WO2004074476A1 - 新規ベクター - Google Patents

新規ベクター Download PDF

Info

Publication number
WO2004074476A1
WO2004074476A1 PCT/JP2004/002005 JP2004002005W WO2004074476A1 WO 2004074476 A1 WO2004074476 A1 WO 2004074476A1 JP 2004002005 W JP2004002005 W JP 2004002005W WO 2004074476 A1 WO2004074476 A1 WO 2004074476A1
Authority
WO
WIPO (PCT)
Prior art keywords
deletion
seq
region
polyester synthase
plasmid
Prior art date
Application number
PCT/JP2004/002005
Other languages
English (en)
French (fr)
Inventor
Emi Ono
Yuji Okubo
Tetsuya Nagaoka
Yoshiharu Doi
Original Assignee
Kaneka Corporation
Riken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation, Riken filed Critical Kaneka Corporation
Priority to US10/543,385 priority Critical patent/US20060160195A1/en
Priority to JP2005502794A priority patent/JPWO2004074476A1/ja
Priority to EP04713234A priority patent/EP1600508A1/en
Priority to CA002514460A priority patent/CA2514460A1/en
Priority to BRPI0407555-2A priority patent/BRPI0407555A/pt
Publication of WO2004074476A1 publication Critical patent/WO2004074476A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • C12P7/625Polyesters of hydroxy carboxylic acids

Definitions

  • the present invention relates to a novel vector prepared by improving the broad host range vector pJRD215 vector, and a method for producing a polyester using the vector.
  • P (3HB) poly-3-hydroxybutyric acid
  • 3HB 3-hydroxybutyric acid
  • P (3HB) is a thermoplastic polymer, which has been attracting attention as an environmentally friendly green plastic because it is biodegradable in the natural environment.
  • P (3HB) has high crystallinity and is hard and brittle, which limits its practical application. For this reason, studies have been made to improve this property.
  • the P (3HB-co-3HH) has a wide range of physical properties from hard polymer to soft polymer by changing the mole fraction of 3HH. It can be expected to be applied to a wide range of fields, such as yarns and films that require flexibility. However, in these production methods, the productivity of the present polymer is still low, and it cannot be said that the production method for practical use of the present polymer is still insufficient.
  • P (3HB-Co-3HH) -producing Aeromonas A polyhydroxyalkanoate (PHA) synthase gene was cloned from Arabidopsis thaliana (Japanese Patent Application Laid-Open No. 10-108682, T, Fukui, Y. Doi, J B acterio 1, 179, 15, 4821-4830 (1997)).
  • P (3HB-cG-3HH) using a transformant in which this gene was introduced into Ralstonia eutropha (formerly Alcaligenes' eutrophus)
  • the cell productivity was 4 gZL and the polymer content was 4 gZL. 30%.
  • mutant enzyme in which the amino acid asparagine at position 149 has been replaced with serine and the mutant enzyme in which aspartic acid at position 171 has been replaced with glycine have the PHA synthase activity in E. coli and 3HH Have been shown to be improved (T. Kichise et al., Ap pl. Environmental. Microbiol. 68, 2411-24-19 (2002)).
  • pJRD215 is a derivative of the broad host range vector RSF1010 and has conjugative transduction (J. Davison, M. Heusterspreute et al., Gene, 51, 275-280 ( 1 98 7)).
  • Conjugative transmission is a phenomenon that occurs when bacteria with different traits are mixed and cultured, and a part of the gene of one bacterium (donor) is transferred to another bacterium (acceptor).
  • the strength of the conjugative transfer ability is determined by the gene involved in conjugative transfer on the chromosome of the donor or on the plasmid of the donor.
  • Genes involved in conjugative transmission include the self-transmissible gene t ra, the conjugate transfer gene m ob, and the ori T sequence.
  • the protein encoded by tra is involved in the interaction between the donor and recipient bacteria.
  • the protein encoded by mob has the function of nicking the oriT sequence and the function of stably carrying single-stranded DNA.
  • the o r i T sequence consists of a nick site and a recognition sequence for nick insertion. Only when these three species coexist does junction transmission occur.
  • pJRD215 is a group of m ob genes among genes involved in conjugative transmission. Because of the r i T arrangement, when producing polyester on an industrial scale! In the unlikely event that a transformant harboring JRD215 leaks, contact with a microorganism containing a plasmid containing the tra gene, such as RP4, may result in conjugative transmission, which may lead to the safety of recombinants. Had problems in terms of aspects.
  • the above conjugation transfer method has been mainly used as a transformation method for Ralstonia eutropha PHB-4 strain (DSM541) (a strain lacking polyester synthesis ability). Therefore, when the ability to transfer conjugation is lost, it is necessary to perform transformation using a method other than the conjugation transfer method, that is, an electroporation method or a calcium method.
  • a method other than the conjugation transfer method that is, an electroporation method or a calcium method.
  • a p J RD 2 15 vector Ralstonia eutropha p HB _ 4 strain is a host, it has been empirically known that transformation efficiency from the atmosphere of the plasmid is significantly reduced.
  • J RD 215 partial deletion or base substitution of the mob gene group
  • Z Z or It has been found that by performing partial or total deletion of the ori T sequence, the conjugative transmission capacity of the vector is significantly reduced, and a vector that can be used more safely in industry can be obtained.
  • pJRD215 is used to delete unnecessary gene sequence portions, that is, streptomycin resistance gene and cos sequence, to improve transformation efficiency. It has been found that a small vector with improved performance can be obtained.
  • an enzyme expression unit (EE32, EE32dl3, N149S, D17) for synthesizing a ⁇ (3 ⁇ -c0-3 ⁇ ) copolymer derived from Aeromonas cv. Polyester was successfully produced by using the transformant in which a gene was introduced into Ralstonia's Uto ora using an expression plasmid into which 1G, F353T, etc.) had been inserted, thereby completing the present invention.
  • the present invention provides a broad host range vector characterized by being more industrially safe, a polyester synthase expression plasmid obtained by introducing at least a polyester synthase gene into the vector, and a polyester containing the plasmid.
  • the present invention relates to a transformant capable of synthesizing, and a method for producing a polyester using the plasmid.
  • the present invention provides a polyester synthase expression plasmid lacking part or all of the conjugation transfer ability; a polyester synthase expression plasmid lacking the streptomycin resistance gene; And a polyester synthase expression plasmid lacking the streptomycin resistance gene; a transformant transformed with the above-mentioned polyester synthase expression plasmid; (Wherein m and n represent integers of 1 or more), wherein the expression plasmid is a copolymer polyester P (3HB-co-3HH) comprising 3-hydroxybutyric acid and 3-hydroxyhexanoic acid, ⁇ ⁇ A method for producing a polyester using a transformant.
  • the polyester synthase expression plasmid of the present invention includes a polyester synthase expression plasmid lacking a part or all of the conjugation transfer ability; a polyester synthase expression plasmid lacking a streptomycin resistance gene; Is a polyester synthase expression plasmid from which all have been deleted and from which the streptomycin resistance gene has been deleted.
  • Enzymes and cloning hosts used in genetic engineering can be purchased from market suppliers and used according to the instructions.
  • the enzyme is not particularly limited as long as it can be used for genetic manipulation.
  • the closing host is not particularly limited, and examples thereof include Escherichia coli.
  • the vector used in the present invention is not particularly limited as long as it is a broad host range vector having a conjugative gene, but it is preferable to use pJRD215 described in JP-A-7-265065. it can.
  • the nucleotide sequence of PJRD215 is shown in SEQ ID NO: 1.
  • the function of the gene region involved in conjugation transfer is reduced by performing all deletion, partial deletion, base insertion, base substitution, etc. Alternatively, it can be deleted.
  • mo bA, mo bB, mo b C, ori T The sequence is subjected to any of total deletion, partial deletion, base insertion, base substitution, and the like.
  • the function of any of the mob A, mob B s mob C, and ori T sequences may be deleted.
  • the mo b A gene, which is essential for mobility, or ori T, which has a nick site Preferably, the above operations are performed on the sequence.
  • the number of genes that reduce or delete the function may be one, but more preferably two or more.
  • PJ RD 215 is a derivative of RSF 1010
  • the definition of RSF 1010 in P. Scholz, V. Haring et al., Gene, 75, 271 -288 (1 989) should be quoted as it is.
  • the oriT sequence of pJRD215 is 308 1-3169 of SEQ ID NO: 1
  • the nick site can be defined between 3138 and 3139.
  • the mob A gene can be defined as 3250 to 4407 in SEQ ID NO: 1
  • the mob B gene can be defined as 3998 to 4411 in SEQ ID NO: 1.
  • polyester synthase expression plasmid in which a part or all of the conjugation transfer ability is a deletion or mutation of the mob gene region, for example, 321 5 to 4075 of pJRD215 (SEQ ID NO: 1) is deleted.
  • a plasmid for expressing a polyester synthase in which a part or all of the conjugation transfer ability is a deletion of the ori T region for example, pJRD215 (SEQ ID NO: 1) of 3132 to A polyester synthase expression plasmid in which 3145 has been deleted; a polyester synthase expression plasmid in which 3132 to 3169 of PJ RD 215 has been deleted.
  • the deletion of the mob gene region is pJRD21 5 (SEQ ID NO: 1) 321 5 to 4075 deletion
  • deletion of the ori T region is pJRD 215 (SEQ ID NO: 1)
  • 31 Polyester Synthase Expression Plasmid with 32 to 3145 deletions; deletion of mob gene region is: 32RD to 4075 deletion of JRD215 and AND.
  • a plasmid synthase expression plasmid wherein the deletion of the riT region is a deletion of 3132-3169 of JRD215;
  • JRD 215 321 5 to 4075 deletion JRD 215 321 5 to 4075 deletion, and a plasmid synthase expression plasmid in which the deletion of the riT region is a deletion of 3132 to 3178 of pJRD215;
  • the deletion of the mob gene region is a deletion of 3215-4075 of pJRD215, and a plasmid synthase expression plasmid in which the deletion of the riT region is a deletion of 3132 to 3214 of pJRD215;
  • the deletion of the mob gene region is a deletion of 3215-4075 of pJRD215
  • deletion of the mob gene region can be performed by deletion of a restriction enzyme fragment containing the mob gene portion, deletion using PCR, or the like.
  • mutation of the mob gene region can be performed by a site-specific mutagenesis method or the like.
  • deletion of the ori T region can be performed by deletion of a restriction enzyme fragment containing the ori T portion or deletion using PCR, as in the case of the deletion of the mob gene region.
  • miniaturization of the plasmid for improving the transformation efficiency can be performed by deleting a portion unnecessary for expression of the polyester synthase gene and replication of the plasmid. For example, if the vector used has two or more antibiotic resistance genes, either of them can be deleted.
  • a multicloning site cos region that is not involved in the replication of plasmid can be deleted.
  • the cos region from multicloning site and lambda phage Although not clearly defined, according to J. Davison, M. Heusterspreute et al., Gene, 51, 275-280 (1 987), 9680 ⁇ of SEQ ID NO: 1: L0130 around Manolecita roning It is a site, and it can be said that around 9260 to 9660 is a cos region.
  • polyester synthase expression plasmid in which the streptomycin resistance gene region has been deleted examples include, for example, a polyester synthase expression plasmid in which 206 to 1690 of pJRD215 (SEQ ID NO: 1) has been deleted.
  • the polyester synthase expression plasmid for co S region was deleted, For example,: J RD 215 (SEQ ID NO: 1) Polje ester synthase expression plasmid 9237-10 1 27 was deleted in; PJ RD 21 5 No. 8915 to 10055 are deleted.
  • Deletion of the streptomycin resistance gene region, deletion of the COS region, and deletion of the multiclonal ungsite can be performed in the same manner as the above-described deletion of the mob gene region.
  • a polyester synthase expression plasmid lacking part or all of the conjugation transfer ability and lacking the streptomycin resistance gene can be suitably used.
  • the plasmid for expressing a polyester synthase can be obtained by combining the above-mentioned deletion of a part or all of the conjugation transfer ability and deletion of the streptomycin resistance gene.
  • deletion of the cos region and deletion of the multicloning site can be combined, for example, deletion of a part or all of the conjugation transmitting ability, and deletion of the cos region and / or the multi-cloning site.
  • polyester synthase expression plasmid of the present invention can be prepared.
  • polyester synthase gene in addition to the structural gene, it is only necessary to have a promoter, a terminator, and the like, an expression diet that functions in the host bacterium.
  • the polyester synthase gene is preferably a gene derived from Aeromonas capillar.
  • a gene fragment EE32, EE32d13 derived from Aeromonas' capillarie described in JP-A-10-108682 may be used.
  • Polyester synthase gene (N 149 S mutant gene) derived from capillar, Polyester synthase gene (D 171 G mutant) derived from Aeromonas perillae in which the 171th amino acid aspartic acid is replaced with glycine Gene) or a program that can identify useful amino acid mutations based on the three-dimensional structure of the enzyme or the expected three-dimensional structure on a computer, such as a program designed by Vietnamese Patent Laid-Open No. 20 ⁇ 1_184831).
  • polyester synthase gene (F353T mutant gene) derived from Aeromonas capillaris in which the 353rd amino acid phenylalanine was replaced with threonine )
  • a polyester synthase gene derived from Aeromonas serrata combined with two or more amino acid substitutions among the above substitutions (a mutant gene obtained by combining the above mutations) and the like are preferably used. It can.
  • the polyester synthase expression plasmid may contain one or more expression units.
  • the transformant of the present invention has been transformed by the above-mentioned polyester synthase expression plasmid. That is, the transformant of the present invention can be obtained by introducing the polyester synthase expression plasmid obtained above into a host compatible with the plasmid.
  • the host is not particularly limited, but microorganisms isolated from nature or deposited strains Microorganisms and the like deposited with institutions (eg, IFO, ATCC, etc.) can be used. Specifically, bacteria such as the genus Ralstonia (Ra1stonia), the genus Aeromonas, the genus Escherichia, the genus Alliligenes (Alealigenes), and the genus Pseud omonas are described. Can be used. Preferably it is Ralstonia, more preferably Ralstonia eutropha.
  • polyester synthase expression plasmid into a microorganism can be performed by a known method.
  • an electroporation method (Curent Protocolsin Molecular Biology, vol. 1, page 1.8.4, 1994) and a canolecid method (Lederber g. EM eta 1., J. B acteriol. 11) 9. 1072 (1974)) can be used.
  • Preferred transformants used in the present invention include, for example, transformants in which each polyester synthase expression plasmid has been introduced into Ralst your eutropha as a host. Specific examples include the following transformants. Ralstoniaeutropha P HB—4 / p J RD dc mBEE 32 d 13 (transformant into which p J RD dc mBEE 32 d 13 has been introduced) (Accession No. FERM P— 1 935 2, Deposit date 2003) May 16),
  • Ra 1 stoniaeutropha ⁇ -4 / ⁇ J RDds EE 32 dl 3 which is a transformant into which p J RDds EE 32 dl 3 has been introduced (accession number FE RM P—193358, deposited date Heisei 15 May 16)
  • Ra1 stoniaeutropha ⁇ -4 / ⁇ J RDdms EE 32 dl 3 which is a transformant into which p J RD dms EE 32 dl 3 has been introduced (accession number FERM BP-08626, original date of deposit: May 16, 2003 Transfer of domestic deposits to international deposits based on the Budapest Treaty),
  • Ra 1 stoniaeutropha ⁇ -4 / ⁇ J RDdmEE 32 dl 3 (Accession number: FE RM P—1 9360, Deposit 3 May 1, Heisei 5), which is a transformant into which p J RD dmEE 32 d 13 was introduced The 6th) ,
  • the method for producing a polyester of the present invention comprises the use of the above expression plasmid or transformant and the following formula (1)
  • the above transformant is cultured using a medium containing nutrients, inorganic salts, and other organic nutrients, which are nutrients other than carbon, by giving sugars, fats and oils or fatty acids as a carbon source. be able to.
  • a transformant obtained by using a bacterium such as a microorganism belonging to the genus Ralstonia, Aeromonas, Escherichia, Alcaligenes or Pseudomonas as a host may be cultivated as a culture medium by providing a carbon source capable of assimilating the microorganism.
  • a medium in which any one of a nitrogen source, inorganic salts and organic nutrients is restricted for example, a medium in which the nitrogen source is restricted to 0.01 to 0.1% can be used.
  • the sugar include carbohydrates such as glucose and fructose.
  • fats and oils include fats and oils rich in saturated and unsaturated fatty acids having 10 or more carbon atoms, for example, coconut oil, palm oil, palm kernel oil and the like.
  • Fatty acids include saturated and unsaturated fatty acids such as hexanoic acid, octanoic acid, decanoic acid, lauric acid, oleic acid, palmitic acid, linoleic acid, linolenic acid, and myristic acid, and fatty acids such as ester salts of these fatty acids. Derivatives.
  • nitrogen source examples include ammonium salts such as ammonia, ammonium chloride, ammonium sulfate, and ammonium phosphate, as well as peptone, meat extract, yeast extract, and the like.
  • inorganic salts examples include potassium phosphate monobasic, potassium phosphate dibasic, magnesium phosphate, magnesium sulfate, and sodium chloride.
  • organic nutrients include, for example, amino acids such as glycine, alanine, serine, threonine, and proline; and vitamins such as vitamin B1, vitamin B12, and vitamin C.
  • an antibiotic (canna) corresponding to the resistance gene present in the vector is contained in the culture solution. May be added.
  • the culture temperature may be any temperature at which the bacteria can grow, but is preferably from 20 ° C to 40 ° C.
  • the culture time is not particularly limited, but may be about 1 to 7 days.
  • the polyester may be recovered from the obtained cultured cells.
  • the polyester can be recovered from the cells by, for example, the following method. After completion of the culture, the cells are separated from the culture using a centrifuge or the like, and the cells are washed with distilled water, methanol, and the like, and dried. The polyester is extracted from the dried cells using an organic solvent such as black-mouthed form. Cell components are removed from the organic solvent solution containing the polyester by filtration or the like, and a poor solvent such as methanol or hexane is added to the filtrate to precipitate polyester. Further, the supernatant is removed by filtration or centrifugation, and the polyester is recovered by drying.
  • the average molecular weight and 3 HH composition (mo 1%) of the obtained polyester can be analyzed, for example, by gas chromatography or nuclear magnetic resonance.
  • a dyeing method using Ni 1 er ed can be used as a simple method for producing polyester. That is, by adding Niered to the medium in which the recombinant bacterium grows, culturing the recombinant bacterium for 1 to 7 S, and observing whether or not the recombinant bacterium turns red, the presence or absence of polyester production is determined. Can be confirmed.
  • the conjugation transfer ability of the prepared vector can be evaluated by the following method, but is not limited to this method.
  • the vector to be evaluated is transformed into a bacterium having the tra gene, and this is used as a donor bacterium.
  • a bacterium having a tra gene for example, Escherichia coli S17-1 strain or the like can be used.
  • the recipient bacterium any bacterium that can be co-cultured with the donor bacterium and that can replicate the vector to be evaluated in the cell can be used, but can be separated from the donor bacterium after mixed culture. Thus, it is desirable to have a different antibiotic resistance from the donor bacterium.
  • the donor bacterium and the recipient bacterium are each cultured and expanded in an appropriate medium in advance, mixed, and inoculated into an appropriate medium to perform a mixed culture.
  • the medium used at this time may be either solid or liquid. Do not add.
  • the culture temperature of the mixed culture may be any temperature at which the donor bacterium and the recipient bacterium can grow, but is preferably 20 ° C to 40 ° C.
  • the culture time is not particularly limited, but is preferably 5 to 20 hours.
  • conjugation transmission ability is performed by calculating the frequency of conjugation transmission per recipient.
  • the method is not limited to this method.
  • the method of calculating the joint transmission frequency will be described in detail in the following examples.
  • FIG. 1 is a construction diagram of the mob region deletion vector and the streptomycin resistance gene deletion vector of the present invention.
  • FIG. 2 is a construction diagram of a cs region oriT region deletion vector of the present invention.
  • FIG. 3 is a construction diagram of a vector in which the mos gene region is partially deleted and the cs region is deleted according to the present invention.
  • FIG. 4 is a construction diagram of a mos gene region partially deleted cos region deleted vector of the present invention.
  • FIG. 5 is a diagram showing the construction of a mob A gene mutation cs region deletion vector of the present invention.
  • FIG. 6 is a diagram showing the construction of a vector lacking the mob region and the oriT region according to the present invention.
  • Plasmid pJRD215 was digested with restriction enzymes SpeI and Bg1II, blunt-ended using DNA BlintngKit (manufactured by Takara Shuzo Co., Ltd.), and self-ligated. This plasmid is designated as pJRDdc (FIG. 2).
  • the plasmid pJRDdc is obtained by deleting 8915 to 10055 of: JRD215.
  • a PCR reaction was carried out using plasmid pJRDdc as type I and primers shown in SEQ ID NO: 4 and SEQ ID NO: 6 to obtain a DNA fragment of about 0.5 kb.
  • a PCR reaction was carried out using pJRDdc as a type II and the primers represented by Torimoto No. 5 and SEQ ID No. 7 to obtain a DNA fragment of about 2.4 kb.
  • the overlap PCR method was performed by utilizing the fact that the obtained two fragments had an overlapping portion. Pyrobest (Takara Shuzo Co., Ltd.) was used as the polymerase.
  • the approximately 2.8 kb fragment obtained by the overlap PCR method was digested with the restriction enzymes EcoO109I and Af1III, and similarly digested with EcoO109I and Af1III. Ligation with p J RD dc from above. As a result, p J RD dT c was obtained (FIG. 2).
  • the plasmid; JRDdTc is a plasmid in which 3132 to 3169 of pJRD215 has been deleted and the cos region has been deleted.
  • PCR reaction was carried out using pJRDdc as type I and primers represented by SEQ ID NO: 4 and SEQ ID NO: 8 to obtain a DNA fragment of about 0.5 kb.
  • a PCR reaction was carried out using pJRDdc as type III and the primers shown in SEQ ID NOS: 5 and 9 to obtain a DNA fragment of about 2.4 kb.
  • the overlapping PCR method was performed by utilizing the fact that the obtained two fragments had an overlapping portion. Pyrobest was used as the polymerase.
  • the plasmid pJRDdm cut with the restriction enzymes SpeI and Bg1II was blunt-ended using DNABlintngKit (manufactured by Takara Shuzo Co., Ltd.) and self-ligated. Let this plasmid be pJRDdcm ( Figure 3).
  • a PCR reaction was performed using pJRD215 as a type III and the primers shown in SEQ ID NOS: 11 and 12. Pyrobest was used as the polymerase.
  • the obtained DNA fragment of about 1.5 kb was digested with restriction enzymes XhoI and PstI, and digested with restriction enzymes XhoI and PstI: p STV28 vector (used by Takara Shuzo Co., Ltd.) And created p S TVmo b.
  • SEQ ID NO: 13 and SEQ ID NO: 14 were used as PCR primers.
  • a PCR reaction was performed using pSTVmob-de1Van as type I and SEQ ID NO: 15 and SEQ ID NO: 16 as primers. Pyrobest was used as the polymerase.
  • the amplified fragment was digested with the restriction enzyme Van91I and ligated to Van91I-treated pJRDdcm4380 to obtain pJRDdcml63 (FIG. 4).
  • the plasmid pJRDdcml63 has deletions of 3737 to 4378 of pJRD215 and a deletion of the cos region.
  • pSTVmob-de1Van was type III, and amplified using SEQ ID NO: 18 and SEQ ID NO: 19 as PCR primers. Pfu was used as a polymerase. After the PCR reaction, a restriction enzyme DpnI was added to cut the type II plasmid, and the plasmid was transformed into Escherichia coli 'JM109 strain, and pSTVmob 25YF was obtained from the transformant (FIG.
  • the plasmid pJRDdms obtained in Example 4 digested with restriction enzymes NheI and EcoRI was digested with a synthetic DNA sequence represented by SEQ ID NO: 2 (forward chain) and SEQ ID NO: 3 (reverse chain). Connected. As a result, about 0.9 kb containing the cos sequence and the multicloning site was completely deleted by replacing 45 bp of the synthetic DNA to obtain a plasmid pJRDdmsc of about 7.1 kb (see FIG. 1).
  • a PCR reaction was carried out using the primers represented by SEQ ID NO: 20 and SEQ ID NO: 21 with pJRD215 as type III, to obtain a DNA fragment of about 1 kb. Pyrobest was used as the polymerase. This DNA fragment was digested with restriction enzymes S fi I and V an 91 I, and then ligated to plasmids p J RD dm and! J RD dms which were also digested with restriction enzymes S fi I and V an 91 I, respectively. Plasmids; pJRDdmT1 and pJRDdmsT1 were obtained (FIG. 6).
  • a PCR reaction was performed using the primers of SEQ ID NO: 20 and SEQ ID NO: 22 with pJRD215 as type III to obtain a DNA fragment of about 1 kb, and this DNA fragment was combined with the restriction enzyme SfiI.
  • SfiI restriction enzyme
  • the plasmids pJRDdm and pJRDdms also ligated with plasmids pJRDdmT2 and pJRDdms, which were also digested with restriction enzymes SfiI and Van91I, respectively. J RD dm s T 2 was obtained (FIG. 6).
  • a PCR reaction was performed using the primers represented by SEQ ID NO: 20 and SEQ ID NO: 23 with ⁇ J RD 215 as type ⁇ to obtain a DNA fragment of about 1 kb.
  • the plasmids p J RD dm and!) J RD dm s which were also digested with the restriction enzymes S fi I and V an 91 I were ligated, and the plasmid: J RD dmT 3 And pJRDdmsT3 were obtained (FIG. 6).
  • Example 7 Preparation of Expression Brasmid for Polyester Production and Construction of Transformant ⁇ 149S Mutant, D171G Mutant, F353 ⁇ Mutant Gene Fragment
  • glycine is substituted for aspartic acid, which is the 171st amino acid of the PHA synthase derived from Aeromonas california. Therefore, the gene fragment EE32d13 derived from Aeromonas capillaris described in Japanese Patent Application Laid-Open No. 10-108682 was subcloned into the EcoRI site of pUC19 and subcloned.
  • PCR was performed using the synthetic DNA represented by SEQ ID NO: 25 as a primer.
  • the conditions are (1) 2 minutes at 94 ° C, (2) 30 seconds at 94 ° C, (3) 30 seconds at 55 ° C, (4) 2 minutes at 72 ° C, (2) to (4) For 25 cycles at (5) 72 ° C, and ExTaq polymerase (manufactured by Takara Bio) was used as the polymerase.
  • Transformants of Ralstonia eutopha containing these expression plasmids were prepared by the electric pulse method.
  • a gene pulser manufactured by Biorad was used as the gene transfer device, and a cuvette with a gap of 0.2 cm manufactured by Biorad was also used.
  • 400 ⁇ l of the competent cells and 20 ⁇ l of the plasmid were injected into a cuvette, set on a pulse device, and subjected to an electric pulse under the conditions of a capacitance of 25 F, a voltage of 1.5 kV, and a resistance of 800 ⁇ .
  • the bacterial solution in the cuvette is shake-cultured in Nutrient Broth medium (manufactured by DI FCO) at 30 ° C for 3 hours, and the selection plate (Nutrien tAgar medium (manufactured by DI FCO)) is used. At 100 ° C. for 2 days at 30 ° C. to obtain transformants.
  • Example 7 The transformant obtained in Example 7 was transformed into a Niered-containing medium (9 g of sodium dihydrogen phosphate ⁇ 12-hydrate, 1.5 g of potassium dihydrogen phosphate, 0.05 g of ammonium chloride, Magnesium sulfate ⁇ 7 hydrate 0.02 g, funolectose 0.5 g, covanolate chloride ⁇ 6 hydrate 0.25 ppm, iron chloride (III) ⁇ 6 hydrate 16 ppm, canolecium chloride ⁇ dihydrate 10.3 ppm, nickel chloride '6 hydrate 0.12 ppm N copper sulfate pentahydrate 0.16 ppm, Nilered 0.5 mg, agar agar 15 g / l L) The cells were cultured at ° C for one week. After culturing, it was found that all the strains turned red and accumulated polyester in the cells. (Example 9) Evaluation of conjugation transfer ability of transformant
  • Each of the donor bacterium and the recipient bacterium was inoculated into a TB medium (Tryptone 1.2 ° /., Yeastextract 2.4%, glycerol 0.4%) and cultured at 37 ° C for 1%. Place a sterilized nitrocellulose filter on an LB plate (1% tryptone, 0.5% yeastpaste, 1% NaCl, 1.5% agar), and transfer the culture solution to 10 ⁇ l of the donor and 10 ⁇ l of the recipient, respectively. 10 ⁇ l, and the mixed culture was inoculated on a -trocellulose filter. After culturing at 37 ° C. for 5 to 15 hours, the nitrocellulose filter was transferred to a tube containing lm1 of physiological saline, and sufficiently suspended to suspend the bacteria on the nitrocellulose filter.
  • the suspension of the mixed bacteria thus obtained was diluted 1 0 ° to 10 7 times, kanamycin 5 0 ⁇ g / m 1 and chloramphenicol Hue Niko Honoré LB plates containing 20 g / m 1, Oyo Pikuguchi 100 ⁇ l of each was plated on an LB plate containing only 20 ⁇ g / ml of ramueuecor, and subcultured at 37 ° C. for 1 B. After culturing, the number of emerging colonies was counted, and the results shown in Table 1 were obtained.
  • Escherichia coli S 1 7 1 strain is chloramphenicol-sensitive and kanamai Sensitive.
  • Escherichia coli XL 10 gold strain is resistant to chloramuecol and kanamycin. Since all expression plasmids used for the transformation of Escherichia coli S1711 strain contain a kanamycin resistance gene, the bacteria carrying the expression plasmid become kanamycin resistant.
  • the frequency of conjugative transmission per recipient is determined by the number of Escherichia coli XL lO—go 1 d strains containing the expression plasmid introduced by conjugative transmission contained in 100 ⁇ l of the cell suspension. 1 0—Calculated by dividing by the total number of gold shares. When the number of introduced XL 10 0-go 1 d was 0, the number of introduced XL 10 0-go 1 d was temporarily set to 1 to calculate the conjugation transmission frequency per recipient, Expressed as less than the resulting junction transmission frequency. The actual calculated values are shown below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

 本発明は、工業的に安全に及び/又は安価で効率よく、遺伝子組換え技術によりポリエステル生産するための方法を提供する。 本発明は、より工業的に安全であることを特徴とする広宿主域ベクター、該ベクターに少なくともポリエステル合成酵素遺伝子を導入したポリエステル合成酵素発現プラスミド、該プラスミドを含むポリエステル合成能を有する形質転換体、および該プラスミドまたは形質転換体を使用したポリエステルの製造方法である。

Description

明細書
新規ベクター 技術分野
本発明は、 広宿主域ベクター p J RD 215ベクターを改良して作成した新規 ベクター、 およびそれを用いたポリエステルの製造方法に関するものである。 背景技術
現在までに数多くの微生物において、 エネルギー貯蔵物質としてポリエステル を菌体内に蓄積することが知られている。 その代表例としては 3—ヒドロキシ酪 酸 (以下 3 HBと略す) のホモポリマーであるポリ一 3—ヒドロキシ酪酸 (以下、 P (3HB) と略す) であり、 1925年に B a c i l l u s me g a t e r i umで最初に発見された。 P (3HB) は熱可塑性高分子であり、 自然環境中 で生物的に分解されることから、 環境にやさしいグリーンプラスチックとして注 目されている。 しかし、 P (3HB) は結晶性が高いため、 硬くて脆い性質を持 つていることから実用的には応用範囲が限られる。 この為、 この性質の改良を目 的とした研究がなされてきた。
その中で、 3—ヒドロキシ酪酸 (3HB) と 3—ヒドロキシ吉草酸 (3HV) とからなる共重合体 (以下 P (3HB- c Q-3HV) と略す) の製造方法が開 示されている (例えば、 特開昭 57— 150393号公報、 特開昭 59— 220 192号公報参照) 。 この P (3HB— c o— 3HV) は P (3HB) に比べる と柔軟性に富むため、 幅広い用途に応用できると考えられた。 しかしながら、 実 際のところ P (3HB- c o - 3HV) は 3 HVモル分率を増加させても、 それ に伴う物性の変化が乏しく、 特にフィルム等に使用するのに要求される柔軟性が 向上しないため、 シャンプーボトルや使い捨て剃刀の取っ手等、 硬質成型体の分 野にしか利用されなかった。
近年、 3HBと 3—ヒドロキシへキサン酸 (以下、 3HHと略す) との 2成分 共重合ポリエステル (以下 P (3HB- c 0 - 3HH) と略す) およびその製造 方法について研究がなされた (特開平 5— 93049号公報、 特開平 7— 265 065号公報) 。 これら文献の P (3HB- C D-3HH) の製造方法は、 土壌 より単離されたァエロモナス 'キヤビエを用いてォレイン酸等の脂肪酸やオリー プオイル等の油脂から発酵生産するものであった。 また、 p (3HB— c o— 3 HH) の性質に関する研究もなされている (Y. Do i , S. K i t amu r a , H. Ab e, Ma c r omo l e c u l e s 28, 4822-4823 (19 95) ) 。 この報告では炭素数が 12個以上の脂肪酸を唯一の炭素源としてァェ ロモナス ' キヤビエを培養し、 3HHが 11〜19mo 1 %の P (3HB- c o - 3HH) を発酵生産している。 この P (3HB-c o - 3 HH) は 3HHモル 分率の增加にしたがって、 P (3HB) の硬くて脆い性質から次第に柔軟な性質 を示すようになり、 P (3HB- C D-3HV) を上回る柔軟性を示すことが明 らかにされた。 しかしながら、 本製造方法では菌体生産量 4 g/L、 ポリマー含 量 30%でありポリマー生産性が低いことから、 実用化に向け更に高い生産性が 得られる方法が探索された。
当該 P (3HB- c o-3HH) は 3 HHモル分率を変えることで、 硬質ポリ マーから軟質ポリマーまで幅広い物性を持っため、 テレビの筐体等のように硬さ を要求されるものから糸やフィルム等のような柔軟性を要求されるものまで、 幅 広い分野への応用が期待できる。 しかしながら、 これらの製造方法では本ポリマ 一の生産性が依然として低く、 本ポリマーの実用化に向けた生産方法としては未 だ不十分といわざるを得ない。
P (3HB- C o-3HH) を生産するァエロモナス .キヤビエよりポリヒド ロキシアルカン酸 (PHA) シンターゼ遺伝子がクローエングされた (特開平 1 0— 108682号公報、 T, F u k u i , Y. Do i , J . B a c t e r i o 1, 179, 15, 4821-4830 (1997) ) 。 本遺伝子をラルストニ ァ .ユートロファ (旧アルカリゲネス 'ユートロファス) に導入した形質転換体 を用いて P (3HB- c G-3HH) の生産を行った結果、 菌体生産性は 4 gZ L、 ポリマー含量は 30%であった。 更に本形質転換体を炭素源として植物油脂 を用いて培養した結果、 菌体含量 4gZL、 ポリマ^"含量 80%が達成された ( T. Huku i等, Ap p l . Mi c r o b i o l . B i o t e c n o l . 49 333 (1998) ) 。 本研究で使用された PHA合成酵素発現プラスミ ドは、 p J RD 21 5 (ATCC 37533) にポリエステル合成酵素遺伝子を導入 した JRDEE 32や p J RDEE 32 d 1 3等であった (特開平 10— 10 8682号公報) 。 その後、 本酵素に対して種々の PHA合成酵素変異体が作ら れた。 その中で、 149番目のアミノ酸ァスパラギンがセリンに置換された変異 体酵素や、 1 71番目のァスパラギン酸がグリシンに置換された変異体酵素は、 大腸菌内での P H A合成酵素活性や 3 HH糸且成が向上していることが示されてい る (T. K i c h i s e等、 Ap p l . En v i r o n. Mi c r o b i o l . 68, 241 1 -24 1 9 (2002) ) 。
p J RD 21 5は、 広宿主域ベクターである R S F 1010の誘導体であり、 接合伝達性を有している (J. Da v i s o n, M. He u s t e r s p r e u t e等, G e n e, 5 1, 275— 280 (1 98 7) ) 。
接合伝達とは、 異なる形質を持つ細菌を混合培養した時に起こる現象であり、 ある細菌 (供与菌) の遺伝子の一部が、 他の細菌 (受容菌) に移ることを指す。 接合伝達能力の強度は、 供与体の染色体上あるいは供与体が持つプラスミド上の 接合伝達に関与する遺伝子によって決定される。 接合伝達に関与する遺伝子には、 自己伝達性遺伝子 t r aおよび共役伝達性遺伝子 m o b、 そして o r i T配列が ある。 t r aがコードするタンパク質は、 供与菌 ·受容菌間の相互作用に関与す る。 mo bがコードするタンパク質は o r i T配列にニックを入れる機能、 さら に一本鎖となった DN Aを安定に運ぶ機能を有する。 o r i T配列は、 ニックサ イトとニックが入るための認識配列から成る。 これら 3種が共存してはじめて接 合伝達が起こる。
p J RD 21 5構築のもとになつた RS F 1010の研究はこれまでさかんに 行われている。 接合伝達性に関する mo b B遺伝子の部分欠失、 あるいは mo b A, mo b B両遺伝子の部分欠失、 あるいは o r i T配列の部分欠失により、 ェ シエリキア■コリでは複製されるプラスミドの数が上昇し、 接合伝達性が大幅に 除去されることがすでに知られている (J. F r e y, M. M. B a g d a s a r i a n, M. B a g d a s a r i a n, Ge n e, 1 13, 101— 106 19 92) ) 。 また、 RSF 1010の o r i T領域、 mo b遺伝子領域と高い 相同性を示すプラスミド R l 162を用いた研究では、 mo b A遺伝子の 180 番目以降のアミノ酸を欠失した場合、 あるいは mo b A遺伝子の 25番目のアミ ノ酸残基をチロシンからフエ二ルァラニンに置換することにより、 mo bタンパ ク質の機能が不活化したとの報告がある (E. C. B e c k e r, R. J. Me y e r , J . B i o l . C h e m, 277, 14575— 14580 (2002 ) ) o
し力 し、 RSF 1010の mo b A遺伝子は複製に関与する r e pB遺伝子と 一部重複しているため (P. S c h o l z, V. Ha r i n g等, Ge n e, 7 5, 271 -288 (1 989) ) 、 シユードモナス ·プチダでは m o b A, m o b B遺伝子を部分欠失させるとベクターが複製しないという報告もあり (M. M. B a g d a s a r i a n, P. S c h o l z等, B a n b u r y R e p o r t, 24, 209- 223 (1986) ) 、 ラルストニア -ユート口ファでこ のような改変ベクターが複製されるかは不明であった。
また、 p J RD 21 5は、 接合伝達に関与する遺伝子のうち、 m o b遺伝子群 および。 r i T配列を有するため、 工業スケールでのポリエステル製造時に!) J RD 21 5を保有する形質転換体が万が一漏洩した場合、 RP 4のように t r a 遺伝子含有プラスミドを持つ微生物と接触すると、 接合伝達が生じる可能性があ り、 組換え体の封じ込めといった安全面での課題を有していた。
また、 これまでラルストニア .ユートロファ PHB— 4株 (DSM541) ( ポリエステル合成能欠損株) への形質転換法として、 主として用いられてきたの は、 上記の接合伝達法であった。 したがって接合伝達能を失わせた場合、 接合伝 達法以外の方法、 すなわちエレクトロポレーシヨン法やカルシウム法等を用いて 形質転換することが必須となる。 しかし、 p J RD 2 15ベクターを宿主である ラルストニア ·ユートロファ pHB_ 4株に導入する場合、 そのプラスミドの大 きさから形質転換効率が著しく低下することが経験的に知られていた。
従って、 接合伝達能力を欠失させた場合、 宿主の形質転換を容易に行うため、 ポリエステル合成酵素発現プラスミドの改良といった新たな課題が生じる。 この ため、 エレクトロポレーション法等を用いて本ベクターを宿主であるラルストニ ァ ·ユートロファ PHB— 4株に導入する場合に、 形質転換効率の向上のため、 プラスミ ドサイズの小型化が望まれていた。 発明の要約
本発明者らは、 上記課題を解決するために鋭意検討したところ、 従来用いてい た広宿主域ベクター!) J RD 21 5から、 mo b遺伝子群の部分欠失もしくは塩 基置換、 および Zまたは、 o r i T配列の部分欠失もしくは全欠失を行うことに より、 ベクターの持つ接合伝達能力を著しく低下させ、 工業的により安全に使用 可能なべクターが得られることを見いだした。
また、 操作性向上のため、 広宿主域ベクター: p J RD 21 5力、ら、 不要な遺伝 子配列部分、 すなわちス トレプトマイシン耐性遺伝子および c o s配列を欠失さ せることにより、 形質転換効率の向上した小型ベクターが得られることを見いだ した。
さらに、 作製したそれらのベクターに、 ァエロモナス 'キヤビエ由来の Ρ (3 ΗΒ- c 0 - 3ΗΗ) 共重合体を合成する酵素発現ユニット (EE 32、 EE 3 2 d l 3、 N 149 S、 D 1 7 1G、 F 353 T等) を挿入した発現プラスミド を、 ラルストニア 'ユート口ファに遺伝子導入した該形質転換体を用いて、 ポリ エステルを製造することに成功し、 本発明を完成させた。
すなわち、 本発明は、 より工業的に安全であることを特徴とする広宿主域べク ター、 該ベクターに少なくともポリエステル合成酵素遺伝子を導入したポリエス テル合成酵素発現プラスミ ド、 該プラスミ ドを含むポリエステル合成能を有する 形質転換体、 および該プラスミ ドを使用したポリエステルの製造方法に関する。 つまり、 本発明は、 接合伝達能力の一部または全てを欠失したポリエステル合 成酵素発現プラスミド;ストレプトマイシン耐性遺伝子を欠失したポリエステル 合成酵素発現プラスミド;接合伝達能力の一部または全てを欠失し、 かつ、 スト レブトマイシン耐性遺伝子を欠失したポリエステル合成酵素発現プラスミド;上 記ポリエステル合成酵素発現プラスミドによって形質転換された形質転換体;ポ リエステルが、 下式 (1)
Figure imgf000006_0001
(式中、 m、 nは 1以上の整数を表す) で示される、 3—ヒドロキシ酪酸と 3— ヒドロキシへキサン酸からなる共重合ポリエステル P (3HB-c o - 3HH) である、 上記発現プラスミドまたは^ ^質転換体を用いたポリエステルの製造方法、 に関する。 発明の詳細な開示
以下に、 本発明を詳細に説明する。
本発明のポリエステル合成酵素発現プラスミ ドは、 接合伝達能力の一部または 全てを欠失したポリエステル合成酵素発現プラスミド;ストレプトマイシン耐性 遺伝子を欠失したポリエステル合成酵素発現プラスミド;接合伝達能力の一部ま たは全てを欠失し、 かつ、 ス トレプトマイシン耐性遺伝子を欠失したポリエステ ル合成酵素発現プラスミドである。
ベクター作製
まず、 ベクターの作製について説明する。
全体的な遺伝子操作は、 Mo l e c u l a r C l o n i n g (C o l d S p r l n g Ha r b o r L a b o r a t o r y P r e s s, 1 989) に 記載されているように行うことができる。 また、 遺伝子操作に使用する酵素、 ク ローニング宿主は、 市場の供給者から購入し、 その説明に従い使用することがで きる。 なお、 酵素としては、 遺伝子操作に使用できるものであれば特に限定され ない。 また、 クローユング宿主としては、 特に限定はないが、 例えば大腸菌等が 挙げられる。
本発明において使用するベクターとしては、 接合伝達性遺伝子を持つ広宿主域 ベクターであれば特に制限はないが、 特開平 7— 265065号公報に記載の: p J RD 21 5を好ましく使用することができる。 また、 P J RD21 5の塩基配 列を配列番号 1に示す。
ベクターから接合伝達能を低下あるいは欠失させるには、 接合伝達性に関与す る遺伝子領域を全欠失、 部分欠失、 塩基揷入、 塩基置換等のいずれかを行うこと によって、 その機能 低下あるいは欠失させることができる。
例えば P J RD 21 5であれば、 mo bA、 mo bB、 mo b C、 o r i T配 列に対し、 全欠失、 部分欠失、 塩基挿入、 塩基置換等のいずれかを行う。 mo b A、 m o b B s mo b C、 o r i T配列のうちのどの遺伝子の機能を欠失させて もよいが、 特に、 可動性に必須である mo b A遺伝子、 あるいはニックサイトを 持つ o r i T配列に対して上記の操作を行うことが好ましい。 また、 機能を低下 あるいは欠失させる遺伝子は、 1種類でもよいが 2種類以上ならばさらに好まし い。
なお、 P J RD 21 5は、 R S F 1010の誘導体であるため、 P. S c h o l z, V. Ha r i n g等, Ge n e, 75, 271 -288 (1 989) での R S F 1010の定義をそのまま引用することができる。 すなわち、 p J RD 2 15の o r i T配列は配列番号 1の 308 1〜 3 169であり、 ニックサイトは 31 38と 3 1 39の間と定義できる。 また、 mo b A遺伝子は配列番号 1の 3 250〜 4407、 mo b B遺伝子は配列番号 1の 3998〜 441 1と定義す ることができる。
接合伝達能力の一部または全ての欠失が、 mo b遺伝子領域の欠失または変異 であるポリエステル合成酵素発現プラスミドとしては、 例えば、 p J RD215 (配列番号 1) の 321 5〜 4075を欠失させたポリエステル合成酵素発現プ ラスミド; P J RD21 5の 3737〜4378を欠失させたポリエステル合成 酵素発現プラスミド; p J RD21 5の 4000〜4378を欠失させたポリエ ステル合成酵素発現プラスミド; P J RD 21 5の 3323のアデニンをチミン へ置換したポリエステル合成酵素発現プラスミ ド等が挙げられる。
また、 接合伝達能力の一部または全ての欠失が、 o r i T領域の欠失であるポ リエステル合成酵素発現プラスミドとしては、 例えば、 p J RD 21 5 (配列番 号 1) の 3 1 32〜 3 145を欠失させたポリエステル合成酵素発現プラスミド ; P J RD 21 5の 31 32〜31 69を欠失させたポリエステル合成酵素発現 プラスミ ド等が挙げられる。
さらに、 接合伝達能力の一部または全ての欠失が、 mo b遺伝子領域および o r i T領域の欠失であるポリエステル合成酵素発現プラスミドとしては、 例えば、 mo b遺伝子領域の欠失が p J RD 21 5 (配列番号 1) の 321 5〜 4075 の欠失であり、 かつ o r i T領域の欠失が p J RD 21 5 (配列番号 1 ) の 31 3 2〜3 145の欠失であるポリエステル合成酵素発現プラスミ ド; mo b遺伝子領域の欠失が: J RD 21 5の 321 5〜 4075の欠失であり、 かつ。 r i T領域の欠失が] J RD 21 5の 3 132〜 3 169の欠失であるポ リエステル合成酵素発現プラスミ ド;
mo b遺伝子領域の欠失が!) J RD 21 5の 321 5〜 4075の欠失であり、 かつ。 r i T領域の欠失が p J RD 21 5の 3 1 32〜 3 178の欠失であるポ リエステル合成酵素発現プラスミ ド;
mo b遺伝子領域の欠失が p J RD 21 5の 321 5〜 4075の欠失であり、 かつ。 r i T領域の欠失が p J RD 21 5の 3 1 32〜 3214の欠失であるポ リエステル合成酵素発現プラスミ ド;
mo b遺伝子領域の欠失が p J RD 21 5の 3215〜 4075の欠失であり、 かつ。 r i T領域の欠失が p J RD 21 5の 3095〜 3214の欠失であるポ リエステル合成酵素発現プラスミ ド等が挙げられる。
ここで、 mo b遺伝子領域の欠失は、 mo b遺伝子部分を含む制限酵素断片の 欠失、 または PC Rを用いた欠失等により行うことができる。 また、 mo b遺伝 子領域の変異は、 部位特異的変異導入法等により行うことができる。 さらに、 o r i T領域の欠失は、 上記 mo b遺伝子領域の欠失の場合と同様に、 o r i T部 分を含む制限酵素断片の欠失、 または PCRを用いた欠失等により行うことがで さる。
また、 形質転換効率の向上のためにプラスミドを小型化するには、 ポリエステ ル合成酵素遺伝子の発現およびプラスミド複製に不要である部分を欠失させるこ とにより行える。 例えば、 使用するベクターに抗生物質耐性遺伝子が 2つ以上あ るならば、 そのどちらかを欠失させることができる。
例えば p J RD 215の場合、 カナマイシン耐性遺伝子あるいはストレプトマ イシン耐性遺伝子を欠失させることが可能であるが、 ストレプトマイシン耐性遺 伝子を欠失させることが好ましい。
また、 P J RD 21 5の場合、 プラスミ ドの小型化を目的とし、 プラスミ ドの 複製に関与しないマルチクローユングサイトゃ c o s領域等も欠失させることが できる。 マルチクローユングサイトおよびラムダファージ由来の c o s領域は、 明確に定義されていないが、 J. D a v i s o n, M. He u s t e r s p r e u t e等, G e n e, 51, 275— 280 (1 987) より、 配列番号 1の 9 680〜: L 01 30付近がマノレチタローニングサイトであり、 9260〜 966 0付近が c o s領域であるといえる。
ス トレプトマイシン耐性遺伝子領域を欠失させたポリエステル合成酵素発現プ ラスミドとしては、 例えば、 p J RD 21 5 (配列番号 1) の 206〜 1690 を欠失させたポリエステル合成酵素発現プラスミド等が挙げられる。
c o S領域を欠失させたポリエステル合成酵素発現プラスミドとしては、 例え ば、 : J RD 215 (配列番号 1) の 9237〜 10 1 27を欠失させたポリェ ステル合成酵素発現プラスミド; P J RD 21 5の 891 5〜10055を欠失 させたポリエステル合成酵素発現ブラスミ ド等が挙げられる。
ストレプトマイシン耐性遺伝子領域の欠失、 C O S領域の欠失、 マルチクロー ユングサイトの欠失も、 上記 mo b遺伝子領域の欠失と同様にして行うことがで きる。
また、 接合伝達能力の一部または全てを欠失し、 かつ、 ストレプトマイシン耐 性遺伝子を欠失したポリエステル合成酵素発現プラスミドも好適に用いることが できる。 なお、 当該ポリエステル合成酵素発現プラスミ ドは、 上述の接合伝達能 力の一部または全ての欠失およびストレプトマイシン耐性遺伝子の欠失を組み合 わせることにより得ることができる。
さらに、 c o s領域の欠失やマルチクローユングサイトの欠失を組み合わせる こともでき、 例えば、 接合伝達能力の一部または全てを欠失し、 かつ、 c o s領 域及び/又はマルチク口一ユングサイトを欠失したポリエステル合成酵素発現プ ラスミド;ストレプトマイシン耐性遺伝子を欠失し、 かつ、 c o s領域及び/又 はマルチクローユングサイトを欠失したポリエステル合成酵素発現プラスミド; 接合伝達能力の一部または全てを欠失し、 ストレブトマイシン耐性遺伝子を欠失 し、 かつ、 c o s領域及ぴノ又はマルチクローニングサイトを欠失したポリエス テル合成酵素発現プラスミ ド等が挙げられる。
次に、 ポリエステル合成酵素発現プラスミドの作製について説明する。
上記のようにして作製したべクタ一に、 ポリエステル合成酵素遺伝子を揷入す ることにより、 本発明のポリエステル合成酵素発現プラスミドを作製することが できる。
ポリエステル合成酵素遺伝子としては、 構造遺伝子のほかに、 プロモーター、 ターミネータ一等、 宿主菌で機能する発現ュエツトを有していればよい。
ポリエステル合成酵素遺伝子は、 ァエロモナス ·キヤビエ由来のものが好まし く、 例えば、 特開平 10— 108682号公報に記載されているァエロモナス ' キヤビエ由来の遺伝子断片 EE 32、 EE 32 d 1 3等を用いることができる。 ま 7こ、 T. K i c h i s e等、 Ap p l . En v i r o n. Mi c r o b i o l . 68, 241 1 -241 9 (2002) に記載されている、 149番目のァミノ 酸のァスパラギンがセリンに置換されたァエロモナス ·キヤビエ由来であるポリ エステル合成酵素遺伝子 (N 149 S変異体遺伝子) 、 1 71番目のアミノ酸の ァスパラギン酸がグリシンに置換されたァエロモナス■キヤビエ由来であるポリ エステル合成酵素遺伝子 (D 171 G変異体遺伝子) 、 あるいは、 コンピュータ 一上での酵素の立体構造または予想される立体構造を基に有用なアミノ酸変異を 特定可能なプログラム等、 例えば S h r i k e (特開 20◦ 1 _ 1848 31 ) により設計された、 353番目のアミノ酸のフエ二ルァラニンがスレオニンに置 換されたァエロモナス ·キヤビエ由来であるポリエステル合成酵素遺伝子 (F 3 53T変異体遺伝子) 、 または、 上記置換の内のいずれか 2つ以上のアミノ酸置 換が組み合わされたァエロモナス■キヤビエ由来であるポリエステル合成酵素遺 伝子 (上記変異を組み合わせた変異体遺伝子) 等を好ましく用いることができる。 なお、 ポリエステル合成酵素発現プラスミドには、 上記発現ユニットが 1個以上 複数個存在してもよい。
形質転換体の作製
次に、 形質転換体の作製について説明する。
本発明の形質転換体は、 上記ポリエステル合成酵素発現プラスミドによって形 質転換されたものである。 つまり、 本発明の形質転換体は、 上記で得られたポリ エステル合成酵素発現プラスミドを、 当該プラスミドに適合する宿主中に導入す ることにより得られる。
宿主としては、 特に制限はないが、 天然から単離された微生物や、 菌株の寄託 機関 (例えば I FO、 ATCC等) に寄託されている微生物等を使用できる。 具 体的にはラルストニア (R a 1 s t o n i a) 属、 ァエロモナス (A e r o m o n a s ) 属、 ェシェリキア (E s c h e r i c h i a) 属、 アル力リゲネス (A l e a l i g e n e s ) 属、 シユードモナス (P s e u d omo n a s ) 属等の 細菌類を使用することができる。 好ましくはラルスト-ァ属であり、 より好まし くはラルストニア ·ユートロファである。
微生物へのポリエステル合成酵素発現プラスミドの導入は、 公知の方法により 行うことができる。 例えば、 エレクトロポレーション法 (Cu r r e n t P r o t o c o l s i n Mo r e c u l a r B i o l o g y、 1巻、 1. 8. 4頁、 1994年) や、 カノレシゥム法 (L e d e r b e r g. E. M. e t a 1. , J. B a c t e r i o l . 1 1 9. 1072 (1 974) ) 等を用いるこ とができる。
本発明に用いる好ましい形質転換体としては、 例えば、 宿主としてのラルスト ユア ·ユートロファに、 各ポリエステル合成酵素発現プラスミドを導入した形質 転換体等が挙げられる。 具体的には、 以下に示す形質転換体等が挙げられる。 p J RD d c mBEE 32 d 1 3を導入した形質転換体である、 R a l s t o n i a e u t r o p h a P HB— 4/p J RD d c mB E E 32 d 1 3 (受託 番号 FERM P— 1 935 2、 寄託日平成 15年 5月 16日) 、
p J RDd cm25YFEE 32 d l 3を導入した形質転換体である、 R a 1 s t o n i a e u t r o p h a PHB-4/ /p J RD d cm25YFEE 32 d 1 3 (受託番号 F ERM P— 1 9353、 寄託日平成 1 5年 5月 16日) 、 p J RDd cml 63 EE 32 d l 3を導入した形質転換体である、 R a 1 s t o n i a e u t r o h a PHB~4/p J RD d cml 63EE 32 d 1 3 (受託番号 FERM P— 1 9354、 寄託日平成 1 5年 5月 1 6日) 、 p J RDdT c s EE 32 d l 3を導入した形質転換体である、 R a l s t o n i a e u t r o p h a ΡΗΒ-4/p JRDdT c s EE 32 d 1 3 (受託 番号 FERM P— 1 9 3 5 5、 寄託日平成 15年 5月 1 6曰) 、
p J RDdT c EE 32 d l 3を導入した形質転換体である、 R a 1 s t o n i a e u t r o p h a ΡΗΒ-4/ρ J RDdT c EE 32 d l 3 (受託番号 FERM BP— 08624、 原寄託日平成 15年 5月 16日の国内寄託をプダ ペス ト条約に基づく国際寄託に移管) 、
p J RD d n c EE 32 d l 3を導入した开$質転換体である、 R a 1 s t o n i a e u t r o p h a ΡΗΒ-4/ρ J RDd n c EE 32 d 13 (受託番号 FERM BP— 08625、 原寄託日平成 15年 5月 16 の国内寄託をブダ ペス ト条約に基づく園際寄託に移管) 、
p J RDd s EE 32 d l 3を導入した形質転換体である、 R a 1 s t o n i a e u t r o p h a ΡΗΒ-4/ρ J RDd s EE 32 d l 3 (受託番号 FE RM P— 1 9 35 8、 寄託日平成 1 5年 5月 1 6日) 、
p J RD dms EE 32 d l 3を導入した形質転換体である、 R a 1 s t o n i a e u t r o p h a ΡΗΒ-4/ρ J RDdms EE 32 d l 3 (受託番号 FERM BP— 08626、 原寄託日平成 15年 5月 16日の国内寄託をブダ ぺスト条約に基づく国際寄託に移管) 、
p J RD dmEE 32 d 1 3を導入した形質転換体である、 R a 1 s t o n i a e u t r o p h a ΡΗΒ-4/ρ J RDdmEE 32 d l 3 (受託番号 FE RM P— 1 9360、 寄託 3平成 1 5年 5月 1 6日) 、
p J RDdT c l 71DGを導入した形質転換体である、 R a 1 s t o n i a e u t r o p h a ΡΗΒ-4/ρ J RDdTc 1 7 IDG (受託番号 FERM BP— 08623、 寄託日平成 16年 2月 13日、 ブダぺスト条約に基づく国 際寄託) 。
なお、 これら形質転換体はいずれも、 日本国茨城県つくば市東 1丁目 1番地 1 中央第 6にある独立行政法人産業技術総合研究所特許生物寄託センターに寄託さ れている。
ポリエステル生産
次に、 ポリエステルの生産について説明する。
本発明のポリエステルの製造方法は、 上記発現プラスミドまたは形質転換体を 用い、 下式 (1)
Figure imgf000014_0001
(式中、 m、 nは 1以上の整数を表す) で示される、 3—ヒドロキシ酪酸と 3— ヒドロキシへキサン酸からなる共重合ポリエステル P ( 3 H B - c o - 3 H H) を製造する方法である。
ポリエステルの生産においては、 糖、 油脂または脂肪酸を炭素源として与え、 炭素源以外の栄養源である窒素源、 無機塩類、 そのほかの有機栄養源を含む培地 を用いて、 上記形質転換体を培養することができる。
例えば、 ラルストニア属、 ァエロモナス属、 ェシエリキア属、 アルカリゲネス 属またはシユードモナス属に属する微生物等の細菌を宿主として得られた形質転 換体を、 培養する培地としては、 微生物が資化し得る炭素源を与え、 場合によつ ては、 窒素源、 無機塩類および有機栄養源のうちのいずれかを制限した培地、 例 えば窒素源を 0 . 0 1〜 0 . 1 %に制限した培地等を用いることができる。 糖としては、 例えばグルコース、 フラクトース等の炭水化物が挙げられる。 油 脂としては、 炭素数が 1 0以上である飽和 ·不飽和脂肪酸を多く含む油脂、 例え ばヤシ油、 パーム油、 パーム核油等が挙げられる。 脂肪酸としては、 へキサン酸、 オクタン酸、 デカン酸、 ラウリン酸、 ォレイン酸、 パルミチン酸、 リノール酸、 リノレン酸、 ミリスチン酸等の飽和 ·不飽和脂肪酸、 あるいはこれら脂肪酸のェ ステルゃ塩等の脂肪酸誘導体が挙げられる。
窒素源としては、 例えばアンモニア、 塩化アンモユウム、 硫酸アンモニゥム、 リン酸アンモニゥム等のアンモニゥム塩の他、 ペプトン、 肉エキス、 酵母エキス 等が挙げられる。
無機塩類としては、 例えばリン酸第一カリウム、 リン酸第二カリウム、 リン酸 マグネシウム、 硫酸マグネシウム、 塩化ナトリウム等が挙げられる。
そのほかの有機栄養源としては、 例えばグリシン、 ァラニン、 セリン、 スレオ ニン、 プロリン等のアミノ酸; ビタミン B 1、 ビタミン B 1 2、 ビタミン C等の ビタミン等が挙げられる。
また、 培養液中に、 ベクターに存在する耐性遺伝子に対応する抗生物質 (カナ マイシン等) を添加しても良い。
培養温度は、 その菌の生育可能な温度であればよいが、 2 0 °Cから 4 0 °Cが好 ましい。 培養時間は、 特に制限はないが、 1〜7日間程度で良い。
その後、 得られた該培養菌体からポリエステルを回収すればよい。
本発明において、 菌体からのポリエステルの回収は、 例えば次のような方法に より行うことができる。 培養終了後、 培養液から、 遠心分離器等で菌体を分離し、 その菌体を蒸留水およびメタノール等により洗浄し、 乾燥させる。 この乾燥菌体 から、 クロ口ホルム等の有機溶剤を用いてポリエステルを抽出する。 このポリェ ステルを含んだ有機溶剤溶液から、 濾過等によって菌体成分を除去し、 そのろ液 にメタノールやへキサン等の貧溶媒を加えてポリエステルを沈殿させる。 さらに、 濾過や遠心分離によって上澄み液を除去し、 乾燥させてポリエステルを回収する。 得られたポリエステルの平均分子量や 3 HH組成 (m o 1 %) の分析は、 例え ば、 ガスクロマトグラフ法や核磁気共鳴法等により行うことができる。 あるいは、 ポリエステル生産確^ ^の簡易法としては、 N i 1 e r e dを用いた染色法を利用 できる。 すなわち、 組換え菌が生育する培地に N i 1 e r e dを加え、 組換え菌 を 1〜7 S間培養し、 組換え菌が赤変するか否かを観察することにより、 ポリエ ステル生産の有無を確認できる。
接合伝達能の評価
次に、 接合伝達能の評価について説明する。 作製したベクターの接合伝達能は、 以下の方法で評価することができるが、 この方法に限定されるものではない。 まず、 評価するベクターを、 t r a遺伝子を持つ細菌に形質転換し、 これを供 与菌とする。 t r a遺伝子を持つ細菌としては、 例えばェシエリキア ' コリ S 1 7— 1株等を用いることができる。 受容菌としては、 供与菌と共存培養でき、 力 ' つ、 評価するベクターがその細胞内で複製できる細菌であればどのようなもので も用いることができるが、 混合培養後に供与菌と分離できるよう、 供与菌とは異 なる抗生物質耐性を持つものが望ましい。
次に、 供与菌と受容菌それぞれを、 あらかじめ適当な培地で培養して増やし、 それぞれを混合した後、 適当な培地に接種することにより混合培養を行う。 この時用いる培地としては、 固体、 液体のどちらを用いてもよく、 抗生物質は 添加しない。 混合培養の培養温度は、 供与菌、 受容菌が生育可能な温度であれば よいが、 20°Cから 40°Cが好ましい。 培養時間には特に制限はないが、 5時間 から 20時間が好ましい。
接合伝達能の評価は、 受容菌あたりの接合伝達頻度を算出することにより行う 力 この方法に限定されるものではない。 接合伝達頻度の算出方法は、 以下の実 施例に詳しく記載する。 図面の簡単な説明
図 1は、 本発明の m o b領域欠失ベクターおよびストレプトマイシン耐性遺伝 子欠失ベクター構築図である。
図 2は、 本発明の c o s領域 o r i T領域欠失ベクター構築図である。
図 3は、 本発明の m o b遺伝子領域部分欠失 c o s領域欠失べクタ一構築図で める。
図 4は、 本発明の: mo b遺伝子領域部分欠失 c o s領域欠失ベクター構築図で ある。
図 5は、 本発明の mo b A遺伝子変異 c o s領域欠失ベクター構築図である。 図 6は、 本発明の mo b領域および o r i T領域欠失ベクター構築図である。 発明を実施するための最良の形態
以下、 実施例により本発明を詳細に説明する。 ただし、 本発明は、 これら実施 例にその技術範囲を限定するものではない。
(実施例 1) mo bA, mo b B遺伝子部分欠失
プラスミド P J RD21 5を制限酵素 V a n 9 1 Iで切断することにより、 mo b Aおよび B遺伝子の一部分を欠失させた約 9. 5 k bの DNA断片を得た。 こ れを、 DNA L i g a t i o n K i t V e r . 1 (宝酒造 (株) 製) を用 いて自己連結させ、 プラスミド!) J RD dmを得た (図 1) 。 当該プラスミド p J RD dmは、 p J RD 21 5の 321 5〜4075を欠失させたものである。 (実施例 2 ) c o s領域欠失おょぴ o r i T領域欠失
プラスミド p J RD 21 5を制限酵素 S p e Iと B g 1 I Iで切断したものを、 DNA B l un t i n g K i t (宝酒造 (株) 製) を用いて平滑末端化し、 自己連結させた。 このプラスミドを p J RD d cとする (図 2) 。 当該プラスミ ド p J RD d cは、 : J RD 215の 891 5〜 10055を欠失させたもので ある。
次に、 プラスミド p J RD d cを鎵型として、 配列番号 4と配列番号 6で示さ れるプライマーを用いて P CR反応を行い、 約 0. 5 k bの DNA断片を得た。 また、 同様に p J RD d cを铸型として、 酉己列番号 5と配列番号 7で示されるプ ライマーを用いて PCR反応を行い、 約 2. 4 k bの DNA断片を得た。 得られ た 2断片に重複部分があることを利用して、 オーバーラップ P C R法を行った。 ポリメラーゼとしては P y r o b e s t (宝酒造 (株) 製) を用いた。 このォー バーラップ PC R法により得られた約 2. 8 k bの断片を制限酵素 E c o O 10 9 Iと Af 1 I I Iで切断し、 同様に E c oO 109 Iと A f 1 I I Iで切断し ておいた上記の p J RD d cと連結させた。 これにより、 p J RD dT cを得た (図 2) 。 当該プラスミド; J RDdT cは、 p J RD 21 5の 3 1 32〜31 6 9を欠失させ、 かつ、 c o s領域を欠失させたものである。
また同様に、 p J RD d cを鎊型として、 配列番号 4と配列番号 8で示される プライマーを用いて P CR反応を行い、 約 0. 5 k bの DNA断片を得た。 また、 同様に p J RD d cを铸型として、 配列番号 5と配列番号 9で示されるプライマ 一を用いて PC R反応を行い、 約 2. 4 k bの DNA断片を得た。 得られた 2断 片に重複部分があることを利用して、 オーバーラップ PCR法を行った。 ポリメ ラーゼとしては P y r o b e s tを用いた。 このォーパーラップ P CR法により 得られた約 2. 8 k bの断片を制限酵素 E c oO 109 Iと A f 1 I I Iで切断 し、 同様に制限酵素 E c oO 109 Iと A f l l l lで切断した; J RD d cと 連結させた。 これにより、 p J RD d n cを得た (図 2) 。 当該プラスミド p J RDd n cは、 p J RD 21 5の 3 1 32〜3145を欠失させ、 かつ、 c o s 領域を欠失させたものである。 (実施例 3) p JRD dmから c o s領域欠失おょぴ m o b遺伝子領域欠失あ るいは変異導入
プラスミド p J RD dmを制限酵素 S p e Iと B g 1 I Iで切断したものを、 DNA B l un t i n g K i t (宝酒造 (株) 製) を用いて平滑末端化し、 自己連結させた。 このプラスミ ドを p J RD d cmとする (図 3) 。
次に、 p J RD d cmを铸型とし、 配列番号 5と配列番号 10で示されるブラ イマ一を用いて P CR反応を行った。 得られた DNA断片を制限酵素 V a n 91 Iと Α ί 1 I I Iで切断し、 同様に制限酵素 V a n 91 Iと Af l l l lで切断 した p J RDd c mに連結し、 プラスミド p J RDd cm4380を得た (図 3 ) 。
一方、 p J RD 21 5を錄型として、 配列番号 1 1と 12で示されるプライマ 一を用いて PC R反応を行った。 ポリメラーゼとしては P y r o b e s tを用い た。 得られた約 1. 5 k bの DNA断片を制限酵素 Xh o Iと P s t Iで切断し、 制限酵素 Xh o Iと P s t Iで切断した: p STV28ベクター (宝酒造 (株) 社 製使用) に揷入し、 p S TVmo bを作成した。 次に、 1) 3丁 1110 1)中の¥& n 91 Iサイト 3つあるうちの 2番目の V a n 9 1 Iサイトを欠失するため、 P CRプライマーとして配列番号 13と配列番号 14を用いて p STVmo bを増 幅した。 ポリメラーゼとしては P f u (S t r a t a g e n e社製) を用いた。 PCR反応後、 制限酵素 Dp n Iを加え铸型としたプラスミドを切断し、 ェシェ リキア 'コリ J M 109株に形質転換し、 形質転換体より Va n 9 1 Iサイトを 1つ欠失したプラスミド p STVmo b - d e 1 V a nを得た (図 4) 。
次に、 铸型として p STVmo b— d e 1 V a nを用い、 プライマーとして配 列番号 15と配列番号 16を用いて PC R反応を行った。 ポリメラーゼとしては P y r o b e s tを用いた。 増幅した断片を制限酵素 V a n 9 1 Iで切断し、 V a n 91 I処理した p J RDd cm4380と連結することにより、 p J RD d cml 63を得た (図 4) 。 当該プラスミド p J RD d cml 63は、 p J RD 21 5の 3737〜4378を欠失させ、 かつ、 c o s領域を欠失させたもので ある。
同様に、 铸型として: STVmo b— d e 1 V a nを用い、 プライマーとして 配列番号 1 5と配列番号 17を用いて P C R反応を行った。 ポリメラーゼとして は P y r o b e s tを用いた。 増幅した断片を制限酵素 V a n 91 Iで切断し、 V a n 91 I処理した p J RD d cm4380と連結することにより、 p J RD d cmBを得た (図 4) 。 当該プラスミド ϊ> J RD d cmBは、 p J RD 2 15 の 4000〜4378を欠失させ、 かつ、 c o s領域を欠失させたものである。 次に、 P J RD 21 5 (配列番号 1) の 3323のアデ-ンをチミンに置換す るために、 すなわち mo b A遺伝子の 25番目のアミノ酸残基をチロシンからフ ェニルァラニンに置換するために、 以下の作業を行った。 p STVmo b— d e 1 Va nを铸型とし、 PCRプライマーとして配列番号 18と配列番号 1 9を用 いて増幅した。 ポリメラーゼとしては P f uを用いた。 PCR反応後、 制限酵素 D p n Iを加え铸型としたプラスミドを切断し、 ェシエリキア 'コリ JM109 株に形質転換し、 形質転換体より p STVmo b 25YFを得た (図 5 ) 。 p S TVmo b 25YFを Va n 9 1 I処理して得られた約 0. 9 k bの断片を、 V a n 9 1 Iで切断した p J RD d cに連結し、 p J RD d cm25 Y Fを得た ( 図 5) 。 当該プラスミド: J RDd cm25YFは、 ; JRD 215の 3323 のアデニンをチミンへ置換し、 かつ、 c o s領域を欠失させたものである。
(実施例 4) ス トレプトマイシン耐性遺伝子欠失
p J RD 21 5および実施例 1~3で得たベクター p J RD dm、 p J RD d T c、 p J RD d n c s p J RD d c m 163 s p J RD d c mBs p J RD d c m 25 Y Fを、 制限酵素 E c o I CR Iと P s hA Iで切断することにより、 ストレプトマイシン耐性遺伝子 ( s t r Aおよび s t r B遺伝子) のうち約 1. 5 k bを欠失させ、 平滑末端となった約 8. 0 k bの DNA断片を得た。 これを 自己連結させ、 プラスミド] J RD d s、 p J RD dm s N p J RD d T c s s p J RD d n c s s p J RD d s c m 163S p J RD d s cmB、 p J RD d s cm25YFを得た (図 1 ) 。 これらプラスミドは、 用いたプラスミドにおい て、 さらに P J RD 2 1 5の 206〜1 6 90を欠失させたものである。
(実施例 5) p J RD dm sから c o s領域およびマルチクローニングサイト 欠失
実施例 4で得られたプラスミド p J RD dm sを制限酵素 Nh e Iと E c o R Iで切断したものを、 配列番号 2 (順鎖) および配列番号 3 (逆鎖) に示す合成 DNA配列と連結させた。 このことにより、 c o s配列およびマルチクローニン グサイトを含む約 0. 9 k bを、 合成 DNA45 b pと置き換えることにより完 全に欠失させ、 約 7. I k bのプラスミド p J RD dm s cを得た (図 1 ) 。
(実施例 6 ) mo b領域および o r i T領域欠失べクタ一作製
次に、 配列番号 20と配列番号 21で示されるプライマーを用いて p J RD 2 1 5を铸型として PC R反応を行い、 約 1 k bの DNA断片を得た。 ポリメラー ゼとしては、 P y r o b e s tを用いた。 この D N A断片を制限酵素 S f i Iと V a n 91 Iで切断した後、 同じく制限酵素 S f i Iと V a n 91 Iで切断した プラスミド p J RD dmおよび!) J RD dm sとそれぞれ連結し、 プラスミド; p J RD dmT 1および p J RD dm s T 1を得た (図 6) 。
同様に、 配列番号 20と配列番号 22で示されるプライマーを用いて p J RD 215を铸型として P CR反応を行い、 約 1 k bの DNA断片を得、 この DNA 断片を制限酵素 S f i Iと Va n 91 Iで切断した後、 同じく制限酵素 S f i I と Va n 91 Iで切断したプラスミ ド p J RD dmおよび p J RD dm sとそれ ぞれ連結し、 プラスミド p J RD dmT 2および p J RD dm s T 2を得た (図 6) 。
さらに同様に、 配列番号 20と配列番号 23で示されるプライマーを用いて ρ J RD 21 5を铸型として P CR反応を行い、 約 1 k bの DNA断片を得、 この DNA断片を制限酵素 S f i Iと Va n 9 1 Iで切断した後、 同じく制限酵素 S f i Iと V a n 9 1 Iで切断したプラスミド p J RD dmおよび!) J RD dm s とそれぞれ連結し、 プラスミド: J RD dmT 3および p J RD dm s T 3を得 た (図 6) 。
(実施例 7 ) ポリエステル生産用発現ブラスミ ド作製、 および形質転換体構築 Ν 149 S変異体、 D 1 71 G変異体、 F 353 Τ変異体遺伝子断片は、 それ ぞれ PCR法により作成した。 例えば、 D 171 G変異はァエロモナス ·キヤビ ェ由来 PHA合成酵素の 1 71番目のアミノ酸であるァスパラギン酸がグリシン に置換されている。 従って、 特開平 10— 108682号公報に記載されている ァエロモナス ·キヤビエ由来の遺伝子断片 EE 32 d 1 3を、 一且 pUC 1 9の E c o R Iサイトにサブクローユングしておき、 配列番号 24と配列番号 25で 示される合成 DNAをプライマーとして用いて P CRを行った。 その条件は (1 ) 94°Cで 2分、 (2) 94 °Cで 30秒、 (3) 55 °Cで 30秒、 (4) 72°C で 2分、 (2) から (4) を 25サイクル、 (5) 72°Cで 5分であり、 ポリメ ラーゼとしては E x T a qポリメラーゼ (宝バイオ製) を用いた。
実施例 1〜 5で得たベクター p J RD d s、 p J RDdm、 p JRDdms、 p JRD dT c、 p J RD dT c s、 p J RD d n c、 J RDd cml 63s p J RD d cmBN p J RDd cm25YFを、 それぞれ制限酵素 E c o R Iで 切断し、 ァエロモナス · キヤビエ由来の遺伝子断片 EE 32 d 13、 または、 N 149 S変異体、 D 1 71 G変異体、 F 353 T変異体の遺伝子断片をそれぞれ、 上記プラスミドの E c o R Iサイトに揷入し、 発現プラスミド p J RD d s EE 3 2 d l 3、 p J RD dmEE 32 d 1 3, p J RD dms EE32 d l 3 p J RDdT c EE 32 d 1 3、 p J RDdT c l 49NS p JRDdT c l 7 1DG、 p J RD dT c 353 FT、 p J RDdT c s EE 32 d l 3、 p J R D dn c EE 32 d l 3s p J RD d cml 63 EE 32 d l 3, p J RD d c mBEE 32 d l 3、 p J RD d cm25YFEE 32 d l 3をそれぞれ作製し た。
これらの発現プラスミ ドを含むラルストニア ·ユート口ファの形質転換体を電 気パルス法により作製した。 つまり、 遺伝子導入装置は B i o r a d社製のジー ンパルサーを用い、 キュべットは同じく B i o r a d社製の g a p 0. 2 c mの ものを用いた。 キュベットに、 コンビテント細胞 400 μ 1とプラスミド 20 μ 1を注入してパルス装置にセットし、 静電容量 25 F、 電圧 1. 5 kV、 抵抗 値 800 Ωの条件で電気パルスをかけた。 パルス後、 キュベット内の菌液を Nu t r i e n t B r o t h培地 (D I FCO社製) で 30°C、 3時閬振とう培養し、 選択プレート (Nu t r i e n tAg a r培地 (D I FCO社製) 、 カナマイシ ン 100 m g / 1 ) で、 30 °Cにて 2日間培養して、 形質転換体をそれぞれ取得 した。
これらの形質転換体はそれぞれ、 独立行政法人産業技術総合研究所特許生物寄 託センターに寄託を行った (p J RDd cmBEE 32 d l 3形質転換体 =FE RM P_ 19352、 p J R D d c m 25 Y F E E 32 d 1 3形質転換体 = F E RM P— 1 9353、 p J RDd cml 63EE 32 d l 3形質転換体 = F ERM P— 1 9354、 p J RD d T c s E E 32 d 1 3形質転換体 = F E R M P— 19355、 p J RD d T c E E 32 d 1 3开質転換体 =F ERM B P— 08624、 p J RD d n c EE 32 d l 3形質転換体 = F ERM BP— 08625、 p J RD d s EE 32 d l 3形質転換体 = F E RM P— 1 935 8、 p J RD dms EE 32 d l 3形質転換体 = F ERM BP_08626、 p J RD dmEE 32 d 1 3形質転換体 =FERM P— 1 9360、 p J RD d T c 1 71 D G形質転換体 = F E RM B P— 08 62 3) 。 (実施例 8) 形質転換体を使用したポリエステル生産
実施例 7で得られた形質転換体を、 N i 1 e r e d含有培地 (リン酸水素 2ナ トリウム■ 12水塩 9 g、 リン酸 2水素カリウム 1. 5 g、 塩化アンモニゥ ム 0. 05 g、 硫酸マグネシウム · 7水塩 0. 02 g、 フノレク トース 0. 5 g、 塩化コバノレト · 6水塩 0. 25 p pm、 塩化鉄 ( I I I ) · 6水塩 1 6 p pm、 塩化カノレシゥム · 2水塩 10. 3 p p m、 塩化ニッケノレ ' 6水塩 0. 1 2 p pmN 硫酸銅 · 5水塩 0. 16 p pm、 N i l e r e d 0. 5 m g、 寒天 1 5 g/ l L) に播種し、 30°Cで 1週間培養した。 培養後、 全ての 株が赤変し、 菌体内にポリエステルを蓄積していることが判明した。 (実施例 9) 形質転換体の接合伝達能評価
実施例 7に記載した発現プラスミ ドのうち、 p J RD dmEE 32 d 13、 p J RD dm s EE 32 d 1 3、 p J RDdTc EE 32 d l 3, p J RD d n c EE 3 2 d 1 3について接合伝達能評価を行った。 コントロールには p J RDE E 32 d 1 3を用いた。 これらの発現プラスミドで形質転換されたェシエリキア ' コリ S 1 7— 1株を 供与菌とし、 ェシエリキア ' コリ XL 10— g o l d株を受容菌とした。 供与菌、 受容菌それぞれを TB培地 (T r y p t o n e 1. 2 °/。、 Y e a s t e x t r a c t 2. 4%、 グリセロール 0. 4%) に植菌し、 37°Cで 1晚培養し た。 L Bプレート (T r y p t o n e 1%、 Ye a s t e t r a c t 0. 5%、 Na C l 1%、 寒天 1. 5%) 上に滅菌済のニトロセルロースフィルタ を載せ、 培養液をそれぞれ供与菌 10 μ 1と受容菌 10 μ 1に混合させ、 その混 合培養液を-トロセルロースフィルタ上に接種した。 37°Cで 5〜1 5時間培養 した後、 二トロセルロースフィルタを生理食塩水 lm 1の入ったチューブに移し、 十分懸濁して二トロセルロースフィルタ上の菌を浮遊させた。
こうして得られた混合菌の懸濁液を 1 0°〜107倍希釈し、 カナマイシン 5 0 μ g/m 1とクロラムフエニコーノレ 20 g/m 1を含む LBプレート、 およ ぴク口ラムフエエコール 20 μ g/m 1のみを含む L Bプレートに、 それぞれ 1 00 μ 1ずつプレーティングし、 37°Cで 1B免培養した。 培養後、 それぞれの出 現コロニー数を数えたところ、 表 1に示す結果となった。
表 1
各発現プラスミドを用いた接合伝達能評価における出現コロニー数
Figure imgf000023_0001
(表中の LB(Cm)はクロラムフエニコ一ルを含む LBプレート、 LB(Km,Gm)はカナマイシンとクロ ラムフエニコールを含むし Bプレー卜、一は未実施をそれぞれ表す) ェシエリキア■ コリ S 1 7— 1株はクロラムフエ二コール感受性かつカナマイ シン感受性である。 一方、 ェシエリキア ' コリ XL 1 0— g o l d株は、 クロラ ムフエ-コール耐性かつカナマイシン感受性である。 ェシェリキア ·コリ S 1 7 一 1株の形質転換に用いた発現プラスミドは全てカナマイシン耐性遺伝子を含む ので、 発現プラスミドを保持する菌はカナマイシン耐性となる。 したがって、 ク 口ラムフエ二コール 20 μ g/m 1のみを含む LBプレートでは、 ェシェリキア 'コリ XL 1 0— g o l d株の総数を検出でき、 カナマイシン 50 μ g/m 1と クロラムフエ-コール 20 μ g/ 1 を含む LBプレートでは、 発現プラスミ ド が伝達されたェシェリキア ' コリ 1 0— g o l d株が検出できる。
そこで、 受容菌あたりの接合伝達頻度は、 細胞懸濁液 1 00 μ 1中に含まれる、 接合伝達により発現プラスミドが導入されたェシエリキア 'コリ XL l O— g o 1 d株数を、 ェシェリキア 'コリ XL 1 0— g o l d株の総数で割ることにより 計算した。 また、 導入された XL 1 0— g o 1 dの数が 0であった場合は、 導入 された XL 1 0— g o 1 dの数を仮に 1とおいて受容菌あたりの接合伝達頻度を 算出し、 得られた接合伝達頻度未満と表す。 以下に実際の算出値を示す。
表 1の結果より、 p J RD dmEE 3 2 d 1 3が t r a遺伝子と共存した場合 の受容菌あたりの接合伝達頻度は、 9Z1 0 0 7 X 1 0— 5= 8. 9 X 1 0—8 ; p J RD dm s EE 3 2 d l 3が t r a遺伝子と共存した場合の受容菌あたりの 接合伝達頻度は、 1 3/" 1 8 3 X 1 0— 7= 7. l X 1 0_9 ; p J RD d T c E E 3 2 d 1 3が t r a遺伝子と共存した場合の受容菌あたりの接合伝達頻度は、 1/3 0 1 X 1 0~5= 3. 3 X 1 0_8未満; p J RD d n c EE 3 2 d 1 3が t r a遺伝子と共存した場合の受容菌あたりの接合伝達頻度は、 1Z420 X 1 0ー5= 2. 4 X 1 0— 8未満であった。
同様の方法で p J RD 2 1 5 EE 3 2 d l 3の接合伝達頻度を別途試験した場 合の、 受容菌あたりの接合伝達頻度は、 3 1 8 5 1 3 X 1 0— 3= 6. 2 X 1 0— 4であったため、 p J RD dmEE 3 2 d 1 3、 p J RD dm s EE 3 2 d 1 3、 p J RD d T c EE 3 2 d l 3、 p J RD d n c EE 3 2 d l 3は、 p j RD 2 1 5 EE 3 2 d l 3よりも 1 1 04〜1 1 05倍以下に接合伝達頻度 'が落ちており、 t r a遺伝子と共存した場合においても接合伝達性は実質的にな レ、と考えられる。 産業上の利用可能性
上述したように、 新規ベクター、 特にラルスト-ァ■ユート口ファで複製可能 な新規ベクターを用いた遺伝子組換え技術により、 工業的に安全に及び Z又は安 価で効率よく、 ポリエステル生産することが可能となった。

Claims

請求の範囲
1. 接合伝達能力の一部または全てを欠失したポリエステル合成酵素発現ブラ スミ ド。
2. ベクターが p J RD 21 5 (配列番号 1) である請求の範囲第 1項記載の ポリエステル合成酵素発現プラスミド。 '
3. プラスミドに含有されるポリエステル合成酵素遺伝子が、 以下の (1) 〜 (5) のいずれか 1つ以上の遺伝子である請求の範囲第 1または 2項記載のポリ エステル合成酵素発現プラスミ ド;
(1) ァエロモナス ·キヤビエ由来であるポリエステル合成酵素遺伝子、
(2) 149番目のアミノ酸のァスパラギンがセリンに置換されたァエロモナス ■ キヤビエ由来であるポリエステル合成酵素遺伝子、
(3) 171番目のアミノ酸のァスパラギン酸がグリシンに置換されたァエロモ ナス ·キヤビエ由来であるポリエステル合成酵素遺伝子、
(4) 353番目のアミノ酸のフエ二ルァラニンがスレオニンに置換されたァェ ロモナス · キヤビエ由来であるポリエステル合成酵素遺伝子、
(5) 上記 (2) から (4) の置換の内、 いずれか 2つ以上のアミノ酸置換が組 み合わされたァエロモナス ·キヤビエ由来であるポリエステル合成酵素遺伝子。
4. 接合伝達能力の一部または全ての欠失が、 mo b遺伝子領域の欠失または 変異である請求の範囲第 1〜 3項のいずれかに記載のポリエステル合成酵素発現 プラスミ ド。
5. mo b遺伝子領域の欠失が、 P J RD 21 5 (配列番号 1 ) の 321 5〜 4075の欠失である請求の範囲第 4項記載のポリエステル合成酵素発現プラス ド、。 '
6. mo b遺伝子領域の欠失が、 P JRD21 5 (配列番号 1 ) の 373 7〜 4378の欠失である請求の範囲第 4項記載のポリエステル合成酵素発現プラス ミド、。 7. mo b遺伝子領域の欠失が、 P J RD215 (配列番号 1 ) の 4000〜 43 78の欠失である請求の範囲第 4項記載のポリエステル合成酵素発現プラス ミ ド、。
8. mo b遺伝子領域の変異が、 P J RD215 (配列番号 1 ) の 3323の アデユンからチミンへの置換である請求の範囲第 4項記載のポリエステル合成酵 素発現プラスミド。
9. 接合伝達能力の一部または全ての欠失が、 o r i T領域の欠失である請求 の範囲第 1〜 3項のいずれかに記載のポリエステル合成酵素発現プラスミ ド。
10. o r i T領域の欠失が、 p J RD 21 5 (配列番号 1) の 3 1 32〜 3 145の欠失である請求の範囲第 9項記載のポリエステル合成酵素発現プラスミ ド、。 1 1. o r i T領域の欠失が、 p J RD 21 5 (配列番号 1) の 3 132〜 3 169の欠失である請求の範囲第 9項記載のポリエステル合成酵素発現プラスミ ド、。
1 2. 接合伝達能力の一部または全ての欠失が、 mo b遺伝子領域および o r i T領域の欠失である請求の範囲第 1〜 3項のいずれかに記載のポリエステノレ合 成酵素発現プラスミ ド。
1 3. mo b遺伝子領域の欠失が p J R D 21 5 (配列番号 1 ) の 32 1 5〜 4075の欠失であり、 力つ o r i T領域の欠失が p J RD 215 (配列番号 1 ) の 3 132〜 3145の欠失である請求の範囲第 1 2項記載のポリエステル合 成酵素発現プラスミド。
14. mo b遺伝子領域の欠失が p J RD 21 5 (配列番号 1 ) の 321 5〜 4075の欠失であり、 かつ o r i T領域の欠失が p J RD 215 (配列番号 1
) の 3 132〜 3169の欠失である請求の範囲第 1 2項記載のポリエステル合 成酵素発現プラスミ ド。
15. mo b遺伝子領域の欠失が p J R D 21 5 (配列番号 1 ) の 321 5〜 4075の欠失であり、 かつ o r i T領域の欠失が p J RD 215 (配列番号 1
) の 3132〜 3178の欠失である請求の範囲第 1 2項記載のポリエステル合 成酵素発現プラスミ ド。
16. mo b遺伝子領域の欠失が p J RD 21 5 (配列番号 1 ) の 321 5〜 4075の欠失であり、 かつ o r i T領域の欠失が p J RD 215 (配列番号 1
) の 3132〜 3214の欠失である請求の範囲第 1 2項記載のポリエステル合 成酵素発現プラスミ ド。
17. mo b遺伝子領域の欠失が: J RD 21 5 (配列番号 1 ) の 321 5 ~ 4075の欠失であり、 かつ o r i T領域の欠失が p J R D 215 (配列番号 1
) の 3095〜 3214の欠失である請求の範囲第 1 2項記載のポリエステル合 成酵素発現プラスミ ド。
18. ストレプトマイシン耐性遺伝子を欠失したポリエステル合成酵素発現プ ラスミ ド。
1 9. ベクターが p J R D 215 (配列番号 1 ) である請求の範囲第 18項記 載のポリエステル合成酵素発現プラスミ ド。
20. プラスミ ドに含有されるポリエステル合成酵素遺伝子が、 以下の (1) 〜 (5) のいずれか 1つ以上の遺伝子である請求の範囲第 18または 1 9項記載 のポリエステル合成酵素発現プラスミ ド;
(1) ァエロモナス ■ キヤビエ由来であるポリエステル合成酵素遺伝子、 (2) 149番目のアミノ酸のァスパラギンがセリンに置換されたァエロモナス - キヤビエ由来であるポリエステル合成酵素遺伝子、
(3) 1 71番目のアミノ酸のァスパラギン酸がグリシンに眞換されたァエロモ ナス · キヤビエ由来であるポリエステル合成酵素遺伝子、
(4) 353番目のアミノ酸のフエエルァラニンがスレオニンに置換されたァェ ロモナス · キヤビエ由来であるポリエステル合成酵素遺伝子、
(5) 上記 (2) から (4) の置換の内、 いずれか 2つ以上のアミノ酸置換が組 み合わされたァエロモナス ■キヤビエ由来であるポリエステル合成酵素遺伝子。
21. ストレプトマイシン耐性遺伝子領域の欠失が、 p J RD 215 (配列番 号 1) の 206〜1690の欠失である請求の範囲第 1 8~20項のいずれかに 記載のポリエステル合成酵素発現プラスミ ド。
22. 接合伝達能力の一部または全てを欠失し、 かつ、 ス トレプトマイシン耐 性遺伝子を欠失したポリエステル合成酵素発現プラスミ ド。
23. ベクターが p JRD 2 15 (配列番号 1 ) である請求の範囲第 22項記 載のポリエステル合成酵素発現プラスミ ド。
24. プラスミドに含有されるポリエステル合成酵素遺伝子が、 以下の (1) ~ (5) のいずれか 1つ以上の遺伝子である請求の範囲第 22または 23項記載 のポリエステル合成酵素発現プラスミ ド;
(1) ァエロモナス ·キヤビエ由来であるポリエステル合成酵素遺伝子、
(2) 149番目のアミノ酸のァスパラギンがセリンに置換されたァエロモナス • キヤビエ由来であるポリエステル合成酵素遺伝子、 (3) 1 71番目のアミノ酸のァスパラギン酸がダリシンに置換されたァエロモ ナス ■ キヤビエ由来であるポリエステル合成酵素遺伝子、
(4) 353番目のアミノ酸のフエ-ルァラニンがスレオニンに置換されたァェ ロモナス ·キヤビエ由来であるポリエステル合成酵素遺伝子、
(5) 上記 (2) から (4) の置換の内、 いずれか 2つ以上のアミノ酸置換が組 み合わされたァエロモナス ·キヤビエ由来であるポリエステル合成酵素遺伝子。
25. 接合伝達能力の一部または全ての欠失が、 mo b遺伝子領域の欠失また は変異である請求の範囲第 22〜 24項のいずれかに記載のポリエステル合成酵 素発現プラスミ ド。
26. mo b遺伝子領域の欠失が、 P J RD 21 5 (配列番号 1 ) の 3215 〜4075の欠失である請求の範囲第 25項記載のポリエステル合成酵素発現プ ラスミ ド。
27. mo b遺伝子領域の欠失が、 p J RD 215 (配列番号 1 ) の 3737 〜4378の欠失である請求の範囲第 25項記載のポリエステル合成酵素発現プ ラスミ ド。 28. mo b遺伝子領域の欠失が、 p J RD 215 (配列番号 1 ) の 4000 〜4378の欠失である請求の範囲第 25項記載のポリエステル合成酵素発現プ ラスミ ド。
29. mo b遺伝子領域の変異が、 p J RD 21 5 (配列番号 1 ) の 3323 のアデニンからチミンへの置換である請求の範囲第 25項記載のポリエステノレ合 成酵素発現プラスミド。
30. 接合伝達能力の一部または全ての欠失が、 o r i T領域の欠失である請 求の範囲第 22〜 24項のいずれかに記載のポリエステル合成酵素発現プラスミ ド、。
31. o r i T領域の欠失が、 p J RD 21 5 (配列番号 1) の 3 1 32〜 3 145の欠失である請求の範囲第 30項記載のポリエステル合成酵素発現プラス ミ ド、。
32. o r i T領域の欠失が、 p J RD 21 5 (配列番号 1) の 3 1 32〜 3 169の欠失である請求の範囲第 30項記載のポリエステル合成酵素発現プラス ミ ド、。
33. 接合伝達能力の一部または全ての欠失が、 m o b遺伝子領域および o r i T領域の欠失である請求の範囲第 22〜 24項のいずれかに記載のポリエステ ル合成酵素発現プラスミド。 34. mo b遺伝子領域の欠失が p J R D 21 5 (配列番号 1 ) の 32 1 5〜
4075の欠失であり、 かつ o r i T領域の欠失が p J R D 215 (配列番号 1 ) の 31 32〜 3145の欠失である請求の範囲第 33項記載のポリエステル合 成酵素発現プラスミ ド。 35. mo 遺伝子領域の欠失が p J R D 21 5 (配列番号 1 ) の 32 1 5〜 4075の欠失であり、 かつ o r i T領域の欠失が p J RD 215 (配列番号 1 ) の 3 1 32〜 3169の欠失である請求の範囲第 33項記載のポリエステル合 成酵素発現プラスミ ド。 36. mo b遺伝子領域の欠失が p J RD 21 5 (配列番号 1 ) の 321 5〜 4075の欠失であり、 かつ o r i T領域の欠失が p J RD 215 (配列番号 1 ) の 31 32〜 31 78の欠失である請求の範囲第 33項記載のポリエステル合 成酵素^現プラスミ ド。
3 7. mo b遺伝子領域の欠失が p J RD 2 1 5 (配列番号 1 ) の 3 2 1 5〜
4 0 7 5の欠失であり、 かつ o r i T領域の欠失が p J RD 2 1 5 (配列番号 1 ) の 3 1 3 2〜 3 2 1 4の欠失である請求の範囲第 3 3項記載のポリエステル合 成酵素発現プラスミド。
3 8. m o b遺伝子領域の欠失が p J RD 2 1 5 (配列番号 1 ) の 3 2 1 5〜
4 0 7 5の欠失であり、 かつ o r i T領域の欠失が p J R D 2 1 5 (配列番号 1 ) の 3 0 9 5〜 3 2 1 4の欠失である請求の範囲第 3 3項記載のポリエステル合 成酵素発現プラスミド。
3 9. ス トレプトマイシン耐性遺伝子領域の欠失が、 p J RD 2 1 5 (配列番 号 1) の 2 0 6〜 1 6 9 0の欠失である請求の範囲第 2 2~ 24項のいずれかに 記載のポリエステル合成酵素発現プラスミド。 40. c o s領域をさらに欠失した請求の範囲第 1〜 3 9項のいずれかに記載 のポリエステル合成酵素発現プラスミ ド。
4 1. c o s領域の欠失が、 p J RD 2 1 5 (配列番号 1) の 9 2 3 7〜 1 0 1 2 7の欠失である請求の範囲第 4 0項に記載のポリエステル合成酵素発現ブラ スミ ド。
4 2. c o s領域の欠失が、 p J R D 2 1 5 (配列番号 1 ) の 8 9 1 5〜 1 0 0 5 5の欠失である請求の範囲第 4 0項に記載のポリエステル合成酵素発現ブラ スミ ド。
4 3. 請求の範囲第 1〜 4 2項のいずれかに記載のポリエステル合成酵素発現 プラスミドによって形質転換された形質転換体。
44. 宿主がラルストニア■ユートロファである請求の範囲第 4 3項記載の形 質転換体。
45. ポリエステルが、 下式 (1)
H OH (1)
Figure imgf000033_0001
(式中、 m、 nは 1以上の整数を表す) で示される、 3—ヒドロキシ酪酸と 3— ヒ ドロキシへキサン酸からなる共重合ポリエステル P (3HB—c o - 3 HH) である、 請求の範囲第 1〜44項のいずれかに記載の発現プラスミ ドまたは形質 転換体を用いたポリエステルの製造方法。
PCT/JP2004/002005 2003-02-21 2004-02-20 新規ベクター WO2004074476A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/543,385 US20060160195A1 (en) 2003-02-21 2004-02-20 Novel vector
JP2005502794A JPWO2004074476A1 (ja) 2003-02-21 2004-02-20 新規ベクター
EP04713234A EP1600508A1 (en) 2003-02-21 2004-02-20 Novel vector
CA002514460A CA2514460A1 (en) 2003-02-21 2004-02-20 Novel vector
BRPI0407555-2A BRPI0407555A (pt) 2003-02-21 2004-02-20 vetor inédito

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003044136 2003-02-21
JP2003-044136 2003-02-21
JP2004-002334 2004-01-07
JP2004002334 2004-01-07

Publications (1)

Publication Number Publication Date
WO2004074476A1 true WO2004074476A1 (ja) 2004-09-02

Family

ID=32911426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002005 WO2004074476A1 (ja) 2003-02-21 2004-02-20 新規ベクター

Country Status (9)

Country Link
US (1) US20060160195A1 (ja)
EP (1) EP1600508A1 (ja)
JP (1) JPWO2004074476A1 (ja)
BR (1) BRPI0407555A (ja)
CA (1) CA2514460A1 (ja)
PL (1) PL378060A1 (ja)
RU (1) RU2005129339A (ja)
TW (1) TW200510535A (ja)
WO (1) WO2004074476A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098001A1 (ja) * 2004-04-09 2005-10-20 Kaneka Corporation 新規形質転換体
WO2007049716A1 (ja) * 2005-10-27 2007-05-03 Kaneka Corporation 新規プラスミドベクター及びプラスミドを安定に保持する形質転換体
WO2008010296A1 (fr) * 2006-07-21 2008-01-24 Kaneka Corporation Micro-organisme doté d'un gène remplacé et procédé de production de polyester à l'aide dudit micro-organisme
US7384766B2 (en) 2006-07-26 2008-06-10 Kaneka Corporation Gene-substituted microorganisms, and production method of polyesters using the same
JPWO2006101176A1 (ja) * 2005-03-24 2008-09-04 株式会社カネカ 超高分子量ポリエステルを蓄積する微生物
US9051589B2 (en) 2005-10-27 2015-06-09 Kaneka Corporation Plasmid vector and transformant stably retaining plasmid
JP2015528308A (ja) * 2012-09-14 2015-09-28 アールイージー ライフ サイエンシズ リミテッド ライアビリティ カンパニー 改善されたエステルシンターゼ特性を有する酵素変種
US10676763B2 (en) 2014-07-18 2020-06-09 Genomatica, Inc. Microbial production of fatty diols

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2306338C2 (ru) * 2004-06-24 2007-09-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) Mob'-ПРОИЗВОДНАЯ ПЛАЗМИДА RSF1010, НЕ СОДЕРЖАЩАЯ ГЕНЫ УСТОЙЧИВОСТИ К АНТИБИОТИКАМ, БАКТЕРИЯ, СОДЕРЖАЩАЯ УКАЗАННУЮ ПЛАЗМИДУ, И СПОСОБ ПОЛУЧЕНИЯ ПОЛЕЗНЫХ МЕТАБОЛИТОВ

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10108682A (ja) * 1996-08-14 1998-04-28 Rikagaku Kenkyusho ポリエステル重合酵素遺伝子及びポリエステルの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2219219B1 (ja) * 1973-02-22 1976-06-11 Inst Francais Du Petrole
US4025478A (en) * 1975-02-07 1977-05-24 Phillips Petroleum Company Hot melt adhesive
US4238202A (en) * 1979-08-31 1980-12-09 Phillips Petroleum Company Hydrocarbon fuels with carburetor detergent properties
EP0052460B1 (en) * 1980-11-18 1985-02-06 Imperial Chemical Industries Plc Polymer blends
US5030779A (en) * 1989-06-08 1991-07-09 Shell Oil Company Hydrogenation catalyst and hydrogenation process wherein said catalyst is used
JP2777757B2 (ja) * 1991-09-17 1998-07-23 鐘淵化学工業株式会社 共重合体およびその製造方法
US5393843A (en) * 1992-08-31 1995-02-28 Shell Oil Company Butadiene polymers having terminal functional groups
US6767969B2 (en) * 2000-10-25 2004-07-27 Asahi Kasei Kabushiki Kaisha Hydrogenated polymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10108682A (ja) * 1996-08-14 1998-04-28 Rikagaku Kenkyusho ポリエステル重合酵素遺伝子及びポリエステルの製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DAVISON J, ET AL: "Vectors with restriction site banks V.pJRD215, a wide-host-range cosmid vector with multiple cloning sites", GENE, vol. 51, 1987, pages 275 - 280, XP002168737 *
FREY J, ET AL: "replication and copy number control of the broad-host-range plasmid RSF1010", GENE, vol. 113, 1992, pages 101 - 106, XP002080796 *
FUKUI T, ET AL.: "Efficient production of polyhydroxyalkanoates from plant oils by alcaligenes eutrophus and its recombinant strain", APPL. MICROBIOL. BIOTECHNOL., vol. 49, 1998, pages 333 - 336, XP002979648 *
KICHISE T, ET AL: "Enhanced accumulation and changed monomer composition in polyhydroxyalkanoate (PHA) copolyester by in vitro evolution of aeromonas caviae PHA synthase", APPL. ENVIRON. MICROBIOL., vol. 68, no. 5, 2002, pages 2411 - 2419, XP002961039 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005098001A1 (ja) * 2004-04-09 2008-02-28 株式会社カネカ 新規形質転換体
WO2005098001A1 (ja) * 2004-04-09 2005-10-20 Kaneka Corporation 新規形質転換体
JPWO2006101176A1 (ja) * 2005-03-24 2008-09-04 株式会社カネカ 超高分子量ポリエステルを蓄積する微生物
US9051589B2 (en) 2005-10-27 2015-06-09 Kaneka Corporation Plasmid vector and transformant stably retaining plasmid
WO2007049716A1 (ja) * 2005-10-27 2007-05-03 Kaneka Corporation 新規プラスミドベクター及びプラスミドを安定に保持する形質転換体
JP5650368B2 (ja) * 2005-10-27 2015-01-07 株式会社カネカ 新規プラスミドベクター及びプラスミドを安定に保持する形質転換体
WO2008010296A1 (fr) * 2006-07-21 2008-01-24 Kaneka Corporation Micro-organisme doté d'un gène remplacé et procédé de production de polyester à l'aide dudit micro-organisme
JP5468779B2 (ja) * 2006-07-21 2014-04-09 株式会社カネカ 遺伝子置換微生物およびそれを用いたポリエステルの製造方法
US7384766B2 (en) 2006-07-26 2008-06-10 Kaneka Corporation Gene-substituted microorganisms, and production method of polyesters using the same
JP2015528308A (ja) * 2012-09-14 2015-09-28 アールイージー ライフ サイエンシズ リミテッド ライアビリティ カンパニー 改善されたエステルシンターゼ特性を有する酵素変種
US9879239B2 (en) 2012-09-14 2018-01-30 REG Life Sciences, LLC Enzyme variants with improved ester synthase properties
JP2019010112A (ja) * 2012-09-14 2019-01-24 アールイージー ライフ サイエンシズ リミテッド ライアビリティ カンパニー 改善されたエステルシンターゼ特性を有する酵素変種
JP2020072747A (ja) * 2012-09-14 2020-05-14 アールイージー ライフ サイエンシズ リミテッド ライアビリティ カンパニー 改善されたエステルシンターゼ特性を有する酵素変種
US10894953B2 (en) 2012-09-14 2021-01-19 Genomatica, Inc. Enzyme variants with improved ester synthase properties
JP7030145B2 (ja) 2012-09-14 2022-03-04 ジェノマティカ, インコーポレイテッド 改善されたエステルシンターゼ特性を有する酵素変種
US10676763B2 (en) 2014-07-18 2020-06-09 Genomatica, Inc. Microbial production of fatty diols
US11359216B2 (en) 2014-07-18 2022-06-14 Genomatica, Inc. Microbial production of fatty diols

Also Published As

Publication number Publication date
US20060160195A1 (en) 2006-07-20
PL378060A1 (pl) 2006-02-20
TW200510535A (en) 2005-03-16
CA2514460A1 (en) 2004-09-02
RU2005129339A (ru) 2006-03-10
EP1600508A1 (en) 2005-11-30
BRPI0407555A (pt) 2006-02-14
JPWO2004074476A1 (ja) 2006-06-01

Similar Documents

Publication Publication Date Title
CN111615555B (zh) 生产包含高组成比率的3hh单体单元的共聚pha的转化微生物、以及基于该转化微生物的pha的制造方法
WO2018021046A1 (ja) 3hh単位含有共重合phaを生産する形質転換体、及び当該phaの製造方法
US20080038801A1 (en) Gene-substituted microorganisms, and production method of polyesters using the same
EP2048224B1 (en) Microorganism with replaced gene and process for producing polyester using the same
JP7360329B2 (ja) 変異型ポリヒドロキシアルカン酸合成酵素、その遺伝子および形質転換体、並びに、ポリヒドロキシアルカン酸の製造方法
EP2540835A1 (en) PROCESS FOR PRODUCTION OF POLYHYDROXYALKANOIC ACID USING GENETICALLY MODIFIED MICROORGANISM HAVING ENOYL-CoA HYDRATASE GENE INTRODUCED THEREIN
JP7256740B2 (ja) グリセロールキナーゼ活性を強化したpha産生微生物とそれを用いたphaの製造方法
WO2015115619A1 (ja) R体特異的エノイル-CoAヒドラターゼ遺伝子の発現が調節された微生物及びそれを用いたポリヒドロキシアルカノエート共重合体の製造方法
CN116970659B (zh) 一种生产聚羟基脂肪酸酯的方法
TW200540269A (en) Novel transformant
WO2004074476A1 (ja) 新規ベクター
EP1172438B1 (en) Polyhydroxyalkanoate synthase and gene encoding the same enzyme
JP2001275671A (ja) ポリヒドロキシアルカノエート合成酵素及び該酵素をコードする遺伝子
JPH10276781A (ja) ポリエステル重合酵素及び該酵素をコードする遺伝子
EP4279587A1 (en) Engineered microorganism expressing acetoacetyl coenzyme a reductase variant and method for increasing proportion of 3-hydroxyhexanoic acid in pha
JP3848046B2 (ja) ポリヒドロキシアルカノエート合成酵素及び該酵素をコードする遺伝子
EP0233019B1 (en) Recombinant dna plasmid for xanthan gum synthesis
WO2014133088A1 (ja) 脂肪酸β-酸化経路改変株による共重合体ポリヒドロキシアルカン酸の製造法
MXPA04003275A (es) Gen de enzima que participa en la intesis de poliester y procedimiento para producir poliester utilizando el mismo.
JP2005333933A (ja) 新規発現プラスミド
WO2024166829A1 (ja) 形質転換微生物、及びポリヒドロキシアルカン酸の製造方法
JP2003235565A (ja) 乳酸菌用シャトルベクター
CN114026247B (zh) 用于合成高分子量共聚物的基因
WO2024166830A1 (ja) 形質転換微生物、及びポリヒドロキシアルカン酸の製造方法
WO2024162411A1 (ja) 形質転換微生物、及び共重合ポリヒドロキシアルカン酸の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005502794

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2514460

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 378060

Country of ref document: PL

WWE Wipo information: entry into national phase

Ref document number: 1578/KOLNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 20048047680

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004713234

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005129339

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2004713234

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0407555

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2006160195

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10543385

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10543385

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2004713234

Country of ref document: EP