WO2004079391A1 - Verfahren und vorrichtung zur ansteuerung mindestens einer verzögerungseinrichtung und/oder eines leistungsbestimmenden stellelementes einer fahrzeugantriebseinrichtung - Google Patents

Verfahren und vorrichtung zur ansteuerung mindestens einer verzögerungseinrichtung und/oder eines leistungsbestimmenden stellelementes einer fahrzeugantriebseinrichtung Download PDF

Info

Publication number
WO2004079391A1
WO2004079391A1 PCT/DE2003/003483 DE0303483W WO2004079391A1 WO 2004079391 A1 WO2004079391 A1 WO 2004079391A1 DE 0303483 W DE0303483 W DE 0303483W WO 2004079391 A1 WO2004079391 A1 WO 2004079391A1
Authority
WO
WIPO (PCT)
Prior art keywords
environment detection
detection device
measurement values
deceleration
vehicle
Prior art date
Application number
PCT/DE2003/003483
Other languages
English (en)
French (fr)
Inventor
Bernhard Lucas
Marcus Lorei
Hermann Winner
Martin Heinebrodt
Ulrike Ahlrichs
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP03785488A priority Critical patent/EP1606650A1/de
Priority to US10/541,599 priority patent/US7660668B2/en
Publication of WO2004079391A1 publication Critical patent/WO2004079391A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9318Controlling the steering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/93185Controlling the brakes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9319Controlling the accelerator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/932Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9321Velocity regulation, e.g. cruise control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9323Alternative operation using light waves

Definitions

  • the present invention relates to a device and a method for controlling at least one deceleration device and / or a power-determining control element of a vehicle drive device, in particular in the sense of an automatic longitudinal vehicle control, wherein a first environment detection device is provided that provides longitudinal value-optimized measurement values, a second environment detection device is provided that optimizes object lateral expansion Provides measured values and an evaluation device is provided to which the output signals of the first and the second environment detection device are fed and both the measured values of the first and the second environment detection device are used for object identification. Furthermore, the device and the method are suitable for triggering or carrying out a vehicle deceleration in order to avoid a collision or to reduce the severity of the collision.
  • a motor vehicle radar sensor which detects objects in the course area of a vehicle and controls the vehicle deceleration devices or the vehicle acceleration devices depending on the detected objects. If the radar sensor detects no object or only objects that are not considered vehicles driving ahead are identified, the vehicle speed is regulated in the sense of a constant speed control. However, if the radar sensor detects objects that can be identified as preceding vehicles, the vehicle speed is regulated in the sense of a constant distance control.
  • a three-beam microwave transmitter and receiver is used, which emits a frequency-modulated continuous wave signal and receives reflected partial waves.
  • an object detection system which is provided in particular for motor vehicles, in which the object detection system has several object detectors and / or operating modes with which different detection ranges and / or detection ranges are detected.
  • an object detector a radar sensor
  • This system uses different environment detection devices, with each environment detection system covering a different detection area.
  • Pages 307 to 392 described methods for processing moving images, in particular methods for determining and processing the "optical flow”.
  • the essence of the present invention is to provide a device and a method with which the deceleration devices and / or power-determining control elements of vehicle drive devices can be controlled, in particular in the sense of an automatic longitudinal vehicle control, the vehicle surroundings being detected by environment detection devices in such a way that the environment detection devices are mutually exclusive complete and result in a redundant overall system. According to the invention, this is solved by the features of the independent claims. Advantageous further developments and refinements result from the subclaims.
  • the system according to the invention advantageously provides that the measured values of the second environment detection device are used to verify and / or provide additional information when evaluating the measurement values of the first environment detection device.
  • the measured values of the objects that were recognized by the first environment detection device can be verifiable by means of the measured values provided by the second environment detection device and, if necessary, to assign additional information, such as the lateral object extension, to the objects that were recognized by the first environment detection device can be. It is also possible that the measured values of the objects that were recognized by the second environment detection device can be verified by means of the measurement values provided by the first environment detection device and, if necessary, the objects that were recognized by the second environment detection device, additional information such as the exact object distance or the azimuth angle of the object can be assigned.
  • the measured values of the first environment detection device are used to verify and / or provide additional information when evaluating the measurement values of the second environment detection device. This makes it possible for the measured values of the objects that were recognized by the second environment detection device to be verifiable by means of the measured values provided by the first environment detection device and, if necessary, to assign additional information, such as the exact object distance, to the objects that were recognized by the second environment detection device can be.
  • Environment detection device can be used to reduce the effort for signal processing in the second environment detection device, in particular by limiting the evaluation to certain areas of the detection area of the second environment detection device.
  • the system for vehicle longitudinal control advantageously sees a triggering and / or implementation of an automatic vehicle deceleration in order to avoid collisions and / or reduce the severity of the collision.
  • the automatic vehicle deceleration is triggered and / or carried out as a function of the objects detected by the environment detection devices in the detection area of the environment detection devices.
  • the first environment detection device is a device for transmitting and receiving radar radiation.
  • Devices for transmitting and receiving radar radiation offer the advantage that the functionality is independent of weather and weather influences, and that the distances and relative speeds of the detected objects can be determined very precisely.
  • the first environment detection device is a device for transmitting and receiving lidar radiation.
  • Lidar systems emit coherent, monochromatic light and receive the reflected partial waves. Using lidar systems, it is possible to determine the distance and the relative speed of recognized objects very precisely. If the lidar system is designed as a scanning lidar system, it is also possible to determine the lateral dimension of the object.
  • the second environment detection device is advantageously designed as an image detection system.
  • This image acquisition system can advantageously be designed as a monocular video camera 3 or as a stereo video camera.
  • the provision of a monocular video camera enables the device according to the invention to be implemented inexpensively.
  • the provision of a stereo video camera enables a reliable, three-dimensional evaluation of the recorded stereo image pairs.
  • control element which is provided for a control device of an adaptive distance or speed control of a motor vehicle.
  • a program is stored on the control element, which is executable on a computing device, in particular on a microprocessor or signal processor, and is suitable for executing the method according to the invention.
  • the invention is thus implemented by a program stored on the control element, so that this control element provided with the program represents the invention in the same way as the method, for the execution of which the program is suitable.
  • FIG. 1 shows a schematic representation of the device according to the invention.
  • the figure shows a processing device 1 which receives input signals. These input signals are fed to the processing device 1 by means of an input circuit 2 and processed further.
  • the input signals come from a first environment detection device 3, a second environment detection device 4 and further, optionally provided input variable devices 5.
  • These optional input variable devices 5 are, for example, driver-operated operating elements for controlling the processing device 1, for example in the form of switches, buttons, an accelerator pedal switch or accelerator pedal potentiometer or a brake pedal switch or brake pedal potentiometer, or the input variable devices 5 can be sensors, for example speed sensors or acceleration sensors, which forward determined measured variables to the processing device 1.
  • the first environment detection device 3 is an environment detection device that provides measured values optimized for longitudinal values.
  • longitudinal value-optimized measured values mean measured values that originate from an environment detection device, the distances or Can determine relative speeds to detected objects very precisely, but which only insufficiently or not at all make it possible to determine the lateral extent of the object.
  • the environment detection device which provides measured values optimized for longitudinal values, means, for example, a transmitting and receiving device for radar waves, with which the distances between the transmitting and receiving device, i.e. the spatial extension in the direction of the direction of propagation of the waves, can be determined very precisely.
  • a transmitting and receiving device for lidar radiation which also provides measured values optimized for longitudinal values.
  • measurement values are transmitted from a second environment detection device 4 to the processing device 1.
  • this second environment detection device 4 is a device that provides measured values that are optimized for the lateral extent of the object.
  • An environment detection device that provides object-lateral expansion-optimized means a device that is able to precisely determine the spatial extent of the detected objects perpendicular to the direction of propagation of the measuring waves used.
  • the use of an image acquisition system is provided as the second environment detection device 4, which provides measurement values that are optimized in terms of the lateral extent of the object, and is optionally designed as a monocular video camera or as a stereo video camera.
  • Such image acquisition systems are able to determine the spatial extent of the detected objects perpendicular to the direction of propagation of the measuring waves, but these systems have the disadvantage that distances, i.e.
  • the input variables which are fed to the processing device 1 by means of the input circuit 2, are fed to a calculation device 7 by means of a data exchange device 6, which is designed, for example, as a bus system.
  • the measurement values provided by the first and second environment detection devices 3, 4 are evaluated in the calculation device 7.
  • the objects recognized by the first environment detection device 3 are overlaid with the objects recognized by the second environment detection device 4, and thus the objects recognized by the two environment detection devices 3, 4 are precisely recorded in terms of distance, relative speed and object lateral extent.
  • the second environment detection device 4 which can be designed, for example, as an inexpensive, monocular video camera, one can use optical flow algorithms that are known from the prior art and the known distance and speed information provided by the first environment detection device 3, receive exact values for the object extent. It is important to know the lateral object extension of safety-relevant objects in the course of the vehicle for the correct consideration of all the avoidance options available to the driver when triggering an automatic emergency braking as well as for automatically triggered and automatically performed avoidance maneuvers of the vehicle equipped with the system according to the invention.
  • the first and second environment detection devices 3, 4 should be selected so that the second environment detection device 4 is able to deliver precise values for the object data which the first environment detection device 3 cannot deliver due to the system or can only deliver very imprecisely.
  • the first environment detection device 3 must be able to deliver the object data precisely and reliably, which the second environment detection device 4 cannot deliver due to the system or can only deliver very imprecisely.
  • the provision of a radar device as the first environment detection device 3 and an inexpensive, monocular image detection system as the second environment detection device 4 is a preferred embodiment, since the radar system and monocular video camera ideally complement one another with regard to the accuracy of the object data that can be supplied by the system.
  • the measured values of the longitudinal value-optimized environment detection device are processed in a first evaluation device
  • the measured values of the lateral expansion-optimized environment detection device are processed in a second evaluation device.
  • the measured values of the second, ie the lateral extent-optimized environment detection device can additionally be passed on to the evaluation device provided for the longitudinal value-optimized evaluation.
  • the longitudinal value-optimized measurement values can be verified and / or further object-specific information can be assigned to the recognized objects.
  • the objects detected by means of a radar system can additionally be assigned a value with regard to the lateral dimension of the object, which is not possible or only very inaccurately with a pure radar system, or the signal processing of the radar system kami by restricting the evaluation range to areas in which a video system detects objects has to be simplified.
  • the evaluation device for the lateral expansion-optimized measurement values can also have measurement values of the longitudinal value-optimized ones
  • the Environment detection device is supplied. This also makes it possible to verify the measurement values optimized for lateral expansion and to provide further information.
  • the scaling factor of the image acquisition system optimized for lateral expansion for example, can be determined very well or, if the direction and distance at which the radar system has detected an object, the image processing can be carried out on specific image areas of the vodeo detection area can be restricted in order to save processing time.
  • the two evaluation devices for longitudinal value-optimized and lateral expansion-optimized measured values are implemented in a single evaluation device, in which the lateral expansion-optimized measurement values are additionally fed to the evaluation algorithm for processing the longitudinal value-optimized measurement values and the longitudinal value-optimized measurement values are fed to the algorithm for processing the lateral expansion-optimized measurement values, for example by one Verification of measured values or provision of additional information that cannot be provided due to the system.
  • actuating signals for deceleration devices and acceleration devices of the vehicle are formed in the calculation device 7, which are fed to an output circuit 8 via the data exchange system 6.
  • the output circuit 8 outputs control signals to the deceleration devices 9 of the vehicle which, for example, provide electronically controlled brake controls and which can decelerate the vehicle depending on the objects detected.
  • a control signal is fed via the output circuit 8 to a power-determining control element of a drive device 10, which can be an electrically controlled throttle valve, for example, or an electrically controlled fuel metering device for an injection system.
  • the calculation device 7 delivers output signals which controls an electrically controlled steering system via the data exchange system 6 and the output circuit 8 and can steer the vehicle as a function of detected objects relevant to driving safety and can perform an evasive maneuver in the event of an impending collision with an object in front ,

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

Es wird eine Vorrichtung und ein Verfahren zur Ansteuerung mindestens einer Verzögerungseinrichtung und/oder eines leistungsbestimmenden Stellelementes einer Fahrzeugantriebseinrichtung, insbesondere im Sinne einer automatischen Fahrzeuglängsregelung, vorgeschlagen, wobei eine erste Umfelderfassungseinrichtung vorgesehen ist, die longitudinalwertoptimierte Messwerte bereitstellt, eine zweite Umfelderfassungseinrichtung vorgesehen ist, die objektlateralausdehnungsoptimierte Messwerte bereitstellt und eine Auswerteeinrichtung vorgesehen ist, der die Ausgangssignale der ersten und der zweiten Umfelderfassungseinrichtung zugeführt werden und zur Objektidentifikation sowohl die Messwerte der ersten als auch der zweiten Umfelderfassungseinrichtung herangezogen werden. Weiterhin sind die Vorrichtung und das Verfahren dazu geeignet, eine Fahrzeugverzögerung zur Kollisionsvermeidung bzw. Verminderung der Kollisionsschwere auszulösen bzw. durchzuführen.

Description

Verfahren und Vorrichtung zur Ansteuerung mindestens einer Verzögerungseinrichtung und/oder eines leistungsbestimmenden Stellelementes einer Fahrzeugantriebseinrichtung
Die vorliegende Erfindung betrifft eine Vorrichtung und ein Verfahren zur Ansteuerung mindestens einer Verzögerungseinrichtung und/oder eines leistungsbestimmenden Stellelementes einer Fahrzeugantriebseinrichtung, insbesondere im Sinne einer automatischen Fahrzeuglängsregelung, wobei eine erste Umfelderfassungseinrichtung vorgesehen ist, die longitudinalwertoptimierte Messwerte bereitstellt, eine zweite Umfelderfassungseinrichtung vorgesehen ist, die objektlateralausdehnungsoptimierte Messwerte bereitstellt und eine Auswerteeinrichtung vorgesehen ist, der die Ausgangssignale der ersten und der zweiten Umfelderfassungseinrichtung zugeführt werden und zur Objektidentifikation sowohl die Messwerte der ersten, als auch der zweiten Umfelderfassungseinrichtung herangezogen werden. Weiterhin sind die Vorrichtung und das Verfahren dazu geeignet, eine Fahrzeugverzögerung zur Kollisionsvermeidung bzw. Verminderung der Kollisionsschwere auszulösen bzw. durchzuführen.
Stand der Technik
In der Veröffentlichung "A Small, Light Radar Sensor and Control Unit for Adaptive Cruise Control" von Olbrich, Beez, Lucas, Mayer und Winter, SAE-Paper 980607, veröffentlicht auf der SAE International Congress and Exposition, Detroit, 23. - 26. Februar 1998, ist ein Kraftfahrzeugradarsensor beschrieben, der Objekte im Kursbereich eines Fahrzeugs detektiert und in Abhängigkeit der detektierten Objekte die Fahrzeugverzögerungseinrichtungen bzw. die Fahrzeugbeschleunigungseinrichtungen steuert. Detektiert der Radarsensor kein Objekt oder nur Objekte, die nicht als vorausfahrende Fahrzeuge identifiziert werden, so wird die Fahrzeuggeschwindigkeit im Sinne einer Geschwindigkeitskonstantregelung geregelt. Erkennt der Radarsensor jedoch Objekte, die als vorherfahrende Fahrzeuge identifizierbar sind, so wird die Fahrzeuggeschwindigkeit im Sinne einer Konstantabstandsregelung geregelt. Hierzu wird ein dreistrahliger Mikrowellensender und -empfänger verwendet, der ein frequenzmoduliertes Dauerstrichsignal aussendet und reflektierte Teilwellen empfängt.
Aus der DE 100 11 263 AI ist ein Objektdetektionssystem bekannt, das insbesondere für Kraftfahrzeuge vorgesehen ist, bei dem das Objektdetektionssystem mehrere Objektdetektoren und/oder Betriebsmodi aufweist, mit denen unterschiedliche Detektionsreichweiten und/oder Detektionsbereiche erfasst werden. Hierbei ist bevorzugt ein Objektdetektor, ein Radarsensor, der in einem ersten Betriebsmodus eine relativ große Detektionsreichweite bei einem relativ kleinen Winkelerfassungsbereich und in einem zweiten Betriebsmodus eine relativ dazu geringe Detektionsreichweite bei einem vergrößerten Winkelerfassungsbereich aufweist. Dieses System verwendet verschiedene Umfelderfassungseinrichtungen, wobei jedes Umfelderfassungssystem einen unterschiedlichen Erfassungsbereich abdeckt.
In dem Buch "Handbook of Computer Vision and Applications", Academic Press, Boston, 2000 von Jahne, Haußecker und Geißler sind in dem Kapitel "Motion" auf den
Seiten 307 bis 392 Verfahren zur Verarbeitung bewegter Bilder beschrieben, insbesondere Verfahren zur Ermittlung und Verarbeitung des „optischen Flusses".
Kern und Vorteile der Erfindung
Der Kern der vorliegenden Erfindung ist es, eine Vorrichtung und ein Verfahren anzugeben, mit dem sich die Verzögerungseinrichtungen und/oder leistungsbestimmenden Stellelemente von Fahrzeugantriebseinrichtungen insbesondere im Sinne einer automatischen Fahrzeuglängsregelung ansteuern lassen, wobei das Fahrzeugumfeld durch Umfelderfassungseinrichtungen derart erfasst wird, dass sich die Umfelderfassungseinrichtungen gegenseitig ergänzen und ein redundantes Gesamtsystem ergeben. Erfindungsgemäß wird dieses durch die Merkmale der unabhängigen Ansprüche gelöst. Vorteilhafte Weiterbildungen und Ausgestaltungen ergeben sich aus den Unteransprüchen. Vorteilhafterweise sieht das erfindungsgemäße System vor, dass die Messwerte der zweiten Umfelderfassungseinrichtung zur Verifikation und/oder Bereitstellung zusätzlicher Informationen bei der Auswertung der Messwerte der ersten Umfelderfassungseinrichtung verwendet werden. Hierdurch ist es möglich, dass die Messwerte der Objekte, die durch die erste Umfelderfassungseinrichtung erkannt wurden, mittels den durch die zweite Umfelderfassungseinrichtung bereitgestellten Messwerten verifizierbar sind und gegebenenfalls den Objekten, die mittels der ersten Umfelderfassungseinrichtung erkannt wurden, zusätzliche Informationen wie beispielsweise die laterale Objektausdehnung zugeordnet werden können. Ebenso ist es möglich, dass die Messwerte der Objekte, die durch die zweite Umfelderfassungseinrichtung erkannt wurden, mittels den durch die erste Umfelderfassungseinrichtung bereitgestellten Messwerten verifϊzierbar sind und gegebenenfalls den Objekten, die mittels der zweiten Umfelderfassungseinrichtung erkannt wurden, zusätzliche Informationen wie beispielsweise der genaue Objektabstand oder der Azimutwinkel des Objekt zugeordnet werden können.
Weiterhin ist es vorteilhaft, dass die Messwerte der ersten Umfelderfassungseinrichtung zur Verifikation und/oder Bereitstellung zusätzlicher Informationen bei der Auswertung der Messwerte der zweiten Umfelderfassungseinrichtung verwendet werden. Hierdurch ist es möglich, dass die Messwerte der Objekte, die durch die zweite Umfelderfassungseinrichtung erkannt wurden, mittels den durch die erste Umfelderfassungseinrichtung bereitgestellten Messwerten verifizierbar sind und gegebenenfalls den Objekten, die mittels der zweiten Umfelderfassungseinrichtung erkannt wurden, zusätzliche Informationen wie beispielsweise der exakte Objektabstand zugeordnet werden können.
Vorteilhafterweise kann die Nutzung der Messwerte der ersten
Umfelderfassungseinrichtung zur Reduktion des Aufwands zur Signalverarbeitung in der zweiten Umfelderfassungseinrichtung verwendet werden, insbesondere durch Begrenzung der Auswertung auf bestimmte Gebiete des Detektionsbereichs der zweiten Umfelderfassungsvorrichtung.
Vorteilhafterweise sieht das System zur Fahrzeuglängsregelung eine Auslösung und/oder Durchführung einer automatischen Fahrzeugverzögerung zur Kollisionsvermeidung und/oder Verminderung der Kollisionsschwere vor. Die Auslösung und/oder Durchführung der automatischen Fahrzeugverzögerung erfolgt hierbei in Abhängigkeit der von den Umfelderfassungseinrichtungen detektierten Objekte im Erfassungsbereich der Umfelderfassungseinrichtungen.
Weiterhin ist es vorteilhaft, dass die erste Umfelderfassungseinrichtung eine Einrichtung zum Senden und Empfangen von Radarstrahlung ist. Einrichtungen zum Senden und Empfangen von Radarstrahlung bieten den Vorteil, dass die Funktionsfahigkeit unabhängig von Wetter und Witterungseinflüssen ist, sowie dass die Entfernungen sowie Relativgeschwindigkeiten der erkannten Objekte sehr genau bestimmt werden können.
Weiterhin ist es vorteilhaft, dass die erste Umfelderfassungseinrichtung eine Einrichtung zum Senden und Empfangen von Lidarstrahlung ist. Lidarsysteme senden kohärentes, monochromatisches Licht aus und empfangen die reflektierten Teilwellen. Mittels Lidarsystemen ist es möglich, den Abstand und die Relativgeschwindigkeit erkannter Objekte sehr präzise zu bestimmen. Ist das Lidarsystem als scannendes Lidarsystem ausgebildet, so ist es weiterhin möglich, auch die Objektlateralausdehnung zu bestimmen.
Vorteilhafterweise ist die zweite Umfelderfassungseinrichtung als Bilderfassungssystem ausgeprägt. Dieses Bilderfassungssystem kann vorteilhafterweise als monokulare Videokamera ausgeprägt sein3 oder als Stereo-Videokamera ausgeprägt sein. Das Vorsehen einer monokularen Videokamera ermöglicht eine kostengünstige Realisierung der erfindungsgemäßen Vorrichtung. Das Vorsehen einer Stereo-Videokamera ermöglicht eine zuverlässige, dreidimensionale Auswertung der aufgenommenen Stereo-Bildpaare.
Von besonderer Bedeutung ist die Realisierung des erfindungsgemäßen Verfahrens in der Form eines Steuerelements, das für ein Steuergerät einer adaptiven Abstands- bzw. Geschwindigkeitsregelung eines Kraftfahrzeugs vorgesehen ist. Dabei ist auf dem Steuerelement ein Programm gespeichert, das auf einem Rechengerät, insbesondere auf einem Mikroprozessor oder Signalprozessor, ablauffähig und zur Ausführung des erfindungsgemäßen Verfahrens geeignet ist. In diesem Fall wird also die Erfindung durch ein auf dem Steuerelement abgespeichertes Programm realisiert, so dass dieses mit dem Programm versehene Steuerelement in gleicher Weise die Erfindung darstellt, wie das Verfahren, zu dessen Ausführung das Programm geeignet ist. Als Steuerelement kann insbesondere ein elektrisches Speichermedium zur Anwendung kommen, beispielsweise ein Read-Only-Memory.
Weitere Merkmale, Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, die in der Figur der Zeichnung dargestellt ist. Dabei bilden alle beschriebenen oder dargestellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der Erfindung, unabhängig von ihrer Zusammenfassung in den Patentansprüchen oder deren Rückbeziehung sowie unabhängig von ihrer Formulierung bzw. Darstellung in der Beschreibung bzw. in den Zeichnungen.
Zeichnungen
Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung erläutert. Die Figur zeigt eine schematische Darstellung der erfindungsgemäßen Vorrichtung.
Beschreibung des Ausführungsbeispiels
In der Figur ist eine Verarbeitungseinrichtung 1 dargestellt, die Eingangssignale erhält. Diese Eingangssignale werden mittels einer Eingangsschaltung 2 der Verarbeitungseinrichtung 1 zugeführt und weiterverarbeitet. Die Eingangssignale stammen von einer ersten Umfelderfassungseinrichtung 3, einer zweiten Umfelderfassungseinrichtung 4 sowie weiteren, optional vorsehbaren Eingangsgrößeneinrichtungen 5. Diese optionalen Eingangsgrößeneinrichtungen 5 sind beispielsweise fahrerbetätigbare Bedienelemente zur Steuerung der Verarbeitungseinrichtung 1, beispielsweise in Form von Schaltern, Knöpfen, eines Gaspedalschalters oder Gaspedalpotentiometers oder eines Bremspedalschalters oder Bremspedalpotentiometers oder aber es kann sich bei den Eingangsgrößeneinrichtungen 5 um Sensoren handeln, beispielsweise Geschwindigkeitssensoren oder Beschleunigungssensoren, die ermittelte Messgrößen an die Verarbeitungseinrichtung 1 weitergeben. Die erste Umfelderfassungseinrichtung 3 ist hierbei eine Umfelderfassungseinrichtung, die longitudinalwertoptirnierte Messwerte bereitstellt. Unter longitudinalwertoptimierten Messwerten sind hierbei Messwerte gemeint, die von einer Umfelderfassungseinrichtung stammen, die Abstände oder Relativgeschwindigkeiten zu detektierten Objekten sehr genau bestimmen können, jedoch die eine Bestimmung der Objektlateralausdehnung nur ungenügend oder überhaupt nicht ermöglichen. Unter der Umfelderfassungseinrichtung, die longitudinalwertoptirnierte Messwerte bereitstellt, ist beispielsweise eine Sende- und Empfangseinrichtung für Radarwellen gemeint, womit sich die Abstände zwischen der Sende- und Empfangseinrichtung, also die räumliche Ausdehnung in Richtung der Ausbreitungsrichtung der Wellen, sehr exakt bestimmen lassen. Neben diesem Radarsystem oder anstatt dieses Radarsystems ist es auch denkbar, eine Sende- und Empfangseinrichtung für Lidarstrahlung vorzusehen, die ebenfalls longitudinalwertoptirnierte Messwerte bereitstellt. Weiterhin werden von einer zweiten Umfelderfassungseinrichtung 4 Messwerte an die Verarbeitungseinrichtung 1 übertragen. Diese zweite Umfelderfassungseinrichtung 4 ist erfindungsgemäß eine Einrichtung, die objektlateralausdehnungsoptimierte Messwerte bereitstellt. Unter einer Umfelderfassungseinrichtung, die objektlateralausdehnungsoptimierte bereitstellt, ist eine Einrichtung zu verstehen, die in der Lage ist, die räumliche Ausdehnung der detektierten Objekte senkrecht zur Ausbreitungsrichtung der verwendeten Messwellen präzise zu ermitteln. Als zweite Umfelderfassungseinrichtung 4, die objektlateralausdehnungsoptimierte Messwerte bereitstellt, ist beispielsweise die Verwendung eines Bilderfassungssystems vorgesehen, das wahlweise als monokulare Videokamera oder als Stereo-Videokamera ausgebildet ist. Derartige Bilderfassungssysteme sind in der Lage, die räumliche Ausdehnung der erkannten Objekte senkrecht zur Ausbreitungsrichtung der Messwellen zu ermitteln, jedoch haben diese Systeme den Nachteil, dass Entfernungen, also Abstände in Ausbreitungsrichtung der Messwellen nur sehr ungenau oder gar nicht angegeben werden können. Die Eingangsgrößen, die der Verarbeitungseinrichtung 1 mittels der Eingangsschaltung 2 zugeführt werden, werden mittels einer Datenaustauscheinrichtung 6, die beispielsweise als Bus-System ausgebildet ist, einer Berechnungseinrichtung 7 zugeführt. In der Berechnungseinrichtung 7 werden die Messwerte, die die erste und zweite Umfelderfassungseinrichtung 3, 4 bereitstellen, ausgewertet. Hierzu werden die von der ersten Umfelderfassungseinrichtung 3 erkannten Objekte mit den von der zweiten Umfelderfassungseinrichtung 4 erkannten Objekten übereinandergelegt und somit die von beiden Umfelderfassungseinrichtungen 3, 4 erkannten Objekte sowohl in Abstand, Relativgeschwindigkeit und Objektlateralausdehnung präzise erfasst. Durch dieses Zusammenführen der Messergebnisse von Objekten, die sowohl von den longitudinalwertoptimierten als auch von den objektlateralausdehnungsoptimierten Umfelderfassungseinrichtungen 3, 4 erkannt wurden, erreicht man zum einen sehr präzise Messwerte und zum anderen erhält man weiterhin eine Redundanz hinsichtlich von Objekten, die bezüglich der Fahrsicherheit der automatischen Fahrzeuglängsregelung hochrelevant sind. Insbesondere beim Vorsehen einer automatischen Notbremsfunktion, bei der eine automatische Fahrzeugverzögerung zur Kollisionsvermeidung und/oder Verminderung der Kollisionsschwere ausgelöst und/oder durchgeführt wird, ist es notwendig, dass die erfassten Objekte sicher detektierbar sind und die Abstände und Lateralausdehnungen der Objekte präzise vermessen werden können. Aus den Daten der ersten Umfelderfassungseinrichtung 3, die longitudinalwertoptirnierte Messwerte bereitstellt, ist es möglich, die verbleibende Zeit bis zu einer möglichen Kollision mit einem vorausfahrenden Fahrzeug präzise zu bestimmen. Zur Auswertung der Daten der zweiten Umfelderfassungseinrichtung 4, die beispielsweise als kostengünstige, monokulare Videokamera ausgebildet sein kann, kann man durch optische Flussalgorithmen, die aus dem Stand der Technik bekannt sind, sowie der bekannten Abstands- und Geschwindigkeitsinformation, die die erste Umfelderfassungseinrichtung 3 bereitstellt, genaue Werte für die Objektausdehnung erhalten. Sowohl für die korrekte Berücksichtigung aller dem Fahrer zur Verfügung stehenden Ausweichmöglichkeiten bei der Auslösung einer automatischen Notbremsung als auch für automatisch ausgelöste und automatisch durchgeführte Ausweichmanöver des mit dem erfindungsgemäßen System ausgerüsteten Fahrzeugs ist es wichtig, die Objektlateralausdehnung sicherheitsrelevanter Objekte im Kursverlauf des Fahrzeugs zu kennen. Die erste und zweite Umfelderfassungseinrichtung 3, 4 sollten dabei so ausgewählt werden, dass die zweite Umfelderfassungseinrichtung 4 in der Lage ist, präzise Werte für die Objektdaten zu liefern, die die erste Umfelderfassungseinrichtung 3 systembedingt nicht liefern kann oder nur sehr ungenau liefern kann. Ebenso muss die erste Umfelderfassungseinrichtung 3 in der Lage sein, die Objektdaten präzise und zuverlässig zu liefern, die die zweite Umfelderfassungseinrichtung 4 systembedingt nicht liefern kann oder nur sehr ungenau liefern kann. Beispielsweise ist das Vorsehen einer Radareinrichtung als erste Umfelderfassungseinrichtung 3 sowie ein kostengünstiges, monokulares Bilderfassungssystem als zweite Umfelderfassungseinrichtung 4 eine bevorzugte Ausführungsform, da sich Radarsystem und monokulare Videokamera bezüglich der Genauigkeit der systembedingt lieferbaren Objektdaten ideal ergänzen.
Ebenso kann vorgesehen sein, dass die Messwerte der longitudinalwertoptimierten Umfelderfassungseinrichtung in einer ersten Auswerteeinrichtung verarbeitet werden und die Messwerte der lateralausdehnungsoptimierten Umfelderfassungseinrichtung in einer zweiten Auswerteeinnchtung verarbeitet werden. Dabei können die Messwerte der zweiten, also der lateralausdehnungsoptimierten Umfelderfassungseinrichtung zusätzlich an die für die longitudinalwertoptimierte Auswertung vorgesehene Auswerteeeinrichtung weitergegeben werden. Dort kann mit den zusätzlich bereitgestellten lateralausdehnungsoptimierten Messwerten eine Verifikation der longitudinalwertoptimierten Messwerte durchgeführt werden und/oder weitere objektspezifische Information den erkannten Objekten zugeordnet werden. Beispielsweise kann somit den mittels eines Radarsystems erkannten Objekten zusätzlich noch ein Wert bezüglich der Objektlateralausdehnung zugeordnet werden, was mit einem reinen Radarsystem nicht oder nur sehr ungenau möglich ist oder die Signalverarbeitung des Radarsystems kami durch Beschränkung des Auswertebereichs auf Gebiete, in denen ein Videosystem Objekte detektiert hat, vereinfacht werden.
Ebenso können der Auswerteeinrichtung für die lateralausdehnungsoptimierten Messwerte zusätzlich Messwerte der longitudinalwertoptimierten
Umfelderfassungseinrichtung zugeführt werden. Hierdurch ist ebenfalls eine Verifikation der lateralausdehnungsoptimierten Messwerte möglich sowie die Bereitstellung weiterer Informationen möglich. Durch Kenntnis des exakten Objektabstandes, der mittels eines Radarsystems sehr präzise ermittelbar ist, kann beispielsweise der Skalierungsfaktor des lateralausdehnungsoptimierten Bilderfassungssystems sehr gut bestimmt werden oder es kann bei Kenntnis von Richtung und Abstand, in der das Radarsystem ein Objekt detektiert hat, die Bildverarbeitung auf bestimmte Bildbereiche des Vodeoerfassungsbereichs eingeschränkt werden, um Verarbeitungszeit zu sparen.
Weiterhin ist es auch denkbar, die beiden Auswerteeinrichtungen für longitudinalwertoptimierte und lateralausdehnungsoptimierte Messwerte in einer einzigen Auswerteeinrichtung realisiert werden, bei dem zusätzlich die lateralausdehnungsoptimierten Messwerte dem Auswertealgorithmus zur Verarbeitung der longitudinalwertoptimierten Messwerte und die longitudinalwertoptimierten Messwerte dem Algorithmus zur Verarbeitung der lateralausdehnungsoptimierten Messwerte zugeführt werden um beispielsweise eine Verifikation von Messwerten oder eine Bereitstellung zuzsätzlicher Informationen, die systembedingt nicht geliefert werden können, zu erreichen. Aufgrund der ermittelten Objekte und derer bewegungsspezifischen Objektdaten werden in der Berechnungseinrichtung 7 Stellsignale für Verzögerungseinrichtungen und Beschleunigungseinrichtungen des Fahrzeugs gebildet, die über das Datenaustauschsystem 6 einer Ausgangsschaltung 8 zugeführt werden. Die Ausgangsschaltung 8 gibt Stellsignale an die Verzögerungseinrichtungen 9 des Fahrzeugs aus, die beispielsweise elektronisch gesteuerte Bremsenansteuerungen vorsieht und die das Fahrzeug in Abhängigkeit der erkannten Objekte verzögern können. Ebenso wird ein Stellsignal über die Ausgangsschaltung 8 einem leistungsbestimmenden Stellelement einer Antriebseinrichtung 10 zugeführt, das beispielsweise eine elektrisch gesteuerte Drosselklappe sein kann, oder eine elektrisch gesteuerte Kraftstoffzumesseinrichtung für ein Einspritzsystem sein kann. Ebenfalls ist es denkbar, dass die Berechnungseinrichtung 7 Ausgangssignale liefert, die über das Datenaustauschsystem 6 und die Ausgangsschaltung 8 eine elektrisch gesteuerte Lenkung ansteuert und das Fahrzeug in Abhängigkeit erkannter, fahrsicherheitsrelevanter Objekte lenken kann und bei einer drohenden Kollision mit einem vorausfahrenden Objekt ein Ausweichmanöver durchführen kann.

Claims

Patentansprüche
Vorrichtung zur Ansteuerung mindestens einer Verzöge ngseinrichtung und/oder eines leistungsbestimmenden Stellelementes einer Fahrzeugantriebseinrichtung, insbesondere im Sinne einer automatischen Fahrzeuglängsregelung und/oder zur Objektidentifikation , dadurch gekennsgeiehnet, dass eine erste Umfelderfassungseinrichtung vorgesehen ist, die longitudinalwertoptimierte Messwerte bereitstellt, dass eine zweite Umfelderfassungseinrichtung vorgesehen ist, die objektlateralausdehnungsoptimierte Messwerte bereitstellt und dass eine Auswerteeinrichtung vorgesehen ist, der die Ausgangssignale der ersten und der zweiten Umfelderfassungseinrichtung zugeführt werden und zur Objektidentifikation und/oder Ansteuerung der mindestens einen Verzögerungseinrichtung und/oder des leistungsbestimmenden Stellelementes der Antriebseinrichtung sowohl die Messwerte der ersten als auch der zweiten Umfelderfassungseinrichtung herangezogen werden.
Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Messwerte der zweiten Umfelderfassungseinrichtung zur Verifikation und/oder Bereitstellung zusätzlicher Informationen bei der Auswertung der Messwerte der ersten Umfelderfassungseinrichtung verwendet werden.
3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Messwerte der ersten Umfelderfassungseinrichtung zur Verifikation und/oder Bereitstellung zusätzlicher Informationen bei der Auswertung der Messwerte der zweiten Umfelderfassungseinrichtung verwendet werden.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Fahrzeuglängsregelung eine Auslösung und/oder Durchführung einer automatischen Fahrzeugverzögerung zur Kollisionsvermeidung und/oder Verminderung der Kollisionsschwere vorsieht.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die erste Umfelderfassungseinrichtung eine Einrichtung zum Senden und Empfangen von Radarstrahlung ist.
6. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die erste Umfelderfassungseinrichtung eine Einrichtung zum Senden und Empfangen von Lidarstrahlung ist.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweite Umfelderfassungseinrichtung ein Bilderfassungssystem ist.
8. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass das Bilderfassungssystem eine monokulare Videokamera ist.
9. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass das Bilderfassungssystem eine Stereo-Videokamera ist.
10. Verfahren zur Ansteuerung mindestens einer Verzögerungseinrichtung und/oder eines leistungsbestimmenden Stellelementes einer Fahrzeugantriebseinrichtung, insbesondere im Sinne einer automatischen Fahrzeuglängsregelung, dadurch gekennzeichnet, dass einer Auswerteeinrichtung die Ausgangssignale einer ersten Umfelderfassungseinrichtung und einer zweiten Umfelderfassungseinrichtung zugeführt werden, wobei die erste Umfelderfassungseinrichtung longitudinalwertoptimierte Messwerte bereitstellt und die zweite Umfelderfassungseinrichtung objektlateralausdehnungsoptimierte Messwerte bereitstellt und dass zur Objektidentifikation sowohl die Messwerte der ersten als auch der zweiten Umfelderfassungseinrichtung herangezogen werden und in Abhängigkeit der ermittelten Umfeldsituation mindestens eine Verzögerungseinrichtung und/oder mindestens ein leistungsbestimmendes Stellelement einer Antriebseimichtung gesteuert wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die
Fahrzeuglängsregelung eine Auslösung und/oder Durchführung einer automatischen Fahrzeugverzögerung zur Kollisionsvermeidung und/oder Verminderung der Kollisionsschwere vorsieht.
PCT/DE2003/003483 2003-03-07 2003-10-21 Verfahren und vorrichtung zur ansteuerung mindestens einer verzögerungseinrichtung und/oder eines leistungsbestimmenden stellelementes einer fahrzeugantriebseinrichtung WO2004079391A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03785488A EP1606650A1 (de) 2003-03-07 2003-10-21 Verfahren und vorrichtung zur ansteuerung mindestens einer verzögerungseinrichtung und/oder eines leistungsbestimmenden stellelementes einer fahrzeugantriebseinrichtung
US10/541,599 US7660668B2 (en) 2003-03-07 2003-10-21 Method and device for controlling at least one deceleration device and/or an output-determining actuating element of a vehicle drive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10309943A DE10309943A1 (de) 2003-03-07 2003-03-07 Verfahren und Vorrichtung zur Ansteuerung mindestens einer Verzögerungseinrichtung und/oder eines leistungsbestimmenden Stellelementes einer Fahrzeugantriebseinrichtung
DE10309943.3 2003-03-07

Publications (1)

Publication Number Publication Date
WO2004079391A1 true WO2004079391A1 (de) 2004-09-16

Family

ID=32864233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/003483 WO2004079391A1 (de) 2003-03-07 2003-10-21 Verfahren und vorrichtung zur ansteuerung mindestens einer verzögerungseinrichtung und/oder eines leistungsbestimmenden stellelementes einer fahrzeugantriebseinrichtung

Country Status (4)

Country Link
US (1) US7660668B2 (de)
EP (1) EP1606650A1 (de)
DE (1) DE10309943A1 (de)
WO (1) WO2004079391A1 (de)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004008894A1 (de) * 2004-02-24 2005-09-08 Robert Bosch Gmbh Sicherheitssystem für ein Fortbewegungsmittel sowie hierauf bezogenes Verfahren
JP2008516851A (ja) * 2004-10-20 2008-05-22 アーデーツエー・オートモテイブ・デイスタンス・コントロール・システムズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 関連物体の確認方法
GB2447672B (en) 2007-03-21 2011-12-14 Ford Global Tech Llc Vehicle manoeuvring aids
JP2012501916A (ja) * 2008-09-10 2012-01-26 コンチネンタル・テーヴエス・アクチエンゲゼルシヤフト・ウント・コンパニー・オツフエネハンデルスゲゼルシヤフト 非常操縦の際かじ取りを援助する方法
US9434414B2 (en) 2011-04-19 2016-09-06 Ford Global Technologies, Llc System and method for determining a hitch angle offset
US9683848B2 (en) 2011-04-19 2017-06-20 Ford Global Technologies, Llc System for determining hitch angle
US10196088B2 (en) 2011-04-19 2019-02-05 Ford Global Technologies, Llc Target monitoring system and method
US20140172232A1 (en) * 2011-04-19 2014-06-19 Ford Global Technologies, Llc Sensor system and method for monitoring trailer hitch angle
US9513103B2 (en) 2011-04-19 2016-12-06 Ford Global Technologies, Llc Hitch angle sensor assembly
US9926008B2 (en) 2011-04-19 2018-03-27 Ford Global Technologies, Llc Trailer backup assist system with waypoint selection
US9854209B2 (en) 2011-04-19 2017-12-26 Ford Global Technologies, Llc Display system utilizing vehicle and trailer dynamics
US9555832B2 (en) 2011-04-19 2017-01-31 Ford Global Technologies, Llc Display system utilizing vehicle and trailer dynamics
US9723274B2 (en) 2011-04-19 2017-08-01 Ford Global Technologies, Llc System and method for adjusting an image capture setting
US9373044B2 (en) 2011-07-25 2016-06-21 Ford Global Technologies, Llc Trailer lane departure warning system
US9963004B2 (en) 2014-07-28 2018-05-08 Ford Global Technologies, Llc Trailer sway warning system and method
US9517668B2 (en) 2014-07-28 2016-12-13 Ford Global Technologies, Llc Hitch angle warning system and method
US9533683B2 (en) 2014-12-05 2017-01-03 Ford Global Technologies, Llc Sensor failure mitigation system and mode management
US9607242B2 (en) 2015-01-16 2017-03-28 Ford Global Technologies, Llc Target monitoring system with lens cleaning device
US9522699B2 (en) 2015-02-05 2016-12-20 Ford Global Technologies, Llc Trailer backup assist system with adaptive steering angle limits
US9616923B2 (en) 2015-03-03 2017-04-11 Ford Global Technologies, Llc Topographical integration for trailer backup assist system
US9804022B2 (en) 2015-03-24 2017-10-31 Ford Global Technologies, Llc System and method for hitch angle detection
US10384607B2 (en) 2015-10-19 2019-08-20 Ford Global Technologies, Llc Trailer backup assist system with hitch angle offset estimation
US10611407B2 (en) 2015-10-19 2020-04-07 Ford Global Technologies, Llc Speed control for motor vehicles
US9836060B2 (en) 2015-10-28 2017-12-05 Ford Global Technologies, Llc Trailer backup assist system with target management
US10017115B2 (en) 2015-11-11 2018-07-10 Ford Global Technologies, Llc Trailer monitoring system and method
US9934572B2 (en) 2015-12-17 2018-04-03 Ford Global Technologies, Llc Drawbar scan solution for locating trailer hitch point
US9610975B1 (en) 2015-12-17 2017-04-04 Ford Global Technologies, Llc Hitch angle detection for trailer backup assist system
US10011228B2 (en) 2015-12-17 2018-07-03 Ford Global Technologies, Llc Hitch angle detection for trailer backup assist system using multiple imaging devices
US9796228B2 (en) 2015-12-17 2017-10-24 Ford Global Technologies, Llc Hitch angle detection for trailer backup assist system
US9798953B2 (en) 2015-12-17 2017-10-24 Ford Global Technologies, Llc Template matching solution for locating trailer hitch point
US10155478B2 (en) 2015-12-17 2018-12-18 Ford Global Technologies, Llc Centerline method for trailer hitch angle detection
US9827818B2 (en) 2015-12-17 2017-11-28 Ford Global Technologies, Llc Multi-stage solution for trailer hitch angle initialization
US10005492B2 (en) 2016-02-18 2018-06-26 Ford Global Technologies, Llc Trailer length and hitch angle bias estimation
US10106193B2 (en) 2016-07-01 2018-10-23 Ford Global Technologies, Llc Enhanced yaw rate trailer angle detection initialization
US10046800B2 (en) 2016-08-10 2018-08-14 Ford Global Technologies, Llc Trailer wheel targetless trailer angle detection
US10222804B2 (en) 2016-10-21 2019-03-05 Ford Global Technologies, Llc Inertial reference for TBA speed limiting
US10710585B2 (en) 2017-09-01 2020-07-14 Ford Global Technologies, Llc Trailer backup assist system with predictive hitch angle functionality
US11077795B2 (en) 2018-11-26 2021-08-03 Ford Global Technologies, Llc Trailer angle detection using end-to-end learning
US10829046B2 (en) 2019-03-06 2020-11-10 Ford Global Technologies, Llc Trailer angle detection using end-to-end learning

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037860A (en) * 1997-09-20 2000-03-14 Volkswagen Ag Method and arrangement for avoiding and/or minimizing vehicle collisions in road traffic
DE10011263A1 (de) * 2000-03-08 2001-09-13 Bosch Gmbh Robert Objektdetektionssystem
GB2373117A (en) * 2000-10-04 2002-09-11 Intelligent Tech Int Inc Mapping road edges; collision avoidance
US20020126022A1 (en) * 1996-09-25 2002-09-12 Ellis Christ G. Emergency flashing light mechanism
US6452535B1 (en) * 2002-01-29 2002-09-17 Ford Global Technologies, Inc. Method and apparatus for impact crash mitigation
WO2003006290A1 (de) * 2001-07-11 2003-01-23 Robert Bosch Gmbh Verfahren und vorrichtung zur automatischen steuerung der verzögerungseinrichtung eines fahrzeugs
WO2003007271A2 (de) * 2001-07-11 2003-01-23 Robert Bosch Gmbh Verfahren und vorrichtung zum selbsttätigen auslösen einer verzögerung eines fahrzeugs
WO2003006291A1 (de) * 2001-07-11 2003-01-23 Robert Bosch Gmbh Verfahren und vorrichtung zum auslösen und durchführen einer verzögerung eines fahrzeugs

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3096322A (en) * 1960-03-14 1963-07-02 Eastman Kodak Co Aminobenzenesulfonamide azo dyes for acrylic fibers
US4370181A (en) * 1980-12-31 1983-01-25 Thiokol Corporation Pyrotechnic non-azide gas generants based on a non-hydrogen containing tetrazole compound
DE3215925C2 (de) * 1982-04-29 1985-11-28 Bayern-Chemie Gesellschaft für flugchemische Antriebe mbH, 8261 Aschau Aufwickelvorrichtung mit Rückstrammer für Sicherheitsgurte
US7243945B2 (en) * 1992-05-05 2007-07-17 Automotive Technologies International, Inc. Weight measuring systems and methods for vehicles
US7415126B2 (en) * 1992-05-05 2008-08-19 Automotive Technologies International Inc. Occupant sensing system
US7164117B2 (en) * 1992-05-05 2007-01-16 Automotive Technologies International, Inc. Vehicular restraint system control system and method using multiple optical imagers
CA1221074A (en) * 1982-11-29 1987-04-28 Takayuki Ando Webbing retractor
US4909549A (en) * 1988-12-02 1990-03-20 Automotive Systems Laboratory, Inc. Composition and process for inflating a safety crash bag
US4948439A (en) * 1988-12-02 1990-08-14 Automotive Systems Laboratory, Inc. Composition and process for inflating a safety crash bag
US5084118A (en) * 1990-10-23 1992-01-28 Automotive Systems Laboratory, Inc. Ignition composition for inflator gas generators
US5139588A (en) * 1990-10-23 1992-08-18 Automotive Systems Laboratory, Inc. Composition for controlling oxides of nitrogen
US5035757A (en) * 1990-10-25 1991-07-30 Automotive Systems Laboratory, Inc. Azide-free gas generant composition with easily filterable combustion products
JPH0624294A (ja) * 1992-07-08 1994-02-01 Takata Kk シートベルト装置のプリテンショナ
US5369591A (en) * 1993-03-11 1994-11-29 Broxmeyer; Charles Vehicle longitudinal control and collision avoidance system for an automated highway system
US5553803A (en) * 1994-09-13 1996-09-10 Takata Vehicle Safety Technology Gmbh Belt tensioner for safety belts for motor vehicles
DE4432594A1 (de) * 1994-09-13 1996-03-14 Takata Europ Gmbh Gurtstraffer bei Sicherheitsgurtanordnungen in Kraftfahrzeugen
US6306232B1 (en) * 1996-07-29 2001-10-23 Automotive Systems Laboratory, Inc. Thermally stable nonazide automotive airbag propellants
US6074502A (en) * 1996-11-08 2000-06-13 Automotive Systems Laboratory, Inc. Smokeless gas generant compositions
US5872329A (en) * 1996-11-08 1999-02-16 Automotive Systems Laboratory, Inc. Nonazide gas generant compositions
US5811725A (en) * 1996-11-18 1998-09-22 Aerojet-General Corporation Hybrid rocket propellants containing azo compounds
WO2000068043A1 (en) * 1999-05-11 2000-11-16 Automotive Systems Laboratory, Inc. Dual chamber inflator
JP4308381B2 (ja) 1999-09-29 2009-08-05 富士通テン株式会社 周辺監視センサ
DE60105351T2 (de) * 2000-02-04 2005-09-29 Automotive Systems Laboratory Inc., Farmington Hills Sicherheitsgurtroller
US6505790B2 (en) * 2000-06-05 2003-01-14 Automotive Systems Laboratory, Inc. Pretensioner device
IT1320684B1 (it) * 2000-10-03 2003-12-10 Fiat Ricerche Dispositivo di controllo della portata di una pompa ad alta pressionein un impianto di iniezione a collettore comune del combustibile di un
US6749219B2 (en) * 2001-09-12 2004-06-15 Automotive Systems Laboratory Inflator
US6752421B2 (en) * 2002-01-03 2004-06-22 Automotive Systems Laboratory, Inc. Airbag inflator
US6752219B1 (en) * 2003-05-22 2004-06-22 Bruce A. Fridd Turf cutting and handling system for golf green cup

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020126022A1 (en) * 1996-09-25 2002-09-12 Ellis Christ G. Emergency flashing light mechanism
US6037860A (en) * 1997-09-20 2000-03-14 Volkswagen Ag Method and arrangement for avoiding and/or minimizing vehicle collisions in road traffic
DE10011263A1 (de) * 2000-03-08 2001-09-13 Bosch Gmbh Robert Objektdetektionssystem
GB2373117A (en) * 2000-10-04 2002-09-11 Intelligent Tech Int Inc Mapping road edges; collision avoidance
WO2003006290A1 (de) * 2001-07-11 2003-01-23 Robert Bosch Gmbh Verfahren und vorrichtung zur automatischen steuerung der verzögerungseinrichtung eines fahrzeugs
WO2003007271A2 (de) * 2001-07-11 2003-01-23 Robert Bosch Gmbh Verfahren und vorrichtung zum selbsttätigen auslösen einer verzögerung eines fahrzeugs
WO2003006291A1 (de) * 2001-07-11 2003-01-23 Robert Bosch Gmbh Verfahren und vorrichtung zum auslösen und durchführen einer verzögerung eines fahrzeugs
US6452535B1 (en) * 2002-01-29 2002-09-17 Ford Global Technologies, Inc. Method and apparatus for impact crash mitigation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SASAYAMA T: "TECHNOLOGICAL TRENDS AND KEY TECHNOLOGIES IN INTELLIGENT VEHICLES", IEICE TRANSACTIONS ON ELECTRONICS, INSTITUTE OF ELECTRONICS INFORMATION AND COMM. ENG. TOKYO, JP, vol. E76-C, no. 12, 1 December 1993 (1993-12-01), pages 1717 - 1726, XP000426733, ISSN: 0916-8524 *

Also Published As

Publication number Publication date
US7660668B2 (en) 2010-02-09
EP1606650A1 (de) 2005-12-21
DE10309943A1 (de) 2004-09-16
US20060155455A1 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
WO2004079391A1 (de) Verfahren und vorrichtung zur ansteuerung mindestens einer verzögerungseinrichtung und/oder eines leistungsbestimmenden stellelementes einer fahrzeugantriebseinrichtung
EP1478542B1 (de) Vorrichtung zur adaptiven geschwindigkeitsregelung eines kraftfahrzeugs
EP2240354B1 (de) Vorrichtung, verfahren und computerprogramm zur kollisionsvermeidung oder zur verminderung der kollisionsschwere infolge einer kollision für fahrzeuge, insbesondere nutzfahrzeuge
EP1625979B1 (de) Verfahren und Vorrichtung zur Auslösung einer Notbremsung
EP1797450B1 (de) Radarsensor und verfahren zur abstands- und geschwindigkeitsregelung
DE112007001501B4 (de) Vorrichtung zum Ermitteln einer Umgebungssituation
DE102006061390B4 (de) Umfelderfassungssystem und Umfelderfassungsverfahren eines Kraftfahrzeugs
DE102010007468B4 (de) System und Verfahren zum Validieren von Betriebsweisen eines adaptiven Tempomats
DE112016003462B4 (de) Fahrzeugsteuervorrichtung
DE10102771A1 (de) Einrichtung zum Bereitstellen von Signalen in einem Kraftfahrzeug
WO2013064705A1 (de) Verfahren zur ermittlung einer notbremssituation eines fahrzeuges
WO2006128766A1 (de) Verfahren und vorrichtung zur erkennung und klassifizierung von objekten
DE102016204011A1 (de) Vorrichtung zur Ermittlung einer Dejustage einer an einem Fahrzeug befestigten Detektionseinrichtung
EP1912844B1 (de) Verfahren zum erzeugen von umwelthypothesen für fahrerassistenzfunktionen
DE102016000185A1 (de) Steuerungs-System und Verfahren zum Ermitteln einer Fahrspur eines nachfolgenden Kraftfahrzeugs
DE10102772A1 (de) Vorrichtung zur adaptiven Fahrgeschwindigkeitsregelung eines Kraftfahrzeugs
WO2017097486A1 (de) Verfahren zum erkennen einer möglichen kollision zwischen einem kraftfahrzeug und einem objekt unter berücksichtigung einer räumlichen unsicherheit, steuereinrichtung, fahrerassistenzsystem sowie kraftfahrzeug
DE112018003446T5 (de) Fahrzeuggeschwindigkeitssteuervorrichtung und fahrzeuggeschwindigkeitssteuerverfahren
DE102010003375B4 (de) Umfeldbewertungssystem in einem Fahrzeug mit Sensormitteln zur Erfassung von Objekten im Umfeld des Fahrzeuges
DE102004036580A1 (de) Verfahren und Vorrichtung zur Objektdetektion bei einem Fahrzeug
EP1606133B1 (de) Vorrichtung und verfahren zur geschwindigkeitsregelung eines kraftfahrzeugs
DE102017211243B4 (de) Verfahren und Vorrichtung zum Überwachen des Innenraums eines Kraftfahrzeugs
DE102007058241B4 (de) Auswerteverfahren, insbesondere für ein Fahrerassistenzsystem eines Kraftfahrzeugs, zur Objektdetektion mittels eines Radarsensors
EP3252502A1 (de) Verfahren zum erkennen einer neigung in einer fahrbahn eines kraftfahrzeugs, fahrerassistenzsystem sowie kraftfahrzeug
DE102019215359A1 (de) Verfahren zum Ausgeben eines Signals zum Auffahren eines Fahrzeugs auf eine Vorfahrtsstraße

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 2003785488

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006155455

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10541599

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003785488

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10541599

Country of ref document: US