WO2004079417A1 - 傾斜配向フィルムの製造方法、傾斜配向フィルムおよびそれを用いた画像表示装置 - Google Patents

傾斜配向フィルムの製造方法、傾斜配向フィルムおよびそれを用いた画像表示装置 Download PDF

Info

Publication number
WO2004079417A1
WO2004079417A1 PCT/JP2004/002801 JP2004002801W WO2004079417A1 WO 2004079417 A1 WO2004079417 A1 WO 2004079417A1 JP 2004002801 W JP2004002801 W JP 2004002801W WO 2004079417 A1 WO2004079417 A1 WO 2004079417A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
film
alignment
tilt
layer
Prior art date
Application number
PCT/JP2004/002801
Other languages
English (en)
French (fr)
Inventor
Ikuo Kawamoto
Hironori Motomura
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Priority to CN2004800061847A priority Critical patent/CN1759332B/zh
Priority to US10/547,527 priority patent/US7388637B2/en
Publication of WO2004079417A1 publication Critical patent/WO2004079417A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133632Birefringent elements, e.g. for optical compensation with refractive index ellipsoid inclined relative to the LC-layer surface
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133784Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by rubbing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Definitions

  • Patent application title Method for producing inclined orientation film, inclination orientation film and image display device using the same
  • the present invention relates to a method for producing a tilt alignment film, a tilt alignment film or a tilt alignment liquid crystal layer.
  • the tilt alignment film produced by the production method of the present invention or the tilt alignment liquid crystal layer peeled from the tilt alignment film may be used alone or in combination with other films, for example, optical compensation such as retardation film and viewing angle compensation film.
  • the film can be used as an optical film such as an elliptically polarizing film in which the optical compensation film and a polarizing plate are bonded.
  • These films may be used in image display devices such as liquid crystal display (LCD), electorium luminescence display (ELD), plasma display (PD) and field emission display (FED). it can.
  • the tilted alignment film of the present invention is effective for optical compensation of L CD. Background technology>
  • the LCD realizes image display by controlling the light emitted from the pack light by various methods.
  • a liquid crystal panel for controlling the transmission state of light a polarizing plate for selectively transmitting polarized light, and an optical compensation film for improving reproducibility of color display and viewing angle characteristics are used.
  • the optical compensation film controls the optical refractive index retardation of the film by stretching the polymer film or coating the organic material, and enables optical compensation according to various demands. There is.
  • an LCD having a liquid crystal panel in which the liquid crystal operation mode is TN mode or STN mode uses various wide-angle techniques to compensate for the narrowness of the viewing angle specific to that mode. For example, a method of dividing a pixel into a plurality of regions having different alignment directions of liquid crystal molecules and averaging them by alignment division method, half tone method, etc.
  • a method using a diffusion lens There is known a method using an optical compensation film, and a method for fundamentally improving liquid crystal operation modes such as IPS, MVA and OCB.
  • the method of improving the liquid crystal operation mode and the method of using an optical compensation film are simpler and are actively put to practical use.
  • the method of using the optical compensation film is sufficient as compared with the method of changing and improving the liquid crystal operation mode, since the liquid crystal panel can be used as it is and only the optical compensation film integrated with the polarizing plate is attached.
  • This technology is simple because it can be realized without changing the production process, and is a technology that can realize the wide view angle at low cost.
  • Known optical compensation films viewing angle compensation films are those in which a discotic liquid crystal is inclined and those in which a rod-like nematic liquid crystal is inclined. In each case, the liquid crystal polymer is inclined and aligned (see, for example, Patent Document 1).
  • a tilt alignment film can be obtained.
  • a method of forming a liquid crystal layer see, for example, Patent Document 3) is known.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-5383
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2 00 0 3 2 7 7 2 0
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2 0 0 2-2 1 4 6 1 0
  • the present invention production of an inclined orientation film having a large inclination, easy to control and stable It is an object of the present invention to provide a method, a tilt alignment film, and an image display device using the tilt alignment film.
  • the optical compensation range is expanded as compared with the conventional one, so that it is possible to more flexibly cope with applications such as viewing angle compensation.
  • a liquid crystal coating liquid containing the vertical alignment liquid crystal composition or the photopolymerizable liquid crystal composition is coated on the substrate to form a tilt alignment liquid crystal layer.
  • a method for producing a tilt-oriented film, which forms Further, the liquid crystal coating liquid is further applied onto the inclined alignment liquid crystal layer,
  • It may be a method for producing a tilt alignment film in which two or more layers, ie, a plurality of tilt alignment liquid crystal layers are formed.
  • the vertical alignment substrate is prepared from the tilt alignment film.
  • the present invention relates to a method for producing an inclined orientation film for removing
  • the tilt alignment film obtained by the above-mentioned manufacturing method has an in-plane retardation A nd (0) and a retardation when the retardation axis is inclined ⁇ 30 ° in ⁇ nd (+ 30) and A nd (one 30). And when
  • / ⁇ n d (0)) X 100 is preferably 30 or more.
  • the present invention has a tilt alignment liquid crystal layer containing a vertical alignment liquid crystal composition or a photopolymerizable liquid crystal composition, and an in-plane retardation of A n d (0), 30 in the slow axis direction.
  • a tilt alignment liquid crystal layer containing a vertical alignment liquid crystal composition or a photopolymerizable liquid crystal composition, and an in-plane retardation of A n d (0), 30 in the slow axis direction.
  • the inclined liquid crystal layer may be a laminate of two or more layers.
  • the present invention relates to an optical film having the inclined alignment film, and an image display device having the inclined alignment film or the optical film. Therefore, in the present invention, after the rubbing on the vertical alignment substrate, the liquid crystal coating liquid containing the vertical alignment liquid crystal composition or the photopolymerizable liquid crystal composition is used to form the tilt alignment liquid crystal layer, and such Tilted alignment with tilted alignment liquid crystal layer:
  • the above-mentioned inclined alignment is manufactured by a manufacturing method that can be stably manufactured, and has a larger degree of inclination than before, and accordingly, by appropriately combining it with an optical film such as a polarizing plate, an image display device such as a liquid crystal display device By using it, viewing angle compensation and other optical compensation can be performed more highly effectively.
  • the present invention provides a tilt alignment film having a greater degree of tilt by forming a tilt alignment liquid crystal layer containing a vertical alignment liquid crystal composition or a photopolymerizable liquid crystal composition. Furthermore, by laminating two or more layers of the tilt alignment liquid crystal layer, a tilt alignment film having a tilt degree larger than that of the tilt alignment film formed of one tilt alignment liquid crystal layer is stably provided.
  • a tilt alignment film is suitably used in an image display device such as a liquid crystal display device by combining it with an optical film such as a polarizing plate, thereby making the viewing angle compensation and other optical compensation more effective and more effective. You can do it.
  • FIG. 1 is a cross-sectional view of an embodiment of the inclined alignment film of the present invention
  • FIG. 2 is a cross-sectional view of another embodiment of the inclined orientation film of the present invention.
  • FIG. 3 is a cross-sectional view of an embodiment of the image display device of the present invention.
  • the present invention rubs a vertical alignment substrate, a vertical alignment liquid crystal composition or photopolymerization It has been found that by forming a liquid crystal layer using a liquid crystal coating liquid containing a crystalline liquid crystal composition, inclined alignment having a larger degree of inclination can be obtained.
  • the constitution of the tilt alignment film according to the present invention is obtained by forming a tilt alignment liquid crystal layer comprising a liquid crystal coating liquid containing a vertical alignment liquid crystal composition or a photopolymerizable liquid crystal composition on a vertical alignment substrate,
  • the tilt alignment film having the above-mentioned vertical alignment substrate may be used as it is, but the vertical alignment substrate is peeled from the tilt alignment film,
  • the oriented liquid crystal layer may be used alone.
  • the tilt alignment liquid crystal layer may be stacked on another optical film by using an adhesive layer or the like, or after laminating, the vertical alignment substrate may be peeled off from the tilt alignment film.
  • the above-mentioned gradient alignment film is used as it is or after being laminated on another optical film, the vertical alignment substrate is peeled off from the gradient alignment film to form the optical film. It is preferable to use in the state where the tilt alignment liquid crystal layer is laminated.
  • the tilt alignment of the tilt alignment liquid crystal layer of the tilt alignment film of the present invention requires that nematic liquid crystal molecules have a tilt angle of 1 ° or more and 85 ° or less from the normal direction of the substrate surface.
  • the degree of inclination according to the invention may be 30 or more, but in practice, the degree of inclination is preferably 50 or more, preferably 150 or more, in order to enable a wider range of optical compensation when the degree of inclination is larger. Is more preferred. Furthermore, when two or more layers of this tilt alignment liquid crystal layer are laminated, a tilt alignment film with a larger degree of tilt can be obtained.
  • the practical degree of inclination is preferably 500 or less, more preferably 250 or less, when the inclined alignment liquid crystal layer consists of one layer.
  • the tilt alignment liquid crystal layer comprises two or more layers, it is preferably at most 100 °, more preferably at most 80 °.
  • FIG. 1 shows an embodiment of the inclined orientation film of the present invention.
  • the tilt alignment film 1 two tilt alignment liquid crystal layers 3 are laminated on the vertical alignment substrate 2.
  • the vertical alignment substrate for example, substrates made of various materials such as polymer, glass, metal and the like can be used, and in which the vertical alignment liquid crystal composition is vertically aligned without rubbing the vertical alignment substrate.
  • An alignment layer is provided on the substrate such that the vertical alignment liquid crystal composition can be vertically aligned if the vertical alignment liquid crystal composition is difficult to be vertically aligned using the substrate alone, and a combination of the substrate and the alignment layer Is a vertical alignment substrate.
  • a polymer film or glass substrate having a norbornene structure may be used alone, or an alignment layer containing a glassy polymer, a silane coupling agent or a surfactant may be provided on the polymer film. preferable.
  • a polymer film having a norbornene structure or a polymer film provided with an alignment layer containing a glassy polymer or a silane coupling agent is particularly preferable because it is practical and stable.
  • the thickness of the vertically oriented substrate is usually about 10 to 100 ⁇ .
  • a polymer film When a polymer film is used as a substrate, it is not particularly limited as long as it does not cause a defect in the surface state or durability of the film depending on the temperature at which the liquid crystal is aligned.
  • polyethylene terephthalate, polyethylene naphthalate, etc. examples thereof include films made of transparent polymer films such as poly Estenole-based polymers, ceasenolose senoreroses, cenotellose-based polymers such as triasecetyl / reseno-rellose, polycarbonate-based polymers, and polyacrylates such as polymethyl methacrylate.
  • styrene styrene, styrene-based polymers such as polystyrene, acrylonitrile-styrene copolymer, polyethylene, polypropylene, polyolefins having cyclic or norbornene structure, olefin-based polymers such as ethylene'-propylene copolymer, chloride-based polymers, aromatic polymers Films made of transparent polymers such as amide polymers such as polyamides may also be mentioned.
  • imide type polymers such as arylate polymers, polyoxymethylene polymers, epoxy polymers, and blends of the above polymers.
  • films made of transparent polymers such as arylate polymers, polyoxymethylene polymers, epoxy polymers, and blends of the above polymers.
  • polymer films such as triacetyl cellulose, polycarbonate, polyethylene terephthalate, norbornene polyolefin and the like which have high hydrogen bondability and can be used as a light transmitting film are preferably used.
  • a substrate having vertical alignment only with a substrate for example, a polymer film having a norbornene structure can be mentioned.
  • Examples of the polymer film having a norbornene structure include Zeonor (trade name, manufactured by Nippon Zeon Co., Ltd.), Zeonex (trade name, manufactured by Nippon Zeon Co., Ltd.), Arton (trade name, JSR Corp.) Made in Japan and has excellent optical properties.
  • Such a plastic film has a very small optical anisotropy, so that a vertically oriented liquid crystal composition or a tilted alignment film made of a photopolymerizable liquid crystal composition formed on a polymer film having a norbornene structure can be obtained.
  • the transfer of the tilt alignment liquid crystal layer to another optical film can be used as it is as a tilt alignment film as an optical film for optical compensation of a liquid crystal display or the like.
  • the metal substrate one that is chemically stable such as aluminum and stainless steel is preferably used.
  • the glass substrate can be used regardless of the distinction between alkali glass and non-alkali glass, but from the optical point of view it is preferable to be alkali-free glass.
  • the alignment layer provided on the substrate may be, for example, a vertical alignment liquid crystal composition such as a glassy polymer, a silane coupling agent, a surfactant or silicone.
  • a thin film layer made of a substance to be oriented is provided.
  • these substances may be contained in the substrate surface or in the substrate, or may be contained in the vertically aligned liquid crystal composition.
  • a glassy polymer or a silane coupling agent can be particularly preferably used.
  • metal alkoxides As a material for forming an alignment layer containing a glassy polymer, metal alkoxides, particularly metal silicon alkoxide sols, are used as prizes.
  • the metal alkoxide is usually used as a solution of alcohol system.
  • the solution is applied to a substrate, the solvent is removed, and the sol-gel reaction is promoted by heating to form a transparent vitreous polymer film on the substrate.
  • a metal silicon alkoxide gel layer is formed from the metal silicon alkoxide sol.
  • a glassy polymer alignment layer formed of isopropyl alcohol and butanol 2% solution manufactured by Corcoat Co., Ltd .: Corcoat P) of hydroxyethyl silgate can be exemplified.
  • the metal alkoxide sol solution on a substrate for example, a roll coating method, a gravure coating method, a spin coating method, a bar coating method, or the like can be employed.
  • a roll coating method for example, a gravure coating method, a spin coating method, a bar coating method, or the like.
  • drying at room temperature, drying in a drying oven, heating on a hot plate, and the like are used as methods for removing the solvent and promoting the reaction. Since a uniform and flexible film is required, the thickness of the alignment layer is preferably about 0.004 to 2 im, and more preferably about 0.5 to 0.5 z m.
  • silane coupling agent a commercially available product composed of an organic substance having a chain and a linear alkyl group etc. can be used without being limited as appropriate in the present invention. Those having a xy group are preferable, and, for example, those composed of ataryloxyprovirtrimethoxysilane can be particularly preferably used.
  • an amphiphilic surfactant As treatment with a surfactant, a method of applying an amphiphilic surfactant is known. For example, application of an organic solvent such as lecithin or hexadecyltrimethyl ammonium bromide, or a method of treating a substrate with a solution of a monobasic chromium carboxylate is known.
  • an organic solvent such as lecithin or hexadecyltrimethyl ammonium bromide
  • a method of treating a substrate with a solution of a monobasic chromium carboxylate is known.
  • a substance having an isocyanato group or a silanol group and an ataliloyl group or a metataloyl group is preferable.
  • an isocyanato group and a metataryloyl group, or a silanol group and an acryloyl group are preferable. It is particularly preferable to have.
  • a conventionally known method for example, a method in which rubbing is performed in one direction by using a cloth made of fine fibers such as rayon or cotton or a rubbing roll coated with a leather.
  • the liquid crystal coating liquid for forming the gradient alignment liquid crystal layer of the present invention comprises a vertical alignment liquid crystal composition or a photopolymerizable liquid crystal composition, and the photopolymerization in the vertical alignment liquid crystal composition.
  • the liquid crystal composition may be included.
  • an auxiliary agent such as a crosslinking agent, a photopolymerization initiator or a silane coupling agent may be appropriately blended.
  • the vertical alignment liquid crystal composition is not particularly limited as long as it exhibits vertical alignment on a non-rubbed vertical alignment substrate, and it exhibits nematic liquid crystallinity, a polymer, a polymerizable monomer or a polymer A mixture of the above and a polymerizable monomer is suitably used preferably.
  • the vertically aligned liquid crystal composition vertically aligned on a non-rubbed vertically aligned substrate includes, for example, a monomer unit (a) containing a liquid crystalline fragment side chain and a monomer unit containing a non-liquid crystalline fragment side chain (b A side-chain liquid crystal polymer containing a) and a side-chain liquid crystal polymer blended with a photopolymerizable liquid crystal composition exhibiting nematic liquid crystallinity are preferably used.
  • the side-chain type liquid crystal polymer preferably used in the present invention exhibits vertical alignment on a vertical alignment substrate without using a vertical alignment film such as a generally known vapor deposited film, when it is used for vertical alignment.
  • a vertical alignment film such as a vapor deposition film is not suitable for the rubbing process because the alignment regulating power is significantly impaired when the rubbing process is performed. Therefore, as described in the present invention, after the vertical alignment substrate is rubbed, a vertical alignment liquid crystal composition containing a side chain type liquid crystal polymer exhibiting vertical alignment is applied to form a tilt alignment liquid crystal layer. Can be formed.
  • the side chain type liquid crystal polymer is a monomer unit containing a non-liquid crystal fragment side chain having an alkyl chain etc. in addition to a monomer unit (a) containing a liquid crystalline fragment side chain possessed by a normal side chain type liquid crystal polymer Vertical alignment is achieved by the action of monomer units (b) which have units (b) and contain non-liquid crystalline fragment side chains. Even without using a facing film, for example, it is assumed that the liquid crystal state is brought about by heat treatment, a nematic liquid crystal phase is expressed, and vertical alignment is exhibited.
  • the monomer unit (a) has a side chain having nematic liquid crystallinity, and examples thereof include a monomer unit represented by Formula 1.
  • R 1 is a hydrogen atom or a methyl group
  • a is a positive integer of 1 to 6
  • X 1 is 100 2 groups or 100 groups
  • R 2 is a cyano group, carbon number 1 to 6 alkoxy group, fluoro group or alkyl group having 1 to 6 carbon atoms
  • b and c each represents an integer of 1 or 2.
  • the monomer unit (b) has a linear upper chain There are, for example, monomer units represented by the following formula 2 or formula 3:
  • R 3 represents a hydrogen atom or a methyl group
  • R 4 represents an alkyl group having 1 to 22 carbon atoms
  • the side including the monomer unit ( a ) containing the liquid crystalline fragment side chain and the monomer unit (c) containing a liquid crystalline fragment side chain having an alicyclic ring structure A chain-type liquid crystal polymer can also be used.
  • the vertical alignment of the liquid crystal polymer can be realized on the vertical alignment substrate.
  • the side chain type liquid crystal polymer is a monomer unit containing a liquid crystalline fragment side chain having an alicyclic ring structure, in addition to a monomer unit (a) containing a liquid crystalline fragment side chain possessed by a normal side chain type liquid crystal polymer. Even if the vertical alignment film is not used by the action of the monomer unit (c), the liquid crystal state is brought about by, for example, heat treatment to develop a nematic liquid crystal phase and exhibit vertical alignment. I guess it became.
  • the monomer unit (c) has a side chain exhibiting nematic liquid crystallinity, and includes, for example, a monomer unit represented by the following formula 4.
  • R 6 is a hydrogen atom or a methyl group
  • h is a positive integer of 1 to 6
  • 2 is C 0 2 - group or a OC_ ⁇ Ichiki
  • an integer of e and g is 1 or 2
  • f is an integer of 0 to 2
  • R 7 is Shiano group, the number 1 to 1 2 alkyl group having a carbon .
  • the liquid crystal polymer which can constitute the vertically aligned liquid crystal composition is not limited to one having the above-described exemplified monomer units, and the above-described exemplified monomer units can be appropriately combined.
  • the weight average molecular weight of the side chain type liquid crystal polymer is preferably 2,000 to 1,000,000. By adjusting the weight average molecular weight to such a range, the performance as a liquid crystal polymer is exhibited. If the weight average molecular weight of the side chain type liquid crystal polymer is too low, the film forming property of the alignment layer tends to be poor. Therefore, the weight average molecular weight of 2.5 or more is more preferable. On the other hand, if the weight average molecular weight is excessive, the orientation as a liquid crystal tends to be poor and it tends to be difficult to form a uniform alignment state, so the weight average molecular weight is more preferably 50,000 or less.
  • the side chain type liquid crystal polymer of the said illustration is adjusted by copolymerizing the said acryl-type monomer corresponding to the said monomer unit (a), monomer unit (b), and monomer unit (c), or methacrylic monomer. it can.
  • the monomers corresponding to the monomer unit (a), the monomer unit (b) and the monomer unit (c) can be synthesized by a known method.
  • the preparation of the copolymer can be carried out according to, for example, a polymerization system using a conventional acrylic monomer or the like such as a radical polymerization system, a cationic polymerization system, an anion polymerization system and the like.
  • various polymerization initiators can be used, but among them, the decomposition temperature of azobisisoptyronitrile, benzyl peroxide, etc. is not high and the decomposition temperature is not low.
  • the decomposition temperature of azobisisoptyronitrile, benzyl peroxide, etc. is not high and the decomposition temperature is not low.
  • the decomposition temperature of azobisisoptyronitrile, benzyl peroxide, etc. is not high and the decomposition temperature is not low.
  • the decomposition temperature of azobisisoptyronitrile, benzyl peroxide, etc. is not high and the decomposition temperature is not low.
  • the side chain type liquid crystal polymer may be used as a vertical alignment liquid crystal composition.
  • it may be a vertically aligned liquid crystal composition in which a photopolymerizable liquid crystal composition is blended with the side chain type liquid crystal polymer.
  • the photopolymerizable liquid crystal composition can be used alone.
  • the photopolymerizable liquid crystal composition is, for example, a liquid crystalline compound having at least one unsaturated double bond such as an ataliloyl group or a methacryloyl group as a photopolymerizable functional group, and a nematic liquid crystalline compound is preferable.
  • a photopolymerizable liquid crystal composition atarylates and methacrylates to be the monomer unit (a) can be exemplified.
  • those having two or more photopolymerizable functional groups are preferable.
  • a photopolymerizable liquid crystal composition for example, a crosslinkable nematic liquid crystal monomer represented by the following formula 5 can be exemplified.
  • R is a hydrogen atom or a methyl group
  • a and D are each independently a 1, 4-phenylene group or a 1, 4-cyclohexylene group
  • X is each independently a C OO-group
  • B is 1,4 phenylene group, 1, 4-cyclohexylene group, 4, 4 'biphenyl group or 4, 4' bicyclohexylene group
  • m and n each independently represent an integer of 2 to 6;
  • the photopolymerizable liquid crystal composition is converted to a liquid crystal state by heat treatment, for example, a nematic liquid crystal phase is expressed to form vertical alignment or tilt alignment with a side chain type liquid crystal polymer. Thereafter, the durability of the liquid crystal film obtained by polymerizing or crosslinking the photopolymerizable liquid crystal composition can be improved.
  • the ratio of the photopolymerizable liquid crystal composition to the side chain liquid crystal polymer in the vertically aligned liquid crystal composition is not particularly limited, but is appropriately determined in consideration of the durability of the liquid crystal film to be obtained and the like.
  • Photo-polymerizable liquid crystal composition side-chain liquid crystal polymer (weight ratio)
  • the liquid crystal coating solution using the photopolymerizable liquid crystal composition usually contains a photopolymerization initiator.
  • a photoinitiator can be used, without specifically limiting various things.
  • the photopolymerization initiator include Irgacure (Irgacure) 907, 184, 165, and 369 manufactured by Ciba Specialty Chemicals.
  • the amount of the photopolymerization initiator added is such that the orientation is not disturbed in consideration of the type of the photopolymerizable liquid crystal composition, the composition ratio of the vertical alignment liquid crystal composition, and the like.
  • about 0.5 to 30 parts by weight is preferable to 100 parts by weight of the photopolymerizable liquid crystal composition. In particular, 3 to 15 parts by weight are preferable.
  • a coating method or a method of melting and liquid-coating a liquid crystalline composition may be mentioned, and among them, a method of coating a solution on a vertical alignment substrate by a solution coating method is preferable.
  • the solvent used when preparing the solution is different depending on the type of side chain type liquid crystal polymer, photo-polymerizable liquid crystal composition and vertical alignment substrate, and it can not be generally mentioned.
  • chlorophorem dichloromethane, dichloro ethane , Chlorinated hydrocarbons such as tetrachloroethene, trichloroethylene, tetrachloroethylene, and benzene, phenols such as phenol and parachlorophenol, benzene, tonorene, xylene, methoxybenzene, 1,2-dimethoxene and the like
  • Aromatic hydrocarbons Acetone, Ethyl acetate, tert-Peptyl alcohol Nore, Glycerin, Ethylene Glyconol, Triethylene Glyconol, Ethylene Glycorone Monomethynole Ether, Diethylene Glyconone Methynore -Tenoré Rusonolev,
  • the concentration of the solution depends on the solubility of the side chain type liquid crystal polymer to be used and the film thickness of the liquid crystal film finally aimed at, but it can not generally be generally stated, but usually 3 to 50% by weight, preferably Is in the range of 7 to 30% by weight.
  • coated said vertical alignment liquid crystal composition or photopolymerizable liquid crystal composition shall be about 1 to 10 micrometers.
  • the film thickness is substantially determined at the stage of coating on the substrate, so control of concentration of solution, film thickness of coating film, etc. Particular attention needs to be paid.
  • a method of applying a solution containing a vertically aligned liquid crystal composition or a photopolymerizable liquid crystal composition adjusted to a desired concentration using the above-mentioned solvent onto a rubbed vertically aligned substrate for example, roll coating Methods such as gravure coating, spin coating, and bar coating can be used.
  • the solvent is removed, and a layer of the vertical alignment liquid crystal composition or the photopolymerizable liquid crystal composition is formed on the vertical alignment substrate.
  • the conditions for removing the solvent are not particularly limited, and it is preferable that the solvent can be removed in general and the layer of the liquid crystal coating liquid does not flow or run off. Usually, the solvent is removed using drying at room temperature, drying in a drying oven, heating on a hot plate, and the like.
  • the layer of the liquid crystal coating liquid formed on the vertical alignment substrate is brought into a liquid crystal state and aligned.
  • the heat treatment is performed so that the vertically aligned liquid crystal composition or the photopolymerizable liquid crystal composition is in the liquid crystal temperature range, and alignment is performed in the liquid crystal state.
  • a heat treatment method it can carry out by the method similar to the above-mentioned drying method.
  • the heat treatment temperature is different depending on the type of the liquid crystal coating liquid and the vertical alignment substrate to be used, and can not be generally stated, but it is usually in the range of 60 to 300C, preferably 70 to 200C. Do.
  • the heat treatment time varies depending on the heat treatment temperature, and the type of side chain liquid crystal polymer, vertical alignment liquid crystal composition, or photopolymerizable liquid crystal composition or vertical alignment substrate to be used, although it can not generally be generally mentioned. It is selected in the range of 10 seconds to 2 hours, preferably 20 seconds to 30 minutes. Be If it is shorter than 10 seconds, orientation formation may not proceed sufficiently, and if it is longer than 2 hours, the orientation may not be maintained.
  • Methods of immobilization include cooling to below the glass transition temperature and polymerization and curing by light irradiation, and one or both of these may be selected depending on the properties of the vertically aligned liquid crystal composition or the photopolymerizable liquid crystal composition. It is used suitably. In general, cooling and curing are effective for polymers, and polymerization and curing by light irradiation are effective for polymerizable monomers, and it is preferable to carry out using these in combination.
  • the cooling and curing can be carried out by bringing the obliquely oriented film after heat treatment into room temperature from the heating atmosphere in the heat treatment operation. Also, forced cooling such as air cooling or water cooling may be performed.
  • the orientation is fixed by cooling the tilt alignment liquid crystal layer to a temperature equal to or lower than the glass transition temperature of the vertical alignment liquid crystal composition or the photopolymerizable liquid crystal composition.
  • light irradiation is performed to polymerize or crosslink the photopolymerizable liquid crystal composition.
  • the photopolymerizable liquid crystal composition is fixed to obtain a tilted alignment film with improved durability.
  • Light irradiation is performed, for example, by ultraviolet irradiation.
  • the ultraviolet irradiation conditions are preferably in an inert gas atmosphere to sufficiently promote the reaction.
  • a high pressure mercury ultraviolet lamp having an illuminance of about 80 to 160 m W / cm 2 is typically used.
  • the obliquely aligned liquid crystal layer thus formed can be used by laminating two or more layers.
  • the degree of freedom in designing the degree of inclination can be expanded by appropriately adjusting the type and thickness of the liquid crystal composition for each layer and the method for forming the obliquely aligned liquid crystal layer. .
  • the degree of freedom in designing the degree of inclination can be expanded by appropriately adjusting the type and thickness of the liquid crystal composition for each layer and the method for forming the obliquely aligned liquid crystal layer.
  • it is necessary to increase the thickness of the layer but when forming a thick tilt aligned liquid crystal layer, uniform drying and alignment are difficult, and drying unevenness And orientation unevenness easily occur become.
  • a tilt alignment liquid crystal layer having a larger degree of tilt than that of the tilt alignment liquid crystal layer designed as one layer having the same thickness can be obtained. It is possible to obtain a liquid crystal layer more uniform than the thick single-layer tilt alignment liquid crystal layer having a tilt degree.
  • the liquid crystal layer may be appropriately formed by using the above-mentioned method or a conventionally known method.
  • a method of forming an alignment film on the formed tilt alignment liquid crystal layer and further applying a liquid crystal composition, directly coating the liquid crystal composition on the formed tilt alignment liquid crystal layer, and The method of utilizing for alignment, the method of rubbing the top of the formed inclined alignment liquid crystal layer, and the method of applying a liquid crystal composition can be mentioned.
  • the tilt alignment film thus obtained may be used as it is, but the tilt alignment liquid crystal layer obtained by peeling the vertical alignment substrate from the tilt alignment film is used as a tilt alignment film laminated on another optical film. It is good. In addition, it is possible to use only the tilt alignment liquid crystal layer in which the vertical alignment substrate is peeled from the tilt alignment film at the interface with the tilt alignment liquid crystal layer.
  • FIG. 2 shows another embodiment of the inclined alignment film of the present invention.
  • the tilt alignment film 10 of this embodiment is manufactured by peeling the vertical alignment substrate 2 from the tilt alignment film 1 of FIG. 1 and laminating an optical film 5 on both sides thereof via the adhesive layer 4.
  • the above optical film is a release film
  • the tilt alignment liquid crystal layer is a release film.
  • the release film can be peeled off as appropriate depending on the use of the tilt alignment liquid crystal layer, and therefore, it can be used as a tilt alignment film consisting of a tilt alignment liquid crystal layer and an adhesive layer.
  • the adhesive or pressure-sensitive adhesive that forms the adhesive layer can be used without limitation as long as the required optical properties are not affected.
  • an adhesive or adhesive having an acrylic polymer, silicone polymer, polyester, polyurethane, polyamide, polyester, fluorine-based or rubber-based polymer as a base polymer may be appropriately selected and used. it can.
  • the form is not particularly limited, and various adhesives or adhesives such as solvent type, dispersion type, and emulsion type can be used.
  • an ataryl solvent-based pressure-sensitive adhesive which is excellent in transparency, weather resistance and the like.
  • the formation of the adhesive layer can be performed by an appropriate method.
  • an adhesive solution of about 10 to 40% by weight in which the base polymer or its composition is dissolved or dispersed in a solvent consisting of a single substance or a mixture of suitable solvents such as toluene and ethyl acetate is prepared, Directly on the liquid crystal layer by an appropriate spreading method such as a casting method or a coating method, or a method of forming an adhesive layer on a separator according to the above and transferring it onto the liquid crystal layer Etc.
  • the adhesive layer may be, for example, a filler of natural or synthetic resin, in particular, a filler, a pigment, a colorant, and the like which are made of tackifying resin, glass fiber, glass bead, metal powder, other inorganic powder, You may contain the additive added to adhesive layers, such as antioxidant. In addition, it may be an adhesive layer that contains fine particles and exhibits light diffusibility.
  • the optical film is not particularly limited as long as it is a polymer film having a required optical property when applied to an image display device, a liquid crystal film, or an optical film in which two or more liquid crystal layers are laminated.
  • a polarizing plate, an optical compensation film (a retardation plate, a viewing angle compensation film, etc.), a brightness enhancement film, a cholesteric liquid crystal film, a release film, etc. may be mentioned.
  • a polarizing plate for example, one obtained by adhering a protective sheet to one side or both sides of a polarizer made of a dipolar substance-containing polyvinyl alcohol film or the like via a suitable adhesive layer made of a burial alcohol polymer or the like can give.
  • a method for producing a polarizer for example, there is a method of orienting iodine by dyeing a polyvinyl alcohol-based film with iodine and then stretching it.
  • polarizers can be used without particular limitation.
  • hydrophilic polymer films such as polyvinyl alcohol-based films, partially formalized polyvinyl alcohol-based films, ethylene / acetic acid / cobalt copolymer-based partially saponified films, and dichromatic substances such as iodine and dichroic dyes And those which have been uniaxially stretched, those obtained by dehydration treatment of polyvinyl alcohol, those treated by dehydrochlorination of polyvinyl chloride, etc.
  • a polarizer made of a polyvinyl alcohol film and a dichroic material such as iodine is preferable.
  • the thickness of these polarizers is not particularly limited, but is generally about 5 to 80 ⁇ .
  • the polarizer may contain boric acid, zinc sulfate, zinc chloride and the like as necessary, and may be immersed in an aqueous solution such as potassium iodide.
  • polyestereno-based polymers such as polyethylene terephthalate and polyethylene naphthalate
  • cellulose-based polymers such as diacetinolecenoleose and triacetinolecenorellose
  • atalinolenic polymers such as polymethynometatalylate
  • polystyrene acrylonitrile
  • acrylonitrile examples thereof include styrene polymers such as styrene copolymer (AS resin) and polycarbonate polymers.
  • polyolefins such as polyethylene, polypropylene, cyclo-based or norbornene structure
  • the protective sheet is formed as a cured layer of thermosetting resin such as acrylic resin, urethane resin, acrylic urethane resin, epoxy resin, silicone resin, and ultraviolet curable resin. You can also Among these, cellulose polymers are preferable.
  • the polymer film as described in Unexamined-Japanese-Patent No. 200 1-343 5 2 9 (WO 0 1/37007) for example, (A) side chain substituted and / or unsubstituted imide Resin compositions containing a thermoplastic resin having a group (B) and a thermoplastic resin having a substituted and / or unsubstituted phenyl group and a tolyl group in the side chain (B).
  • a film of a resin composition containing an alternating copolymer of methyl maleimide and an acrylonitrile / styrene copolymer can be mentioned.
  • a film made of a mixed extruded product of a resin composition can be used.
  • the thickness of the protective sheet is not particularly limited, but is generally 500 x m or less, preferably 1 to 300 ⁇ um. In particular, 5 to 200 im is more preferable. In addition, it is preferable to saponify the surface of the protective film with alkali or the like from the viewpoint of polarization characteristics and durability.
  • the retardation value (R th) in the thickness direction is more preferably 80 to 60 nm, particularly 70 n n! ⁇ + 45 nm is preferred.
  • the protective sheet may be one in which two sheets bonded to both sides of the polarizer have different characteristics. Examples of the characteristics include, but are not limited to, thickness, material, light transmittance, tensile modulus, presence or absence of an optical film, and the like.
  • the polarizing plate can be used after being subjected to various processes in practical use.
  • the processing method is not particularly limited to this, for example,
  • the hard coat treatment is applied for the purpose of preventing scratching of the film surface such as a polarizing plate, and the like, for example, a cured film excellent in hardness, slip characteristics, etc. by an appropriate UV curable resin such as acrylic resin and silicone resin. It can form by the system etc. which are added to the surface of a transparent protective film.
  • the anti-reflection treatment is applied for the purpose of preventing the reflection of external light on the surface of the change plate, and can be achieved by forming an anti-reflection film according to the prior art.
  • anti-sticking treatment is applied for the purpose of preventing adhesion with the adjacent layer.
  • the antiglare treatment is applied for the purpose of preventing external light from being reflected on the surface of the polarizing plate and obstructing the visual recognition of the light transmitted through the polarizing plate, for example, sand blasting method, emboss processing method
  • the surface of the transparent protective film can be formed by applying a microrelief structure by an appropriate method such as a surface roughening method by the method or a compounding method of transparent particles.
  • the fine particles to be contained in the formation of the surface fine uneven structure include, for example, silicic acid having an average particle diameter of 0.5 to 50 ⁇ m, alumina, titania, zirconia, tin oxide, indium oxide, cadmium oxide, antimony oxide, etc.
  • Transparent fine particles such as inorganic fine particles which may be conductive, organic fine particles comprising a crosslinked or uncrosslinked polymer, etc. are used.
  • the amount of use of the fine particles is generally about 2 to 70 parts by weight with respect to 100 parts by weight of the transparent resin forming the surface fine relief structure, 5 to 50 weight Part is preferred.
  • the antiglare layer may be a diffusion layer (such as a viewing angle enlarging function) for diffusing the light transmitted through the polarizing plate to expand the viewing angle or the like.
  • the optical film such as the antireflective layer, the antisticking layer, the diffusion layer and the antiglare layer can be provided not only on the transparent protective film itself, but also separately from the transparent protective film.
  • the adhesion treatment between the polarizer and the transparent protective film is not particularly limited.
  • an adhesive composed of a vinyl polymer, or boric acid or borax, glutaranoic acid, melamine, vinyl alcohol such as oxalic acid It can be carried out via an adhesive comprising at least a water-soluble crosslinking agent of a system polymer.
  • This adhesive layer can be formed as a coated and dried layer of an aqueous solution, etc. In the preparation of the aqueous solution, other additives and catalysts such as acids can be blended, if necessary.
  • the reflective polarizing plate is a polarizing plate provided with a reflective layer, and is for forming a liquid crystal display device of a type that reflects light incident from the viewing side (display side) and displays it. It is possible to omit the internal organs of light sources such as lights, and has the advantage of facilitating thinning of the liquid crystal display device.
  • the reflective polarizing plate can be formed by an appropriate method such as a method of attaching a reflective layer made of metal or the like to one side of the polarizing plate through a transparent protective layer or the like, if necessary.
  • the reflection type polarizing plate one in which a foil deposited film made of a reflective metal such as aluminum is attached to one side of a matted transparent protective film and a reflection layer is formed, if necessary.
  • the transparent protective film may be made to contain fine particles to form a fine surface asperity structure, and a reflective layer having a fine asperity structure may be provided thereon.
  • the reflective layer having the above-described fine uneven structure has an advantage that the incident light is diffused by diffuse reflection to prevent directivity and glare-like appearance and to suppress unevenness of light and dark.
  • the fine particle-containing transparent protective film has an advantage that incident light and reflected light from the incident light are diffused when passing through the transparent protective film, thereby further suppressing the lightening unevenness.
  • the formation of the reflective layer with a fine uneven structure reflecting the surface fine uneven structure of the transparent protective film may be carried out by any appropriate method such as vacuum evaporation, ion plating, sputtering, etc. It can be carried out by a method such as direct attachment to the surface of the transparent protective layer.
  • the reflecting plate may be used as a reflecting sheet or the like in which a reflecting layer is provided on an appropriate film conforming to the transparent film instead of the method of directly applying to the transparent protective film of the polarizing plate.
  • a reflecting layer is usually made of metal, the usage form in the state where the reflective surface is covered with a transparent protective film, a polarizing plate or the like prevents the decrease in reflectance due to oxidation and, in turn, the point of long lasting initial reflectance. And the point to avoid separately installing a protective layer And the like.
  • the semitransparent polarizing plate can be obtained by setting it as a semitransparent reflecting layer such as a half mirror which reflects and transmits light in the above-mentioned reflective layer.
  • a semi-transmissive polarizing plate is usually provided on the back side of a liquid crystal cell, and when a liquid crystal display device or the like is used in a relatively bright atmosphere, incident light from the viewing side (display side) is reflected to display an image.
  • a built-in light source such as a back light built in on the back side of a semi-transmissive polarizing plate can be used to form a liquid crystal display of a type that displays an image.
  • the transflective type polarizing plate can save energy for using a light source such as a backlight in a bright atmosphere, and can form a liquid crystal display of a type that can be used with a built-in light source even in a relatively bright atmosphere. It is useful. • If a retardation plate is further laminated to the polarizing plate, it becomes an elliptically polarizing plate or a circularly polarizing plate. A retardation plate or the like is used to change linearly polarized light to elliptically polarized light or circularly polarized light, to change elliptically polarized light or circularly polarized light to linearly polarized light, or to change the polarization direction of linearly polarized light.
  • a so-called 1 ⁇ 4 wavelength plate (also referred to as “Z 4 plate”) is used as a retardation plate for changing linearly polarized light to circularly polarized light or changing circularly polarized light to linearly polarized light.
  • a single-wavelength plate (also called a ⁇ / 2 plate) is usually used to change the polarization direction of linearly polarized light.
  • the elliptically polarizing plate is used effectively when compensating (preventing) the coloring (blue or yellow) generated by the birefringence of the liquid crystal layer of the super twisted nematic (STN) liquid crystal display device and displaying black and white without the coloring, etc. Be Furthermore, it is preferable to control the three-dimensional refractive index because it can compensate (prevent) the coloring that occurs when the screen of the liquid crystal display device is viewed from an oblique direction.
  • the circularly polarizing plate is effectively used, for example, in the case of adjusting the color tone of an image of a reflection type liquid crystal display device in which an image is displayed in color, and also has a reflection preventing function.
  • the retardation plate examples include a birefringent film formed by uniaxially or biaxially stretching a polymer material, an alignment film of a liquid crystal polymer, and a film supporting an alignment layer of a liquid crystal polymer.
  • the stretching treatment can be performed by, for example, a roll stretching method, a long gap stretching method, a tenter stretching method, a tubular stretching method, or the like.
  • the stretching ratio is generally about 1.1 to 3 times.
  • the thickness of the retardation plate Although not particularly limited, in general, it is 10 to 200 ⁇ m, preferably 2 to 100 m.
  • polymer material examples include polyvinyl alcohol, polybutyl butyral, polymethyl beryl ether, polyhydroxyechinole acrylate, hydroxye tychnoleanosellose, hydroxypropienolesenoleulose, and methyle nore.
  • Cenolerose polycarbonate, polyarylate, polysulfone, polyethylene terephthalate, polyethylene naphthalate, polyethenoles nolefon, polyphenols olefide, polyphenylene oxide, polyallyl sulfone, polyaryl alcohol, polyamide, polyimid, polyolefin, polychlorinated
  • vinyl and cellulose polymers or their binary and ternary copolymers, graft copolymers, and blends. These polymer materials become oriented products (stretched films) by stretching or the like.
  • liquid crystal polymer for example, various types of main chain type or side chain type, etc. in which a conjugated linear atomic group (mesogen) imparting liquid crystal orientation is introduced into the main chain or side chain of the polymer, etc. can give.
  • the main chain type liquid crystalline polymer include a polyester type liquid crystalline polymer having a structure in which a mesogenic group is bonded by a spacer moiety imparting flexibility, for example, a nematic oriented liquid crystalline polymer, a discotic polymer, a cholesteric polymer, and the like. There are mer etc.
  • the side chain type liquid crystalline polymer include: polysiloxan, polyatalylate, polymetatalylate, or polymalonate as a main chain skeleton, and nematic alignment via a spacer portion consisting of a conjugated atomic group as a side chain Those having a mesogenic moiety consisting of an attaching para-substituted cyclic compound unit may, for example, be mentioned.
  • These liquid crystal polymers are, for example, those obtained by rubbing the surface of a thin film such as polyimido or polyvinyl alcohol formed on a glass plate, those obtained by oblique deposition of silica oxide, etc. This is done by developing the solution and heat treating it.
  • the retardation plate may have an appropriate phase difference according to the purpose of use, for example, for the purpose of compensating for coloration due to birefringence of various wavelength plates and liquid crystal layers or viewing angle etc., and two or more kinds of retardation plates may be used.
  • the retardation plate may be laminated to control optical characteristics such as retardation.
  • the above-mentioned elliptically polarizing plate or reflective elliptically polarizing plate is obtained by laminating a polarizing plate or a reflective polarizing plate and a phase difference plate in an appropriate combination.
  • Such an elliptically polarizing plate or the like may be formed by sequentially and separately laminating them in the manufacturing process of the liquid crystal display device so as to be a combination of a (reflection type) 'polarizing plate and a retardation plate.
  • An optical film such as an elliptically polarizing plate as described above is excellent in stability of quality, workability in lamination and the like, and has an advantage of being able to improve the production efficiency of liquid crystal display devices and the like.
  • the viewing angle compensation film is a film for widening the viewing angle so that the image can be seen relatively clearly even when the screen of the liquid crystal display device is viewed from a slight oblique direction not perpendicular to the screen.
  • a viewing angle compensation retardation plate may be, for example, an alignment film such as a retardation plate or a liquid crystal polymer, or a transparent substrate on which an alignment layer such as a liquid crystal polymer is supported.
  • a normal retardation plate uses a polymer film having birefringence uniaxially stretched in the plane direction
  • a retardation plate used as a viewing angle compensation film is stretched biaxially in the plane direction.
  • a tilt alignment film for example, a heat shrink film is adhered to a polymer film, and the polymer film is subjected to a stretching treatment and / or a shrinkage treatment under the action of the shrinkage force by heating, or a tilt alignment of liquid crystal polymer And so on.
  • the raw material polymer of the retardation plate is the same as the polymer described in the above retardation plate, and prevents coloration due to the change of the viewing angle based on the retardation by the liquid crystal cell, and the viewing angle of good viewing Any appropriate one may be used for the purpose of enlargement and the like.
  • a triacetyl cellulose film was used to support an alignment layer of liquid crystal polymer, in particular, an optically anisotropic layer consisting of a tilt alignment liquid crystal layer of discotic liquid crystal polymer.
  • An optical compensation retardation plate is preferably used.
  • a brightness enhancement film is a film that reflects linearly polarized light of a predetermined polarization axis or circularly polarized light of a predetermined direction when natural light is incident due to reflection from the back side of a liquid crystal display or the like, and transmits other light.
  • a polarizing plate in which a brightness enhancement film is laminated with a polarizing plate A light passing from a light source such as a back light is made incident and transmitted light in a predetermined polarization state is While being obtained, light other than the predetermined polarization state is reflected without being transmitted.
  • the light reflected by the brightness enhancement film surface is further inverted through a reflective layer provided on the rear side thereof to be re-incident on the brightness enhancement film, and a part or all of the light is transmitted as light of a predetermined polarization state.
  • the luminance can be improved by increasing the amount of light that can be used for liquid crystal image display and the like by aiming to reduce the amount of light passing through the brightness enhancement film and supplying polarized light that is difficult to be absorbed by the polarizer. .
  • the brightness enhancement film is such that light having a polarization direction that is absorbed by the polarizer is once reflected by the brightness enhancement film without being incident on the polarizer, and further through a reflection layer provided on the back side thereof.
  • the light is repeatedly inverted and re-incident on the brightness enhancement film, and the polarization direction of the light reflected and inverted between the both transmits only the polarized light whose polarization direction is such that the polarization direction of the light can pass through the polarized light.
  • a diffusion plate can also be provided between the brightness enhancement film and the reflective layer or the like. The light in the polarized state reflected by the brightness enhancement film is directed to the above-mentioned reflective layer etc., but the installed diffuser plate diffuses the passing light uniformly and at the same time cancels the polarized state to make it a non-polarized state.
  • the light in the non-polarized state that is, the natural light state is directed to the reflective layer or the like, reflected through the reflective layer or the like, and transmitted again through the diffusion plate to be re-incident on the brightness improving film.
  • a diffusion plate that restores the original natural light state it is possible to provide a uniform bright screen by simultaneously reducing the brightness of the display screen while maintaining the brightness of the display screen.
  • the first incident light moderately increases the number of reflection repetitions, and it is possible to provide a uniform bright display screen together with the diffusion function of the diffusion plate. Conceivable.
  • the brightness enhancement film examples include multilayer dielectric thin films and refractive index anisotropy.
  • Any suitable material may be used, such as one that reflects one of the left-handed or right-handed circularly polarized light and transmits the other light, such as a supported one.
  • a type of brightness enhancement film that transmits circularly polarized light such as a cholesteric liquid crystal layer, can be made to enter the polarizer as it is, but from the point of suppressing absorption loss, the circularly polarized light is linearly polarized through the retardation plate.
  • be made incident on the polarizing plate is preferably c Note that by using the 1/4 wavelength plate as the retardation plate, can convert circularly polarized light into linearly polarized light.
  • the retardation plate functioning as a 1/4 wavelength plate in a wide wavelength range such as visible light castle is, for example, a retardation layer functioning as a 1/4 wavelength plate for monochromatic light with a wavelength of 550 nm and other phase differences. It can be obtained by a method of superposing a retardation layer exhibiting characteristics, for example, a retardation layer functioning as a 1 Z 2 wavelength plate. Therefore, the retardation plate disposed between the polarizing plate and the brightness enhancement film may be composed of one or two or more retardation layers.
  • the cholesteric liquid crystal film one that reflects circularly polarized light in a wide wavelength range such as a visible light region by forming an arrangement structure in which two or three or more layers are superimposed on each other by combining different reflection wavelengths. It is possible to obtain a broad wavelength range of transmitted circularly polarized light.
  • the polarizing plate may be formed by laminating a polarizing plate and an optical film of two or three or more layers as in the above-mentioned polarization separation type polarizing plate. Therefore, it may be a reflective elliptically polarizing plate or a semitransparent elliptically polarizing plate obtained by combining the above-mentioned reflective polarizing plate or semitransparent polarizing plate with a retardation plate.
  • the optical film in which the above-mentioned optical film is laminated on a polarizing plate can also be formed by a method of sequentially laminating separately in the production process of a liquid crystal display etc.
  • the optical film is excellent in stability of quality and assembly work, and has an advantage of being able to improve the manufacturing process of the liquid crystal display device and the like.
  • An appropriate adhesion means such as an adhesive layer may be used for lamination.
  • Suitable materials for the release film include synthetic resin films such as polyethylene, polypropylene and polyethylene terephthalate, rubber sheets, paper, cloth, nonwoven fabrics, nets, foam sheets, metal foils and laminates thereof. You can use Moreover, in order to enhance the releasability from the adhesive layer, the surface of the release film may be treated with a silicone treatment, a long alkyl treatment, a fluorine treatment or the like as required.
  • the tilt alignment film, the tilt alignment liquid crystal layer, or an optical film using the same is used on the surface side of a surface light source having a reflective layer on the back side in an illumination device used for an image display device or the like.
  • the illumination device preferably has at least one prismatic layer, and more preferably has two or more prismatic array layers in which the arrangement direction of the array intersects with the upper and lower layers.
  • the tilt alignment film according to the present invention can be preferably used to form an image display device such as a liquid crystal display (L C D), an E L display (E L D), a plasma display (P D P) and the like.
  • FIG. 3 shows an embodiment of the image display device of the present invention.
  • the image display apparatus 100 is formed of a member 6 corresponding to a liquid crystal cell, an organic EL light emitter or the like described later, and the inclined alignment film 10 of FIG. 2 disposed on the member 6.
  • the tilt alignment film of the present invention can be preferably used for forming various image display devices such as LCD, for example, a reflection type or a semi-transmission type in which a polarizing plate is disposed on one side or both sides of a liquid crystal cell It can be used for liquid crystal display devices of both transmission and reflection types.
  • the liquid crystal cell substrate may be either a plastic substrate or a glass substrate.
  • the liquid crystal cell that forms the liquid crystal display device is arbitrary, and suitable types such as active matrix drive type represented by thin film transistor type, simple matrix drive type represented by twist nematic type and super part rest nematic type, etc.
  • the liquid crystal cell of the invention may be used.
  • retardation plates and other optical members made of tilt alignment films on both sides of the liquid crystal cell When they are provided, they may be the same or different. Furthermore, when forming a liquid crystal display device, one or two or more layers of appropriate components such as a prism array sheet, a lens array sheet, a light diffusion plate, and a backlight can be disposed at appropriate positions.
  • the organic EL D forms a light emitting body (organic EL light emitting body) by sequentially laminating a transparent electrode, an organic light emitting layer and a metal electrode on a transparent substrate.
  • the organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a trifluoroamine derivative and a light emitting layer made of a fluorescent organic solid such as anthracene, Alternatively, various combinations are known such as a stack of such a light emitting layer and an electron injection layer made of a perylene derivative or a stack of a hole injection layer, a light emitting layer, and an electron injection layer thereof. It is done.
  • the organic EL display In the organic EL display, holes and electrons are injected into the organic light emitting layer by applying a voltage to the transparent electrode and the metal electrode, and the energy generated by the recombination of the holes and the electrons is the fluorescent material. It emits light on the principle that excited fluorescent substance emits light when it returns to the ground state.
  • the mechanism of recombination on the way is similar to that of a general diode, and as can be expected from this, the current and luminous intensity show strong non-linearity associated with rectification against the applied voltage.
  • At least one of the electrodes must be transparent in order to extract light emission in the organic light emitting layer.
  • a transparent electrode formed of a transparent conductor such as indium tin oxide (IT ⁇ ) is used. It is used as an anode.
  • ITZ indium tin oxide
  • metal electrodes such as Mg-Ag, A1-Li are used. '
  • the organic light emitting layer is formed of a very thin film having a thickness of about 10 nm. For this reason, the organic light emitting layer transmits light almost completely, like the transparent electrode. As a result, light is incident from the surface of the transparent substrate when light is not emitted, and light transmitted through the transparent electrode and the organic light emitting layer and reflected by the metal electrode is emitted to the surface side of the transparent substrate again.
  • the display surface of the organic ELD looks like a mirror surface.
  • a transparent electrode is provided on the surface side of the organic light emitting layer which emits light by application of a voltage
  • an organic ELD including an organic EL light emitter comprising a metal electrode on the back side of the organic light emitting layer
  • a polarizing plate is provided on the surface side of the transparent electrode, and a retardation film is formed between the transparent electrode and the polarizing plate. Can be provided.
  • the retardation film such as the tilt alignment film according to the present invention or the polarizing plate has an effect of polarizing light incident from the outside and reflected by the metal electrode, so that the mirror surface of the metal electrode is not viewed from the outside by the polarization action. effective.
  • the mirror surface of the metal electrode can be completely shielded by configuring the retardation film with a 1/4 wavelength plate and adjusting the angle formed by the polarization direction of the polarizing plate and the retardation film to ⁇ 4. That is, for the external light incident on this organic ELD, only the linearly polarized light component is transmitted by the polarizing plate.
  • This linearly polarized light is generally elliptically polarized due to the retardation film, but in particular, when the retardation film is a 1 ⁇ 4 wavelength plate and the polarization direction of the polarizing plate and the retardation film is ⁇ / 4, it is circularly polarized. Become.
  • the circularly polarized light passes through the transparent substrate, the transparent electrode and the organic thin film, is reflected by the metal electrode, passes through the organic thin film, the transparent electrode and the transparent substrate again, and becomes linearly polarized light again with the retardation film. And since this linearly polarized light is orthogonal to the polarization direction of the polarizing plate, it can not transmit through the polarizing plate. As a result, the mirror surface of the metal electrode can be completely shielded.
  • the vertical alignment liquid crystal composition or the photopolymerizable liquid crystal composition is applied on the substrate, the tilt alignment is performed, and the tilt alignment is fixed.
  • a photopolymerizable liquid crystal composition (Pasiocolor LC 242, manufactured by BASF Co., Ltd.) exhibiting a nematic liquid crystal phase and 3 parts by weight of a photopolymerization initiator (Cirva Specialty Chemical Calz, Irgacure 907)
  • the liquid crystal composition was dissolved in 80 parts by weight of cyclohexanone.
  • An adhesive layer made of an acrylic adhesive is formed in advance on a 50 ⁇ m thick triacetylcellulose (hereinafter abbreviated as TAC) layer and the above-mentioned gradient alignment film through the adhesive layer. After bonding to the layer side, peeling was performed at the interface between the vertical alignment substrate and the tilt alignment liquid crystal layer to obtain a tilt alignment film composed of a TAC film, an adhesive layer and a tilt alignment liquid crystal layer.
  • TAC triacetylcellulose
  • a norbornene-based film (Nippon Zeon Co., Ltd.) was used in (Preparation of inclined alignment film).
  • Zeonoor After rubbing treatment with a rayon cloth on a substrate, the liquid crystal coating solution was applied by a bar coater, and dried and oriented at 90 ° C. for 5 minutes. Thereafter, light of 1 mj / cm 2 was irradiated with a metal halide lamp to obtain a tilt alignment film having a tilt alignment liquid crystal layer with a thickness of about 2 im without being transferred to the TAC film.
  • a liquid crystal coating liquid is prepared in the same manner as in Example 1 (preparation of a liquid crystal coating liquid), and then (in preparation of a tilt alignment film), a tilt alignment liquid crystal layer having a thickness of about 2 ⁇ m is prepared in the same manner as in Example 1. Formed.
  • the liquid crystal coating solution is further coated with a bar coater on the inclined alignment liquid crystal layer, dried and oriented at 90 ° C. for 5 minutes, and irradiated with light of 1 mj Z cm 2 with a metal halide lamp.
  • a tilt alignment film having a tilt alignment liquid crystal layer with a total thickness of about 4 ⁇ laminated in two layers was obtained. Thereafter, the resultant was transferred to a TAC film in the same manner as in Example 1 to obtain a tilt-oriented film comprising a TAC film, an adhesive layer and a tilt alignment liquid crystal layer.
  • Example 1 After preparing a liquid crystal coating liquid in the same manner as in (Preparation of liquid crystal coating liquid), (in preparation of inclined alignment film), in the same manner as in Example 2, inclined alignment liquid crystal having a thickness of about 2/1 m. A layer was formed. The liquid crystal coating solution is further coated with a bar coater on the tilt alignment liquid crystal layer, dried and oriented at 90 ° C. for 5 minutes, and irradiated with light of 1 mj / cm 2 with a metal halide lamp. Thus, a tilt alignment film having a total thickness of about 4 ⁇ tilt alignment liquid crystal layer laminated in two layers was obtained. Thereafter, the resultant was transferred to a TAC film in the same manner as in Example 1 to obtain a tilt-oriented laminate consisting of a TAC film, an adhesive layer, and a tilt-oriented hexagonal layer.
  • a liquid crystal coating liquid is prepared in the same manner as in Example 1 (preparation of a liquid crystal coating liquid), and then (in preparation of a tilt alignment film), a tilt alignment liquid crystal layer having a thickness of about 2 ⁇ m is obtained in the same manner as in Example 3. Formed. Further, the liquid crystal coating solution is bar coated on the inclined alignment liquid crystal layer. Coated, dried at 90 ° C for 5 minutes, and oriented, and irradiated with light of 1 mJ / cm 2 with a metal halide lamp to form a two-layer laminated liquid crystal with a total thickness of about 4 ⁇ ⁇ . Inclined orientation with layer '
  • Example 1 After preparing a liquid crystal coating liquid in the same manner as in (Preparation of liquid crystal coating liquid), (in preparation of inclined alignment film), an inclined alignment liquid crystal layer having a thickness of about 2 / zm is prepared in the same manner as in Example 1. Formed. The liquid crystal coating solution is further coated with a bar coater on the tilt alignment liquid crystal layer, dried and oriented at 90 ° C. for 5 minutes, and irradiated with light of 1 mj / cm 2 with a metal halide lamp. As a result, a second film was laminated, and then a third film was laminated in the same manner as the second film, to obtain a film having a tilt alignment liquid crystal layer having a total thickness of about 6 ⁇ m. Thereafter, the resultant was transferred to a TAC film in the same manner as in Example 1 to obtain a tilt alignment film composed of a TAC film, an adhesive layer and a tilt alignment liquid crystal layer.
  • a liquid crystal coating liquid is prepared in the same manner as in Example 1 (Preparation of a liquid crystal coating liquid), and then, in (Formation of a tilt alignment film), a tilt alignment liquid crystal layer having a thickness of about 2 m is prepared in the same manner as in Example 2. It formed.
  • the liquid crystal coating solution is further coated with a bar coater on the tilt alignment liquid crystal layer, dried and oriented at 90 ° C. for 5 minutes, and irradiated with light of 1 mj / cm 2 with a metal halide lamp.
  • a second film was laminated, and then a third film was laminated in the same manner as the second film, to obtain a film having a tilt alignment liquid crystal layer having a total thickness of about 6 ⁇ m.
  • the resultant was transferred to a TAC film in the same manner as in Example 1 to obtain a tilt alignment film comprising a TAC film, an adhesive layer and a tilt alignment liquid crystal layer.
  • a liquid crystal coating liquid is prepared in the same manner as in Example 1 (preparation of liquid crystal coating liquid), and then (in preparation of a tilt alignment film), a tilt alignment liquid crystal layer having a thickness of about 2 ⁇ is obtained in the same manner as in Example 3. Formed.
  • the above liquid crystal coating solution is further coated with a bar coater on the tilt alignment liquid crystal layer, dried and oriented at 90 ° C. for 5 minutes, and a metal halide lamp 1
  • a tilt alignment film was obtained in the same manner as in Example 1 (preparation of a tilt alignment film).
  • a liquid crystal coating liquid was prepared in the same manner as in Example 10 (preparation of liquid crystal coating liquid), and then in the same manner as in Example 2 (preparation of a obliquely oriented film), a obliquely oriented film was obtained. [Example 1 2]
  • Example 10 After preparing a liquid crystal coating liquid in the same manner as in (Preparation of liquid crystal coating liquid), (in preparation of an oblique alignment film)
  • Example 10 Preparation of Liquid Crystal Coating Liquid After Preparation of Obliquely Aligned Film In the same manner as in Example 5, tilt alignment was performed.
  • Example 1 After preparing a liquid crystal coating liquid in the same manner as in (Preparation of liquid crystal coating liquid), in (Preparation of inclined alignment film), rubbing treatment was carried out without providing an alignment layer on the PET film substrate. A liquid crystal coating liquid was directly coated with a bar coater without application, and in the same manner as in Example 1, an optical finnolem comprising a TAC film, an adhesive layer and a liquid crystal alignment layer was obtained.
  • Comparative Example 2 After preparation of a liquid crystal coating liquid in the same manner as in Example 1 (Preparation of liquid crystal coating liquid), polyvinyl alcohol (Nihon Gohsei Co., Ltd.) was formed on a PET substrate in (Preparation of inclined alignment film). After applying a 5% by weight aqueous solution (NH-18, manufactured by Seiyaku Chemical Industry Co., Ltd.), it was dried by heating at 150 ° C. for 30 minutes, and rubbed with a rayon cloth. Thereafter, in the same manner as in Example 1, an optical film composed of a TAC finem, an adhesive layer and a tilt alignment liquid crystal layer was obtained.
  • aqueous solution NH-18, manufactured by Seiyaku Chemical Industry Co., Ltd.
  • Example 1 (Preparation of Liquid Crystal Coating Liquid) A liquid crystal coating liquid is prepared in the same manner as described above, and then an alkoxypropyl propyl methoxysilane (made by Shin-Etsu Chemical Co., Ltd .: KBM5 1) is formed on a PET substrate. After applying 03), the resultant was heated and dried to form an alignment layer having a thickness of about 0.1 / m. An optical film comprising a TAC film, an adhesive layer and a tilt alignment liquid crystal layer was obtained in the same manner as in Example 1 without subjecting this alignment layer to rubbing treatment.
  • the retardation value of the produced inclined orientation film was measured by using an automatic birefringence measuring apparatus (manufactured by Oji Scientific Instruments Co., Ltd .: KOBRA 21 ADH) at a tilt of ⁇ 30 ° in the front and slow axis directions. . Based on the phase difference value, the slope was calculated by the following equation.
  • Japanese Patent Application No. 2 0 0 3 0 6 0 5 3 Japanese Patent Applications filed on 3 March 2004
  • Japanese Patent Application No. 2 0 0 4 0 5 8 9 4 1 Japanese Patent Application No. 2 0 0 4 0 5 8 9 4 1

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

垂直配向性基板上をラビング処理した後、その基板上に垂直配向性液晶組成物または光重合性液晶組成物を含有する液晶塗工液を塗布することにより傾斜配向液晶層および傾斜配向フィルムを形成する。

Description

明細書 傾斜配向フィルムの製造方法、 傾斜配向フィルムおよびそれを用いた画像表示装
く技術分野 >
本発明は、 傾斜配向フィルムの製造方法、 傾斜配向フィルムまたは傾斜配向液 晶層に関する。 本発明の製造方法により製造された傾斜配向フィルムまたは傾斜 配向フィルムから剥離した傾斜配向液晶層は単独で、 または他のフィルムと組み 合わせて、 例えば、 位相差フィルムや視野角補償フィルム等の光学補償フィルム および、 前記光学補償フィルムと偏光板を貼りあわせた楕円偏光フィルム等の光 学フィルムとして使用できる。 これらのフィルムは、 液晶表示装置 (LCD) 、 エレク ト口ルミネッセンス表示装置 (ELD) 、 プラズマディスプレイ (PD) および電界放出ディスプレイ (FED : F i e l d Em i s s i o n D i s p l a y) 等の画像表示装置に用いることができる。 特に本発明の傾斜配向フィ ルムは、 L CDの光学補償に有効である。 く背景技術〉
LCDはパックライ トから照射された光を、 様々な方法により制御することで 画像表示を実現している。 例えば、 光の透過状態を制御する液晶パネルや、 偏光 を選択的に透過させる偏光板、 色表示の再現性および視野角特性を向上させるた めの光学補償フィルム等が用いられている。 この中で光学補償フィルムは、 ポリ マーフィルムを延伸することや、 有機材料をコーティングすることにより、 フィ ルムのもつ光屈折率位相差を制御し、 様々な要望に応じた光学補償を可能にして いる。
例えば、 液晶動作モードが TNモードまたは S TNモードである液晶パネルを 有する LCDは、 そのモード特有の視野角の狭さを補うために、 様々な広視野角 化技術が用いられている。 例えば、 配向分割法、 ハーフ トーン方式などにより画 素を液晶分子の配向方向が異なる複数の領域に分けて平均化する方法、 集光レン ズゃ拡散レンズを用いる方法、 光学補償フィルムを用いる方法、 さらには、 根本 的に I P S、 MVA、 O C Bといった液晶動作モードを改良する方法が知られて いる。 このなかで液晶動作モードを改良する方法と光学補償フィルムを用いる方 法がより簡便であり、 積極的に実用化されている。
なかでも、 光学補償フィルムを用いる方法は、 液晶パネルはそのままで、 偏光 板と一体化した光学補償フィルムを貼りあわせるだけで済むことから、 液晶動作 モードを変更して改良する方法に比べても、 生産工程を変更することなく実現で きるため簡便であり、 低コス トで前記広視野角化を実現できる技術である。 光学 補償フィルム (視野角補償フィルム) にはディスコティック液晶を傾斜させたも のや棒状ネマチック液晶を傾斜させたものが知られている。 いずれの場合も液晶 ポリマーを傾斜配向させている (例えば、 特許文献 1参照。 ) 。 また、 側鎖型液 晶ポリマーを用いた傾斜配向フィルム (例えば、 特許文献 2参照。 ) や、 ホメォ トロピック (垂直) 配向を示すネマチック重合性液晶組成物に光配向膜を用いる ことで、 傾斜配向液晶層を形成する方法 (例えば、 特許文献 3参照。 ) が知られ ている。
ところが、 従来の方法では傾斜度の比較的小さな傾斜配向液晶層しか得られて おらず、 傾斜度の大きな傾斜配向フィルムを得ることは困難なものであった。 ま た一般に、 傾斜配向液晶層の厚みを厚くすることにより傾斜度を上げる方法が知 られているが、 厚くすればするほど配向状態が不安定なものとなり、 制御が難し かった。 このように、 傾斜度の大きな傾斜配向液晶層を安定的に得ることができ ないと、 LCD等の光学補償可能な位相差範囲が制限されてしまう。 したがって、 傾斜度の大きい傾斜配向液晶層からなる傾斜配向フィルムを安定的に得ることが 望まれていた。
特許文献 1 :特開平 8— 5 8 3 8号公報
特許文献 2 :特開 2 0 0 0— 3 2 7 7 2 0号公報
特許文献 3 :特開 2 0 0 2— 2 1 4 6 1 0号公報 発明の開示
本発明では、 傾斜度が大きく、 制御が容易で安定した傾斜配向フィルムの製造 方法および傾斜配向フィルム、 さらにはこの傾斜配向フィルムを用いた画像表示 装置を提供することを目的とする。 本発明のフィルムが得られると、 従来のもの よりも光学補償範囲が広がるため、 視野角補償等の用途に、 より柔軟に対応する ことが可能となる。
本発明者らは前記課題を解決すベく鋭意検討を重ねた結果、 以下に示す方法に より前記目的を達成できることを見出し、 本発明を完成するに至った。
すなわち本発明は、 垂直配向性基板上をラビング処理した後、 その基板上に垂 直配向性液晶組成物または光重合性液晶組成物を含有する液晶塗工液を塗布する ことにより傾斜配向液晶層を形成する、 傾斜配向フィルムの製造方法である。 ま た、 前記傾斜配向液晶層上には、 さらに前記液晶塗工液を塗布することにより、
2層以上、 すなわち複数の傾斜配向液晶層を形成する傾斜配向フィルムの製造方 法としても良い。
さらに本発明は、 前記製造方法により作製した傾斜配向フィルムの傾斜配向液 晶層と、 光学フィルムを、 少なくとも 1層の接着層を介して貼りあわせた後、 前 記傾斜配向フィルムから垂直配向性基板を除去する傾斜配向フィルムの製造方法 に関する。
前記製造方法で得られた傾斜配向フィルムは、 正面位相差を A n d (0) 、 遅 相軸方向に ±30° 傾斜したときの位相差をそれぞれ Δ n d (+ 30) 、 A n d (一 30) としたとき、
( I Δ n d (-30) -A n d (+30) | /Δ n d (0) ) X 100 で算出される傾斜度が、 30以上であることが好ましい。
さらに本発明は、 垂直配向性液晶組成物または光重合性液晶組成物を含有する 傾斜配向液晶層を有するとともに、 正面位相差を A n d (0) 、 遅相軸方向に土 30。 傾斜したときの位相差をそれぞれ Δ n d (+ 30) 、 An d (—30) と したとき、
( I Δ n d (-30) — A n d (+30) | /Δ n d (0) ) X 100 で算出される傾斜度が 3 0以上傾斜配向フィルムに関する。 そして、 前記傾斜配 向液晶層は 2層以上積層したものであっても良い。
本発明は、 前記傾斜配向フィルムを有する光学フィルムおよび、 前記傾斜配向 フィルムあるいは、前記光学フィルムを有する画像表示装置に関するものである。 したがって本発明では、 垂直配向性基板上をラビングした後、 垂直配向性液晶 組成物または光重合性液晶組成物を含有する液晶塗工液を用いることにより傾斜 配向液晶層を形成し、 このような傾斜配向液晶層を有する傾斜配向:
造方法および傾斜配向フィルムを提供することができる。 前記傾斜配向 は、 安定して製造できる製造方法によって製造され、 従来よりも大きな傾斜度を 有するものであるため、 適宜偏光板等の光学フィルムと組み合わせることで、 液 晶表示装置等の画像表示装置に用いることにより視野角補償およびその他の光学 捕償をより高度に、 より効果的に行うことができる。
また本発明は、 垂直配向性液晶組成物または光重合性液晶組成物を含有する傾 斜配向液晶層を形成することにより、 より大きな傾斜度を有する傾斜配向フィル ムを提供する。 さらに、 傾斜配向液晶層を 2層以上積層することにより、 1層の 傾斜配向液晶層で形成した傾斜配向フィルムよりも傾斜度の大きな傾斜配向フィ ルムを安定的に提供する。 このような傾斜配向フィルムは、 適宜偏光板等の光学 フィルムと組み合わせることで、 液晶表示装置等の画像表示装置に用いることに より、 視野角補償およびその他の光学補償をより高度に、 より効果的に行うこと ができる。
<図面の簡単な説明 >
図 1は本発明の傾斜配向フィルムの一実施形態の断面図であり、
図 2は本発明の傾斜配向フィルムの他の実施形態の断面図であり、
図 3は本発明の画像表示装置の一実施形態の断面図である。
<発明を実施するための最良の形態 >
本発明は、 垂直配向性基板をラビングし、 垂直配向性液晶組成物または光重合 性液晶組成物を含有する液晶塗工液を用いて液晶層を形成することにより、 より 大きな傾斜度をもつ傾斜配向が得られることを見出したものである。
本発明による傾斜配向フィルムの構成は、 垂直配向性基板上に垂直配向性液晶 組成物または光重合性液晶組成物を含有する液晶塗工液からなる傾斜配向液晶層 を形成したものであり、 この傾斜配向液晶層の光学特性を有効に利用するために は、 前記の垂直配向性基板を有する傾斜配向フィルムのまま利用しても良いが、 傾斜配向フィルムから垂直配向性基板を剥離して、 傾斜配向液晶層を単独で用い ても良い。 また、 接着層等を利用して、 傾斜配向液晶層を他の光学フィルムに積 層して用いるか、 積層した後に傾斜配向フィルムから垂直配向性基板を剥離して 用いても良い。 なかでも、 耐久性および扱いやすさの観点から、 前記傾斜配向フ イルムのままで用いるか、 他の光学フィルムに積層した後に、 傾斜配向フィルム から垂直配向性基板を剥離して、 前記光学フィルムに傾斜配向液晶層を積層した 状態で用いることが好ましい。
本発明の傾斜配向フィルムが有する傾斜配向液晶層の傾斜配向とは、 ネマチッ ク液晶分子が基板表面の法線方向から 1° 以上 85° 以下の傾斜角を有すること を必要とする。 このときの傾斜度は、 傾斜配向フィルムの法線方向 (正面方向) 及び、 法線方向から遅相軸の方位に沿って ± 30° 傾斜した位置で測定した位相 差値を用いて、 次式により傾斜度を求める。 傾斜度 = ( I Δ n d (- 30) -A n d (+ 30) | / Δ n d (0) ) X I
00
(ただし、 正面位相差値を A n d (0) 、 遅相軸方向に ±30° 傾斜したときの 位相差値をそれぞれ、 An d (+ 30) 、 An d (一 30) とした。 ) 本発明による傾斜度としては、 30以上あれば良いが、 実用上、 傾斜度が大き い方がより広範囲の光学補償を可能とするため、 傾斜度は 50以上であることが 好ましく、 150以上あることがより好ましい。 さらに、 この傾斜配向液晶層を 2層以上積層した場合には、 より傾斜度の大きな傾斜配向フィルムが得られる。 例えば、 傾斜配向液晶層を 2層積層した場合には、 傾斜度 2 5 0以上の傾斜配向 フィルムを得ることができ、 3層積層した場合には、 傾斜度 5 0 0以上の傾斜配 向フィルムを得ることも容易である。 しかしながら、 このような傾斜配向液晶層 は積層する層数が多くなつたり、 層の厚さが厚くなったりすると配向精度が低下 し、 望ましい傾斜配向液晶層を得るための制御も難しくなる。 従って、 実用上の 傾斜度は、 傾斜配向液晶層が 1層からなる場合、 5 0 0以下が好ましく、 2 5 0 以下がより好ましい。 傾斜配向液晶層が 2層以上からなる場合、 1 0 0 0以下が 好ましく、 8 0◦以下がより好ましい。 積層する層数としては 4層以下であるこ とが好ましく、 2層積層することが特に好ましい。 図 1に本発明の傾斜配向フィ ルムの一実施形態を示す。 傾斜配向フィルム 1において、 垂直配向性基板 2上に 2層の傾斜配向液晶層 3が積層されている。
垂直配向性基板としては、 例えば、 ポリマー、 ガラス、 金属等の各種材質から なる基板を用いることができ、 垂直配向性基板をラビングしない状態で、 垂直配 向性液晶組成物が垂直配向するものであれば特に限定されるものではない。 前記 基板のみでは垂直配向性液晶組成物が垂直配向しにくい場合には、 垂直配向性液 晶組成物が垂直配向するような配向層を上記基板上に設け、 基板と配向層を合わ せたものを垂直配向性基板とする。 具体的には、 ノルボルネン構造を有するポリ マーフィルムまたはガラス基板を単独で用いるか、 ガラス質高分子、 シランカツ プリング剤または界面活性剤を含有する配向層をポリマーフィルム上に設けたも のであることが好ましい。 なかでも、 実用的であり且つ安定的であるため、 ノル ポルネン構造を有するポリマーフィルムあるいは、 ガラス質高分子またはシラン 力ップリング剤を含有する配向層をポリマーフィルム上に設けたものが特に好ま しい。 この垂直配向性基板の厚さは、 通常、 1 0 〜 1 0 0 0 μ ιη程度である。
ポリマーフィルムを基板とする場合、 液晶を配向させる温度により、 フィルム の表面状態や耐久性に不具合を生じないものであれば特に限定されるものではな く、 例えば、 ポリエチレンテレフタレート、 ポリエチレンナフタレート等のポリ エステノレ系ポリマー、 ジァセチノレセノレロース、 トリァセチ /レセノレロース等のセノレ ロース系ポリマー、 ポリカーボネート系ポリマー、 ポリメチルメタタリレート等 のァクリル系ポリマー等の透明ポリマーフィルムからなるフィルムが挙げられる。 また、 ポリスチレン、 アクリ ロニトリル ' スチレン共重合体等のスチレン系ポリ マー、 ポリエチレン、 ポリプロピレン、 環状ないしノルボルネン構造を有するポ リオレフイン、 エチレン 'プロピレン共重合体等のォレフィン系ポリマー、 塩化 ビュル系ポリマー、 芳香族ポリアミド等のアミ ド系ポリマー等の透明ポリマーか らなるフィルムも挙げられる。 さらにイミ ド系ポリマー、 スルホン系ポリマー、 ポリエーテノレスノレホン系ポリマー、 ポリエーテノレエーテノレケトン系ポリマー、 ポ リフエ二レンスルフイ ド系ポリマー、 ビュルアルコール系ポリマー、 塩化ビニリ デン系ポリマー、 ビュルブチラール系ポリマー、 ァリレート系ポリマー、 ポリオ キシメチレン系ポリマー、 エポキシ系ポリマーや前記ポリマーのブレンド物等の 透明ポリマーからなるフィルムなども挙げられる。 これらのなかでも水素結合性 が高く、 透光性フィルムとして用いることができるトリァセチルセルロース、 ポ リカーポネート、 ポリエチレンテレフタレートまたは、 ノルポルネンポリオレフ イン等のポリマーフィルムが好ましく用いられる。 また、 基板のみで垂直配向性 を有する基板としては、 例えば、 ノルボルネン構造を有するポリマーフィルムが あげられる。
ノルボルネン構造を有するポリマーフィルムと しては、 例えば、 ゼォノア (商 品名, 日本ゼオン(株)社製) 、ゼォネックス (商品名, 日本ゼオン(株)社製) 、 アートン (商品名, JSR (株) 社製) があり、 光学的にも優れた特性を有する。 このようなプラスチックフィルムは光学異方性が非常に小さいため、 ノルボルネ ン構造を有するポリマーフィノレム上に形成された前記垂直配向性液晶組成物また は光重合性液晶組成物からなる傾斜配向フィルムは、 傾斜配向液晶層を他の光学 フィルムへ転写することなく、そのまま傾斜配向フィルムとして液晶ディスプレ ィの光学補償用途等の光学フィルムとして用いることができる。
金属基板としては、 例えばアルミニウム、 ステンレスといった化学的に安定な ものが好ましく用いられる。 ガラス基板としては、 アルカリガラス、 無アルカリ ガラスの区別に関わらず、 用いることができるが、 光学的な観点から見ると無ァ ルカリガラスであることが好ましい。
前記基板上に設ける配向層としては、 例えば、 ガラス質高分子、 シランカップ リング剤、 界面活性剤またはシリコーンのように、 垂直配向性液晶組成物が垂直 配向するような物質からなる薄膜層を設ける。 また、 これらの物質は基板表面あ るいは基板中に含有していても良く、 垂直配向性液晶組成物中に含有していても 良い。 なかでも本発明では、 ガラス質高分子またはシランカップリング剤を特に 好ましく用いることができる。
ガラス質高分子を含有する配向層を形成する材料としては、 金属アルコキシド、 特に金属シリコンアルコキシドゾルが賞用される。 金属アルコキシドは、 通常ァ ルコール系の溶液として用いられる。 前記溶液は、 基板に塗布された後、 溶媒を 除去し、 加熱によりゾルゲル反応を促進させることで、 基板上で透明ガラス質高 分子膜を形成する。 金属シリ コンアルコキシドゾルからは金属シリコンアルコキ シドゲル層が形成される。 具体的には、 ェチルシリゲートのイソプロピルアルコ ール、 ブタノール 2 %溶液 (コルコート社製: コルコート P ) により形成される ガラス質高分子配向層が例示できる。 上記の金属アルコキシドゾル溶液を、 基板 上に塗工する方法としては、 例えば、 ロールコート法、 グラビアコート法、 スピ ンコート法、 バーコ一ト法などを採用することができる。 溶媒除去や反応を促進 する方法としては、 通常、 室温での乾燥、 乾燥炉での乾燥、 ホットプレート上で の加熱などが利用される。 均一かつ柔軟性のある膜が必要であるため、 配向層の 厚みは、 0 . 0 4〜 2 i m程度が好ましく、 0 . 0 5〜0 . 2 z m程度がより好 ましい。
シラン力ップリング剤としては、 ケィ素および直鎖アルキル基等を有する有機 物から構成される、市販のものを適宜限定されることなく用いることができる力 本発明では、 アタリ口キシ基またはメタクリ口キシ基を有するものが好ましく、 例えば、 アタリロキシプロビルトリメ トキシシランからなるものを特に好ましく 用いることができる。
界面活性剤による処理としては、 両親媒性の界面活性剤を塗布する方法が知ら れている。 例えば、 レシチン、 へキサデシルトリメチルアンモニゥムブロマイド 等の有機溶媒の塗布や、 一塩基性カルボン酸クロム錯体の溶液で基板を処理する 方法などが知られている。 特に本発明では、 イソシァネート基またはシラノール 基と、アタリロイル基またはメタタリロイル基を有する物質が好ましく、中でも、 イソシァネート基とメタタリロイル基または、 シラノール基とァクリロイル基を 有するものが特に好ましい。 本発明では、 レシチンまたは、 メタクリロキシェチ ルイソシァネートを用いることが好ましい。
ラビング処理としては、 従来公知の方法、 例えばレーヨンあるいはコットン等 の細かい繊維からなる布や皮材を卷いたラビング口ールによつて一方向にラビン グする方法を用いることができる。
本発明の傾斜配向液晶層を形成する液晶塗工液としては、 垂直配向性液晶組成 物または、 光重合性液晶組成物を含有するものであり、 垂直配向性液晶組成物中 には光重合性液晶組成物を含むものでも良い。 さらに適宜、 架橋剤、 光重合開始 剤またはシランカップリング剤等の補助剤を配合しても良い。
垂直配向性液晶組成物としては、 ラビングしていない垂直配向性基板上で垂直 配向性を示すものであれば特に限定されるものではなく、 ネマチック液晶性を示 す、 ポリマー、 重合性モノマーあるいはポリマーと重合性モノマーの混合物が適 宜好ましく用いられる。
ラビングしていない垂直配向性基板上で垂直配向する垂直配向性液晶組成物 としては、 例えば、 液晶性フラグメント側鎖を含有するモノマーュュット (a ) と非液晶性フラグメント側鎖を含有するモノマーユニット (b ) を含む側鎖型液 晶ポリマーおょぴ、 この側鎖型液晶ポリマーにネマチック液晶性を示す光重合性 液晶組成物を配合したものが好ましく用いられる。
本発明に好ましく用いられる側鎖型液晶ポリマーは、 垂直配向に用いられる場 合、 一般に知られるような蒸着膜等の垂直配向膜を用いることなく、 垂直配向性 基板上で垂直配向性を示す。 一般に蒸着膜等のような配向膜はラビング処理を行 うと配向規制力を著しく損なうため、 ラビング処理に適さない。 したがって、 本 発明記載のように、 垂直配向性基板上をラビング処理した後に、 垂直配向性を示 す側鎖型液晶ポリマーを含有する垂直配向性液晶組成物を塗布することにより傾 斜配向液晶層を形成することができる。
前記側鎖型液晶ポリマーは、 通常の側鎖型液晶ポリマーが有する液晶性フラグ メント側鎖を含有するモノマーユニット (a ) の他に、 アルキル鎖等を有する非 液晶性フラグメント側鎖を含有するモノマーユニット (b ) を有しており、 非液 晶性フラグメント側鎖を含有するモノマーユニット (b ) の作用により、 垂直配 向膜を用いなくても、 例えば熱処理により液晶状態とし、 ネマチック液晶相を発 現させ、 垂直配向性を示すようになつたものと推察する。
前記モノマーユニット (a ) はネマチック液晶性を有する側鎖を有するもので あり、 例えば、 式 1で表されるモノマーユニットがあげられる。
(式 1 )
+ CHつ一
co2-
Figure imgf000011_0001
(ただし、 R 1は水素原子またはメチル基を、 aは 1〜6の正の整数を、 X 1は一 〇0 2—基または一0〇0—基を、 R 2はシァノ基、炭素数 1〜 6のアルコキシ基、 フルォ口基または炭素数 1〜 6のアルキル基を、 bおよび cは 1または 2の整数 を示す。 ) またモノマーユニット (b ) は、 直鎖上側鎖を有するものであり、 例えば、 以 下の式 2または式 3で表されるモノマーュニットがあげられる。
(式 2 )
Figure imgf000011_0002
(ただし、 R 3は水素原子またはメチル基を、 R 4は炭素数 1〜2 2のアルキル 基、 炭素数 1〜 2 2のフルォロアルキル基を示す。 )
(式 3 )
~^CH2'CH2_0ト R5
d (ただし、 dは 1〜6の正の整数を、 R 5は炭素数 1〜 6のアルキル基を示す。 ) また、 モノマーユニット (a) とモノマーユニット (b) の割合は、 特に限定 されるものではなく、 モノマーユニットの種類によっても異なるが、 モノマーュ ニット (b) の割合が多くなると側鎖型液晶ポリマーが液晶モノ ドメイン配向性 を示さなくなるため、 (b) / { (a ) + (b) } = 0. 0 1〜0. 8 (モル比) とするのが好ましい。 特に 0. 1〜0. 5とするのがより好ましい。
また、 垂直配向性液晶組成物としては、 前記液晶性フラグメント側鎖を含有す るモノマーユニット (a) と脂環族環状構造を有する液晶性フラグメント側鎖を 含有するモノマーユニット (c) を含む側鎖型液晶ポリマーを用いることもでき る。
前記側鎖型液晶ポリマーによれば、 垂直配向性基板上で液晶ポリマーの垂直配 向を実現することができる。 当該側鎖型液晶ポリマーは、 通常の側鎖型液晶ポリ マーが有する液晶性フラグメント側鎮を含有するモノマーュニット(a)の他に、 脂環族環状構造を有する液晶性フラグメント側鎖を含有するモノマーュニッ ト (c) を有しており、 当該モノマーユニット (c) の作用により垂直配向膜を用 いなくても、 例えば熱処理により液晶状態としネマチック液晶相を発現させ、 垂 直配向性を示すようになったと推察する。
前記モノマーユニット (c) はネマチック液晶性を示す側鎖を有するものであ り、 例えば、 以下の式 4で表されるモノマーユニットが挙げられる。
(式 4)
(CH2— C十
CO「 (CH
Figure imgf000012_0001
(ただし、 R 6は水素原子またはメチル基を、 hは 1〜6の正の整数を、 2は- C 0 2—基または一 O C〇一基を、 eと gは 1または 2の整数を、 f は 0〜2の 整数を、 R 7はシァノ基、 炭素数 1〜1 2のアルキル基を示す。 ) また、 モノマーユニット (a ) とモノマーユニット (c ) の割合は、 特に制限 されるものではなく、 モノマーユニッ トの種類によっても異なるが、 モノマーュ ニット (c ) の割合が多くなると側鎖型液晶ポリマーが液晶モノ ドメイン配向性 を示さなくなるため、 (c ) / { ( a ) + ( c ) } = 0 . 0 1〜0 . 8 (モル比) とするのが好ましい。 特に 0 . 1〜0 . 6とするのがより好ましい。
垂直配向性液晶組成物を構成しうる液晶ポリマーは、 前記例示のモノマーュニ ットを有するものに限られず、 また前記例示のモノマーュニットは適宜に組み合 わせることができる。
前記側鎖型液晶ポリマーの重量平均分子量は、 2千〜 1 0万であるのが好まし レ、。 重量平均分子量をかかる範囲に調整することにより液晶ポリマーとしての性 能を発揮する。 側鎖型液晶ポリマーの重量平均分子量が過少では配向層の成膜性 に乏しくなる傾向があるため、 重量平均分子量は 2 . 5千以上とするのがより好 ましい。 一方、 重量平均分子量が過多では液晶としての配向性に乏しくなって均 一な配向状態を形成しにくくなる傾向があるため、 重量平均分子量は 5万以下と するのがより好ましい。
なお、 前記例示の側鎖型液晶ポリマーは、 前記モノマーユニット (a ) 、 モノ マーユニッ ト (b ) 、 モノマーユニット (c ) に対応するアクリル系モノマーま たはメタクリル系モノマーを共重合することにより調整できる。 なお、 モノマー ユニット (a ) 、 モノマーユニット (b ) 、 モノマーユニット (c ) に対応する モノマーは公知の方法により合成できる。 共重合体の調整は、 例えばラジカル重 合方式、 カチオン重合方式、 ァニオン重合方式などの通例のアクリル系モノマー 等による重合方式に準じて行うことができる。 なお、 ラジカル重合方式を適用す る場合、 各種の重合開始剤を用いうるが、 そのうちァゾビスイソプチロニトリル や過酸化ベンゾィルなどの分解温度が高くもなく、 かつ低くもない中間的温度で 分解するものが好ましく用いられる。
本発明では、 前記側鎖型液晶ポリマーは垂直配向性液晶組成物として用いるこ とができるが、 前記側鎖型液晶ポリマーに光重合性液晶組成物を配合した垂直配 向性液晶組成物としてもよい。 また、 前記光重合性液晶組成物は単独で用いるこ ともできる。
光重合性液晶組成物としては、 光重合性官能基として、 例えば、 アタリロイル 基またはメタクリロイル基等の不飽和二重結合を少なくとも 1つ有する液晶性化 合物であり、 ネマチック液晶性のものが好ましく用いられる。 このような光重合 性液晶組成物としては、 前記モノマーユニット (a) となるアタリレートやメタ クリレートを例示できる。光重合性液晶組成物として、耐久性を向上させるには、 光重合性官能基を 2つ以上有するものが好ましい。 このような光重合性液晶組成 物としては例えば、 下記式 5で表される架橋型ネマチック性液晶モノマ一等を例 示できる。
(式 5)
H2C=CR— C02-fCH2)-0-A-X— B— X ~ D— 0~ CH2卄 02C— CR=CH2
式中、 Rは水素原子またはメチル基を、 Aおよび Dはそれぞれ独立して 1, 4 —フエ二レン基または 1, 4シクロへキシレン基を、 Xはそれぞれ独立して一 C OO—基、 一 OCO—基または一 0—基を、 Bは 1, 4フエ二レン基、 1, 4— シクロへキシレン基、 4, 4 'ービフエ-レン基または 4, 4 ' ービシクロへキ シレン基を、 mおよび nはそれぞれ独立して 2〜 6の整数を示す。 ) また、 光重合性液晶組成物としては、 前記化 5における末端の 「H2C = CR — co2—」 を、 ビュルエーテル基またはエポキシ基に置換した化合物や、 「一 (CH2) m―」 およぴ /または 「一 (CH2) n—」 を 「一 (CH2) 3— C*H (C H3) 一 (CH2) 2—」 または 「一 (CH2) 2-C*H (CH3) 一 (CH2) 3 一」 に置換した化合物を例示できる。
前記光重合性液晶組成物は、 熱処理により液晶状態として、 例えば、 ネマチッ ク液晶相を発現させて側鎖型液晶ポリマーとともに垂直配向あるいは傾斜配向さ せることができ、 その後に光重合性液晶組成物を重合または架橋させることによ り得られる液晶フィルムの耐久性を向上させることができる。
前記垂直配向性液晶組成物中の光重合性液晶組成物と側鎖型液晶ポリマーの比 率は、 特に限定されるものではないが、 得られる液晶フィルムの耐久性等を考慮 して適宜に決定され、 通常、 光重合性液晶組成物:側鎖型液晶ポリマー (重量比)
=0. 1 : 1〜 30 : 1程度が好ましく、 特に 0. 5 : 1〜20 : 1が好ましく、 さらには 1 : 1〜: L 0 : 1がより好ましい。
前記光重合性液晶組成物を用いる液晶塗工液中には、 通常、 光重合開始剤を含 有する。 光重合開始剤は各種のものを特に限定することなく使用できる。 光重合 開始剤としては、例えば、チバスぺシャリティケミカルズ社製のィルガキュア( I r g a c u r e) 907、 同 1 84、 同 6 5 1、 同 3 6 9などを例示できる。 光 重合開始剤の添加量は、 光重合性液晶組成物の種類、 垂直配向性液晶組成物の配 合比等を考慮して配向性を乱さない程度に加えられる。 通常、 光重合性液晶組成 物 1 00重量部に対して、 0. 5〜 30重量部程度が好ましい。 特に、 3〜 1 5重 量部が好ましい。
前記垂直配向性液晶組成物または光重合性液晶組成物を含有する液晶塗工液 を、 前記垂直配向性基板上に塗工する際には、 前記液晶組成物を溶媒に溶解した 溶液を用いる溶液塗工方法または液晶性組成物を溶融して溶融塗工する方法が挙 げられるが、 この中でも溶液塗工方法にて垂直配向性基板上に溶液を塗工する方 法が好ましい。
前記溶液を調製する際に用いられる溶媒としては、 側鎖型液晶ポリマー、 光重 合性液晶組成物や垂直配向性基板の種類により異なり一概に言えるものではない カ、 例えば、 クロロホノレム、 ジクロロメタン、 ジクロロェタン、 テトラクロロェ タン、 トリクロロエチレン、 テトラクロロエチレン、 クロ口ベンゼン、 などのノヽ ロゲン化炭化水素類、 フエノール、 パラクロロフエノールなどのフエノール類、 ベンゼン、 トノレェン、 キシレン、 メ トキシベンゼン、 1, 2—ジメ トキシベンゼ ンなどの芳香族炭化水素類、 アセトン、 酢酸ェチル、 t e r t—プチルアルコー ノレ、 グリセリン、 エチレングリコーノレ、 トリエチレングリコーノレ、 エチレングリ コーノレモノメチノレエーテル、 ジエチレングリ コーノレジメチノレエーテノレ、 ェチノレセ ルソノレブ、 ブチルセルソルブ、 2—ピロリ ドン、 N—メチルー 2—ピロリ ドン、 ピリジン、 トリェチルァミン、 テトラヒドロフラン、 ジメチルホルムアミ ド、 ジ メチルァセトアミ ド、ジメチルスルホキシド、ァセトニトリノレ、ブチロニトリル、 二硫化炭素などを用いることができる。 溶液の濃度は、 用いる側鎖型液晶ポリマ 一液晶材料の溶解性や最終的に目的とする液晶性フィルムの膜厚に依存するため 一概には言えないが、 通常 3〜5 0重量%、 好ましくは 7〜 3 0重量%の範囲で ある。
塗工された前記垂直配向性液晶組成物または光重合性液晶組成物を含有する 液晶塗工液から形成した傾斜配向液晶層の厚みは 1〜 1 0 μ m程度とすることが 好ましい。 なお、 特に傾斜配向液晶層の膜厚を精密に制御する必要がある場合に は、 基板に塗工する段階で膜厚がほぼ決まるため、 溶液の濃度、 塗工膜の膜厚な どの制御は特に注意を払う必要がある。
前記溶媒を用いて所望の濃度に調整した垂直配向性液晶組成物または光重合性 液晶組成物を含有した溶液を、 ラビングした垂直配向性基板上に塗工する方法と しては、 例えばロールコート法、 グラビアコート法、 スピンコート法、 バーコ一 ト法などを採用することができる。 塗工後、 溶媒を除去し、 垂直配向性基板上に 垂直配向性液晶組成物または光重合性液晶組成物の層を形成させる。 溶媒の除去 条件は、 特に限定されず、 溶媒がおおむね除去でき、 液晶塗工液の層が流動した り、 流れ落ちたりさえしなければ良い。 通常、 室温での乾燥、 乾燥炉での乾燥、 ホットプレート上での加熱などを利用して溶媒を除去する。
次いで、 垂直配向性基板上に形成された液晶塗工液の層を液晶状態とし、 配向 させる。 例えば、 垂直配向性液晶組成物または光重合性液晶組成物が液晶温度範 囲になるように熱処理を行い、 液晶状態において配向させる。 熱処理方法として は、 上記の乾燥方法と同様の方法で行うことができる。 熱処理温度は、 使用する 液晶塗工液と垂直配向性基板の種類により異なるため一概には言えないが、 通常 6 0〜3 0 0 °C、 好ましくは 7 0〜2 0 0 °Cの範囲において行う。 また熱処理時 間は、 熱処理温度、 および使用する側鎖型液晶ポリマー、 垂直配向性液晶組成物 または、 光重合性液晶組成物や垂直配向性基板の種類によって異なるため一概に は言えないが、 通常 1 0秒〜 2時間、 好ましくは 2 0秒〜 3 0分の範囲で選択さ れる。 1 0秒より短い場合、 配向形成が十分に進行しない恐れがあり、 2時間よ り長い場合、 配向状態が保持されない可能性がある。
熱処理終了後、 配向状態の固定化を行うことが好ましい。 固定化の方法として は、 ガラス転移温度以下への冷却硬化および光照射による重合硬化が挙げられ、 これらの片方、 または両方が垂直配向性液晶組成物または光重合性液晶組成物の 特性に応じて適宜用いられる。 一般に、 冷却硬化はポリマーに対して、 光照射に よる重合硬化は重合性モノマーに対して有効であり、 これらを併用して行うこと が好ましい。
冷却硬化としては、 熱処理後の傾斜配向フィルムを、 熱処理操作における加熱 雰囲気中から、 室温中に出すことによって行うことができる。 また空冷、 水冷な どの強制冷却を行ってもよい。 前記傾斜配向液晶層は垂直配向性液晶組成物また は光重合性液晶組成物のガラス転移温度以下に冷却することにより配向が固定化 される。
特に、 光重合性液晶組成物を用いる場合または、 前記垂直配向性液晶組成物が 光重合性液晶組成物を含有する場合には、 光照射を行い、 光重合性液晶組成物を 重合または架橋させて光重合性液晶組成物を固定化して、 耐久性を向上した傾斜 配向フィルムを得る。 光照射は、 例えば、 紫外線照射により行う。 紫外線照射条 件は、十分に反応を促進するために、不活性気体雰囲気中とすることが好ましい。 通常、 約 8 0〜 1 6 0 m W/ c m 2の照度を有する高圧水銀紫外ランプが代表的 に用いられる。 メタハラィド UVランプや白熱管などの別種ランプを使用するこ ともできる。 なお、 紫外線照射時の液晶層表面温度が液晶温度範囲内になるよう に、 コールドミラー、 水冷その他の冷却処理あるいはライン速度を早くするなど して適宜に調整する必要がある。
このようにして形成される傾斜配向液晶層は 2層以上積層して用いることがで きる。 2層以上積層する場合、 1層ごとの液晶性組成物の種類、 厚みおよび、 傾 斜配向液晶層の形成方法を適宜調整することにより、 傾斜度を設計する際の自由 度を広げることができる。 例えば、 一般に傾斜度の大きな傾斜配向液晶層を得る ためには、 層の厚みを厚くすることが必要であるが、 厚い傾斜配向液晶層を形成 する場合、 均一な乾燥および配向が難しく、 乾燥ムラや配向ムラが起こりやすく なる。 その一方で、 傾斜配向液晶層を 2層以上積層した場合、 同等の厚みからな る 1層で設計した傾斜配向液晶層よりも大きな傾斜度を有する傾斜配向液晶層を 得ることができ、 同等の傾斜度を有する厚みの厚い 1層の傾斜配向液晶層よりも 均一な液晶層を得ることができる。
前記のような 2層以上の傾斜配向液晶層を得るためには、 適宜前記の方法また は従来公知の方法を用いて液晶層を形成すれば良い。 例えば、 形成した傾斜配向 液晶層上に配向膜を形成し、 さらに液晶組成物を塗布する方法、 形成した傾斜配 向液晶層上に直接液晶組成物を塗布し、 液晶層が有する配向規制力を利用して配 向させる方法および、 形成した傾斜配向液晶層上をラビングした後、 液晶組成物 を塗布する方法等が挙げられる。 特に本発明では、 形成した傾斜配向液晶層上に 配向規制力を有するため、 傾斜配向液晶層上に直接液晶層を塗布することが好ま しい。
こうして得られた傾斜配向フィルムはそのまま用いても良いが、 傾斜配向フィ ルムから垂直配向性基板を剥離して得られた傾斜配向液晶層を、 他の光学フィル ムに積層した傾斜配向フィルムとして用いても良い。 また、 傾斜配向フィルムか ら垂直配向性基板を傾斜配向液晶層との界面で剥離した傾斜配向液晶層のみで用 いても良い。
傾斜配向フィルムから垂直配向性基板を剥離して用いる場合、 例えば、 他の光 学フィルムおよぴ、 傾斜配向フィルムの傾斜配向液晶層側のどちらか一方または 両方に接着層を形成し、 傾斜配向フィルムの傾斜配向液晶層と光学フィルムを貼 り合わせる。 その後、 傾斜配向フィルムから垂直配向性基板を傾斜配向液晶層と の界面において剥離し、 光学フィルム、 接着層および傾斜配向液晶層からなる傾 斜配向フィルムとして用いることが好ましい。 このとき、 光学フィルム、 接着層 および傾斜配向液晶層の各層は、 1層または 2層以上であってもよく、 適宜積層 することができる。 図 2に本発明の傾斜配向フィルムの他の実施形態を示す。 本 実施形態の傾斜配向フィルム 1 0は、 図 1の傾斜配向フィルム 1から垂直配向性 基板 2を剥離し、 その両面に接着層 4を介して光学フィルム 5が積層され、 製造 される。
また、 上記光学フィルムが離型フィルムからなり、 傾斜配向液晶層を離型フィ ルム上に転写すると、 傾斜配向液晶層の使用に応じて、 適宜離型フィルムを剥離 して用いることができるため、 傾斜配向液晶層および接着層からなる傾斜配向フ イルムとして用いることができる。
接着層を形成する接着剤または粘着剤には、 必要とする光学特性に影響を及ぼ さない限り、 限定されることなく用いることができる。 例えば、 アクリル系重合 体、 シリコーン系ポリマー、 ポリエステル、 ポリウレタン、 ポリアミ ド、 ポリエ 一テル、 フッ素系やゴム系等のポリマーをベースポリマーとする接着剤または粘 着剤を適宜に選択して用いることができる。 また形態は特に限定されるものでは なく、 溶剤型、 分散型、 エマルシヨン型等の各種接着剤または粘着剤を使用でき る。 特に本発明における光学フィルムでは、 透明性、 耐候性などの点で優れてい るアタリル系溶剤型粘着剤を用いることが好ましい。
接着層の形成は、 適宜な方法で行うことができる。 例えば、 トルエンや酢酸ェ チル等の適宜な溶剤の単独物または混合物からなる溶媒にベースポリマーまたは その組成物を溶解または分散させた 1 0〜4 0重量%程度の粘着剤溶液を調製し、 それを流延方式や塗工方式等の適宜な展開方式で前記液晶層上に直接付設する方 式、 あるいは前記に準じセパレータ上に接着層を形成してそれを前記液晶層上に 移着する方式などが挙げられる。 また、 接着層には、 例えば天然物や合成物の樹 脂類、 特に、 粘着性付与樹脂やガラス繊維、 ガラスビーズ、 金属粉、 その他の無 機粉末等からなる充填剤や顔料、 着色剤、 酸化防止剤などの接着層に添加される 添加剤を含有していてもよい。 また、 微粒子を含有して光拡散性を示す接着層な どであってもよい。
光学フィルムとしては、 画像表示装置に適用する際に、 必要とする光学特性を 有するポリマーフィルム、 液晶フィルム、 または液晶層を 2層以上積層した光学 フィルムであれば、 特に限定されるものではない。 例えば、 偏光板、 光学補償フ イルム (位相差板、 視角補償フィルム等) 、 輝度向上フィルム、 コレステリック 液晶フィルムまたは離型フイルム等があげられる。
偏光板としては、 例えば、 二色性物質含有のポリビエルアルコール系フィルム 等からなる偏光子の片面または両面に、 ビュルアルコール系ポリマー等からなる 適宜な接着層を介して保護シートを接着したものがあげられる。 偏光子の製造方法としては、 例えば、 ポリビニルアルコール系フィルムをヨウ 素で染色した後に延伸し、 ョゥ素を配向させる方法があげられる。
偏光子としては、 特に限定されることなく各種のものを使用できる。 例えば、 ポリ ビュルアルコール系フィルム、 部分ホルマール化ポリ ビニルアルコール系フ イルム、 エチレン ·酢酸ビュル共重合体系部分ケン化フィルム等の親水性高分子 フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、 ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリェン 系配向フィルム等があげられる。 これらのな'かでもポリビニルアルコール系フィ ルムとョゥ素などの二色性物質からなる偏光子が好適である。 これら偏光子の厚 さは特に限定ざれるものではないが、 一般的に、 5〜8 0 μ πι程度である。
偏光子は、 必要に応じてホウ酸や硫酸亜鉛、 塩化亜鉛等を含んでいてもよく、 ヨウ化カリウムなどの水溶液に浸漬することもできる。
前記偏光子の片面または両面に設けられる保護シートを形成する材料として は、 透明性、 機械的強度、 熱安定性、 水分遮蔽性、 等方性などに優れるものが好 ましい。 例えば、 ポリエチレンテレフタレートやポリエチレンナフタレート等の ポリエステノレ系ポリマー、 ジァセチノレセノレロースやトリァセチノレセノレロース等の セルロース系ポリマー、 ポリメチノレメタタリレート等のアタリノレ系ポリマー、 ポ リスチレンやアクリ ロニトリル · スチレン共重合体 (A S樹脂) 等のスチレン系 ポリマー、 ポリカーボネート系ポリマーがあげられる。 また、 ポリエチレン、 ポ リプロピレン、 シクロ系ないしはノルポルネン構造を有するポリオレフイン、 ェ チレン .プロピレン共重合体の如きポリオレフィン系ポリマー、 塩化ビュル系ポ リマー、ナイロンや方向族ポリアミ ド等のアミ ド系ポリマー、ィミ ド系ポリマー、 スノレホン系ポリマー、 ポリエーテノレスノレホン系ポリマー、 ポリエーテノレエーテノレ ケトン系ポリマー、 ポリフエ二レンスノレフイ ド系ポリマー、 ビニノレアノレコーノレ系 ポリマー、 塩化ビ-リデン系ポリマー、 ビニルプチラール系ポリマー、 ァリレー ト系ポリマー、 ポリオキシメチレン系ポリマー、 エポキシ系ポリマー、 または前 記ポリマーのブレンド物なども前記保護シートを形成するポリマーの例としてあ げられる。 保護シートは、 アクリル系、 ウレタン系、 アクリルウレタン系、 ェポ キシ系、 シリコーン系等の熱硬化型、 紫外線硬化型の樹脂の硬化層として形成す ることもできる。 これらの中でもセルロース系ポリマーが好ましい。 また、 保護シートとしては、 特開 200 1— 343 5 2 9号公報 (WO 0 1/ 3 7007) に記載のポリマーフィルム、 例えば、 (A) 側鎖に置換および/ま たは非置換イミ ド基を有する熱可塑性樹脂と、 (B) 側鎖に置換および/または 非置換フ ニル基ならびに二トリル基を有する熱可塑性樹脂を含有する樹脂組成 物が挙げられ、 具体例としてはイソブテンと N—メチルマレイミ ドからなる交互 共重合体とアクリ ロニトリル ' スチレン共重合体とを含有する樹脂組成物のフィ ルムが挙げられる。 フィルムは樹脂組成物の混合押出し品などからなるフィルム を用いることができる。
保護シートの厚さは特に限定されるものではないが、 一般には 500 x m以下 であり、 1〜300 ^umが好ましい。 特に 5〜200 imとするのがより好まし い。 また、 偏光特性や耐久性などの点より、 保護フィルム表面をアルカリなどで ケン化処理することが好ましい。
また、 保護シートはできるだけ色付きがないことが好ましい。 したがって、 R t h = [ (n x + n y) / 2 - n z ] · d (ただし、 n x、 n yはフイノレム平面 内の主屈折率、 n zはフィルム厚方向の屈折率、 dはフィルム厚である) で表さ れるフィルム厚み方向の位相差値が一 90 nm〜~ h 75 nmである透明保護フィ ルムが好ましく用いられる。 かかる厚み方向の位相差値 (R t h) がー 90 nm 〜+ 75 nmのものを使用することにより、 透明保護フィルムに起因する偏光板 の着色 (光学的な着色) をほぼ解消することができる。 厚み方向の位相差値 (R t h) は、 さらに好ましくは一 80〜+ 60 nm、 特に一 70 n n!〜 + 45 n m が好ましい。
前記保護シートは偏光子の両面に貼りあわせる 2枚がそれぞれ異なる特性を もつものを用いてもよい。その特性としては、これに限定されるものではないが、 例えば、 厚み、 材質、 光透過率、 引張り弾性率あるいは光学フィルムの有無等が 挙げられる。
前記偏光板には、 実用に際して各種の加工を施して用いることができる。 その 加工方法についてはこれに特に限定されるものではないが、 例えば、 前記透明保
)偏光子を接着させない面 (前記接着剤塗布層を設けない面) に対し て、 ハードコート処理や反射防止処理、 ステイツキング防止や、 拡散ないしアン チグレアを目的とした表面処理を施したり、 視角補償等を目的とした液晶層を積 層したりする方法があげられる。 また、 反射板や半透過板、 位相差板 (1 2や 1 Z 4等の波長板 ( 板) を含む) 、 視角補償フィルムなどの液晶表示装置等の 形成に用いられる光学フィルムを 1層または 2層以上貼りあわせたものもあげら れる。
前記ハードコート処理は偏光板等のフィルム表面の傷つき防止などを目的に施 されるものであり、 例えばアクリル系、 シリコーン系などの適宜な紫外線硬化型 樹脂による硬度や滑り特性等に優れる硬化皮膜を透明保護フィルムの表面に付加 する方式などにて形成することができる。 反射防止処理は変更板表面での外光の 反射防止を目的に施されるものであり、 従来に準じた反射防止膜などの形成によ り達成することができる。 また、 ステイツキング防止処理は隣接層との密着防止 を目的に施される。
また、 前記アンチグレア処理は偏光板の表面で外光が反射して、 偏光板透過光 の視認を阻害することの防止等を目的に施されるものであり、 例えば、 サンドブ ラスト方式ゃェンボス加工方式による粗面化方式や透明微粒子の配合方式などの 適宜な方式にて透明保護フィルムの表面に微細凹凸構造を付与することにより形 成することができる。前記表面微細凹凸構造の形成に含有させる微粒子としては、 例えば平均粒径が 0 . 5 〜 5 0 μ mのシリ力、アルミナ、チタニア、ジルコニァ、 酸化錫、 酸化インジウム、 酸化カドミウム、 酸化アンチモン等からなる導電性の こともある無機系微粒子、 架橋または未架橋のポリマー等からなる有機系微粒子 などの透明微粒子が用いられる。 表面微細凹凸構造を形成する場合、 微粒子の使 用量は、 表面微細凹凸構造を形成する透明樹脂 1 0 0重量部に対して一般的に 2 〜 7 0重量部程度であり、 5 〜 5 0重量部が好ましい。 アンチグレア層は、 偏光 板透過光を拡散して視角などを拡大するための拡散層 (視角拡大機能など) をか ねるものであってもよい。
なお、 前記反射防止層、 ステイツキング防止層、 拡散層やアンチグレア層等の 光学フィルムは、 透明保護フィルムそのものに設けることができるほか、 別途、 透明保護フィルムとは別体のものとして設けることもできる。 前記偏光子と透明保護フィルムとの接着処理は特に限定されるものではない が、 例えば、 ビニルポリマーからなる接着剤、 あるいは、 ホウ酸やホウ砂、 グル タノレアノレデヒ ドゃメラミン、 シユウ酸などのビニルアルコール系ポリマーの水溶 性架橋剤から少なくともなる接着剤などを介して行うことができる。 この接着層 は、水溶液の塗布乾燥層などとして形成しうる力 その水溶液の調製に際しては、 必要に応じて、 他の添加剤や、 酸等の触媒も配合することができる。
反射型偏光板は、 偏光板に反射層を設けたもので、 視認側 (表示側) からの入 射光を反射させて表示するタイプの液晶表示装置などを形成するためのものであ り、 バックライト等の光源の内臓を省略できて、 液晶表示装置の薄型化を図りや すいなどの利点を有する。 反射型偏光板の形成は、 必要に応じ透明保護層等を介 して偏光板の片面に金属等からなる反射層を付設する方式などの適宜な方式にて 行うことができる。
反射型偏光板の具体例としては、 必要に応じ、 マット処理した透明保護フィル ムの片面に、 アルミニゥム等の反射性金属からなる箔ゃ蒸着膜を付設して反射層 を形成したものなどがあげられる。 また、 前記透明保護フィルムに微粒子を含有 させて表面微細凹凸構造とし、 その上に微細凹凸構造の反射層を有するものなど もあげられる。 前記した微細凹凸構造の反射層は、 入射光を乱反射により拡散さ せて指向性ゃギラギラした見栄えを防止し、 明暗のムラを抑制しうる利点などを 有する。 また微粒子含有の透明保護フィルムは、 入射光おょぴその反射光がそれ を透過する際に拡散されて、 明喑ムラをより抑制しうる利点なども有している。 透明保護フィルムの表面微細凹凸構造を反映させた微細凹凸構造の反射層の形成 は、 例えば真空蒸着方式、 イオンプレーティング方式、 スパッタリング方式等の 蒸着方式ゃメツキ方式などの適宜な方式で、 金属を透明保護層の表面に直接付設 する方法などにより行うことができる。
反射板は、 前記偏光板の透明保護フィルムに直接付与する方式に代えて、 その 透明フィルムに準じた適宜なフィルムに反射層を設けてなる反射シートなどとし て用いることもできる。 なお、 反射層は通常、 金属からなるので、 その反射面が 透明保護フィルムや偏光板等で被覆された状態の使用形態が、 酸化による反射率 の低下防止、 ひいては初期反射率の長期持続の点や、 保護層の別途付設回避の点 などにより好ましい。
なお、 半透過型偏光板は、 上記において反射層で光を反射し、 かつ透過するハ 一フミラー等の半透過型の反射層とすることにより得ることができる。 半透過型 偏光板は通常、 液晶セルの裏側に設けられ、 液晶表示装置などを比較的明るい雰 囲気で使用する場合には、 視認側 (表示側) からの入射光を反射させて画像を表 示し、 比較的暗い雰囲気においては、 半透過型偏光板のバックサイドに内蔵され ているバックライ ト等の内臓光源を使用して画像を表示するタイプの液晶表示装 置などを形成できる。 すなわち、 半透過型偏光板は、 明るい雰囲気下では、 バッ クライ ト等の光源使用のエネルギーを節約でき、 比較的明るい雰囲気下において も内蔵光源を用いて使用できるタイプの液晶表示装置などの形成に有用である。 • 偏光板にさらに位相差板が積層されると、 楕円偏光板または円偏光板となる。 直線偏光を楕円偏光または円偏光に変えたり、 楕円偏光または円偏光を直線偏光 に変えたり、 あるいは直線偏光の偏光方向を変える場合に、 位相差板などが用い られる。特に、直線偏光を円偏光に変えたり、円偏光を直線偏光に変えたりする位 相差板としては、 いわゆる 1 / 4波長板 (え Z 4板ともいう) が用いられる。 1 ノ 2波長板 (λ / 2板ともいう) は、 通常、 直線偏光の偏光方向を変える場合に 用いられる。
楕円偏光板はスーパーツイストネマチック (S T N) 型液晶表示装置の液晶層 の複屈折により生じた着色 (青または黄) を補償 (防止) して、 前記着色のない 白黒表示する場合などに有効に用いられる。 さらに、 三次元の屈折率を制御した ものは、 液晶表示装置の画面を斜め方向から見た際に生じる着色も補償 (防止) することができて好ましい。 円偏光板は、 例えば画像がカラー表示になる反射型 液晶表示装置の画像の色調を整える場合などに有効に用いられ、 また、 反射防止 の機能も有する。
位相差板としては、 高分子素材を一軸または二軸延伸処理してなる複屈折性フ イルム、 液晶ポリマーの配向フィルム、 液晶ポリマーの配向層をフィルムにて支 持したものなどがあげられる。 延伸処理は、 例えばロール延伸法、 長間隙沿延伸 法、 テンター延伸法、 チューブラー延伸法などにより行うことができる。 延伸倍 率は、 一軸延伸の場合には 1 . 1〜3倍程度が一般的である。 位相差板の厚さも 特に制限されないが、 一般的には 1 0〜2 0 0 μ ηι、 好ましくは 2 0〜 1 0 0〃 mである。
前記高分子素材としては、 例えば、 ポリビエルアルコール、 ポリビュルブチラ ール、 ポリメチルビ-ルエーテル、 ポリ ヒ ドロキシェチノレアク リ レート、 ヒ ドロ キシェチノレセノレロース、 ヒ ドロキシプロピノレセノレロース、 メチノレセノレロース、 ポ リカーボネート、ポリアリ レート、ポリスルホン、ポリエチレンテレフタレート、 ポリエチレンナフタレート、 ポリエ一テノレスノレホン、 ポリフエ二レンスノレフアイ ド、 ポリフエ二レンオキサイド、 ポリアリルスルホン、 ポリビュルアルコール、 ポリアミド、 ポリイミ ド、 ポリオレフイン、 ポリ塩化ビニル、 セルロース系重合 体、 またはこれらの二元系、 三元系各種共重合体、 グラフト共重合体、 ブレンド 物などがあげられる。 これら高分子素材は延伸等により配向物 (延伸フィルム) となる。
前記液晶ポリマーとしては、 例えば、 液晶配向性を付与する共役性の直線状原 子団 (メソゲン) がポリマーの主鎖や側鎖に導入された主鎖型や側鎖型の各種の ものなどがあげられる。 主鎖型の液晶性ポリマーの具体例としては、 屈曲性を付 与するスぺーサ部でメソゲン基を結合した構造の、 例えばネマチック配向性のポ リエステル系液晶性ポリマー、 ディスコティックポリマーゃコレステリックポリ マーなどがあげられる。 側鎖型の液晶性ポリマーの具体例としては、 ポリシロキ サン、 ポリアタリレート、 ポリメタタリレートまたはポリマロネートを主鎖骨格 とし、 側鎖として共役性の原子団からなるスぺーサ部を介してネマチック配向付 与性のパラ置換環状化合物単位からなるメソゲン部を有するものなどがあげられ る。 これら液晶ポリマーは、 例えば、 ガラス板上に形成したポリイミ ドゃポリビ エルアルコール等の薄膜の表面をラビング処理したもの、 酸化ケィ素を斜方蒸着 したものなどの配向処理面上に液晶性ポリマ一の溶液を展開して熱処理すること により行われる。
位相差板は、 例えば各種波長板や液晶層の複屈折による着色や視角等の補償を 目的としたものなどの使用目的に応じた適宜な位相差を有するものであってよく、 2種以上の位相差板を積層して位相差等の光学特性を制御したものなどであって あよい。 また上記の楕円偏光板や反射型楕円偏光板は、 偏光板または反射型偏光板と位 相差板を適宜な組み合わせで積層したものである。 かかる楕円偏光板等は、 (反 射型)'偏光板と位相差板の組み合わせとなるようにそれらを液晶表示装置の製造 過程で順次別個に積層することによつても形成しうるが、 前記のごとくあらかじ め楕円偏光板等の光学フィルムとしたものは、 品質の安定性や積層作業性等に優 れて、 液晶表示装置などの製造効率を向上させうる利点がある。
視角補償フィルムは、 液晶表示装置の画面を、 画面に垂直でなくやや斜めの方 向から見た場合でも、 画像が比較的鮮明に見えるように視野角を広げるためのフ イルムである。 このような視角補償位相差板としては、 例えば位相差板、 液晶ポ リマー等の配向フィルムや透明基材上に液晶ポリマー等の配向層を支持したもの などからなる。 通常の位相差板は、 その面方向に一軸延伸された複屈折を有する ポリマーフィルムが用いられるのに対し、 視角補償フィルムと して用いられる位 相差板には、 面方向に二軸に延伸された複屈折を有するポリマーフィルムと力、 面方向に一軸に延伸され、 厚さ方向にも延伸された、 厚さ方向の屈折率を制御し た複屈折を有するポリマーや傾斜配向フィルムのような二方向延伸フィルムなど が用いられる。 傾斜配向フィルムとしては、 例えばポリマーフィルムに熱収縮フ イルムを接着して加熱によるその収縮力の作用下にポリマーフィルムを延伸処理 または/および収縮処理したものや、 液晶ポリマ一を傾斜配向させたものなどが 挙げられる。 位相差板の素材原料ポリマーは、 先の位相差板で説明したポリマー と同様のものが用いられ、 液晶セルによる位相差に基づく視認角の変化による着 色等の防止や良視認の視野角の拡大などを目的とした適宜なものを用いうる。 また、 良視認の広い視野角を達成する点などより、 液晶ポリマーの配向層、 特 にディスコティック液晶ポリマーの傾斜配向液晶層からなる光学的異方性層をト リァセチルセルロースフィルムにて支持した光学補償位相差板が好ましく用いう る。
輝度向上フィルムは、 液晶表示装置などのバックライ トゃ裏側からの反射など により自然光が入射すると所定偏光軸の直線偏光または所定方向の円偏光を反射 し、 他の光は透過する特性を示すもので、 輝度向上フィルムを偏光板と積層した 偏光板は、 バックライト等の光源からの光を入射させて所定偏光状態の透過光を 得るとともに、 前記所定偏光状態以外の光は透過せずに反射される。 この輝度向 上フィルム面で反射した光をさらにその後ろ側に設けられた反射層等を介し反転 させて輝度向上フィルムに再入射させ、 その一部または全部を所定偏光状態の光 として透過させて輝度向上フィルムを透過する光の增量を図るとともに、 偏光子 に吸収させにくい偏光を供給して、 液晶画像表示等に利用しうる光量の増大を図 ることにより輝度を向上させうるものである。 すなわち、 輝度向上フィルムを使 用せずに、 バックライトなどで液晶セルの裏側から偏光子を通して光を入射した 場合には、 偏光子の偏光軸に一致していない偏光方向を有する光は、 ほとんど偏 光子に吸収されてしまい、 偏光子を透過してこない。 すなわち、 用いた偏光子の 特性によっても異なるが、 およそ 5 0 %の光が偏光子に吸収されてしまい、 その 分、 液晶画像表示等に利用しうる光量が減少し、 画像が暗くなる。 輝度向上フィ ルムは、偏光子に吸収されるような偏光方向を有する光を偏光子に入射させずに、 輝度向上フィルムでいったん反射させ、 さらにその後ろ側に設けられた反射層等 を介して反転させて輝度向上フィルムに再入射させることを繰り返し、 この両者 間で反射、 反転している光の偏光方向が偏光巿を通過しうるような偏光方向にな つた偏光のみを透過させて偏光子に供給するので、 ノ ックライ トなどの光を効率 的に液晶表示装置の画像の表示に使用でき、 画面を明るくすることができる。 輝度向上フィルムと上記反射層等の間に拡散板を設けることもできる。 輝度向 上フィルムによつて反射した偏光状態の光は上記反射層等に向かうが、 設置され た拡散板は通過する光を均一に拡散すると同時に偏光状態を解消し、 非偏光状態 とする。 すなわち元の自然光状態にもどす。 この非偏光状態すなわち自然光状態 の光が反射層等に向かい、 反射層等を介して反射して、 拡散板を再び通過して輝 度向上フィルムに再入射することを繰り返す。 元の自然光状態に戻す拡散板を設 けることにより、 表示画面の明るさを維持しつつ、 同時に表示画面の明るさのム ラを少なくし、 均一の明るい画面を提供することができる。 元の自然光状態に戻 す拡散板を設けることにより、 初回の入射光は反射の繰り返し回数が程よく増加 し、 拡散板の拡散機能とあいまって均一の明るい表示画面を提供することができ たものと考えられる。
前記輝度向上フィルムと しては、 例えば誘電体の多層薄膜や屈折率異方性が相 違する薄膜フィルムの多層積層体の如き、 所定偏光軸の直線偏光を透過して他の 光は反射する特性を示すもの、 コレステリック液晶ポリマーの配向フィルムやそ の配向液晶層をフィルム基材上に支持したものの如き、 左回りまたは右回りのい ずれか一方の円偏光を反射して他の光は透過する特性を示すものなどの適宜なも のを用いうる。
したがって、 前記した所定偏光軸の直線偏光を透過させるタイプの輝度向上フ イルムでは、 その透過光をそのまま偏光板に偏光軸をそろえて入射させることに より、 偏光板による吸収ロスを抑制しつつ、 効率よく透過させることができる。 一方、 コレステリック液晶層の如く円偏光を透過するタイプの輝度向上フィルム では、 そのまま偏光子に入射させることもできるが、 吸収ロスを抑制する点より その円偏光を位相差板を介し直線偏光化して偏光板に入射させることが好ましい c なお、 その位相差板として 1 / 4波長板を用いることにより、 円偏光を直線偏光 に変換することができる。
可視光城等の広い波長範囲で 1 / 4波長板として機能する位相差板は、 例えば 波長 5 5 0 n mの単色光に対して 1 / 4波長板として機能する位相差層と他の位 相差特性を示す位相差層、 例えば 1 Z 2波長板として機能する位相差層とを重畳 する方式などにより得ることができる。 したがって、 偏光板と輝度向上フィルム の間に配置する位相差板は、 1層または 2層以上の位相差層からなるものであつ てよい。
なお、 コレステリック液晶フィルムについても、 反射波長が相違するものの組 み合わせにして 2層または 3層以上重畳した配置構造とすることにより、 可視光 領域等の広い波長範囲で円偏光を反射するものを得ることができ、 それに基づい て広い波長範囲の透過円偏光を得ることができる。
また、前記偏光板は、上記の偏光分離型偏光板の如く、偏光板と 2層または 3層 以上の光学フィルムとを積層したものからなっていてもよい。 したがって、 上記 の反射型偏光板や半透過型偏光板と位相差板を組み合わせた反射型楕円偏光板や 半透過型楕円偏光板などであってもよい。
偏光板に前記光学フィルムを積層した光学フィルムは、 液晶表示装置等の製造 過程で順次別個に積層する方式にても形成することができるが、 あらかじめ積層 して光学フィルムとしたものは、 品質の安定性や組立作業等に優れていて液晶表 示装置などの製造工程を向上させうる利点がある。 積層には接着層等の適宜な接 着手段を用いうる。 前記の偏光板と他の光学フィルムの接着に際し、 それらの光 学軸は目的とする位相差特性などに応じて適宜な配置角度とすることができる。 離型フィルムの構成材料としては、 ポリエチレン、 ポリプロピレン、 ポリェチ レンテレフタレート等の合成樹脂フィルム、 ゴムシート、 紙、 布、 不織布、 ネッ ト、 発泡シート、 金属箔およびそれらのラミネート体といった適宜な薄層体を用 いることができる。 また、 離型フィルムの表面には、 接着層からの剥離性を高め るため、 必要に応じてシリコーン処理、 長鎮アルキル処理、 フッ素処理等の処理 が施されていてもよい。
前記傾斜配向フィルムまたは前記傾斜配向液晶層やこれらを用いた光学フィル ムは、 画像表示装置等に用いられる照明装置において、 裏面側に反射層を有する 面光源の表面側に用いられる。 前記照明装置は、 少なくとも一層のプリズムァレ ィ層を有することが好ましく、 アレイの配列方向が上下の層で交差する状態にあ る 2層以上のプリズムアレイ層を有することがより好ましい。
本発明による傾斜配向フィルムは液晶表示装置 (L C D ) 、 E L表示装置 (E L D ) 、 プラズマ表示装置 (P D P ) 等の画像表示装置の形成に好ましく用いる ことができる。 図 3に本発明の画像表示装置の一実施形態を示す。 画像表示装置 1 0 0は、 後述する液晶セルゃ有機 E L発光体等に相当する部材 6及び当該部材 6上に配置された図 2の傾斜配向フィルム 1 0より形成される。
本発明の傾斜配向フィルムは、 L C D等の各種画像表示装置の形成などに好ま しく用いることができ、 例えば、 偏光板を液晶セルの片側あるいは両側に配置し てなる反射型や半透過型、 あるいは透過 ·反射両用型等の液晶表示装置に用いる ことができる。 液晶セル基板は、 プラスチック基板、 ガラス基板のいずれでも良 い。 液晶表示装置を形成する液晶セルは任意であり、 例えば薄膜トランジスタ型 に代表されるアクティブマトリクス駆動型のもの、 ッイストネマチック型ゃスー パーツイス トネマチック型に代表される単純マトリクス駆動型のものなど適宜な タイプの液晶セルを用いたものであって良い。
また、 液晶セルの両側に傾斜配向フィルムからなる位相差板やその他光学部材 を設ける場合、それらは同じものであってもよいし、異なるものであってもよい。 さらに、 液晶表示装置の形成に際しては、 例えばプリズムアレイシートやレンズ アレイシート、 光拡散板やバックライ ト等の適宜な部品を適宜な位置に 1層また は 2層以上配置することができる。
次いで、 有機エレク トロルミネセンス表示装置 (有機 E L D ) について説明す る。 一般に、 有機 E L Dは、 透明基板上に透明電極と有機発光層と金属電極とを 順に積層して発光体(有機 E L発光体) を形成している。 ここで、有機発光層は、 種々の有機薄膜の積層体であり、 例えばトリフエ-ルァミン誘導体等からなる正 孔注入層と、 アントラセン等の蛍光性の有機固体からなる発光層との積層体や、 あるいはこのような発光層とペリレン誘導体等からなる電子注入層の積層体や、 またあるいはこれらの正孔注入層、 発光層、 および電子注入層の積層体等、 種々 の組み合わせを持った構成が知られている。
有機 E L表示装置は、 透明電極と金属電極とに電圧を印加することによって、 有機発光層に正孔と電子とが注入され、 これら正孔と電子との再結合によって生 じるエネルギーが蛍光物質を励起し、 励起された蛍光物質が基底状態に戻るとき に光を放射する、 という原理で発光する。 途中の再結合というメカニズムは、 一 般のダイオードと同様であり、 このことからも予想できるように、 電流と発光強 度は印加電圧に対して整流性に伴う強い非線形性を示す。
有機 E L Dにおいては、 有機発光層での発光を取り出すために、 少なくとも一 方の電極が透明でなくてはならず、 通常、 酸化インジウムスズ ( I T〇) などの 透明導電体で形成した透明電極を陽極として用いている。 一方、 電子注入を容易 にして発光効率を上げるには、 陰極に仕事関数の小さな物質を用いることが重要 で、 通常 M g— A g、 A 1 — L iなどの金属電極を用いている。 '
このような構成の有機 E L Dにおいて、 有機発光層は、 厚さ 1 0 n m程度と極 めて薄い膜で形成されている。 このため、 有機発光層も透明電極と同様、 光をほ ぼ完全に透過する。 その結果、 非発光時に透明基板の表面から入射し、 透明電極 と有機発光層とを透過して金属電極で反射した光が、 再び透明基板の表面側へと 出るため、 外部から視認したとき、 有機 E L Dの表示面が鏡面のように見える。 電圧の印加によって発光する有機発光層の表面側に透明電極を備えるとともに、 有機発光層の裏面側に金属電極を備えてなる有機 E L発光体を含む有機 E L Dに おいて、 透明電極の表面側に偏光板を設けるとともに、 これら透明電極と偏光板 との間に位相差フィルムを設けることができる。
本発明による傾斜配向フィルム等の位相差フィルムまたは偏光板は、 外部から 入射して金属電極で反射してきた光を偏光する作用を有するため、 その偏光作用 によって金属電極の鏡面を外部から視認させないという効果がある。 特に、 位相 差フィルムを 1 / 4波長板で構成し、 かつ偏光板と位相差フィルムとの偏光方向 のなす角を π 4に調整すれば、金属電極の鏡面を完全に遮蔽することができる。 すなわち、 この有機 E L Dに入射する外部光は、 偏光板により直線偏光成分の みが透過する。 この直線偏光は位相差フイルムにより一般に楕円偏光となるが、 特に位相差フィルムが 1 / 4波長板でしかも偏光板と位相差フィルムとの偏光方 向のなす角が π / 4のときには円偏光となる。
この円偏光は、透明基板、透明電極、有機薄膜を透過し、金属電極で反射して、 再び有機薄膜、 透明電極、 透明基板を透過して、 位相差フィルムで再び直線偏光 となる。 そして、 この直線偏光は、 偏光板の偏光方向と直交しているので、 偏光 板を透過できない。 その結果、 金属電極の鏡面を完全に遮蔽することができる。 以上のように本発明では、 垂直配向性基板上をラビングした後、 その基板上に 垂直配向性液晶組成物または光重合性液晶組成物を塗布し、 傾斜配向させ、 その 傾斜配向を固定化することにより、 傾斜度の大きい傾斜配向フィルムあるいは傾 斜配向液晶層を得ることができる。 これは、 垂直配向しやすい前記垂直配向性液 晶組成物と前記垂直配向性基板の組み合わせにおいて、 垂直配向する状態が基本 である場合に、 基板上をラビングしたことによるわずかな力によつて傾斜配向状 態を得ているためであると考えられる。 く実施例 >
以下に実施例によって本発明を具体的に説明するが、 本発明はこれら実施例に よって限定されるものではない。
[実施例 1 ] (液晶塗工液の調製)
ネマチック液晶相を示す光重合性液晶組成物 (BAS F社製、 P a 1 i o c o l o r L C 242) 20重量部および光重合開始剤 (チバスぺシャリティケミ カルズ社製、 ィルガキュア 907) 3重量部 (対重合性液晶組成物) をシクロへ キサノン 80重量部に溶解した。
(傾斜配向フィルムの作製)
ポリエチレンテレフタレート (以下 PETと略記する) フィルム基材上にェチ ルシリケートのイソプロピルアルコーノレ、 ブタノール 2%溶液 (コルコート社 製: コルコート p) を塗布後、 加熱乾燥し、 厚さ約 0. 1 /imの配向層を形成 して垂直配向性基板とした。 この面をレーヨン布でラビング処理を施した後、 上記液晶塗工液をバーコ一ターにて塗布して 90°Cで 5分間乾燥、 配向させた。 その後、 メタルハライドランプにて 1 m J/ cm2の光を照射し、 厚さ約 2 mの傾斜配向液晶層を有する傾斜配向フィルムを得た。 その層と、 あらかじめ 厚さ 50 μ mのトリアセチルセルロース (以下 T ACと略記する) フィルムに アクリル系粘着剤からなる接着層を形成し、 この接着層を介して前記傾斜配向 フィルムを傾斜配向液晶層側に貼りあわせた後に、 垂直配向性基板と傾斜配向 液晶層との界面で剥離して、 TACフィルム、 接着層および傾斜配向液晶層か らなる傾斜配向フィルムを得た。
[実施例 2 ]
実施例 1 (液晶塗工液の調製) と同様にして液晶塗工液を調製した後、 (傾斜 配向フィルムの作成) において、 PETフィルム基材上に 3—アタリロキシプロ ビルトリメ トキシシラン (信越化学工業社製: KBM5 1 03) を塗布後、 加熱 乾燥し、厚さ約 0.1 μΐτιの配向層を形成して垂直配向性基板としたこと以外は、 実施例 1と同様にして傾斜配向フィルムを得た。
[実施例 3 ]
実施例 1 (液晶塗工液の調製) と同様にして液晶塗工液を調製した後、 (傾斜 配向フィルムの作成) において、 ノルボルネン系フィルム (日本ゼオン (株) 社 製:ゼォノア) 基材上にレーヨン布でラビング処理を施した後、 上記液晶塗工液 をバーコ一ターにて塗布し、 9 0 °Cで 5分間乾燥配向させた。 その後、 メタルハ ライ ドランプにて l m j / c m 2の光を照射することにより、 TACフィルムに転 写することなく厚さ約 2 i mの傾斜配向液晶層を有する傾斜配向フィルムを得た。
[実施例 4 ]
実施例 1 (液晶塗工液の調製) と同様にして液晶塗工液を調製した後、 (傾斜 配向フィルムの作成) において、 実施例 1と同様に厚さ約 2 μ mの傾斜配向液晶 層を形成した。 その傾斜配向液晶層上に、 さらに上記液晶塗工液をバーコ一ター にて塗布し、 9 0 °Cで 5分間乾燥および配向させ、 メタルハライドランプにて 1 m j Z c m 2の光を照射することにより、 2層積層した総厚み約 4 μ πιの傾斜配 向液晶層を有する傾斜配向フィルムを得た。 その後、実施例 1と同様にして TAC フィルムに転写し、 TACフィルム、接着層および傾斜配向液晶層からなる傾斜配 向フィルムを得た。
[実施例 5 ]
実施例 1 (液晶塗工液の調製) と同様にして液晶塗工液を調製した後、 (傾斜 配向フィルムの作成) において、 実施例 2と同様に厚さ約 2 /1 mの傾斜配向液晶 層を形成した。 その傾斜配向液晶層上に、 さらに上記液晶塗工液をバーコ一ター にて塗布し、 9 0 °Cで 5分間乾燥および配向させ、 メタルハライドランプにて 1 m j / c m 2の光を照射することにより、 2層積層した総厚み約 4 μ πι ©傾斜配 向液晶層を有する傾斜配向フィルムを得た。 その後、実施例 1と同様にして TAC フィルムに転写し、 TACフィルム、接着層および傾斜配向 ¾晶層からなる傾斜配 向フイノレムを得た。
[実施例 6 ]
実施例 1 (液晶塗工液の調製) と同様にして液晶塗工液を調製した後、 (傾斜 配向フィルムの作成) において、 実施例 3と同様に厚さ約 2 μ mの傾斜配向液晶 層を形成した。 その傾斜配向液晶層上に、 さらに上記液晶塗工液をバーコ一ター にて塗布し、 9 0 °Cで 5分間乾燥および配向させ、 メタルハライドランプにて 1 m J / c m 2の光を照射することにより、 2層積層した総厚み約 4 μ ιηの傾斜配 向液晶層を有する傾斜配向'
[実施例 7 ]
実施例 1 (液晶塗工液の調製) と同様にして液晶塗工液を調製した後、 (傾斜 配向フィルムの作成) において、 実施例 1と同様に厚さ約 2 /z mの傾斜配向液晶 層を形成した。 その傾斜配向液晶層上に、 さらに上記液晶塗工液をバーコ一ター にて塗布し、 9 0 °Cで 5分間乾燥および配向させ、 メタルハライドランプにて 1 m j / c m 2の光を照射することにより、 2層目を積層し、 さらに 2層目と同様 にして 3層目を積層した総厚み約 6 μ mの傾斜配向液晶層を有する傾斜配向フィ ルムを得た。 その後、 実施例 1と同様にして TACフィルムに転写し、 TACフィ ルム、 接着層および傾斜配向液晶層からなる傾斜配向フィルムを得た。
[実施例 8 ]
実施例 1 (液晶塗工液の調製) と同様にして液晶塗工液を調製した後、 (傾斜 配向フィルムの作成) において、 実施例 2と同様に厚さ約 2 mの傾斜配向液晶 層を形成した。 その傾斜配向液晶層上に、 さらに上記液晶塗工液をバーコ一ター にて塗布し、 9 0 °Cで 5分間乾燥および配向させ、 メタルハライドランプにて 1 m j / c m 2の光を照射することにより、 2層目を積層し、 さらに 2層目と同様 にして 3層目を積層した総厚み約 6 μ mの傾斜配向液晶層を有する傾斜配向フィ ルムを得た。 その後、 実施例 1と同様にして TACフィルムに転写し、 TACフィ ルム、 接着層およぴ傾斜配向液晶層からなる傾斜配向フイルムを得た。
[実施例 9 ]
実施例 1 (液晶塗工液の調製) と同様にして液晶塗工液を調製した後、 (傾斜 配向フィルムの作成) において、 実施例 3と同様に厚さ約 2 μ πιの傾斜配向液晶 層を形成した。 その傾斜配向液晶層上に、 さらに上記液晶塗工液をバーコ一ター にて塗布し、 9 0 °Cで 5分間乾燥および配向させ、 メタルハライドランプにて 1 m Jノ cm2の光を照射することにより、 2層目を積層し、 さらに 2層目と同様 にして 3層目を積層した総厚み約 6 μ mの傾斜配向液晶層を有する傾斜配向フィ ルムを得た。 その後、 実施例 1と同様にして TACフィルムに転写し、 TACフィ ルム、 接着層および傾斜配向液晶層力 らなる傾斜配向フィルムを得た。
[実施例 10 ]
(液晶塗工液の調製)
(式 6)
Figure imgf000035_0001
上記式 6 (式中の数字はモノマーユニットのモル%を示し、 便宜的にプロック 体で表示している。 重量平均分子量 5000) に示す側鎖型液晶ポリマー 5重量 部、 ネマチック液晶相を示す光重合性液晶組成物 (BAS F社製、 P a 1 i o c o l o r L C 242) 20重量部および光重合開始剤 (チバスぺシャリティケ ミカルズ社製、 ィルガキュア 907) 3重量部 (対重合性液晶組成物) をシクロ へキサノン 80重量部に溶解した。
前記液晶塗工液を調製した後、 実施例 1 (傾斜配向フィルムの作成) と同様に して傾斜配向フィルムを得た。
[実施例 1 1 ]
実施例 10 (液晶塗工液の調製) と同様にして液晶塗工液を調製した後、 (傾 斜配向フィルムの作成) において、 実施例 2と同様にして傾斜配向フィルムを得 た。 [実施例 1 2]
実施例 10 (液晶塗工液の調製) と同様にして液晶塗工液を調製した後、 (傾 斜配向フィルムの作成) において、 実施例 4と同様にして傾斜配向
た。
[実施例 1 3 ]
実施例 10 (液晶塗工液の調製) と同様にして液晶塗工液を調製した後、 斜配向フィルムの作成) において、 実施例 5と同様にして傾斜配向
た。
[比較例 1 ]
実施例 1 (液晶塗工液の調製) と同様にして液晶塗工液を調製した後、 (傾斜 配向フィルムの作成) において、 PETフィルム基材上に、 配向層を設けず、 ラ ビング処理を施すことなく、 直接、 液晶塗工液をバーコ一ターにて塗布した後、 実施例 1と同様にして TACフィルム、 接着層および傾斜配向液晶層からなる光 学フイノレムを得た。
[比較例 2] 傾得 実施例 1 (液晶塗工液の調製) と同様にして液晶塗工液を調製した後、 (傾斜 配向フィルムの作成) において、 PET基材上にポリビニルアルコール (日本合 成化学工業 (株) 製、 NH— 18) 5重量%水溶液を塗布後、 1 50°Cで 30分 間加熱乾燥し、 レーヨン布を用いてラビング処理を施した。 その後、 実施例 1と 同様にして T ACフイノレム、 接着層および傾斜配向液晶層からなる光学フィルム を得た。
[比較例 3 ]
実施例 1 (液晶塗工液の調製) と同様に液晶塗工液を調製した後、 PET基材 上にァクリロキシプロピルトリメ トキシシラン (信越化学工業社製: KBM5 1 03) を塗布後、 加熱乾燥し、 厚さ約 0. 1 / mの配向層を形成した。 この配向 層上にラビング処理を施すことなく実施例 1と同様にして TACフィルム、 接着 層およぴ傾斜配向液晶層からなる光学フィルムを得た。
(傾斜度の測定)
作成した傾斜配向フィルムの位相差値は、 自動複屈折測定装置 (王子計測機器 (株) 製: KOBRA21 ADH) を用いて、 正面および遅相軸方向に ± 30 ° 傾斜したときの値を測定した。 その位相差値をもとにして、 次式により傾斜度を 求めた。
傾斜度 = ( 1 Δ n d (一 30) -A n d (+ 30) | /Δ n d (0) ) X 100 (ただし、 正面位相差値を A n d (0) 、 遅相軸方向に ±30° 傾斜したときの 位相差値をそれぞれ、 A n d (+ 30) 、 A n d (一 30) とした。 )
前記実施例および比較例の評価結果を表 1に示す。
Figure imgf000037_0001
表 1の結果から明らかなように、 垂直配向性基板上をラビングするとともに、 垂直配向性液晶組成物または光重合性液晶組成物を含有する傾斜配向液晶層を形 成することによって、 傾斜度の大きな傾斜配向フィルムが得られる。 さらに、 前 記傾斜配向液晶層を 2層以上積層することにより、 さらに大きな傾斜度を有する 傾斜配向フィルムを安定的に得ることができる。
なお、 本出願は、 2 0 0 3年 3月 6日出願の日本特許出願 (特願 2 0 0 3— 0 6 0 5 3 4 ) 及び 2 0 0 4年 3月 3日出願の日本特許出願 (特願 2 0 0 4— 0 5 8 9 4 1 ) に基づくものであり、 その內容はここに参照として取り込まれる。

Claims

請求の範囲
1. 垂直配向性基板をラビング処理し、
前記ラビング処理の後、 前記垂直配向性基板上に垂直配向性液晶組成物及び 光重合性液晶組成物のうち少なくとも一つを含有する液晶塗工液を塗布すること により傾斜配向液晶層を形成する工程を有する、 傾斜配向フィルムの製造方法。
2. 前記傾斜配向液晶層形成後、 前記液晶塗工液を塗布することにより複数の傾 斜配向液晶層を形成する、請求の範囲第 1項記載の傾斜配向フィルムの製造方法。
3. 前記傾斜配向液晶層と光学フィルムを、 少なくとも 1層の接着層を介して貼 りあわせる工程及び前記垂直配向性基板を除去する工程を更に有する、 請求の範 囲第 1項記載の傾斜配向フィルムの製造方法。
4. 前記ラビング処理前に、 前記垂直配向性液晶組成物が垂直配向するような配 向層をポリマーフィルムからなる基板上に設けて、 前記垂直配向性基板を製造す る工程を更に有する、 請求の範囲第 1項記載の傾斜配向フィルムの製造方法。
5. 前記傾斜配向フィルムの正面位相差を Δ n d (0) 、 遅相軸方向に ± 30° 傾斜したときの位相差をそれぞれ Δ n d (+ 30) 、 A n d (—30) としたと 含、
( I Δ n d (-30) -An d (+ 30) | /厶 n d (0) ) X 100
で算出される傾斜度が 30以上である、 請求の範囲第 1項記載の製造方法により 得られた傾斜配向フィルム。
6. 前記傾斜度が 50〜 500である、 請求の範囲第 5項記載の傾斜配向フィル ム。
7. 前記傾斜度が 150〜250である、 請求の範囲第 6項記載の傾斜配向フィ ノレムc
8. 前記傾斜配向フィルムの正面位相差を Δ n d (0) 、 遅相軸方向に ± 3 0° 傾斜したときの位相差をそれぞれ厶 n d (+ 30) 、 A n d (— 30) としたと さ、
( | 厶 n d (-30) -A n d (+ 30) | /Δ n d (0) ) X 100 で算出される傾斜度が 30以上である、 請求の範囲第 2項記載の製造方法により 得られた傾斜配向フイルム。
9. 前記傾斜度が 50〜 1000である、 請求の範囲第 8項記載の傾斜配向フィ ノレム。
10. 前記傾斜度が 1 50〜800である、 請求の範囲第 9項記載の傾斜配向フ ィノレム。
11. 前記傾斜配向液晶層の厚みが 1〜 1 0 μ mである、 請求の範囲第 5項記载 の傾斜配向
1 2. 前記傾斜配向液晶層のネマチック液晶分子の傾斜角が、 前記垂直配向性基 板の表面の法線方向から 1° 以上 85。 以下である、 請求の範囲第 5項記載の傾 斜配向'
3. 光学フィルムを更に有する、 請求の範囲第 5項記載の傾斜配向
4. 光学フィルムを更に有する、 請求の範囲第 8項記載の傾斜配向
5. 請求の範囲第 5項記載の傾斜配向フィルムを有する画像表示装置。
6. 請求の範囲第 1 3項記載の傾斜配向フィルムを有する画像表示装置 c
17. 垂直配向性液晶組成物及び光重合性液晶組成物のうち少なくとも一つを含 有する傾斜配向液晶層を有し、正面位相差を Δ n d (0)、遅相軸方向に.土 30° 傾斜したときの位相差をそれぞれ Δ n d (+ 30) 、 A n d (一 30) としたと さ、
( | 厶 n d (— 30) — A n d (+30) | /Δ n d (0) ) X 100 で算出される傾斜度が 30以上である、 傾斜配向フィルム。
18. 複数の前記傾斜配向液晶層が積層された、 請求の範囲第 17項記載の傾斜 配向フィルム。
19. 前記傾斜度が 30〜 500である、 請求の範囲第 17項記載の傾斜配向フ ィノレム。 0. 前記傾斜度が 150〜 250である、 請求の範囲第 19項記載の傾斜配向
21. 前記傾斜度が 50〜 1000である、 請求の範囲第 18項記載の傾斜配向
22. 前記傾斜度が 150〜800である、 請求の範囲第 21項記載の傾斜配向
23. 前記傾斜配向液晶層の厚みが 1〜1 Ο μΐηである、 請求の範囲第 17項記 載の傾斜配向'
24.光学フィルムを更に有する、請求の範囲第 17項記載の傾斜配向フイルム (
25. 請求の範囲第 17項記載の傾斜配向フィルムを有する画像表示装置。
26. 請求の範囲第 24項記載の傾斜配向フィルムを有する画像表示装置
PCT/JP2004/002801 2003-03-06 2004-03-05 傾斜配向フィルムの製造方法、傾斜配向フィルムおよびそれを用いた画像表示装置 WO2004079417A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2004800061847A CN1759332B (zh) 2003-03-06 2004-03-05 制造倾斜取向薄膜的方法,倾斜取向薄膜及使用该膜的图像显示设备
US10/547,527 US7388637B2 (en) 2003-03-06 2004-03-05 Method for producing film with tilted alignment, film with tilted alignment, and image display using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003060534 2003-03-06
JP2003-60534 2003-03-06
JP2004058941A JP2004287416A (ja) 2003-03-06 2004-03-03 傾斜配向フィルムの製造方法、傾斜配向フィルムおよびそれを用いた画像表示装置
JP2004-58941 2004-03-03

Publications (1)

Publication Number Publication Date
WO2004079417A1 true WO2004079417A1 (ja) 2004-09-16

Family

ID=32964909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002801 WO2004079417A1 (ja) 2003-03-06 2004-03-05 傾斜配向フィルムの製造方法、傾斜配向フィルムおよびそれを用いた画像表示装置

Country Status (5)

Country Link
US (1) US7388637B2 (ja)
JP (1) JP2004287416A (ja)
KR (1) KR100818568B1 (ja)
CN (1) CN1759332B (ja)
WO (1) WO2004079417A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7807235B2 (en) * 2005-02-16 2010-10-05 Lg Chem, Ltd. Retardation film having a homeotropic alignment liquid crystal film

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4138681B2 (ja) * 2003-03-06 2008-08-27 日東電工株式会社 ねじれ傾斜配向フィルムの製造方法
JP2004287416A (ja) * 2003-03-06 2004-10-14 Nitto Denko Corp 傾斜配向フィルムの製造方法、傾斜配向フィルムおよびそれを用いた画像表示装置
US7812907B2 (en) * 2005-03-01 2010-10-12 Dai Nippon Printing Co., Ltd. Film with alignment film and optical device
KR101360715B1 (ko) * 2006-03-29 2014-02-07 스미또모 가가꾸 가부시끼가이샤 필름 및 필름의 제조 방법, 그리고 그 이용
KR101310467B1 (ko) * 2006-04-03 2013-09-24 스미또모 가가꾸 가부시끼가이샤 필름 및 필름의 제조 방법, 그리고 그 이용
TWI499835B (zh) * 2007-11-20 2015-09-11 Seiko Epson Corp Liquid crystal device, projector and liquid crystal device
JP5184944B2 (ja) * 2008-04-01 2013-04-17 日東電工株式会社 偏光解消フィルム、その製造方法、光学フィルムおよび液晶表示装置
KR20110043459A (ko) * 2009-10-19 2011-04-27 주식회사 엘지화학 패터닝된 위상차 필름 및 그 제조 방법
US9128321B2 (en) * 2011-07-21 2015-09-08 Fujifilm Corporation Polarizing plate and TN-type liquid crystal display including the same
KR101566077B1 (ko) * 2012-07-25 2015-11-05 제일모직주식회사 광학필름, 그 제조방법 및 이를 포함하는 액정 디스플레이
KR101999242B1 (ko) * 2012-11-20 2019-07-11 제이에스알 가부시끼가이샤 액정 배향제, 위상차 필름 및 위상차 필름의 제조 방법
EP2936244B1 (en) * 2012-12-21 2019-07-10 ROLIC Technologies AG Method for the planar photoalignment
CN104570538B (zh) 2015-01-27 2017-11-24 京东方科技集团股份有限公司 一种显示装置
WO2017061768A1 (ko) * 2015-10-05 2017-04-13 주식회사 엘지화학 광학 필름
JP6769921B2 (ja) * 2017-04-28 2020-10-14 日東電工株式会社 液晶配向フィルムの製造方法
JP7529378B2 (ja) * 2017-08-21 2024-08-06 住友化学株式会社 フレキシブルディスプレイ用光学補償機能付き位相差板
JP7491660B2 (ja) * 2017-08-21 2024-05-28 住友化学株式会社 光学補償機能付き位相差板
US10884309B2 (en) * 2018-08-08 2021-01-05 Facebook Technologies, Llc Transferable thin-film optical devices
KR20210079272A (ko) * 2018-10-26 2021-06-29 도요보 가부시키가이샤 액정 화합물 배향층 전사용 배향 필름

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08338913A (ja) * 1995-04-11 1996-12-24 Fuji Photo Film Co Ltd 光学補償シート、その製造方法及び液晶表示装置並びにカラー液晶表示装置
JPH0961624A (ja) * 1995-08-21 1997-03-07 Fuji Photo Film Co Ltd 光学異方素子およびそれを用いた液晶表示素子
JP2000284286A (ja) * 1999-03-30 2000-10-13 Fuji Photo Film Co Ltd 液晶配向膜、液晶素子および液晶性分子を配向させる方法
JP2002214610A (ja) * 2001-01-16 2002-07-31 Nitto Denko Corp 傾斜配向層の製造方法、傾斜配向フィルムの製造方法および傾斜配向フィルム
JP2002214431A (ja) * 2001-01-16 2002-07-31 Nitto Denko Corp 傾斜配向フィルムおよびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3432595B2 (ja) 1994-06-22 2003-08-04 住友化学工業株式会社 位相差フィルムとその製造方法および液晶表示装置
JP4115630B2 (ja) 1999-05-25 2008-07-09 日東電工株式会社 位相差板および楕円偏光板
JP2002328371A (ja) 2000-04-24 2002-11-15 Nippon Kayaku Co Ltd 液晶性化合物の配向方法
CA2408050A1 (en) * 2000-04-24 2001-11-01 Nippon Kayaku Kabushiki Kaisha Method of aligning liquid-crystalline compound
JP4207180B2 (ja) * 2001-11-15 2009-01-14 日東電工株式会社 位相差板およびその製造方法、光学フィルム
JP2004287416A (ja) * 2003-03-06 2004-10-14 Nitto Denko Corp 傾斜配向フィルムの製造方法、傾斜配向フィルムおよびそれを用いた画像表示装置
JP4138681B2 (ja) * 2003-03-06 2008-08-27 日東電工株式会社 ねじれ傾斜配向フィルムの製造方法
WO2006062352A1 (en) * 2004-12-11 2006-06-15 Lg Chem, Ltd. A homeotropic alignment liquid crystal film without alignment layer and method for preparing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08338913A (ja) * 1995-04-11 1996-12-24 Fuji Photo Film Co Ltd 光学補償シート、その製造方法及び液晶表示装置並びにカラー液晶表示装置
JPH0961624A (ja) * 1995-08-21 1997-03-07 Fuji Photo Film Co Ltd 光学異方素子およびそれを用いた液晶表示素子
JP2000284286A (ja) * 1999-03-30 2000-10-13 Fuji Photo Film Co Ltd 液晶配向膜、液晶素子および液晶性分子を配向させる方法
JP2002214610A (ja) * 2001-01-16 2002-07-31 Nitto Denko Corp 傾斜配向層の製造方法、傾斜配向フィルムの製造方法および傾斜配向フィルム
JP2002214431A (ja) * 2001-01-16 2002-07-31 Nitto Denko Corp 傾斜配向フィルムおよびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7807235B2 (en) * 2005-02-16 2010-10-05 Lg Chem, Ltd. Retardation film having a homeotropic alignment liquid crystal film

Also Published As

Publication number Publication date
CN1759332B (zh) 2010-04-28
US7388637B2 (en) 2008-06-17
JP2004287416A (ja) 2004-10-14
CN1759332A (zh) 2006-04-12
KR100818568B1 (ko) 2008-04-02
US20060257649A1 (en) 2006-11-16
KR20050109957A (ko) 2005-11-22

Similar Documents

Publication Publication Date Title
JP4207180B2 (ja) 位相差板およびその製造方法、光学フィルム
KR100767902B1 (ko) 호메오트로픽 배향 액정 필름의 제조방법, 호메오트로픽배향 액정성 조성물 및 호메오트로픽 배향 액정 필름
JP3923062B2 (ja) 液晶配向フィルムの製造方法、液晶配向フィルム、光学フィルムおよび画像表示装置
WO2004079417A1 (ja) 傾斜配向フィルムの製造方法、傾斜配向フィルムおよびそれを用いた画像表示装置
JP3969637B2 (ja) 液晶配向フィルムの製造方法、液晶配向フィルム、光学フィルムおよび画像表示装置
KR101767854B1 (ko) 위상차판, 타원 편광판 및 그것을 이용한 표시장치
WO2006085454A1 (ja) ホメオトロピック配向液晶フィルム、それを用いた光学フィルムおよび画像表示装置
WO2008059721A1 (fr) Plaque de polarisation elliptique et affichage à cristaux liquides à alignement vertical
CN1447160A (zh) 光学膜片、照明设备和使用它们的图象观测显示器
JP4138681B2 (ja) ねじれ傾斜配向フィルムの製造方法
JP3992969B2 (ja) ホメオトロピック配向液晶フィルム、輝度向上フィルムおよび光学フィルム
JP2005274909A (ja) 位相差板の製造方法およびそれにより製造される位相差板
JP2006133718A (ja) 光配向膜の製造方法、光配向膜、液晶配向フィルムの製造方法、液晶配向フィルム、光学フィルムおよび画像表示装置
JP4531329B2 (ja) 位相差フィルム、輝度向上フィルム、光学フィルムおよび画像表示装置
JP4059683B2 (ja) 複屈折性フィルム、その製造方法、光学フィルムおよび画像表示装置
JP3842102B2 (ja) ホメオトロピック配向液晶フィルムの製造方法、ホメオトロピック配向液晶フィルムおよび光学フィルム
JP2004309904A (ja) 円偏光板、輝度向上フィルムおよび画像表示装置
JP2006201810A (ja) 液晶配向フィルムの製造方法、液晶配向フィルム、光学フィルムおよび画像表示装置
JP2003121852A (ja) ホメオトロピック配向液晶フィルムの製造方法、ホメオトロピック配向液晶フィルムおよび光学フィルム
JP4301554B2 (ja) 光学補償層形成材、光学補償層、光学補償層付偏光板、光学フィルムおよび画像表示装置
JP2006098513A (ja) 液晶配向フィルムの製造方法、液晶配向フィルム、光学フィルムおよび画像表示装置
JP2004133002A (ja) 光学補償層付偏光板、光学フィルムおよび画像表示装置
JP2004347698A (ja) 位相差板およびその製造方法
JP2003262730A (ja) 粘着型光学フィルムおよび画像表示装置
JP2003262726A (ja) 粘着型光学フィルム、光学フィルム用粘着剤組成物および画像表示装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057016351

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048061847

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057016351

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 2006257649

Country of ref document: US

Ref document number: 10547527

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10547527

Country of ref document: US