WO2004074888A1 - 回折格子素子、回折格子素子製造方法、及び回折格子素子の設計方法 - Google Patents

回折格子素子、回折格子素子製造方法、及び回折格子素子の設計方法 Download PDF

Info

Publication number
WO2004074888A1
WO2004074888A1 PCT/JP2004/000686 JP2004000686W WO2004074888A1 WO 2004074888 A1 WO2004074888 A1 WO 2004074888A1 JP 2004000686 W JP2004000686 W JP 2004000686W WO 2004074888 A1 WO2004074888 A1 WO 2004074888A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
diffraction grating
plane
refractive index
grating element
Prior art date
Application number
PCT/JP2004/000686
Other languages
English (en)
French (fr)
Inventor
Manabu Shiozaki
Masakazu Shigehara
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to JP2005502667A priority Critical patent/JP4609318B2/ja
Priority to DK04705514.0T priority patent/DK1596226T3/da
Priority to CA2480350A priority patent/CA2480350C/en
Priority to EP04705514A priority patent/EP1596226B1/en
Publication of WO2004074888A1 publication Critical patent/WO2004074888A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12107Grating

Definitions

  • the present invention relates to a diffraction grating element, a method of manufacturing a diffraction grating element, and a method of designing a diffraction grating element.
  • the present invention relates to a transmission type diffraction grating device, a method for manufacturing a diffraction grating device, and a method for designing a diffraction grating device.
  • the diffraction grating element is generally a transparent flat plate having a first surface and a second surface that are parallel to each other, and a diffraction grating is formed on the first surface (for example, Kojiko Kodate) , "Development and New Developments in Diffraction Optics", Bulletin of Japan Women's University, Faculty of Science, No. 10, pp. 7-24, (2002)).
  • this diffraction grating element for example, when light is incident on the first surface from a medium in contact with the first surface at a constant incident angle, the light is diffracted by the diffraction grating formed on the first surface, and is transmitted through a transparent flat plate. The light passes through the inside of the device and is emitted to the medium in contact with the second surface.
  • the diffraction angle of light emitted from the second surface of the transparent plate differs depending on the wavelength.
  • this diffraction grating element can be used as an optical splitter that splits incident light and emits the split light. Further, when guiding the light in a direction opposite to the above case, this diffraction grating element can be used as an optical multiplexer that multiplexes and outputs the incident light. Furthermore, by combining the diffraction grating element with another optical element, for example, a dispersion adjuster that adjusts the group delay time of light according to the wavelength can be configured. Therefore, the diffraction grating element is one of the important optical devices in a wavelength division multiplexing (WDM) optical communication system for multiplexing and transmitting multi-wavelength signal light.
  • WDM wavelength division multiplexing
  • Such a diffraction grating element is required to have high diffraction efficiency.
  • a number of structural ideas for improving the diffraction efficiency have been proposed, and a diffraction efficiency of about 95% has been reported (for example, US Patent Application Publication No. 2002/0135). 876, Hendrick J “. Gerritsen, et al.,” Rectangular surface-relief transmission gratings with a very large first-order diffraction. efficiency ( ⁇ 95%) for unpolarized light ", Applied Optics, Vol. 37, No. 25, pp. 5823-5829 (1998)).
  • the incident angle of the incident light incident on the diffraction grating element or the diffraction angle of the diffracted light diffracted and emitted by the diffraction grating element is 0 degree (the transparent flat plate on which the diffraction grating is formed). (Perpendicular to the first or second surface), but polarization dependence due to reflection occurs. Also, since the diffraction grating has a structure in which the refractive index changes periodically in only one direction, the angle between the period direction and the polarization direction is particularly small when the grating period is short (for example, 2 ⁇ or less). When it changes, the diffraction efficiency changes.
  • the diffraction efficiency of the diffraction grating element has polarization dependence, and the diffraction efficiencies of the ⁇ polarized light and the ⁇ ⁇ ⁇ polarized light are different from each other.
  • the angular dispersion of the diffraction angle is large (the wavelength resolution in multiplexing and demultiplexing is high), the period becomes short, and the polarization dependence becomes remarkable.
  • the cross section of the diffraction grating is canceled so as to cancel the polarization dependence due to reflection and the polarization dependence due to the structure. This is possible by properly designing the shape (height and width of the grid). However, even with such a design, it is not possible to improve the diffraction efficiency and reduce the polarization dependence of the diffraction efficiency over a wide wavelength range.
  • the present invention has been made to solve the above problem, and the polarization dependence due to the reflection and the polarization dependence due to the structure are separately cancelled, so that the diffraction efficiency can be reduced. It is an object of the present invention to provide a diffraction grating element capable of improving and reducing the polarization dependence of diffraction efficiency in a wide wavelength range. It is another object of the present invention to provide a method for manufacturing such a diffraction grating element.
  • the diffraction grating element according to the first aspect of the present invention is: (1) When the first plane and the second plane parallel to each other are imagined, the diffraction grating element is provided outside the first plane and in contact with the first plane. a first medium (refractive index ⁇ that is, (2) between the first plane and the second plane, the first plane and A second medium (refractive index n 2 ) and a third medium (refractive index n 3 , which are alternately provided in contact with the second plane in a predetermined direction parallel to the first plane to form a diffraction grating, provided with n 3 rather!
  • both the second medium and the third medium are solid, or the first medium or the fourth medium is made of an isotropic material.
  • the second medium and the third medium are alternately provided between the first medium and the fourth medium to form a diffraction grating.
  • Light that has entered the diffraction grating from the first medium is diffracted at the diffraction grating section and emitted to the fourth medium.
  • the light incident on the diffraction grating from the fourth medium is diffracted at the diffraction grating section and emitted to the first medium.
  • the refractive index of each medium satisfies the above relational expression, it is possible to improve the diffraction efficiency and reduce the polarization dependence of the diffraction efficiency in a wide wavelength range.
  • the average refractive index of definitive between the first plane and the second plane is taken as n av
  • the refractive index of the first medium "n av -0. It is preferable to satisfy the relational expression of 2 ⁇ n 1 ⁇ n av + 0.2j, and further, the refractive index n 4 of the fourth medium is set to “n av — 0.2 ⁇ n 4 ⁇ n av +0.2 It is preferable to satisfy the following relational expression.
  • the thickness of the first medium in the direction perpendicular to the first plane is 5 pm or more, and that the thickness of the fourth medium in the direction perpendicular to the first plane is 5 ⁇ or more.
  • the thickness of the fourth medium in the direction perpendicular to the first plane is 5 ⁇ or more.
  • the diffraction grating element according to the second invention is: (1) When the first to fourth planes arranged in parallel with each other are imagined, the diffraction grating element is provided outside the first plane and in contact with the first plane. (2) between the second and third planes, the first plane (refractive index ⁇ ) And the third medium (refractive index n 2 ) and the third medium (refractive index n 3 , which are alternately provided in a predetermined direction parallel to the first plane to form a diffraction grating. n 3 ⁇ n 2 ), (3) a fourth medium (refractive index n 4 ) provided outside and in contact with the fourth plane, and (4) between the first and second planes.
  • a fifth medium (average refractive index n 5 ) provided in contact with the first and second planes, and (5) a third and fourth plane between the third and fourth planes.
  • a sixth medium (average refractive index n 6 ) provided in contact with. Then, assuming that the average refractive index between the second plane and the third plane is n av , the average refractive index n s of the fifth medium is “ ⁇ n 5 ⁇ n av ” or “n av n 5 And a mean refractive index ⁇ 6 of the sixth medium satisfies a relational expression of “ ⁇ 4 ⁇ 6 n av ” or “n av n 6 n 4 ”.
  • the second medium and the third medium are alternately provided between the fifth medium and the sixth medium to form a diffraction grating.
  • Light that has entered the diffraction grating from the first medium passes through the fifth medium, is diffracted at the diffraction grating portion, and is emitted through the sixth medium to the fourth medium.
  • the light incident on the diffraction grating from the fourth medium passes through the sixth medium, is diffracted at the diffraction grating section, and is emitted to the first medium via the fifth medium. Since the refractive index of each medium satisfies the above relational expression, this diffraction grating element can improve the diffraction efficiency and reduce the polarization dependence of the diffraction efficiency over a wide wavelength range.
  • diffraction grating element has an average refractive index n 5 of the fifth medium "(ni n av) 1/2 - 0.2 ⁇ n 5 ⁇ (ni n av) 1/2 +0.2 " It is preferable that the following relational expression is satisfied. Further, the average refractive index n 6 of the sixth medium is “(n 4 n av ) 1/2 — 0.2 ⁇ n 6 ⁇ (n 4 n av ) 1/2 +0 .2 "is preferably satisfied.
  • the period of the diffraction grating and lambda when the thickness of the fifth medium in the direction perpendicular to the first plane and h 5, the light of wavelength ⁇ is incident on diffraction grating child, "XAZ4 (4 ⁇ 5 2 ⁇ 2 — ⁇ 2 ) 1/2 h h 5 ⁇ 3 ⁇ / 4 (4 ⁇ 5 2 ⁇ 2 — ⁇ 2 ) 1/2 ”
  • the period of the diffraction grating is ⁇ , and the period is perpendicular to the first plane.
  • the thickness of the sixth medium in any direction is h 6 and light of wavelength ⁇ is incident on the diffraction grating, “ ⁇ 4 (4 ⁇ 6 2 ⁇ 2 — ⁇ 2 ) 1/2 ⁇ h 6 ⁇ 3 ⁇ / It is preferable that the wavelength ⁇ of the light satisfying the relational expression of 4 (4 ⁇ 6 2 ⁇ 2 — ⁇ 2 ) 1/2 exists within the wavelength band of 1.26 ⁇ to 1.675 ⁇ . In these cases, it is more preferable to improve the diffraction efficiency and reduce the polarization dependence of the diffraction efficiency in a wide signal light wavelength range.
  • the fifth medium is composed of a plurality of media alternately provided in a predetermined direction
  • the sixth medium is composed of a plurality of media alternately provided in a predetermined direction. It is suitable. In this case, the diffraction characteristics can be improved, and it is convenient for manufacturing a diffraction grating element.
  • the diffraction grating element is: (1) When imagining first to third planes arranged in parallel to each other, the diffraction grating element is provided outside the first plane and in contact with the first plane. (1) a first medium (refractive index and (2) provided alternately in a predetermined direction parallel to the first plane between the second plane and the third plane, in contact with the second plane and the third plane; The second medium (refractive index n 2 ) and the third medium (refractive index n 3 , where n 3 ⁇ n 2 ) forming a diffraction grating, and (3) the third medium outside the third plane.
  • a fourth medium (refractive index n 4 ) provided in contact with the plane; and (5) a fifth medium provided in contact with the first and second planes between the first and second planes.
  • Average refractive index n 5 the average refractive index n 5 of the fifth medium is “n L iis nJ or "n av rather n 5 ⁇ ni j [0016]
  • the second medium and the third medium are provided alternately between the fourth medium and the fifth medium.
  • the light that has entered the diffraction grating from the first medium is diffracted at the diffraction grating section through the fifth medium, and is output to the fourth medium, or the fourth medium.
  • the light incident on the diffraction grating from is diffracted by the diffraction grating part, and is output to the first medium through the fifth medium.
  • the refractive index of each medium satisfies the above relational expression. Therefore, it is possible to improve the diffraction efficiency and reduce the polarization dependence of the diffraction efficiency over a wide wavelength range. it can.
  • diffraction grating element has an average refractive index of the fifth medium n 5 is "(ni n av) 1/2 - 0. 2 ⁇ n 5 ⁇ (n inav) 1/2 + 0.2 ”is preferably satisfied.
  • the refractive index of the respective third medium quality and the fourth medium eta 2 ⁇ Ita 4 is " ⁇ 3 ⁇ 4 ⁇ 2" is related full plus the equation is preferred. It is preferable that the refractive index ⁇ 4 of the fourth medium satisfies a relational expression of “n av — 0.2 ⁇ n 4 ⁇ n av +0.2 J. It is preferable that the thickness of the medium is not less than 5 pm In these cases, it is more preferable to improve the diffraction efficiency and reduce the polarization dependence of the diffraction efficiency in a wide wavelength range.
  • the fifth medium is composed of a plurality of media alternately provided in a predetermined direction.
  • the diffraction characteristics can be improved, and this is convenient for manufacturing a diffraction grating element.
  • a diffraction grating element includes a base plate, a first reflection suppression unit provided on the base plate, a diffraction grating unit provided on the first reflection suppression unit, A second reflection suppressing section provided on the diffraction grating section, wherein the second reflection suppressing section is in contact with the first medium, and the second reflection suppressing section is provided in the diffraction grating section in a predetermined direction parallel to the base plate.
  • the diffraction grating is provided by alternately providing the material and the third medium, and 1.
  • the diffraction ability of the diffraction grating portion is a total of the diffraction grating portion, the first reflection suppression portion, and the second reflection suppression portion. Greater than 50% of the diffraction ability of It is preferable that the refractive index modulation of the diffraction grating part is larger than the refractive index modulation of the first reflection suppression part and the second reflection suppression part, and the maximum refractive index of the diffraction grating part is the base plate and the first reflection suppression part. Is preferably larger than the refractive index of the medium. Further, the period of the diffraction grating is preferably not more than 1.675 ⁇ .
  • the diffraction grating elements In the diffraction grating elements according to the first to fourth inventions, it is preferable that a wavelength of light at which the diffraction efficiency of each of the ⁇ polarized light and the ⁇ polarized light is 90% or more exists. In addition, it is preferable that there is a light wavelength at which the difference in diffraction efficiency between the polarized light and the polarized light is 5% or less. In these cases, the diffraction grating element can be suitably used in an optical communication system that multiplexes and transmits multi-wavelength signal light.
  • the difference between the refractive index ⁇ 2 of the second medium and the refractive index ⁇ 3 of the third medium is 0.7 or more.
  • the second medium that is either T i 0 2, T a 2 ⁇ 5 and N b 2 ⁇ 5, it is preferred that the third medium is a gas. In this case, since the height of the diffraction grating portion can be reduced, the manufacture of the diffraction grating element is easy.
  • the second medium or the third medium is made of a predetermined material whose refractive index can be changed by irradiation with energy rays.
  • the material is diamond-like carbon. In these cases, a diffraction grating element having desired characteristics can be easily manufactured.
  • the first medium or the fourth medium is made of a predetermined material whose etching rate is lower than that of the second medium or the third medium.
  • the fifth medium or the sixth medium is made of a predetermined material having a lower etching rate than the second medium or the third medium.
  • the first medium or the fourth medium is made of a predetermined material having a low etching rate.
  • the fourth medium or the fifth medium is preferably a second medium or a fifth medium. It is preferable to use a predetermined material whose etching rate is lower than that of the three media.
  • the first medium is made of a predetermined material having a low etching rate.
  • the etching rate ratio is twice or more.
  • the predetermined material is preferred that either of A 1 2 0 3, M g O, N d 2 0 3 and fluorine-based compound, the second medium or the third medium T i 0 2, N b 2 0 5, T a 2 0 5, S i ⁇ , a S i 0 2, S i 0 , Z r 0 2, preferably not less either S b 2 O s.
  • the diffraction grating element is manufactured by an etching method.
  • the method of manufacturing a diffraction grating element according to the present invention is a method of manufacturing the diffraction grating element according to any one of the first to fourth inventions, wherein the refractive index is changed by irradiation with energy rays.
  • a layer made of a predetermined material to be obtained is formed, and the layer is irradiated with energy rays in a predetermined spatial intensity modulation pattern, and the second medium and the third medium having different refractive indices alternately in the layer. It is characterized in that the provided diffraction grating is formed.
  • a layer made of a predetermined material is formed, the layer is etched in a predetermined spatial pattern, and a second medium and a third medium having different refractive indices are provided alternately in the layer. Characterized by forming a diffraction grating.
  • a diffraction grating element designing method is directed to a diffraction grating having a refractive index that periodically changes in a predetermined direction, and a reflection suppressing portion on at least one of upper and lower sides of the diffraction grating.
  • the refractive index distribution of the diffraction grating element is derived so that the reflectance at the desired wavelength is 10% or less. According to this method of designing a diffraction grating element, an analysis result close to the characteristics of an actually manufactured diffraction grating element can be obtained, so that the diffraction grating element can be easily designed.
  • FIG. 1 is an explanatory diagram of the diffraction grating element 10 according to the first embodiment.
  • FIG. 2 is a graph showing the diffraction characteristics of the diffraction grating element 10 of Example 1.
  • FIG. 3 is a graph showing the diffraction characteristics of the diffraction grating element of Comparative Example 1.
  • FIG. 4 is a graph showing the relationship between the diffraction efficiency of the diffraction grating element 10 of Example 1 and the refractive index n 4 of the fourth medium 14.
  • FIG. 5 is an explanatory diagram of the diffraction grating element 10A of the first modification.
  • FIG. 6 is an explanatory diagram of the diffraction grating element 10B of the second modification.
  • FIG. 7 is an explanatory diagram of the diffraction grating element 20 according to the second embodiment.
  • FIG. 8 is a graph showing the diffraction characteristics of the diffraction grating element 20 of the second embodiment.
  • FIG. 9 is an explanatory diagram of a diffraction grating element 20A according to a modification.
  • FIG. 10 is an explanatory diagram of the diffraction grating element 20 B of the third embodiment.
  • FIG. 11 is a graph showing the diffraction characteristics of the diffraction grating element 2 OB of Example 3.
  • FIG. 12 is an explanatory diagram of the diffraction grating element 30 according to the third embodiment.
  • FIG. 13 is an explanatory diagram of the diffraction grating element 3OA of the fourth embodiment.
  • FIG. 14 is a graph showing the diffraction characteristics of the diffraction grating element 3OA of Example 4.
  • FIG. 15 is an explanatory diagram of the diffraction grating element 40 according to the fourth embodiment.
  • FIG. 16 is a graph showing the characteristics of the zero-order reflection diffraction efficiency of the diffraction grating element according to the fourth embodiment and the zero-order reflection diffraction efficiency of the equivalent model.
  • FIG. 17 is an explanatory diagram of the diffraction grating element 4OA according to the fifth embodiment.
  • FIG. 18 is an explanatory diagram of the diffraction grating element 4 OB according to the sixth embodiment.
  • FIG. 19 is a graph showing the diffraction efficiency of the diffraction grating element according to the fourth embodiment.
  • FIG. 20 is a graph showing an aspect ratio of a groove in a diffraction grating portion in the diffraction grating element according to the fourth embodiment.
  • FIG. 21 shows the groove depth of the diffraction grating element according to the fourth embodiment.
  • FIG. 22 is an explanatory view of a diffraction grating element 3 OB according to a modification ( BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is an explanatory diagram of the diffraction grating element 10 according to the first embodiment. This figure shows a cross section of the diffraction grating element 10 when cut along a plane perpendicular to the grating.
  • the diffraction grating element 10 shown in this figure includes a first medium 11, a second medium 12, a third medium 13 and a fourth medium 14.
  • first and second planes P 2 are parallel to each other.
  • the first medium 11 is provided outside the first plane Pi (upper side in the figure) and in contact with the first plane Pi.
  • the second medium 12 and the third medium 13 are disposed between the first plane P i and the second plane P 2 , in contact with the first plane and the second plane P 2 , and in parallel with the first plane P i. They are provided alternately in a predetermined direction to form a diffraction grating.
  • the fourth medium 1 4 (in the lower side of the drawing) outside the second plane P 2 is provided in contact with the second flat surface P 2 in.
  • Both the second medium 12 and the third medium '13 are solid, or the first medium 11 or the fourth medium 14 is made of an isotropic material.
  • the second medium 12 and the third medium 13 are provided alternately between the first medium 11 and the fourth medium 14 so that the diffraction grating Are formed.
  • the light L i (incident angle 0) incident on the diffraction grating from the first medium 11 is diffracted at the diffraction grating portion and emitted to the fourth medium 14 (FIG. 1 shows the zero-order light L d.
  • the first order diffracted light L di is shown).
  • the light that has entered the diffraction grating from the fourth medium 14 is diffracted at the diffraction grating portion and emitted to the first medium 11.
  • Each of the regions of the second medium 12 and the regions of the third medium 13 has a rectangular cross section.
  • the second medium 12 and the third medium 13 are provided alternately in a predetermined direction.
  • the period of the diffraction grating is ⁇ ⁇
  • the ratio (duty ratio) of the second medium 12 in the period ⁇ is f.
  • H be the distance between the first plane Pi and the second plane P 2 (that is, the height of the grid).
  • the average refractive index n av of the diffraction grating portion between the first plane and the second plane ⁇ 2 is It is represented by the following formula. Also, the average refractive index n av is between the second medium 1 2 having a refractive index n 2 and the refractive index n 3 of the third medium 1 3, satisfying the "'(2) becomes equation.
  • the period ⁇ of the diffraction grating is smaller than or equal to the order of the wavelength ⁇ of the incident light (for example, smaller than 2 ⁇ ) ′, the reflection of light on each of the first plane ⁇ ⁇ ⁇ 1 and the second plane ⁇ 2 is considered.
  • the refractive index n 4 of the first medium 11 or the refractive index n 4 of the fourth medium 14 is closer to the average refractive index n av of the diffraction grating portion, the reflection on the first plane or the second plane P 2 is reduced.
  • the diffraction characteristics are improved.
  • the refractive indices ni to n 4 of each medium are
  • the refractive index ⁇ to ⁇ 4 of each medium is determined according to the above equation (3) or (4), and then the diffraction grating is obtained by a rigorous coupled wave analysis (RCWA).
  • the diffraction characteristic of the element 10 is analyzed.
  • the optimization of the duty ratio ⁇ , the grating period ⁇ and the grating height ⁇ ⁇ ⁇ by optimization techniques results in excellent diffraction characteristics.
  • the diffraction grating element 10 is designed.
  • FIG. 2 is a graph showing the diffraction characteristics of the diffraction grating element 10 of the first embodiment.
  • FIG. 3 is a graph showing diffraction characteristics of the diffraction grating element of Comparative Example 1. These figures show the wavelength dependence of the diffraction efficiency for the ⁇ -polarized light and ⁇ -polarized light when the incident angle ⁇ of the light is the plug angle of incidence at a wavelength of 1.55 ⁇ . Note that the Bragg incident angle is such that the angles of the 6
  • Example 1 In each of Example 1 and Comparative Example 1, in the wavelength band of 1.52 ⁇ to 1.57 ⁇ , the polarization dependence and the wavelength dependence of the diffraction efficiency were as small as possible, and the diffraction efficiency was as large as possible. Each parameter was designed so that
  • the diffraction grating element 10 can improve the diffraction efficiency and reduce the polarization dependence of the diffraction efficiency in a wide wavelength range.
  • FIG. 4 is a graph showing the relationship between the diffraction efficiency of the diffraction grating element 10 of Example 1 and the refractive index ⁇ 4 of the fourth medium 14.
  • the wavelength ⁇ was fixed at 1.55 ⁇ .
  • the refractive index eta 4 of the fourth medium 1 4 satisfies the above Expression (4b) of the relational expression, the diffraction efficiency is large, a small polarization dependency.
  • a layer made of the second medium 12 is formed on the surface of the fourth medium 14, and a groove is formed on the layer by etching in a predetermined spatial pattern. It is formed, and the first medium 11 is pasted on it. In this case, the region of the groove formed by the etching becomes the third medium 13 made of air.
  • another material to be the third region 13 is buried in the groove region formed by etching by a CVD (Chemical Vapor Deposition) method or the like, and the second region 12 and the third region are polished by polishing or the like.
  • the first medium 11 may be provided thereon with the same height.
  • both the second region 12 and the third region 13 are solid, the deformation of the groove shape due to the pressure at the time of bonding to the first medium 11 can be suppressed. Even when the first medium 11 is provided by a method or the like, it is possible to suppress the first medium 11 from entering the groove. 4000686
  • a layer made of the third medium 13 may be formed instead of forming the layer made of the second medium 12 on the surface of the fourth medium 14.
  • the fourth medium 14 is made of a predetermined material whose etching rate is lower than that of the second medium 12 or the third medium 13. In this case, the etching can be completed on the upper surface (second plane P 2 ) of the fourth medium 14. From this point of view, the fourth medium 14, A 1 2 0 3, MgO , N d 2 0 3 and fluorine compound (A 1 F 3, Mg F 2, C a F 2, Nd F 3 Etc.) is preferable.
  • the second medium 12 and the third medium 13 may be alternately formed by lift-off or the like instead of the above-described etching.
  • the refractive index of each medium Since the, respectively that can be set independently, the difference between the refractive index n 2 and the refractive index n 3 of the third medium 1 3 of the second medium 12 - can be increased (n 2 n 3), Therefore, the grid height H can be reduced.
  • the refractive index of the second medium 12 n 2 and the third difference between the refractive index n 3 of the medium 1 3 - is there in (eta 2 n 3) is 0.7 or more, the grating height H It is preferable because it can be made 3 ⁇ or less and the production becomes easy.
  • the second medium 1 2 T i 0 2, T a 2 0 5 and Nb 2 0 5 is preferred and even either, that the third medium 1 3 is a gas It is suitable.
  • a low refractive index material such as MgF 2 (refractive index: 1.35) is used as the third medium, and a semiconductor such as S i ( It is more preferable to use a high refractive index material such as a refractive index 3.5).
  • a layer made of a predetermined material whose refractive index can be changed by irradiation with an energy ray is formed on the surface of the fourth medium 14. 6
  • the layer And irradiating the layer with an energy beam in a predetermined spatial intensity modulation pattern, and diffracting the layer in which second and third media 12 and 13 having different refractive indices are provided alternately.
  • a lattice is formed, and a first medium 11 is provided thereon.
  • the first medium 11 is provided on a layer made of a predetermined material, and then the layer is irradiated with an energy beam in a predetermined spatial intensity modulation pattern, and the layers have different refractive indexes. It is also preferable to form a diffraction grating in which the second medium 12 and the third medium 13 are alternately provided.
  • Diamond-like carbon is suitably used as a predetermined material whose refractive index can be changed by irradiation with energy rays.
  • synchrotron radiation S R3 ⁇ 4: Synchrotron Radiation
  • hydrogen ion beam power S is used as the energy beam irradiated to change the refractive index of the diamond-like carbon, and the diamond irradiated with the energy beam is used.
  • the refractive index in the carbon region increases. That is, the region that has not been irradiated with the energy beam becomes the third medium 13 (refractive index n 3 ), and the region that has been irradiated with the energy beam becomes the second medium 12 (refractive index n 2 ).
  • the second manufacturing method is preferable in that the manufacturing of the diffraction grating element 10 is simpler than the first manufacturing method. Also, in the first manufacturing method, it is difficult to make the cross-sectional shape of the groove formed by etching a perfect rectangle, whereas in the second manufacturing method, the second medium 12 It is also preferable that the cross-sectional shape of each region of each of the third medium 13 and the third medium 13 can be a more complete rectangle.
  • FIG. 5 is an explanatory diagram of the diffraction grating element 10A of the first modification.
  • the diffraction grating element 10 A of Modification 1 shown in this figure is different from the above-described structure of the diffraction grating element 10 in that the first medium 11 (the outer side of the refractive index n (the upper side in the figure) has a reflection reducing film). 11 a is formed, and a medium 11 b (refractive index n.) Is present outside the reflection reducing film 11 a. Further, outside the fourth medium 14 (refractive index n 4 ) (lower in the figure).
  • reflection reducing film 1 4 a is formed in the side), and further reflection reducing film 1 4 a outside medium 1 4 b of (refractive index n 5) is present.
  • the outer medium 1 lb and the medium 14 b are air, or optical glass for adjusting the linear expansion coefficient of the entire diffraction grating element 10 A to reduce the temperature dependence of optical characteristics. is there.
  • the thicknesses (first and fourth media) 11 and 14 of the first medium 11 and the fourth medium 14 are set so that the evanescent wave generated in the diffraction grating is sufficiently attenuated.
  • the thickness in the direction perpendicular to one plane Pi is preferably sufficiently thicker than the wavelength ⁇ .
  • the thickness of each of the first medium 11 and the fourth medium 14 is preferably 5 ⁇ or more.
  • a reflection reduction film 11 a is provided between the first medium 11 and the outer medium 11 b, and a reflection reduction film 1 is provided between the fourth medium 14 and the outer medium 14 b.
  • the first medium 11 or the fourth medium 14 is made of an anisotropic material, polarization mode dispersion occurs or the polarization state changes, which affects optical communication. Have an effect. However, if the first medium 11 and the fourth medium 14 are made of an isotropic material, these effects can be suppressed, and the reflection reduction film 11 a and the reflection reduction film 14 a In this case, the design for reducing the reflection of light is also facilitated.
  • FIG. 6 is an explanatory diagram of the diffraction grating element 10B of the second modification.
  • FIG. 6 illustrates the trajectories of the incident light Li, the reflected light Lr from the boundary between the fourth medium 14 and the medium 14b, and the diffracted light Ld.
  • the diffraction grating element 10 B of the modification 2 shown in this figure is different from the above-described structure of the diffraction grating element 10 in that the first medium 11 1 (the outside of the refractive index n (the upper side in the figure) has a medium lib).
  • the outer medium 11b and the medium 14b are air, or an optical glass for adjusting the linear expansion coefficient of the entire diffraction grating element 1OA to reduce the temperature dependence of optical characteristics.
  • the reflected light, the transmitted light, and the diffracted light at the diffraction grating portion are prevented from entering the diffraction grating portion again.
  • Each of the first medium 11 and the fourth medium 14 has a sufficient thickness. This suppresses a decrease in diffraction characteristics.
  • FIG. 7 is an explanatory diagram of the diffraction grating element 20 according to the second embodiment.
  • This figure shows a cross section of the diffraction grating element 20 when cut along a plane perpendicular to the grating.
  • the diffraction grating element 20 shown in this figure includes a first medium 21, a second medium 22, a third medium 23, a fourth medium 24, a fifth medium 25, and a sixth medium 26. It is configured.
  • the first medium 21 is provided outside the first plane Pi (upper side in the figure) and in contact with the first plane Pi.
  • the second medium 2 2 and the third medium 2 3, between the second plane P 2 and the third plane P 3, in contact with the second plane P 2 and the third plane P 3, the first plane P i are alternately provided in parallel predetermined directions to form a diffraction grating.
  • the fourth medium 2 4 (in the lower side of the drawing) outside the fourth plane P 4 is provided in contact with the fourth plane P 4 in.
  • the second medium 22 and the third medium 23 are provided alternately between the fifth medium 25 and the sixth medium 26, and diffraction is performed.
  • a grid is formed.
  • Light that has entered the diffraction grating from the first medium 21 passes through the fifth medium 25, is diffracted at the diffraction grating section, passes through the sixth medium 26, and is emitted to the fourth medium 24.
  • the light that has entered the diffraction grating from the fourth medium 24 passes through the sixth medium 26, is diffracted at the diffraction grating portion, passes through the fifth medium 25, and is emitted to the first medium 21.
  • Each of the regions of the second medium 22 and the regions of the third medium 23 has a rectangular cross section.
  • the second medium 22 and the third medium 23 are provided alternately in a predetermined direction.
  • the period of the diffraction grating is ⁇ ⁇
  • the ratio (duty ratio) of the second medium 22 in the period ⁇ is f.
  • a first plane Pi distance between the second plane P 2 i.e., the thickness of the fifth medium 25
  • H the distance between the second plane P 2 and the third plane P 3 (that is, the height of the grid).
  • the distance between the third plane P 3 and the fourth plane P 4 i.e., the thickness of the sixth medium quality 26
  • the refractive index of the first medium 21 is ⁇
  • the refractive index of the second medium 22 is n 2
  • the refractive index of the third medium 23 is n 3 (where n 3 ⁇ n 2 )
  • the refractive index of the fourth medium 24 is the refractive index and n 4, the refractive index of the fifth medium 25 and n 5, the refractive Oriritsu sixth medium 26 and n 6.
  • the average refractive index n av of the diffraction grating portion between the second plane P 2 and the third plane P 3 is expressed by the above equation (1). Also, the average refractive index n av is between the refractive index n 3 of the refractive index n 2 and the third medium 23 of the second medium 22, satisfying the above equation (2) relationship.
  • Each of the fifth medium 25 and the sixth medium 26 may be a multilayer film for reducing reflection, or may be a single-layer film.
  • the refractive index n 5 of the fifth medium 25 n x ⁇ n s ⁇ n av or n av ⁇ n s ⁇ n x (5)
  • the diffraction grating element 20 reduces reflection at each interface by being set in this manner. As a result, a decrease in diffraction characteristics is suppressed.
  • the refractive index n 5 of the fifth medium 25 is One 0.2 ⁇ n, ⁇ It is preferable to satisfy the relational expression of 0.2 (7).
  • the refractive index n 6 of the sixth medium 26, n ⁇ n m - 0.2 to satisfy the ⁇ 6 ⁇ ⁇ ⁇ ⁇ +0.2 ⁇ ⁇ (8) relational expression is preferred.
  • the thickness h 6 of the sixth medium 26 is ⁇ ′ ⁇ - ⁇ ⁇ h 6 ⁇ - ⁇ ⁇ ⁇ -( Ten)
  • the refractive index ⁇ to ⁇ 6 and the thicknesses h 5 and h 6 of each medium are determined according to any of the above equations ( 5 ) to (12), and then the diffraction of the diffraction grating element 20 is performed by the RCWA method. Characteristic analysis is performed. By optimizing the duty ratio f, the grating period ⁇ , and the grating height H by an optimization method, a diffraction grating element 20 having excellent diffraction characteristics is designed.
  • the fifth medium 25 and the sixth medium 26 have been described above as being uniform single-layer films, the fifth medium 25 or the sixth medium 26 are multilayer films for reducing reflection. You may. In the latter case, the reflection of each of the TE-polarized light and the TM-polarized light is suppressed to improve the diffraction efficiency, and the polarization dependence of the diffraction efficiency is reduced by utilizing the polarization dependence of the multilayer film. In addition, a reflection reduction effect can be expected for higher-order diffracted light and evanescent waves.
  • a duty ratio f is 0.74, a grating period ⁇ is 1.0 Iotamyupaiiota, grating height ⁇ is 3. 35Myupaiiota a thickness h 5 of the fifth medium 25 is 0. 3 ⁇ , sixth medium 26 Had a thickness h 6 of 0.23 ⁇ .
  • FIG. 8 is a graph showing the diffraction characteristics of the diffraction grating element 20 of Example 2. is there.
  • the wavelength dependence of the diffraction efficiency when the incident angle ⁇ of the light is the Bragg incident angle at a wavelength of 1.55 ⁇ is shown for each of the ⁇ -polarized light and the ⁇ -polarized light.
  • each parameter was designed so that the polarization efficiency and the wavelength dependence of the diffraction efficiency were as small as possible and the diffraction efficiency was as large as possible.
  • the diffraction efficiency of ⁇ polarized light and ⁇ polarized light was high at 95% or more in a wide wavelength range.
  • the difference between the diffraction efficiencies of the polarized lights was 2% or less.
  • the diffraction grating element 20 according to the present embodiment can improve the diffraction efficiency and reduce the polarization dependence of the diffraction efficiency in a wide wavelength range.
  • the refractive index of the diffraction grating element 20 according to the second embodiment can be changed by the first manufacturing method using an etching method or a lift-off method, or by irradiation with energy rays. It can be manufactured by a second manufacturing method using a predetermined material.
  • the sixth medium 26 is preferably made of a predetermined material having an etching rate lower than that of the second medium 22 or the third medium 23,
  • a 1 2 0 3, M g O, N d 2 0 3 and fluorine compound (A 1 F 3, M g F 2, C a F 2, N d F 3 , etc.) is preferably either.
  • both or one of the fifth medium 25 and the sixth medium 26 is composed of a plurality of media alternately provided in a predetermined direction.
  • FIG. 9 is an explanatory diagram of a diffraction grating element 2OA according to a modification.
  • the diffraction grating element 2 OA of the modification shown in this figure is different from the above-described diffraction grating element 20 in that both the fifth medium 25 and the sixth medium 26 are provided alternately in a predetermined direction. It consists of multiple media.
  • the predetermined direction is the same as the direction in which the second media 22 and the third media 23 are provided alternately.
  • the fifth medium 25 has a medium 25 a (refractive index n 5a ) and a medium 25 b (refractive And the ratio n 5b ) are alternately provided by ⁇ .
  • the medium 26a (refractive index n6a ) and the medium 26b (refractive index n6b ) are alternately provided by.
  • Proportion of medium 25 a in the period of the fifth medium 2 5 (duty ratio) and f 5 the proportion of the medium 26 a in the period of the sixth medium 26 occupies the (duty ratio) shall be the f 6.
  • the period As of the fifth medium 25 and the period of the sixth medium 26 are preferably equal to the period ⁇ of the diffraction grating portion composed of the second medium 22 and the third medium 23, or an integer of the period ⁇ . Preferably it is one part. Further, it is preferable that each of the period of the fifth medium 25 and the period of the sixth medium 26 is sufficiently smaller than the wavelength ⁇ of the incident light, for example, it is preferable that the period is not more than / of the wavelength ⁇ . is there. At this time, the average refractive index ⁇ 5 of the fifth medium 25 is
  • FIG. 10 is an explanatory diagram of the diffraction grating element 20B of the third embodiment.
  • the fifth medium 25 is composed of two media 25 a and 25 b provided alternately in a predetermined direction, and the sixth medium 26 is uniform.
  • Duty ratio f and I 5 0. 6 is 6, lattice period ⁇ 1.
  • a 0 iota Myupaiiota, grating height ⁇ 1.
  • a 4 9Myupaiiota, the thickness h 5 of the fifth medium 2 5 0 36 ⁇ , and the thickness h 6 of the sixth medium 26 was 0.34 ⁇ .
  • FIG. 11 is a graph showing the diffraction characteristics of the diffraction grating element 20 # of the third embodiment.
  • This figure shows the wavelength dependence of the diffraction efficiency when the incident angle ⁇ of the light (see Fig. 10) is the Bragg incident angle at a wavelength of 1.55 ⁇ for ⁇ polarized light and ⁇ polarized light, respectively. It is shown. Wavelength band 1.5 2 ⁇ !
  • the parameters were designed such that the polarization dependence and the wavelength dependence of the diffraction efficiency were as small as possible and the diffraction efficiency was as large as possible at ⁇ 1.57 ⁇ .
  • Example 3 the diffraction efficiency of each of ⁇ ⁇ polarized light and ⁇ polarized light was high at 95% or more over a wide wavelength range, and ⁇ ⁇ polarized light and ⁇ polarized light were high. The difference between the diffraction efficiencies was 2 ° / 0 or less. As described above, the diffraction grating element 20 according to the present embodiment can improve the diffraction efficiency and reduce the polarization dependence of the diffraction efficiency in a wide wavelength range.
  • the second medium 22 and the fifth medium 25 can be etched at the same time, manufacturing is easy. At this time, the etching rate is lower than that of the second medium 22 and the fifth medium 25 as the sixth medium 26, and using a predetermined material is more convenient in manufacturing. In addition, the second medium 22, the fifth medium 25, and the sixth medium 26 can be simultaneously etched. In this case, it is preferable that the etching rate of the fourth medium 24 is low.
  • FIG. 12 is an explanatory diagram of the diffraction grating element 30 according to the third embodiment.
  • This figure shows a cross section of the diffraction grating element 30 when cut along a plane perpendicular to the grating.
  • the diffraction grating element 30 shown in this figure includes a first medium 31, a second medium 32, a third medium 33, a fourth medium 34, and a fifth medium 35.
  • virtual first planar surface and the second plane P 2 and the third plane P 3 which are arranged in parallel to the forward one another.
  • the first medium 31 is provided outside (upper side in the figure) of the first plane P L and in contact with the first plane P i.
  • the diffraction gratings are alternately provided in a predetermined direction to form a diffraction grating.
  • the fourth medium 3 4 (in the lower side of the drawing) outside the third plane P 3 is provided in contact with the third plane P 3 in.
  • the fifth medium 35 is provided between the first plane P i and the second plane P 2 and in contact with the first plane P i and the second plane P 2 .
  • the second medium 32 and the third medium 33 are provided alternately, and the diffraction grating Are formed.
  • Light that has entered the diffraction grating from the first medium 31 passes through the fifth medium 35, is diffracted at the diffraction grating section, and is emitted to the fourth medium 34.
  • light that has entered the diffraction grating from the fourth medium 34 is diffracted at the diffraction grating portion, and is emitted to the first medium 31 via the fifth medium 35.
  • Each of the regions of the second medium 32 and the regions of the third medium 33 has a rectangular cross section.
  • the period of the diffraction grating is ⁇
  • the second medium in the period ⁇ Let f be the ratio (duty ratio) occupied by 32.
  • the distance between the first plane P i and the second plane P 2 i.e., the fifth medium 35 in thickness) and h 5.
  • H be the distance between the second plane P 2 and the third plane P 3 (that is, the height of the grid).
  • the first medium 3 1 of refractive index, the second medium 3 2 having a refractive index and n 2 the refractive index of the third medium 3 3 n 3 (however, n 3 ⁇ n 2) and then, the fourth medium 3 Let the refractive index of 4 be n 4 and the refractive index of the fifth medium 35 be ii 5 .
  • the average refractive index n av of the diffraction grating portion between the second plane P 2 and the third plane P 3 is expressed by the above equation (1). Also, the average refractive index n av is between the second medium 3 2 having a refractive index n 2 and the third medium 3 third refractive index n 3 of, satisfy the equation (2) above relational expression You.
  • the fifth medium 35 may be a multilayer film for reducing reflection or a single-layer film as in the case of the second embodiment.
  • the refractive index n 5 of the fifth medium quality 3 5 satisfies the equation (5) in relation.
  • the refractive index eta 5 of the fifth medium 35 is suitably satisfy the above expression (7) relationship.
  • the height h 5 of the fifth medium 35 is preferably not more than wavelength order, for example to the 5 ⁇ less Is preferred.
  • the thickness h 5 of the fifth medium 35 is suitably satisfy the above expression (9) of the equation. If the light is incident at the Bragg angle, the above equation (9) is represented by the above equation (11).
  • the above equation (11) is derived when the Bragg incident angle is assumed, but approximately applies to the case where the Bragg incident angle is zero.
  • the refractive index n 4 of the fourth medium 34 preferably satisfies the above expression (3) or (4), as in the case of the first embodiment.
  • the fifth medium 35 may be a multilayer film for reducing reflection.
  • the reflection of each of the TE-polarized light and the TM-polarized light is suppressed, and the diffraction efficiency is improved.
  • the polarization dependence of the diffraction efficiency can be reduced by utilizing the polarization dependence of the multilayer film. It is also possible to expect the effect of reducing reflection on higher-order diffracted light and evanescent waves.
  • the fifth medium 35 may be composed of a plurality of media provided alternately in a predetermined direction.
  • the average refractive index n 5 of the fifth medium 35 is expressed by the above equation (13).
  • the diffraction grating element 30 according to the third embodiment is made of a first manufacturing method using an etching method and a lift-off method, or a predetermined material whose refractive index can be changed by irradiation with energy rays. It can be manufactured by the second manufacturing method used.
  • the fourth medium 34 is preferably formed of a predetermined material etch Ngureto is slower than the second medium 32 or third medium 33, A 1 2 0 3, Mg O, N d 2 O a and fluorine compound (A 1 F 3, Mg F 2, C a F 2, Nd F 3 , etc.) preferably Ru der either.
  • FIG. 13 is an explanatory diagram of the diffraction grating element 3OA of the fourth embodiment.
  • the fifth medium 35 includes two media 35a and 35b provided alternately in a predetermined direction.
  • a duty ratio f and f 5 are 0.6 0, the grating period ⁇ is 1. 0 Iotamyuiotaita, grating height ⁇ is 1.45Myuiotaita, thickness h 5 of the fifth medium 35 was 0. 33 pM .
  • FIG. 14 is a graph showing the diffraction characteristics of the diffraction grating element 30 ° of Example 4. It is.
  • the wavelength dependence of the diffraction efficiency when the incident angle ⁇ of the light is the Bragg incident angle at the wavelength of 1.55 ⁇ is ⁇ ⁇ polarized light and ⁇ polarized light.
  • Each is shown.
  • the wavelength band of 1.52 ⁇ to 1.57 ⁇ each parameter was designed so that the polarization dependence and the wavelength dependence of the diffraction efficiency were as small as possible and the diffraction efficiency was as large as possible.
  • the diffraction efficiency of ⁇ ⁇ polarized light and ⁇ polarized light was high at 95% or more over a wide wavelength range, and ⁇ ⁇ polarized light and ⁇ polarized light were high.
  • the difference between the diffraction efficiencies was less than 2%.
  • the diffraction grating element 30 according to the present embodiment can improve the diffraction efficiency and reduce the dependence of the diffraction efficiency on the wavelength over a wide wavelength range.
  • the second medium 32 and the fifth medium 35 can be etched at the same time, the production is easy.
  • FIG. 15 is an explanatory diagram of the diffraction grating element 40 according to the fourth embodiment. This figure shows a cross section of the diffraction grating element 40 when cut along a plane perpendicular to the grating.
  • the diffraction grating element 40 shown in this figure includes a base plate 41, a first reflection suppressing section 42, a diffraction grating section 43, and a second reflection suppressing section 44.
  • the first reflection suppressing portion 42 is provided on the base plate 41, and the diffraction grating portion 43 is provided on the first reflection suppressing portion 42.
  • the second reflection suppressing section 44 is provided on the diffraction grating section 43.
  • the second reflection suppressing section 44 is in contact with the first medium 45.
  • the diffraction grating is formed by alternately providing the second medium 43a and the third medium 43b in a predetermined direction substantially parallel to the base plate 41.
  • a medium 44a is provided on the second medium 43a
  • a medium 44b is provided on the third medium 43b.
  • the diffraction grating element 40 is designed so that the reflectance is 10% or less. [0 0 9 4] In the diffraction grating element 4 0, light incident on the diffraction grating from the first medium 4 5 passes through the second reflection-inhibiting portion 4 4, is diffracted at the diffraction grating portion 4 3, the The light is emitted to the base plate 41 through the reflection suppressing part 42 of FIG. Alternatively, light that has entered the diffraction grating from the base plate 41 through the first reflection suppressing section 42 is diffracted by the diffraction grating section 43 and passes through the second reflection suppressing section 44 to the first medium. It is emitted to 4-5.
  • the diffraction grating portion 43 is defined as follows. That is, the direction in which the second medium 4 3 a and the third medium 4 3 b is provided alternately as the x-direction, a first reflection-inhibiting portion 4 2, the diffraction grating portion 4 3, and the second reflection-inhibiting portion 4
  • the direction in which the 4 are arranged in order is the z direction
  • the period of the diffraction grating is ⁇
  • the ratio (duty ratio) occupied by the second medium 43 a in the period f is f
  • the first reflection suppression unit 42 in the z direction is
  • the length (ie, the height of the first reflection suppressor 42 ) is represented by harl
  • the length of the second reflection suppressor 44 in the Z direction ie, the length of the second reflection suppressor 44 ).
  • the diffraction grating section 43 has the diffraction ability of the first reflection suppressing section 42, the diffraction grating section 43, and the like. ⁇ Defined as greater than 50% of the total diffraction ability of the second reflection suppressing section 44.
  • the refractive index modulation of the diffraction grating section 43 is preferably larger than the refractive index modulation of the first reflection suppressing section 42 and the second reflection suppressing section 44.
  • the maximum refractive index of the diffraction grating portion 43 is preferably larger than the refractive indexes of the base plate 41 and the first medium 45. Further, if the period ⁇ ⁇ of the diffraction grating in the diffraction grating section 43 is equal to or less than the wavelength of light, not only the reflection is reduced but also higher-order diffraction does not occur, so that it may be 1.675 ⁇ or less. I like it.
  • the base plate 41 is a quartz glass (refractive index: 1.444)
  • the second medium 43 a of the diffraction grating portion 43 is T a 2 0 5 (refractive index: 2.107)
  • the medium 44 a is S i 0 2 2 reflection-inhibiting portion 44
  • the first medium 45, the third medium 43 b, and the medium 44 b is air (refractive index: 1) as a diffraction grating portion by RCWA method 43 f
  • H is designed
  • h ar have h a r2 of the reflecting suppression unit with analysis is designed according to the equivalent model described below.
  • the analysis method using the equivalent model means that each of the first reflection suppression unit 42, the diffraction grating unit 43, and the second reflection suppression unit 44 is a single-layer film having the average refractive index of the medium included in each of the first reflection suppression unit 42, the diffraction grating unit 43, and the second reflection suppression unit 44.
  • the diffraction grating element 40 is replaced with a multilayer film, and the transmission first-order diffraction efficiency and the reflection zero-order diffraction are performed. This is a method of analyzing efficiency.
  • the transmittance and the reflectance of the multilayer film correspond to the transmission first-order diffraction efficiency and the reflection zero-order diffraction efficiency of the diffraction grating element 40, respectively. Therefore, by using this equivalent model, the design theory of a multilayer film represented by an optical filter can be applied, and the design for suppressing the reflection zero-order diffraction efficiency of the diffraction grating element 40 can be easily performed. Finally, it is even more preferable to finely adjust the design of f, H, harl , and har2 over the entire diffraction grating element 40 using the RCWA method with high analysis accuracy.
  • FIG. 16 is a graph showing the characteristics of the zero-order reflection diffraction efficiency of the diffraction grating element according to the fourth embodiment and the zero-order reflection efficiency of the equivalent model.
  • the graph shows the reflection zero-order diffraction efficiency characteristics of both the element 40 and the equivalent model.
  • the absolute value indicates the thickness of the first reflection suppressing unit
  • the sign indicates the structure of the reflection suppressing unit as described later.
  • the characteristics indicated by the solid line are due to the actually manufactured diffraction grating element 40, and the characteristics indicated by the dotted line are due to the analysis result using the equivalent model.
  • the characteristics of the diffraction grating element 40 of the present embodiment can be accurately obtained.
  • diffraction grating element 40 is designed using the design method using the equivalent model, f, H, h arl, by optimizing the h ar 2 is performed.
  • the harl is in the range of ⁇ . '5 ⁇ to 0.3 ⁇ ( (0.1 ⁇ m interval).
  • FIG. 17 is an explanatory view of the diffraction grating element 4OA of the fifth embodiment
  • FIG. 18 is an explanatory view of the diffraction grating element 40B of the sixth embodiment.
  • FIGS. 17 and 18 both show a cross section of the diffraction grating element when cut along a plane perpendicular to the grating.
  • the diffraction grating element 4OA is an example of the diffraction grating element 40 of the fourth embodiment in the case where harl is positive.
  • the diffraction grating element 40B is an example of the diffraction grating element 40 of the fourth embodiment when harl is negative.
  • the diffraction grating element 4OA is manufactured, for example, when the second medium 43a provided on one surface of the base plate 41 is etched, and the etching is stopped before reaching the base plate 41. Therefore, the second medium JP2004 / 000686
  • the same medium as 43a constitutes the first reflection suppressing section 42.
  • the diffraction grating element 40B is an example of the diffraction grating element 40 of the fourth embodiment when harl is negative.
  • the diffraction grating element 40B is manufactured, for example, when the second medium 43a provided on one surface of the base plate 41 is etched and the etching is performed until a part of the base plate 41 is removed. Therefore, the diffraction grating element 40B is composed of the media 42a and the media 42b provided alternately, and the media 42a is the same media as the base plate 41, and the media 42b is air. ing.
  • FIG. 19 is a graph showing the diffraction efficiency of the diffraction grating element according to the fourth embodiment.
  • Figure 19 plots the minimum and maximum diffraction efficiencies shown in Table 1, respectively.
  • the maximum and minimum diffraction efficiencies indicate the maximum and minimum diffraction efficiencies in the C band, including TE polarized light and TM polarized light.
  • Table 1 and FIG. 19 it can be seen that the diffraction grating element 40 has a diffraction efficiency of 90% or more and has small polarization dependence.
  • the AR layers above and below the diffraction grating portion composed of the second medium and the third medium that is, the difference in the refractive index between the medium outside the diffraction grating portion and the diffraction grating portion is determined.
  • the reflection suppressing section of the diffraction grating element 40 has an average refractive index under a condition different from that of the AR layer in the first to third embodiments. ing.
  • the AR layer between the base plate 41 and the first medium 45 is formed by the multilayer film of the first reflection suppressing section 42, the diffraction grating section 43, and the second reflection suppressing section 44, the diffraction grating element 40 The reflection as a whole is suppressed.
  • FIG. 20 is a graph showing an aspect ratio of a diffraction grating portion in the diffraction grating element according to the fourth embodiment.
  • Figure 20 in the case of h arl Gar 0. 2Myupaiiota or 0. Iotamyupaiiota, especially since aspect ratio is small, it can be seen that it is easy to manufacture the diffraction grating portion 43
  • FIG. 21 is a graph showing the groove depth tolerance of the diffraction grating element according to the fourth embodiment.
  • the groove depth tolerance indicates an allowable value of a change in harl when a change in diffraction efficiency is allowed by 1%, that is, a groove depth error.
  • the allowable value of the groove depth error is large in the case of h ar ⁇ ⁇ 0.2 ⁇ , and that the diffraction grating element 40 is easy to manufacture.
  • each region of the second medium and the third medium forming the diffraction grating portion is rectangular in each of the above embodiments, but is not necessarily rectangular, and is, for example, trapezoidal. May be.
  • Duty ratio f, f 5 and f 6 has been equal in the embodiments described above, may be different from each other, diffraction characteristics can be further improved by the latter as.
  • light may enter from the first medium side, or light may enter from the fourth medium side.
  • the diffraction grating portion is formed by the second medium and the third medium being in contact with each other and being provided alternately. A different medium may be provided between them.
  • FIG. 22 is an explanatory diagram of a diffraction grating element according to a modification.
  • Figure 22 is perpendicular to the grid 2 shows a cross section of the diffraction grating element when cut along a simple plane.
  • the 22 has the same configuration as the diffraction grating element 3OA, and a medium 36 is provided between the second medium 32 and the third medium 33.
  • the medium 35 a are Yotsute configured to S i 0 2, to compensate for the scraping of the sides of the medium 35 a during etching, introducing a process of attaching the S i 0 2 during etching of the second medium 32
  • a diffraction grating element 3 OB in which the medium 36 is constituted by S i O 2 is manufactured.
  • the second medium 32 is configured by a T a 2 0 5, to compensate for the abrasion of the side surface of the second medium bone 32 during etching, with deposition of the T a 2 0 5 during etching of the second medium 32 If you introduce a process of the medium 36 is a diffraction grating element 3 OB is produced constituted by T a 2 0 5.
  • the wavelength band is 1.5 ⁇ ! Designed at ⁇ 1.6 ⁇ , but is not limited to this.
  • the similarity rule holds. For example, when the center wavelength is changed to 1.5 ⁇ , the design parameters (period and thickness) having the unit of length are all 1.3Z1. It should be multiplied by 55. In this way, the wavelength band used in optical communication is 1.26 ⁇ ! It is possible to easily design a diffraction grating whose center wavelength is any wavelength within 1.675 ⁇ .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

 回折格子素子10では、第1媒質11と第4媒質14との間において、第2媒質12と第3媒質13とが交互に設けられて回折格子が形成されている。第1媒質11から回折格子へ入射した光は、回折格子部において回折され、第4媒質14へ出射される。或いは、第4媒質14から回折格子へ入射した光は、回折格子部において回折され、第1媒質11へ出射される。各媒質の屈折率n1~n4は「n3<n1<n2、n3≦n4≦n2」または「n3≦n1≦n2、n3<n4<n2」なる関係式を満たす。

Description

系田
回折格子素子、 回折格子素子製造方法、 及び回折格子素子の設計方法 技術分野
【0 0 0 1】 本発明は、 透過型の回折格子素子、 回折格子素子製造方法、 及び 回折格子素子の設計方法に関するものである。
背景技術
【0 0 0 2】 回折格子素子は、 一般に、 互いに平行な第 1面おょぴ第 2面を有 する透明平板において第 1面に回折格子が形成されたものである (例えば、 小舘 香椎子、「回折光学の発展と新展開」、日本女子大学紀要、理学部、第 1 0号、 pp. 7-24, (2002)を参照)。 この回折格子素子では、例えば、第 1面に接する媒質から該第 1 面に光が一定入射角で入射すると、 その光は、 第 1面に形成された回折格子によ り回折され、 透明平板の内部を通過して、 第 2面に接する媒質へ出射される。 透 明平板の第 2面から出射されるときの光の回折角は、 波長によって異なる。
【0 0 0 3】 このように、 この回折格子素子は、 入射した光を分波して出射す る光分波器として用いられ得る。 また、 この回折格子素子は、 上記の場合とは逆 の方向に光を導く場合には、 入射した光を合波して出射する光合波器として用い られ得る。 さらに、 回折格子素子と他の光学素子とを組み合わせることで、 例え ば、波長に応じて光の群遅延時間を調整する分散調整器を構成することもできる。 したがって、 回折格子素子は、 多波長の信号光を多重化して伝送する波長分割多 重 (WDM: Wavelength Division Multiplexing) 光通信システムにおいて重要 な光デバイスの 1つとなっている。
【0 0 0 4】 このような回折格子素子では回折効率が高いことが要求される。 そして、 回折効率向上の為の構造上の工夫が幾つ力、提案されており、 9 5 %程度 の回折効率が報告されている (例えば、 米国特許出願公開第 2 0 0 2 / 0 1 3 5 8 7 6号明細書や、 Hendrick J". Gerritsen, et al. , "Rectangular surface-relief transmission gratings with a very large first-order diffraction efficiency (~95%) for unpolarized light", Applied Optics, Vol. 37, No. 25, pp. 5823-5829 (1998)、 を参照)。
発明の開示
【0 0 0 5】 しかしながら、回折格子素子に入射する入射光の入射角、または、 回折格子素子により回折されて出射する回折光の回折角は、 0度 (回折格子が形 成された透明平板の第 1面または第 2面に垂直) では無く、 反射による偏波依存 性が発生する。 また、 回折格子は、 一方向のみに周期的に屈折率が変化するとい う構造であるから、 特に格子周期が短い (例えば 2 λ以下) ときに、 周期方向と 偏波方向との角度とが変わると、 回折効率が変化する。 このように、 一般に、 回 折格子素子の回折効率は偏波依存性を有しており、 Τ Ε偏波光および ΤΜ偏波光 それぞれの回折効率は互いに異なる。 特に、 回折角の角分散が大きい (合分波に おける波長分解能が高い) ときに、 周期が短くなるから、 偏波依存性は顕著にな る。
【0 0 0 6】 Τ Ε偏波光および ΤΜ偏波光それぞれの回折効率の差を低減する には、反射による偏波依存性と構造による偏波依存性とをキャンセルするように、 回折格子の断面形状 (格子の高さや幅など) を適切に設計することにより可能で ある。 し力 し、 そのように設計した場合であっても、 回折効率の向上おょぴ回折 効率の偏波依存性の低減を広い波長域で実現することはできない。
【0 0 0 7】 本発明は、 上記問題点を解消する為になされたものであり、 反射 による偏波依存性と構造による偏波依存性とを個別にキャンセルすることで、 回 折効率の向上および回折効率の偏波依存性の低減を広い波長域で実現することが できる回折格子素子を提供することを目的とする。 また、 このような回折格子素 子を製造する方法を提供することを目的とする。
【0 0 0 8】 第 1の発明に係る回折格子素子は、 (1) 互いに平行な第 1平面お よび第 2平面を仮想したときに、 第 1平面より外側に第 1平面に接して設けられ た第 1媒質 (屈折率 η と、 (2) 第 1平面と第 2平面との間に、 第 1平面および 第 2平面に接して、 第 1平面に平行な所定方向に交互に設けられて回折格子を形 成している第 2媒質 (屈折率 n2) および第 3媒質 (屈折率 n3、 ただし、 n3く! ι2) と、 (3) 第 2平面より外側に第 2平面に接して設けられた第 4媒質 (屈折率 n4) と、 を備える。 そして、 第 1媒質、 第 2媒質、 第 3媒質および第 4媒質それぞれ の >屈折率!^〜 n4力 S 「!^く!^く n2、 n3≤ n4≤ n2J ま 7こは 「!^^!^^ !! n
<n4<n2J なる関係式を満たすことを特徴とする。 さらに、 第 2媒質および第 3媒質の双方が固体であることを特徴とし、 或いは、 第 1媒質または第 4媒質が 等方性材料からなることを特徴とする。
【0009】 この第 1の発明に係る回折格子素子では、 第 1媒質と第 4媒質と の間において、 第 2媒質と第 3媒質とが交互に設けられて回折格子が形成されて いる。 第 1媒質から回折格子へ入射した光は、 回折格子部において回折され、 第 4媒質へ出射される。 或いは、 第 4媒質から回折格子へ入射した光は、 回折格子 部において回折され、 第 1媒質へ出射される。 この回折格子素子は、 各媒質の屈 折率が上記関係式を満たしていることから、 回折効率の向上および回折効率の偏 波依存性の低減を広い波長域で実現することができる。
【0010】 第 1の発明に係る回折格子素子は、 第 1平面と第 2平面との間に おける平均屈折率を navとしたときに、第 1媒質の屈折率 が 「nav—0. 2≤n 1^nav+0. 2j なる関係式を満たすのが好適であり、 さらに、第 4媒質の屈折率 n4が 「nav— 0. 2≤n4≤nav+ 0. 2」 なる関係式を満たすのが好適である。 ま た、 第 1平面に垂直な方向についての第 1媒質の厚みが 5pm以上であるのが好 適であり、 さらに、 第 1平面に垂直な方向についての第 4媒質の厚みが 5μιη以 上であるのが好適である。 これらの場合には、 回折効率の向上および回折効率の 偏波依存性の低減を広い波長域で実現する上で更に好ましい。
【001 1】 第 2の発明に係る回折格子素子は、 (1) 互いに平行に順に並んだ 第 1〜第 4平面を仮想したときに、 第 1平面より外側に第 1平面に接して設けら れた第 1媒質 (屈折率 ηι) と、 (2) 第 2平面と第 3平面との間に、 第 2平面およ び第 3平面に接して、 第 1平面に平行な所定方向に交互に設けられて回折格子を 形成している第 2媒質 (屈折率 n2) および第 3媒質 (屈折率 n3、 ただし、 n3< n2) と、 (3) 第 4平面より外側に第 4平面に接して設けられた第 4媒質 (屈折率 n4) と、 (4) 第 1平面と第 2平面との間に、 第 1平面および第 2平面に接して設 けられた第 5媒質 (平均屈折率 n5) と、 (5) 第 3平面と第 4平面との間に、 第 3 平面および第 4平面に接して設けられた第 6媒質(平均屈折率 n 6)と、を備える。 そして、 第 2平面と第 3平面との間における平均屈折率を navとしたときに、 第 5媒質の平均屈折率 nsが 「ηιく n5<nav」 または 「navく n5く なる関係式 を満たし、 第 6媒質の平均屈折率 η6が 「η46く nav」 または 「navく n6く n4」 なる関係式を満たすことを特徴とする。
【0012】 この第 2の発明に係る回折格子素子では、 第 5媒質と第 6媒質と の間において、 第 2媒質と第 3媒質とが交互に設けられて回折格子が形成されて いる。 第 1媒質から回折格子へ入射した光は、 第 5媒質を経て、 回折格子部にお いて回折され、 第 6媒質を経て、 第 4媒質へ出射される。 或いは、 第 4媒質から 回折格子へ入射した光は、 第 6媒質を経て、 回折格子部において回折され、 第 5 媒質を経て、 第 1媒質へ出射される。 この回折格子素子は、 各媒質の屈折率が上 記関係式を満たしていることから、 回折効率の向上おょぴ回折効率の偏波依存性 の低減を広い波長域で実現することができる。
【0013】 第 2の発明に係る回折格子素子は、 第 5媒質の平均屈折率 n5が 「(ninav)1/2— 0.2<n5<(ninav)1/2+0.2」 なる関係式を満たすのが好適で あり、 さらに、第 6媒質の平均屈折率 n6が「(n4nav)1/2— 0.2< n6< (n4nav)1/2 + 0. 2」なる関係式を満たすのが好適である。また、回折格子の周期を Λとし、 第 1平面に垂直な方向についての第 5媒質の厚みを h5とし、波長 λの光が回折格 子に入射するとしたときに、 「XAZ4 (4 η5 2Λ2— λ2)1/2く h5く 3ΑΛ/4 (4 η5 2Λ2 —λ2)1/2」なる関係式を満たす光の波長 λが波長帯域 1.26μιη〜1.675μπι内 に存在するのが好適であり、 さらに、 回折格子の周期を Λとし、 第 1平面に垂直 な方向についての第 6媒質の厚みを h6とし、波長 λの光が回折格子に入射すると したときに、 「λΛΖ4(4 η6 2Λ2— λ2)1/2く h6く 3λΛ/4 (4 η6 2Λ2— λ2)1/2」 なる関 係式を満たす光の波長 λ が波長帯域 1. 26μπι〜1. 675μπι内に存在するの が好適である。 これらの場合には、 回折効率の向上および回折効率の偏波依存性 の低減を広い信号光波長域で実現する上で更に好ましい。
【0014】 また、 第 5媒質が所定方向に交互に設けられた複数の媒質からな るのが好適であり、 さらに、 第 6媒質が所定方向に交互に設けられた複数の媒質 からなるのが好適である。 この場合には、 回折特性の向上を図ることができると ともに、 回折格子素子を製造する上で好都合である。
【0015】 第 3の発明に係る回折格子素子は、 (1) 互いに平行に順に並んだ 第 1〜第 3平面を仮想したときに、 第 1平面より外側に第 1平面に接して設けら れた第 1媒質 (屈折率 と、 (2) 第 2平面と第 3平面との間に、 第 2平面およ び第 3平面に接して、 第 1平面に平行な所定方向に交互に設けられて回折格子を 形成している第 2媒質 (屈折率 n2) およぴ第 3媒質 (屈折率 n3、 ただし、 n3< n2) と、 (3) 第 3平面より外側に第 3平面に接して設けられた第 4媒質 (屈折率 n4) と、 (5) 第 1平面と第 2平面との間に、 第 1平面および第 2平面に接して設 けられた第 5媒質 (平均屈折率 n5) と、 を備える。 そして、 第 1平面と第 2平面 との間における平均屈折率を navとしたときに、 第 5媒質の平均屈折率 n5が 「n L iis nJ または 「navく n5< n ij なる関係式を満たすことを特徴とする。 【0016】 この第 3の発明に係る回折格子素子では、 第 4媒質と第 5媒質と の間において、 第 2媒質と第 3媒質とが交互に設けられて回折格子が形成されて いる。 第 1媒質から回折格子へ入射した光は、 第 5媒質を経て、 回折格子部にお いて回折され、 第 4媒質へ出射される。 或いは、 第 4媒質から回折格子へ入射し た光は、回折格子部において回折され、第 5媒質を経て、第 1媒質へ出射される。 この回折格子素子は、 各媒質の屈折率が上記関係式を満たしていることから、 回 折効率の向上および回折効率の偏波依存性の低減を広い波長域で実現することが できる。
【00 17】 第 3の発明に係る回折格子素子は、 第 5媒質の平均屈折率 n5が 「(ninav)1/2— 0. 2<n5<(ninav)1/2+0. 2」 なる関係式を満たすのが好適で ある。 回折格子の周期を Λとし、第 1平面に垂直な方向についての第 5媒質の厚 みを h5とし、波長 λの光が回折格子に入射するとしたときに、 「ΜΖ4(4 η5 2Λ2 一 λ2) 1/2く h5< 3λΛΖ4 (4 η5 2Λ2— λ2)1/2」 なる関係式を満たす光の波長 λが波長 帯域 1. 26μπι〜1.675μπι内に存在するのが好適である。 第 2媒質、 第 3媒 質および第 4媒質それぞれの屈折率 η2〜η4が 「η342」 なる関係式を満 たすのが好適である。 第 4媒質の屈折率 ιι4が 「nav— 0. 2≤n4≤nav+0. 2 J なる関係式を満たすのが好適である。 また、 第 1平面に垂直な方向についての第 4媒質の厚みが 5pm以上であるのが好適である。 これらの場合には、 回折効率 の向上および回折効率の偏波依存性の低減を広い波長域で実現する上で更に好ま しい。
【0018】 第 5媒質が所定方向に交互に設けられた複数の媒質からなるのが 好適である。 この場合には、 回折特性の向上を図ることができるとともに、 回折 格子素子を製造する上で好都合である。
【0019】 第 4の発明に係る回折格子素子は、 ベース板と、 ベース板上に設 けられた第 1の反射抑制部と、 第 1の反射抑制部上に設けられた回折格子部と、 回折格子部上に設けられた第 2の反射抑制部とを備え、 第 2の反射抑制部は第 1 の媒質に接しており、 回折格子部において、 ベース板に平行な所定方向に第 2媒 質及ぴ第 3媒質が交互に設けられることによって回折格子が設けられており、 1.
26μπι〜1. 675μιηの波長帯域において反射率が 10%以下となる波長が存 在する。 この回折格子素子によれば、 回折効率の向上および回折効率の偏波依存 性の低減を広い波長域で実現することができる。
【0020】 第 4の発明に係る回折格子素子において、 回折格子部の回折能力 は、 前記回折格子部、 前記第 1の反射抑制部、 及び前記第 2の反射抑制部の全体 の回折能力の 5 0 %より大きい。 回折格子部の屈折率変調は、 第 1の反射抑制部 及び第 2の反射抑制部の屈折率変調より大きいことが好ましく、 また、 回折格子 部の最大屈折率が、 前記ベース板及び前記第 1の媒質の屈折率より大きいことが 好ましい。 更に、回折格子の周期は、 1 . 6 7 5 μιη以下であることが好ましい。 【0 0 2 1】 第 1〜第 4の発明に係る回折格子素子は、 Τ Ε偏波光および ΤΜ 偏波光それぞれの回折効率が 9 0 %以上となる光の波長が存在するのが好適であ り、 また、 Τ Ε偏波光おょぴ ΤΜ偏波光それぞれの回折効率の差が 5 %以下とな る光の波長が存在するのが好適である。 これらの場合には、 多波長の信号光を多 重化して伝送する光通信システムにおいて、 この回折格子素子が好適に用いられ 得る。
【0 0 2 2】 第 1〜第 4の発明に係る回折格子素子は、 第 2媒質の屈折率 η 2 と第 3媒質の屈折率 η 3との差が 0 . 7以上であるのが好適であり。 第 2媒質が Τ i 02, T a 25および N b 25の何れかであるのが好適であり、 第 3媒質が気体 であるのが好適である。 こられの場合には、 回折格子部の高さを低くすることが できることから、 回折格子素子の製造が容易である。
【0 0 2 3】 第 1〜第 4の発明に係る回折格子素子は、 第 2媒質または第 3媒 質がエネルギ線照射により屈折率が変化し得る所定材料からなるのが好適であり、 所定材料がダイヤモンド様炭素であるのが好適である。 これらの場合には、 所望 の特性を有する回折格子素子を容易に製造することができる。
【0 0 2 4】 第 1の発明に係る回折格子素子は、 第 1媒質または第 4媒質が、 第 2媒質または第 3媒質よりエッチングレートが遅い所定材料からなるのが好適 である。 第 2の発明に係る回折格子素子は、 第 5媒質または第 6媒質が、 第 2媒 質または第 3媒質よりエツチングレートが遅レ、所定材料からなるのが好適である。 第 2の発明で、 第 5媒質または第 6媒質をエッチングする場合、 第 1媒質または 第 4媒質のエッチングレートが遅い所定材料からなるのが好適である。 また、 第 3の発明に係る回折格子素子は、 第 4媒質または第 5媒質が、 第 2媒質または第 3媒質よりエッチングレートが遅い所定材料からなるのが好適である。 第 3の発 明で、 第 5媒質をエッチングする場合、 第 1媒質のエッチングレートが遅い所定 材料からなるのが好適である。 このように、 エッチング層に接する非エッチング 層のエッチングレートが遅い材料を用いるのが好ましく、 例えば、 エッチングレ ート比が 2倍以上であるのが好適である。 ここで、 上記所定材料が A 1 203, M g O, N d 203およびフッ素系化合物の何れかであるのが好適であり、 また、 第 2媒質または第 3媒質が T i 02, N b 205, T a 205, S i Ν , S i 02, S i 0, Z r 02, S b 2Osの何れかであるのが好適である。 これらの場合には、 回折格子 素子をエッチング法により製造する上で好ましい。
【0 0 2 5】 本発明に係る回折格子素子製造方法は、 上記の第 1〜第 4の発明 に係る回折格子素子を製造する方法であって、 エネルギ線照射により屈折率が変 ィ匕し得る所定材料からなる層を形成し、 その層に対してエネルギ線を所定の空間 的強度変調パターンで照射して、 その層において互いに屈折率が異なる第 2媒質 およぴ第 3媒質が交互に設けられた回折格子を形成することを特徴とする。 或い は、 所定材料からなる層を形成し、 その層に対して所定の空間的パターンでエツ チングして、 その層において互いに屈折率が異なる第 2媒質および第 3媒質が交 互に設けられた回折格子を形成することを特徴とする。
【0 0 2 6】 本発明の回折格子素子の設計方法は、 所定方向に周期的に屈折率 が変化する回折格子部と、 該回折格子部の上下の少なくとも一方に反射抑制部を 有する回折格子素子の設計方法であって、 回折格子部及ぴ反射抑制部を、 各々に 含まれる媒質による平均屈折率を有する膜とし、 かつ、 回折格子部における光の 位相変化を 9 0度に設定し、 所望の波長において反射率が 1 0 %以下となるよう に該回折格子素子の屈折率分布を導出する。 この回折格子素子の設計方法によれ ば、 実際に製造された回折格子素子の特性に近い解析結果を得ることができるの で、 回折格子素子を容易に設計することが可能となる。
図面の簡単な説明 図 1は、 第 1実施形態に係る回折格子素子 1 0の説明図である。
図 2は、 実施例 1の回折格子素子 1 0の回折特性を示すグラフである。
図 3は、 比較例 1の回折格子素子の回折特性を示すダラフである。
図 4は、 実施例 1の回折格子素子 1 0の回折効率と第 4媒質 1 4の屈折率 n 4 と の関係を示すグラフである。
図 5は、 変形例 1の回折格子素子 1 0 Aの説明図である。
図 6は、 変形例 2の回折格子素子 1 0 Bの説明図である。
図 7は、 第 2実施形態に係る回折格子素子 2 0の説明図である。
図 8は、 実施例 2の回折格子素子 2 0の回折特性を示すグラフである。
図 9は、 変形例の回折格子素子 2 0 Aの説明図である。
図 1 0は、 実施例 3の回折格子素子 2 0 Bの説明図である。
図 1 1は、 実施例 3の回折格子素子 2 O Bの回折特性を示すグラフである。 図 1 2は、 第 3実施形態に係る回折格子素子 3 0の説明図である。
図 1 3は、 実施例 4の回折格子素子 3 O Aの説明図である。
図 1 4は、 実施例 4の回折格子素子 3 O Aの回折特性を示すグラフである。
図 1 5は、 第 4実施形態に係る回折格子素子 4 0の説明図である。
図 1 6は、 第 4実施形態に係る回折格子素子の反射 0次回折効率と等価モデルの 反射 0次回折効率の特性を示すグラフである。
図 1 7は、 実施例 5に係る回折格子素子 4 O Aの説明図である。
図 1 8は、 実施例 6に係る回折格子素子 4 O Bの説明図である。
図 1 9は、 第 4実施形態に係る回折格子素子の回折効率を示すグラフである。 図 2 0は、 第 4実施形態に係る回折格子素子における回折格子部の溝のァスぺク ト比を示すグラフである。
図 2 1は、 第 4実施形態に係る回折格子素子の溝深さト
ある。
図 2 2は、 変形態様に係る回折格子素子 3 O Bの説明図である( 発明を実施するための最良の形態
【0 0 2 7】 以下、添付図面を参照して本発明の実施の形態を詳細に説明する。 なお、 図面の説明において同一の要素には同一の符号を付し、 重複する説明を省 略する。
【0 0 2 8】 (第 1実施形態)
【0 0 2 9】 先ず、 本発明に係る回折格子素子の第 1実施形態について説明す る。 図 1は、 第 1実施形態に係る回折格子素子 1 0の説明図である。 この図は、 格子に垂直な面で切断したときの回折格子素子 1 0の断面を示している。 この図 に示される回折格子素子 1 0は、 第 1媒質 1 1、 第 2媒質 1 2、 第 3媒質 1 3お よび第 4媒質 1 4を備えて構成されている。
【0 0 3 0】 この回折格子素子 1 0において、互いに平行な第 1平面 および 第 2平面 P 2を仮想する。 このとき、 第 1媒質 1 1は、 第 1平面 P iより外側 (図 では上側) に第 1平面 P iに接して設けられている。第 2媒質 1 2および第 3媒質 1 3は、 第 1平面 P iと第 2平面 P 2との間に、 第 1平面 および第 2平面 P 2に 接して、第 1平面 P iに平行な所定方向に交互に設けられていて、回折格子を形成 している。 また、 第 4媒質 1 4は、 第 2平面 P2より外側 (図では下側) に第 2平 面 P2に接して設けられている。第 2媒質 1 2および第 3媒質' 1 3の双方が固体で あり、 或いは、 第 1媒質 1 1または第 4媒質 1 4が等方性材料からなる。
【0 0 3 1】 この回折格子素子 1 0では、 第 1媒質 1 1と第 4媒質 1 4との間 において、 第 2媒質 1 2と第 3媒質 1 3とが交互に設けられて回折格子が形成さ れている。 第 1媒質 1 1から回折格子へ入射した光 L i (入射角 0 ) は、 回折格 子部において回折され、 第 4媒質 1 4へ出射される (図 1には、 0次光 L d 。、 1次回折光 L d iが示されている)。 或いは、 第 4媒質 1 4から回折格子へ入射し た光は、 回折格子部において回折され、 第 1媒質 1 1 へ出射される。
【0 0 3 2】 第 2媒質 1 2の各領域および第 3媒質 1 3の各領域は、 何れも断 面が長方形である。 第 2媒質 1 2およぴ第 3媒質 1 3が所定方向に交互に設けら れることによって回折格子が形成された回折格子部において、 その回折格子の周 期を Λとし、 その周期 Λにおける第 2媒質 1 2が占める割合(デューティ比) を f とする。 第 1平面 Piと第 2平面 P2との間の距離 (すなわち、 格子の高さ) を Hとする。 第 1媒質 1 1の屈折率を ιとし、 第 2媒質 1 2の屈折率を n2とし、 第 3媒質 13の屈折率を n3 (ただし、 n3く η2) とし、 第 4媒質 14の屈折率を η4とする。
【0033】 このとき、 第 1平面 と第 2平面 Ρ2との間の回折格子部の平均 屈折率 navは、
Figure imgf000013_0001
なる式で表される。 また、 この平均屈折率 navは、 第 2媒質 1 2の屈折率 n2およ び第 3媒質 1 3の屈折率 n 3との間で、 "'(2) なる関係式を満たす。
【0034】 そして、 回折格子の周期 Λが入射光の波長 λのオーダー以下 (例 えば 2λ以下) 'であれば、 第 1平面 Ρ1および第 2平面 Ρ2それぞれでの光の反射 を考える際に、 第 1平面 Piと第 2平面 Ρ2との間を屈折率 navの均質な媒質で置 き換えことができる。 このとき、第 1媒質 1 1の屈折率 または第 4媒質 14の 屈折率 n4が回折格子部の平均屈折率 navに近いほど、 第 1平面 または第 2平 面 P 2における反射が低減され、 回折特性が向上する。
【0035】 そこで、 本実施形態では、 各媒質の屈折率 ni〜n4は、
«3 < < n · n3≤ n4≤ n2 ■■■
または
n3 < , < , , n7 <n4 <n-, … (3b) なる関係式を満たすものとされている。 さらに、 各媒質の屈折率 〜!! は、 ηαν-0.2≤ηλ≤nm, +0.2 …(4a)
または
nav -0.2≤n4≤nav +0.2 …(4b) なる関係式を満たすのが好適である。
【0 0 3 6】 上記 (3)式または (4)式に従って各媒質の屈折率 ηι〜η4が決定さ れ、 その後、 厳密結合波解析法 (RCWA: Rigorous Coupled-Wave Analysis) により回折格子素子 1 0の回折特性の解析が行なわれる。そして、最適化手法(例 えば、非線形計画法、 シミュレ一ティドアニーリング法、遺伝アルゴリズムなど) により、 デューティ比 ί、 格子周期 Λおよび格子高さ Ηが最適化されることで、 回折特性が優れた回折格子素子 1 0が設計される。
【0 0 3 7】 次に、 第 1実施形態に係る回折格子素子 1 0の実施例について、 比較例とともに説明する。 実施例 1の回折格子素子 1 0は、 第 1媒質 1 1および 第 4媒質 1 4それぞれが石英ガラス (ηι4= 1. 4 5) であり、 第 2媒質 1 2 の屈折率 η2が 1. 7 5であり、 第 3媒質 1 3が空気 (η3= 1 ) であり、 デューテ ィ比 ί力 SO. 7 0であり、格子周期 Λが 1. 0 Ιμιηであり、格子高さ Ηが 2. 2 6 μπιである。 比較例 1の回折格子素子は、 第 1媒質および第 3媒質それぞれが空 気 (r^-ns l ) であり、 第 2媒質おょぴ第 4媒質それぞれが石英ガラス (n2 = n4= 1. 4 5) であり、 デューティ比: [ が 0. 8 4であり、 格子周期 Λが 1. 0 Ιμπιであり、 格子高さ Ηが 6. 0 2μιηである。
【0 0 3 8】 図 2は、 実施例 1の回折格子素子 1 0の回折特性を示すグラフで ある。 図 3は、 比較例 1の回折格子素子の回折特性を示すグラフである。 これら の図には、光の入射角 Θが波長 1. 5 5μπιにおけるプラッグ入射角であるときの 回折効率の波長依存性が Τ Ε偏波光および ΤΜ偏波光それぞれについて示されて いる。 なお、 ブラッグ入射角は、 0次光および 1次光それぞれの角度が等しくな 6
る入射角をいう。 また、 これら実施例 1および比較例 1それぞれにおいては、 波 長帯域 1 . 5 2μιη~ 1 . 5 7μιηにおいて、回折効率の偏波依存性および波長依存 性ができる限り小さく、 回折効率ができる限り大きくなるように、 各パラメータ が設計された。
【0 0 3 9】 これらの図を対比して判るように、 比較例 1め場合 (図 3 ) と比 較して、 実施例 1の場合 (図 2 ) には、 広い波長域で、 Τ Ε偏波光および ΤΜ偏 波光それぞれの回折効率が高く 9 5 %以上であり、 Τ Ε偏波光および ΤΜ偏波光 それぞれの回折効率の差が 2 %以下であった。 このように、 本実施形態に係る回 折格子素子 1 0は、 回折効率の向上および回折効率の偏波依存性の低減を広い波 長域で実現することができる。
【0 0 4 0】 図 4は、 実施例 1の回折格子素子 1 0の回折効率と第 4媒質 1 4 の屈折率 η 4との関係を示すグラフである。 ここでは、 波長 λは 1 . 5 5 μπιに固 定された。 この図から判るように、第 4媒質 1 4の屈折率 η 4が上記 (4b)式の関係 式を満たす場合には、 回折効率が大きく、 偏波依存性が小さい。
【0 0 4 1】 次に、 第 1実施形態に係る回折格子素子 1 0を製造する方法につ いて幾つか説明する。
【0 0 4 2】 第 1の製造方法では、 第 4媒質 1 4の面上に第 2媒質 1 2からな る層を形成し、 その層に対して所定の空間的パターンでエッチングにより溝を形 成し、 その上に第 1媒質 1 1を貼り合わせる。 この場合、 エッチングにより形成 された溝の領域が、 空気からなる第 3媒質 1 3となる。 或いは、 エッチングによ り形成された溝の領域に C V D (Chemical Vapor Deposition) 法等により第 3領 域 1 3となるべき他の材料を埋め込み、 研磨等により第 2領域 1 2および第 3領 域 1 3それぞれの高さを揃えて、その上に第 1媒質 1 1を設けてもよい。ここで、 第 2領域 1 2および第 3領域 1 3の双方が固体であれば、 第 1媒質 1 1に貼り合 わせる際の圧力による溝形状の変形を抑制することができ、 また、 C V D法等で 第 1媒質 1 1を設ける際にも溝への第 1媒質 1 1の入り込みを抑制することがで 4000686
きて、 好適である。 なお、 第 4媒質 14の面上に第 2媒質 1 2からなる層を形成 するのでは無く、 第 3媒質 1 3からなる層を形成してもよい。
【0043】 第 2媒質 1 2または第 3媒質 1 3からなる層がエッチングされる 際に、 第 4媒質 14が、 第 2媒質 12または第 3媒質 1 3よりエッチングレート が遅い所定材料からなるのが好ましく、 この場合には、 第 4媒質 14の上面 (第 2平面 P2) でエッチングを終了させることができる。 このような観点から、 例え ば、 第 4媒質 14は、 A 1203, MgO, N d203およびフッ素系化合物 (A 1 F 3, Mg F2, C a F2, Nd F3など) の何れかであるのが好ましい。 また、 第 2媒 質 1 2または第 3媒質 1 3は、 T i2, Nb205, Ta205, S i N, S i 02> S i O, Z r 02, S b23の何れかであるのが好ましレ、。
【0044】 なお、 上記のエッチングに替えてリフトオフ等により第 2媒質 1 2および第 3媒質 13が交互に形成されてもよい。
【0045】 エッチングおよびリフトオフの何れの場合にも、 格子高さ Hが低 いほど溝形成が容易である。 第 1実施形態では、 各媒質の屈折率
Figure imgf000016_0001
それぞ れを独立に設定することができるから、第 2媒質 12の屈折率 n2と第 3媒質 1 3 の屈折率 n3との差 (n2— n3) を大きくすることができ、 したがって、 格子高さ Hを低くすることができる。 このような観点から、第 2媒質 12の屈折率 n2と第 3媒質 1 3の屈折率 n3 との差 (η2— n3) が 0. 7以上であれは、 格子高さ Hを 3μπι以下とすることができ製造が容易となるので好適である。 また、 その為に は、 第 2媒質 1 2が T i 02, T a205および Nb205の何れかであるのが好適で あり、 第 3媒質 1 3が気体であるのが好適である。 また、 第 2媒質、 第 3媒質と もに固体の場合、 第 3媒質として Mg F 2 (屈折率 1. 35) のような低屈折率 材料を用い、 第 2媒質として半導体、 例えば S i (屈折率 3. 5) のような高屈 折率材料を用いれば、 さらに好適である。
【0046】 第 2の製造方法では、 第 4媒質 14の面上に、 エネノレギ線 (例え ば X線や粒子線など) の照射により屈折率が変化し得る所定材料からなる層を形 6
•成し、 その層に対してエネルギ線を所定の空間的強度変調パターンで照射して、 その層において互いに屈折率が異なる第 2媒質 1 2および第 3媒質 1 3が交互に 設けられた回折格子を形成し、 その上に第 1媒質 1 1を設ける。 或いは、 所定材 料からなる層の上に第 1媒質 1 1を設け、 その後に、 その層に対してエネルギ線 を所定の空間的強度変調パターンで照射して、 その層において互いに屈折率が異 なる第 2媒質 1 2および第 3媒質 1 3が交互に設けられた回折格子を形成するの も好適である。
【0 0 4 7】 エネルギ線照射により屈折率が変化し得る所定材料としてダイヤ モンド様炭素 (D L C : Diamond-Like Carbon) が好適に用いられる。 この場合、 このダイヤモンド様炭素の屈折率を変化させる為に照射されるエネルギ線として、 シンクロ卜ロン放射光 ( S R¾ : Synchrotron Radiation) や水素イオンビーム力 S 用いられ、 エネルギ線が照射されたダイャモンド様炭素の領域の屈折率が大きく なる。すなわち、エネルギ線が照射されていない領域が第 3媒質 1 3 (屈折率 n 3) となり、 エネルギ線が照射された領域が第 2媒質 1 2 (屈折率 n 2) となる。
【0 0 4 8】 この第 2の製造方法は、 第 1の製造方法と比較して、 回折格子素 子 1 0の製造が簡略である点で好適である。 また、 第 1の製造方法では、 エッチ ングにより形成される溝の断面形状を完全な長方形とするのは困難であるが、 こ れに対して、 第 2の製造方法では、 第 2媒質 1 2および第 3媒質 1 3それぞれの 各領域の断面形状がより完全な長方形となり得る点でも好適である。
【0 0 4 9】 次に、 第 1実施形態に係る回折格子素子 1 0の変形例について説 明する。 図 5は、 変形例 1の回折格子素子 1 0 Aの説明図である。 この図に示さ れる変形例 1の回折格子素子 1 0 Aは、 上述した回折格子素子 1 0の構成に対し て、 第 1媒質 1 1 (屈折率 n の外側 (図では上側) に反射低減膜 1 1 aが形成 され、 更に反射低減膜 1 1 aの外側に媒質 1 1 b (屈折率 n。)が存在し、 また、 第 4媒質 1 4 (屈折率 n 4)の外側(図では下側)に反射低減膜 1 4 aが形成され、 更に反射低減膜 1 4 aの外側に媒質 1 4 b (屈折率 n 5)が存在するものである。 例えば、 外側の媒質 1 l bおよび媒質 1 4 bは、 空気であり、 或いは、 回折格子 素子 1 0 A全体の線膨張係数を調整して光学特性の温度依存性を低減する為の光 学ガラスである。
【0 0 5 0】 この変形例 1の回折格子素子 1 0 Aでは、 回折格子において発生 するエバネセント波が充分に減衰するように、 第 1媒質 1 1および第 4媒質 1 4 それぞれの厚み(第 1平面 P iに垂直な方向についての厚み) は、波長 λより充分 に厚いのが好ましい。 例えば、 波長 λが 1 . 5 5 μιηであれば、 第 1媒質 1 1およ び第 4媒質 1 4それぞれの厚みは 5 μπι以上であるのが好適である。 また、 第 1 媒質 1 1と外側の媒質 1 1 bとの間に反射低減膜 1 1 aが設けられ、 また、 第 4 媒質 1 4と外側の媒質 1 4 bとの間に反射低減膜 1 4 aが設けられていることに より、 これらの界面での反射が低減されて、 回折特性の低下が抑制される。 【0 0 5 1】 ここで、 第 1媒質 1 1または第 4媒質 1 4が異方性材料からなる 場合、 偏波モード分散が発生し又は偏波状態が変化するので、 光通信に影響を及 ぼす。 しかし、 第 1媒質 1 1および第 4媒質 1 4を等方性材料のものとすること で、 これらの影響を抑制することができ、 また、 反射低減膜 1 1 aや反射低減膜 1 4 aにおける反射低減の為の設計も容易になる。
【0 0 5 2】 図 6は、 変形例 2の回折格子素子 1 0 Bの説明図である。 図 6に おいては、 入射光 L i、 第 4媒質 1 4と媒質 1 4 bとの境界からの反射光 L r、 回折光 L dそれぞれの軌跡が例示されている。 この図に示される変形例 2の回折 格子素子 1 0 Bは、上述した回折格子素子 1 0の構成に対して、第 1媒質 1 1 (屈 折率 n の外側 (図では上側) に媒質 l i b (屈折率 n。)が存在し、 また、 第 4 媒質 1 4 (屈折率 n 4)の外側 (図では下側) に媒質 1 4 b (屈折率 n 5)が存在す るものである。 例えば、 外側の媒質 1 1 bおよび媒質 1 4 bは、 空気であり、 或 いは、 回折格子素子 1 O A全体の線膨張係数を調整して光学特性の温度依存性を 低減する為の光学ガラスである。特に、この変形例 2の回折格子素子 1 0 Bでは、 回折格子部での反射光 ·透過光 ·回折光が再び回折格子部に入射しないように、 第 1媒質 1 1および第 4媒質 1 4それぞれは充分な厚みを有している。 このこと により、 回折特性の低下が抑制される。
【0 0 5 3】 (第 2実施形態)
【0 0 5 4】 次に、 本発明に係る回折格子素子の第 2実施形態について説明す る。 図 7は、 第 2実施形態に係る回折格子素子 2 0の説明図である。 この図は、 格子に垂直な面で切断したときの回折格子素子 2 0の断面を示している。 この図 に示される回折格子素子 2 0は、 第 1媒質 2 1、 第 2媒質 2 2、 第 3媒質 2 3、 第 4媒質 2 4、 第 5媒質 2 5および第 6媒質 2 6を備えて構成されている。
【0 0 5 5】 この回折格子素子 2 0において、 互いに平行で順に並んだ第 1平 面 第 2平面 P2、第 3平面 P3およぴ第 4平面 P4を仮想する。 このとき、 第 1 媒質 2 1は、 第 1平面 P iより外側 (図では上側) に第 1平面 P iに接して設けら れている。 第 2媒質 2 2および第 3媒質 2 3は、 第 2平面 P 2と第 3平面 P 3との 間に、第 2平面 P 2および第 3平面 P 3に接して、第 1平面 P iに平行な所定方向に 交互に設けられて、 回折格子を形成している。 第 4媒質 2 4は、 第 4平面 P4より 外側 (図では下側) に第 4平面 P4に接して設けられている。 第 5媒質 2 5は、 第 1平面 P tと第 2平面 P2との間に、 第 1平面 P iおよぴ第 2平面 P 2に接して設け られている。 第 6媒質 2 6は、 第 3平面 P 3と第 4平面 P4との間に、 第 3平面 P 3 およぴ第 4平面 P4に接して設けられている。
【0 0 5 6】, この回折格子素子 2 0では、 第 5媒質 2 5と第 6媒質 2 6との間 において、 第 2媒質 2 2と第 3媒質 2 3とが交互に設けられて回折格子が形成さ れている。 第 1媒質 2 1から回折格子へ入射した光は、 第 5媒質 2 5を経て、 回 折格子部において回折され、 第 6媒質 2 6を経て、 第 4媒質 2 4へ出射される。 或いは、 第 4媒質 2 4から回折格子へ入射した光は、 第 6媒質 2 6を経て、 回折 格子部において回折され、 第 5媒質 2 5を経て、 第 1媒質 2 1 へ出射される。 【0 0 5 7】 第 2媒質 2 2の各領域および第 3媒質 2 3の各領域は、 何れも断 面が長方形である。 第 2媒質 2 2および第 3媒質 2 3が所定方向に交互に設けら れることによって回折格子が形成された回折格子部において、 その回折格子の周 期を Λとし、 その周期 Λにおける第 2媒質 22が占める割合(デューティ比) を f とする。 第 1平面 Piと第 2平面 P2との間の距離 (すなわち、 第 5媒質 25の 厚み) を h5とする。 第 2平面 P2と第 3平面 P3との間の距離 (すなわち、 格子の 高さ) を Hとする。 第 3平面 P3と第 4平面 P4との間の距離 (すなわち、 第 6媒 質 26の厚み) を h6とする。 第 1媒質 21の屈折率を ηιとし、 第 2媒質 22の 屈折率を n2とし、 第 3媒質 23の屈折率を n3 (ただし、 n3<n2) とし、 第 4媒 質 24の屈折率を n4とし、 第 5媒質 25の屈折率を n5とし、 第 6媒質 26の屈 折率を n6とする。
【0058】 このとき、 第 2平面 P2と第 3平面 P3との間の回折格子部の平均 屈折率 navは上記(1)式で表される。 また、 この平均屈折率 navは、 第 2媒質 22 の屈折率 n 2および第 3媒質 23の屈折率 n 3との間で、上記(2)式の関係式を満た す。
【0059】 第 5媒質 25およぴ第 6媒質 26それぞれは、 反射低減の為の多 層膜であってもよいし、 単層の膜であってもよい。 単層膜であるとき、 第 5媒質 25の屈折率 n 5は、 nx <ns < nav または nav <ns <nx (5)
なる関係式を満たし、 第 6媒質 26の屈折率 n6は、
<n, <n„ または <n6 <n (6) なる関係式を満たす。 本実施形態に係る回折格子素子 20は、 このように設定さ れていることにより、 各界面での反射が低減されて、 回折特性の低下が抑制され る。
【0060】 さらに、 第 5媒質 25の屈折率 n5は、 一 0.2 < n, <
Figure imgf000021_0001
0.2 …(7) なる関係式を満たすのが好適である。 また、 第 6媒質 26の屈折率 n6は、 n~ nm― 0.2 <η6 < ^ηΑηαν +0.2 ■■ · (8) なる関係式を満たすのが好適である。
【006 1】 また、 界面での反射を広い波長帯域で低減する為には、 第 5媒質 2 5の高さ h5および第 6媒質 26の高さ h6それぞれは、 波長オーダー以下であ ることが好ましく、 例えば 5 μπι以下であるのが好適である。
【006 2】 特に、 第 5媒質 2 5中における波長 λの光の角度を θ5とすると、 第 5媒質 2 5の厚み h5は、 /Λλ
■■" (9)
Figure imgf000021_0002
なる関係式を満たすのが好適である。 また、 第 6媒質 26中における波長 λの光 の角度を θ6とすると、 第 6媒質 2 6の厚み h6は、 丄' ^ - ~~ <h6 <^- ~~ ^ ~~ -(10)
2 4n6 cos^6 2 An6 cos θ6 なる関係式を満たすのが好適である。
【006 3】 また、 光がブラッグ角で入射するとすれば、 上記 (9)式は、 , 、
Figure imgf000021_0003
なる式で表され、 上記(10)式は、 λΑ 3λΑ
<、h〃r6<、 (12)
4^4n6 2A2 - λ2 4^]4n6 2A2一 λ2 なる式で表される。 なお、 上記(11)式おょぴ(12)式それぞれは、 ブラッグ入射角 を仮定した場合に導出されるものであるが、 ブラッグ入射角で無い場合にも近似 的に当てはまる。
【0064】 上記(5)式〜(12)式の何れかに従って各媒質の屈折率 ηι6およ び厚み h5, h6が決定され、 その後、 RCWA法により回折格子素子 20の回折 特性の解析が行なわれる。 そして、 最適化手法により、 デューティ比 f 、 格子周 期 Λおよび格子高さ Hが最適化されることで、回折特性が優れた回折格子素子 2 0が設計される。
【0065】 なお、 以上では第 5媒質 25および第 6媒質 26それぞれが均一 な単層膜であるとして説明してきたが、 第 5媒質 25または第 6媒質 26が反射 低減の為の多層膜であってもよい。 後者の場合、 TE偏波光および TM偏波光そ れぞれの反射が抑制されて回折効率が向上し、 多層膜の偏波依存性を利用するこ とにより回折効率の偏波依存性を低減することができ、 また、 高次回折光やエバ ネセント波に対しても反射低減効果を期待することができる。
【0066】 次に、 第 2実施形態に係る回折格子素子 20の実施例について説 明する。実施例 2の回折格子素子 20は、第 1媒質 21が空気(ηι= 1 )であり、 第 2媒質 22が DLCの SR光照射部 (n2=2. 1 5) であり、 第 3媒質 23が 0 〇の3尺光非照射部(n3= 1. 55) であり、第 4媒質 24が石英ガラス (n 4= 1.45) であり、 第 5媒質 25が石英ガラス (n5= l.45) であり、 第 6 媒質 26が MgO (n6= 1. 70) であった。 デューティ比 f が 0. 74であり、 格子周期 Λが 1.0 Ιμπιであり、格子高さ Ηが 3. 35μπιであり、第 5媒質 25 の厚み h5が 0. 3 Ομπιであり、 第 6媒質 26の厚み h6が 0. 23μπιであった。
【0067】 図 8は、 実施例 2の回折格子素子 20の回折特性を示すグラフで ある。 この図には、 光の入射角 Θが波長 1 . 5 5μΐηにおけるブラッグ入射角であ るときの回折効率の波長依存性が Τ Ε偏波光おょぴ ΤΜ偏波光それぞれについて 示されている。 波長帯域 1 . 5 2μπι〜1 . 5 7μπιにおいて、 回折効率の偏波依存 性および波長依存性ができる限り小さく、 回折効率ができる限り大きくなるよう に、 各パラメータが設計された。 この図から判るように、 実施例 2の場合にも、 広い波長域で、 Τ Ε偏波光および ΤΜ偏波光それぞれの回折効率が高く 9 5 %以 上であり、 Τ Ε偏波光おょぴ ΤΜ偏波光それぞれの回折効率の差が 2 %以下であ つた。 このように、 本実施形態に係る回折格子素子 2 0は、 回折効率の向上およ び回折効率の偏波依存性の低減を広い波長域で実現することができる。
【0 0 6 8】 次に、 第 2実施形態に係る回折格子素子 2 0を製造する方法につ いて説明する。 第 1実施形態の場合と略同様に、 第 2実施形態に係る回折格子素 子 2 0は、 エッチング法やリフトオフ法を用いる第 1の製造方法や、 エネルギ線 の照射により屈折率が変化し得る所定材料を用いる第 2の製造方法により、 製造 することができる。 ただし、 第 2実施形態では、 第 6媒質 2 6は、 第 2媒質 2 2 または第 3媒質 2 3よりエッチングレートが遅い所定材料からなるのが好ましく、
A 1 203, M g O, N d 203およびフッ素系化合物 (A 1 F 3, M g F 2, C a F 2, N d F 3など) の何れかであるのが好ましい。
【0 0 6 9】 次に、 第 2実施形態に係る回折格子素子 2 0の変形例について説 明する。 回折格子素子 2 0の変形例では、 第 5媒質 2 5および第 6媒質 2 6の双 方または何れか一方が所定方向に交互に設けられた複数の媒質からなる。
【0 0 7 0】 図 9は、 変形例の回折格子素子 2 O Aの説明図である。 この図に 示される変形例の回折格子素子 2 O Aは、 上述した回折格子素子 2 0の構成に対 して、 第 5媒質 2 5および第 6媒質 2 6の双方が所定方向に交互に設けられた複 数の媒質からなるものである。 ここで、 所定方向は、 第 2媒質 2 2および第 3媒 質 2 3が交互に設けられている方向と同じである。
【0 0 7 1】 第 5媒質 2 5は、 媒質 2 5 a (屈折率 n 5a) と媒質 2 5 b (屈折 率 n5b) とが ^で交互に設けられている。 第 6媒質 26は、 媒質 26 a (屈折率 n6a) と媒質 26 b (屈折率 n6b) とが で交互に設けられている。 第 5媒質 2 5の周期 における媒質 25 aが占める割合 (デューティ比) を f5とし、 第 6 媒質 26の周期 における媒質 26 aが占める割合 (デューティ比) を f6とす る。 なお、 第 5媒質 25の周期 Asおよび第 6媒質 26の周期 それぞれは、 第 2媒質 22および第 3媒質 23からなる回折格子部の周期 Λと等しいのが好適で あり、 或いは、 周期 Λの整数分の 1であるのが好適である。 また、 第 5媒質 25 の周期 および第 6媒質 26の周期 それぞれは、 入射光の波長 λと比べて充 分に小さいのが好適であり、 例えば波長 λの 1 / 5以下であるのが好適である。 【0072】 このとき、 第 5媒質 25の平均屈折率 η5は、
"5 = 5«5 +(i- 5>¾ (13) なる式で表され、 第 6媒質 26の平均屈折率! ι6は、 n, = if,n6a-+(l-fe)n6h 2 -(14) なる式で表される。 上記(13)式, (14)式で表される平均屈折率 n 5, n6を用いる ことで、 既述した回折格子素子 20 (図 7) と同様の議論が可能となる。
【0073】 次に、この変形例の回折格子素子 20の実施例について説明する。 図 10は、 実施例 3の回折格子素子 20 Bの説明図である。 この実施例 3の回折 格子素子 2 OBでは、 第 5媒質 25は所定方向に交互に設けられた 2つの媒質 2 5 a, 25 bからなり、 第 6媒質 26は均一である。 実施例 3の回折格子素子 2 0 Bは、 第 1媒質 2 1が空気 (ηι= 1) であり、 第 2媒質 22が T a 205 (n2 =2. 0) であり、 第 3媒質 23が空気 (n3= 1) であり、 第 4媒質 24が石英 ガラス (n4= 1.45) であり、第 5媒質 25のうち媒質 25 aが石英ガラス (n 5a=l. 5) であって媒質 25 bが空気 (n5b= l) であり、 第 6媒質 26が A 1 23 ( n6= 1 . 6 0 ) であった。 デューティ比 fおよび ί 5が 0 . 6 6であり、 格 子周期 Λが 1 . 0 Ι μπιであり、格子高さ Ηが 1 . 4 9μπιであり、第 5媒質 2 5の 厚み h 5が 0 . 3 6 μπιであり、 第 6媒質 2 6の厚み h 6が 0 . 3 4μπιであった。 【0 0 7 4】 図 1 1は、 実施例 3の回折格子素子 2 0 Βの回折特性を示すダラ フである。 この図には、 光の入射角 Θ (図 1 0参照) が波長 1 . 5 5 μπιにおける ブラッグ入射角であるときの回折効率の波長依存性が Τ Ε偏波光および Τ Μ偏波 光それぞれについて示されている。 波長帯域 1 . 5 2μπ!〜 1 . 5 7μπιにおいて、 回折効率の偏波依存性および波長依存性ができる限り小さく、 回折効率ができる 限り大きくなるように、 各パラメータが設計された。 この図から判るように、 実 施例 3の場合にも、 広い波長域で、 Τ Ε偏波光および ΤΜ偏波光それぞれの回折 効率が高く 9 5 %以上であり、 Τ Ε偏波光および ΤΜ偏波光それぞれの回折効率 の差が 2 °/0以下であった。 このように、 本実施形態に係る回折格子素子 2 0は、 回折効率の向上および回折効率の偏波依存性の低減を広い波長域で実現すること ができる。
【0 0 7 5】 また、 実施例 3では、 第 2媒質 2 2および第 5媒質 2 5を同時に エッチングすることができるので、 製造が容易である。 この際、 第 6媒質 2 6と して第 2媒質 2 2および第 5媒質 2 5よりエッチングレートが遅 、所定材料を用 いることで、 製造する上で更に好都合である。 また、 第 2媒質 2 2、 第 5媒質 2 5および第 6媒質 2 6を同時にエッチングすることも可能であり、この場合には、 第 4媒質 2 4のエッチングレートが遅いのが好適である。
【0 0 7 6】 (第 3実施形態)
【0 0 7 7】 次に、 本発明に係る回折格子素子の第 3実施形態について説明す る。図 1 2は、第 3実施形態に係る回折格子素子 3 0の説明図である。この図は、 格子に垂直な面で切断したときの回折格子素子 3 0の断面を示している。 この図 に示される回折格子素子 3 0は、 第 1媒質 3 1、 第 2媒質 3 2、 第 3媒質 3 3、 第 4媒質 3 4および第 5媒質 3 5を備えて構成されている。 【0 0 7 8】 この回折格子素子 3 0において、 互いに平行で順に並んだ第 1平 面 第 2平面 P2および第 3平面 P 3を仮想する。 このとき、 第 1媒質 3 1は、 第 1平面 P Lより外側 (図では上側) に第 1平面 P iに接して設けられている。 第 2媒質 3 2および第 3媒質 3 3は、 第 2平面 P2と第 3平面 P 3との間に、 第 2平 面 P2および第 3平面 P 3に接して、第 1平面 に平行な所定方向に交互に設けら れて、 回折格子を形成している。 第 4媒質 3 4は、 第 3平面 P3より外側 (図では 下側) に第 3平面 P3に接して設けられている。 第 5媒質 3 5は、 第 1平面 P iと 第 2平面 P2との間に、 第 1平面 P iおよび第 2平面 P 2に接して設けられている。 【0 0 7 9】 この回折格子素子 3 0では、 第 4媒質 3 4と第 5媒質 3 5との間 において、 第 2媒質 3 2と第 3媒質 3 3とが交互に設けられて回折格子が形成さ れている。 第 1媒質 3 1から回折格子へ入射した光は、 第 5媒質 3 5を経て、 回 折格子部において回折され、 第 4媒質 3 4 へ出射される。 或いは、 第 4媒質 3 4 から回折格子へ入射した光は、 回折格子部において回折され、 第 5媒質 3 5を経 て、 第 1媒質 3 1 へ出射される。
【0 0 8 0】 第 2媒質 3 2の各領域および第 3媒質 3 3の各領域は、 何れも断 面が長方形である。 第 2媒質 3 2および第 3媒質 3 3が所定方向に交互に設けら れることによって回折格子が形成された回折格子部において、 その回折格子の周 期を Λとし、その周期 Λにおける第 2媒質 3 2が占める割合(デューティ比) を f とする。 第 1平面 P iと第 2平面 P2との間の距離 (すなわち、 第 5媒質 3 5の 厚み) を h 5とする。 第 2平面 P2と第 3平面 P3との間の距離 (すなわち、 格子の 高さ) を Hとする。 第 1媒質 3 1の屈折率を とし、 第 2媒質 3 2の屈折率を n 2とし、 第 3媒質 3 3の屈折率を n 3 (ただし、 n 3< n 2) とし、 第 4媒質 3 4の屈 折率を n4とし、 第 5媒質 3 5の屈折率を ii 5とする。
【0 0 8 1】 このとき、 第 2平面 P 2と第 3平面 P 3との間の回折格子部の平均 屈折率 n avは上記(1)式で表される。 また、 この平均屈折率 n avは、 第 2媒質 3 2 の屈折率 n 2および第 3媒質 3 3の屈折率 n 3との間で、上記 (2)式の関係式を満た す。
【0 0 8 2】 第 5媒質 3 5は、 第 2実施形態の場合と同様に、 反射低減の為の 多層膜であってもよいし、 単層の膜であってもよい。 単層膜であるとき、 第 5媒 質 3 5の屈折率 n 5は上記 (5)式の関係式を満たす。 本実施形態に係る回折格子素 子 3 0は、 このように設定されていることにより、 この界面での反射が低減され て、 回折特性の低下が抑制される。 さらに、 第 5媒質 3 5の屈折率 η 5は上記(7) 式の関係式を満たすのが好適である。
【0 0 8 3】 また、 界面での反射を広い波長帯域で低減する為には、 第 5媒質 3 5の高さ h 5は、 波長オーダー以下であることが好ましく、 例えば 5μιη以下で あるのが好適である。 特に、 第 5媒質 3 5中における波長 λの光の角度を θ5とす ると、 第 5媒質 3 5の厚み h 5は上記(9)式の関係式を満たすのが好適である。 ま た、光がブラッグ角で入射するとすれば、上記 (9)式は上記(11)式で表される。 な お、 上記(11)式は、 ブラッグ入射角を仮定した場合に導出されるものであるが、 ブラッグ入射角で無 、場合にも近似的に当てはまる。
【0 0 8 4】 一方、第 4媒質 3 4の屈折率 n4については、第 1実施形態の場合 と同様に、 上記 (3)式または (4)式を満たすのが好適である。 本実施形態に係る回 折格子素子 3 0は、 このように設定されていることにより、 この界面での反射が 低減されて、 回折特性の低下が抑制される。
【0 0 8 5】 上記の各式に従って各媒質の屈折率 η ι〜η3および厚み h5が決定 され、 その後、 R CWA法により回折格子素子 3 0の回折特性の解析が行なわれ る。 そして、 最適化手法により、 デューティ比 f 、 格子周期 Λおよび格子高さ H が最適化されることで、 回折特性が優れた回折格子素子 3 0が設計される。
【0 0 8 6】 なお、 以上では第 5媒質 3 5が均一な単層膜であるとして説明し てきたが、 第 5媒質 3 5が反射低減の為の多層膜であってもよい。 後者の場合、 T E偏波光および TM偏波光それぞれの反射が抑制されて回折効率が向上し、 多 層膜の偏波依存性を利用することにより回折効率の偏波依存性を低減することが でき、 また、 高次回折光やエバネセント波に対しても反射低減効果を期待するこ とができる。
【0087】 また、 第 2実施形態の変形例と同様に、 本実施形態でも、 第 5媒 質 3 5は所定方向に交互に設けられた複数の媒質からなるものであってもよい。 このとき、第 5媒質 35の平均屈折率 n5は上記(13)式で表される。上記(13)式で 表される平均屈折率 n 5を用いることで、既述した回折格子素子 30と同様の議論 が可能となる。
【0088】 次に、 第 3実施形態に係る回折格子素子 30を製造する方法につ いて説明する。 第 1実施形態の場合と同様に、 第 3実施形態に係る回折格子素子 30は、 エッチング法ゃリフトオフ法を用いる第 1の製造方法や、 エネルギ線の 照射により屈折率が変化し得る所定材料を用いる第 2の製造方法により、 製造す ることができる。 第 4媒質 34は、 第 2媒質 32または第 3媒質 33よりエッチ ングレートが遅い所定材料からなるのが好ましく、 A 1203, Mg O, N d2Oa およびフッ素系化合物 (A 1 F3, Mg F2, C a F2, Nd F3など) の何れかであ るのが好ましい。
【0089】 次に、 第 3実施形態に係る回折格子素子 30の実施例について説 明する。 図 1 3は、 実施例 4の回折格子素子 3 OAの説明図である。 この実施例 4の回折格子素子 3 OAでは、 第 5媒質 35は所定方向に交互に設けられた 2つ の媒質 35 a, 35 bからなる。 実施例 4の回折格子素子 3 OAは、 第 1媒質 3 1が空気 (1^=1) であり、 第 2媒質 32が T a 205 (n2= 1. 98) であり、 第 3媒質 33が空気 (n3 l) であり、 第 4媒質 34が石英ガラス (η4=1.4 5) であり、 第 5媒質 35のうち媒質 35 aが石英ガラス (n5a=l.45) であ つて媒質 35 bが空気 (n5b= l) であった。 デューティ比 f および f 5が 0. 6 0であり、格子周期 Λが 1. 0 Ιμιηであり、格子高さ Ηが 1.45μιηであり、 第 5媒質 35の厚み h5が 0. 33pmであった。
【0090】 図 14は、 実施例 4の回折格子素子 30 Αの回折特性を示すグラ フである。 この図には、 光の入射角 Θ (図 1 3を参照) が波長 1 . 5 5μιηにおけ るブラッグ入射角であるときの回折効率の波長依存性が Τ Ε偏波光おょぴ ΤΜ偏 波光それぞれについて示されている。波長帯域 1 . 5 2μιη~ 1 . 5 7μπιにおいて、 回折効率の偏波依存性および波長依存性ができる限り小さく、 回折効率ができる 限り大きくなるように、 各パラメータが設計された。 この図から判るように、 実 施例 4の場合にも、 広い波長域で、 Τ Ε偏波光および ΤΜ偏波光それぞれの回折 効率が高く 9 5 %以上であり、 Τ Ε偏波光および ΤΜ偏波光それぞれの回折効率 の差が 2 %以下であった。 このように、 本実施形態に係る回折格子素子 3 0は、 回折効率の向上および回折効率の傭波依存性の低減を広い波長域で実現すること ができる。 また、 実施例 4では、 第 2媒質 3 2および第 5媒質 3 5を同時にエツ チングすることができるから、 製造が容易である。
【0 0 9 1】 (第 4実施形態)
【0 0 9 2】 本発明に係る回折格子素子の第 4実施形態について説明する。 図 1 5は、 第 4実施形態に係る回折格子素子 4 0の説明図である。 この図は、 格子 に垂直な面で切断したときの回折格子素子 4 0の断面を示している。 この図に示 される回折格子素子 4 0は、 ベース板 4 1、 第 1の反射抑制部 4 2、 回折格子部 4 3、 及び第 2の反射抑制部 4 4を備えて構成されている。
【0 0 9 3】 この回折格子素子 4 0では、 ベース板 4 1上に第 1の反射抑制部 4 2が設けられており、 第 1の反射抑制部 4 2上に回折格子部 4 3が設けられて おり、 回折格子部 4 3上に第 2の反射抑制部 4 4が設けられている。 第 2の反射 抑制部 4 4は、 第 1媒質 4 5に接している。 回折格子部 4 3では、 ベース板 4 1 に実質的に平行な所定方向において第 2媒質 4 3 aと第 3媒質 4 3 bとが交互に 設けられることによって回折格子が形成されている。 第 2の反射抑制部 4 4にお いては、 第 2媒質 4 3 a上に媒質 4 4 a、 第 3媒質 4 3 b上に媒質 4 4 bが設け られている。 この回折格子素子 4 0は、 反射率が 1 0 %以下となるように設計さ れたものである。 【0 0 9 4】 この回折格子素子 4 0では、 第 1媒質 4 5から回折格子へ入射し た光は、 第 2の反射抑制部 4 4を経て、 回折格子部 4 3において回折され、 第 1 の反射抑制部 4 2を経て、 ベース板 4 1へ出射される。 或いは、 ベース板 4 1か ら第 1の反射抑制部 4 2を経て回折格子へ入射した光は、 回折格子部 4 3におい て回折され、 第 2の反射抑制部 4 4を経て、 第 1媒質 4 5へ出射される。
【0 0 9 5】 ここで回折格子部 4 3は、 以下のように定義される。 すなわち、 第 2媒質 4 3 a及び第 3媒質 4 3 bが交互に設けられた方向を x方向とし、 第 1 の反射抑制部 4 2、 回折格子部 4 3、 及び第 2の反射抑制部 4 4が順に並ぶ方向 を z方向とし、回折格子の周期を Λとし、周期 Λにおける第 2媒質 4 3 aが占め る割合 (デューティ比) を f 、 z方向における第 1の反射抑制部 4 2の長さ (す なわち、 第 1の反射抑制部 4 2の高さ) を h a r lZ方向における第 2の反射抑 制部 4 4の長さ (すなわち、 第 2の反射抑制部 4 4の高さ) を h a r 2、 z方向に おける回折格子部 4 3の長さ (すなわち、 格子の高さ) を Hとする。
【0 0 9 6】 そして、 平均屈折率 n a v ( z )
"。 •(15)
Figure imgf000030_0001
屈折率変調 Δ η ( Ζ ) を ー(16)
Figure imgf000030_0002
z方向における位置 Z 1から位置 z 2までの回折能力 P ( z 1 , z 2 ) を
P(zl, z2) = An(z)dz … (17) とした場合に、 回折格子部 4 3は、 その回折能力が、 第 1の反射抑制部 4 2、 回 折格子部 4 3、 及ぴ第 2の反射抑制部 4 4の全体の回折能力の 5 0 %より大きい ものと定義される。また、反射抑制部での回折による特性悪化が小さくなるので、 回折格子部 43の屈折率変調は、 第 1の反射抑制部 42及び前記第 2の反射抑制 部 44の屈折率変調より大きいことが好ましい。 更に、 回折格子部の屈折率変調 を容易に大きくできるので、 回折格子部 43の最大屈折率が、 ベース板 41及び 第 1媒質 45の屈折率より大きいことが好ましい。 また、 更に、 回折格子部 43 における回折格子の周期 Λは、 光の波長以下であれば、反射が低減されるだけで なく高次の回折が発生しなくなるので、 1. 675μπι以下であることが好まし い。
【0097】 回折格子素子 40では、ベース板 41が石英ガラス(屈折率: 1. 444)、 回折格子部 43の第 2媒質 43 aが T a 205 (屈折率: 2. 107)、 第 2の反射抑制部 44の媒質 44 aが S i 02、第 1媒質 45,第 3媒質 43 b, 及び媒質 44 bが空気 (屈折率: 1) であるものとして、 RCWA法により回折 格子部 43の f , Hが設計され、 以下に述べる等価モデルによる解析法で反射抑 制部の harい h a r2が設計されている。
【0098】 等価モデルによる解析法とは、 第 1の反射抑制部 42、 回折格子 部 43、 第 2の反射抑制部 44のそれぞれを、 各々に含まれる媒質の平均屈折率 をもつ単層膜と仮定し、 かつ、 回折格子部 43での回折に伴う光の位相変化を 9 0度と仮定し、 回折格子素子 40を多層膜に置き換えて、 透過 1次の回折効率、 及び反射 0次の回折効率を解析する方法である。この多層膜の透過率、反射率が、 それぞれ回折格子素子 40の透過 1次回折効率、 及び反射 0次回折効率に相当す る。 よって、 この等価モデルを用いることで、 光学フィルタに代表される多層膜 の設計理論が適用可能となり、 回折格子素子 40の反射 0次回折効率の抑制設計 が容易にできる。 最終的に解析精度の高い RCWA法を用いて、 回折格子素子 4 0全体で、 f , H, harl, har2の設計の微調整を行うとなお好適である。 【0099】 図 16は、 第 4実施形態に係る回折格子素子の反射 0次回折効率 と等価モデルの反射 0次回折効率の特性を示すグラフである。 このグラフは、 周 期 Α=1. 0 ιη、 f =0. 579、 H= 1. 164μπι、 har2= 0. 252u m、 h a r l = -0. 2 / m、 光の波長帯が 1 55 O n m帯 (Cバンド帯)、 光の入 射角 6 = 50. 58度の条件において、 実際に製造された回折格子素子 40と上 記等価モデルの両者の反射 0次回折効率の特性を示している。 ここで、 ha r lは 負の値となっているが、 この絶対値が第 1の反射抑制部の厚みを表し、 符号は後 述のように反射抑制部の構造を表している。 図 1 6において、 実線で示される特 性は実際に製造された回折格子素子 40によるものであり、 点線で示される特性 は上記等価モデルを用いた解析結果によるものである。 このグラフから明確なよ うに、 中心波長に微小な差があるものの、 この等価モデルを用いた設計方法によ れば、 本実施形態の回折格子素子 40の特性を正確に得ることができる。
【0100】 回折格子素子 40は、上記の等価モデルを用いた設計方法を用い、 f , H, h a r l, ha r 2の最適化が行われることによって設計されている。 この 設計においては、光の波長帯が 1 550 n m帯(Cバンド帯)、光の入射角 0 = 5 0. 58度の条件において、 ha r lが一 Ο.' 5μιη〜0. 3μπιの範囲 (0. 1μ m間隔) で最適化が行われている。
【0101】 ここで、 ha r lが正であることは、 第 1の反射抑制部 42が、 回 折格子部 43の媒質 43 aと同じ媒質によって構成されていることを示す。また、 h a r iが負であることは、 第 1の反射抑制部 42が、 ベース板 41の媒質と同じ 媒質によって構成されていることを示す。 図 1 7は、 実施例 5の回折格子素子 4 OAの説明図であり、図 18は、実施例 6の回折格子素子 40 Bの説明図である。 図 1 7及ぴ図 1 8は共に、 格子に垂直な面で切断した場合の回折格子素子の断面 を示している。
【0102】 回折格子素子 4 OAは、 ha r lが正の場合の第 4実施形態の回折 格子素子 40の例である。 回折格子素子 40 Bは、 ha r lが負の場合の第 4実施 形態の回折格子素子 40の例である。 回折格子素子 4 OAは、 例えば、 ベース板 41上の一面に設けられた第 2媒質 43 aをエッチングし、 当該エッチングをべ ース板 41に到達する前に停止させた場合に製造される。 したがって、 第 2媒質 JP2004/000686
43 aと同一の媒質が第 1の反射抑制部 42を構成している。
【0 103】 一方、 回折格子素子 40 Bは、 ha r lが負の場合の第 4実施形態 の回折格子素子 40の例である。 回折格子素子 40Bは、 例えば、 ベース板 41 上の一面に設けられた第 2媒質 43 aをエッチングし、 ベース板 41の一部が削 られるまで当該エッチングを行った場合に製造される。 したがって、 回折格子素 子 40Bは、 交互に設けられた媒質 42 aと媒質 42 bとによって構成されてお り、 媒質 42 aはベース板 41と同一の媒質であり、 媒質 42 bは空気となって いる。
【0104】 上記最適化の結果を表 1、 及び図 1 9〜図 21に示す。
表 1
Figure imgf000033_0001
【0105】 図 1 9は、 第 4実施形態に係る回折格子素子の回折効率を示すグ ラフである。 図 1 9は、 表 1に示す最小回折効率及び最大回折効率をそれぞれプ ロットしたものである。 ここで、 最大回折効率, 最小回折効率とは、 TE偏波光 および TM偏波光を含めて、 Cバンド帯で最大の回折効率と最小の回折効率を示 している。 表 1及び図 1 9によれば、 回折格子素子 40は、 90%以上の回折効 率を有し、偏波依存性が小さいことがわかる。なお、第 1〜第 3の実施形態では、 第 2媒質及び第 3媒質からなる回折格子部の上下に AR層、 すなわち、 回折格子 部の外側の媒質と回折格子部との屈折率の差を吸収する層が設けられることによ つて、 反射戻り光が抑制されている。 これに対して、 回折格子素子 40の反射抑 制部は第 1〜第 3の実施形態における AR層とは異なる条件の平均屈折率を有し ている。 しかしながら、 第 1の反射抑制部 42、 回折格子部 43、 第 2の反射抑 制部 44の多層膜によってベース板 41と第 1媒質 45間の AR層が構成される ことによって、 回折格子素子 40全体としての反射が抑制されている。
【0106】 図 20は、 第 4実施形態に係る回折格子素子における回折格子部 のアスペク ト比を示すグラフである。 図 20によれば、 ha r lがー 0. 2μπιまた は 0. Ιμπιの場合に、 特にアスペク ト比が小さいので、 回折格子部 43の製造 が容易であることがわかる
【0107】 図 21は、 第 4実施形態に係る回折格子素子の溝深さトレランス を示すグラフである。 ここで、 溝深さトレランスとは、 回折効率の変化を 1%許 容した場合にの ha r lの変化の許容値、 すなわち、 溝深さ誤差を示している。 図 21によれば、 ha r^ —0. 2ϊαηの場合に溝深さ誤差の許容値が大きく、 回 折格子素子 40の製造が容易であることがわかる。
【0108】 (変形例)
【0109】 本発明は、 上記実施形態に限定されるものではなく、 種々の変形 が可能である。 例えば、 回折格子部を形成する第 2媒質おょぴ第 3媒質の各領域 の断面形状は、 上記の各実施形態では長方形であるとしたが、 必ずしも長方形で ある必要はなく、例えば台形であってもよい。デューティ比 f , f 5および f 6は、 上記の各実施例では等しいとしたが、 互いに異なっていてもよく、 後者のように することにより回折特性が更に向上し得る。 また、 各実施形態の回折格子素子に おいて、 第 1媒質の側から光が入射してもよいし、 第 4媒質の側から光が入射し てもよい。
【0110】 また、 上記実施形態においては、 第 2媒質と第 3媒質が互いに接 し、 かつ、 交互に設けられることによって、 回折格子部が形成されているが、 第 2媒質と第 3媒質との間に異なる媒質が設けられていても良い。 かかる態様を、 第 3実施形態の実施例に係る回折格子素子 3 OAの変形態様を例として説明する。 図 22は、 変形態様に係る回折格子素子の説明図である。 図 22は、 格子に垂直 な面で切断したときの回折格子素子の断面を示している。 図 22に示す回折格子 素子 30Bは、 回折格子素子 3 OAと同様の構成を有し、 第 2媒質 32と第 3媒 質 33との間に、 媒質 36が設けられている。 例えば、 媒質 35 aが S i 02に よつて構成されており、 エツチング時の媒質 35 aの側面の削れを補うために、 第 2媒質 32のエッチング時に S i 02を付着させるプロセスを導入した場合に は、 媒質 36が S i 02によって構成される回折格子素子 3 OBが製造される。 また、 第 2媒質 32が T a 205によって構成されており、 エッチング時の第 2媒 質 32の側面の削れを補うために、第 2媒質 32のエッチング時に T a 205を付 着させるプロセスを導入した場合には、媒質 36が T a 205によって構成される 回折格子素子 3 OBが製造される。
【011 1】 各実施例は、 波長帯域 1. 5μπ!〜 1. 6 μηιで設計を行なったもの であるが、 これに限定されるものではない。 回折格子の設計では、 相似則が成立 するので、 例えば中心波長を 1. 55μιηカゝら 1. 3μιηに変更する場合、長さの単 位を持つ設計パラメータ (周期や厚み) を全て 1. 3Z1. 55倍にすればよい。 このようにして、光通信で用いられる波長帯域 1. 26μπ!〜 1. 675μιη内の何 れかの波長を中心波長とした回折格子を容易に設計することができる。
産業上の利用可能性 .
【011 2】 以上、 詳細に説明したとおり、 本発明によれば、 回折効率の向上 および回折効率の偏波依存性の低減を広い波長域で実現することができる。

Claims

言青求の範囲
1. 互いに平行な第 1平面および第 2平面を仮想したときに、 前記第 1平面 より外側に前記第 1平面に接して設けられた第 1媒質 (屈折率 nj と、
前記第 1平面と前記第 2平面との間に、 前記第 1平面および前記第 2平面に接 して、 前記第 1平面に平行な所定方向に交互に設けられて回折格子を形成してい る第 2媒質 (屈折率 n2) およぴ第 3媒質 (屈折率 n3、 ただし、 n3く n2) と、 前記第 2平面より外側に前記第 2平面に接して設けられた第 4媒質 (屈折率 n 4) と、
を備 、
前記第 1媒質、 前記第 2媒質、 前記第 3媒質および前記第 4媒質それぞれの屈 折率!!丄〜^^力 S 「η3<ηιく; a2、 n3≤ n4≤ n2J または 「!^^!^^!^、 n3< n4 < n2j なる関係式を満たし、
前記第 2媒質および前記第 3媒質の双方が固体である、 回折格子素子。
2. 互いに平行な第 1平面および第 2平面を仮想したときに、 前記第 1平面 より外側に前記第 1平面に接して設けられた第 1媒質 (屈折率 n と、
前記第 1平面と前記第 2平面との間に、 前記第 1平面および前記第 2平面に接 して、 前記第 1平面に平行な所定方向に交互に設けられて回折格子を形成してい る第 2媒質 (屈折率 n2) および第 3媒質 (屈折率 n3、 ただし、 n3<n2) と、 前記第 2平面より外側に前記第 2平面に接して設けられた第 4媒質 (屈折率 n 4) と、
を備え、
前記第 1媒質、 前記第 2媒質、 前記第 3媒質および前記第 4媒質それぞれの屈 折率 〜: n4力、 i ns^ n n^ 3¾ n4≥ n2J ま 7こ ίま ι η3≤ η ^ Π2 η3< η,, <n2J なる関係式を満たし、
前記第 1媒質または前記第 4媒質が等方性材料からなる、 回折格子素子。
3. 前記第 1平面と前記第 2平面との間における平均屈折率を navとしたと きに、 前記第 1媒質の屈折率 が 「nav— 0. S^r^ iiav+O. 2」 なる関係式 を満たす、 請求項 1または 2に記載の回折格子素子。
4. 前記第 4媒質の屈折率 n4が 「nav— 0. 2^n4 nav+0. 2」 なる関係 式を満たす、 請求項 3記載の回折格子素子。
5. 前記第 1平面に垂直な方向についての前記第 1媒質の厚みが 5μιη以上 である、 請求項 1または 2に記載の回折格子素子。
6. 前記第 1平面に垂直な方向についての前記第 4媒質の厚みが 5μιη以上 である、 請求項 5記載の回折格子素子。
7. 互いに平行に順に並んだ第 1〜第 4平面を仮想したときに、 前記第 1平 面より外側に前記第 1平面に接して設けられた第 1媒質 (屈折率 と、 前記第 2平面と前記第 3平面との間に、 前記第 2平面および前記第 3平面に接 して、 前記第 1平面に平行な所定方向に交互に設けられて回折格子を形成してい る第 2媒質 (屈折率 η2) および第 3媒質 (屈折率 η3、 ただし、 η32) と、 前記第 4平面より外側に前記第 4平面に接して設けられた第 4媒質 (屈折率 η 4) と、
前記第 1平面と前記第 2平面との間に、 前記第 1平面および前記第 2平面に接 して設けられた第 5媒質 (平均屈折率 η 5) と、 ■ ■ … 前記第 3平面と前記第 4平面との間に、 前記第 3平面および前記第 4平面に接 して設けられた第 6媒質 (平均屈折率 η6) と、
を備え、
前記第 2平面と前記第 3平面との間における平均屈折率を navとしたときに、 前記第 5媒質の平均屈折率 n5が 「!^く!^く!! または
Figure imgf000037_0001
なる 関係式を満たし、 前記第 6媒質の平均屈折率 n6が 「n4<n6く nav」 または 「nav <n6<n4j なる関係式を満たす、 回折格子素子。
8. 前記第 5媒質の平均屈折率 n5が 「(ninav)1/2— 0. 2く n5く(ninav)1/2
+ 0. 2」 なる関係式を満たす、 請求項 7記載の回折格子素子。
9. 前記第 6媒質の平均屈折率 n6が 「(n4nav)1/2— 0.2 < n6< (n4nav)1/2 + 0.2」 なる関係式を満たす、 請求項 8記載の回折格子素子。
10. 前記回折格子の周期を Λとし、 前記第 1平面に垂直な方向についての 前記第 5媒質の厚みを h5とし、波長 λの光が前記回折格子に入射するとしたとき に、 「λΛΖ4(4η5 2Λ2— λ2)1/2く h5く 3λΛΖ4(4 η5 2Λ2— λ2)1/2」 なる関係式を満 たす光の波長 λが波長帯域 1.26μπ!〜 1.675μπι内に存在する、請求項 7記 載の回折格子素子。
11. 前記回折格子の周期を Λとし、 前記第 1平面に垂直な方向についての 前記第 6媒質の厚みを h6とし、波長 λの光が前記回折格子に入射するとしたとき に、 「λΛ/4 (4η6 2Λ22)1/2く h6く 3λΛΖ4(4 η6 2Λ2— λ2)1/2」 なる関係式を満 たす光の波長 λが波長帯域 1.26μπ!〜 1.675μπι内に存在する、請求項 10 記載の回折格子素子。
12. 前記第 5媒質が前記所定方向に交互に設けられた複数の媒質からなる、 請求項 7記載の回折格子素子。
13. 前記第 6媒質が前記所定方向に交互に設けられた複数の媒質からなる、 請求項 12記載の回折格子素子。
14. 互いに平行に順に並んだ第 1〜第 3平面を仮想したときに、 前記第 1 ' 平面より外側に前記第 1平面に接して設けられた第 1媒質 (屈折率 と、
前記第 2平面と前記第 3平面との間に、 前記第 2平面および前記第 3平面に接 して、 前記第 1平面に平行な所定方向に交互に設けられて回折格子を形成してい る第 2媒質 (屈折率 n2) および第 3媒質 (屈折率 n3、 ただし、 n3<n2) と、 前記第 3平面より外側に前記第 3平面に接して設けられた第 4媒質 (屈折率 n 4) と、
前記第 1平面と前記第 2平面との間に、 前記第 1平面および前記第 2平面に接 して設けられた第 5媒質 (平均屈折率 n5) と、
を備え、 前記第 1平面と前記第 2平面との間における平均屈折率を n avとしたときに、 前記第 5媒質の平均屈折率 n5が 「ni<n5<navJ または 「nav<n5く なる 関係式を満たす、 回折格子素子。
15. 前記第 5媒質の平均屈折率 が !! 1/2— 0.2く n5く(ninav)1/2 +0. 2J なる関係式を満たす、 請求項 14記載の回折格子素子。
16. 前記回折格子の周期を Λとし、 前記第 1平面に垂直な方向についての 前記第 5媒質の厚みを h5とし、波長 λの光が前記回折格子に入射するとしたとき に、 「λΛΖ4(4η5 2Λ2— λ2)1/2く h5< 3XA/4(4n5 2A2— λ2)1/2」 なる関係式を満 たす光の波長 λが波長帯域 1.26μιη~1.675μιη内に存在する、請求項 14 記載の回折格子素子。
1 7. 前記第 5媒質が前記所定方向に交互に設けられた複数の媒質からなる、 請求項 14記載の回折格子素子。
18. 前記第 2媒質、前記第 3媒質および前記第 4媒質それぞれの屈折率 η2 〜η4が 「η342」 なる関係式を満たす、 請求項 14記載の回折格子素子。
19. 前記第 4媒質の屈折率 η4が 「nav—0. 2≤n4≤nav+0.2」 なる関 係式を満たす、 請求項 18記載の回折格子素子。
20. 前記第 1平面に垂直な方向についての前記第 4媒質の厚みが 5μιη以 上である、 請求項 18記載の回折格子素子。
21. ベース板と、
前記ベース板上に設けられた第 1の反射抑制部と、
前記第 1の反射抑制部上に設けられた回折格子部と、
前記回折格子部上に設けられた第 2の反射抑制部と
を備え、
前記第 2の反射抑制部は第 1の媒質に接しており、
前記回折格子部には、 前記ベース板に平行な所定方向に第 2媒質及び第 3媒質 が交互に設けられることによって回折格子が設けられており、
1. 2 6μπ!〜 1. 6 7 5pmの波長帯域において反射率が 1 0%以下となる波 長が存在する、 回折格子素子。
2 2. 前記ベース板、 前記第 1の反射抑制部、 前記回折格子部、 及び前記第 2の反射抑制部が順に並んでいる方向を Z方向、 前記所定方向を X方向とし、 屈折率分布を n (x, z )、 前記回折格子の周期を Λとし、
平均屈折率 n a v ( z) を
Figure imgf000040_0001
屈折率変調 Δ η (ζ ) を
Figure imgf000040_0002
ζ方向における位置 ζ 1から位置 ζ 2までの回折能力 Ρ ( ζ 1 , ζ 2) を
P(zl,z2)= j An(z)dz とした場合に、
前記回折格子部の回折能力は、 前記回折格子部、 前記第 1の反射抑制部、 及び 前記第 2の反射抑制部の全体の回折能力の 5 0 %より大きい、 請求項 2 1記載の 回折格子素子。
2 3. 前記回折格子部の屈折率変調は、 前記第 1の反射抑制部及び前記第 2 の反射抑制部の屈折率変調より大きい、 請求項 2 2記載の回折格子素子。
2 4. 前記回折格子部の最大屈折率が、 前記ベース板及び前記第 1の媒質の 屈折率より大きい、 請求項 2 1記載の回折格子素子。
2 5. 前記回折格子の周期は、 1. 6 7 5μπι以下である、 請求項 2 1〜2
4のいずれか 1項に記載の回折格子素子。
2 6. Τ Ε偏波光および ΤΜ偏波光それぞれの回折効率が 9 0 %以上となる 光の波長が存在する、 請求項 1, 2, 7, 14, 及ぴ 21の何れか 1項に記載の 回折格子素子。
27. T E偏波光およぴ TM偏波光それぞれの回折効率の差が 5 %以下とな る光の波長が存在する、 請求項 1, 2, 7、 14, 及び 21の何れか 1項に記載 の回折格子素子。
28. 前記第 2媒質の屈折率 n2と前記第 3媒質の屈折率 n3との差が 0. 7以 上である、 請求項 1に記載の回折格子素子。
29. 前記第 2媒質の屈折率 n2と前記第 3媒質の屈折率 n3との差が 0. 7以 上である、 請求項 2, 7、 14、 及び 21の何れか 1項に記載の回折格子素子。
30. 前記第 2媒質が T i〇2, T a205および Nb205の何れかであり、 前 記第 3媒質が気体である、 請求項 29記載の回折格子素子。
31. 前記第 2媒質または前記第 3媒質がエネルギ線照射により屈折率が変 化し得る所定材料からなる、 請求項 1, 2, 7、 14、 及び 21の何れか 1項に 記載の回折格子素子。
32. 前記所定材料がダイヤモンド様炭素である、 請求項 31記載の回折格 子素子。
33. 前記第 1媒質または前記第 4媒質が、 前記第 2媒質または前記第 3媒 質よりエッチングレートが遅い所定材料からなる、 請求項 1, 2, 7および 14 の何れか 1項に記載の回折格子素子。
34. 前記第 5媒質または前記第 6媒質が、 前記第 2媒質または前記第 3媒 質よりエッチングレートが遅 、所定材料からなる、請求項 7記載の回折格子素子。
35. 前記第 5媒質が、 前記第 2媒質または前記第 3媒質よりエッチングレ ートが遅い所定材料からなる、 請求項 14記載の回折格子素子。
36. 前記所定材料が A 1203, Mg 0, N d23およびフッ素系化合物の何 れかである、 請求項 33〜 35の何れか 1項に記載の回折格子素子。
37. 前記第 2媒質または前記第 3媒質が T i 02, Nb205, T a205, S i N, S i 02, S i O , Z r 02, S b 203の何れかである、 請求項 3 3〜 3 5の何 れか 1項に記載の回折格子素子。
3 8 . 前記第 2の媒質と前記第 3の媒質とは互いに接している、 請求項 1、 2、 7、 1 4、 及び 2 1のいずれか 1項に記載の回折格子素子。
3 9 . 請求項 1 , 2, 7 , 1 4、 及び 2 1の何れか 1項に記載の回折格子素 子を製造する方法であって、
エネルギ線照射により屈折率が変化し得る所定材料からなる層を形成し、 その 層に対してエネルギ線を所定の空間的強度変調パターンで照射して、 その層にお いて互いに屈折率が異なる前記第 2媒質および前記第 3媒質が交互に設けられた 回折格子を形成する、 回折格子素子製造方法。
4 0 . 請求項 1, 2, 7、 1 4、 及び 2 1の何れか 1項に記載の回折格子素 子を製造する方法であって、
所定材料からなる層を形成し、 その層に対して所定の空間的パターンでェッチ ングして、 その層において互いに屈折率が異なる前記第 2媒質および前記第 3媒 質が交互に設けられた回折格子を形成する、 回折格子素子製造方法。
4 1 . 所定方向に周期的に屈折率が変化する回折格子部と、 該回折格子部の 上下の少なくとも一方に反射抑制部を有する回折格子素子の設計方法であって、 前記回折格子部及び反射抑制部それぞれを、 各々に含まれる媒質による平均屈 折率を有する膜とし、 かつ、 前記回折格子部における光の位相変化を 9 0度に設 定し、
所望の波長において反射率が 1 0 %以下となるように該回折格子素子の屈折率 分布を導出する、 回折格子素子の設計方法。
PCT/JP2004/000686 2003-02-18 2004-01-27 回折格子素子、回折格子素子製造方法、及び回折格子素子の設計方法 WO2004074888A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005502667A JP4609318B2 (ja) 2003-02-18 2004-01-27 回折格子素子
DK04705514.0T DK1596226T3 (da) 2003-02-18 2004-01-27 Diffraktionsgitterelement, fremgangsmåde til fremstilling af diffraktionsgitterelement samt fremgangsmåde til formgivning af et diffraktionsgitterelement
CA2480350A CA2480350C (en) 2003-02-18 2004-01-27 Diffraction grating element, production method of diffraction grating element, and method of designing diffraction grating element
EP04705514A EP1596226B1 (en) 2003-02-18 2004-01-27 Diffraction lattice element, production method for diffraction lattice element, and design method for diffraction lattice element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003040196 2003-02-18
JP2003-040196 2003-02-18

Publications (1)

Publication Number Publication Date
WO2004074888A1 true WO2004074888A1 (ja) 2004-09-02

Family

ID=32905208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000686 WO2004074888A1 (ja) 2003-02-18 2004-01-27 回折格子素子、回折格子素子製造方法、及び回折格子素子の設計方法

Country Status (6)

Country Link
EP (2) EP1596226B1 (ja)
JP (4) JP4609318B2 (ja)
CN (4) CN100485424C (ja)
CA (5) CA2703098C (ja)
DK (2) DK1596226T3 (ja)
WO (1) WO2004074888A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006113464A (ja) * 2004-10-18 2006-04-27 Hitachi Cable Ltd デマルチプレクサ及び波長多重光伝送モジュール
JP2006350126A (ja) * 2005-06-17 2006-12-28 Sharp Corp 波長選択素子
JP2007101926A (ja) * 2005-10-05 2007-04-19 Nippon Sheet Glass Co Ltd 透過型回折格子、ならびにそれを用いた分光素子および分光器
JP2008102488A (ja) * 2006-09-21 2008-05-01 Nippon Sheet Glass Co Ltd 透過型回折格子、並びに、それを用いた分光素子及び分光器
JP2009015315A (ja) * 2007-06-04 2009-01-22 Sony Corp 光学部材、固体撮像装置、製造方法
US7688512B2 (en) 2006-09-21 2010-03-30 Nippon Sheet Glass Company, Limited Transmissive diffraction grating, and spectral separation element and spectroscope using the same
JP2011138169A (ja) * 2004-07-26 2011-07-14 Nippon Sheet Glass Co Ltd 透過型回折光学素子
US9360602B2 (en) 2012-03-26 2016-06-07 Asahi Glass Company, Limited Transmission diffraction element
CN113161463A (zh) * 2021-03-01 2021-07-23 武汉光迅科技股份有限公司 一种斜腔芯片结构
CN116338856A (zh) * 2023-04-19 2023-06-27 嘉兴驭光光电科技有限公司 显示用光波导装置及具有其的显示设备
US11966060B1 (en) 2023-04-19 2024-04-23 Jiaxing Uphoton Optoelectronics Technology Co., Ltd. Optical waveguide device for display and display device having the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101162135B1 (ko) * 2003-03-13 2012-07-03 아사히 가라스 가부시키가이샤 회절 소자 및 광학 장치
JP4908838B2 (ja) * 2005-12-13 2012-04-04 富士通株式会社 多波長分光装置
WO2008044686A1 (fr) * 2006-10-10 2008-04-17 Asahi Glass Co., Ltd. Élément de diffraction et dispositif à tête optique équipé de celui-ci
FR2954524B1 (fr) * 2009-12-17 2012-09-28 Ecole Polytech Reseau de diffraction reflechissant dielectrique optimise
JP5724213B2 (ja) * 2010-05-13 2015-05-27 セイコーエプソン株式会社 検出装置
WO2013096974A1 (en) * 2011-12-21 2013-06-27 THE UNITED STATES OF AMERICA, as represented by THE SECRETARY DEPT. OF HEALTH AND HUMAN SERVICES Multilayer-coated micro grating array for x-ray phase sensitive and scattering sensitive imaging
CN103645530B (zh) * 2013-11-06 2016-03-02 中国科学院物理研究所 反射式光学元件及其设计方法和在太阳能电池中的应用
CN108761610A (zh) * 2018-06-13 2018-11-06 成都精密光学工程研究中心 基于折射率调控薄膜的偏振无关反射式介质光栅
CN108917927B (zh) * 2018-07-27 2020-08-25 京东方科技集团股份有限公司 色散装置和光谱仪
CN109343163B (zh) * 2018-12-06 2021-04-20 深圳大学 一种简周期光栅结构的制作方法及太赫兹滤波器
EP3671310A1 (en) * 2018-12-18 2020-06-24 Thomson Licensing Optical manipulation apparatus for trapping or moving micro or nanoparticles
US11256012B2 (en) 2019-02-27 2022-02-22 Boe Technology Group Co., Ltd. Color dispersion apparatus and spectrometer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58500916A (ja) * 1981-07-20 1983-06-02 ア−ルシ−エ− コ−ポレ−ション 回折減光カラ−フィルタ及びその使用方法並びに認証物品
JPS63109402A (ja) * 1986-10-27 1988-05-14 Sharp Corp 光学位相操作板の作製方法
JPH05273425A (ja) * 1992-03-26 1993-10-22 Semiconductor Energy Lab Co Ltd 赤外線用光路の作製方法
US5598300A (en) 1995-06-05 1997-01-28 Board Of Regents, The University Of Texas System Efficient bandpass reflection and transmission filters with low sidebands based on guided-mode resonance effects
JPH1010306A (ja) * 1996-06-24 1998-01-16 Matsushita Electric Ind Co Ltd 人工格子および人工格子の形成方法
JP2000137109A (ja) * 1998-10-30 2000-05-16 Shimadzu Corp 回折格子を利用した反射防止デバイス
EP1215513A1 (en) 2000-12-14 2002-06-19 Canon Kabushiki Kaisha Element having a fine periodic structure, optical member, optical system, and optical device comprising this element
JP2002258034A (ja) * 2001-03-05 2002-09-11 Japan Science & Technology Corp 波長フィルタ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3412958A1 (de) * 1984-04-06 1985-10-17 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut Phasengitter
US5728456A (en) * 1996-02-01 1998-03-17 Optical Coating Laboratory, Inc. Methods and apparatus for providing an absorbing, broad band, low brightness, antireflection coating
IL118209A0 (en) * 1996-05-09 1998-02-08 Yeda Res & Dev Active electro-optical wavelength-selective mirrors and active electro-optic wavelength-selective filters
US6233381B1 (en) * 1997-07-25 2001-05-15 Corning Incorporated Photoinduced grating in oxynitride glass
US6365428B1 (en) * 2000-06-15 2002-04-02 Sandia Corporation Embedded high-contrast distributed grating structures
EP1235104A4 (en) * 2000-08-29 2008-10-01 Jsr Corp COMPOSITION HAVING SUBSTANTIALLY MODIFIABLE REFRACTION INDEX AND METHOD FOR FORMING REFRACTION INDEX PATTERN
US6762880B2 (en) * 2001-02-21 2004-07-13 Ibsen Photonics A/S Grating structures and methods of making the grating structures
JP2003014914A (ja) * 2001-07-02 2003-01-15 Sharp Corp 回折素子およびそれを組み込んだ光ピックアップ装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58500916A (ja) * 1981-07-20 1983-06-02 ア−ルシ−エ− コ−ポレ−ション 回折減光カラ−フィルタ及びその使用方法並びに認証物品
JPS63109402A (ja) * 1986-10-27 1988-05-14 Sharp Corp 光学位相操作板の作製方法
JPH05273425A (ja) * 1992-03-26 1993-10-22 Semiconductor Energy Lab Co Ltd 赤外線用光路の作製方法
US5598300A (en) 1995-06-05 1997-01-28 Board Of Regents, The University Of Texas System Efficient bandpass reflection and transmission filters with low sidebands based on guided-mode resonance effects
JPH1010306A (ja) * 1996-06-24 1998-01-16 Matsushita Electric Ind Co Ltd 人工格子および人工格子の形成方法
JP2000137109A (ja) * 1998-10-30 2000-05-16 Shimadzu Corp 回折格子を利用した反射防止デバイス
EP1215513A1 (en) 2000-12-14 2002-06-19 Canon Kabushiki Kaisha Element having a fine periodic structure, optical member, optical system, and optical device comprising this element
JP2002258034A (ja) * 2001-03-05 2002-09-11 Japan Science & Technology Corp 波長フィルタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1596226A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138169A (ja) * 2004-07-26 2011-07-14 Nippon Sheet Glass Co Ltd 透過型回折光学素子
JP2006113464A (ja) * 2004-10-18 2006-04-27 Hitachi Cable Ltd デマルチプレクサ及び波長多重光伝送モジュール
JP2006350126A (ja) * 2005-06-17 2006-12-28 Sharp Corp 波長選択素子
JP2007101926A (ja) * 2005-10-05 2007-04-19 Nippon Sheet Glass Co Ltd 透過型回折格子、ならびにそれを用いた分光素子および分光器
JP2008102488A (ja) * 2006-09-21 2008-05-01 Nippon Sheet Glass Co Ltd 透過型回折格子、並びに、それを用いた分光素子及び分光器
US7688512B2 (en) 2006-09-21 2010-03-30 Nippon Sheet Glass Company, Limited Transmissive diffraction grating, and spectral separation element and spectroscope using the same
JP2009015315A (ja) * 2007-06-04 2009-01-22 Sony Corp 光学部材、固体撮像装置、製造方法
US8586909B2 (en) 2007-06-04 2013-11-19 Sony Corporation Method of manufacturing an optical member having stacked high and low refractive index layers
JP2014078015A (ja) * 2007-06-04 2014-05-01 Sony Corp 光学部材、固体撮像装置、製造方法
US9360602B2 (en) 2012-03-26 2016-06-07 Asahi Glass Company, Limited Transmission diffraction element
CN113161463A (zh) * 2021-03-01 2021-07-23 武汉光迅科技股份有限公司 一种斜腔芯片结构
CN116338856A (zh) * 2023-04-19 2023-06-27 嘉兴驭光光电科技有限公司 显示用光波导装置及具有其的显示设备
CN116338856B (zh) * 2023-04-19 2023-09-29 嘉兴驭光光电科技有限公司 显示用光波导装置及具有其的显示设备
US11966060B1 (en) 2023-04-19 2024-04-23 Jiaxing Uphoton Optoelectronics Technology Co., Ltd. Optical waveguide device for display and display device having the same

Also Published As

Publication number Publication date
CN1697986A (zh) 2005-11-16
CN101114030A (zh) 2008-01-30
EP1596226A1 (en) 2005-11-16
CA2703171A1 (en) 2004-09-02
DK1596226T3 (da) 2012-09-03
CN100526918C (zh) 2009-08-12
JP4600577B2 (ja) 2010-12-15
CA2703098C (en) 2012-01-24
JP4600579B2 (ja) 2010-12-15
CA2703119A1 (en) 2004-09-02
CA2480350A1 (en) 2004-09-02
CN100338486C (zh) 2007-09-19
JP4609318B2 (ja) 2011-01-12
CN101114032A (zh) 2008-01-30
CN100526919C (zh) 2009-08-12
EP2214037B1 (en) 2012-11-14
JP4600578B2 (ja) 2010-12-15
CA2703171C (en) 2012-01-24
DK2214037T3 (da) 2013-02-11
CA2480350C (en) 2011-06-21
EP1596226B1 (en) 2012-06-13
JP2009187016A (ja) 2009-08-20
CA2703119C (en) 2012-08-14
CN101114031A (zh) 2008-01-30
CA2703098A1 (en) 2004-09-02
JPWO2004074888A1 (ja) 2006-06-01
CA2702951C (en) 2012-01-10
EP2214037A1 (en) 2010-08-04
JP2009187017A (ja) 2009-08-20
EP1596226A4 (en) 2009-09-02
CA2702951A1 (en) 2004-09-02
CN100485424C (zh) 2009-05-06
JP2009187018A (ja) 2009-08-20

Similar Documents

Publication Publication Date Title
WO2004074888A1 (ja) 回折格子素子、回折格子素子製造方法、及び回折格子素子の設計方法
US7184214B2 (en) Diffraction grating element, production method of diffraction grating element, and method of designing diffraction grating element
US8165436B2 (en) Highly efficient optical gratings with reduced thickness requirements and impedance-matching layers
EP1743197B1 (en) High efficiency optical diffraction device
US20210239888A1 (en) Transmission grating and laser device using the same, and method of producing transmission grating
KR101226346B1 (ko) 광학 소자, 광학 장치, 광 픽업, 광 정보 처리 장치, 광 감쇠기, 편광 변환 소자, 프로젝터 광학 시스템 및 광학 장치 시스템
JP4369256B2 (ja) 分光光学素子
TW200425539A (en) Light-emitting device having diffraction optical film on light-emitting surface and its manufacturing method
CN103235417A (zh) 一种基于表面等离子激元的薄膜型光准直器
JP6981074B2 (ja) 光学素子
JP2005121938A (ja) 偏光制御膜付き回折格子およびそれを用いた回折光学装置
WO2006104045A1 (ja) 波長フィルタ
JP2004258442A (ja) 回折光学素子とその形成方法
US6807339B1 (en) Wavelength division multiplexing and de-multiplexing system
JP2005327372A (ja) 光ヘッド装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005502667

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2480350

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004705514

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048001206

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2004705514

Country of ref document: EP