil returning from the working circuit to the oil tank, while the hydraulic motor as a travel drive source is provided on the lower traveling body.
  • the hydraulic motor and the traveling hydraulic pump are connected via a swivel joint to form a closed circuit traveling circuit, and a drain line for directly returning the drain oil of the traveling circuit to the oil tank;
  • An oil supply pump for supplying oil from an oil tank to the traveling circuit is provided, and the oil discharged from the working hydraulic pump during traveling is supplied to the oil cooler.
  • FIG. 1 is a hydraulic circuit diagram showing a hydraulic traveling drive device according to a first embodiment of the present invention.
  • Fig. 2 (a) is a graph showing the relationship between the prime mover speed and the command pressure of the solenoid proportional pressure reducing valve and the pump capacity in the device shown in Fig. 1, and (b) is the prime mover speed, prime mover output, and prime mover torque in the same device. And (c) are graphs showing the relationship between the vehicle speed and the driving force.
  • FIG. 3 is a time chart showing the operation of the device shown in FIG. 1 at the time of low-speed gear switching.
  • FIG. 4 is a flowchart showing a control operation example of the controller at the time of the low-speed gear switching.
  • FIG. 5 is a skeleton diagram of a transmission provided in the hydraulic traveling drive device, wherein (a) is a neutral state, (b) is a low speed gear state, and (c) is a high gear state.
  • FIG. 5 is a skeleton diagram of a transmission provided in the hydraulic traveling drive device, wherein (a) is a neutral state, (b) is a low speed gear state, and (c) is a high gear state.
  • FIG. 6 is a circuit diagram showing a configuration of a controller provided in the hydraulic traveling drive device.
  • FIG. 7 is a flowchart showing a control operation of the controller.
  • FIG. 8 is a circuit diagram showing a configuration of a controller in the case where a pressure switch is used as the abnormality detection means.
  • FIG. 9 is a flowchart showing the control operation of the controller shown in FIG.
  • FIG. 10 is a hydraulic circuit diagram showing a hydraulic traveling drive device according to a second embodiment of the present invention.
  • FIG. 11 is a time chart showing the operation of the device shown in FIG. 10 at the time of low-speed gear switching.
  • FIG. 12 is a hydraulic circuit diagram showing a hydraulic traveling drive device according to a third embodiment of the present invention.
  • FIG. 13 is a circuit diagram showing a configuration of a controller provided in the device shown in FIG.
  • FIG. 14 is a flowchart showing a control operation of the controller shown in FIG.
  • FIG. 15 shows an example of (a) a hydraulic traveling drive device in which two detent-type solenoid-operated switching valves are arranged in series as a switching valve interposed between the variable displacement hydraulic pump and the hydraulic supply source.
  • FIG. 4B is a hydraulic circuit diagram, and FIG. 4B is a flowchart showing a control operation performed in the same device.
  • FIG. 16 is a hydraulic circuit diagram showing an example of a hydraulic traveling drive device in which (a) is a switching valve interposed between the regulator and a hydraulic supply source and two detent type electromagnetic switching valves are arranged in parallel. And (b) is a flowchart showing a control operation performed in the same device.
  • FIG. 17 is a circuit configuration diagram showing the fourth embodiment of the present invention.
  • FIG. 18 is a diagram showing a relationship between the rotation speed of the prime mover, the pump displacement, and the pump displacement command pressure in the embodiment.
  • FIG. 19 is a diagram showing the relationship between the motor displacement, the circuit pressure, and the motor displacement command pressure in the same embodiment.
  • FIG. 20 is a flowchart for explaining the operation of the embodiment.
  • FIG. 21 is a circuit configuration diagram showing the fifth embodiment of the present invention.
  • FIG. 22 is a flowchart for explaining a pump control operation in the embodiment.
  • FIG. 23 is a circuit configuration diagram showing a sixth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a schematic configuration of a vehicle provided with a hydraulic traveling drive device according to the present invention.
  • This vehicle includes a motor 12 whose rotation speed increases in conjunction with an accelerator pedal 10.
  • the power of the motor 12 is supplied to a working hydraulic pump 16 via a power distributor 14 and is variable. Supplied to the displacement hydraulic pump 18 and the displacement operation hydraulic pump 20. Therefore, the discharge flow rate of each of the hydraulic pumps 16, 18, 20 increases as the rotation speed of the prime mover 12 increases.
  • the variable displacement hydraulic pump 18 forms a closed circuit (HST circuit) together with the hydraulic motor 26.
  • the variable displacement hydraulic pump 18 and the hydraulic motor 26 are capable of bidirectional operation, and one port of the variable displacement hydraulic pump 18 is connected to the hydraulic line via the pipeline 22.
  • the hydraulic motor 26 is connected to one port of the motor 26, and the other port of the hydraulic motor 26 is connected to the other port of the variable displacement hydraulic pump 18 via the pipeline 2. Then, when hydraulic oil is discharged from the variable displacement hydraulic pump 18 to the pipeline 22 side, the hydraulic motor 26 rotates in the vehicle forward direction, and conversely operates from the pump 18 to the pipeline 24 side. When the oil is discharged, the hydraulic motor 26 rotates in the backward direction of the vehicle.
  • the output shaft of the hydraulic motor 26 is connected to running wheels 30 via a transmission 28.
  • the transmission 28 is configured such that the gear ratio can be switched to a plurality of stages (two stages of a high speed stage and a low speed stage) in accordance with a shift command signal input from the outside.
  • the pipes 22 and 24 are respectively connected to the primary side of the low-pressure relief valve 34 via an overload relief valve 32 with a check valve, and the secondary side of the low-pressure relief valve 34 is connected to a tank. ing. When the pressure in the pipeline 22 or the pipeline 24 reaches the predetermined allowable pressure, the overload relief valve 32 on the pipeline side opens, and the overload relief valve 32 and the other overload relief valve on the pipeline side open.
  • the capacity operation means 40 includes a regulator 38, a three-position electromagnetic switching valve 36, a high pressure supply source 42, an electromagnetic proportional pressure reducing valve 44, a shuttle valve (high pressure valve). Selection valve) 46, a controller 60, and the displacement operation hydraulic pump 20.
  • the regulator 38 receives a supply of hydraulic pressure from the outside, and increases the pump capacity of the variable displacement hydraulic pump 18 as the hydraulic pressure increases in accordance with the supply direction. Specifically, when hydraulic pressure is supplied from the right port in FIG. 1, the pump capacity of the variable displacement hydraulic pump 18 is increased toward the forward side by an amount corresponding to the hydraulic pressure, and hydraulic pressure is supplied from the left port in FIG. When this is done, the pump capacity of the variable displacement hydraulic pump 18 is increased to the reverse side by an amount corresponding to the oil pressure.
  • the high-pressure supply source 42 only needs to output a predetermined oil pressure, and a hydraulic pump dedicated to the supply source may be installed.
  • the working hydraulic pump 16 may be used as the high-pressure supply source 42. It is also possible to use them together.
  • the constant hydraulic pressure output from the high-pressure supply source 42 is input to the regulator 38 via the electromagnetic proportional pressure reducing valve 44, the shuttle valve 46, and the electromagnetic switching valve 36.
  • the discharge side of the displacement operation hydraulic pump 20 is connected to the shuttle valve 46 via a throttle 47 and a pressure reducing valve 48.
  • the electromagnetic proportional pressure reducing valve 44 outputs a secondary pressure proportional to a command signal input from the controller 60, and outputs the secondary pressure and the displacement from the displacement operating hydraulic pump 20.
  • the higher one is selected by the shuttle valve 46 and guided to the electromagnetic switching valve 36.
  • the solenoid-operated directional control valve 36 includes solenoids 36 b and 36 f.
  • the solenoid valve 36 and the shuttle valve 38 communicate with each other by a command signal input from the controller 60 to the solenoid.
  • the neutral position (the center position in FIG. 1) that blocks the gap
  • the forward position (the right port in the figure) that guides the hydraulic pressure output from the shuttle valve 46 to the forward port of the regulator 38.
  • the right position in the figure) and the backward position (right position in the figure) that guides the hydraulic pressure output from the shuttle valve 46 to the backward port (left port in the figure) of the regulator 38. Is switched to That is, the position switching of the electromagnetic switching valve 36 In this way, the direction of the traveling drive (forward and backward) can be switched.
  • a spring center type three-position solenoid-operated switching valve is used as the solenoid-operated switching valve 36.
  • the solenoid When one solenoid 36f is excited, the solenoid is switched to the forward position, and the other solenoid is switched to the forward position.
  • 36b When 36b is excited, it is switched to the reverse position, and when neither solenoid 36f, 36b is excited, it is held at the neutral position by the force of a spring.
  • the controller 60 is connected to a prime mover rotation speed sensor 54, a vehicle speed sensor 56, a shift lever device 58, and the like, and performs the following control operation based on an electric signal input thereto.
  • a command signal is output to the electromagnetic switching valve 36 to switch its position. Specifically, when the lever position of the shift lever device 58 is at the neutral position, the switching position of the electromagnetic switching valve 36 is set to the neutral position. Similarly, when the lever position is at the forward position or the backward position, The switching position of the solenoid operated directional control valve 36 is also set to the forward position and the reverse position, respectively.
  • the controller 60 stores a characteristic in which the command pressure increases with an increase in the rotation speed of the prime mover as shown by a curve b in FIG. 2 (a), and based on this characteristic, Calculates command pressure from prime mover speed.
  • two types of characteristics indicated by the curved lines b and b ' are provided as characteristics of the prime mover rotation speed and the command pressure of the electromagnetic proportional pressure reducing valve 44.
  • a characteristic for climbing a hill or a characteristic for rapid acceleration may be added instead of, or in addition to, either of the curves b and b '.
  • the switching of the electromagnetic switching valve 36 may be performed by directly guiding a signal output from the shift lever device 58 to the electromagnetic switching valve 36.
  • the command pressure calculated by the controller 60 is not limited to the pressure corresponding to the rotation speed detected by the prime mover rotation speed sensor 54, and may be, for example, a command pressure corresponding to the operation amount of an accelerator pedal. .
  • the displacement operation hydraulic pump 20 has a discharge pressure that increases with an increase in the number of revolutions of the prime mover 14.
  • the characteristic of the pressure input to the shuttle valve 46 through the valve 48 is represented by the curve a in FIG. 2A, and is equal to or less than the command pressure of the electromagnetic proportional pressure reducing valve 44 in the entire rotation speed range. .
  • each check valve - A part of the oil discharged from the capacity operating hydraulic pump 2 0, the over-conditioned each check valve - is distributed to the conduit 2 2, 2 4 through a load relief valve 3 2 of the check valve, the entire circuit To supply and cool the hydraulic oil.
  • the electromagnetic switching valve 36 when the lever position of the shift lever device 58 is in the neutral position, the electromagnetic switching valve 36 is also in the neutral position, and the connection between the regulator 38 and the shuttle valve 46 is shut off. Therefore, no hydraulic pressure is supplied to the regulator 38, the pump capacity of the variable displacement hydraulic pump 18 is zero, and no discharge pressure is generated even when the hydraulic pump 18 is driven.
  • the electromagnetic switching valve 36 when the lever position is switched to, for example, the forward position, the electromagnetic switching valve 36 is switched to the forward position (the right position in FIG. 1), and the hydraulic pressure output from the shuttle valve 46 is regulated. To the forward port (right boat in Figure 1). Receiving this, the regulator 38 increases the capacity of the variable displacement hydraulic pump 18 in the forward direction. With this displacement operation, the hydraulic pump is moved from the variable displacement hydraulic pump 18 through the pipeline 22. The hydraulic oil is discharged to the motor 26, and the output shaft of the hydraulic motor 26 and the traveling vehicle 30 connected to the output shaft via the transmission 28 rotate in the forward direction.
  • the secondary pressure (curve b in FIG. 2A) is always the hydraulic pressure input from the displacement operating hydraulic pump 20 to the shuttle valve 46. Since the pressure is maintained at the curve a) or higher, the hydraulic pressure output from the electromagnetic proportional pressure-reducing valve 44 is always selected to be higher in the shuttle valve 46, and is guided to the regulator 38. Therefore, the capacity of the variable displacement hydraulic pump 18 is controlled based on the characteristic shown by the curve b except at the time of low-speed gear switching described later.
  • the characteristic indicated by the curve b is higher than the discharge pressure characteristic (curve a) of the displacement operation hydraulic pump 20, particularly in the middle rotation region, and therefore, the pump displacement characteristic (FIG. 2 (a ))
  • the output horsepower characteristic (curve B) in the same figure (b) are also the pump capacity characteristic (curve A in FIG. 2 (a)) and the output horsepower characteristic (FIG. It is superior to the curve A) of b) especially in the middle rotation range.
  • the above-described characteristics of the capacity-operating hydraulic pump 20 may decrease to, for example, curves c and C in FIG. 2 (a) and a curve C in FIG. 2 (b) as the oil temperature increases.
  • the electromagnetic proportional pressure reducing valve 4 4 4 the above characteristics can always maintain the curves b and B in FIG. 2 (a) and the curve B, and the full running performance can be constantly exhibited. .
  • the prime mover speed decreases.
  • the characteristic decreases from the characteristic indicated by the curve ⁇ to the characteristic indicated by the curve ⁇ , whereas if the electromagnetic proportional pressure reducing valve 44 is used, the deterioration of the characteristic is reduced, for example, by the curve a in FIG. It is possible to further reduce the driving fuel efficiency.
  • the command pressure characteristic of the electromagnetic proportional pressure reducing valve 44 in addition to the characteristic shown by the curve b in FIG. 2 (a), the characteristic shown by the curve b ′ in FIG.
  • the low pressure characteristic which is higher than the discharge pressure characteristic of the displacement hydraulic pump 20 indicated by the curve a) is stored in the controller 60, and for example, the depressing operation amount of the accelerator pedal 10 is stored. Is low and it can be determined that it is in the low idle state, 2 If a brake operation is detected, the driver's intention to decelerate is guessed, and the characteristics of curve b 'are selected to secure an appropriate braking force. Otherwise, the characteristics of the curves are selected. If the driving fuel efficiency is improved in this way, it becomes possible to realize pump displacement control appropriate for the actual operating condition.
  • the shuttle valve 46 controls the variable displacement hydraulic pump 20 side. Since the hydraulic pressure is selected to a high level and guided to the regulator 38, an effect that the traveling can be continued without any trouble even when the electromagnetic proportional pressure reducing valve 44 fails is obtained.
  • the controller 60 switches the transmission 28 from the high speed stage to the low speed stage when the vehicle operating condition satisfies a specific condition, for example, during deceleration when the vehicle speed V gradually decreases as shown in FIG. .
  • the condition for switching the low-speed gear can be appropriately set.
  • step # 4 As the condition, in the example shown in FIG. 4, when the downshift operation is performed by the shift lever device 58 (YES in step # 1) and the vehicle speed sensor 56 detects the vehicle speed V equal to or lower than the preset allowable speed. (YES in step # 2), or the shift lever device 58 is in the automatic running position (YES in step # 3), and the vehicle speed V detected by the vehicle speed sensor 56 is the engine speed (or the accelerator pedal 1).
  • the transmission shifts to the transmission 28 as shown in the third and second steps from the bottom in FIG. Output a down command signal to start low-speed gear switching (step # 5).
  • the controller 60 adjusts the command pressure of the electromagnetic proportional pressure reducing valve 44 almost simultaneously with the start of the low-speed gear switching (point A in FIG. 3) as shown in FIG.
  • the command pressure is raised from the pressure indicated by the curve b (the bottom row in FIG. 3), and the command pressure is slightly delayed from the completion of the low-speed gear change (point B in the figure) to the original pressure (the pressure indicated by the curve b). ). That is, the command pressure of the electromagnetic proportional pressure reducing valve 44 is increased for a predetermined time (step # 6 in FIG. 4).
  • variable displacement hydraulic pump 18 As a result, the pump capacity D p of the variable displacement hydraulic pump 18 and, consequently, the pump absorption flow rate Q p temporarily increase, and the increase of the motor discharge flow rate Qm accompanying the rapid increase of the motor rotation speed Nm is reduced by the variable displacement hydraulic pump 18. It is absorbed in the form of engine brake through the rotation of the hydraulic pump 18. Specifically, the driving torque T p of the prime mover 12 by the variable displacement hydraulic pump 18 is approximately
  • the deceleration temporarily decreases and the vehicle speed V hardly decelerates.
  • the time required for the flow absorption is reduced from the high speed stage to the low speed stage.
  • a time approximately equal to the transition period to the gear shift is sufficient and generally a short time of about 100 msec, and there is almost no possibility that the driver will feel uncomfortable.
  • temperature rise in the closed circuit hardly occurs, and there is no risk of damaging hydraulic equipment and the like.
  • the circuit pressure P and the deceleration a start to recover before the completion of the low-speed gear change (point D in Fig. 3), and from that same point, the engine speed Ne and the pump absorption flow rate QP also increase. Will start.
  • the pump capacity Qp can be temporarily reduced. It is possible to smoothly transition from a general increase state to a normal state.
  • a disconnection of a cable or the like occurs during the forward traveling or the reverse traveling, so that a command signal to the solenoid 36 f or the solenoid 36 b of the electromagnetic switching valve 36 is suddenly generated.
  • the solenoid-operated directional control valve 36 is automatically turned on by the action of a spring.
  • the pump is switched to the standing position (the position that shuts off between the relay 38 and the shuttle valve 46) and the capacity of the variable displacement hydraulic pump 18 becomes zero or a value close to it, and the pump 18 is blocked.
  • the transmission 28 operates in response to a shift command signal input from the outside, in a neutral state shown in FIG. 5 (a), and in a low speed state shown in FIG.
  • the state can be switched between a three-stage state and a high-speed state shown in FIG.
  • the transmission 28 includes an input shaft 28 a connected to an output shaft of the hydraulic motor 26, and an output shaft 28 b connected to the traveling wheel 30. Both axes 28a and 28b are arranged in parallel.
  • a small-diameter low-speed gear 50 L and a large-diameter high-speed gear 50 H are attached to the input shaft 28 a so as to be rotatable relative to the input shaft 28 a.
  • the output gear 28 b includes a low-speed gear 51 L coupled to the low-speed gear 50 L and a high-speed gear 51 H coupled to the high-speed gear 50 H. It is fixed so as to rotate integrally with the shaft 28b.
  • a clutch drum 52 is fixed to the input shaft 28a so as to rotate integrally with the input shaft 28a.
  • the clutch drum 52, the low-speed gear 50L and the high-speed gear 50 A low-speed clutch cylinder 53 L and a high-speed clutch cylinder 53 H are interposed between H and H, respectively.
  • the clutch drum 52 and both gears 50L, 53L, 53L are maintained by contracting both cylinders 53L, 53H.
  • 5 OH is disconnected and the input shaft 28a and the output shaft 28b are disconnected (neutral state in (a) of the same figure).
  • a command signal is input to the low speed clutch cylinder 53L,
  • the controller 60 is connected to a prime mover speed sensor 54, a vehicle speed sensor 56, a shift lever device 58, and the like. Based on an electric signal input from these components, a switching control of the electromagnetic switching valve 36 and a transmission Perform gear shift control of 28.
  • the controller 60 includes a command signal creation unit 62, an abnormality determination unit 64, and a transmission operation unit 66 as shown in FIG.
  • the command signal generator 62 outputs a command signal to the electromagnetic switching valve 36 based on the shift lever position operated by the shift lever device 58 to switch the position.
  • the command signal generator 62 includes a relay contact 62 a and a relay coil 62 b provided for each solenoid 36 f and 36 b of the electromagnetic switching valve 36 (however, in FIG. (Only two relay contacts 62a and relay coil 62b are shown)
  • the relay contact 62 a is a normally open contact, interposed between a predetermined power supply and the solenoid 36 f (36 b) together with the fuse 37 for circuit protection, and is close to the relay contact 62 a. Only when the energizing relay coil 62b is energized, it is closed by its magnetic force.
  • the command switching section 62c energizes an appropriate relay coil 62b according to the lever position of the shift lever device 58. Specifically, when the lever position is the forward position, a command signal for energizing the relay coil 62b corresponding to the solenoid 36f to excite the solenoid 36f is generated, and the lever signal is generated. When the position is the reverse position, the relay coil 62b corresponding to the solenoid 36b is energized to generate a command signal for exciting the solenoid 36b, and when the lever position is the neutral position, , Any relay The coil 62b is also configured not to energize (that is, not generate a command signal).
  • a non-contact circuit using a transistor or the like may be used instead of the re-switch shown in the figure.
  • a circuit protection unit using a transistor or the like instead of the fuse 37 as described above may be constructed.
  • the abnormality judging section 64 monitors the potentials of the solenoids 36 f and 36 b, and checks the actual energization status of these solenoids 36 f and 36 b and the relay coil 6 by the command switching section 62 c. 2b is compared with the energization status (that is, the generation status of the command signal), and if the two do not correspond, it is determined to be abnormal, and an abnormality determination signal is output to the transmission operation unit 66 (described later in detail).
  • a warning signal is output to a warning device (for example, a warning light or a warning device) 55 provided in the vehicle cabin, and a warning is issued.
  • the transmission operation unit 66 outputs a command signal to the transmission 28 to perform a gear change, and is normally performed in accordance with a driving state of the vehicle, a shift down operation of the shift lever device 58, or the like. While the gear position control of the transmission 28 is performed by selecting a position, a feature of the present invention is that when the abnormality determination signal is input from the abnormality determination unit 64, the transmission 28 is forcibly forced. Is switched to the neutral state. Further, the controller 60 according to the present embodiment also has a role of controlling the displacement of the variable displacement hydraulic pump 18. Specifically, the controller 60 detects the rotational speed detected by the prime mover rotational speed sensor 54. A command pressure corresponding to the command pressure is calculated, a command signal corresponding to the command pressure is output to the electromagnetic proportional pressure reducing valve 44, and the secondary pressure is adjusted to the command pressure.
  • the command pressure calculated by the controller 60 is not limited to the pressure corresponding to the rotation speed detected by the prime mover rotation speed sensor 54, but is, for example, a command pressure corresponding to the operation amount of the accelerator pedal. Is also good.
  • the regulator 38 is operated only by the discharge oil of the displacement operation hydraulic pump 20, it is needless to say that the control of the controller 60 can be omitted.
  • the command signal generating unit 62 of the controller 60 controls the solenoid 36f of the electromagnetic switching valve 36 to excite the solenoid 36f.
  • Create a signal (Step S. 2)
  • the command signal is input to the solenoid 36 f (YES in Step S 3)
  • the switching valve 36 is switched to the forward position (the right position in FIG. 1), and the hydraulic pressure output from the shuttle valve 46 is input to the forward port (the right port in FIG. 1) of the regulator 38.
  • the regulator 38 increases the capacity of the variable displacement hydraulic pump 18 in the forward direction.
  • hydraulic oil is discharged from the variable displacement hydraulic pump 18 to the hydraulic motor 26 through the pipeline 22, and the transmission 28 and the output shaft of the hydraulic motor 26 are connected to the output shaft.
  • the running wheel 30 connected via the shaft rotates in the forward direction.
  • the secondary pressure is always maintained at a pressure equal to or higher than the hydraulic pressure input from the capacity operation hydraulic pump 20 to the shuttle valve 46, so that the shuttle valve At 46, the hydraulic pressure output from the electromagnetic proportional pressure reducing valve 44 is always selected to be high and guided to the regulator 38. If the electromagnetic proportional pressure reducing valve 44 cannot output a normal secondary pressure due to a malfunction of its solenoid or the like, the hydraulic pressure of the variable displacement hydraulic pump 20 is selected to a high level by the shuttle valve 46, and the regulation is reduced. By the evening of 38, normal capacity operation is guaranteed.
  • step S6 when the lever position is switched to the reverse position (NO in step S1 and YES in step S6), the command signal generator 62 of the controller 60 operates the solenoid 36b of the electromagnetic switching valve 36. A signal for exciting is created (step S7). Also at this time, if there is no abnormality in the electric system such as the cable, the command signal is input to the solenoid 36b (YES in step S8), and the electromagnetic switching valve 36 is moved to the reverse position (FIG. 1 is switched to the left position), and the hydraulic pressure output from the shuttle valve 46 is input to the reverse port (left port in Fig. 1) of the regulator 38, and finally the traveling wheels 3
  • step S4 if the command signal created by the command signal creation unit 62 of the controller 60 is normally input to the solenoid 36 f or the solenoid 36 b (see step S3 in FIG. 7). YES or YES in step S8), the abnormality judging section 64 of the controller 60 does not output an abnormality judging signal, and accordingly, the transmission operation section 66 is in accordance with the shift position determined by the current operation state and the like. A shift command is output to the transmission 28 (step S4). The same is true when the shift lever is operated to the neutral position (NO in step S1 and NO in step S6).
  • the command signal for exciting the solenoid 36 f or the solenoid 36 b is created in the command signal creation unit 62, the above-mentioned command signal is actually applied to the solenoid 3 due to a failure in the electric system. If it is not input to 6 f or solenoid 36 b (NO in step S 3 or NO in step S 8), the transmission operation unit 66 will send a neutral command to the transmission 28 regardless of the current shift position. And the transmission 28 is forcibly switched to the neutral state shown in FIG. 5 (a) (step S5). As a result, the input shaft 28a and the output shaft 28b of the transmission 28 are disconnected, and the connection between the output shaft of the hydraulic motor 26 and the traveling wheels 30 is released. Such a disconnection prevents inconvenience due to a failure of the electric system or the like in advance.
  • connection between the hydraulic motor 26 and the traveling wheels 30 is released by using the transmission 28, but a transmission capable of switching gears is interposed between the two.
  • a mere clutch may be interposed between the hydraulic motor 26 and the traveling wheels 30 in place of the transmission, and the clutch may be disconnected in an emergency.
  • a means for detecting an abnormal operation of the electromagnetic switching valve 36 a means using pressure detecting means (for example, a pressure switch or a pressure sensor) for detecting a secondary pressure of the electromagnetic switching valve 36 is more preferable.
  • a pressure detecting means for example, a pressure switch or a pressure sensor
  • FIG. 8 shows an example.
  • the illustrated pressure switch 59 is provided between the electromagnetic switching valve 36 and the forward port and the reverse port of the regulator 38, respectively.
  • the switch is turned on only when the pressure of the hydraulic oil actually supplied to the port (ie, the secondary pressure of the solenoid-operated switching valve 36) is higher than a certain level. It is possible to determine whether 36 is actually operating normally.
  • control operation of the controller 60 when the pressure switch 59 is used is shown in FIG.
  • the shift lever is switched to the forward position (YES in step S1), and a command signal for exciting the solenoid 36f is generated in response to this.
  • Step S2 The abnormality determination unit 64 of the controller 60 checks whether the pressure switch 59 provided on the forward port side of the regulator 38 is on (Step S3).
  • step S7 When the shift lever is switched to the reverse position (NO in step S1, YES in step S6), and a command signal for exciting the solenoid 36b is generated in response (step S7), the controller 60
  • the abnormality determination section 64 checks whether or not the pressure switch 59 provided on the reverse port side of the regi-yure 38 is on (step S8 ').
  • step S5 if the corresponding pressure switch 59 is ON (YES in step S3 'or YES in step S8'), it is determined that the hydraulic pressure is normally supplied to the regulator 38. Therefore, the abnormality determination signal is not output, and the transmission operation unit 66 outputs a command signal corresponding to the shift position to the transmission 28 (step S4).
  • the corresponding pressure switch 59 remains off (NO in step S3 'or NO in step S8')
  • the solenoid valve 36 Since it is determined that the hydraulic pressure is not being supplied, an abnormality determination signal is output, so that the transmission operation unit 66 outputs a neutral command to the transmission 28 to forcibly connect the hydraulic motor 26 and the traveling wheels 30. Disconnect (step S5).
  • the abnormality is determined when the secondary pressure is equal to or less than a certain value regardless of the magnitude of the command signal.
  • the secondary pressure of the electromagnetic proportional pressure reducing valve 44 and thus the secondary pressure of the electromagnetic switching valve 36 increases or decreases in accordance with the A pressure sensor or the like for detecting the secondary pressure of the electromagnetic switching valve 36 is provided, and a target secondary pressure to be generated on the secondary side of the electromagnetic switching valve 36 in accordance with the command signal and the pressure sensor or the like are used.
  • An abnormality determination may be made when the difference from the detected secondary pressure is equal to or greater than a certain value.
  • the actual tilt angle of the variable displacement hydraulic pump 18 is detected, and the tilt angle does not correspond to the command signal. In that case, it is also effective to perform the abnormality determination.
  • FIG. 10 instead of the electromagnetic proportional pressure reducing valve 44 shown in FIG. 1, an electromagnetic valve is provided between the high-pressure hydraulic power source 42 and the shuttle valve 46 which is a high-order selection valve. Switching valve 45 is interposed.
  • the electromagnetic switching valve 45 is located at a position where the supply of hydraulic pressure from the high-pressure hydraulic power source 42 to the shuttle valve 46 is interrupted when the solenoid excitation signal (command signal) is not input from the controller 60 (the lower position in FIG. 10). Position), and when the excitation signal is input, the position is switched to a position (the upper position in FIG. 10) in which the supply of hydraulic pressure from the high-pressure hydraulic power source 42 to the shuttle valve 46 is permitted. ing.
  • the hydraulic pressure output from the high-pressure hydraulic power source 42 is set to a pressure higher than the maximum pressure of the hydraulic oil supplied to the shuttle valve 46 from the displacement operation pump 20 through the throttle 47 and the pressure reducing valve 48. I have.
  • the controller 60 does not input an excitation signal to the electromagnetic switching valve 45 during an operation other than the low-speed gear switching in which the transmission 28 is switched from the high-speed gear to the low-speed gear (that is, the electromagnetic switching valve 45 is not operated).
  • an excitation signal is input to the electromagnetic switching valve 45 almost at the same time as the point A when switching to the low-speed stage is started. 45 is switched to the permissible position, and thereafter, at a time D after a predetermined minute time has passed from the switching end time B, the input of the excitation signal is stopped and the electromagnetic switching valve 45 is switched to the shut-off position. I have.
  • the electromagnetic switching valve 45 is in the shut-off position, and the hydraulic pressure supply from the high-pressure supply source 42 to the shuttle valve 46 is shut off.
  • the hydraulic pressure supplied from the displacement operation hydraulic pump 2 ° through the throttle 47 and the pressure reducing valve 48 is selected to be higher. Therefore, electromagnetic switching
  • the valve 36 is switched to the forward position (left position in Fig. 4) or the retracted position (right position in Fig. 4)
  • the hydraulic fluid discharged from the displacement operation hydraulic pump 20 is supplied exclusively to the regulator 38.
  • the pump capacity D p (FIG. 11) of the variable displacement hydraulic pump 18 is controlled by the characteristic indicated by the curve a in FIG. 2 (a) with the change in the prime mover speed Ne.
  • the electromagnetic switching valve 45 is switched to the allowable position, and the hydraulic pressure is supplied from the high pressure supply source 42 to the shuttle valve 46. And the supplied hydraulic pressure is higher than the hydraulic pressure supplied from the hydraulic pump for capacity operation 20 to the shuttle valve 46 through the throttle 47 and the pressure reducing valve 48, so that the high-pressure supply source 42 outputs
  • the hydraulic pressure is selected to be high and guided to the regulator 38.
  • the pump capacity Dp and the pump absorption flow rate Qp of the variable displacement hydraulic pump 18 temporarily increase (FIG. 11), and therefore, as in the apparatus shown in FIGS.
  • the increase in the motor discharge flow rate Qm accompanying the increase in the motor rotation speed Nm at the time of switching can be effectively absorbed by the variable displacement hydraulic pump 18.
  • the pump capacity D p can be increased only in a short period corresponding to the transition stage of the low-speed gear change. Therefore, even if the deceleration a temporarily decreases during this period (even if the vehicle speed V does not decrease). It hardly gives the driver any discomfort.
  • the hydraulic pressure supply switching means switches between a state in which the hydraulic pressure is supplied from the high-pressure supply source 42 to the regulator and a state in which the hydraulic pressure is supplied from the displacement operation hydraulic pump 20.
  • the electromagnetic switching valve 45 and the shuttle valve 46 are used, for example, these are omitted, and a two-position electromagnetic switching valve that switches between the two states by an external command signal is installed. May be.
  • the number of gears in the transmission 26 is not particularly limited.
  • the pump displacement increase control according to the present invention may be applied to all low-speed shifts (including, for example, a shift from a high-speed shift to a middle-speed shift).
  • the above-described pump displacement increase control may be applied only to low-speed gear switching in which the increase in the motor speed is particularly serious.
  • the hydraulic pressure output from the electromagnetic proportional pressure reducing valve 44 and the hydraulic pressure output from the displacement operating hydraulic pump 20 are selected at a high level by the shuttle valve 46 and are transmitted to the regulator 38.
  • the hydraulic pump 20 for volume operation can be omitted in the device.
  • the configuration is not limited to the one using the shuttle valve (high-order selection valve) 46 as shown in the figure, but may be any configuration in which the high-order selection is made substantially.
  • FIG. 12 as a third embodiment, as shown in FIG.
  • a junction 90 between the output from the electromagnetic proportional pressure reducing valve 42 and the output from the displacement operating hydraulic pump 20 and the electromagnetic proportional pressure reducing valve Even with a configuration in which only the check valve 92 is interposed between the pressure control valve 42 and the pressure reducing valve 48, the flow rate of the pressure reducing valve 48 on the side of the capacity operation hydraulic pump 20 is small, and the high-level selection is made substantially at the junction 90. With such a configuration, the shuttle valve 46 is not particularly required.
  • the device shown in FIG. 12 is configured so that inconvenience due to malfunction of the electromagnetic switching valve 36 or the like is avoided by the forced bypass of the variable displacement hydraulic pump 18.
  • the specific configuration will be described with reference to FIGS. 13 and 14. Note that among the constituent elements shown in FIGS. 12 and 13, those equivalent to those shown in FIGS. 1 and 10 are denoted by the same reference numerals and description thereof will be omitted.
  • a bypass oil passage 70 is provided between the pipelines 22 and 24 to connect the pipelines 22 and 24 by bypassing the variable displacement hydraulic pump 18 and
  • a bypass switching valve 72 is provided in the middle of the oil passage 70.
  • the bypass switching valve 72 is constituted by a two-position electromagnetic switching valve in the illustrated example, and is switched to a shut-off position for shutting off the bypass oil passage 70 when an excitation signal is not input to its solenoid. Only when a signal is input, the opening position is switched to the opening position for opening the bypass oil passage 70.
  • the controller 60 includes a bypass operation section 68 as shown in FIG. Only when an abnormality determination signal is input from the abnormality determination unit 64, the bypass operation unit 68 inputs an excitation signal to the solenoid of the bypass switching valve 72 to open the bypass switching valve 72 from the shut-off position. It switches to the position.
  • FIG. 14 shows the control operation of the controller 60.
  • the normal operation is the same as that shown in FIG. That is, when the shift lever is operated to the forward position (YES in step S1), a signal for exciting the solenoid 36f is created (step S2), and the signal is input to the solenoid 36f. Confirmation is made (step S3).
  • step S1 when the shift lever is operated to the forward position (YES in step S1), a signal for exciting the solenoid 36f is created (step S2), and the signal is input to the solenoid 36f. Confirmation is made (step S3).
  • a signal for exciting the solenoid 36b is created (step S7), and the signal is generated by the solenoid 36b. It is checked whether or not it has been entered in step b (step S8).
  • step S3 or YES in step S8 if a signal is normally input to the solenoid 36 f or the solenoid 36 b (YES in step S3 or YES in step S8), the bypass switching valve 72 is not particularly operated and is shut off. Keep in position. Therefore, in this case, HST operates normally.
  • a signal is not normally input to the solenoid 36 f or the solenoid 36 b, that is, if an abnormality is determined (NO in step S3 or NO in step S8), the bypass switching valve 72 An excitation signal is output and switched to the open position (step S5 '). As a result, the bypass oil passage 70 is opened, and the inflow side and the outflow side of the hydraulic motor 26 are directly passed through the variable displacement hydraulic pump 18 by bypass.
  • the electromagnetic switching valve 36 returns to the neutral position when the input is stopped, but as a switching valve for performing the switching, a switching valve having a function of holding a current operating position when a command signal is not input.
  • a detent-type electromagnetic switching valve is used, the inconvenience that the electromagnetic switching valve suddenly returns to the neutral position at that point can be avoided even if the command signal is not input due to a failure in the electric system or the like. can do.
  • the position switching solenoids are disposed at both ends of the detent type electromagnetic switching valve and the position switching solenoid is generally at two positions (not at position 3), the detent type electromagnetic switching valve is moved forward using the detent type electromagnetic switching valve. When switching between neutral and reverse, it is necessary to use a combination of multiple solenoid-operated directional control valves.
  • FIG. 15 (a) and (b) An example of the device is shown in Fig. 15 (a) and (b).
  • two solenoid-operated switching valves 82, 84 are arranged in series between the regulator 38 and the shuttle valve 46, and these solenoid-operated switching valves 82, 84 are arranged in series.
  • the other configuration is exactly the same as that shown in FIG.
  • the electromagnetic switching valves 82 and 84 a detent type two-position electromagnetic switching valve is used.
  • the solenoid-operated switching valve 82 on the side close to the regulator 38 has solenoids 82a and 82b at both ends, and the solenoid-operated switching valve 84 near the shuttle valve 46 is Solenoids 84a and 84b are provided at both ends, and both solenoid-operated switching valves 82 and 84 are well-known for maintaining the current operating position when neither solenoid is excited. Means (a detent mechanism 80 in the illustrated example) is provided.
  • the solenoid switch valve 84 When the solenoid 84a is energized, the solenoid switch valve 84 communicates with both the forward and reverse ports of the regulator 38 regardless of the operating position of the solenoid switch valve 82, to the tank. It is switched to the neutral position (blocking position; left position in the figure) to block the hydraulic pressure supply from the shuttle valve 46, and when the solenoid 84b is energized, one of the regulation ports 38 To the shuttle valve 46, and to the communication position (allowable position; right position in the figure) connecting the other port to the tank.
  • the electromagnetic switching valve 82 When the solenoid 82 a is excited, the electromagnetic switching valve 82 is set to the communication position. When the hydraulic pressure supplied from a certain electromagnetic switching valve 84 is guided to the forward port side and the reverse port side is switched to the forward position (left position in the drawing) communicating with the ink, the solenoid 82 is energized, and the above-mentioned communication is performed. The hydraulic pressure supplied from the electromagnetic switching valve 84 at the position is guided to the reverse port side, and the forward port side is switched to the reverse position (left position in the figure) communicating with the tank.
  • the controller (equivalent to the controller 60 shown in FIG. 1 and the like) performs a control operation as shown in FIG. 15B according to the operation position of the shift lever. That is, when the shift lever is switched to the forward position (YES in step S11), the controller 60 excites only the solenoids 82a and 84b in the electromagnetic switching valves 82 and 84 and deactivates the solenoids 82b and 84a. Excitation is performed (step S12). As a result, the solenoid-operated switching valve 84 is switched to the right position in FIG. 15A and the solenoid-operated switching valve 82 is switched to the left position in FIG. 15A, and the hydraulic pressure output from the shuttle valve 46 is supplied to the forward port of the regulator 38. At the same time, the reverse port of the Regiyure 38 will be connected to the tank.
  • step S11 when the shift lever is switched to the reverse position (N ⁇ in step S11, YES in step SI3), the controller 60 excites only the solenoids 82b and 84b in the solenoid-operated switching valves 82 and 84.
  • step S14 To de-energize the solenoids 82a and 84a (step S14).
  • the solenoid-operated switching valves 84 and 82 are both switched to the right position in FIG. 15 (a), and the hydraulic pressure output from the shuttle valve 46 is supplied to the reverse port of the regulator 38 and the regulator 38 is switched to the reverse position. Of the forward port is connected to the tank.
  • the controller 60 excites only the solenoid 84a of the solenoid-operated switching valve 84 and activates the other solenoids 82a and 82b. , 84b are de-energized (step S15).
  • the solenoid-operated switching valve 84 is switched to the left position in FIG. 15 (a), and regardless of the position of the solenoid-operated switching valve 82, both ports of the regulator 38 are connected to the tank, and the variable displacement hydraulic pump 18 The pump capacity becomes almost zero.
  • FIG. 16 (a) and (b) An example of the device is shown in Fig. 16 (a) and (b).
  • the electromagnetic switching valve 88 is interposed between the shuttle valve 46 and the forward port of the regulator 38, and the electromagnetic switching valve 86 is It is interposed between the shuttle valve 46 and the reverse port at 38.
  • the electromagnetic switching valve 88 has solenoids 88a and 88b at both ends thereof.
  • the solenoid 88a When the solenoid 88a is excited, the hydraulic pressure supplied from the shuttle valve 46 is blocked, and the forward port is connected to the tank. It is switched to the shut-off position (the left position in the figure) that communicates, and when the solenoid 88b is excited, it is switched to the permissible position (the right position in the figure) that permits the supply of hydraulic pressure from the shuttle valve 46 to the forward port.
  • the solenoid-operated switching valve 86 has solenoids 86a and 86b at both ends thereof, and when the solenoid 86a is excited, blocks the hydraulic pressure supplied from the shuttle valve 46 to the reverse port.
  • the controller (equivalent to the controller 60 shown in FIG. 1 and the like) performs a control operation as shown in FIG. 16 (b) according to the operation position of the shift lever. That is, when the shift lever is switched to the forward position (YES in step S11), the controller 60 excites only the solenoids 86a and 88b in the electromagnetic switching valves 86 and 88. The solenoids 86b and 88a are de-energized (step S12 '). As a result, the solenoid-operated switching valve 88 is switched to the right position in FIG. 15 (a), the solenoid-operated switching valve 86 is switched to the left position in FIG. 15 (a), and the hydraulic pressure output from the shuttle valve 46 is reduced. Eight forward ports are supplied to the tank, and 38 reverse ports are connected to the tank.
  • step S 14 ′ the solenoid-operated switching valve 88 is switched to the left position in Fig. 15 (a)
  • the solenoid-operated switching valve 86 is switched to the right position in Fig. 15 (a)
  • the hydraulic pressure output from the shuttle valve 46 is adjusted to the The water is supplied to the reverse port, and the forward port at 38 on the same day is connected to the tank.
  • step S 15 ′ both solenoid-operated directional control valves 88, 86 are switched to the left position in Fig. 15 (a), and both ports of the regulator 38 are connected to the tank, and the pump of the variable displacement hydraulic pump 18 is connected.
  • the capacity will be almost zero.
  • the solenoid valve is provided in each solenoid-operated switching valve. Since the current valve position is held by the detent mechanism 80, the inconvenience caused by the operating position returning to the neutral position unexpectedly is reliably avoided. This is particularly effective when the speed reducer does not have a transmission mechanism, and has the advantage that acceleration and deceleration by the accelerator can be continued.
  • the electromagnetic switching valve cannot be returned to the neutral position. Therefore, when the command signal is generated by the controller 60, for example, the transmission 28 shown in FIG. Is set in the neutral state, and the controller 60 is configured to forcibly release the connection between the hydraulic motor 26 and the traveling wheels 30 (ie, the controller 60 and the transmission 2 in the apparatus shown in FIG. 1). 8 is made to function as disconnection means).
  • the switching valve interposed between the regulator 38 and the hydraulic pressure supply source may be of two positions, and it goes without saying that the detent type electromagnetic switching valve can be used as it is. Further, the switching valve interposed between the regulator 38 and the hydraulic pressure supply source is not limited to the electromagnetic switching valve, and for example, a pilot switching valve or a manual switching valve may be used.
  • Reference numeral 101 denotes a prime mover.
  • the prime mover 101 drives a bi-directional, variable displacement main hydraulic pump 103 via a speed reducer 102.
  • Ports on both sides of the main hydraulic pump 103 are connected to a bidirectional variable displacement hydraulic motor 106 via both forward and reverse main pipelines 104, 105, thereby closing.
  • a road is formed, and the hydraulic motor 106 rotates in the vehicle forward direction or the reverse direction by the main hydraulic pump 103.
  • the rotational force of the hydraulic motor 106 is transmitted to the left and right drive wheels 109, 109 via the transmission 107 and the axle 108, whereby the vehicle travels.
  • the displacement of the main hydraulic pump 103 is controlled by the pump regulator 1101 and the displacement of the hydraulic motor 106 is controlled by the motor regulator 1101. Then, an acceleration / deceleration effect of traveling and a forward / reverse switching operation are performed in accordance with the change in the tilt of the two. That is, oil from the auxiliary pump 112 driven by the prime mover 101 is sent to the pump regulator 110 via the electromagnetic switching valve 113, which is controlled by a switching switch (not shown). .
  • the solenoid-operated directional control valve 113 has a neutral position a, a forward position b, and a reverse position c.
  • the pump regulator 106 does not operate on either the left or right side of the figure,
  • the pump 103 is in a state of no tilt. In this state, no pressure oil is supplied to either of the main pipelines 104, 105 on both sides, and the hydraulic motor 106 does not rotate, so that the vehicle is stopped.
  • Reference numeral 114 denotes a throttle that generates a pressure corresponding to the discharge flow rate of the auxiliary pump 112.
  • the pressure generated by the throttle 114 is reduced by the pressure reducing valve 115, and the pump shown in FIG. It is sent to the pump regulator 110 via the electromagnetic switching valve 113 as the capacity command pressure.
  • 1 16 is a low-pressure relief valve
  • 1 17 and 1 17 are a pair of overload relief valves that regulate the maximum value of the circuit pressure.
  • the main hydraulic pump 103 and the hydraulic motor 106 are connected in a closed circuit.However, since oil in the circuit flows out through the respective drain circuits, the oil from the auxiliary pump 112 is checked.
  • the two main lines 4, 5 are replenished via valves 118, 118 respectively.
  • the check valves 1 19, 1 19 are used as pressures in the direction in which the pressure (circuit pressure) of the main pipelines 104, 105 on both sides decreases in the motor capacity.
  • the motor displacement command pressure shown in Fig. 19 increases the motor displacement from the auxiliary hydraulic pressure source 120 through an electromagnetic proportional pressure reducing valve (hereinafter referred to as a "regulation control valve") 121. Introduced as directional pressure.
  • the opening of the regulator control valve 122 changes in accordance with a command signal from the controller 122 constituting the control means, whereby the displacement command pressure changes.
  • an accelerator sensor 124 as an accelerator operation amount detecting means for detecting an operation amount (accelerator operation amount) of the accelerator pedal 123 is provided, and an auxiliary brake switch 125 as an auxiliary brake selecting means is provided. The signals from these are input to the controller 122.
  • 1 26 is a brake pedal
  • 1 27 is a brake warning light that lights when this brake pedal 1 26 is operated, and in this device, even when the brake pedal 1 26 is not operated, the auxiliary braking action is While it is taking place, the signal from controller 1 2 2 Therefore, the brake warning light 127 is configured to be turned on.
  • the pump regulator 110 operates, and as shown in FIG. 18, the capacity of the main hydraulic pump 103 increases with an increase in the command pressure. , An acceleration pressure is generated and the vehicle starts moving forward.
  • the brake pressure in the main line 105 is usually lower than Pb, and the motor capacity remains small.
  • the auxiliary braking switch 1 25 is on. (When YES in step S101), the degree of decrease in the accelerator operation amount detected by the accelerator sensor 124 is equal to or greater than a preset value (YES in step S102). Then, a controller capacity increase signal is sent from the controller 1 2 2 to the regulator control valve 1 2 1 (step S 103), and the controller 1 2 1 sends a motor capacity control signal to the motor regulator 1 1 1. Increasing pressure is supplied.
  • the capacity of the hydraulic motor 106 increases regardless of the circuit pressure (for example, the motor capacity becomes maximum), so the discharge flow from the motor 106 increases and the main line 105 Brake pressure is generated.
  • the accelerator pedal 123 is returned to the main pipeline 105 as described above, the original brake pressure is generated based on the reduction of the pump capacity. A larger braking force is applied, and the torque is converted by the main hydraulic pump 103 and transmitted to the motor 101, so that the vehicle is decelerated with a large deceleration.
  • Step S104 When the auxiliary braking switch 125 is off and the degree of decrease in the accelerator operation amount is less than the set value, a control signal during normal driving is sent from the controller 122 to the regulator control valve 122. (Step S104).
  • the HST vehicle can obtain the same auxiliary braking function as a general heavy vehicle, and can prevent the wear of the brake pad and the occurrence of vapor lock when going down a long hill.
  • the brake warning light 1 27 is lit by a signal from the controller 122 to indicate that the following vehicle is in a large braking state, thereby avoiding a rear-end collision.
  • the following embodiment is also possible.
  • the operation in which the accelerator pedal 123 is suddenly returned is referred to as "the auxiliary braking operation of the operator for the purpose of exerting the auxiliary braking effect”.
  • the auxiliary braking function was activated, but instead, the operation amount of the 7-cell pedal 1 23 was less than the set value (for example, less than the low idle position). It may be so configured that the auxiliary braking operation is performed when the auxiliary braking operation is performed.
  • both the sudden return operation of the accelerator pedal 123 and the operation for reducing the operation amount to the set value or less may be regarded as the auxiliary braking operation, and the auxiliary braking operation may be performed.
  • a brake sensor 128 for detecting that the brake pedal 126 has been operated is provided, and a signal sent from the brake sensor 128 to the controller 122 is provided.
  • a configuration may be adopted in which the auxiliary braking action is activated when the brake is operated.
  • a configuration may be adopted in which the operation of the brake itself is detected instead of the operation of the brake pedals 126 to determine the presence or absence of the auxiliary braking operation.
  • an electromagnetic proportional pressure reducing valve was used as the regulator control valve 1 2 1 for controlling the motor regulator 1 1 1 1, but the position for applying pressure to the motor regulator 1 11 was added. It is also possible to use an electromagnetic switching valve that switches between the position and the non-position.
  • reference numeral 201 denotes a prime mover, which is a working hydraulic pump (hereinafter referred to as “working pump”) 203 by the prime mover 201 via a power distributor 202, and both hydraulic pumps for traveling. (Hereinafter referred to as “traveling pump”.) 204 is driven.
  • working pump a working hydraulic pump
  • traveling pump both hydraulic pumps for traveling.
  • the work pump 203 is configured as a variable displacement pump whose tilt is controlled by a work pump regulator 205, and is provided in a work circuit 206 by pressure oil from the pump 203.
  • a plurality of working hydraulic actuators (not shown) (for example, a boom hoist cylinder, a winch motor, a swing motor, etc.) are driven.
  • An oil cooler 208 is provided in the tank line 207 of the working circuit 206, The return oil from the factory circuit 206 is cooled by the oil cooler 208 and returns to the oil tank T.
  • Reference numeral 209 denotes a check valve provided in parallel with the oil cooler 209.
  • the working pump regulator 210 is connected to the pilot pressure source 212 via an electromagnetic proportional valve 211 controlled by the controller 210, and is detected by an oil temperature sensor 211.
  • the secondary pressure of the electromagnetic proportional valve 211 changes according to the signal from the controller 210 in accordance with the tank oil temperature, which changes the working stroke of the work pump regulator 205.
  • the displacement of the pump is controlled to be large or small (this point will be described in detail later). It is configured as a pump.
  • a traveling circuit using the traveling pump 204 as a hydraulic pressure source includes a pump circuit A and a motor circuit B.
  • the pump circuit A is installed on the upper revolving unit together with the work pump 203, the work circuit 206 and its related equipment, and the motor circuit B is installed on the lower traveling unit.
  • the pump circuit A includes a traveling pump 204, an electromagnetic switching valve 2 15 for controlling the operation of the traveling pump regulator 214 based on a signal from the controller 210, and oil from the oil tank T.
  • Fixed-capacity auxiliary pump (oil supply pump) 2 16 a throttle 2 17 that generates a pressure corresponding to the discharge amount of the auxiliary pump 2 16, and a pressure generated by the throttle 2 17
  • a pair of check valves 221 and 221 for replenishing a part of the oil from the auxiliary pump 216 to the circuit.
  • the motor circuit B includes a traveling hydraulic motor (hereinafter referred to as a “traveling motor”) 222, a flushing valve 222 for discharging excess oil out of the circuit, and a downstream side of the flushing valve 222. And a flow control valve 2 25 provided on both sides of the motor circuit B.
  • the motor pipes 2 26 and 2 27 on both sides of the motor circuit B and the main pipes 2 2 8 on both sides of the pump circuit A are provided.
  • And 229 are connected via a swivel joint 230 to form a closed circuit.
  • Numeral 31 denotes a traveling speed reducer for reducing the rotational force of the traveling motor 222 and transmitting it to traveling driving wheels (not shown).
  • the control operation when the traveling speed reducer 2 31 is switched from the high speed stage to the low speed stage is as described in the description of the first embodiment.
  • the pump circuit A is provided with a pump-side drain pipe line 23 through which leakage oil from the traveling pump 204 and relief oil from the low-pressure relief valve 219 flow, and the motor circuit B is provided in the pump circuit A.
  • a motor-side drain pipe 23 3 through which oil leaked from the driving motor 222 and oil discharged from the flushing valve 222 flows in is provided.
  • the two drain lines 2 3 2 and 2 3 3 are connected to the tank T via a swivel joint 2 30 and a combined drain line 2 3 4.
  • the drain pipes 2 3 2, 2 3 3, and 2 3 4 are connected to the tank T via the shortest path, the pipe length can be minimized. Therefore, even in an upper turning type vehicle in which the length of the drain pipe is long, the back pressure generated in the traveling circuit can be suppressed low by the drain pipes 23, 23, 23, and 24. The back pressure load on (for example, the seal of the traveling motor 222) is reduced, and these damages are prevented.
  • the traveling pump 204 and the traveling motor 222 and the oil discharged through the low-pressure relief valve 219 and the flushing valve 223 are drained by the drain line 232, 2 3 3, returned to the oil tank T via the combined drain line 2 3 4.
  • the working circuit 206 is stopped, but the working pump 203 is driven, and the oil discharged from the pump 203 passes through the working circuit 206 and passes through the oil cooler 208. It is cooled and circulates to the oil tank T and further to the pump 203.
  • the drain oil from the traveling circuit is cooled by the oil circulation of the working system, and is then replenished to the traveling circuit by the auxiliary pump 216. Therefore, the traveling pump 204 and the traveling motor 202
  • the running circuit (pump circuit A and motor circuit B), which is a closed circuit including, is cooled.
  • the traveling The road can be cooled and maintained at an appropriate temperature by low-temperature oil passing through an oil cooler 208.
  • the cooling operation is controlled according to the tank oil temperature. This will be described with reference to the flowchart of FIG.
  • the controller 210 sets in advance a reference value for the oil temperature as a temperature at which the cooling capacity should be increased and a set value lower than the reference value.
  • the oil temperature sensor 21 The tank oil temperature detected by step 3 is compared with a reference value.
  • step S1 it is further determined in step S203 whether the tank oil temperature is equal to or higher than the set value, and if NO (less than the set value), the cooling capacity is increased. Since there is no need, in step S204, the work pump 203 is controlled to the small tilt side (for example, the minimum tilt).
  • step S203 determines whether the tank oil temperature is equal to or higher than the set value. If it is determined in step S205 whether the pump was previously controlled to the large tilt side, and NO In the case of, the work pump 203 is controlled to the small tilt side in step S204, and in the case of YES, the work pump 203 is controlled to the large tilt side in step S202.
  • step S203 By the control of step S203 ⁇ step S205 ⁇ step S202, when the work pump 203 is once controlled to the large tilt side, the tank oil temperature falls below the set value. Large tilt is maintained until
  • the tilt of the work pump 203 was switched only to two types, large and small.However, the tilt of the pump was changed in three or more steps or continuously in a stepless manner in accordance with the change in the tank oil temperature. You may do so.
  • an oil temperature switch that is turned on (or off) at a set temperature instead of the oil temperature sensor 2 13, and replace the solenoid proportional valve 2 1 1
  • an electromagnetic switching valve may be used.
  • a configuration may be adopted in which the electromagnetic switching valve is directly switched by turning on / off the oil temperature switch without going through the controller 210.
  • an auxiliary oil cooler 235 for drain is provided in the junction drain line 234, and the speed reducer that branches off from the drain line 233 of the motor circuit B and passes through the traveling speed reducer 231 A cooling line 236 is provided.
  • 23 7 is a check valve provided in parallel with the auxiliary oil cooler 23 5, and 23 8 is a check valve for preventing reverse flow of oil from the reduction gear cooling line 2 36 to the traveling motor 222. It is a dialect.
  • the drain oil from the traveling circuit is supplied to the auxiliary oil cooler 235. After being cooled down, it returns to the oil tank T, and receives the main cooling action by the work pump 203 and the oil cooler 208, which enhances the cooling effect, especially the maximum discharge of the work pump 203 It is effective in vehicles that may not have enough main cooling effect due to low power.
  • drain oil is supplied to the traveling speed reducer 2 3 1 by the speed reducer cooling line 2 36, and the traveling speed reducer 2 3 1 is cooled by the drain oil. Can also be prevented.
  • auxiliary oil cooler 235 together with the oil cooler 208 may be arranged in the engine room one night before Laje, and may be configured to be cooled by a common fan.
  • the two oil coolers 208 and 235 may be arranged side by side right or left before Laje, or may be arranged before and after.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

HSTを具備する油圧走行駆動装置において、閉回路内の急激な昇温や運転者の違和感を伴うことなく変速機の低速段切換時におけるショックを有効に低減することを目的とする。その手段として、原動機12により駆動される可変容量型油圧ポンプ18と、変速機28を介して走行用車輪30に連結される油圧モータ26とを含む閉回路が構成され、原動機12の回転数の上昇に伴って容量操作手段40が前記可変容量型油圧ポンプ18のポンプ容量を増大させる。さらに、変速機28が高速段から低速段に切換えられる際には、その低速段切換時以外の運転時よりも前記ポンプ容量を一時的に大きくしてモータ回転数の増大によるモータ吐出流量の吸収を行う。

Description

油圧走行駆動装置及び油圧走行車両
技術分野
本発明は、 作業車両等の走行駆動を油圧で行う油圧走行駆動装置に関するもので ある。 明
背景技術
近年、 ホイールローダーや自走式ショベル等の作業車両を油圧で走行させる手段 書
として、 H S T (Hydrostatic Transmission;静油圧式無段階変速機) を具備す る走行駆動装置の開発が進められている。
例えば、 特開平 6— 2 6 5 0 1 3号公報には、 原動機により駆動される可変容量 型油圧ポンプと、 変速機を介して走行車輪に連結される油圧モー夕とで閉回路が構 成されるとともに、 前記原動機の回転数の上昇に伴って吐出圧が上昇する容量操作 用の油圧ポンプと、 この容量操作用油圧ポンプから出力される油圧を受けて当該油 圧が高いほど前記可変容量型油圧ポンプの容量を増大させるレギュレ一夕とを備え た走行駆動装置が開示されている。
この装置によれば、 原動機の回転数の変化に応じて可変容量型油圧ポンプの容量 が操作されることにより、 静油圧による無段階変速が実現される。 さらに、 油圧モ —夕と走行車輪との間に介在する変速機の変速比を切換える (例えば高速段と低速 段との間で二段切換を行う) ことにより、 車速一出力馬力の特性の範囲を大幅に拡 大することが可能になる。
しかしながら、 この装置において、 その変速機が高速段から低速段に切換えられ る (すなわち油圧モータの回転数と走行車輪の回転数との比が下げられる) と、 走 行車輪の回転数は車両の慣性のために直ちには降下しないので、 その分油圧モータ の回転数が一時的に急増する。 これにより、 当該油圧モータの吐出側圧力が急激に 高まってブレーキ圧を生じさせ、 運転者に違和感を与えてしまう。 さらに、 その昇 圧度合いが高い場合には油圧機器の寿命低下や破損を招くおそれがある。
このような低速段切換時での不都合を解消する手段として、 特開平 5— 2 4 8 5 1 1号公報には、 前記特開平 6— 2 6 5 0 1 3号公報に記載された装置と同様に可 変容量型油圧ポンプと走行用の油圧モー夕とが閉回路を構成する走行駆動装置にお いて、 前記油圧ポンプの吐出管路と吸込み管路とをバイパスするバイパス通路にリ リーフ設定圧が操作可能なリリーフ弁が設けられ、 かつ、 前記油圧モータと走行車 輪との間に介在する変速機が高速段から低速段に切換えられる際に前記リリーフ弁 の設定圧を一旦下げてから徐々に増加させるコントローラを備えたものが開示され ているが、 当該リリーフ流量の増加によって油圧モータの吐出側圧力の上昇を吸収 するには限界があり、 また、 その吸収のために比較的長い時間にわたってリリーフ 弁の設定圧を下げた状態を保持しておかなければならない。 このため、 低速段切換 時には回路圧力が低下した状態、 すなわち減速度が小さくなって車速がほとんど低 下しない状態が、 しばらく継続することになる。
一方、 運転者は一般に減速度の増大を目的として前記低速切換操作 (シフトダウ ン操作) を行っているのであるから、 当該シフトダウン操作にもかかわらず前記の ように減速度が低下して車速がほとんど減少しない状態が継続することは、 前記運 転者の意思に反することになり、 著しい違和感を生じさせるおそれがある。
さらに、 この方法では、 油圧モータの回転数の上昇により発生した余剰のェネル ギ一がリリーフ作動によってほとんど熱エネルギーに変換されてしまうため、 油圧 モータと可変容量型油圧ポンプとで構成される閉回路内の温度が急激に上昇して回 路機器の寿命を低下させるおそれもある。
本発明は、 このような課題を解決することを目的とする。 発明の開示
前記課題を解決するため、 本発明は次のような構成を採用した。
すなわち本発明は、 原動機により駆動される可変容量型油圧ポンプと、 変速機を 介して車両の走行用車輪に連結される油圧モ一夕とを含む閉回路が構成されるとと もに、 前記原動機の回転数の上昇に伴つて前記可変容量型油圧ポンプの容量を増大 させる容量操作手段を備え、 さらに、 この容量操作手段は、 前記変速機が高速段か ら低速段に切換えられる際にその低速段切換時以外の運転時よりも前記可変容量型 油圧ポンプの容量を一時的に大きくする容量増加手段を含むものである。
この構成によれば、 低速段切換時に可変容量型油圧ポンプのポンプ容量ひいては ポンプ吸収流量が一時的に増加されるので、 低速段切換に伴うモータ回転数の急増 によるモータ吐出流量の増大が前記可変容量型油圧ポンプの回転を通じてエンジン ブレーキという形態で吸収されることになる。 すなわち、 前記モ一夕回転数の急増 によるエネルギー増加分を原動機の駆動トルクを利用して有効に吸収することがで きる。
このとき、 減速度は一時的に低下して車速がほとんど減速しない状態が発生し得 るが、 従来のようにリリーフ作動で流量を吸収するものと異なり、 当該流量吸収に 要する時間は高速段から低速段への変速過渡期とほぼ同等の時間で十分であつて僅 かであり、 運転者に違和感を与えるおそれはほとんどない。 また、 エンジンブレー キを利用しているので閉回路内での温度上昇も生じにくく、 油圧機器等を傷めるお それもない。
前記ポンプ容量の増加時期は、 概ね低速段切換時期に対応していればよいが、 前 記変速機が高速段から低速段へ切換えられる時点またはそれよりも前の時点から前 記可変容量型油圧ポンプの容量の増加を開始し、 前記低速段への切換終了時または 当該切換終了から一定時間が経過した後に前記可変容量型油圧ポンプの容量の増加 を停止することが、 より好ましい。
このような期間設定により、 低速段切換移行期間中は必ずポンプ容量が増加され ているので、 低速段切換時におけるモータ吐出流量の吸収効果をより確実なものに することができる。
前記ポンプ容量の増加を終了させるには、 例えば当該容量を急減させるようにし てもよいが、 当該容量を徐々に減少させるようにすれば、 通常運転への移行をより 円滑にすることができる。
本発明において、 前記容量操作手段としては、 例えば、 油圧の供給を受けて当該 油圧が高いほど前記可変容量型油圧ポンプの容量を大きくするレギュレー夕と、 こ のレギュレー夕に油圧を供給するための油圧供給源と、 この油圧供給源と前記レギ ユレ一夕との間に介在し、 前記油圧供給源から供給される油圧を入力される指令信 号に応じた圧力まで減圧して前記レギユレ一夕に導く減圧弁と、 前記原動機の回転 数の上昇に伴って前記減圧弁の二次圧を高くするように当該減圧弁に指令信号を入 力する圧力制御手段とを含み、 かつ、 この圧力制御手段は、 前記変速機が高速段か ら低速段に切換えられる際にその低速段切換時以外の通常運転時よりも前記減圧弁 の二次圧を一時的に大きくする圧力増加手段を含むものが好適である。
この構成によれば、 原動機の回転数と減圧弁二次圧との特性すなわち当該原動機 回転数とポンプ容量との特性を自由に設定することが可能であり、 このような特性 の設定によって、 例えば、 走行燃费の向上や走行性能のフル活用等を図ることがで きる。 しかも、 当該二次圧を一時的に昇圧させるだけの簡単な制御動作で、 低速段 切換時におけるポンプ容量の一時的な増加を適正な形態で行うことができる。 さらに、 前記圧力制御手段が、 前記原動機の回転数に対する前記指令信号の特性 として複数種の特性を記憶しており、 これらの特性のうち車両の運転状態に対応し た特性を選択して当該特性に基づき指令信号を決定するように構成すれば、 当該特 性の選択によって実際の運転状態によりマッチしたポンプ容量制御を行うことが可 能になる。
また、 前記容量操作手段は、 前記減圧弁に接続される油圧供給源とは別の油圧供 給源として、 前記原動機の出力軸に連結されて当該原動機の回転数の上昇に伴い吐 出圧が増大する容量操作用油圧ポンプと、 前記容量操作用油圧ポンプから供給され る油圧と前記減圧弁の二次側から供給される油圧のうち高位のものを前記レギユレ 一夕に導く高圧選択部とを含み、 力つ、 前記減圧弁の二次圧が常に前記容量操作用 油圧ポンプから供給される油圧よりも高くなるように当該二次圧の特性が設定され ているものが、 より好ましい。
この構成によれば、 減圧弁が正常な状態では、 当該減圧弁の二次側から供給され る油圧が容量操作用油圧ポンプから高圧選択部に供給される油圧を上回るため、 常 に前者の油圧が選択されてレギユレ一夕に導かれる。 すなわち、 前記減圧弁による 容量制御が実行される。 これに対し、 前記減圧弁に作動不良が生じてその二次圧が 異常に低下した場合には、 容量操作用油圧ポンプから供給される油圧が選択されて レギユレ一夕に導かれるため、 前記減圧弁の故障等にかかわらず正常な走行駆動が 持続される。
また本発明において、 前記容量操作手段は、 前記原動機の出力軸に連結され、 当 該原動機の回転数の上昇に伴って吐出圧が増大する容量操作用油圧ポンプと、 この 容量操作用油圧ポンプからの油圧の供給を受けて前記可変容量型油圧ポンプの容量 を操作し、 かつ、 当該油圧が高いほど前記容量を大きくするレギュレ一タとを含み , さらに、 前記容量増加手段として、 前記容量操作用油圧ポンプよりも高い油圧を 供給するための高圧供給源と、 前記レギユレ一夕に対して前記容量操作用油圧ポン プから油圧が供給される状態と前記高圧供給源から油圧が供給される状態とに切換 える油圧供給切換手段と、 前記変速機の高速段から低速段への切換時には前記レギ ュレー夕に対して前記高圧供給源から油圧が供給される状態に切換え、 当該低速段 への切換時以外の運転時には前記レギユレ一夕に対して前記容量操作用油圧ポンプ から油圧が供給される状態に切換えるように前記油圧供給切換手段を作動させる切 換制御手段とを含むものであってもよい。
この構成によれば、 低速段切換時以外の通常運転時には、 容量操作用油圧ポンプ から供給される油圧がレギユレ一夕に導かれ、 可変容量型油圧ポンプのポンプ容量 が操作される。 これに対し、 低速段切換時には高圧供給源から出力される油圧、 す なわち前記容量操作用油圧ポンプから供給される油圧よりも高い油圧がレギュレー 夕に導かれることにより、 可変容量型油圧ポンプのポンプ容量が一時的に増加され る。
具体的には、 前記油圧供給切換手段として、 前記高圧供給源から前記レギユレ一 夕への油圧の供給を許容する許容状態と当該供給を遮断する遮断状態とに切換えら れる切換弁と、 この切換弁から出力される油圧と前記容量操作用油圧ポンプから供 給される油圧のうち高位のものを前記レギユレ一夕に導く高圧選択部とを含み、 前 記切換制御手段は、 前記変速機の高速段から低速段への切換時には前記切換弁を前 記許容状態に切換え、 当該低速段への切換時以外の運転時には前記切換弁を前記遮 断状態に切換えるものが好適である。 この構成によれば、 低速段切換時以外の通常運転時には、 高圧供給源からの油圧 供給が切換弁で遮断されているので、 容量操作用油圧ポンプから供給される油圧が 高位選択されてレギユレ一夕に導かれ、 可変容量型油圧ポンプのポンプ容量が操作 される。 これに対し、 低速段切換時には高圧供給源から高圧選択部への油圧供給が 許容され、 かつ、 この油圧が高位選択されてレギユレ一夕に導かれることとなり、 かつ、 当該油圧は前記容量操作用油圧ポンプから供給される油圧よりも高いため、 可変容量型油圧ポンプのポンプ容量が一時的に増加されることとなる。
また、 前記油圧モータとして可変容量型油圧モー夕を備えるとともに、 前記油圧 モータの容量を制御するレギュレー夕と、 このレギュレー夕の作動を制御する制御 手段とを具備し、 前記制御手段は、 補助制動作用を働かせることを目的とするオペ レ一夕の補助制動操作が行われたときに、 前記レギユレ一夕をモータ容量が増加す る方向に作動させるように構成されたものによれば、 減速時にオペレータが補助制 動操作を行ったときに、 制御手段の作用によってモータ容量が増加し、 油圧モー夕 からの流出流量が増加するため、 モータ出口側にブレーキ圧力が発生する。 これに より、 減速操作に基づく油圧ポンプの容量減少によって働く本来のブレーキ作用と 、 前記モータ容量の増加によって働くブレーキ作用 (補助制動作用) とによって通 常時よりも大きなブレーキ圧力が働き、 これがポンプでトルク変換されて原動機に 伝えられることにより、 大きな減速度で減速作用が働く。 従って、 H S T車両にお いて一般重車両と同様の補助制動機能を得ることができる。 しかも、 H S T車両が 元々持っている油圧モー夕の容量増加作用と原動機の動力吸収作用を利用して補助 制動作用を働かせるため、 付加設備費及び改造費が安くてすむ。
具体的に、 前記制御手段は、 補助制動操作が行われたことを検出する補助制動操 作検出手段と、 この補助制動操作検出手段によつて補助制動操作が検出されたとき にレギユレ一夕をモータ容量増加方向に作動させる作動指令信号を出力するコント ローラとによつて構成されたものが好適である。
また、 補助制動操作検出手段は、 原動機の回転数を指令するアクセルの操作量を 検出し、 コントローラは、 検出されたアクセル操作量の減少度合いが設定値以上に なったときに補助制動操作が行われたとして作動指令信号を出力するように構成さ れたものが好適である。
あるいは、 補助制動操作検出手段は、 原動機の回転数を指令するアクセルの操作 量を検出し、 制御手段は、 検出されたアクセル操作量が設定値以下になったときに 補助制動操作が行われたとして作動指令信号を出力するように構成されたものでも よいし、 補助制動操作検出手段はブレーキ操作を検出し、 制御手段は、 ブレーキ操 作が検出されたときに補助制動操作が行われたとして作動指令信号を出力するよう に構成されたものでもよい。
また、 補助制動選択手段を備え、 前記制御手段が、 この補助制動選択手段によつ て補助制動を行う旨の選択が行われたことを条件としてレギュレー夕をモータ容量 が増加する方向に作動させるように構成されたものとすれば、 補助制動選択手段に よって補助制動を行う旨の選択が行われた状態 (たとえばスィッチのオン操作) で のみ補助制動作用が働くため、 たとえば平坦路では補助制動作用を働かせないでス ムーズな走行状態を得る等、 走行状況やオペレータの好み等に応じた選択が可能と なる。
また、 前記制御手段が、 補助制動操作が行われたときに、 原動機の排気ブレーキ を作用させるように構成されたものであれば、 急で長い下り坂等の走行時に、 一般 重車両で用いられる排気ブレーキを併用してさらに大きな減速度を得ることができ る。
また、 前記制御手段が、 レギユレ一夕をモータ容量が増加する方向に作動させる と同時にブレーキ警告灯を点灯させるように構成されたものであれば、 補助制動作 用が行われている間はブレーキ警告灯が点灯するため、 とくに公道走行時に後続車 に大減速状態であることを表示し、 追突等の危険を回避することができる。
本発明では、 前記容量操作手段による容量操作の異常の有無を検出する異常検出 手段と、 この異常検出手段により前記容量操作の異常が検出された場合に前記油圧 モータと走行用車輪との連結を解除する連結解除手段とを備えることが、 より好ま しい。
この構成によれば、 容量操作の異常によって可変容量型油圧ポンプの容量に異変 が生じても、 これに応じて油圧モータと走行用車輪との連結が解除されることによ り、 油圧モータ流出側で回路圧が異常に上昇することが回避され、 これに起因して 車両の急停止や機器の損傷が生じることが有効に抑止される。 従って、 慣性マスが 大きくてかつ高速公道走行をするホイールクレーンゃホイールショベルなどには特 に有効となる。
また、 前記容量操作手段が、 油圧の供給を受けることにより前記可変容量型油圧 ポンプの容量を操作するレギュレー夕と、 このレギュレ一夕に油圧を供給するため の油圧供給源と、 この油圧供給源と前記レギユレ一夕との間に介在し、 その切換位 置として前記油圧供給源から前記レギユレ一夕への油圧の供給を許容する許容位置 と前記油圧の供給を遮断する遮断位置とを有する切換弁と、 この切換弁に指令信号 を入力することによりその切換操作をする切換操作手段とを含み、 かつ、 前記切換 弁は、 前記指令信号の入力が途絶えたときに現在の操作位置を保持するように構成 されているものにおいても、 仮に切換弁に対する指令信号の入力が途絶えても当該 切換弁の操作位置は現在の位置に保持されるため、 前記指令信号の入力異常に起因 してポンプ容量が急変することが防がれ、 これに起因する不都合が回避される。 また本発明は、 下部走行体と、 この下部走行体上に旋回自在に搭載される上部旋 回体と、 前記下部走行体を駆動する装置としての前記油圧走行駆動装置とを備えた 油圧走行車両である。
この油圧走行車両において、 前記上部旋回体に、 前記可変容量型油圧ポンプとし ての走行用油圧ポンプ及び作業用油圧ポンプと、 この作業用油圧ポンプを油圧源と して作業用油圧ァクチユエ一夕を駆動する作業回路と、 油タンクと、 前記作業回路 から前記油タンクに戻る油を冷却するォイルク一ラーとが設けられる一方、 前記下 部走行体に走行駆動源としての前記油圧モー夕が設けられ、 この油圧モータと前記 走行用油圧ポンプとがスィベルジョイントを介して接続されて閉回路の走行回路が 構成され、 かつ、 この走行回路のドレン油を直接前記油タンクに戻すドレン管路と 、 前記油タンクから前記走行回路に油を補給する油補給ポンプとがそれぞれ設けら れ、 走行時に前記作業用油圧ポンプが吐出する油を前記オイルクーラ一を経由して 前記作業回路と前記油タンクとの間で循環させ、 前記油タンク内の油を前記油補給 ポンプにより前記走行回路に補給するように構成すれば、 走行回路のドレン油を直 接油タンクに戻すため、 モータケースやポンプケースに一旦溜める公知技術と比較 してドレン管路の全長を最小限に短縮することができる。 従って、 ドレン管路の背 圧を抑え、 機器各部の損傷を防止することができる。 し力 ^も、 走行中、 作業用油圧 ポンプを駆動して作業回路の油をオイルクーラー経由で循環させ、 これによつて冷 却された油を補給ポンプによって走行回路に補給するため、 走行回路の油温を低下 させ、 走行回路を効率良く冷却することができる。 また、 作業用油圧ポンプを利用 して補給油を冷却するため、 別ポンプを追加する場合と比較してコスト及びェネル ギー効率の点で有利となる。 図面の簡単な説明
図 1は、 本発明の第 1の実施の形態にかかる油圧走行駆動装置を示す油圧回路図 である。
図 2 ( a ) は図 1に示す装置における原動機回転数と電磁比例減圧弁の指令圧力 及びポンプ容量との関係を示すグラフ、 (b ) は同装置における原動機の回転数と 原動機出力、 原動機トルク、 及び出力馬力との関係を示すグラフ、 (c ) は車速と 駆動力との関係を示すグラフである。
図 3は、 図 1に示す装置の低速段切換時における作用を示すタイムチャートであ る。
図 4は、 前記低速段切換時でのコントローラの制御動作例を示すフローチャート である。
図 5は、 前記油圧走行駆動装置に設けられる変速機のスケルトン図であって (a ) はニュー卜ラル状態、 (b ) は低速段変速状態、 (c ) は高速段変速状態をそれ ぞれ示す図である。
図 6は、 前記油圧走行駆動装置に設けられるコントロ一ラの構成を示す回路図で ある。
図 7は、 前記コントローラの制御動作を示すフローチャートである。
図 8は、 異常検出手段として圧力スイツチが用いられた場合のコントローラの構 成を示す回路図である。 図 9は、 図 8に示されるコントローラの制御動作を示すフローチヤ一トである。 図 1 0は、 本発明の第 2の実施の形態にかかる油圧走行駆動装置を示す油圧回路 図である。
図 1 1は、 図 1 0に示す装置の低速段切換時における作用を示すタイムチャート である。
図 1 2は、 本発明の第 3の実施の形態にかかる油圧走行駆動装置を示す油圧回路 図である。
図 1 3は、 図 1 2に示す装置に設けられるコントローラの構成を示す回路図であ る。
図 1 4は、 図 1 3に示されるコントローラの制御動作を示すフローチャートであ る。
図 1 5は、 (a ) は可変容量型油圧ポンプのレギユレ一夕と油圧供給源との間に 介在する切換弁として 2つのディテント型電磁切換弁を直列に配した油圧走行駆動 装置の例を示す油圧回路図、 (b ) は同装置において行われる制御動作を示すフロ 一チヤ一卜である。
図 1 6は、 (a ) は前記レギュレ一タと油圧供給源との間に介在する切換弁とし て 2つのディテント型電磁切換弁を並列に配した油圧走行駆動装置の例を示す油圧 回路図、 (b) は同装置において行われる制御動作を示すフローチャートである。 図 1 7は、 本発明の第 4の実施の形態を示す回路構成図である。
図 1 8は、 同実施形態における原動機の回転数とポンプ容量及びポンプ容量指令 圧力の関係を示す図である。
図 1 9は、 同実施形態におけるモータ容量と回路圧力及びモー夕容量指令圧力の 関係を示す図である。
図 2 0は、 同実施形態の作用を説明するためのフローチャートである。
図 2 1は、 本発明の第 5の実施の形態を示す回路構成図である。
図 2 2は、 同実施の形態におけるポンプ制御作用を説明するためのフローチヤ一 トである。
図 2 3は、 本発明の第 6の実施の形態を示す回路構成図である。 発明を実施するための最良の形態
本発明の第 1の実施の形態を図 1〜図 4を参照しながら説明する。
図 1は、 本発明に係る油圧走行駆動装置を具備した車両の概略構成を示したもの である。 この車両は、 アクセルペダル 1 0に連動して回転数が上昇する原動機 1 2 を備え、 この原動機 1 2の動力は動力分配機 1 4を介して作業用油圧ポンプ 1 6に 供給されるとともに可変容量型油圧ポンプ 1 8及び容量操作用油圧ポンプ 2 0に供 給される。 従って、 前記原動機 1 2の回転数の増大に伴って各油圧ポンプ 1 6 , 1 8 , 2 0の吐出流量が増大するようになっている。
前記可変容量型油圧ポンプ 1 8は、 油圧モータ 2 6とともに閉回路 (H S T回路 ) を構成する。 この実施の形態では、 可変容量型油圧ポンプ 1 8及び油圧モータ 2 6は双方向の作動が可能となっており、 可変容量型油圧ポンプ 1 8の一方のポート が管路 2 2を介して油圧モータ 2 6の一方のポートに接続され、 当該油圧モータ 2 6の他方のポートが管路 2 を介して可変容量型油圧ポンプ 1 8の他方のポートに 接続されている。 そして、 可変容量型油圧ポンプ 1 8から管路 2 2側に作動油が吐 出されたときには油圧モータ 2 6が車両前進方向に回転し、 逆に同ポンプ 1 8から 管路 2 4側に作動油が吐出されたときには油圧モ一タ 2 6が車両後退方向に回転す るようになっている。
前記油圧モー夕 2 6の出力軸は、 変速機 2 8を介して走行車輪 3 0に連結されて いる。 変速機 2 8は、 外部から入力される変速指令信号に応じて変速比が複数段 ( この実施の形態では高速段と低速段の 2段) に切換えられるようになつている。 なお、 前記管路 2 2, 2 4はそれぞれチェック弁付きオーバーロードリリーフ弁 3 2を介して低圧リリーフ弁 3 4の一次側に接続され、 当該低圧リリーフ弁 3 4の 二次側がタンクに接続されている。 また、 管路 2 2または管路 2 4の圧力が所定の 許容圧力にまで達したときには当該管路側のオーバ一ロードリリーフ弁 3 2が開き 、 当該オーバーロードリリーフ弁 3 2と他方のオーバ一ロードリリーフ弁における チェック弁とを介して管路 2 2 , 2 4同士が開通されることにより、 回路の最大圧 力が規制されるようになつている。 前記可変容量型油圧ポンプ 1 8のポンプ容量は、 容量操作手段 4 0によって操作 される。 この容量操作手段 4 0は、 この実施の形態では、 レギユレ一夕 3 8と、 3 位置の電磁切換弁 3 6と、 高圧供給源 4 2と、 電磁比例減圧弁 4 4と、 シャトル弁 (高圧選択弁) 4 6と コントローラ 6 0と、 前記容量操作用油圧ポンプ 2 0とを 含んでいる。
前記レギユレ一夕 3 8は、 外部からの油圧の供給を受け、 その供給向きに応じて 当該油圧が高いほど可変容量型油圧ポンプ 1 8のポンプ容量を増大させるものであ る。 具体的に、 図 1の右側ポートから油圧が供給されたときには当該油圧に応じた 分だけ可変容量型油圧ポンプ 1 8のポンプ容量を前進側に増大させ、 同図左側ポ一 トから油圧が供給されたときには当該油圧に応じた分だけ可変容量型油圧ポンプ 1 8のポンプ容量を後退側に増大させるように構成されている。
前記高圧供給源 4 2は、 所定の油圧を出力するものであればよく、 当該供給源専 用の油圧ポンプを設置してもよいし、 例えば作業用油圧ポンプ 1 6を高圧供給源 4 2として兼用することも可能である。 この高圧供給源 4 2から出力される一定の油 圧は、 前記電磁比例減圧弁 4 4、 シャトル弁 4 6、 及び前記電磁切換弁 3 6を介し て前記レギユレ一夕 3 8に入力される。 前記シャトル弁 4 6には、 絞り 4 7及び減 圧弁 4 8を介して前記容量操作用油圧ポンプ 2 0の吐出側が接続されている。 電磁比例減圧弁 4 4は、 前記コントローラ 6 0から入力される指令信号に比例し た二次圧を出力するものであり、 当該二次圧と、 前記容量操作用油圧ポンプ 2 0か ら前記絞り 4 7及び減圧弁 4 8を通じて出力される油圧とのうち高位のものがシャ トル弁 4 6で選択されて前記電磁切換弁 3 6に導かれるようになつている。
電磁切換弁 3 6は、 ソレノイド 3 6 b , 3 6 f を備え、 同ソレノイドに対して前 記コントローラ 6 0から入力される指令信号によって、 前記シャトル弁 4 6とレギ ユレ一夕 3 8との間をブロックする中立位置 (図 1では中央位置) と、 前記シャト ル弁 4 6から出力される油圧をレギユレ一夕 3 8の前進側ポー卜 (同図では右側の ポート) に導く前進位置 (同図では右位置) と、 前記シャトル弁 4 6から出力され る油圧をレギュレー夕 3 8の後退側ポ一ト (同図では左側のポート) に導く後退位 置 (同図では右位置) とに切換えられる。 すなわち、 この電磁切換弁 3 6の位置切 換によって、 走行駆動の向き (前進と後退) が切換えられるようになつている。 具体的に、 この電磁切換弁 3 6には、 スプリングセンタ型の 3位置電磁切換弁が 用いられており、 その一方のソレノィド 3 6 fが励磁されたときには前記前進位置 に切換えられ、 他方のソレノィド 3 6 bが励磁されたときには前記後進位置に切換 えられ、 両ソレノィド 3 6 f , 3 6 bとも励磁されないときはスプリングの力で前 記中立位置に保持されるようになっている。
前記コントローラ 6 0は、 原動機回転数センサ 5 4、 車速センサ 5 6、 シフトレ バー装置 5 8等に接続され これらから入力される電気信号に基づいて次のような 制御動作を行う。
A) シフトレバ一装置 5 8から入力される指令信号に基づき、 前記電磁切換弁 3 6に指令信号を出力してその位置切換を行う。 具体的に、 シフトレバー装置 5 8の レバ一位置が中立位置のときは、 電磁切換弁 3 6の切換位置を中立位置とし、 同様 に、 前記レバー位置が前進位置または後退位置にあるときは、 電磁切換弁 3 6の切 換位置もそれぞれ前進位置、 後退位置にする。
B ) 変速機 2 8に指令信号を出力してその変速切換を行う。
C) 原動機回転数センサ 5 4により検出される回転数に対応する指令圧力を演算 し、 この指令圧力に見合う指令信号を電磁比例減圧弁 4 4に出力してその二次圧を 前記指令圧力に調節する (圧力制御手段) 。 この実施の形態では、 コントローラ 6 0は図 2 ( a ) の曲線 bに示すように原動機の回転数の増大に伴って指令圧力が増 大する特性を記憶しており、 この特性に基づいて前記原動機回転数から指令圧力を 演算する。
なお、 図例では原動機回転数と電磁比例減圧弁 4 4の指令圧力との特性として曲 線 b , b ' で示される 2種類の特性を具備しているが、 当該特性の数や具体的内容 は適宜設定可能である。 例えば、 前記曲線 b , b ' のいずれかに代え、 またはこれ らに加えて、 登坂時用の特性や急加速用の特性を加えるようにしてもよい。
図 1に示す装置の特徴として、 コント口一ラ 6 0は、 変速機 2 8を高速段から低 速段に切換える際には、 そのときの原動機 1 4の回転数にかかわらず、 実際の指令 圧力として図 2 ( a ) の曲線 bに示される指令圧力 (通常運転時の圧力) の最大値 以上の圧力を設定し、 電磁比例減圧弁 4 4の二次圧を一時的に増加させる圧力増加 手段としての機能も備えている (図 3の最下段参照) 。
なお、 前記電磁切換弁 3 6の切換は、 シフトレバー装置 5 8から出力される信号 を直接当該電磁切換弁 3 6に導くことにより行ってもよい。 また、 コントローラ 6 0で演算される指令圧力は、 原動機回転数センサ 5 4により検出される回転数に対 応する圧力に限らず、 例えばアクセルペダルの操作量に対応する指令圧力であって もよい。
前記容量操作用油圧ポンプ 2 0は、 既述のとおり、 前記原動機 1 4の回転数の増 大に伴って吐出圧が上昇するものであるが、 当該油圧ポンプ 2 0から前記絞り 4 7 及び減圧弁 4 8を通じてシャトル弁 4 6に入力される圧力の特性は前記図 2 ( a) の曲線 aとなっており、 全回転数領域において前記電磁比例減圧弁 4 4の指令圧力 以下となっている。
なお、 この容量操作用油圧ポンプ 2 0の吐出油の一部は、 前記各チェック弁付き オーバ—ロードリリーフ弁 3 2の当該チェック弁を通じて管路 2 2, 2 4に分配さ れ、 回路全体での作動油の補給及び冷却に供される。
次に、 この装置の作用を説明する。
アクセルペダル 1 0が踏み込まれると、 その踏み込みに応じて原動機 1 2の回転 数が上昇し、 これに伴って可変容量型油圧ポンプ 1 8及び容量操作用ポンプ 2 0の 回転数が上昇する。
ここで、 シフトレバー装置 5 8のレバー位置が中立位置であるときは、 電磁切換 弁 3 6も中立位置にあり、 レギユレ一夕 3 8とシャトル弁 4 6との間を遮断する。 従って、 レギユレ一夕 3 8に油圧は供給されず、 可変容量型油圧ポンプ 1 8のボン プ容量はゼロであり、 当該油圧ポンプ 1 8が駆動されても吐出圧は発生しない。 これに対し、 前記レバー位置が例えば前進位置に切換えられると、 電磁切換弁 3 6が前進位置 (図 1では右位置) に切換えられ、 シャトル弁 4 6から出力される油 圧がレギュレー夕 3 8の前進ポート (図 1では右側ボート) に入力される。 これを 受けたレギユレ一夕 3 8は可変容量型油圧ポンプ 1 8の容量を前進方向に増大させ る。 この容量操作により、 可変容量型油圧ポンプ 1 8から管路 2 2を通じて油圧モ —タ 2 6に作動油が吐出され、 当該油圧モ一夕 2 6の出力軸及び当該出力軸に変速 機 2 8を介して連結される走行車両 3 0が前進方向に回転する。
ここで、 前記電磁比例減圧弁 4 4に異常がない場合、 その二次圧 (図 2 ( a ) の 曲線 b ) は常に容量操作用油圧ポンプ 2 0からシャトル弁 4 6に入力される油圧 ( 同図曲線 a ) 以上の圧力に保たれるので、 シャトル弁 4 6では常に電磁比例減圧弁 4 4から出力される油圧が高位選択され、 レギユレ一夕 3 8に導かれる。 従って、 可変容量型油圧ポンプ 1 8の容量は、 後述の低速段切換時を除いて前記曲線 bで示 される特性に基づき制御されることになる。
この曲線 bで示される特性は、 前記容量操作用油圧ポンプ 2 0の吐出圧特性 (曲 線 a) に比べて特に中回転領域での指令圧力が高く、 よってそのポンプ容量特性 ( 図 2 ( a) の曲線 B) 及び出力馬力特性 (同図 (b) の曲線 B) も前記容量操作用 油圧ポンプ 2 0のポンプ容量特性 (図 2 ( a) の曲線 A) 及び出力馬力特性 (図 2 ( b) の曲線 A) に比べて特に中回転領域で優れている。 また、 容量操作用油圧ポ ンプ 2 0の前記各特性は油温の上昇に伴って例えば図 2 ( a) の曲線 c , C及び同 図 (b ) の曲線 Cまで低下するおそれがあるのに対し、 電磁比例減圧弁 4 4による 場合の前記各特性は常に図 2 ( a ) の曲線 b , B及び前記曲線 Bを維持することが でき、 常時走行性能をフルに発揮することが可能になる。
また、 図 2 ( c ) に示す車速 Vと駆動力 Fとの特性についてみても、 常時容量操 作用油圧ポンプ 2 0を用いてレギユレ一夕 3 8を操作する場合には、 原動機回転数 の低下に伴つて前記特性が同図曲線 αで示される特性から曲線 βで示される特性ま で低下するのに対し、 前記電磁比例減圧弁 4 4を用いれば当該特性の低下を例えば 同図曲線ァの程度で抑えるといったことが可能であり、 これによつて走行燃費のさ らなる向上を図ることが可能である。
さらに、 前記電磁比例減圧弁 4 4の指令圧力特性として、 前記図 2 ( a ) の曲線 bに示される特性に加えて同図曲線 b ' に示される特性 (曲線 bに示される特性よ りも低圧の特性であって曲線 aで示される容量操作用油圧ポンプ 2 0の吐出圧特性 よりも高圧の特性) をコントローラ 6 0に記憶させておき、 例えば①アクセルぺダ ル 1 0の踏み込み操作量が少なくてローアイドル状態であると判別できる場合や、 ②ブレーキ操作が検出された場合には、 運転者の減速の意思を推測して曲線 b ' の 特性を選択し、 適度なブレーキ力を確保する一方、 それ以外の場合は前記曲線 の 特性を選択して走行燃費の向上を図るようにすれば、 実際の運転状態により見合つ たポンプ容量制御を実現することが可能になる。
しかも、 図示の装置では、 前記電磁比例減圧弁 4 4がそのソレノイド等の故障に よつて正常な二次圧を出力できなくなつた場合、 シャトル弁 4 6で可変容量型油圧 ポンプ 2 0側の油圧が高位選択されてレギユレ一夕 3 8に導かれるため、 当該電磁 比例減圧弁 4 4の故障時にも支障なく走行を持続できる効果が得られる。
次に、 変速機 2 8が高速段から低速段に切換えられる低速段切換時の作用を図 3 のタイムチヤ一ト及び図 4のフローチャートに基づいて説明する。
コントローラ 6 0は、 例えば図 3に示すように車速 Vが徐々に減少する減速時に おいて、 車両の運転状態が特定の条件を満たしたときに変速機 2 8を高速段から低 速段に切換える。 この低速段切換条件については適宜設定可能である。
当該条件として、 図 4に示す例では、 シフトレバー装置 5 8でシフトダウン操作 され (ステップ # 1で Y E S ) 、 かつ、 車速センサ 5 6が予め設定された許容速度 以下の車速 Vを検出したとき (ステップ # 2で Y E S ) 、 もしくは、 シフトレバ一 装置 5 8がオートマチック走行ポジションにあり (ステップ # 3で Y E S ) 、 かつ 、 車速センサ 5 6により検出される車速 Vが原動機回転数 (またはアクセルペダル 1 0の踏み込み操作量) の関係から求められる許容車速以下であるときに (ステツ プ # 4で Y E S ) 、 図 3の下から 3段目及び 2段目に示されるように変速機 2 8に シフトダウン指令信号を出力して低速段切換を開始する (ステップ # 5 ) 。
このような低速段切換が行われても、 変速の切換応答の間は、 車両の慣性がある ため、 図 3に示すように車速 V及び走行車輪 3 0の回転数は急には低下しない。 従 つて、 油圧モ一夕 2 6の回転数 Nmが急激に上昇する場合がある。 ここで、 何らの 対策も施さなければ、 モータ回転数 Nmの上昇に伴って管路 2 4の圧力 Pが急激に 上昇し、 急ブレーキの発生や油圧機器の損傷等を招くおそれがある。
その対策として、 図示の装置では、 コントローラ 6 0が、 前記低速段切換の開始 時 (図 3の点 A) とほぼ同時に電磁比例減圧弁 4 4の指令圧力を前記図 2 ( a ) の 曲線 bに示される圧力よりも上昇させ (図 3の最下段) 、 低速段切換の完了時 (同 図点 B) から僅かに遅れて前記指令圧力を本来の圧力 (前記曲線 bで示される圧力 ) に戻す。 すなわち、 電磁比例減圧弁 4 4の指令圧力を所定時間だけアップする ( 図 4のステップ # 6 ) 。
これにより、 可変容量型油圧ポンプ 1 8のポンプ容量 D pひいてはポンプ吸収流 量 Q pが一時的に増大し、 前記モータ回転数 Nmの急増に伴うモー夕吐出流量 Qm の増大が前記可変容量型油圧ポンプ 1 8の回転を通じてエンジンブレーキという形 態で吸収されることになる。 具体的に、 可変容量型油圧ポンプ 1 8による原動機 1 2の駆動トルク T pは、 概ね、
T p =D p X P/ 2 %
で表されるため、 前記ポンプ容量 D pを一時的に増大させることにより、 前記モー 夕回転数 Nmの急増によるエネルギー増加分を原動機 1 2の駆動トルク T pを利用 して有効に吸収することができる。
このとき、 減速度は一時的に低下して車速 Vがほとんど減速しない状態が生ずる が、 従来のようにリリーフ作動で流量を吸収するものと異なり、 当該流量吸収に要 する時間は高速段から低速段への変速過渡期とほぼ同等の時間で十分であつて一般 には 100msec程度と僅かであり、 運転者に違和感を与えるおそれはほとんどない 。 また、 閉回路内での温度上昇も生じにくく、 油圧機器等を傷めるおそれもない。 なお、 前記変速過渡期においては、 低速段切換完了前に回路圧力 P及び減速度 a が復帰し始め (図 3の点 D) 、 同時点から原動機回転数 N e及びポンプ吸収流量 Q Pも増加し始めることになる。
また、 前記変速過渡期の終了前あたりから図 3に示すように電磁比例減圧弁 4 4 の指令圧力及びポンプ容量 Q pを徐々に減少させていくようにすれば、 当該ポンプ 容量 Q pを一時的な増加状態から通常状態へと滑らかに移行していくことが可能に なる。
ところで、 前記図 1の装置では、 前記前進走行または後進走行の間にケ一ブルの 断線等が生じて電磁切換弁 3 6のソレノィド 3 6 f またはソレノィド 3 6 bへの指 令信号が急に途絶えた場合、 当該電磁切換弁 3 6はスプリングの作用で自動的に中 立位置 (レギユレ一夕 3 8とシャトル弁 4 6との間を遮断する位置) に切換わり、 可変容量型油圧ポンプ 1 8の容量がゼロもしくはそれに近い値となって同ポンプ 1 8がブロック状態となるため、 この状態で油圧モータ 2 6が車両の慣性で走行用車 輪 3 0とともに高速で回り続けると、 当該油圧モー夕 2 6の吐出側 (油流出側) 圧 力が急激に上昇してブレーキ圧を発生させることにより車両の急停止を引き起こし たり、 各機器の破損を生じさせたりするおそれがあるが、 この装置では、 コント口 —ラ 6 0が前記異常を検出した時点で変速機 2 8を強制的にニュートラルに切換え て油圧モータ 2 6を走行用車輪 3 0から切り離すことにより、 前記車両の急停止や 機器の破損といった不都合を有効に抑止するように構成されている。 その具体的構 成を図 5〜図 9に基づいて説明する。
まず、 前記変速機 2 8について説明すると、 この変速機 2 8は、 外部から入力さ れる変速指令信号に応じて、 図 5 ( a) に示されるニュートラル状態、 同図 (b) に示される低速段変速状態、 及び同図 (c ) に示される高速段変速状態の 3つの状 態に切換えられるようになつている。
具体的に、 この変速機 2 8は、 前記油圧モ一夕 2 6の出力軸に連結される入力軸 2 8 aと、 前記走行用車輪 3 0に連結される出力軸 2 8 bとを備え、 両軸 2 8 a , 2 8 bが平行に配列されている。 入力軸 2 8 aには、 小径の低速段用ギア 5 0 Lと 大径の高速段用ギア 5 0 Hが当該入力軸 2 8 aに対して相対回転可能となるように 取付けられ、 出力軸 2 8 bには、 前記低速段用ギア 5 0 Lに嚙合される低速段用ギ ァ 5 1 Lと前記高速段用ギア 5 0 Hに嚙合される高速段用ギア 5 1 Hとが当該出力 軸 2 8 bと一体に回転するように固定されている。
前記入力軸 2 8 aにはクラッチドラム 5 2が当該入力軸 2 8 aと一体に回転する ように固定され、 このクラッチドラム 5 2と前記低速段用ギア 5 0 L及び高速段用 ギア 5 0 Hとの間にそれぞれ低速段用クラッチシリンダ 5 3 L及び高速段用クラッ チシリンダ 5 3 Hが介設されている。 そして、 いずれのクラッチシリンダ 5 3 L , 5 3 Hにも指令信号が入力されないときには、 両シリンダ 5 3 L , 5 3 Hが収縮状 態を保つことによりクラッチドラム 5 2と両ギア 5 0 L, 5 O Hとが切り離されて 入力軸 2 8 aと出力軸 2 8 bとが切り離され (同図 (a ) のニュートラル状態) 、 低速段用クラッチシリンダ 5 3 Lに指令信号が入力されたときには、 当該シリンダ
5 3 Lのみが伸長してクラッチドラム 5 2と低速段用ギア 5 0 Lとを接続すること により入力軸 2 8 aの回転が低速段用ギア 5 0 L, 5 1 Lを介して出力軸 2 8 に 伝達され (同図 (b) の低速段変速状態) 、 高速段用クラッチシリンダ 5 3 Hに指 令信号が入力されたときには、 当該シリンダ 5 3 Hのみが伸長してクラッチドラム 5 2と高速段用ギア 5 0 Hとを接続することにより入力軸 2 8 aの回転が高速段用 ギア 5 0 H, 5 1 Hを介して出力軸 2 8 bに伝達されるようになっている (同図 ( c ) の高速段変速状態) 。
コントローラ 6 0は、 原動機回転数センサ 5 4、 車速センサ 5 6、 シフトレバー 装置 5 8等に接続され、 これらから入力される電気信号に基づいて、 前記電磁切換 弁 3 6の切換制御及び変速機 2 8の変速段切換制御を行う。
具体的に、 このコントローラ 6 0は、 図 6に示すような指令信号作成部 6 2、 異 常判定部 6 4、 及び変速機操作部 6 6を備えている。
指令信号作成部 6 2は、 シフトレバー装置 5 8で操作されるシフトレバー位置に 基づき、 前記電磁切換弁 3 6に指令信号を出力してその位置切換を行う。
具体的に、 この指令信号作成部 6 2は、 前記電磁切換弁 3 6の各ソレノイド 3 6 f , 3 6 bごとに設けられるリレー接点 6 2 a及びリレーコイル 6 2 b (ただし図 6では 1つのリレー接点 6 2 a及びリレーコイル 6 2 bのみ図示) と、 指令切換部
6 2 cとを備えている。
リレー接点 6 2 aは、 常開接点であり、 回路保護用のヒューズ 3 7とともに所定 の電源と前記ソレノィド 3 6 f ( 3 6 b ) との間に介在し、 当該リレー接点 6 2 a に近接するリレーコイル 6 2 bが通電したときにのみその磁力で閉じられる。
指令切換部 6 2 cは、 シフトレバ一装置 5 8のレバー位置によって適当なリレ一 コイル 6 2 bを通電させるものである。 具体的に、 前記レバ一位置が前進位置のと きは、 ソレノィド 3 6 f に対応するリレーコイル 6 2 bを通電させて当該ソレノィ ド 3 6 f を励磁する指令信号を作成し、 前記レバ一位置が後進位置のときは、 ソレ ノイド 3 6 bに対応するリレ一コイル 6 2 bを通電させて当該ソレノィド 3 6 bを 励磁する指令信号を作成し、 前記レバ一位置が中立位置のときは、 いずれのリレー コイル 6 2 bも通電させない (すなわち指令信号を作成しない) ように構成されて いる。
なお、 この指令信号作成 ¾^ 6 2では、 図示のようなリレースィッチではなくトラ ンジス夕等を用いた無接点回路を用いてもよい。 また、 短絡時の回路保護素子を設 けるか否かは任意事項であり、 また、 前記のようなヒューズ 3 7に代えてトランジ ス夕等を用いた回路保護部を構築してもよい。
異常判定部 6 4は、 ソレノイド 3 6 f, 3 6 bの電位を監視し、 これらのソレノ イド 3 6 f , 3 6 bの実際の通電状況と、 前記指令切換部 6 2 cによるリレーコィ ル 6 2 bの通電状況 (すなわち指令信号の作成状況) とを対比し、 両者が対応して いない場合に異常と判定して異常判定信号を変速機操作部 6 6に出力する (詳細後 述) とともに、 車室内に設けられた警告装置 (例えば警告灯や警報器) 5 5に警告 信号を出力して警告を行わせるものである。
変速機操作部 6 6は、 変速機 2 8に指令信号を出力してその変速切換を行うもの であり、 通常は車両の運転状態やシフトレバー装置 5 8のシフトダウン操作等に応 じたシフトポジションを選択して前記変速機 2 8の変速段制御を行うのに対し、 本 発明の特徴として、 前記異常判定部 6 4から異常判定信号が入力されたときには前 記変速機 2 8を強制的にニュートラル状態に切換えるように構成されている。 また、 この実施の形態にかかるコントローラ 6 0は、 前記可変容量型油圧ポンプ 1 8の容量操作を行う役割も担っており、 具体的には、 原動機回転数センサ 5 4に より検出される回転数に対応する指令圧力を演算し、 この指令圧力に見合う指令信 号を電磁比例減圧弁 4 4に出力してその二次圧を前記指令圧力に調節する動作を行 う。
なお、 コントローラ 6 0で演算される指令圧力は、 原動機回転数センサ 5 4によ り検出される回転数に対応する圧力に限らず、 例えばアクセルペダルの操作量に対 応する指令圧力であってもよい。 また、 容量操作用油圧ポンプ 2 0の吐出油のみで レギユレ一夕 3 8を作動させる場合にはコン卜ローラ 6 0の制御が省略可能である ことはいうまでもない。
次に、 この装置の作用を図 7のフローチャートも併せて参照しながら説明する。 アクセルペダル 1 0が踏み込まれると、 その踏み込みに応じて原動機 1 2の回転 数が上昇し、 これに伴って可変容量型油圧ポンプ 1 8及び容量操作用ポンプ 2 0の 回転数が上昇する。
ここで、 前記レバー位置が前進位置に切換えられると (図 7のステップ S 1で Y E S ) 、 コントローラ 6 0の指令信号作成部 6 2は電磁切換弁 3 6のソレノイド 3 6 f を励磁するための信号を作成する (ステップ S. 2 ) このとき、 ケーブル線等 の電気系統に異常がない場合には、 前記指令信号がソレノィド 3 6 f に入力される ことにより (ステップ S 3で Y E S ) 、 電磁切換弁 3 6が前進位置 (図 1では右位 置) に切換えられ、 シャトル弁 4 6から出力される油圧がレギユレ一夕 3 8の前進 ポート (図 1では右側ポート) に入力される。 これを受けたレギュレー夕 3 8は可 変容量型油圧ポンプ 1 8の容量を前進方向に増大させる。 この容量操作により、 可 変容量型油圧ポンプ 1 8から管路 2 2を通じて油圧モー夕 2 6に作動油が吐出され 、 当該油圧モー夕 2 6の出力軸及び当該出力軸に変速機 2 8を介して連結される走 行用車輪 3 0が前進方向に回転する。
ここで、 前記電磁比例減圧弁 4 4に異常がない場合、 その二次圧は常に容量操作 用油圧ポンプ 2 0からシャトル弁 4 6に入力される油圧以上の圧力に保たれるので 、 シャトル弁 4 6では常に電磁比例減圧弁 4 4から出力される油圧が高位選択され 、 レギュレータ 3 8に導かれる。 電磁比例減圧弁 4 4がそのソレノィド等の故障に よって正常な二次圧を出力できなくなった場合には、 シャトル弁 4 6で可変容量型 油圧ポンプ 2 0側の油圧が高位選択されてレギユレ一夕 3 8に導かれることにより 、 正常な容量操作が保証される。
逆に、 前記レバー位置が後進位置に切換えられると (ステップ S 1で N Oかつス テツプ S 6で Y E S ) 、 コントローラ 6 0の指令信号作成部 6 2は電磁切換弁 3 6 のソレノイド 3 6 bを励磁するための信号を作成する (ステップ S 7 ) 。 このとき も、 ケ一プル線等の電気系統に異常がなければ、 前記指令信号がソレノイド 3 6 b に入力されることにより (ステップ S 8で Y E S ) 、 電磁切換弁 3 6が後進位置 ( 図 1では左位置) に切換えられ、 シャトル弁 4 6から出力される油圧がレギユレ一 タ 3 8の後進ポート (図 1では左側ポート) に入力されて、 最終的に走行用車輪 3
2 0は後進方向に回転する。
以上示したように、 コントローラ 6 0の指令信号作成部 6 2で作成された指令信 号が正常にソレノィド 3 6 f またはソレノィド 3 6 bに入力される場合には (図 7 のステップ S 3で Y E Sまたはステップ S 8で Y E S ) 、 コントローラ 6 0の異常 判定部 6 4は異常判定信号を出力せず、 よって変速機操作部 6 6は現在の運転状態 等により決定されるシフ卜ポジションに応じた変速指令を変速機 2 8に出力する ( ステップ S 4 ) 。 また、 シフトレバ一が中立位置に操作されている場合も同様であ る (ステップ S 1で NOかつステップ S 6で N O) 。
これに対し、 指令信号作成部 6 2においてソレノィド 3 6 f またはソレノィド 3 6 bを励磁する指令信号が作成されているにもかかわらず、 電気系統の故障等で前 記指令信号が実際にソレノィド 3 6 f またはソレノィド 3 6 bに入力されていない 場合には (ステップ S 3で NOまたはステップ S 8で N O) 、 変速機操作部 6 6は 現在のシフトポジションに関係なく変速機 2 8にニュートラル指令を出力して当該 変速機 2 8を図 5 ( a ) のニュートラル状態に強制的に切換える (ステップ S 5 ) 。 これにより、 同変速機 2 8の入力軸 2 8 aと出力軸 2 8 bとが切り離され、 油圧 モータ 2 6の出力軸と走行用車輪 3 0との連結が解除される。 このような連結解除 により、 前記電気系統の故障等による不都合が事前に防がれることになる。
なお、 この実施の形態では、 変速機 2 8を利用して油圧モータ 2 6と走行用車輪 3 0との連結解除が行われているが、 両者間に変速段切換可能な変速機が介在しな い装置については、 例えば当該変速機に代えて単なるクラッチを油圧モータ 2 6と 走行用車輪 3 0との間に介在させ、 このクラッチを非常時に切り離し状態にするよ うにしてもよい。
また、 前記電磁切換弁 3 6の動作異常を検出する手段としては、 前記電磁切換弁 3 6の二次圧を検出する圧力検出手段 (例えば圧力スィッチや圧力センサ) を用い たものが、 より好適であり、 このような圧力検出手段を用いれば、 電磁切換弁 3 6 自身や油圧供給元の異常についても対応することが可能になる。
図 8にその例を示す。 図示の圧力スィツチ 5 9は、 前記電磁切換弁 3 6と前記レ ギユレ一夕 3 8の前進ポート及び後進ポートとの間にそれぞれ設けられ、 これらの ポートに実際に供給される作動油の圧力 (すなわち電磁切換弁 36の二次圧) がー 定以上の場合にのみオンに切換えられるものであり、 この圧力スィッチ 59のオン オフによって、 電磁切換弁 36が実際に正常に作動しているか否かを判定すること が可能になる。
具体的に、 この圧力スィッチ 59を用いた場合のコントローラ 60の制御動作を 図 9に示す。 図において、 シフトレバーが前進位置に切換えられ (ステップ S 1で YES) 、 これに応答してソレノイド 36 f を励磁する指令信号が作成されたとき
(ステップ S 2) 、 コントローラ 60の異常判定部 64はレギユレ一夕 38の前進 ポート側に設けられた圧力スィッチ 59がオンであるか否かを確認する (ステップ S 3 。
また、 シフトレバ一が後進位置に切換えられ (ステップ S 1で NO、 ステップ S 6で YES) 、 これに応答してソレノイド 36 bを励磁する指令信号が作成された とき (ステップ S 7) 、 コントローラ 60の異常判定部 64はレギユレ一夕 38の 後進ポート側に設けられた圧力スィッチ 59がオンであるか否かを確認する (ステ ップ S 8' )
ここで、 該当する圧力スィッチ 59がオンとなっている場合には (ステップ S 3 ' で YESまたはステップ S 8 ' で YES) 、 レギユレ一夕 38に正常に油圧が供 給されていると判断されるため異常判定信号は出力されず、 よって変速機操作部 6 6は変速機 28にシフトポジションに応じた指令信号を出力する (ステップ S 4) 。 これに対し、 該当する圧力スィッチ 59がオフのままである場合には (ステップ S 3' で NOまたはステップ S 8' で NO) 、 電磁切換弁 36の作動不良等により レギユレ一夕 38に正常に油圧が供給されていないと判断されるため異常判定信号 が出力され、 よって変速機操作部 66は変速機 28にニュートラル指令を出力して 油圧モ一夕 26と走行用車輪 30とを強制的に切り離す (ステップ S 5) 。
なお、 この図 9に示す例では、 前記指令信号の大小にかかわらず前記二次圧が一 定値以下の場合に異常判定をするようにしているが、 前記図 1に示す装置のように 指令信号に応じて電磁比例減圧弁 44の二次圧ひいては電磁切換弁 36の二次圧が 増減するように構成されているものにおいては、 前記圧力スィッチ 59に代えて前 記電磁切換弁 3 6の二次圧を検出する圧力センサ等を設け、 前記指令信号に応じて 電磁切換弁 3 6の二次側に発生すべき目標二次圧と前記圧力センサ等により実際に 検出される二次圧との差が一定以上のときに異常判定をするようにしてもよい。 また、 前記電磁切換弁 3 6の二次圧を検出するのに代え、 例えば可変容量型油圧 ポンプ 1 8の実際の傾転角を検出し、 当該傾転角が前記指令信号に対応していない 場合に異常判定を行うことも有効である。
次に、 本発明の第 2の実施の形態を図 1 0及び図 1 1を参照しながら説明する。 この実施の形態では、 前記図 1に示した電磁比例減圧弁 4 4に代え、 図 1 0に示 すように、 高圧油圧源 4 2と高位選択弁であるシャトル弁 4 6との間に電磁切換弁 4 5が介在している。
この電磁切換弁 4 5は、 コントローラ 6 0からソレノイドの励磁信号 (指令信号 ) が入力されない場合には高圧油圧源 4 2からシャトル弁 4 6への油圧供給を遮断 する位置 (図 1 0では下位置) に切換えられ、 前記励磁信号が入力された場合には 前記高圧油圧源 4 2からシャトル弁 4 6への油圧供給を許容する位置 (図 1 0では 上位置) に切換えられるように構成されている。 また、 前記高圧油圧源 4 2の出力 する油圧は容量操作用ポンプ 2 0から絞り 4 7及び減圧弁 4 8を通じてシャトル弁 4 6に供給される作動油の最高圧よりも高い圧力に設定されている。
一方、 コントローラ 6 0は、 変速機 2 8を高速段から低速段へ切換える低速段切 換時以外の運転時には、 前記電磁切換弁 4 5に励磁信号を入力せず (すなわち電磁 切換弁 4 5を遮断位置に切換え) 、 逆に前記低速段切換時には、 図 1 1の最下段に 示すように、 低速段への切換開始時点 Aとほぼ同時に電磁切換弁 4 5に励磁信号を 入力して同弁 4 5を許容位置に切換え、 その後、 切換終了時点 Bを所定の微小時間 だけ過ぎた時点 Dで前記励磁信号の入力を停止して電磁切換弁 4 5を遮断位置に切 換えるように構成されている。
この実施の形態にかかる装置では、 前記低速段切換時以外の運転時には、 前記電 磁切換弁 4 5が遮断位置にあって高圧供給源 4 2からシャトル弁 4 6への油圧供給 を遮断するため、 当該シャトル弁 4 6では前記容量操作用油圧ポンプ 2◦から絞り 4 7及び減圧弁 4 8を通じて供給される油圧が高位選択される。 従って、 電磁切換 弁 3 6が前進位置 (図 4の左位置) または後退位置 (同図右位置) に切換えられる と、 レギユレ一夕 3 8には専ら容量操作用油圧ポンプ 2 0から吐出される作動油が 供給されることとなり、 可変容量型油圧ポンプ 1 8のポンプ容量 D p (図 1 1 ) は 、 原動機回転数 N eの変化に伴い前記図 2 ( a) の曲線 aで示される特性で操作さ
¾しる。
これに対し、 変速機 2 8が高速段から低速段に切換えられる低速段切換時には、 電磁切換弁 4 5が許容位置に切換えられて高圧供給源 4 2からシャトル弁 4 6に油 圧が供給される状態となり、 かつ、 その供給油圧は容量操作用油圧ポンプ 2 0から 絞り 4 7及び減圧弁 4 8を通じてシャトル弁 4 6に供給される油圧よりも高いため 、 当該高圧供給源 4 2の出力する油圧が高位選択されてレギュレータ 3 8に導かれ る。 これにより、 可変容量型油圧ポンプ 1 8のポンプ容量 D p及びポンプ吸収流量 Q pが一時的に増大するため (図 1 1 ) 、 前記図 1〜図 4に示した装置と同様、 低 速段切換時のモータ回転数 Nmの増大に伴うモー夕吐出流量 Qmの増大を前記可変 容量型油圧ポンプ 1 8で有効に吸収することができる。
この場合も、 ポンプ容量 D pの増大は低速段切換過渡期に対応した僅かな期間で よいため、 当該期間で一時的に減速度 aが低下しても (車速 Vが低下しなくても) 運転者に違和感を与えることはほとんどない。
なお、 図 1 0に示す装置では、 高圧供給源 4 2からレギュレー夕に油圧が供給さ れる状態と、 容量操作用油圧ポンプ 2 0から油圧が供給される状態とに切換える油 圧供給切換手段として、 電磁切換弁 4 5及びシャトル弁 4 6を利用しているが、 例 えばこれらを省略して、 外部からの指令信号により前記両状態の切換を行う 2位置 の電磁切換弁を設置するようにしてもよい。
また、 変速機 2 6における変速段の数も特に問わない。 変速段を 3段以上具備す る場合、 全ての低速段切換時 (例えば高速段から中速段への移行時も含む。 ) につ いて本発明にかかるポンプ容量増大制御を適用してもよいし、 特にモータ回転数の 増大が深刻となる低速段切換についてのみ前記ポンプ容量増大制御を適用してもよ い。
また、 図 3及び図 1 1に示すタイムチャートでは、 低速段切換開始と同時にボン プ容量 D pを増加させ、 低速段切換終了時点から僅かな時間が経過した時点でボン プ容量 D pの増加を停止させるようにしているが、 低速段切換開始時点及び終了時 点と、 ポンプ容量 D の増加開始時点及び終了時点との間にはそれぞれ僅かなずれ
(例えば lOOnisec程度のずれ) があってもよい。 要は、 低速段切換の際に確実に ポンプ容量 D pが増量され、 かつ、 その増量時期が当該増量による減速度の低下に よって運転者に違和感を与えない程度に短時間に抑えられていればよく、 変速機 2 8の各段のクラッチの締結応答性や変速比を加味して前記ポンプ容量増加のタイミ ング設定をすればよい。
また、 前記図 1には、 電磁比例減圧弁 4 4から出力される油圧と容量操作用油圧 ポンプ 2 0から出力される油圧とがシャトル弁 4 6で高位選択されてレギユレ一夕 3 8に導かれる装置が示されているが、 同装置において容量操作用油圧ポンプ 2 0 の省略は可能である。 高位選択を行う場合でも、 必ずしも図示のようなシャトル弁 (高位選択弁) 4 6を用いるものに限らず、 実質上高位選択がなされる構成であれ ばよい。 例えば、 第 3の実施の形態として図 1 2に示すように、 電磁比例減圧弁 4 2からの出力と容量操作用油圧ポンプ 2 0からの出力との合流点 9 0と当該電磁比 例減圧弁 4 2との間にチェック弁 9 2を介在させただけの構成でも、 容量操作用油 圧ポンプ 2 0側の減圧弁 4 8の流量が小さくて前記合流点 9 0で実質上高位選択が なされる構成であれば、 特にシャトル弁 4 6を要しない。
さらに、 前記図 1 2に示した装置では、 前記電磁切換弁 3 6の作動不良等による 不都合を可変容量型油圧ポンプ 1 8の強制バイパスによつて回避するように構成さ れている。 その具体的構成を図 1 3及び図 1 4も併せて参照しながら説明する。 な お、 図 1 2及び図 1 3に示される構成要素のうち、 前記図 1及び図 1 0に示される ものと同等のものには同じ参照符を付してその説明を省略する。
この装置では、 管路 2 2 , 2 4の間に、 可変容量型油圧ポンプ 1 8をバイパスし て両管路 2 2 , 2 4を接続するバイパス油路 7 0が設けられ、 かつ、 このバイパス 油路 7 0の途中にバイパス切換弁 7 2が設けられている。 このバイパス切換弁 7 2 は、 図例では 2位置の電磁切換弁で構成され、 そのソレノィドに励磁信号が入力さ れないときには前記バイパス油路 7 0を遮断する遮断位置に切換えられ、 当該励磁 信号が入力されたときにのみ前記パイパス油路 70を開通する開通位置に切換えら れるようになっている。
一方、 コントローラ 60は、 図 13に示すようなバイパス操作部 68を備えてい る。 このバイパス操作部 68は、 異常判定部 64から異常判定信号が入力された場 合にのみ、 前記バイパス切換弁 72のソレノィドに励磁信号を入力して当該バイパ ス切換弁 72を前記遮断位置から開通位置に切換えるものである。
このコントローラ 60による制御動作を図 14に示す。 正常時の動作は前記図 6 に示したものと同等である。 すなわち、 シフトレバ一が前進位置に操作されたとき には (ステップ S 1で YES) 、 ソレノィド 36 f を励磁する信号を作成し (ステ ップ S 2) 、 同信号がソレノイド 36 f に入力されたか否かを確認する (ステップ S 3) 。 同様に、 シフトレバーが後進位置に操作されたときには (ステップ S 1で NO、 ステップ S 6で YES) 、 ソレノイド 36 bを励磁する信号を作成し (ステ ップ S 7) 、 同信号がソレノイド 36 bに入力されたか否かを確認する (ステップ S 8) 。
ここで、 ソレノイド 36 f またはソレノイド 36 bに正常に信号が入力されてい る場合には (ステップ S 3で YESまたはステップ S 8で YES) 、 バイパス切換 弁 72の操作を特に行わず、 これを遮断位置に保つ。 従って、 この場合には通常通 り HSTが作動することになる。 これに対し、 ソレノイド 36 f またはソレノイド 36 bに正常に信号が入力されていない場合、 すなわち異常判定が行われる場合に は (ステップ S 3で NOまたはステップ S 8で NO) 、 バイパス切換弁 72に励磁 信号を出力してこれを開通位置に切換える (ステップ S 5' ) 。 これによりパイパ ス油路 70が開通され、 油圧モ一夕 26の流入側と流出側とが可変容量型油圧ボン プ 18をパイパスして直通される。 従って、 電気系統の故障等により前記電磁切換 弁 36が不意に中立位置に戻って可変容量型油圧ポンプ 18の容量が急減しても、 前記油圧モー夕 26から流出する作動油をバイパス油路 Ί 0を通じてそのままモー 夕流入側に逃がすことにより、 回路圧の過度の上昇に起因する急ブレーキの発生や 機器の石 員などの不都合を回避することができる。
以上示した装置は、 いずれも、 レギユレ一夕 38への油圧供給の切換、 すなわち 、 可変容量型油圧ポンプ 1 8の傾転角の向きの切換を、 スプリングセンタ型の電磁 切換弁 3 6を用いて行うものであるため、 当該電磁切換弁 3 6に入力すべき指令信 号が入力されなくなった時点で当該電磁切換弁 3 6が中立位置に戻るものであるが 、 前記切換を行う切換弁として、 指令信号が入力されない場合に現在の操作位置を 保持する機能をもつた切換弁、 例えばディテン卜型の電磁切換弁を用いるようにす れば、 電気系統の故障等により前記指令信号が入力されなくなっても、 その時点で 突然電磁切換弁が中立位置に戻ってしまう不都合を回避することができる。
ただし、 前記ディテント型電磁切換弁は、 その両端に位置切換用ソレノイドが配 されていて ( 3位置ではなく) 2位置のものが一般的であるため、 当該ディテント 型電磁切換弁を用いて前進 ·中立 ·後進の切換をするのであれば、 複数の電磁切換 弁を組み合わせて使用する必要がある。
その装置の一例を図 1 5 ( a) ( b) に示す。 同図 (a) において、 レギユレ一 夕 3 8とシャトル弁 4 6との間に 2つの電磁切換弁 8 2 , 8 4が直列に配されてお り、 これらの電磁切換弁 8 2, 8 4以外の構成は前記図 1に示したものと全く同等 である。
前記電磁切換弁 8 2, 8 4には、 ディテント型 2位置電磁切換弁が用いられてい る。 このうち、 レギユレ一夕 3 8に近い側の電磁切換弁 8 2は、 その両端にソレノ イド 8 2 a , 8 2 bを有し、 シャトル弁 4 6に近い側の電磁切換弁 8 4は、 その両 端にソレノイド 8 4 a , 8 4 bを有しており、 両電磁切換弁 8 2 , 8 4には、 その いずれのソレノィドも励磁されないときに現在の操作位置を保持するための周知の 手段 (図例ではディテント機構 8 0 ) が設けられている。
電磁切換弁 8 4は、 そのソレノィド 8 4 aが励磁されたときは、 電磁切換弁 8 2 の操作位置にかかわらずレギユレ一夕 3 8の前進ポート、 後進ポートの双方をタン クに連通してシャトル弁 4 6からの油圧供給をブロックする中立位置 (遮断位置; 図の左位置) に切換えられる一方、 ソレノィド 8 4 bが励磁されたときは、 レギュ レ一夕 3 8のいずれか一方のポートをシャトル弁 4 6に、 他方のポートをタンクに 接続する連通位置 (許容位置;図の右位置) に切換えられる。
電磁切換弁 8 2は、 そのソレノイド 8 2 aが励磁されたときは、 前記連通位置に ある電磁切換弁 84から供給される油圧を前進ポート側に導いて後進ポート側を夕 ンクに連通する前進位置 (図の左位置) に切換えられる一方、 ソレノイド 82 が 励磁されたときは、 前記連通位置にある電磁切換弁 84から供給される油圧を後進 ポート側に導いて前進ポート側をタンクに連通する後進位置 (図の左位置) に切換 えられる。
一方、 コントローラ (前記図 1等に示したコントローラ 60と同等のもの) は、 シフトレバーの操作位置に応じて図 15 (b) に示すような制御動作を行う。 すなわち、 シフトレバーが前進位置に切換えられたときには (ステップ S 11で YES) 、 コントローラ 60は前記電磁切換弁 82, 84におけるソレノイド 82 a, 84 bのみを励磁してソレノィド 82 b, 84 aを非励磁とする (ステップ S 12) 。 これにより、 電磁切換弁 84は図 15 (a) の右位置に、 電磁切換弁 82 は同図左位置にそれぞれ切換えられ、 シャトル弁 46から出力される油圧がレギュ レー夕 38の前進ポートに供給されるとともに、 同レギユレ一夕 38の後進ポート がタンクに連通される。
これに対してシフトレバーが後進位置に切換えられたときには (ステップ S 11 で N〇、 ステップ S I 3で YES) 、 コントローラ 60は前記電磁切換弁 82, 8 4におけるソレノイド 82 b, 84 bのみを励磁してソレノイド 82 a, 84 aを 非励磁とする (ステップ S 14) 。 これにより、 電磁切換弁 84, 82はともに図 15 (a) の右位置に切換えられ、 シャトル弁 46から出力される油圧がレギユレ —夕 38の後進ポートに供給されるとともに、 同レギユレ一夕 38の前進ポートが タンクに連通される。
また、 シフトレバーが中立位置に切換えられたときには (ステップ S 11, S 1 3で NO) 、 コントローラ 60は前記電磁切換弁 84のソレノイド 84 aのみを励 磁してその他のソレノイド 82 a, 82 b, 84 bは非励磁とする (ステップ S 1 5) 。 これにより、 電磁切換弁 84は図 15 (a) の左位置に切換えられ、 電磁切 換弁 82の位置にかかわらずレギユレ一夕 38の両ポートがタンクに連通されて可 変容量型油圧ポンプ 18のポンプ容量はほぼゼロとなる。
なお、 2つのディテント型電磁切換弁を組み合わせて利用する場合、 これらの電 磁切換弁は、 可変容量型油圧ポンプ 1 8と油圧供給側 (図例ではシャトル弁 4 6 ) との間に並列に配するようにしても、 前進 ·中立 ·後進の切換をするのであれば、 複数の電磁切換弁を組み合わせて使用する必要がある。
その装置の一例を図 1 6 ( a ) (b) に示す。 同図 (a) に示す電磁切換弁 8 6 , 8 8のうち、 電磁切換弁 8 8はシャトル弁 4 6とレギユレ一夕 3 8の前進ポート との間に介在し、 電磁切換弁 8 6はシャトル弁 4 6とレギユレ一夕 3 8の後進ポー 卜との間に介在している。
電磁切換弁 8 8は、 その両端にソレノィド 8 8 a , 8 8 bを有し、 ソレノイド 8 8 aが励磁されたときにはシャトル弁 4 6から供給される油圧をブロックして前記 前進ポートをタンクに連通する遮断位置 (図の左位置) に切換えられ、 ソレノイド 8 8 bが励磁されたときにはシャトル弁 4 6から前記前進ポートへの油圧供給を許 容する許容位置 (図の右位置) に切換えられる。 同様に、 電磁切換弁 8 6は、 その 両端にソレノイド 8 6 a, 8 6 bを有し、 ソレノイド 8 6 aが励磁されたときには シャトル弁 4 6から供給される油圧をブロックして前記後進ポートをタンクに連通 する遮断位置 (図の左位置) に切換えられ、 ソレノイド 8 6 bが励磁されたときに はシャトル弁 4 6から前記後進ポートへの油圧供給を許容する許容位置 (図の右位 置) に切換えられる。
そして、 コントローラ (前記図 1等に示したコントローラ 6 0と同等のもの) は 、 シフトレバーの操作位置に応じて図 1 6 ( b ) に示すような制御動作を行う。 すなわち、 シフトレバーが前進位置に切換えられたときには (ステップ S 1 1で Y E S ) 、 コント口一ラ 6 0は前記電磁切換弁 8 6 , 8 8におけるソレノイド 8 6 a , 8 8 bのみを励磁してソレノイド 8 6 b, 8 8 aを非励磁とする (ステップ S 1 2 ' ) 。 これにより、 電磁切換弁 8 8は図 1 5 ( a) の右位置に、 電磁切換弁 8 6は同図左位置にそれぞれ切換えられ、 シャトル弁 4 6から出力される油圧がレギ ユレ一夕 3 8の前進ポートに供給されるとともに、 同レギユレ一夕 3 8の後進ポ一 トがタンクに連通される。
これに対してシフトレバーが後進位置に切換えられたときには (ステップ S 1 1 で N〇、 ステップ S I 3で Y E S ) 、 コントローラ 6 0は前記電磁切換弁 8 6, 8 8におけるソレノイド 8 6 b, 8 8 aのみを励磁してソレノイド 8 6 a, 8 8 bを 非励磁とする (ステップ S 1 4 ' ) 。 これにより、 電磁切換弁 8 8は図 1 5 ( a) の左位置に、 電磁切換弁 8 6は同図右位置にそれぞれ切換えられ、 シャトル弁 4 6 から出力される油圧がレギュレー夕 3 8の後進ポートに供給されるとともに、 同レ ギユレ一夕 3 8の前進ポートがタンクに連通される。
また、 シフトレバーが中立位置に切換えられたときには (ステップ S 1 1, S 1 3で N O) 、 コント口一ラ 6 0は前記電磁切換弁 8 6, 8 8におけるソレノイド 8 6 a , 8 8 aのみを励磁してソレノイド 8 6 b, 8 8 bを非励磁とする (ステップ S 1 5 ' ) 。 これにより、 両電磁切換弁 8 8 , 8 6はともに図 1 5 ( a ) の左位置 に切換えられ、 レギユレ一タ 3 8の両ポートがタンクに連通されて可変容量型油圧 ポンプ 1 8のポンプ容量はほぼゼロとなる。
以上、 図 1 5や図 1 6に示した装置によれば、 仮に電気系統等の故障によって特 定のソレノィドへの指令信号の入力が急に途絶えても、 各電磁切換弁に設けられて いるディテント機構 8 0によって現在の弁位置が保持されるため、 当該操作位置が 不意に中立位置に戻ることによる不都合は確実に回避されることになる。 特に、 減 速機が変速機構をもたない場合に有効であり、 また、 アクセルによる加速及び減速 が続行できる利点もある。
ただし、 その場合、 運転者がシフトレバーを操作しても電磁切換弁を中立位置に 戻すことができなくなるため、 コントローラ 6 0で指令信号を作成したときには例 えば前記図 1に示す変速機 2 8をニュートラル状態にして油圧モータ 2 6と走行用 車輪 3 0との連結を強制的に解除するように当該コントローラ 6 0を構成する (す なわち図 1に示す装置においてコントローラ 6 0及び変速機 2 8を連結解除手段と して機能させる) ことが、 より好ましい。
なお、 前記変速機 2 8の変速段に後進モードが含まれている場合には、 レギユレ 一夕 3 8側で前進 ·後進の切換をする必要はなく、 当該レギユレ一夕 3 8として前 進ボ一トのみを有するものを使用することが可能である。 その場合、 当該レギユレ 一夕 3 8と油圧供給源との間に介在する切換弁は 2位置のものでよく、 例えば前記 ディテント型電磁切換弁をそのまま利用できることはいうまでもない。 また、 前記レギユレ一夕 3 8と油圧供給源との間に介在する切換弁は電磁切換弁 に限らず、 例えばパイロット切換弁や手動切換弁を用いることも可能である。 次に、 本発明の第 4の実施の形態を図 1 7〜図 2 0に基づいて説明する。 なお、 以降の実施の形態において変速機の低速切換時に行う可変容量型油圧ポンプの容量 制御は前記第 1の実施の形態で示したものと同等であるので その説明を省略する 図 1 7において、 1 0 1は原動機で、 この原動機 1 0 1により減速機 1 0 2を介 して双方向型で可変容量型の主油圧ポンプ 1 0 3が駆動される。
この主油圧ポンプ 1 0 3の両側ポートは前進側及び後進側両主管路 1 0 4 , 1 0 5を介して双方向型で可変容量型の油圧モータ 1 0 6に接続され、 これにより閉回 路が構成されて、 主油圧ポンプ 1 0 3によって油圧モ一夕 1 0 6が車両前進方向ま たは後進方向に回転する。
この油圧モータ 1 0 6の回転力は変速機 1 0 7及びアクスル 1 0 8を介して左右 の駆動輪 1 0 9, 1 0 9に伝えられ、 これにより車両が走行する。
主油圧ポンプ 1 0 3の傾転はポンプレギユレ一夕 1 1 0によって制御され、 油圧 モー夕 1 0 6の傾転はモー夕レギユレ一夕 1 1 1によって制御される。 そして、 こ の両者の傾転の変化に応じて走行の加減速作用及び前後進切換作用が行われる。 すなわち、 ポンプレギユレ一夕 1 1 0には、 原動機 1 0 1によって駆動される補 助ポンプ 1 1 2からの油が、 図示しない切換スィッチによって切換制御される電磁 切換弁 1 1 3を介して送られる。
この電磁切換弁 1 1 3は、 中立位置 aと前進位置 bと後進位置 cとを有し、 中立 位置 aではポンプレギユレ一夕 1 0 6は図の左右いずれ側にも作動せず、 主油圧ポ ンプ 1 0 3が傾転 0の状態となる。 この状態では、 両側主管路 1 0 4 , 1 0 5のい ずれにも圧油は供給されず、 油圧モータ 1 0 6も回転しないため、 車両は停止状態 となる。
この状態から電磁切換弁 1 1 3が前進位置 bに切換わると、 ポンプレギユレ一夕 1 1 0が図右側に作動し、 主油圧ポンプ 1 0 3の傾転が 0から一方向に増加して主 管路 1 0 4に圧油が供給される。 これにより、 油圧モー夕 1 0 6が前進方向に回転 し、 車両が前進する。
これに対し、 電磁切換弁 1 1 3が後進位置 cに切換わると、 ポンプレギユレ一夕 1 1 0が図左側に作動し、 主油圧ポンプ 1 0 3の傾転が反対方向に増加して主管路 1 0 5に圧油が供給される。 これにより、 油圧モータ 1 0 6が後進方向に回転し、 車両が後進する。
1 1 4は補助ポンプ 1 1 2の吐出流量に応じた圧力を発生させる絞りで、 この絞 り 1 1 4によって発生した圧力が減圧弁 1 1 5により減圧され、 図 1 8中に示すポ ンプ容量指令圧力として電磁切換弁 1 1 3経由でポンプレギユレ一夕 1 1 0に送ら れる。
1 1 6は低圧リリーフ弁、 1 1 7 , 1 1 7は回路圧力の最大値を規制する一対の オーバーロードリリーフ弁である。
なお、 主油圧ポンプ 1 0 3と油圧モータ 1 0 6は閉回路で接続されているが、 そ れぞれドレン回路を通じて回路内の油が流出するため、 補助ポンプ 1 1 2からの油 がチェック弁 1 1 8, 1 1 8をそれぞれ介して両側主管路 4, 5に補充される。 一方、 モ一夕レギユレ一夕 1 1 1には、 両側主管路 1 0 4, 1 0 5の圧力 (回路 圧力) がモー夕容量を減少させる方向の圧力としてチェック弁 1 1 9, 1 1 9経由 で導入されるとともに、 補助油圧源 1 2 0から電磁比例減圧弁 (以下、 レギユレ一 夕制御弁という) 1 2 1を介して図 1 9中に示すモータ容量指令圧力がモータ容量 を増加させる方向の圧力として導入される。
レギユレ一夕制御弁 1 2 1は、 制御手段を構成するコントローラ 1 2 2からの指 令信号に基づいて開度が変化し、 これによつて前記容量指令圧力が変化する。 また、 アクセルペダル 1 2 3の操作量 (アクセル操作量) を検出するアクセル操 作量検出手段としてのアクセルセンサ 1 2 4が設けられるとともに、 補助制動選択 手段としての補助制動スィッチ 1 2 5が設けられ、 これらからの信号がコント口一 ラ 1 2 2に入力される。
1 2 6はブレーキペダル、 1 2 7はこのブレーキペダル 1 2 6が操作されたとき に点灯するブレーキ警告灯で、 この装置においてはブレーキペダル 1 2 6の操作が ないときでも、 補助制動作用が行われている間、 コントローラ 1 2 2からの信号に よってブレーキ警告灯 1 2 7を点灯させるように構成されている。
次にこの装置の作用を説明する。 なお、 前記変速機 1 0 7が高速段から低速段に 切換えられた時の主油圧ポンプ (可変容量型油圧ポンプ) 1 0 3の容量制御につい ては前記第 1の実施の形態で示した制御と同じであるので以下の説明では省略する 通常走行時
補助制動スィッチ 1 2 5が操作されないときは、 H S T車両の通常の走行動作が 行われる。
すなわち、 電磁切換弁 1 1 3をたとえば前進位置 bに切換えた状態でアクセルべ ダル 1 2 3を踏み込むと、 原動機 1 0 1の回転数が増加し、 この原動機 1 0 1の回 転数に応じたポンプ容量指令圧力 (減圧弁 1 5の二次圧) が電磁切換弁 1 1 3経由 でポンプレギユレ一夕 1 1 0に送られる。
これにより、 ポンプレギユレ一夕 1 1 0が作動し、 図 1 8に示すように主油圧ポ ンプ 1 0 3の容量が指令圧力の上昇に応じて増加するため、 モータ入口側の主管路 1 0 4に加速圧力が発生して車両が前進を開始する。
そして、 車両速度の上昇とともに回路圧力が図 1 9の P aよりも小さくなると、 同図に示すように油圧モータ 1 0 6の容量が減少して車両がさらに加速する。 登坂時には、 主管路 1 0 4に登坂勾配に応じた負荷圧が発生し、 回路圧力が図 1 9の P bよりも大きくなるとモータ容量が増加して車両速度が低下する。
また、 アクセルペダル 1 2 4を戻すと、 原動機 1 0 1の回転数低下、 これに伴う ポンプ容量指令圧力の低下によって主油圧ポンプ 1 0 3の容量が減少し、 モータ出 口側の主管路 1 0 5にブレーキ圧力が発生して車両速度が低下する。
なお、 主管路 1 0 5のブレーキ圧力は、 通常は P bよりも低く、 モータ容量は小 さいままとなる。
補助制動作用時
補助制動スィッチ 1 2 5が操作された状態での走行中、 アクセルペダル 1 2 3を 急激に戻すと、 補助制動作用が働く。
図 2 0のフローチャートを併用して説明すると、 補助制動スィッチ 1 2 5がオン の状態で (ステップ S 1 0 1で Y E Sのとき) 、 アクセルセンサ 1 2 4によって検 出されるアクセル操作量の減少の度合いが予め設定された値以上 (ステップ S 1 0 2で Y E S ) の場合に、 コントローラ 1 2 2からレギユレ一夕制御弁 1 2 1にモ一 夕容量増加信号が送られ (ステップ S 1 0 3 ) 、 同制御弁 1 2 1からモータレギュ レー夕 1 1 1にモ一夕容量を増加させる圧力が供給される。
これにより、 回路圧力に関係なく油圧モー夕 1 0 6の容量が増加する (たとえば モータ容量が最大となる) ため、 同モー夕 1 0 6からの排出流量が増加して主管路 1 0 5にブレーキ圧力が発生する。
このとき、 主管路 1 0 5には、 前記のようにアクセルペダル 1 2 3が戻されるこ とによって、 ポンプ容量の減少に基づく本来のブレーキ圧力が発生するため、 これ らの和によって通常走行時よりも大きなブレーキ力が作用し、 これが主油圧ポンプ 1 0 3でトルク変換されて原動機 1 0 1に伝えられることにより、 大きな減速度で 車両が減速する。
なお、 補助制動スィッチ 1 2 5がオフの場合、 及びアクセル操作量の減少度合い が設定値未満の場合は、 通常走行時の制御信号がコントローラ 1 2 2からレギユレ —夕制御弁 1 2 1に送られる (ステップ S 1 0 4 ) 。
このように、 H S T車両において、 一般重車両と同様の補助制動機能を得ること ができ、 長い坂路を下るときのブレーキパッドの摩耗やべ一パーロックの発生を防 止することができる。
また、 このときコントローラ 1 2 2からの信号によってブレーキ警告灯 1 2 7が 点灯し、 後続車両に大制動状態であることを表示して追突を回避することができる なお、 前記補助制動作用については次のような実施の形態をとることも可能であ る。
1 ) 前記第 4の実施の形態では、 アクセルペダル 1 2 3が急激に戻される操作が 「補助制動作用を働かせることを目的とするオペレー夕の補助制動操作」 であると して、 その操作時に補助制動作用を働かせるように構成したが、 これに代えて、 7 クセルペダル 1 2 3の操作量が設定値以下 (たとえばローアイドル位置相当以下) となったときに補助制動操作が行われたとみなして補助制動作用を働かせるように 構成してもよい。 あるいは、 アクセルペダル 1 2 3の急激な戻し操作と、 同操作量 を設定値以下にする操作のいずれも補助制動操作であるとして補助制動作用を働か せるように構成してもよい。
また、 図 1 7中に示すように、 ブレーキペダル 1 2 6が操作されたことを検出す るブレーキセンサ 1 2 8を設け、 このブレーキセンサ 1 2 8からコントローラ 1 2 2に送られる信号に基づき、 ブレーキ操作時に補助制動作用を働かせるように構成 してもよい。 また., ブレーキペダル 1 2 6の操作でなく、 ブレーキそのものの作動 を検出して補助制動操作の有無を判断するように構成してもよい。
2 ) 補助制動作用が働いている間、 自動的に、 またはオペレータのスィッチ操作 等による選択に応じて、 図 1 7中に二点鎖線で示すようにコントローラ 1 2 2から 原動機 1 0 1に排気ブレーキ信号を送り、 一般重車両で用いられる排気ブレーキを 働かせるように構成してもよい。 こうすれば、 モー夕容量の増加による補助制動作 用に排気ブレーキが加わることでさらに大きな制動力が得られ、 急で長い下り坂等 の走行時に威力を発揮する。
3 ) 前記実施形態では、 モータレギユレ一夕 1 1 1を制御するレギユレ一夕制御 弁 1 2 1として電磁比例減圧弁を用いたが、 モー夕レギユレ一夕 1 1 1に圧力を加 える位置と加えない位置との間で切換わる電磁切換弁を用いてもよい。
次に、 本発明の第 5の実施の形態を図 2 1及び図 2 2に基づいて説明する。 図 2 1において、 2 0 1は原動機で、 この原動機 2 0 1により動力分配機 2 0 2 を介して作業用油圧ポンプ (以下 「作業ポンプ」 と称する。 ) 2 0 3及び走行用両 油圧ポンプ (以下 「走行ポンプ」 と称する。 ) 2 0 4が駆動される。
作業ポンプ 2 0 3は、 作業ポンプ用レギユレ一タ 2 0 5によって傾転が制御され る可変容量型ポンプとして構成され、 同ポンプ 2 0 3からの圧油により、 作業回路 2 0 6に設けられた図示しない複数の作業用油圧ァクチユエ一夕 (ラフテレーンク レーンの例でいえば、 ブーム起伏シリンダ、 ウィンチモータ、 旋回モータ等) が駆 動される。
作業回路 2 0 6のタンクライン 2 0 7にはオイルクーラー 2 0 8が設けられ、 作 業回路 2 0 6のァクチユエ一夕から出た戻り油がこのオイルクーラ一 2 0 8により 冷却されて油タンク Tに戻る。 2 0 9はオイルクーラー 2 0 8と並列に設けられた チェック弁である。
作業ポンプ用レギユレ一夕 2 0 5は、 コントローラ 2 1 0によって制御される電 磁比例弁 2 1 1を介してパイロット圧源 2 1 2に接続され、 油温センサ 2 1 3によ つて検出されるタンク油温に応じて、 コントローラ 2 1 0からの信号に基づいて電 磁比例弁 2 1 1の二次圧が変化し、 これにより作業ポンプ用レギュレー夕 2 0 5の 作動ストロークが変化してポンプ傾転が大小制御される (この点は後に詳述する) 一方、 走行ポンプ 2 0 4は、 双方向型でかつ走行用ポンプレギユレ一夕 2 1 4に よって傾転が制御される可変容量型ポンプとして構成されている。
この走行ポンプ 2 0 4を油圧源とする走行回路は、 ポンプ回路 Aとモータ回路 B とによって構成されている。 このうちポンプ回路 Aは作業ポンプ 2 0 3及び作業回 路 2 0 6とその関連機器とともに上部旋回体に設置され、 モータ回路 Bは下部走行 体に設置される。
ポンプ回路 Aは、 走行ポンプ 2 0 4と、 コントローラ 2 1 0からの信号に基づい て走行用ポンプレギユレ一夕 2 1 4の作動を制御する電磁切換弁 2 1 5と、 油タン ク Tから油を吸い上げる固定容量型の補助ポンプ (油補給ポンプ) 2 1 6と、 この 補助ポンプ 2 1 6の吐出量に応じた圧力を発生させる絞り 2 1 7と、 この絞り 2 1 7によって発生した圧力を減圧して電磁切換弁 2 1 5経由で走行用ポンプレギユレ 一夕 2 1 4に送る減圧弁 2 1 8と、 低圧リリーフ弁 2 1 9と、 回路圧力の最大値を 規制する一対のオーバー口一ドリリーフ弁 2 2 0, 2 2 0と、 補助ポンプ 2 1 6か らの油の一部を回路に補充するための一対のチェック弁 2 2 1 , 2 2 1とを具備し ている。
モータ回路 Bは、 走行用油圧モー夕 (以下 「走行モータ」 と称する。 ) 2 2 2と 、 余剰油を回路外に排出するフラッシングバルブ 2 2 3と、 このフラッシングバル ブ 2 2 3の下流側に設けられた絞り 2 2 4及び流量制御弁 2 2 5とを具備し、 この モータ回路 Bの両側モータ管路 2 2 6, 2 2 7とポンプ回路 Aの両側主管路 2 2 8 , 2 2 9とがスィベルジョイント 2 3 0を経由して接続されることにより閉回路が 構成されている。
3 1は走行モータ 2 2 2の回転力を減速して図示しない走行駆動輪に伝える走 行減速機である。 この走行減速機 2 3 1が高速段から低速段に切換えられたときの 制御動作については前記第 1の実施の形態の説明で示したとおりである。
前記ポンプ回路 Aには、 走行ポンプ 2 0 4からの洩れ油及び低圧リリーフ弁 2 1 9からのリリーフ油が流入するポンプ側ドレン管路 2 3 2が設けられ、 前記モ一夕 回路 Bには、 走行モー夕 2 2 2からの洩れ油及びフラッシングバルブ 2 2 3からの 排出油が流入するモータ側ドレン管 2 3 3が設けられている。 そして、 両ドレン管 路 2 3 2, 2 3 3が、 スィベルジョイント 2 3 0及び合流ドレン管路 2 3 4を介し てタンク Tに接続されている。
このように、 ドレン管路 2 3 2, 2 3 3 , 2 3 4が最短経路でタンク Tに接続さ れているため、 管路長が最小限に短くてすむ。 従って、 ドレン管路長が長くなる上 部旋回式の車両においても、 ドレン管路 2 3 2, 2 3 3 , 2 3 4によって走行回路 に発生する背圧を低く抑えることができるため、 機器各部 (たとえば走行モータ 2 2 2のシール) の背圧負荷が軽減され、 これらの損傷が防止される。
上記構成において、 図示しないシフトレバーが操作されると、 その操作信号に基 づくコントローラ 2 1 0からの信号によって電磁切換弁 2 1 5が切換わり作動し、 補助ポンプ 2 1 6からの油がこの電磁切換弁 2 1 5経由で走行ポンプ用レギユレ一 夕 2 1 4に送られて走行ポンプ 2 0 4の傾転が増加する。
これにより、 同ポンプ 2 0 4から吐出された油がモー夕回路 Bに送られて走行モ 一夕 2 2 2が回転し、 車両が走行する。
この走行中、 走行ポンプ 2 0 4及び走行モータ 2 2 2から洩れ出た油、 それに低 圧リリーフ弁 2 1 9及びフラッシングバルブ 2 2 3を介して排出された油がドレン 管路 2 3 2, 2 3 3、 合流ドレン管路 2 3 4を介して油タンク Tに戻される。 一方、 このとき作業回路 2 0 6は停止しているが、 作業ポンプ 2 0 3は駆動され 、 同ポンプ 2 0 3から吐出された油が作業回路 2 0 6を通り、 オイルクーラー 2 0 8で冷却されて油タンク T、 さらにポンプ 2 0 3へと循環する。 この作業系の油の循環作用により、 上記走行回路からのドレン油が冷却され、 そ の上で補助ポンプ 2 1 6により走行回路に補給されるため、 走行ポンプ 2 0 4及び 走行モータ 2 0 2を含む閉回路である走行回路 (ポンプ回路 A及びモータ回路 B) が冷却される。
すなわち、 ドレン管路 2 3 2, 2 3 3 , 2 3 4を、 公知技術のようにポンプケ一 スゃモ—夕ケースに通さずに直接油夕ンク τに接続した構成をとりながら、 走行回 路を、 オイルクーラ一 2 0 8を通した低温の油によって冷却し適温に保持すること ができる。
この場合、 作業ポンプ 2 0 3から吐出される大流量の油をオイルクーラー 2 0 8 で冷却するため、 タンク油温を効率良く冷却でき、 これにより走行回路の冷却作用 を効率良く行わせることができる。
また、 この実施形態においては、 タンク油温に応じて冷却運転が制御される。 こ れを図 2 2のフローチャートを併用して説明する。
コントローラ 2 1 0には、 予め油温について、 冷却能力を上げるべき温度として の基準値と、 この基準値よりも低温の設定値とが定められ、 ステップ S 2 0 1で、 油温センサ 2 1 3によって検出されたタンク油温と基準値とが比較される。
ここで Y E Sの場合、 すなわち、 タンク油温が基準値以上の高温である場合は、 ステップ S 2 0 2で電磁比例弁 2 1 1を通じて作業ポンプ用レギユレ一夕 2 0 5に 大傾転を指令する。
これにより、 作業ポンプ 2 0 3の吐出量が増加し、 大流量がオイルクーラー 2 0 8によって冷却されるため、 油温が速やかに低下し、 走行回路の冷却能力が高めら れる。
一方、 ステップ S 1で N O (基準値未満) の場合は、 ステップ S 2 0 3でさらに タンク油温が設定値以上か否かが判別され、 N O (設定値未満) の場合は冷却能力 を上げる必要がないため、 ステップ S 2 0 4で作業ポンプ 2 0 3を小傾転側 (たと えば最小傾転) に制御する。
これに対し、 ステップ S 2 0 3でタンク油温が設定値以上であると判別されると 、 ステップ S 2 0 5で前回ポンプが大傾転側に制御されたか否かが判別され、 NO の場合はステップ S 2 0 4で作業ポンプ 2 0 3が小傾転側に、 Y E Sの場合はステ ップ S 2 0 2で作業ポンプ 2 0 3が大傾転側にそれぞれ制御される。
このステップ S 2 0 3→ステップ S 2 0 5→ステップ S 2 0 2の制御により、 作 業ポンプ 2 0 3が一旦大傾転側に制御されたときはタンク油温が設定値未満に下が るまで大傾転が維持される。
このように、 タンク油温に応じた冷却能力の制御を行うことにより、 走行回路を より効率良く冷却し、 より適温に保つことが可能となる。
なお、 上記の例では作業ポンプ 2 0 3の傾転を大小二通りのみに切換えるように したが、 タンク油温の変化に応じて同ポンプ傾転を三段階以上または無段連続的に 変化させるようにしてもよい。
また、 ポンプ傾転を大小二通りのみに切換える場合、 油温センサ 2 1 3に代えて 、 設定温度でオン (またはオフ) となる油温スィッチを用い、 かつ、 電磁比例弁 2 1 1に代えて電磁切換弁を用いてもよい。 この場合、 コントローラ 2 1 0を介さず に、 油温スィッチのオンノオフによって直接電磁切換弁を切換える構成をとつても よい。
次に、 第 6の実施の形態について、 図 2 3に基づき、 前記第 5の実施の形態との 相違点についてのみ説明する。
この第 6の実施の形態においては、 前記第 5の実施の形態の構成を前提として、 a . 走行回路から油タンク Tに戻るドレン油を独自のオイルクーラ一で冷却し、 b . 走行減速機 2 3 1も同時に冷却する
構成が付加されている。
すなわち、 合流ドレン管路 2 3 4にドレン用の補助オイルクーラー 2 3 5が設け られるとともに、 モ一夕回路 Bのドレン管路 2 3 3から分岐して走行減速機 2 3 1 を通る減速機冷却管路 2 3 6が設けられている。
2 3 7は補助オイルクーラー 2 3 5と並列に設けられたチェック弁、 2 3 8は減 速機冷却管路 2 3 6から走行モータ 2 2 2側への油の逆流を阻止するためのチェッ ク弁である。
この構成によると、 走行回路からのドレン油が補助オイルクーラー 2 3 5によつ て冷却された後、 油タンク Tに戻り、 その上で作業ポンプ 2 0 3とオイルクーラー 2 0 8による主冷却作用を受けるため、 冷却効果が高められ、 とくに作業ポンプ 2 0 3の最大吐出量が少なくて主冷却作用が十分でない可能性のある車両において効 果を発揮する。
また、 減速機冷却管路 2 3 6によって走行減速機 2 3 1にドレン油が供給され、 このドレン油によって走行減速機 2 3 1が冷却されるため この走行減速機 2 3 1 のオーバ一ヒートをも防止することができる。
なお、 補助オイルクーラー 2 3 5は、 オイルクーラー 2 0 8とともに、 エンジン ルーム内においてラジェ一夕前に配置し、 共通のファンによって空冷するように構 成すればよい。 この場合、 両オイルクーラー 2 0 8, 2 3 5はラジェ一夕前に左右 に並べて配置してもよいし、 前後に配置してもよい。

Claims

請求の範囲
1 . 原動機により駆動される可変容量型油圧ポンプと、 変速機を介して車両の走 行用車輪に連結される油圧モー夕とを含む閉回路が構成されるとともに; 前記原動 機の回転数の上昇に伴って前記可変容量型油圧ポンプの容量を増大させる容量操作 手段を備え、 さらに、 この容量操作手段は、 前記変速機が高速段から低速段に切換 えられる際にその低速段切換時以外の運転時よりも前記可変容量型油圧ポンプの容 量を一時的に大きくする容量増加手段を含むことを特徴とする油圧走行駆動装置。
2 . 請求の範囲第 1項記載の油圧走行駆動装置において、 前記容量増加手段は、 前記変速機が高速段から低速段へ切換えられる時点またはそれよりも前の時点から 前記可変容量型油圧ポンプの容量の増加を開始し、 前記低速段への切換終了時また は当該切換終了から一定時間が経過した後に前記可変容量型油圧ポンプの容量の増 加を停止することを特徴とする油圧走行駆動装置。
3 . 請求の範囲第 1項記載の油圧走行駆動装置において、 前記容量増加手段は、 前記変速機が高速段から低速段に切換えられる際、 前記可変容量型油圧ポンプの容 *を増加させた後に徐々に減少させることを特徴とする油圧走行駆動装置。
4. 請求の範囲第 1項記載の油圧走行駆動装置において、 前記容量操作手段は、 油圧の供給を受けて当該油圧が高いほど前記可変容量型油圧ポンプの容量を大きく するレギユレ一夕と、 このレギユレ一夕に油圧を供給するための油圧供給源と、 こ の油圧供給源と前記レギユレ一夕との間に介在し、 前記油圧供給源から供給される 油圧を入力される指令信号に応じた圧力まで減圧して前記レギユレ一夕に導く減圧 弁と、 前記原動機の回転数の上昇に伴って前記減圧弁の二次圧を高くするように当 該減圧弁に指令信号を入力する圧力制御手段とを含み、 かつ、 この圧力制御手段は 、 前記変速機が高速段から低速段に切換えられる際にその低速段切換時以外の通常 運転時よりも前記減圧弁の二次圧を一時的に大きくする圧力増加手段を含むことを 特徴とする油圧走行駆動装置。
5 . 請求の範囲第 4項記載の油圧走行駆動装置において、 前記圧力制御手段は、 前記原動機の回転数に対する前記指令信号の特性として複数種の特性を記憶してお り、 これらの特性のうち車両の運転状態に対応した特性を選択して当該特性に基づ き指令信号を決定することを特徴とする油圧走行駆動装置。
6 . 請求の範囲第 4項記載の油圧走行駆動装置において、 前記容量操作手段は、 前記減圧弁に接続される油圧供給源とは別の油圧供給源として、 前記原動機の出力 軸に連結されて当該原動機の回転数の上昇に伴い吐出圧が増大する容量操作用油圧 ポンプと、 前記容量操作用油圧ポンプカゝら供給される油圧と前記減圧弁の二次側か ら供給される油圧のうち高位のものを前記レギユレ一夕に導く高圧選択部とを含み 、 かつ、 前記減圧弁の二次圧が常に前記容量操作用油圧ポンプから供給される油圧 よりも高くなるように当該二次圧の特性が設定されていることを特徴とする油圧走 行駆動装置。
7 . 請求の範囲第 1項記載の油圧走行駆動装置において、 前記容量操作手段は、 前記原動機の出力軸に連結され、 当該原動機の回転数の上昇に伴って吐出圧が増大 する容量操作用油圧ポンプと、 この容量操作用油圧ポンプからの油圧の供給を受け て前記可変容量型油圧ポンプの容量を操作し、 かつ、 当該油圧が高いほど前記容量 を大きくするレギユレ一夕とを含み、 さらに、 前記容量増加手段として、 前記容量 操作用油圧ポンプよりも高い油圧を供給するための高圧供給源と、 前記レギユレ一 夕に対して前記容量操作用油圧ポンプから油圧が供給される状態と前記高圧供給源 から油圧が供給される状態とに切換える油圧供給切換手段と、 前記変速機の高速段 から低速段への切換時には前記レギユレ一夕に対して前記高圧供給源から油圧が供 給される状態に切換え、 当該低速段への切換時以外の運転時には前記レギュレー夕 に対して前記容量操作用油圧ポンプから油圧が供給される状態に切換えるように前 記油圧供給切換手段を作動させる切換制御手段とを含むことを特徴とする油圧走行 駆動装置。
8 . 請求の範囲第 7項記載の油圧走行駆動装置において、 前記油圧供給切換手段 は、 前記高圧供給源から前記レギユレ一夕への油圧の供給を許容する許容状態と当 該供給を遮断する遮断状態とに切換えられる切換弁と、 この切換弁から出力される 油圧と前記容量操作用油圧ポンプから供給される油圧のうち高位のものを前記レギ ユレ一夕に導く高圧選択部とを含み、 前記切換制御手段は、 前記変速機の高速段か ら低速段への切換時には前記切換弁を前記許容状態に切換え、 当該低速段への切換 時以外の運転時には前記切換弁を前記遮断状態に切換えるものであることを特徴と する油圧走行駆動装置。
9 . 請求の範囲第 1項記載の油圧走行駆動装置において、 前記油圧モータとして 可変容量型の油圧モータを備えるとともに、 この油圧モータの容量を制御するレギ ユレ一夕と、 このレギユレ一夕の作動を制御する制御手段とを具備し、 前記制御手 段は、 補助制動作用を働かせることを目的とするオペレ一夕の補助制動操作が行わ れたときに、 前記レギユレ一夕をモ一夕容量が増加する方向に作動させるように構 成されたことを特徴とする油圧走行駆動装置。
1 0 . 請求の範囲第 9項記載の油圧走行駆動装置において、 前記制御手段は、 補 助制動操作が行われたことを検出する補助制動操作検出手段と、 この補助制動操作 検出手段によって補助制動操作が検出されたときにレギユレ一夕をモータ容量増加 方向に作動させる作動指令信号を出力するコントローラとによって構成されたこと を特徴とする油圧走行駆動装置。
1 1 . 請求の範囲第 1 0項記載の油圧走行駆動装置において、 前記補助制動操作 検出手段は、 原動機の回転数を指令するアクセルの操作量を検出し、 前記コント口 ーラは、 検出されたアクセル操作量の減少度合いが設定値以上になったときに補助 制動操作が行われたとして作動指令信号を出力するように構成されたことを特徴と する油圧走行駆動装置。
1 2 . 請求の範囲第 1 0項記載の油圧走行駆動装置において、 前記補助制動操作 検出手段は、 原動機の回転数を指令するアクセルの操作量を検出し、 前記制御手段 は、 検出されたァクセル操作量が設定値以下になったときに補助制動操作が行われ たとして作動指令信号を出力するように構成されたことを特徴とする油圧走行駆動 装置。
1 3 . 請求の範囲第 1 0項記載の油圧走行駆動装置において、 前記補助制動操作 検出手段はブレーキ操作を検出し、 前記制御手段は、 ブレーキ操作が検出されたと きに補助制動操作が行われたとして作動指令信号を出力するように構成されたこと を特徴とする油圧走行駆動装置。
1 4. 請求の範囲第 9項記載の油圧走行駆動装置において、 補助制動選択手段を 備え、 前記制御手段は、 前記補助制動選択手段によって補助制動を行う旨の選択が 行われたことを条件としてレギュレ一タをモータ容量が増加する方向に作動させる ように構成されたことを特徴とする油圧走行駆動装置。
1 5 . 請求の範囲第 9項記載の油圧走行駆動装置において 前記制御手段は、 補 助制動操作が行われたときに、 原動機の排気ブレーキを作用させるように構成され たことを特徴とする油圧走行駆動装置。
1 6 . 請求の範囲第 9項記載の油圧走行駆動装置において、 前記制御手段は レ ギユレ一夕をモータ容量が増加する方向に作動させると同時にブレーキ警告灯を点 灯させるように構成されたことを特徴とする油圧走行駆動装置。
1 7 . 請求項 1記載の油圧走行駆動装置において、 前記容量操作手段による容量 操作の異常の有無を検出する異常検出手段と、 この異常検出手段により前記容量操 作の異常が検出された場合に前記油圧モータと走行用車輪との連結を解除する連結 解除手段とを備えたことを特徴とする油圧走行駆動装置。
1 8 . 請求項 1記載の油圧走行駆動装置において、 前記容量操作手段は、 油圧の 供給を受けることにより前記可変容量型油圧ポンプの容量を操作するレギュレー夕 と、 このレギユレ一夕に油圧を供給するための油圧供給源と、 この油圧供給源と前 記レギュレー夕との間に介在し、 その切換位置として前記油圧供給源から前記レギ ユレ一夕への油圧の供給を許容する許容位置と前記油圧の供給を遮断する遮断位置 とを有する切換弁と、 この切換弁に指令信号を入力することによりその切換操作を する切換操作手段とを含み、 かつ、 前記切換弁は、 前記指令信号の入力が途絶えた ときに現在の操作位置を保持するように構成されていることを特徴とする油圧走行 駆動装置。
1 9 . 下部走行体と、 この下部走行体上に旋回自在に搭載される上部旋回体と、 前記下部走行体を駆動する装置としての請求の範囲第 1項記載の油圧走行駆動装置 とを備えたことを特徴とする油圧走行車両。
2 0 . 請求項 1 9記載の油圧走行車両において、 前記上部旋回体に、 前記可変容 量型油圧ポンプとしての走行用油圧ポンプ及び作業用油圧ポンプと、 この作業用油 圧ポンプを油圧源として作業用油圧ァクチユエ一夕を駆動する作業回路と、 油タン クと、 前記作業回路から前記油タンクに戻る油を冷却するオイルクーラーとが設け られる一方、 前記下部走行体に走行駆動源としての前記油圧モータが設けられ、 こ の油圧モ一夕と前記走行用油圧ポンプとがスィベルジョイントを介して接続されて 閉回路の走行回路が構成され、 かつ、 この走行回路のドレン油を直接前記油タンク に戻すドレン管路と、 前記油タンクから前記走行回路に油を補給する油補給ポンプ とがそれぞれ設けられ、 走行時に前記作業用油圧ポンプが吐出する油を前記オイル クーラ一を経由して前記作業回路と前記油タンクとの間で循環させ、 前記油タンク 内の油を前記油補給ポンプにより前記走行回路に補給するように構成されたことを 特徴とする油圧走行車両。
PCT/JP2004/003572 2003-03-18 2004-03-17 油圧走行駆動装置及び油圧走行車両 WO2004083689A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04721287.3A EP1610040B1 (en) 2003-03-18 2004-03-17 Hydraulic travel drive device and motor vehicle with hydraulic travel drive

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2003072929A JP4120433B2 (ja) 2003-03-18 2003-03-18 油圧式走行駆動装置
JP2003-072929 2003-03-18
JP2003096035A JP4120441B2 (ja) 2003-03-31 2003-03-31 油圧式走行駆動装置
JP2003-096035 2003-03-31
JP2003125133A JP4069795B2 (ja) 2003-04-30 2003-04-30 油圧走行駆動装置
JP2003-125133 2003-04-30
JP2003147679A JP4069803B2 (ja) 2003-05-26 2003-05-26 上部旋回式油圧走行車両
JP2003-147679 2003-05-26

Publications (1)

Publication Number Publication Date
WO2004083689A1 true WO2004083689A1 (ja) 2004-09-30

Family

ID=33033264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003572 WO2004083689A1 (ja) 2003-03-18 2004-03-17 油圧走行駆動装置及び油圧走行車両

Country Status (2)

Country Link
EP (1) EP1610040B1 (ja)
WO (1) WO2004083689A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103693592A (zh) * 2013-08-06 2014-04-02 湖南星邦重工有限公司 一种剪叉式高空作业车行走液压系统
CN105378349A (zh) * 2014-05-29 2016-03-02 株式会社小松制作所 液压驱动装置
CN109228853A (zh) * 2018-11-19 2019-01-18 桂林航天工业学院 一种液压驱动伺服行走系统
CN110001390A (zh) * 2019-04-24 2019-07-12 山东临工工程机械有限公司 一种传动系统及控制方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4775812B2 (ja) * 2006-01-24 2011-09-21 株式会社 神崎高級工機製作所 Hst
JP2008039139A (ja) * 2006-08-09 2008-02-21 Hitachi Constr Mach Co Ltd 油圧駆動車両の走行制御装置
EP2767739B1 (de) 2013-02-19 2018-10-24 Dana Rexroth Transmission Systems S.r.l. Leistungsverzweigtes Getriebe für einen Fahrantrieb, Verfahren zur Steuerung des Getriebes
JP6168012B2 (ja) * 2014-08-19 2017-07-26 井関農機株式会社 作業車両
IT201900006098A1 (it) * 2019-04-18 2020-10-18 Tesmec Spa Macchina di recupero di un cavo

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136555A (ja) * 1990-09-26 1992-05-11 Hitachi Constr Mach Co Ltd 油圧走行車両の変速切換制御装置
JPH05248511A (ja) 1992-03-06 1993-09-24 Hitachi Constr Mach Co Ltd 油圧走行車両
JPH06265013A (ja) 1993-03-08 1994-09-20 Hitachi Constr Mach Co Ltd Hst油圧走行駆動装置
JPH0814384A (ja) * 1994-06-28 1996-01-16 Komatsu Ltd 油圧機械式変速機及びその変速方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3807599A1 (de) * 1988-03-08 1989-09-28 Hydromatik Gmbh Automotive antriebseinrichtung fuer maschinen und fahrzeuge
DE9318017U1 (de) * 1993-11-25 1995-03-23 Orenstein & Koppel Ag Elektro-hydraulische Steuerung für lastschaltbare Getriebe in Fahrzeugen
DE19858673B4 (de) * 1998-12-18 2006-03-30 Sauer-Danfoss Gmbh & Co Ohg Steuersystem für einen hydrostatischen Antrieb mit einer Verbrennungskraftmaschine, einer Verstellpumpe und einem Hydromotor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136555A (ja) * 1990-09-26 1992-05-11 Hitachi Constr Mach Co Ltd 油圧走行車両の変速切換制御装置
JPH05248511A (ja) 1992-03-06 1993-09-24 Hitachi Constr Mach Co Ltd 油圧走行車両
JPH06265013A (ja) 1993-03-08 1994-09-20 Hitachi Constr Mach Co Ltd Hst油圧走行駆動装置
JPH0814384A (ja) * 1994-06-28 1996-01-16 Komatsu Ltd 油圧機械式変速機及びその変速方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1610040A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103693592A (zh) * 2013-08-06 2014-04-02 湖南星邦重工有限公司 一种剪叉式高空作业车行走液压系统
CN103693592B (zh) * 2013-08-06 2015-09-30 湖南星邦重工有限公司 一种剪叉式高空作业车行走液压系统
CN105378349A (zh) * 2014-05-29 2016-03-02 株式会社小松制作所 液压驱动装置
US10119557B2 (en) 2014-05-29 2018-11-06 Komatsu Ltd. Hydraulic driving device
CN109228853A (zh) * 2018-11-19 2019-01-18 桂林航天工业学院 一种液压驱动伺服行走系统
CN110001390A (zh) * 2019-04-24 2019-07-12 山东临工工程机械有限公司 一种传动系统及控制方法
CN110001390B (zh) * 2019-04-24 2024-02-02 山东临工工程机械有限公司 一种传动系统及控制方法

Also Published As

Publication number Publication date
EP1610040A4 (en) 2010-07-14
EP1610040B1 (en) 2014-08-13
EP1610040A1 (en) 2005-12-28

Similar Documents

Publication Publication Date Title
KR101439305B1 (ko) 산업용 차량의 유압공급장치
JP4855852B2 (ja) 建設機械のモータ制御装置
US9506222B2 (en) Drive control method and system for operating a hydraulic driven work machine
WO2010131345A1 (ja) 無段変速機の油圧装置
JP2002079931A (ja) 作業車両の駐車ブレーキ解除装置
JP2009236316A (ja) 液圧モータ
JP2007177868A (ja) 多段変速機用油圧装置
WO2004083689A1 (ja) 油圧走行駆動装置及び油圧走行車両
WO2017101034A1 (zh) 双动力驱动系统、工程机械车辆及控制方法
US20080039262A1 (en) Vehicle drivetrain having hydraulic power assist
JP4069803B2 (ja) 上部旋回式油圧走行車両
JP2005069203A (ja) 産業用車両の冷却装置
JP4120441B2 (ja) 油圧式走行駆動装置
JP4333137B2 (ja) ホイール式建設機械の走行装置
EP1894765B1 (en) Hydraulic traveling drive system
JP4282871B2 (ja) 油圧走行車両
JP4297531B2 (ja) 車両のためのハイドロスタティックな駆動機構
JP2009115116A (ja) 車両用自動変速機の油圧制御装置
JP2009030692A (ja) 油圧駆動車両のクラッチ制御装置
JP2005090573A (ja) Hst走行駆動装置
JP2003161305A (ja) 動力伝達装置の油圧リターダ装置
KR0160864B1 (ko) 동력전달장치의 유압리타더변속방법 및 유압리타더장치
JP2004332753A (ja) 油圧走行駆動装置
JP4120433B2 (ja) 油圧式走行駆動装置
JP3602276B2 (ja) 無段変速装置の油圧制御回路

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004721287

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004721287

Country of ref document: EP