WO2004078664A1 - Procede de preparation d'un verre par melange de verres fondus - Google Patents

Procede de preparation d'un verre par melange de verres fondus Download PDF

Info

Publication number
WO2004078664A1
WO2004078664A1 PCT/FR2004/000420 FR2004000420W WO2004078664A1 WO 2004078664 A1 WO2004078664 A1 WO 2004078664A1 FR 2004000420 W FR2004000420 W FR 2004000420W WO 2004078664 A1 WO2004078664 A1 WO 2004078664A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
auxiliary
main
oven
weight
Prior art date
Application number
PCT/FR2004/000420
Other languages
English (en)
Inventor
Pierre Jeanvoine
Goicoechea Luis Grijalba
Cuartas Ramon Rodriguez
Maurice Lemaille
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to AU2004218197A priority Critical patent/AU2004218197B2/en
Priority to DE602004014256T priority patent/DE602004014256D1/de
Priority to JP2006505677A priority patent/JP2007526863A/ja
Priority to CN2004800055352A priority patent/CN1777563B/zh
Priority to EP04714354A priority patent/EP1599423B1/fr
Priority to BRPI0407828-4A priority patent/BRPI0407828A/pt
Priority to US10/829,955 priority patent/US20040224833A1/en
Publication of WO2004078664A1 publication Critical patent/WO2004078664A1/fr
Priority to US11/673,765 priority patent/US20070212546A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/173Apparatus for changing the composition of the molten glass in glass furnaces, e.g. for colouring the molten glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/12Making multilayer, coloured or armoured glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/2356Submerged heating, e.g. by using heat pipes, hot gas or submerged combustion burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/10Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce uniformly-coloured transparent products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/02Compositions for glass with special properties for coloured glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31Surface property or characteristic of web, sheet or block

Definitions

  • the invention relates to a method and a device for preparing glass, with high productivity and a low transition time, for the production of a very homogeneous glass and without optical defects, in particular flat glass, by mixing two glasses. liquids of different compositions.
  • the preparation of a glass from two different glasses is especially carried out for the preparation of colored glass.
  • the preparation of colored glass can be carried out in different ways.
  • a solid glass frit can be added to a main glass stream, said frit fusing and gradually mixing with the main glass.
  • the frit is introduced cold in small doses into a coloring cell located in the terminal channel of the furnace, just before the feeding of the forming machines.
  • the frit is usually in the form of solid pieces and contains most of the pigment generating the color of the final glass.
  • homogenization means agitators
  • a green automotive glass with 0.6% iron oxide and redox in Fe 2+ of 0.30 (the "redox" in Fe 2+ is the ratio of the quantity of Fe 2+ ions to the total quantity of iron ions) is thus produced on a float glass furnace with a lower draft of approximately 10 to 15% compared to a clear glass containing only 0.1% of iron oxide, and this for the same level of cullet.
  • the strong absorbency of the glass requires either to lower the draft, or to limit the depth of glass to be heated.
  • the invention makes it possible in particular to save a large mass of refractories (that of the main large device) by confining the presence of the harmful material to an auxiliary device of smaller dimensions and to the downstream part of the manufacturing device (supply channel of the forming station and forming station, as well as a possible mixing cell).
  • raw material materials containing metals for example polished or less well sorted cullet, such as shards of bottles polished by a metal of the metal cap
  • the latter may tend to s' accumulate on the bottom of the oven and infiltrate the joints of the refractories, which can damage or even pierce them.
  • the auxiliary device By confining these noxious materials to the smaller auxiliary device, there is generally a lower wear of refractories.
  • the melting of certain particular compounds (or additives) requires temperatures that are too high for the main oven, it may be preferable to introduce them into the final glass by means of the auxiliary device, especially when the latter is fitted with submerged burners. high calorific value.
  • the invention solves the above-mentioned problems.
  • the transition times for change of composition are reduced, and moreover, strong draws of glass, even during the production of absorbent glasses in the infrared (in particular green glass containing iron oxide, generally mixture of ferrous oxide and ferric oxide), are made possible.
  • the infrared absorbing pigment is introduced into the charging zone (at the top of the oven) like the other vitrifiable materials, the atmospheric burners will have great difficulty in heating in the depths of the liquid glass (due to the absorption by the glass itself), so that one is forced either to lower the draft, or to provide low heights of liquid glass.
  • the absorbent element can be mainly brought into the final glass by an auxiliary furnace with a lower draft than the main furnace, the latter then being able to retain strong draft and great depths of glass.
  • the main oven can maintain a strong specific draft, which can range from 1.4 to 2 t / dm 2 and operate with a deep depth molten glass, which may be greater than 1 meter, as soon as the infrared absorbing element such as iron oxide is provided by the auxiliary glass.
  • the auxiliary oven is advantageously of the submerged burner type because such an oven has a high specific draft for a low volume, which further contributes to reducing the transition times. This advantage is particularly important if we compare with an electric oven.
  • the electrodes of such an electric furnace wear out quickly in the presence of an auxiliary glass heavily loaded with iron, as is notably the case in the context of the present invention.
  • the modification of the main glass is carried out by adding an auxiliary glass, the mixture of these two glasses being called final glass.
  • the invention relates to a device and a method for manufacturing a final glass comprising the preparation of a liquid main glass by a main device comprising a main oven generating a main flow of glass (called “main glass”), the preparation of an auxiliary liquid glass by an auxiliary device comprising an auxiliary oven generating an auxiliary flow of glass (called “auxiliary glass”), the auxiliary flow being weaker than the main flow, the auxiliary glass being of different composition from that of main glass, the two streams then being mixed into a single total stream of the final glass.
  • the composition of the final glass is different from that of the main glass because it has been modified by the addition of auxiliary glass. Due to this modification, if necessary, the absorbency of the final glass may be different from that of the main glass.
  • the auxiliary glass has a different composition from that of the main glass with regard to at least one compound (which may also be called “particular compound” in the present application).
  • the invention relates to the modification of the content of at least one compound (or additive) in the main glass, said modification leading to the final glass.
  • the auxiliary glass may have the function of increasing (a content of a particular compound of the main glass in which case the content of said compound is greater in the auxiliary glass than in the final glass and the content of said compound is greater in the final glass than in the main glass.
  • the auxiliary glass may be a coloring glass which must color the glass main.
  • the auxiliary glass may have the function of lowering the content of a particular compound of the main glass in which case the content of said compound is greater in the main glass than in the final glass and the content of said compound is greater in the glass. final than in the auxiliary glass.
  • the main glass may be an already colored glass which one seeks to discolor by adding a clear auxiliary glass to it.
  • the total flow generally feeds a glass forming station to make hollow glass or flat glass.
  • the forming station can therefore in particular be a continuous forming station for flat glass such as a float glass installation. In such an installation, a flat glass is produced continuously in a ribbon of large width, greater than 1 meter, generally greater than 2 meters and more generally greater than 3 meters.
  • the two liquid glasses (melted) have close temperatures, that is to say not deviating from each other by more than 100 ° C., and also neighboring viscosities.
  • the two streams have temperatures between 1100 and 1300 ° C and even between 1100 and 1200 ° C.
  • the final glass contains a compound which gives it an absorbent character, it can also be called absorbent glass.
  • the invention relates in particular to the modification of the absorbent nature of a main glass, either its reduction or its increase, it being understood that the reduction is accompanied by a reduction in the content of a particular compound and the increase s' accompanied by an increase in the content of said compound.
  • the auxiliary glass can in particular modify the absorbency of the main glass.
  • all the absorbent powers vis-à-vis radiation that is to say vis-à-vis wavelengths in the visible, or in UV, or in the infrared, or with respect to X-rays or with respect to alpha rays, or with beta or gamma rays, or with respect to wavelengths in at least two of these areas.
  • the process according to the invention can in particular be a process for coloring a glass, the content of a certain pigment of which is increased when moving from the main glass to the final glass.
  • the process according to the invention can in particular be a process for bleaching a glass, the content of a certain pigment of which is lowered when moving from the main glass to the final glass.
  • This possibility has the following advantage in particular: if a main oven produces a main glass containing a high content of a compound (for example 2% by weight of iron oxide) and that a final glass is occasionally needed with a lower proportion of said compound (for example final glass at 1% by weight of iron oxide), this glass can easily be produced by adding to the main glass an auxiliary glass containing even less of said compound (for example 0 % iron oxide), without interrupting or disturbing the operation of the main oven. When the desired volume is achieved, the addition of the auxiliary glass is stopped and thus the previous production is resumed, again without disturbing the operation of the main oven.
  • the auxiliary glass is introduced hot and melted in the main glass
  • the auxiliary glass is produced on a separate installation, next to the main oven and if necessary near the mixing cell.
  • the device for preparing the auxiliary glass can be small, especially when it uses the technology of submerged burners, which generally makes it possible to add it alongside the main device without modifying the general infrastructure.
  • the use of coloring pigments such as a coloring oxide is less expensive than the use of frits.
  • the main oven is generally mainly heated by at least one atmospheric burner (sometimes also called overhead burner, this type of burner not being submerged), which means that at least half of the thermal energy brought into this oven l 'is by at least one atmospheric burner. If necessary, the main oven can be such that its heating means consists exclusively of atmospheric burners.
  • the main furnace is a melting furnace generally comprising a melting zone and a refining zone situated after the melting zone.
  • This main oven generally has a floor area ranging from 200 to 600 m 2 , in particular between 300 and 500 m 2 .
  • this melting furnace can be followed by an ember (“conditionning zone” or “working end” in English) for thermal conditioning, the surface area of which can for example range from 50 to 300 m 2 , depending on the importance of the installation.
  • the main device which may include a main oven followed by an embers, can have a floor area ranging from 250 to 900 m 2 .
  • auxiliary furnace For the auxiliary furnace generating the auxiliary glass, it is possible to choose a conventional melting technology, all electric or partially electric. This type of oven generally ensures a sufficient level of refining (low bubble rate in the final article).
  • the auxiliary oven generating the auxiliary glass comprises at least one submerged burner.
  • This auxiliary oven is preferably mainly heated by at least one submerged burner, which means that at least part, in particular at least half, of the thermal energy supplied to this oven is by at least one submerged burner.
  • the auxiliary oven may be such that its heating means may consist only of submerged burners.
  • the choice of the technology of submerged combustion is advantageous first because of its specific draft which can be high (which can for example exceed 15 t / dm 2 in soda lime glass cullet), for example which can range from 5 to 20 t / dm 2 , which results in a low transition time (to go from one manufacturing to another, for example from one color to another) because the mass ratio of resident glass in the oven / glass is then greatly reduced pulled: this is advantageous because it is the transition time of the auxiliary oven that actually determines the overall transition time of the entire device.
  • This technology of submerged burners is also advantageous in the context of the invention by the powerful mixer effect that submerged combustion technology has, which leads to better homogeneity of the auxiliary glass.
  • a submerged combustion furnace melting soda lime calcine at a draft of 10Ot / d may have a surface area not greater than 6 m 2 .
  • the auxiliary oven is a melting furnace and generally has a floor area ranging from 1 to 50 m 2 , which can therefore be less than 6 m 2 .
  • the auxiliary glass is preferably refined in a refining cell (or "refiner").
  • the refiner can have a floor area ranging from 1 to 50 m 2 .
  • the auxiliary device which can include an auxiliary oven followed by a refiner, can have a floor area ranging from 2 to 100 m 2 .
  • a refining process which is particularly suitable for following on from an oven comprising at least one submerged burner is refining under reduced pressure as described in WO99 / 35099.
  • the refining system with the minimum of resident glass is the best, always to reduce the transition time. Refining under reduced pressure, static or having a dynamic rotating member, is preferred.
  • the auxiliary glass can be poured into the channel leading the main flow to the forming station. If necessary, the auxiliary glass and the main glass can both be poured into a mixing cell (which can also be called coloring cell when the change in composition corresponds to a change in color) placed before the forming station . In all cases the mixture of the two glasses within the final glass is homogenized using stirrers, before the glass reaches the forming station.
  • the mixing cell can be a compartment of approximately square or rectangular shape (seen from above) and is equipped with stirrers powerful enough to homogenize effectively. The size of this cell and the number of agitators depend on the draw. Its operating temperature generally ranges from 1100 ° C to 1300 ° C, especially around 1200 ° C.
  • the agitators (which may be in the possible mixing cell) can in particular be vertical and comprise several levels of inclined blades, in opposite directions from one agitator to another in order to produce a mixture that is both vertical and horizontal.
  • These stirrers can for example be made of rhodium-plated platinum, of refractory metal alloy or of structural ceramic (alumina, mullite zirconia, mullite, etc.). In the latter two cases, a platinum plasma deposition is carried out to ensure inertness in contact with the glass, after deposition of appropriate barrier layers.
  • the molten auxiliary glass is introduced into the main glass so as to avoid forming bubbles.
  • the final glass obtained after mixing the main glass and the auxiliary glass, must be homogeneous (in particular in color), to satisfy the specifications of the products concerned, said specifications being particularly demanding in the case of flat glass for the building or the automobile.
  • the auxiliary glass generally represents at most 20%, in particular 0.5 to 20% and more generally 1 to 15% and even 2 to 10% of the mass of the final glass.
  • redox if we call “Redox” of an ion of a metal the ratio of the quantity (molar or mass) of this ion over the total quantity of the same metal, it is preferred that for a given metal, the redox of the different ions on the one hand in the main glass and on the other hand in the auxiliary glass do not have a difference greater than 0.1.
  • Redox of an ion of a metal the ratio of the quantity (molar or mass) of this ion over the total quantity of the same metal
  • the redox of the Fe 2+ ion in the auxiliary glass is 0.2 ⁇ 0.1.
  • the mixing of the two glasses is carried out when they have substantially the same temperature, that is to say that the difference in their temperature is at most 100 ° C.
  • the auxiliary glass and the main glass both have a temperature ranging from
  • an advantage of the submerged burner is to lower the level of sulphate (generally expressed in% of SO) in the auxiliary glass.
  • the water produced by the combustion gases which efficiently stir the auxiliary glass, almost completely rid the auxiliary glass of the sulfate.
  • the auxiliary glass cannot be a source of bubbles resulting from a gaseous release of SO 2 .
  • the auxiliary glass can be used to influence the redox of the final glass.
  • the limit of sulphate solubility in a glass can be represented by a decreasing curve when the redox (in particular that of Fe 2+ ) increases. Thus, there is generally a tendency to generate undesirable bubbles of SO 2 when the redox is increased.
  • the invention relates in particular to the method according to which
  • the auxiliary glass has a higher iron content than that of the main glass and a higher Fe 2+ redox than that of the main glass.
  • the invention relates in particular to the method according to which the auxiliary glass has a virtually zero sulfate content, the main glass has a sulfate content ranging from 0.2 to 0.35%, expressed in% by weight of SO 3 , the auxiliary glass has a higher Fe 2+ redox than the main glass and a higher iron content than the main glass.
  • a main glass can be prepared in an overhead burner oven, with the following characteristics:
  • the main glass preparation furnace is generally supplied with conventional vitrifiable materials in the form of powder, and if necessary partially with cullet.
  • the quantity of cullet generally represents 5 to 25% of the mass of the raw materials feeding the main oven.
  • the auxiliary glass preparation oven can be supplied in several ways:
  • auxiliary oven In certain cases (for example in cases where there is no obligation to recycle the cullet from the line return), it may be advantageous to take a sample of the main glass upstream of the point of mixing of the two streams, for example in an ember following the main oven. The energy to be supplied to the auxiliary oven is then considerably reduced.
  • the dyes (or pigment) that can be used as a particular compound in different concentrations in the main glass and the auxiliary glass in the context of the present invention are generally very fusible oxides (those of iron, cobalt, nickel. ..).
  • the final glass should contain a chromium oxide, that could be introduced into the auxiliary oven in the form of a frit so as to minimize the risk of the presence of unfounded in the final glass.
  • Chromium oxide is generally used alone to give a green or yellow color to the glass, or else it is present in addition to cobalt oxide as part of a blue glass.
  • the auxiliary glass melting furnace advantageously includes a heat recovery system aimed at heating by the fumes it generates, the raw materials (such as cullet) with which it is fed (counter-current circulation of the fumes with respect to raw materials introduced). Energy is thus saved, which is advantageous in particular when the furnace operates on combustible gas and pure oxygen, the simplest system for submerged combustion.
  • the method and device according to the invention generally comprises downstream of the mixing point of the two glasses, if necessary in a mixing cell, a forming station, which can be a float glass oven, a rolling station or a station. for forming hollow glass.
  • the main glass generally comprises at least 55% by weight of silica (SiO 2 ).
  • the main glass generally comprises less than 5% by weight of alumina.
  • the main glass generally includes:
  • the main glass can also additionally comprise
  • the auxiliary glass generally comprises at least 50% and even at least 55% by weight of SiO 2 .
  • the auxiliary glass generally comprises less than 5% by weight of alumina.
  • Auxiliary glass generally includes:
  • the compound of different content in the main glass and the auxiliary glass can be a pigment, which can for example be at least one of the following:
  • a metal other than Si, Na B and Al
  • a metal such as iron, chromium, cobalt, copper, nickel, zirconium, titanium, manganese, praseodymium, zinc, cerium, neodymium, erbium, vanadium, tungsten,
  • the compound of different content in the main glass and the auxiliary glass may be lead oxide, even in very large quantities (for example 30% by weight).
  • the lead oxide in a glass can be used to absorb X-rays.
  • this oxide is particularly corrosive with respect to refractories, it is particularly advantageous to introduce it into the final glass by means of the device. auxiliary, because thus, its harmfulness will be exerted with respect to the auxiliary device, smaller, and will spare the main device. Thus, we will use fewer refractories.
  • the main glass also contains lead oxide.
  • the particular compound is generally present in the auxiliary glass in a content ranging from 20 ppm by weight to 30% by weight.
  • the compound of different content in the main glass and the auxiliary glass can be an oxide of a metal other than Si, Na, B and Al. This oxide can be at the origin of a coloring of the glass auxiliary visible to the naked eye, said oxide being present in the auxiliary glass in a higher content than that of the same oxide in the main glass (the main glass may therefore not contain this oxide).
  • the particular compound can be a pigment present in the auxiliary glass in a greater content than the content of the same pigment in the main glass and in a sufficient content to impart a coloration visible to the naked eye to the final glass.
  • any particular compound in the auxiliary glass or the main glass or the final glass is present in a content below its solubility limit in said glass, said limit possibly depending on the composition of said glass.
  • the auxiliary glass can generally comprise at least one of the following elements in the quantities mentioned: - 0 to 30% and more particularly 0.5 to 20% in iron oxide weight,
  • the auxiliary glass When it plays the role of increasing an absorbent character thanks to a particular compound, the auxiliary glass contains at least said compound in a quantity greater than the main glass (which therefore may not contain said compound), so as to increase the content of this compound in the final glass compared to the main glass.
  • the auxiliary glass may contain iron oxide in an amount sufficient to impart a green color to the final glass with the naked eye. If it is a question of imparting a green color to the final glass thanks to the iron oxide contained in the auxiliary glass, this means in particular that if the main glass already contains iron oxide, the auxiliary glass contains more
  • the main glass may comprise at least one ion of a metal other than Si, Na, B and Al, said ion also being contained in the auxiliary glass, the difference in redox of this ion between on the one hand the main glass and d on the other hand the auxiliary glass, not being greater than 0.1.
  • the invention relates to a flat glass comprising iron oxide giving it a green color uniformly in its thickness as well as a flat glass comprising iron oxide giving it a blue color uniformly in its thickness. thickness (in the mass).
  • FIG. 1 very schematically describes an embodiment of the invention.
  • the loading of raw materials is not shown.
  • the main device comprises an oven 1 and an embers 3.
  • the oven 1 with burners atmospheric supplied with vitrifiable materials in the form of powder and / or cullet produces a main glass flowing through the corset 2 into the embers 3 (for thermal conditioning) said main glass feeding through the channel 4 a forming station 5 of float glass to produce flat glass.
  • Channel 4 receives an auxiliary glass produced in an oven 6 with submerged burners, the glass of which is refined at 7.
  • the auxiliary device comprises the oven 6 and the refiner 7.
  • the two glasses (main and colored) are mixed in channel 4 provided with mechanical homogenization means (agitators) before their mixture reaches the float station 5 of which only the very first part is represented. Examples of the production of tinted glasses for the automobile are described below.
  • the device according to the invention consists of a main oven (also called melter) equipped with transverse atmospheric burners, with a surface area of 350 m 2 , operating with a depth of molten glass of 1.5 m, of an oven auxiliary with submerged burners and floor area of 3 m 2 , the two glass flows being mixed in a staining cell having a floor area of approximately 24 m 2 and which comprises 2 or more rows of agitators whose diameter of outer blades is 500 mm.
  • the main oven continuously produces a weakly colored glass comprising
  • the total drawdown of the line is then 630t / d: in conventional fusion (conventional fusion, that is to say with the introduction of dyes in the charging area), it should have been reduced to approximately 560 t / d.
  • the output from the auxiliary oven can be brought to around 46 t / d with the same rate of introduction of iron oxide (the floor area is then 4.5 m 2 approximately), or bring this rate to 9% with the even drawn from 30 t / d.
  • the total draw reaches 646 t / d whereas in conventional fusion (a single melting furnace) it would not have exceeded 550 t / d.
  • transition takes place by transition in the auxiliary furnace: the ratio of the resident glass to the draw is approximately 7.5t over 50Otj or 0.15 days.
  • the transition (which can also be shortened by over-coloring) is complete in approximately 0.15 x
  • the glass from the auxiliary oven is preferably not introduced into the main oven.
  • transition time on the main oven in coloring or discoloration is thus of the order of half a day maximum, which is much lower than the 3 to 5 days necessary with a conventional configuration, that is to say a single oven of the same total draw, the flux of which is added before forming into coloring frits.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Combustion & Propulsion (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

L'invention concerne un dispositif et un procédé de fabrication d'un verre comprenant la préparation d'un flux principal d'un verre principal liquide par un dispositif principal comprenant un four principal, la préparation d'un flux auxiliaire d'un verre auxiliaire liquide par un dispositif auxiliaire comprenant un four auxiliaire à brûleur immergé, le flux auxiliaire étant plus faible que le flux principal, le verre auxiliaire étant de composition différente de celle du verre principal, les deux flux étant ensuite mélangés en un seul flux total du verre final. Notamment, le four auxiliaire a pour fonction d'apporter une coloration au verre principal afin que le verre final soit un verre coloré. Un verre plat très homogène et coloré dans la masse peut ainsi être fabriqué par une installation aux faibles temps de transition.

Description

PROCEDE DE PREPARATION D'UN VERRE PAR MELANGE DE
VERRES FONDUS
L'invention concerne un procédé et un dispositif de préparation de verre, avec une forte productivité et un faible temps de transition, pour l'élaboration d'un verre très homogène et sans défauts optiques, notamment du verre plat, par mélange de deux verres liquides de compositions différentes.
La préparation d'un verre à partir de deux verres différents est notamment réalisé pour la préparation de verre coloré. La préparation de verre coloré peut être réalisée de différentes manières. On peut ajouter une fritte de verre solide dans un flux principal de verre, ladite fritte fusionnant et se mélangeant progressivement au verre principal. La fritte est introduite à froid à petite dose dans une cellule de coloration située dans le canal terminal même du four, juste avant l'alimentation des machines de formage. La fritte se présente habituellement sous la forme de morceaux solides et contient l'essentiel du pigment générant la couleur du verre final. Cependant, même en cas d'utilisation de moyens d'homogénéisation (agitateurs), il est très difficile de mélanger efficacement les deux flux de verre, de sorte que le verre final est peu homogène en coloration et ne convient pas pour de nombreuses applications. Généralement, ce type de fabrication est réservé au verre creux (flacons, bouteilles, etc.) ou verre plat imprimé (verre coulé) et plus généralement au verre transformé en articles de faibles dimensions et pour lesquels les exigences d'homogénéité de coloration sont moindres, alors qu'il ne convient pas pour le verre plat de grande dimension. Le US 3627504 enseigne l'ajout de frittes dans un flux de verre en fusion. Pour préparer un verre plat coloré, on peut également déposer en surface d'un verre clair au moins une couche d'une matière colorée, le verre plat apparaissant coloré n'est pas coloré dans sa masse mais tire sa couleur d'une couche particulière en surface.
Enfin, pour préparer un verre plat coloré, on peut encore introduire les matières colorantes en tête de four avec l'ensemble des matières vitrifiables. Cependant, dans ce type de fabrication, les temps de transition correspondant à un changement de teinte sont toujours très longs en raison principalement du rapport élevé entre masse du verre dans le four/masse du verre tiré par jour (particulièrement sur les fours à verre plat). Plusieurs jours sont souvent nécessaires ce qui est à l'origine d'une perte de verre importante car le verre de transition est impropre à la commercialisation. En particulier, les décolorations (retour d'un verre teinté à un verre clair) sont particulièrement longues. En effet, dans ce cas, on n'a pas le moyen d'accélérer le retour au verre clair, alors que lorsque l'on colore, on peut pratiquer des surcolorations (introduction d'un taux de colorants temporairement supérieur à celui du verre final), ce qui accélère le processus de coloration. Ce problème de temps de transition élevé est plus important pour les teintes absorbantes dans l'infrarouge comme par exemple la couleur verte. En effet, la fabrication des verres absorbants dans l'infrarouge comme les verres verts automobile ou pour la bouteillerie ou le flaconnage entraîne une diminution du transfert de chaleur des flammes vers la sole du four, ce qui abaisse la température du verre au voisinage de cette sole, le rendant ainsi plus visqueux et donc moins mobile. Il en résulte un freinage des courroies de convection et une diminution de la tirée maximum possible. Un verre vert automobile à 0,6% d'oxyde de fer et de redox en Fe2+ de 0,30 (le « redox » en Fe2+ est le rapport de la quantité d'ions Fe2+ sur la quantité totale d'ions du fer) est ainsi fabriqué sur un four de verre flotté (« float ») avec une tirée plus faible d'environ 10 à 15% par rapport à un verre clair contenant seulement 0,1% d'oxyde de fer, et ceci pour le même taux de calcin. De plus, le fort caractère absorbant du verre oblige soit à baisser la tirée, soit à limiter la profondeur de verre à chauffer.
Le problème de temps de transition élevés (ci-dessus exprimé dans un cas de modification de la coloration d'un verre) se pose dans un contexte général de modification de la composition d'un verre et notamment du pouvoir absorbant d'un verre. En effet, dès lors que l'on cherche à modifier la composition d'un verre, notamment en vu de modifier son caractère absorbant vis-à-vis d'au moins certaines longueurs d'ondes par ajout de matière dans un verre principal, on rencontre des difficultés à ce que cette modification soit réalisée de façon bien homogène dans la masse, ce problème étant d'autant plus important que la tirée est importante et que le verre est transformé en articles de grande dimension, notamment en verre plat. Le problème des temps de transition élevés se pose également de façon générale. Par ailleurs, si un composé particulier ou additif de la composition (conférant le cas échéant un pouvoir absorbant) présente un inconvénient comme d'être corrosif vis-à-vis des réfractaires, son ajout en zone d'enfournement des matières vitrifiables d'un gros four se traduit par un impact négatif sur l'ensemble du four de dimension importante. De ce point de vue, l'invention permet notamment d'épargner une masse importante de réfracfaires (celle du dispositif principal de grande dimension) en cantonnant la présence de la matière nocive à un dispositif auxiliaire de plus faibles dimensions et à la partie aval du dispositif de fabrication (canal d'alimentation de la station de formage et station de formage, ainsi qu'une éventuelle cellule de mélange). Notamment, on peut être amené à utiliser comme matière première des matières contenant des métaux (par exemple des calcins polués ou moins bien triés, comme des tessons de bouteilles polués par un métal de la capsule métallique), ces derniers pouvant avoir tendance à s'accumuler sur la sole du four et infiltrer les joints des réfractaires, ce qui peut les endommager voire les percer. En cantonnant ces matières nocives au dispositif auxiliaire de plus faible dimension, on a globalement une plus faible usure de réfractaires. De même, si la fusion de certains composés particuliers (ou additifs) requiert des températures trop élevées pour le four principal, on pourra préférer les introduire dans le verre final par le biais du dispositif auxiliaire, surtout lorsque celui-ci est équipé de brûleurs immergés au haut pouvoir calorifique.
L'invention résout les problèmes sus-mentionnés. Selon l'invention, les temps de transition pour changement de composition sont réduits, et par ailleurs, de fortes tirées de verre, même pendant la production des verres absorbants dans l'infrarouge (notamment verre vert contenant de l'oxyde de fer, généralement mélange d'oxyde ferreux et d'oxyde ferrique), sont rendues possibles. En effet, selon la fusion classique de l'art antérieur, si le pigment absorbant dans l'infrarouge est introduit en zone d'enfournement (en tête de four) comme les autres matières vitrifiables, les brûleurs atmosphériques auront beaucoup de mal à chauffer dans les profondeurs du verre liquide (du fait de l'absorption par le verre lui-même), de sorte que l'on est obligé soit de baisser la tirée, soit de prévoir de faibles hauteurs de verre liquide. Selon l'invention, l'élément absorbant peut être principalement amené dans le verre final par un four auxiliaire à plus faible tirée que le four principal, ce dernier pouvant alors conserver de fortes tirées et de fortes profondeurs de verre. Ainsi, le four principal peut conserver une forte tirée spécifique, pouvant aller de 1,4 à 2 t/j.m2 et fonctionner avec une forte profondeur de verre fondu, pouvant être supérieure à 1 mètre, dès lors que l'élément absorbant dans l'infrarouge comme l'oxyde de fer est apporté par le verre auxiliaire. Le four auxiliaire est avantageusement du type à brûleurs immergés car un tel four a une tirée spécifique élevée pour un volume faible, ce qui contribue encore à réduire les temps de transition. Cet avantage est particulièrement important si l'on compare avec un four électrique. De plus, les électrodes d'un tel four électrique (généralement en Mo) s'usent rapidement en présence d'un verre auxiliaire fortement chargé en fer, comme c'est notamment le cas dans le cadre de la présente invention. Dans le cadre de la présente demande, la modification du verre principal est réalisée par ajout d'un verre auxiliaire, le mélange de ces deux verres étant appelé verre final. Ainsi, l'invention concerne un dispositif et un procédé de fabrication d'un verre final comprenant la préparation d'un verre principal liquide par un dispositif principal comprenant un four principal générant un flux principal de verre (dit « verre principal »), la préparation d'un verre auxiliaire liquide par un dispositif auxiliaire comprenant un four auxiliaire générant un flux auxiliaire de verre (dit « verre auxiliaire »), le flux auxiliaire étant plus faible que le flux principal, le verre auxiliaire étant de composition différente de celle du verre principal, les deux flux étant ensuite mélangés en un seul flux total du verre final. La composition du verre final est différente de celle du verre principal car elle a été modifiée par l'ajout du verre auxiliaire. Du fait de cette modification, le cas échéant, le caractère absorbant du verre final peut être différent de celui du verre principal.
Le verre auxiliaire est de composition différente de celle du verre principal en ce qui concerne au moins un composé (pouvant également être appelé « composé particulier » dans la présente demande). Ainsi l'invention se rapporte à la modification de la teneur en au moins un composé (ou additif) dans le verre principal, ladite modification conduisant au verre final.
Le verre auxiliaire peut avoir pour fonction de faire augmenter (a teneur en un composé particulier du verre principal auquel cas la teneur en ledit composé est plus importante dans le verre auxiliaire que dans le verre final et la teneur en ledit composé est plus importante dans le verre final que dans le verre principal. Notamment, le verre auxiliaire peut être un verre colorant devant colorer le verre principal. Dans cette situation ou l'on cherche à faire augmenter la teneur en un composé du verre principal au verre final, et pour réduire encore les temps de transition entre deux campagnes de fabrications utilisant le même verre principal, on peut surdoser momentanément la teneur en composé concerné dans le verre auxiliaire au début de la deuxième campagne de fabrication pour que la teneur en ledit composé dans le verre final soit plus rapidement atteinte. On procède ensuite à une baisse contrôlée dudit composé dans le verre auxiliaire pour conserver la teneur souhaitée en ledit composé dans le verre final.
Le verre auxiliaire peut avoir pour fonction de faire baisser la teneur en un composé particulier du verre principal auquel cas la teneur en ledit composé est plus importante dans le verre principal que dans le verre final et la teneur en ledit composé est plus importante dans le verre final que dans le verre auxiliaire. Notamment, le verre principal peut être un verre déjà coloré que l'on cherche à décolorer en lui ajoutant un verre auxiliaire clair. Le flux total alimente généralement une station de formage du verre pour faire du verre creux ou du verre plat. La station de formage peut donc notamment être une station de formage en continu de verre plat comme une installation de verre flotté (float glass). Dans une telle installation, un verre plat est produit en continu en un ruban de grande largeur, supérieure à 1 mètre, généralement supérieure à 2 mètres et plus généralement supérieure à 3 mètres. De préférence, au moment de leur mélange, les deux verres liquides (fondus) ont des températures voisines, c'est-à-dire ne s'écartant pas l'une de l'autre de plus de 100°C, et aussi des viscosités voisines. Généralement , les deux flux ont des températures comprises entre 1100 et 1300°C et même entre 1100 et 1200°C. Pour le cas ou le verre final contient un composé lui conférant un caractère absorbant, il peut également être appelé verre absorbant.
L'invention se rapporte notamment à la modification du caractère absorbant d'un verre principal, soit sa diminution, soit son augmentation, étant entendu que la diminution s'accompagne d'une baisse de teneur en un composé particulier et l'augmentation s'accompagne d'une augmentation de teneur en ledit composé.
Le verre auxiliaire peut notamment modifier le pouvoir absorbant du verre principal. Sont concernés tous les pouvoirs absorbants vis-à-vis de radiations, c'est-à-dire vis-à-vis de longueurs d'ondes dans le visible, ou dans les UV, ou dans les infra-rouges, ou vis-à-vis des rayons X ou vis-à-vis des rayons alpha, ou bêta ou gamma, ou vis-à-vis de longueurs d'ondes dans au moins deux de ces domaines.
Si l'on cherche à faire augmenter le caractère absorbant du verre principal, on utilise un verre auxiliaire plus absorbant que lui, de sorte que le verre final présente un caractère absorbant inférieur à celui du verre auxiliaire mais supérieur à celui du verre principal. Cet ordre dans le caractère absorbant des trois verres se retrouve dans leurs teneurs respectives en composé à l'origine du caractère absorbant considéré. Ainsi, le procédé selon l'invention peut notamment être un procédé de coloration d'un verre dont on fait augmenter la teneur en un certain pigment quand on passe du verre principal au verre final.
Si l'on cherche à faire baisser le caractère absorbant du verre principal, on utilise un verre auxiliaire moins absorbant que lui, de sorte que le verre final présente un caractère absorbant supérieur à celui du verre auxiliaire mais inférieur à celui du verre principal. Cet ordre dans le caractère absorbant des trois verres se retrouve dans leurs teneurs respectives en composé à l'origine du caractère absorbant considéré. Ainsi, le procédé selon l'invention peut notamment être un procédé de décoloration d'un verre dont on fait baisser la teneur en un certain pigment quand on passe du verre principal au verre final. Cette possibilité présente notamment l'intérêt suivant : si un four principal fabrique un verre principal contenant une fort teneur en un composé (par exemple 2% en poids d'oxyde de fer) et que l'on a besoin ponctuellement d'un verre final avec une plus faible proportion en ledit composé (par exemple verre final à 1% en poids d'oxyde de fer), on peut facilement fabriquer ce verre par ajout au verre principal d'un verre auxiliaire contenant encore moins dudit composé (par exemple 0% d'oxyde de fer), sans interrompre ou perturber le fonctionnement du four principal. Lorsque le volume souhaité est réalisé, on arrête l'ajout du verre auxiliaire et ainsi on reprend la fabrication précédente, encore une fois sans perturber le fonctionnement du four principal. Comme pour l'utilisation de frittes de verre selon l'art antérieur (dans un contexte de coloration), on modifie la composition d'un verre (et le cas échéant son pouvoir absorbant) non plus à partir de la matière première enfournée dans le four de fusion, mais dans la zone terminale du four. Cependant, dans le cadre de la présente invention,
- on n'utilise plus une fritte mais un verre auxiliaire de matrice (composition chimique hors éléments particuliers comme les additifs ou composés particuliers) identique ou voisine de celle du verre final à fabriquer,
- le verre auxiliaire est introduit chaud et fondu dans le verre principal,
- le verre auxiliaire est élaboré sur une installation séparée, à coté du four principal et le cas échéant à proximité de la cellule de mélange. Notamment, le dispositif de préparation du verre auxiliaire peut être de petite dimension, surtout lorsqu'il fait appel à la technologie des brûleurs immergés, ce qui permet généralement de l'ajouter à côté du dispositif principal sans modification de l'infrastructure générale. De plus, même dans le cadre d'une coloration, l'utilisation de pigments colorants comme un oxyde colorant est moins onéreuse que l'utilisation de frittes. Le four principal est généralement principalement chauffé par au moins un brûleur atmosphérique (parfois également appelé brûleur aérien, ce type de brûleur n'étant pas immergé), ce qui signifie qu'au moins la moitié de l'énergie thermique apportée dans ce four l'est par au moins un brûleur atmosphérique. Le cas échéant, le four principal peut être tel que son moyen de chauffage est exclusivement constitué de brûleurs atmosphériques.
Le four principal est un four de fusion comprenant généralement une zone de fusion et une zone d'affinage située après la zone de fusion. Ce four principal présente généralement une surface au sol allant de 200 à 600 m2, notamment entre 300 et 500 m2. Le cas échéant, ce four de fusion peut être suivi d'une braise (« conditionning zone » ou « working end » en anglais) pour le conditionnement thermique dont la surface au sol peut par exemple aller de 50 à 300 m2, selon l'importance de l'installation. Le dispositif principal, qui peut comprendre un four principal suivi d'une braise, peut présenter une surface au sol allant de 250 à 900 m2.
Pour le four auxiliaire générant le verre auxiliaire, on peut choisir une technologie de fusion classique, tout électrique ou partiellement électrique. Ce type de four assure généralement un niveau d'affinage suffisant (faible taux de bulles dans l'article final).
Cependant, de préférence, le four auxiliaire générant le verre auxiliaire comprend au moins un brûleur immergé. Ce four auxiliaire est de préférence principalement chauffé par au moins un brûleur immergé, ce qui signifie qu'au moins une partie, notamment au moins la moitié, de l'énergie thermique apportée dans ce four l'est par au moins un brûleur immergé. Le four auxiliaire peut être tel que son moyen de chauffage peut n'être constitué que de brûleurs immergés. En effet, le choix de la technologie de la combustion immergée est avantageuse d'abord à cause de sa tirée spécifique pouvant être élevée (pouvant par exemple dépasser 15 t/j.m2 en calcin verre sodocalcique), par exemple pouvant aller de 5 à 20 t/j.m2, ce qui entraîne un temps de transition (pour passer d'une fabrication à l'autre, par exemple d'une couleur à une autre) faible car on diminue alors beaucoup le rapport massique verre résident dans le four / verre tiré: ceci est avantageux car c'est le temps de transition du four auxiliaire qui détermine en fait le temps de transition global du dispositif entier. Cette technologie des brûleurs immergés est également avantageuse dans le cadre de l'invention par l'effet de puissant mélangeur que possède la technologie de combustion immergée, ce qui conduit à une meilleure homogénéité du verre auxiliaire. Par suite du transfert de chaleur très convectif assuré par le brassage du brûleur immergé, il n'y a pas de difficulté particulière à fondre des verres très absorbants de l'infrarouge, ce qui est particulièrement recherché puisque les verres colorants sont généralement riches en colorants comme l'oxyde de fer. En effet, si le moyen de chauffage est surtout radiatif (cas des brûleurs atmosphériques et électrodes immergés), de forts gradients de température dans la masse du verre en fusion peuvent être observés, ce qui nuit à son homogénéité.
Enfin la conception d'un four à brûleurs immergés est simple car elle implique de faibles surfaces et pas de superstructure très chaude. A titre d'exemple, un four à combustion immergée fondant du calcin sodocalcique à une tirée de 10Ot/j peut avoir une surface non supérieure à 6 m2.
Le four auxiliaire est un four de fusion et présente généralement une surface au sol allant de 1 à 50 m2, pouvant donc être inférieure à 6 m2. Avant mélange des deux flux de verre, le verre auxiliaire est de préférence affiné dans une cellule d'affinage (ou « affineur »). L'affineur peut avoir une surface au sol allant de 1 à 50 m2. Ainsi le dispositif auxiliaire qui peut comprendre un four auxiliaire suivi d'un affineur , peu présenter une surface au sol allant de 2 à 100 m2.
Un procédé d'affinage particulièrement adapté pour faire suite à un four comprenant au moins un brûleur immergé est l'affinage sous pression réduite tel que décrit dans le WO99/35099. Le système d'affinage comportant le minimum de verre résident est le meilleur, toujours pour réduire le temps de transition. L'affinage sous pression réduite, statique ou comportant un organe dynamique en rotation, est préféré.
Le verre auxiliaire peut se déverser dans le canal conduisant le flux principal vers la station de formage. Le cas échéant, le verre auxiliaire et le verre principal peuvent tous deux se déverser dans une cellule de mélange (que l'on peut également appeler cellule de coloration lorsque la modification de composition correspond à une modification de couleur) placée avant la station de formage. Dans tous les cas le mélange des deux verres au sein du verre final est homogénéisé à l'aide d'agitateurs, avant que le verre n'atteigne la station de formage. La cellule de mélange peut être un compartiment de forme approximativement carrée ou rectangulaire (vu de dessus) et est équipée d'agitateurs suffisamment puissants pour homogénéiser efficacement. La dimension de cette cellule et le nombre des agitateurs dépendent de la tirée. Sa température de fonctionnement va généralement de 1100°C à 1300°C, notamment autour de 1200°C.
Les agitateurs (pouvant être dans l'éventuelle cellule de mélange) peuvent notamment être verticaux et comporter plusieurs niveaux de pales inclinées, en sens inverses d'un agitateur à l'autre pour réaliser un mélange à la fois vertical et horizontal. Ces agitateurs peuvent par exemple être réalisés en platine rhodié, en alliage métallique réfractaire ou en céramique structurale (alumine, zircone mullite, mullite, etc). Dans ces deux derniers cas on procède à un dépôt plasma de platine pour assurer l'inertie au contact du verre, après dépôt de couches barrière appropriées. Le verre auxiliaire fondu est introduit dans le verre principal de manière à éviter de former des bulles.
Le verre final, obtenu après mélange du verre principal et du verre auxiliaire, doit être homogène (notamment en teinte), pour satisfaire le cahier des charges des produits visés, ledit cahier des charges étant particulièrement exigeant dans le cas du verre plat pour le bâtiment ou l'automobile.
Le verre auxiliaire représente généralement au plus 20% , en particulier 0,5 à 20 % et plus généralement 1 à 15 % et même 2 à 10 % de la masse du verre final. Pour conserver la qualité de pâte du verre final et en particulier assurer un faible taux de bulles, il est préférable de s'assurer de la cohérence des deux verres à mélanger sur le plan de l'oxydo réduction : ainsi, si l'on appelle « redox » d'un ion d'un métal le rapport de la quantité (molaire ou massique) de cet ion sur la quantité totale du même métal, on préfère que pour un métal donné, les redox des différents ions d'une part dans le verre principal et d'autre part dans le verre auxiliaire ne présentent pas une différence supérieure à 0,1. A titre d'exemple, en ce qui concerne le métal fer, si le redox de l'ion Fe2+ dans le verre principal est de
0,2 , on préfère que le redox de l'ion Fe2+ dans le verre auxiliaire soit de 0,2 ± 0,1.
On préfère que le mélange des deux verres soit effectué alors qu'ils ont sensiblement la même température, c'est-à-dire que la différence de leur température est au plus de 100°C. Généralement, au moment de leur mélange, le verre auxiliaire et le verre principal présentent tous deux une température allant de
1100 à 1300°C et même entre 1100 et 1200°C.
Ce soucis de correspondance entre les deux verres sur le plan de la température et du redox vient du fait que de trop fortes différences peuvent être à l'origine d'une nouvelle formation de bulles dès leur mélange.
Lorsque le four auxiliaire comprend au moins un brûleur immergé, un avantage du brûleur immergé est de faire baisser le taux de sulfate (généralement exprimé en % de SO ) dans le verre auxiliaire. En effet, l'eau produit par les gaz de combustion, lesquels brassent efficacement le verre auxiliaire, débarrassent quasi-totalement le verre auxiliaire du sulfate. Ainsi, le verre auxiliaire ne peux pas être source de bulles provenant d'un dégagement gazeux de SO2. On peut se servir du verre auxiliaire pour influencer le redox du verre final. En effet, La limite de solubilité du sulfate dans un verre peut être représentée par une courbe décroissante lorsque le redox (en particulier celui de Fe2+) augmente. Ainsi, on a généralement tendance à générer des bulles indésirables de SO2 lorsqu'on augmente le redox. C'est pourquoi il n'est généralement pas évident de mélanger deux verres au redox différent. L'usage d'un four à brûleurs immergés pour réaliser le verre auxiliaire apporte une solution à ce problème. En effet, comme le verre auxiliaire est débarrassé de son sulfate, l'apport du verre auxiliaire, revient à diluer en quelque sorte le sulfate présent dans le verre principal et donc à s'éloigner de la limite de solubilité. Le risque de formation de bulles est donc diminué. Cela donne de la flexibilité au procédé car l'on peut profiter de cette dilution pour augmenter un peu le redox du verre final en préparant un verre auxiliaire au redox un peu plus élevé. Surtout, la technologie des brûleurs immergés permet de baisser la température de préparation du verre auxiliaire si l'on compare avec une autre technologie de chauffe comme le chauffage électrique. Ceci est avantageux car cela permet de se rapprocher beaucoup plus rapidement de la température de mélange des deux verres, avantageusement plus basse que la température de préparation des deux verres à mélanger. En effet, on s'écarte encore de la limite de solubilité du sulfate en baissant la température. Ainsi, le procédé selon l'invention utilisant la technique des brûleurs immergés pour le four auxiliaire permet de réaliser un verre coloré par l'oxyde de fer allant du vert jusqu'au bleu, grâce à la possibilité de faire varier le redox du Fe2+ dans un très large domaine.
Ainsi, l'invention concerne notamment le procédé selon lequel
- le four auxiliaire débarrasse quasi-totalement le verre auxiliaire des sulfates présents dans les matières premières l'alimentant,
- le verre auxiliaire présente une teneur en fer plus élevée que celle du verre principal et un redox en Fe2+ plus élevé que celui du verre principal.
L'invention concerne notamment le procédé selon lequel le verre auxiliaire présente une teneur quasi-nulle en sulfate, le verre principal présente une teneur en sulfate allant de 0,2 à 0,35 %, exprimé en % en poids de SO3, le verre auxiliaire présente un redox en Fe2+ plus élevé que le verre principal et une teneur en fer plus élevée que le verre principal. A titre d'exemple, on peut préparer un verre principal dans un four à brûleurs aériens, aux caractéristiques suivantes :
- 0,24% de SO3,
- redox Fe + : 0,23 - teneur en Fe : 900 ppm en poids,
- température de préparation : 1450°C,
- pourcentage du verre final : 90% et un verre auxiliaire dans un four à brûleur immergé aux caractéristiques suivantes : - 0% de SO3,
- redox Fe2+ : 0,36,
- teneur en Fe : 4,3% en poids,
- température de préparation : 1200°C,
- pourcentage du verre final : 10% Ces deux verres sont mélangés à 1150°C pour produire un verre final aux caractéristiques suivantes :
- 0,22% de SO3,
- redox Fe2+ : 0,34 ,
- teneur en Fe: 0,51% en poids. On ne sait actuellement pas réaliser un verre au redox aussi élevé dans un four classique à brûleurs aériens, en raison de la difficulté à contrôler le redox.
Le four de préparation du verre principal est généralement alimenté en matières vitrifiables classiques se présentant sous forme de poudre, et le cas échéant partiellement en calcin. La quantité de calcin représente généralement 5 à 25 % de la masse des matières premières alimentant le four principal.
Le four de préparation du verre auxiliaire peut être alimenté de plusieurs manières :
- soit en calcin, par exemple de retour ligne (c'est-à-dire provenant de découpe ou casse de verre en aval du même dispositif), - soit en composition vitrifiable classique se présentant généralement sous forme de poudre,
- soit en verre fondu provenant d'un prélèvement effectué en amont sur le flux de verre principal - soit en fritte de coloration, notamment lorsque l'on cherche à colorer par l'oxyde de chrome ou par une combinaison d'au moins deux de ces moyens.
Pour alimenter le four auxiliaire, dans certains cas (par exemple dans les cas ou on n'est pas tenu de recycler le calcin de retour ligne) on pourra trouver avantage à un prélèvement du verre principal en amont du point de mélange des deux flux, par exemple dans une braise suivant le four principal. L'énergie à apporter dans le four auxiliaire est alors considérablement réduite.
Les colorants (ou pigment) pouvant être utilisés en tant que composé particulier en concentration différente dans le verre principal et le verre auxiliaire dans le cadre de la présente invention sont en général des oxydes très fusibles (ceux du fer, du cobalt, du nickel...). Pour le cas ou le verre final devrait contenir un oxyde de chrome, celui pourrait être introduit dans le four auxiliaire sous forme de fritte de façon à minimiser les risques de présence d'infondus dans le verre final. L'oxyde de chrome est généralement utilisé seul pour donner une coloration verte ou jaune au verre, ou alors il est présent en addition à de l'oxyde de cobalt dans le cadre d'un verre bleu.
Le four de fusion du verre auxiliaire comporte avantageusement un système de récupération de chaleur visant à réchauffer par les fumées qu'il génère, les matières premières (comme le calcin) avec lesquelles on l'alimente (circulation à contre courant des fumées par rapport aux matières premières introduites). On économise ainsi de l'énergie ce qui est avantageux notamment lorsque le four fonctionne au gaz combustible et à l'oxygène pur, système le plus simple pour la combustion immergée. Le procédé et dispositif selon l'invention comprend généralement en aval du point de mélange des deux verres, le cas échéant dans une cellule de mélange, une station de formage, laquelle peut être un four de verre flotté, une station de laminage ou une station de formage de verre creux.
Le verre principal comprend généralement au moins 55% en poids de silice (SiO2). Le verre principal comprend généralement moins de 5% en poids d'alumine .
Le verre principal comprend généralement :
- 65 à 75 % en poids de SiO2, - 10 à 15 % en poids de Na2O,
- 7 à 11 % en poids de CaO (rôle de fluidifiant à la fusion), Le verre principal peut en plus également comprendre
- 0 à 5 % en poids de B2θ3, - 0 à 5 % en poids MgO,
- 0 à 2% en poids d'alumine,
- 0 à 2% en poids d'oxyde de fer,
- 0 à 200 ppm en poids de sélénium (sous sa forme métallique),
- 0 à 500 ppm en poids d'oxyde de cobalt, - 0 à 1000 ppm en poids d'oxyde de chrome,
- 0 à 1000 ppm en poids d'oxyde de cuivre,
- 0 à 2000 ppm en poids d'oxyde de nickel,
- 0 à 1% en poids d'oxyde de tungstène,
- 0 à 2% en poids d'oxyde de cérium, - 0 à 2% en poids d'oxyde de titane,
- Oà 2500 ppm d'oxyde d'uranium.
Le verre auxiliaire comprend généralement au moins 50% et même au moins 55% en poids de SiO2. Le verre auxiliaire comprend généralement moins de 5% en poids d'alumine. Le verre auxiliaire comprend généralement :
- 50 à 75 % en poids de SiO2,
- 8 à 15 % en poids de Na2O
- 0 à 5 % en poids de B2O3
- 0 à 2 % en poids d'alumine. Le composé en teneur différente dans le verre principal et le verre auxiliaire peut être un pigment, lequel pouvant par exemple être au moins l'un des suivant :
- oxyde d'un métal (autre que Si, Na B et Al) comme le fer, le chrome, le cobalt, le cuivre, le nickel, le zirconium, le titane, le manganèse, le praséodyme, le zinc, le cérium, le néodyme, l'erbium, le vanadium, le tungstène,
- le sélénium (dans sa forme métallique).
Le cas échéant, le composé en teneur différente dans le verre principal et le verre auxiliaire peut être l'oxyde de plomb, même en quantité très importante (par exemple 30% en poids). En effet, l'oxyde de plomb dans un verre peut servir à absorber les rayons X. Comme cet oxyde est particulièrement corrosif vis-à-vis des réfractaires, il est particulièrement avantageux de l'introduire dans le verre final par le biais du dispositif auxiliaire, car ainsi, sa nocivité s'exercera vis-à-vis du dispositif auxiliaire, plus petit, et épargnera le dispositif principal. Ainsi, on usera moins de réfractaires. Bien entendu, il n'est pas exclu que le verre principal contienne également de l'oxyde de plomb.
Le cas échéant, le composé particulier est généralement présent dans le verre auxiliaire en une teneur allant de 20 ppm en poids à 30% en poids. Selon l'invention, le composé en teneur différente dans le verre principal et le verre auxiliaire peut être un oxyde d'un métal autre que Si, Na, B et Al. Cet oxyde peut être à l'origine d'une coloration du verre auxiliaire visible à l'œil nu, ledit oxyde étant présent dans le verre auxiliaire en une teneur supérieure à celle du même oxyde dans le verre principal (le verre principal peut donc ne pas contenir cet oxyde). Ainsi, le composé particulier peut être un pigment présent dans le verre auxiliaire en une teneur plus importante à la teneur du même pigment dans le verre principal et en une teneur suffisante pour conférer une coloration visible à l'œil nu au verre final.
Tout composé particulier dans le verre auxiliaire ou le verre principal ou le verre final y est présent en une teneur inférieure à sa limite de solubilité dans ledit verre, ladite limite pouvant dépendre de la composition dudit verre.
Ainsi, notamment lorsqu'il joue le rôle d'augmenter un caractère absorbant, le verre auxiliaire peut généralement comprendre au moins l'un des éléments suivant dans les quantités mentionnées : - 0 à 30% et plus particulièrement 0,5 à 20% en poids d'oxyde de fer,
- 0 à 1,5% et plus particulièrement 20 ppm à 1% en poids de sélénium,
- 0 à 2% et plus particulièrement 20 ppm à 2% en poids d'oxyde de cobalt,
- 0 à 2% et plus particulièrement 20 ppm à 2% en poids d'oxyde de chrome,
- 0 à 5% et plus particulièrement 50 ppm à 5% en poids d'oxyde de nickel, - 0 à 15% et plus particulièrement 0,5% à 10% en poids d'oxyde de cérium,
Lorsqu'il joue le rôle d'augmenter un caractère absorbant grâce à un composé particulier, le verre auxiliaire contient au moins ledit composé en quantité supérieure par rapport au verre principal (qui peut donc ne pas contenir ledit composé), de façon à faire augmenter la teneur en ce composé dans le verre final par rapport au verre principal. Notamment, le verre auxiliaire peut contenir de l'oxyde de fer en quantité suffisante pour conférer à l'œil nu de la coloration verte au verre final. S'il s'agit de conférer de la couleur verte au verre final grâce à l'oxyde de fer contenu dans le verre auxiliaire, ceci signifie notamment que si le verre principal contient déjà de l'oxyde de fer, le verre auxiliaire en contient plus
(teneur supérieure) de façon à ce que le verre final présente à l'œil nu une coloration verte plus prononcée que le verre principal.
Le verre principal peut comprendre au moins un ion d'un métal autre que Si, Na, B et Al , ledit ion étant également contenu dans le verre auxiliaire, la différence de redox de cet ion entre d'une part le verre principal et d'autre part le verre auxiliaire, n'étant pas supérieur à 0,1.
Entre le verre principal et le verre auxiliaire, il existe une différence en la teneur en au moins un composé. Cette différence de teneur est généralement d'au moins 10% de la teneur (en % en poids) la plus forte entre ces deux verres et elle peut aller jusqu'à 100%. Ainsi, à titre d'exemple, si un composé particulier est présent à raison de 0% dans l'un de ces deux verres et à raison de 20% dans l'autre, la différence de teneur est de 20 - 0 = 20 soit 100% de la teneur la plus forte. Notamment, l'invention concerne un verre plat comprenant de l'oxyde de fer lui conférant une coloration verte de façon homogène dans son épaisseur ainsi qu'un verre plat comprenant de l'oxyde de fer lui conférant une coloration bleu de façon homogène dans son épaisseur (dans la masse). Par une installation de flottage sur un bain de métal fondu, ce verre peut être produit en ruban de plus de 2 m de largeur.
La figure 1 décrit très schémafiquement un mode de réalisation de l'invention. L'enfournement des matières premières n'y est pas représenté. Le dispositif principal comprend un four 1 et une braise 3. Le four 1 à brûleurs atmosphériques alimenté en matières vitrifiables sous forme de poudre et/ou calcin produit un verre principal s'écoulant au travers du corset 2 dans la braise 3 (pour le conditionnement thermique) ledit verre principal alimentant au travers du canal 4 une station de formage 5 de verre flotté pour produire du verre plat. Le canal 4 reçoit un verre auxilliaire produit dans un four 6 à brûleurs immergés dont le verre est affiné en 7. Le dispositif auxiliaire comprend le four 6 et l'affineur 7. Les deux verres (principal et coloré) sont mélangés dans le canal 4 muni de moyens d'homogénéisation mécaniques (agitateurs) avant que leur mélange n'atteigne la station float 5 dont seule la toute première partie est représentée. On décrit ci-après des exemples de fabrication de verres teintés pour l'automobile.
EXEMPLES
Le dispositif selon l'invention est constitué d'un four principal (également appelé fondoir) équipé de brûleurs atmosphériques transversaux, de surface au sol de 350 m2, fonctionnant avec une profondeur de verre fondue de 1 ,5 m, d'un four auxiliaire à brûleurs immergés et de surface au sol de 3 m2, les deux flux de verre étant mélangés dans une cellule de coloration ayant une surface au sol d'environ 24 m2 et qui comprend 2 ou plus rangées d'agitateurs dont le diamètre de pales extérieur est de 500 mm. Le four principal élabore en continu un verre faiblement coloré comprenant
0,6% d'oxyde de fer avec un redox Fe2+ de 0,30 à une tirée de 600 tonnes par jour (t/j). Un fonctionnement continu est favorable à la qualité du verre produit et à la durée de vie du four. Pour aboutir à un verre final à 0,85% d'oxyde de fer, on ajoute 30t/j d'un verre auxiliaire contenant 5,85% d'oxyde de fer. Ceci nécessite environ 28 t de calcin par jour, soit une partie seulement du calcin de retour ligne, l'autre partie étant introduite dans le four principal suivant une quantité adaptée à la production du verre à 0,6% d'oxyde de fer. La tirée totale de la ligne est alors de 630t/j : en fusion classique (fusion classique c'est-à-dire avec introduction des colorants en zone d'enfournement) on aurait dû la baisser à environ 560 t/j. Pour faire une nuance teintée à 1% en oxyde de fer, on peut porter la tirée du four auxiliaire à environ 46 t/j avec le même taux d'introduction d'oxyde de fer (la surface au sol est alors de 4,5 m2 environ), ou porter ce taux à 9% avec la même tirée de 30 t/j. Dans le premier cas la tirée totale atteint 646 t/j alors qu'en fusion classique (un seul four de fusion) elle n'aurait pas dépassé 550t/j.
La transition s'effectue par transition dans le four auxiliaire : le rapport du verre résident sur la tirée est d'environ 7,5t sur 5Otj soit 0,15 jours. La transition (que l'on peut de plus raccourcir par surcoloration) est complète en environ 0,15 x
3 = 0,45 jours. Pendant ce temps le verre du four auxiliaire n'est préférentiellement pas introduit dans le four principal.
La durée de transition sur le four principal en coloration ou décoloration est ainsi de l'ordre d'une demi journée maximum, ce qui bien plus faible que les 3 à 5 jours nécessaires avec une configuration classique, c'est-à-dire un four unique de même tirée totale dont le flux est additionné avant formage en frittes de coloration.

Claims

REVENDICATIONS
1. Procédé de fabrication d'un verre comprenant la préparation d'un flux principal d'un verre principal liquide par un dispositif principal comprenant un four principal, la préparation d'un flux auxiliaire d'un verre auxiliaire liquide par un dispositif auxiliaire comprenant un four auxiliaire, le flux auxiliaire étant plus faible que le flux principal, le verre auxiliaire étant de composition différente de celle du verre principal, les deux flux étant ensuite mélangés en un seul flux total du verre final, le four auxiliaire comprenant au moins un brûleur immergé.
2. Procédé selon la revendication précédente, caractérisé en ce que le dispositif auxiliaire comprend un affineur situé après le four auxiliaire.
3. Procédé selon l'une des revendications précédentes caractérisé en ce que le flux auxiliaire représente au plus 20% du flux total.
4. Procédé selon l'une des revendications précédentes caractérisé en ce que le verre final est transformé en verre plat , notamment par une station de verre flotté.
5. Procédé selon la revendication précédente caractérisé en ce que le verre plat a une largeur supérieure à 2 mètres.
6. Procédé selon la revendication précédente caractérisé en ce que le verre plat a une largeur supérieure 3 mètres.
7. Procédé selon l'une des revendications précédentes caractérisé en ce que le verre principal contient au moins 55% en poids de silice et moins de 5% en poids d'alumine.
8. Procédé selon l'une des revendications précédentes caractérisé en ce que le verre auxiliaire contient au moins 50% en poids de silice et moins de 5% en poids d'alumine.
9. Procédé selon l'une des revendications précédentes caractérisé en ce que le verre auxiliaire est de composition différente de celle du verre principal en ce qui concerne au moins un composé, ledit composé étant présent dans le verre auxiliaire en une teneur allant de 20 ppm en poids à 30% en poids.
10. Procédé selon l'une des revendications précédentes caractérisé en ce que le verre auxiliaire est de composition différente de celle du verre principal en ce qui concerne au moins un composé, ledit composé étant un pigment choisi parmi
- un oxyde d'un métal choisi parmi le fer, le chrome, le cobalt, le cuivre, le nickel, le zirconium, le titane, le manganèse, le praséαdyme, le zinc, le cérium, le néodyme, l'erbium, le vanadium, le tungstène,
- le sélénium.
11. Procédé selon l'une des revendications précédentes caractérisé en ce que le verre auxiliaire est de composition différente de celle du verre principal en ce qui concerne au moins un composé, ledit composé étant un pigment présent dans le verre auxiliaire en une teneur plus importante à la teneur du même pigment dans le verre principal et en une teneur suffisante pour conférer une coloration visible à l'œil nu au verre final.
12. Procédé selon l'une des revendications précédentes caractérisé en ce que le verre auxiliaire est de composition différente de celle du verre principal en ce qui concerne au moins un composé, ledit composé étant de l'oxyde de fer conférant une coloration verte à bleu.
13. Procédé selon l'une des revendications précédentes caractérisé en ce qu'au moment du mélange, le verre auxiliaire et le verre principal ont tous deux une température allant de 1100 à 1200°C.
14. Procédé selon l'une des revendications précédentes, caractérisé en ce que le four auxiliaire débarrasse quasi-totalement le verre auxiliaire des sulfates présents dans les matières premières l'alimentant, le verre auxiliaire présentant une teneur en fer plus élevée que celle du verre principal et un redox en Fe2+ plus élevé que celui du verre principal.
15. Procédé selon l'une des revendications précédentes, caractérisé en ce que le verre auxiliaire présente une teneur quasi-nulle en sulfate, le verre principal présente une teneur en sulfate allant de 0,2 à 0,35 %, exprimé en % en poids de SO3, le verre auxiliaire présentant un redox en Fe2+ plus élevé que le verre principal et une teneur en fer plus élevée que le verre principal.
16. Procédé selon l'une des revendications précédentes, caractérisé en ce que le verre auxiliaire contient 0,5 à 20% en poids d'oxyde de fer.
17. Procédé selon l'une des revendications précédentes caractérisé en ce que le four principal fonctionne avec une tirée spécifique allant de 1 ,4 à 2 t/j.m2 et une profondeur de verre fondu supérieure à 1 mètre et en ce que le four auxiliaire fonctionne avec une tirée spécifique allant de 5 à 20 t/j.m2.
18. Procédé selon l'une des revendications précédentes caractérisé en ce que le four auxiliaire présente une surface au sol allant de 1 à 50 m2 et en ce que le four principal présente une surface au sol allant de 200 à 600 m2. 19. Dispositif de fabrication d'un verre, notamment selon le procédé de l'une des revendications précédentes, comprenant un dispositif principal comprenant un four principal générant un flux principal de verre, un dispositif auxiliaire comprenant un four auxiliaire principalement chauffé par au moins un brûleur immergé et générant un flux auxiliaire d'un verre auxiliaire, les deux flux étant ensuite mélangés en un seul flux total générant le verre final. 20. Dispositif selon la revendication précédente de dispositif caractérisé en ce que le four principal est principalement chauffé par au moins un brûleur atmosphérique. 21. Dispositif selon l'une des revendications précédentes de dispositif caractérisé en ce qu'il comprend après mélange des deux flux, une station de formage en continu de verre plat.
22. Dispositif selon l'une des revendications précédentes de dispositif caractérisé en ce que le four auxiliaire présente une surface au sol allant de 1 à 50 m2 et en ce que le four principal présente une surface au sol allant de 200 à 600 m2.
23. Verre fabriqué selon le procédé ou le dispositif de l'une des revendications précédentes.
24. Verre plat comprenant de l'oxyde de fer lui conférant une coloration verte de façon homogène dans la masse.
25. Verre plat comprenant de l'oxyde de fer lui conférant une coloration bleu de façon homogène dans la masse.
6. Ruban de plus de 2 m de largeur comprenant le verre de l'une des deux revendications précédentes
PCT/FR2004/000420 2003-02-27 2004-02-25 Procede de preparation d'un verre par melange de verres fondus WO2004078664A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2004218197A AU2004218197B2 (en) 2003-02-27 2004-02-25 Method for the production of glass from a mixture of various metals
DE602004014256T DE602004014256D1 (de) 2003-02-27 2004-02-25 Verfahren und vorrichtung zur herstellung von glas durch mischen von glasschmelzen
JP2006505677A JP2007526863A (ja) 2003-02-27 2004-02-25 溶融ガラスを混合することによるガラスの製造方法
CN2004800055352A CN1777563B (zh) 2003-02-27 2004-02-25 使用熔融玻璃混合物生产玻璃的方法
EP04714354A EP1599423B1 (fr) 2003-02-27 2004-02-25 Procede et dispositif de preparation d'un verre par melange de verres fondus
BRPI0407828-4A BRPI0407828A (pt) 2003-02-27 2004-02-25 processo e dispositivo de fabricação de um vidro, processo de preparação de vidros finais, vidro e fita
US10/829,955 US20040224833A1 (en) 2003-02-27 2004-04-23 Process for producing a glass by mixing molten glasses
US11/673,765 US20070212546A1 (en) 2003-02-27 2007-02-12 Process for producing a glass by mixing molten glasses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR03/02373 2003-02-27
FR0302373A FR2851767B1 (fr) 2003-02-27 2003-02-27 Procede de preparation d'un verre par melange de verres fondus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/829,955 Continuation US20040224833A1 (en) 2003-02-27 2004-04-23 Process for producing a glass by mixing molten glasses

Publications (1)

Publication Number Publication Date
WO2004078664A1 true WO2004078664A1 (fr) 2004-09-16

Family

ID=32843014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/000420 WO2004078664A1 (fr) 2003-02-27 2004-02-25 Procede de preparation d'un verre par melange de verres fondus

Country Status (14)

Country Link
US (3) US20040168474A1 (fr)
EP (1) EP1599423B1 (fr)
JP (1) JP2007526863A (fr)
KR (1) KR20050101224A (fr)
CN (1) CN1777563B (fr)
AT (1) ATE397569T1 (fr)
AU (1) AU2004218197B2 (fr)
BR (1) BRPI0407828A (fr)
DE (1) DE602004014256D1 (fr)
ES (1) ES2308153T3 (fr)
FR (1) FR2851767B1 (fr)
PL (1) PL377277A1 (fr)
PT (1) PT1599423E (fr)
WO (1) WO2004078664A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058323A3 (fr) * 2009-11-13 2011-07-07 Roger Pauli Procédé et appareil de fusion
WO2013054045A1 (fr) 2011-10-12 2013-04-18 Saint-Gobain Glass France Miroir comprenant une couche modificatrice de tain
WO2014128402A1 (fr) 2013-02-19 2014-08-28 Saint-Gobain Glass France Procede de fabrication d'un verre avec melange d'un flux de verre liquide et dispositif
WO2015177474A1 (fr) 2014-05-21 2015-11-26 Saint-Gobain Glass France Miroir colore
US9611164B2 (en) 2007-03-20 2017-04-04 Saint-Gobain Glass France Glass-melting installation comprising two furnaces

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2832704B1 (fr) * 2001-11-27 2004-02-20 Saint Gobain Isover Dispositif et procede de fusion de matieres vitrifiables
FR2866328B1 (fr) * 2004-02-16 2006-05-26 Saint Gobain Verre plat au plomb par flottage sur un bain de metal
DE102006050079A1 (de) * 2006-10-24 2008-04-30 Füller Glastechnologie Vertriebs-Gmbh Verfahren und Vorrichtung zum Herstellen von gefärbtem Glas
US20110236846A1 (en) * 2008-01-18 2011-09-29 Gas Technology Institute Submerged combustion melter
US9096453B2 (en) 2012-06-11 2015-08-04 Johns Manville Submerged combustion melting processes for producing glass and similar materials, and systems for carrying out such processes
US8991215B2 (en) 2010-06-17 2015-03-31 Johns Manville Methods and systems for controlling bubble size and bubble decay rate in foamed glass produced by a submerged combustion melter
US9021838B2 (en) 2010-06-17 2015-05-05 Johns Manville Systems and methods for glass manufacturing
US8997525B2 (en) 2010-06-17 2015-04-07 Johns Manville Systems and methods for making foamed glass using submerged combustion
US8650914B2 (en) 2010-09-23 2014-02-18 Johns Manville Methods and apparatus for recycling glass products using submerged combustion
US8875544B2 (en) 2011-10-07 2014-11-04 Johns Manville Burner apparatus, submerged combustion melters including the burner, and methods of use
US9145319B2 (en) 2012-04-27 2015-09-29 Johns Manville Submerged combustion melter comprising a melt exit structure designed to minimize impact of mechanical energy, and methods of making molten glass
US9096452B2 (en) 2010-06-17 2015-08-04 Johns Manville Methods and systems for destabilizing foam in equipment downstream of a submerged combustion melter
US10322960B2 (en) 2010-06-17 2019-06-18 Johns Manville Controlling foam in apparatus downstream of a melter by adjustment of alkali oxide content in the melter
US8769992B2 (en) 2010-06-17 2014-07-08 Johns Manville Panel-cooled submerged combustion melter geometry and methods of making molten glass
US9115017B2 (en) 2013-01-29 2015-08-25 Johns Manville Methods and systems for monitoring glass and/or foam density as a function of vertical position within a vessel
US8973405B2 (en) 2010-06-17 2015-03-10 Johns Manville Apparatus, systems and methods for reducing foaming downstream of a submerged combustion melter producing molten glass
US9776903B2 (en) 2010-06-17 2017-10-03 Johns Manville Apparatus, systems and methods for processing molten glass
US8707739B2 (en) 2012-06-11 2014-04-29 Johns Manville Apparatus, systems and methods for conditioning molten glass
US8707740B2 (en) 2011-10-07 2014-04-29 Johns Manville Submerged combustion glass manufacturing systems and methods
US9032760B2 (en) 2012-07-03 2015-05-19 Johns Manville Process of using a submerged combustion melter to produce hollow glass fiber or solid glass fiber having entrained bubbles, and burners and systems to make such fibers
US8973400B2 (en) 2010-06-17 2015-03-10 Johns Manville Methods of using a submerged combustion melter to produce glass products
US9051199B2 (en) * 2011-02-24 2015-06-09 Owens-Brockway Glass Container Inc. Process for melting and refining soda-lime glass
EP2773593B1 (fr) * 2011-11-03 2020-07-15 Owens-Brockway Glass Container INC. Procédé de fusion et d'affinage de verre à base de silice
US8806896B2 (en) * 2012-10-17 2014-08-19 Owens-Brockway Glass Container Inc. Process for melting and refining silica-based glass
US8910497B2 (en) 2011-11-03 2014-12-16 Owens Brocking Glass Container Inc. Process for melting and refining silica-based glass
US9533905B2 (en) 2012-10-03 2017-01-03 Johns Manville Submerged combustion melters having an extended treatment zone and methods of producing molten glass
US9643869B2 (en) 2012-07-03 2017-05-09 Johns Manville System for producing molten glasses from glass batches using turbulent submerged combustion melting
EP2903941A4 (fr) 2012-10-03 2016-06-08 Johns Manville Procédés et systèmes de déstabilisation de la mousse dans des équipements en aval d'un pot de fusion à combustion immergée
US9227865B2 (en) 2012-11-29 2016-01-05 Johns Manville Methods and systems for making well-fined glass using submerged combustion
KR101809772B1 (ko) * 2013-01-07 2017-12-15 주식회사 케이씨씨 짙은 녹회색 저투과 유리 조성물
US9637406B2 (en) 2013-03-15 2017-05-02 Owens-Brockway Glass Container Inc. Apparatus for melting and refining silica-based glass
WO2014189504A1 (fr) 2013-05-22 2014-11-27 Johns Manville Brûleurs à combustion immergés
WO2014189501A1 (fr) 2013-05-22 2014-11-27 Johns Manville Brûleurs et fours de combustion immergés, et procédés d'utilisation
US11142476B2 (en) 2013-05-22 2021-10-12 Johns Manville Burner for submerged combustion melting
US9777922B2 (en) 2013-05-22 2017-10-03 Johns Mansville Submerged combustion burners and melters, and methods of use
WO2014189506A1 (fr) 2013-05-22 2014-11-27 Johns Manville Brûleurs et fours de combustion immergés, et procédés d'utilisation
US9731990B2 (en) 2013-05-30 2017-08-15 Johns Manville Submerged combustion glass melting systems and methods of use
EP3003997B1 (fr) 2013-05-30 2021-04-28 Johns Manville Brûleurs à combustion immergée comprenant un moyen d'amélioration du mélange pour dispositifs de fusion du verre, et l'utilisation
US10858278B2 (en) 2013-07-18 2020-12-08 Johns Manville Combustion burner
CN105565656B (zh) * 2014-10-17 2023-01-03 株式会社小原 光学玻璃
CN104529132A (zh) * 2015-01-27 2015-04-22 中国洛阳浮法玻璃集团有限责任公司 一种生产浮法玻璃的熔窑及着色剂的加入方法
JP6577215B2 (ja) * 2015-03-26 2019-09-18 AvanStrate株式会社 ガラス基板の製造方法
KR101579512B1 (ko) * 2015-04-28 2015-12-22 최쌍임 소다석회유리 조성물
US9688566B2 (en) * 2015-08-07 2017-06-27 Ferro Corporation Nickel-free and chromium-free forehearth colors for glass tanks
US9751792B2 (en) 2015-08-12 2017-09-05 Johns Manville Post-manufacturing processes for submerged combustion burner
US10670261B2 (en) 2015-08-27 2020-06-02 Johns Manville Burner panels, submerged combustion melters, and methods
US10041666B2 (en) 2015-08-27 2018-08-07 Johns Manville Burner panels including dry-tip burners, submerged combustion melters, and methods
US9815726B2 (en) 2015-09-03 2017-11-14 Johns Manville Apparatus, systems, and methods for pre-heating feedstock to a melter using melter exhaust
US9982884B2 (en) 2015-09-15 2018-05-29 Johns Manville Methods of melting feedstock using a submerged combustion melter
US10837705B2 (en) 2015-09-16 2020-11-17 Johns Manville Change-out system for submerged combustion melting burner
US10081563B2 (en) 2015-09-23 2018-09-25 Johns Manville Systems and methods for mechanically binding loose scrap
US10144666B2 (en) 2015-10-20 2018-12-04 Johns Manville Processing organics and inorganics in a submerged combustion melter
DE102015122912A1 (de) * 2015-12-29 2017-06-29 Beteiligungen Sorg Gmbh & Co. Kg Glasschmelzanlage und Verfahren zum Betreiben derselben
DE102016103755A1 (de) 2016-03-02 2017-09-07 Beteiligungen Sorg Gmbh & Co. Kg Refiner und Glasschmelzanlage
US10246362B2 (en) 2016-06-22 2019-04-02 Johns Manville Effective discharge of exhaust from submerged combustion melters and methods
US10337732B2 (en) 2016-08-25 2019-07-02 Johns Manville Consumable tip burners, submerged combustion melters including same, and methods
US10301208B2 (en) 2016-08-25 2019-05-28 Johns Manville Continuous flow submerged combustion melter cooling wall panels, submerged combustion melters, and methods of using same
US10196294B2 (en) 2016-09-07 2019-02-05 Johns Manville Submerged combustion melters, wall structures or panels of same, and methods of using same
US10233105B2 (en) 2016-10-14 2019-03-19 Johns Manville Submerged combustion melters and methods of feeding particulate material into such melters
CN110156318A (zh) * 2019-06-10 2019-08-23 江苏华东耀皮玻璃有限公司 一种高透光的绿色玻璃
US11912608B2 (en) * 2019-10-01 2024-02-27 Owens-Brockway Glass Container Inc. Glass manufacturing
US11440829B2 (en) * 2019-10-01 2022-09-13 Owens-Brockway Glass Container Inc. Utilization of sulfate in the fining of submerged combustion melted glass
US11680005B2 (en) * 2020-02-12 2023-06-20 Owens-Brockway Glass Container Inc. Feed material for producing flint glass using submerged combustion melting
CN113772950A (zh) * 2021-09-14 2021-12-10 清远南玻节能新材料有限公司 玻璃生产设备及玻璃生产方法
CN114804625B (zh) * 2022-04-23 2023-10-31 绵竹市红森玻璃制品有限责任公司 一种马尔斯绿玻璃瓶及制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3445216A (en) * 1962-12-06 1969-05-20 Owens Illinois Inc Molten addition of colorant in a glass furnace forehearth
US3486874A (en) * 1966-06-08 1969-12-30 Owens Illinois Inc Molten addition melter for a forehearth
DE2552116A1 (de) * 1974-11-25 1976-05-26 Owens Corning Fiberglass Corp Verfahren zur herstellung einer schmelzfluessigen glasmischung und vorrichtung zur durchfuehrung des verfahrens
US4133666A (en) * 1978-04-28 1979-01-09 Spectrum Glass Company, Inc. Method and apparatus for making variegated glass in a continuous sheet
JPS56120523A (en) * 1980-02-26 1981-09-21 Sasaki Glass Kk Method and furnace for continuously melting glass
EP0275534A1 (fr) * 1987-01-02 1988-07-27 Ppg Industries, Inc. Procédé et appareil pour homogénéiser du verre
WO1991011402A1 (fr) * 1990-01-30 1991-08-08 Cheng J Joseph Melange pour la fabrication de verre vert absorbant les radiations infrarouges et ultraviolettes
EP0527487A1 (fr) * 1991-08-14 1993-02-17 Central Glass Company, Limited Verre absorbant les rayons infrarouges et ultraviolets coloré en bleu et méthode pour sa production
EP0555552A1 (fr) * 1991-12-27 1993-08-18 Central Glass Company, Limited Verre absorbant les rayons infrarouges et ultraviolets coloré en vert et méthode pour sa production
US5862169A (en) * 1996-08-03 1999-01-19 Pilkington Plc Float glass production
WO1999037591A1 (fr) * 1998-01-26 1999-07-29 Saint-Gobain Vitrage Procede et dispositif de fusion et d'affinage de matieres vitrifiables
WO2003045859A1 (fr) * 2001-11-27 2003-06-05 Saint-Gobain Isover Dispositif et procede de fusion de matieres vitrifiables

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2268247A (en) * 1937-12-15 1941-12-30 Pittsburgh Plate Glass Co Process of making colored sheet glass
US3260587A (en) * 1962-12-05 1966-07-12 Selas Corp Of America Method of melting glass with submerged combustion heaters and apparatus therefor
US3248205A (en) * 1962-12-21 1966-04-26 Selas Corp Of America Glass melting furnace with submerged gas burners
US3337324A (en) * 1963-04-30 1967-08-22 Union Carbide Corp Process for melting and refining glass batch
DE1964852A1 (de) * 1969-12-24 1971-07-01 Weck Glaswerk Gmbh Verfahren und Vorrichtung zur Erzeugung von farbigem Glas
US3836349A (en) * 1972-10-26 1974-09-17 Ppg Industries Inc Method of making glass
GB1421910A (en) * 1972-10-31 1976-01-21 Pilkington Brothers Ltd Manufacture of flat glass
SU610800A1 (ru) * 1975-06-02 1978-06-15 Государственный Союзный Ордена Трудового Красного Знамени Институт По Проектированию Предприятий Стекольной Промышленности "Гипростекло" Устройство дл окрашивани стекломассы
US4277274A (en) * 1977-12-27 1981-07-07 Owens-Corning Fiberglas Corporation Process for controlling molten glass variables
US4877449A (en) * 1987-07-22 1989-10-31 Institute Of Gas Technology Vertical shaft melting furnace and method of melting
JPH061633A (ja) * 1992-06-24 1994-01-11 Central Glass Co Ltd 青色系色調の赤外線紫外線吸収ガラス
US5588978A (en) * 1992-11-24 1996-12-31 Imtec Process and apparatus for coloring glass
JPH06178639A (ja) * 1992-12-11 1994-06-28 Masahide Maruyama 底に複数の突起を設けた糸縺れ防止器
GB9601780D0 (en) * 1996-01-30 1996-04-03 Pilkington Plc A method of making glass
US5992335A (en) * 1996-09-13 1999-11-30 Nkk Corporation Method of blowing synthetic resin into furnace and apparatus therefor
WO1999035099A1 (fr) * 1998-01-09 1999-07-15 Saint-Gobain Vitrage Procede et dispositif de fusion et d'affinage de matieres vitrifiables
EG25130A (en) * 1999-02-05 2011-09-18 Saint Gobain Vitrage Process and apparatus for preparing batch materials for the manufacture of glass.
CA2323032A1 (fr) * 1999-10-18 2001-04-18 Air Products And Chemicals, Inc. Methode et appareil de securite pour la combustion a l'oxygaz a l'aide de la combustion d'un melange air-combustible
FR2818358B1 (fr) * 2000-12-15 2006-03-10 Saint Gobain Procede de destruction et/ou d'inertage de dechets

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3445216A (en) * 1962-12-06 1969-05-20 Owens Illinois Inc Molten addition of colorant in a glass furnace forehearth
US3486874A (en) * 1966-06-08 1969-12-30 Owens Illinois Inc Molten addition melter for a forehearth
DE2552116A1 (de) * 1974-11-25 1976-05-26 Owens Corning Fiberglass Corp Verfahren zur herstellung einer schmelzfluessigen glasmischung und vorrichtung zur durchfuehrung des verfahrens
US4133666A (en) * 1978-04-28 1979-01-09 Spectrum Glass Company, Inc. Method and apparatus for making variegated glass in a continuous sheet
JPS56120523A (en) * 1980-02-26 1981-09-21 Sasaki Glass Kk Method and furnace for continuously melting glass
EP0275534A1 (fr) * 1987-01-02 1988-07-27 Ppg Industries, Inc. Procédé et appareil pour homogénéiser du verre
WO1991011402A1 (fr) * 1990-01-30 1991-08-08 Cheng J Joseph Melange pour la fabrication de verre vert absorbant les radiations infrarouges et ultraviolettes
EP0527487A1 (fr) * 1991-08-14 1993-02-17 Central Glass Company, Limited Verre absorbant les rayons infrarouges et ultraviolets coloré en bleu et méthode pour sa production
EP0555552A1 (fr) * 1991-12-27 1993-08-18 Central Glass Company, Limited Verre absorbant les rayons infrarouges et ultraviolets coloré en vert et méthode pour sa production
US5862169A (en) * 1996-08-03 1999-01-19 Pilkington Plc Float glass production
WO1999037591A1 (fr) * 1998-01-26 1999-07-29 Saint-Gobain Vitrage Procede et dispositif de fusion et d'affinage de matieres vitrifiables
WO2003045859A1 (fr) * 2001-11-27 2003-06-05 Saint-Gobain Isover Dispositif et procede de fusion de matieres vitrifiables

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 0052, no. 00 (C - 084) 18 December 1981 (1981-12-18) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9611164B2 (en) 2007-03-20 2017-04-04 Saint-Gobain Glass France Glass-melting installation comprising two furnaces
WO2011058323A3 (fr) * 2009-11-13 2011-07-07 Roger Pauli Procédé et appareil de fusion
WO2013054045A1 (fr) 2011-10-12 2013-04-18 Saint-Gobain Glass France Miroir comprenant une couche modificatrice de tain
US9535198B2 (en) 2011-10-12 2017-01-03 Saint-Gobain Glass France Mirror comprising a silvering-modifying layer
WO2014128402A1 (fr) 2013-02-19 2014-08-28 Saint-Gobain Glass France Procede de fabrication d'un verre avec melange d'un flux de verre liquide et dispositif
WO2015177474A1 (fr) 2014-05-21 2015-11-26 Saint-Gobain Glass France Miroir colore
US10551529B2 (en) 2014-05-21 2020-02-04 Saint-Gobain Glass France Coloured mirror

Also Published As

Publication number Publication date
US20070212546A1 (en) 2007-09-13
FR2851767B1 (fr) 2007-02-09
AU2004218197A1 (en) 2004-09-16
CN1777563A (zh) 2006-05-24
PL377277A1 (pl) 2006-01-23
US20040224833A1 (en) 2004-11-11
ES2308153T3 (es) 2008-12-01
BRPI0407828A (pt) 2006-02-14
US20040168474A1 (en) 2004-09-02
CN1777563B (zh) 2010-05-05
ATE397569T1 (de) 2008-06-15
KR20050101224A (ko) 2005-10-20
AU2004218197B2 (en) 2009-06-11
PT1599423E (pt) 2008-09-11
EP1599423A1 (fr) 2005-11-30
JP2007526863A (ja) 2007-09-20
FR2851767A1 (fr) 2004-09-03
DE602004014256D1 (de) 2008-07-17
EP1599423B1 (fr) 2008-06-04

Similar Documents

Publication Publication Date Title
EP1599423B1 (fr) Procede et dispositif de preparation d'un verre par melange de verres fondus
CA2283252C (fr) Procede et dispositif de fusion et d'affinage de matieres vitrifiables
EP0970021B1 (fr) Procede et dispositif de fusion et d'affinage de matieres vitrifiables
EP2114838B1 (fr) Procede de fabrication du verre
US20100199721A1 (en) Apparatus and method for reducing gaseous inclusions in a glass
EP0133409B1 (fr) Procédé et dispositif de fusion, d'affinage et d'homogénéisation de verre et leurs applications
EP1527023B1 (fr) Procede et four a cuves en serie pour la fusion du verre
WO2009115725A2 (fr) Procede d'elaboration de verre
EP2303786B1 (fr) Procédé de confinement de déchets par vitrification en pots métalliques
WO2009157980A2 (fr) Procédé de barbotage d'un gaz dans du verre fondu
WO2005118493A1 (fr) Procede et dispositif d'affinage et d'homogeneisation du verre et produits obtenus a l'aide de ce procede
EP3137426B1 (fr) Procédé et dispositif de fusion et d'affinage du verre
FR2500434A1 (fr) Procede et dispositif de fabrication de verre en continu
JP2006513118A5 (fr)
EP2398744B1 (fr) Procede de fusion d'au moins une matiere minerale en poudre
BE1017302A3 (fr) Composition de verre silico-sodo-calcique.
WO2023088917A1 (fr) Four hydride de fabrication de verre à fusion électrique pour alimenter une unité de flottage
EP4183753A1 (fr) Four hydride de fabrication de verre à fusion électrique pour alimenter une unité de flottage
EP4342857A1 (fr) Four hydride de fabrication de verre présentant en particulier une flexibilité énergétique
FR3025195A1 (fr) Procede de fabrication de verre colore et dispositif pour sa mise en oeuvre
FR2936239A1 (fr) Procede de d'elaboration de verre

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 10829955

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004714354

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1525/KOLNP/2005

Country of ref document: IN

Ref document number: 01525/KOLNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 377277

Country of ref document: PL

WWE Wipo information: entry into national phase

Ref document number: 1020057015742

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006505677

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20048055352

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004218197

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2004218197

Country of ref document: AU

Date of ref document: 20040225

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004218197

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020057015742

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004714354

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0407828

Country of ref document: BR

WWG Wipo information: grant in national office

Ref document number: 2004714354

Country of ref document: EP