WO2004071572A2 - Gene expression markers for response to egfr inhibitor drugs - Google Patents

Gene expression markers for response to egfr inhibitor drugs Download PDF

Info

Publication number
WO2004071572A2
WO2004071572A2 PCT/US2004/003596 US2004003596W WO2004071572A2 WO 2004071572 A2 WO2004071572 A2 WO 2004071572A2 US 2004003596 W US2004003596 W US 2004003596W WO 2004071572 A2 WO2004071572 A2 WO 2004071572A2
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
expression
genes
patient
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2004/003596
Other languages
English (en)
French (fr)
Other versions
WO2004071572A3 (en
Inventor
David Agus
Steve Shak
Maureen T. Cronin
Joffre B. Baker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cedars Sinai Medical Center
Genomic Health Inc
Original Assignee
Cedars Sinai Medical Center
Genomic Health Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cedars Sinai Medical Center, Genomic Health Inc filed Critical Cedars Sinai Medical Center
Priority to JP2006503407A priority Critical patent/JP2006521793A/ja
Priority to EP04708653A priority patent/EP1590487A2/en
Priority to CA002515096A priority patent/CA2515096A1/en
Priority to AU2004211955A priority patent/AU2004211955B2/en
Publication of WO2004071572A2 publication Critical patent/WO2004071572A2/en
Publication of WO2004071572A3 publication Critical patent/WO2004071572A3/en
Anticipated expiration legal-status Critical
Priority to AU2009208748A priority patent/AU2009208748A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention concerns gene expression profiling of tissue samples obtained from patients who are candidates for treatment with a therapeutic EGFR inhibitor. More specifically, the invention provides methods based on the molecular characterization of gene expression in paraffin-embedded, fixed cancer tissue samples, which allow a physician to predict whether a patient is likely to respond well to treatment with an EGFR inhibitor.
  • Oncologists have a number of treatment options available to them, including different combinations of chemotherapeutic drugs that are characterized as "standard of care,” and a number of drugs that do not carry a label claim for particular cancer, but for which there is evidence of efficacy in that cancer. Best likelihood of good treatment outcome requires that patients be assigned to optimal available cancer treatment, and that this assignment be made as quickly as possible following diagnosis.
  • RNA-based tests have not often been used because of the problem of RNA degradation over time and the fact that it is difficult to obtain fresh tissue samples from patients for analysis. Fixed paraffin-embedded tissue is more readily available. Fixed tissue has been routinely used for non-quantitative detection of RNA, by in situ hybridization.
  • the present invention is based on findings of a Phase II clinical study of gene expression in tissue samples obtained from human patients with non-small cell lung cancer (NSCLC) who responded or did not respond to treatment with EGFR inhibitors.
  • NSCLC non-small cell lung cancer
  • the invention concerns a method for predicting the likelihood that a patient who is a candidate for treatment with an EGFR inhibitor will respond to such treatment, comprising determining the expression level of one or more prognostic RNA transcripts or their expression products in a cancer tissue sample obtained from the patient, wherein the prognostic transcript is the transcript of one or more genes selected from the group consisting of: STAT5A, STAT5B, WISP1, CKAP4, FGFR1, cdc25A, RASSF1, G- Catenin, H2AFZ, NME1, NRG1, BC12, TAGLN, YB-1, Src, IGF1R, CD44, DIABLO, TTMP2, AREG, PDGFRa, CTSB, Hepsin, ErbB3, MTA1, Gus, and VEGF., wherein (a) over- expression of the transcript of one or more of STAT5A, STAT5B, WISP1, CKAP4, FGFR1, cdc25A
  • the tissue sample preferably is a fixed, paraffin-embedded tissue.
  • Tissue can be obtained by a variety of methods, including fine needle, aspiration, bronchial lavage, or transbronchial biopsy.
  • the expression level of the prognostic RNA transcript or transcripts is determined by RT-PCR.
  • the RT-PCR amplicons (defined as the polynucleotide sequence spanned by the PCR primers) should preferably be less than 100 bases in length.
  • the levels of the expression product of the prognostic RNA transcripts are determined by other methods known in the art, such as immunohistochemistry, or proteomics technology.
  • the assays for measuring the prognostic RNA transcripts or their expression products may be available in a kit format.
  • the invention concerns an array comprising polynucleotides hybridizing to one or more of the following genes: STAT5A, STAT5B, WISP1, CKAP4, FGFR1, cdc25A, RASSF1, G-Catenin, H2AFZ, NME1, NRG1, BC12, TAGLN, YB1, Src, IGF1R, CD44, DIABLO, TIMP2, AREG, PDGFrA, CTSB, Hepsin, ErbB3, MTA, Gus, and VEGF, immobilized on a solid surface.
  • the polynucleotides can be cDNA or oUgonucleotides.
  • the cDNAs are typically about 500 to 5000 bases long, while the oligonucleotides are typically about 20 to 80 bases long.
  • An array can contain a very large number of cDNAs, or oligonucleotides, e.g. up to about 330,000 oligonucleotides.
  • the solid surface presenting the array can, for example, be glass.
  • the levels of the product of the gene transcripts can be measured by any technique known in the art, including, for example, immunohistochemistry or proteomics.
  • the array comprises polynucleotides hybridizing to two at least two, at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, at least ten, at least eleven, at least twelve, at least thirteen, at least fourteen, at least fifteen, at least seventeen, at least eighteen, at least nineteen, at least twenty, at least twenty-one, at least twenty-two, at least twenty-three, at least twenty-four, at least twenty- five, at least twenty-six, or all twenty-seven of the genes listed above.
  • hybridization is performed under stringent conditions.
  • the invention further concerns a method of preparing a personalized genomics profile for a patient, comprising the steps of:
  • G-Catenin H2AFZ, NME1, NRG1, BC12, TAGLN, YB1, Src, IGF1R, CD44, DIABLO, TIMP2, AREG, PDGFRA, CTSB, Hepsin, ErbB3, MTA, Gus, and VEGF, wherein the expression level is normalized against a control gene or genes and optionally is compared to the amount found in a corresponding cancer reference tissue set; and (c) creating a report summarizing the data obtained by said gene expression analysis.
  • the invention additionally concerns a method for amplification of a gene selected from the group consisting of STAT5A, STAT5B, WISPl, CKAP4, FGFrl, cdc25A, RASSFl, G-Catenin, H2AFZ, NME1, NRG1, BC12, TAGLN, YB1, Src, IGF1R, CD44, DIABLO, TIMP2, AREG, PDGFRA, CTSB, Hepsin, ErbB3, MTA, Gus, and VEGF by polymerase chain reaction (PCR), comprising performing said PCR by using a corresponding amplicon listed in Table 3, and a corresponding primer-probe set listed in Table 4.
  • PCR polymerase chain reaction
  • the invention further encompasses any PCR primer-probe set listed in Tables 4, and any PCR amplicon listed in Table 3.
  • the invention concerns a prognostic method comprising:
  • RNA transcript of at least one gene selected from the group consisting of STAT5A, STAT5B, WISPl, CKAP4, FGFR1, cdc25A, RASSFl, G-Catenin, H2AFZ, NME1, NRG1, BC12, TAGLN, YB1, Src, IGF1R, CD44, DIABLO, TIMP2, AREG, PDGFRa, and CTSB, or their product, and
  • the invention concerns a prognostic method comprising:
  • microarray refers to an ordered arrangement of hybridizable array elements, preferably polynucleotide probes, on a substrate.
  • polynucleotide when used in singular or plural, generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA.
  • polynucleotides as defined herein include, without limitation, single- and double-stranded DNA, DNA including single- and double- stranded regions, single- and double-stranded RNA, and RNA including single- and double- stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or include single- and double-stranded regions.
  • polynucleotide refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA.
  • the strands in such regions may be from the same molecule or from different molecules.
  • the regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules.
  • One of the molecules of a triple-helical region often is an oligonucleotide.
  • polynucleotide specifically includes cDNAs.
  • the term includes DNAs (including cDNAs) and RNAs that contain one or more modified bases.
  • DNAs or RNAs with backbones modified for stability or for other reasons are "polynucleotides" as that term is intended herein.
  • DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritiated bases are included within the term “polynucleotides” as defined herein.
  • polynucleotide embraces all chemically, enzymatically and/or metabolically modified forms of unmodified polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including simple and complex cells.
  • oligonucleotide refers to a relatively short polynucleotide, including, without .
  • oligonucleotides such as single-stranded DNA probe oligonucleotides, are often synthesized by chemical methods, for example using automated oligonucleotide synthesizers that are commercially available. However, oligonucleotides can be made by a variety of other methods, including in vitro recombinant DNA-mediated techniques and by expression of DNAs in cells and organisms.
  • differentially expressed gene refers to a gene whose expression is activated to a higher or lower level in a subject suffering from a disease, specifically cancer, such as breast cancer, relative to its expression in a normal or control subject.
  • the terms also include genes whose expression is activated to a higher or lower level at different stages of the same disease. It is also understood that a differentially expressed gene may be either activated or inhibited at the nucleic acid level or protein level, or may be subject to alternative splicing to result in a different polypeptide product. Such differences may be evidenced by a change in mRNA levels, surface expression, secretion or other partitioning of a polypeptide, for example.
  • Differential gene expression may include a comparison of expression between two or more genes or their gene products, or a comparison of the ratios of the expression between two or more genes or their gene products, or even a comparison of two differently processed products of the same gene, which differ between normal subjects and subjects suffering from a disease, specifically cancer, or between various stages of the same disease.
  • Differential expression includes both quantitative, as well as qualitative, differences in the temporal or cellular expression pattern in a gene or its expression products among, for example, normal and diseased cells, or among cells which have undergone different disease events or disease stages.
  • differentiated gene expression is considered to be present when there is at least an about two-fold, preferably at least about four-fold, more preferably at least about six-fold, most preferably at least about ten-fold difference between the expression of a given gene in normal and diseased subjects, or in various stages of disease development in a diseased subject.
  • RNA transcript is used to refer the level of the transcript determined by normalization to the level of reference mRNAs, which might be all measured transcripts in the specimen or a particular reference set of mRNAs.
  • gene amplification refers to a process by which multiple copies of a gene or gene fragment are formed in a particular cell or cell line.
  • the duplicated region (a stretch of amplified DNA) is often referred to as "amplicon.”
  • amplicon a stretch of amplified DNA
  • the amount of the messenger RNA (mRNA) produced i.e., the level of gene expression, also increases in the proportion of the number of copies made of the particular gene expressed.
  • prognosis is used herein to refer to the prediction of the likelihood of cancer-attributable death or progression, including recurrence, metastatic spread, and drug resistance, of a neoplastic disease, such as non-small cell lung cancer, or head and neck cancer.
  • prediction is used herein to refer to the likelihood that a patient will respond either favorably or unfavorably to a drug or set of drugs, and also the extent of those responses, or that a patient will survive, following surgical removal or the primary tumor and/or chemotherapy for a certain period of time without cancer recurrence.
  • the predictive methods of the present invention can be used clinically to make treatment decisions by choosing the most appropriate treatment modalities for any particular patient.
  • the predictive methods of the present invention are valuable tools in predicting if a patient is likely to respond favorably to a treatment regimen, such as surgical intervention, chemotherapy with a given drug or drug combination, and/or radiation therapy, or whether long-term survival of the patient, following surgery and/or termination of chemotherapy or other treatment modalities is likely.
  • a treatment regimen such as surgical intervention, chemotherapy with a given drug or drug combination, and/or radiation therapy
  • long-term survival is used herein to refer to survival for at least 1 year, more preferably for at least 2 years, most preferably for at least 5 years following surgery or other treatment.
  • the term “increased resistance” to a particular drug or treatment option when used in accordance with the present invention, means decreased response to a standard dose of the drug or to a standard treatment protocol.
  • the term “decreased sensitivity” to a particular drug or treatment option when used in accordance with the present invention, means decreased response to a standard dose of the drug or to a standard treatment protocol, where decreased response can be compensated for (at least partially) by increasing the dose of drug, or the intensity of treatment.
  • Patient response can be assessed using any endpoint indicating a benefit to the patient, including, without limitation, (1) inhibition, to some extent, of tumor growth, including slowing down and complete growth arrest; (2) reduction in the number of tumor cells; (3) reduction in tumor size; (4) inhibition (i.e., reduction, slowing down or complete stopping) of tumor cell infiltration into adjacent peripheral organs and/or tissues; (5) inhibition (i.e.
  • treatment refers to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder.
  • a therapeutic agent may directly decrease the pathology of tumor cells, or render the tumor cells more susceptible to treatment by other therapeutic agents, e.g., radiation and/or chemotherapy.
  • tumor refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.
  • cancer and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth.
  • examples of cancer include but are not limited to, breast cancer, colon cancer, lung cancer, prostate cancer, hepatocellular cancer, gastric cancer, pancreatic cancer, cervical cancer, ovarian cancer, liver cancer, bladder cancer, cancer of the urinary tract, thyroid cancer, renal cancer, carcinoma, melanoma, head and neck cancer, and brain cancer.
  • the "pathology" of cancer includes all phenomena that compromise the well-being of the patient.
  • EGFR inhibitor refers to a molecule having the ability to inhibit a biological function of a native epidermal growth factor receptor (EGFR). Accordingly, the term “inhibitor” is defined in the context of the biological role of EGFR. While preferred inhibitors herein specifically interact with (e.g. bind to) an EGFR, molecules that inhibit an EGFR biological activity by interacting with other members of the EGFR signal transduction pathway are also specifically included within this definition. A preferred EGFR biological activity inhibited by an EGFR inhibitor is associated with the development, growth, or spread of a tumor. EGFR inhibitors, without limitation, include peptides, non- peptide small molecules, antibodies, antibody fragments, antisense molecules, and oligonucleotide decoys.
  • “Stringency” of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured DNA to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology.
  • "Stringent conditions” or “high stringency conditions”, as defined herein, typically: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50°C; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42°C; or (3) employ 50% formamide, 5 x SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 x Denhardt's solution, sonicated salmon sperm DNA (50 ⁇ g/ml), 0.1% SDS, and 10% dex
  • Modely stringent conditions may be identified as described by Sambrook et al., Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and %SDS) less stringent that those described above.
  • washing solution and hybridization conditions e.g., temperature, ionic strength and %SDS
  • moderately stringent conditions is overnight incubation at 37°C in a solution comprising: 20% formamide, 5 x SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 x Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1 x SSC at about 37-50°C.
  • the skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.
  • references to “at least one,” “at least two,” “at least five,” etc. of the genes listed in any particular gene set means any one or any and all combinations of the genes listed.
  • expression threshold and “defined expression threshold” are used interchangeably and refer to the level of a gene or gene product in question above which the gene or gene product serves as a predictive marker for patient survival without cancer recurrence.
  • the threshold is defined experimentally from clinical studies such as those described in the Example below.
  • the expression threshold can be selected either for maximum sensitivity, or for maximum selectivity, or for minimum error. The determination of the expression threshold for any situation is well within the knowledge of those skilled in the art.
  • methods of gene expression profiling can be divided into two large groups: methods based on hybridization analysis of polynucleotides, and methods based on sequencing of polynucleotides.
  • the most commonly used methods known in the art for the quantification of mRNA expression in a sample include northern blotting and in situ hybridization (Parker & Barnes, Methods in Molecular Biology 106:247-283 (1999)); RNAse protection assays (Hod, Biotechniques 13:852-854 (1992)); and reverse transcription polymerase chain reaction (RT-PCR) (Weis et al, Trends in Genetics 8:263-264 (1992)).
  • antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes.
  • Representative methods for sequencing-based gene expression analysis include Serial Analysis of Gene Expression (SAGE), and gene expression analysis by massively parallel signature sequencing (MPSS).
  • RT-PCR Reverse Transcriptase PCR
  • RT-PCR which can be used to compare mRNA levels in different sample populations, in normal and tumor tissues, with or without drug treatment, to characterize patterns of gene expression, to discriminate between closely related mRNAs, and to analyze RNA structure.
  • the first step is the isolation of mRNA from a target sample.
  • the starting material is typically total RNA isolated from human tumors or tumor cell lines, and corresponding normal tissues or cell lines, respectively.
  • RNA can be isolated from a variety of primary tumors, including breast, lung, colon, prostate, brain, liver, kidney, pancreas, spleen, thymus, testis, ovary, uterus, head and neck, etc., tumor, or tumor cell lines, with pooled DNA from healthy donors.
  • mRNA can be extracted, for example, from frozen or archived paraffin-embedded and fixed (e.g. formalin-fixed) tissue samples.
  • RNA isolation can be performed using purification kit, buffer set and protease from commercial manufacturers, such as Qiagen, according to the manufacturer's instructions. For example, total RNA from cells in culture can be isolated using Qiagen RNeasy mini-columns.
  • RNA isolation kits include MasterPureTM Complete DNA and RNA Purification Kit (EPICENTRE®, Madison, WI), and Paraffin Block RNA Isolation Kit (Ambion, Inc.). Total RNA from tissue samples can be isolated using RNA Stat-60 (Tel-Test). RNA prepared from tumor can be isolated, for example, by cesium chloride density gradient centrifugation.
  • RNA cannot serve as a template for PCR
  • the first step in gene expression profiling by RT-PCR is the reverse transcription of the RNA template into cDNA, followed by its exponential amplification in a PCR reaction.
  • the two most commonly used reverse transcriptases are avilo myeloblastosis virus reverse transcriptase (AMV-RT) and Moloney murine leukemia virus reverse transcriptase (MMLV-RT).
  • AMV-RT avilo myeloblastosis virus reverse transcriptase
  • MMLV-RT Moloney murine leukemia virus reverse transcriptase
  • the reverse transcription step is typically primed using specific primers, random hexamers, or oligo-dT primers, depending on the circumstances and the goal of expression profiling.
  • extracted RNA can be reverse-transcribed using a GeneAmp RNA PCR kit (Perkin Elmer, CA, USA), following the manufacturer's instructions.
  • the derived cDNA can then be used as a template in
  • the PCR step can use a variety of thermostable DNA-dependent DNA polymerases, it typically employs the Taq DNA polymerase, which has a 5 '-3' nuclease activity but lacks a 3 '-5' proofreading endonuclease activity.
  • TaqMan® PCR typically utilizes the 5 '-nuclease activity of Taq or Tth polymerase to hydrolyze a hybridization probe bound to its target amplicon, but any enzyme with equivalent 5' nuclease activity can be used.
  • Two oligonucleotide primers are used to generate an amplicon typical of a PCR reaction.
  • a third oligonucleotide, or probe is designed to detect nucleotide sequence located between the two PCR primers.
  • the probe is non-extendible by Taq DNA polymerase enzyme, and is labeled with a reporter fluorescent dye and a quencher fluorescent dye. Any laser-induced emission from the reporter dye is quenched by the quenching dye when the two dyes are located close together as they are on the probe.
  • the Taq DNA polymerase enzyme cleaves the probe in a template-dependent manner.
  • the resultant probe fragments disassociate in solution, and signal from the released reporter dye is free from the quenching effect of the second fluorophore.
  • One molecule of reporter dye is liberated for each new molecule synthesized, and detection of the unquenched reporter dye provides the basis for quantitative interpretation of the data.
  • TaqMan® RT-PCR can be performed using commercially available equipment, such as, for example, ABI PRISM 7700TM Sequence Detection SystemTM (Perkin-Elmer-Applied Biosystems, Foster City, CA, USA), or Lightcycler (Roche Molecular Biochemicals, Mannheim, Germany).
  • the 5' nuclease procedure is run on a realtime quantitative PCR device such as the ABI PRISM 7700TM Sequence Detection SystemTM.
  • the system consists of a thermocycler, laser, charge-coupled device (CCD), camera and computer.
  • the system amplifies samples in a 96-well format on a thermocycler.
  • laser-induced fluorescent signal is collected in real-time through fiber optics cables for all 96 wells, and detected at the CCD.
  • the system includes software for running the instrument and for analyzing the data.
  • 5 '-Nuclease assay data are initially expressed as Ct, or the threshold cycle.
  • Ct fluorescence values are recorded during every cycle and represent the amount of product amplified to that point in the amplification reaction. The point when the fluorescent signal is first recorded as statistically significant is the threshold cycle (C t ).
  • RT-PCR is usually performed using an internal standard.
  • the ideal internal standard is expressed at a relatively constant level among different tissues, and is unaffected by the experimental treatment.
  • RNAs frequently used to normalize patterns of gene expression are mRNAs for the housekeeping genes glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) and ⁇ -actin.
  • GPDH glyceraldehyde-3-phosphate-dehydrogenase
  • ⁇ -actin glyceraldehyde-3-phosphate-dehydrogenase
  • RT-PCR measures PCR product accumulation through a dual-labeled fluorigenic probe (i.e., TaqMan® probe).
  • Real time PCR is compatible both with quantitative competitive PCR, where internal competitor for each target sequence is used for normalization, and with quantitative comparative PCR using a normalization gene contained within the sample, or a housekeeping gene for RT-PCR.
  • quantitative competitive PCR where internal competitor for each target sequence is used for normalization
  • quantitative comparative PCR using a normalization gene contained within the sample, or a housekeeping gene for RT-PCR.
  • RNA isolation, purification, primer extension and amplification are given in various published journal articles ⁇ for example: T.E. Godfrey et al. J. Molec. Diagnostics 2: 84-91 [2000]; K. Specht et al., Am. J. Pathol. 158: 419-29 [2001] ⁇ .
  • a representative process starts with cutting about 10 ⁇ m thick sections of paraffin-embedded tumor tissue samples. The RNA is then extracted, and protein and DNA are removed. After analysis of the RNA concentration, RNA repair and/or amplification steps may be included, if necessary, and RNA is reverse transcribed using gene specific promoters followed by RT-PCR. 3.
  • the expression profile of breast cancer-associated genes can be measured in either fresh or paraffin-embedded tumor tissue, using microarray technology.
  • polynucleotide sequences of interest including cDNAs and oligonucleotides
  • the arrayed sequences are then hybridized with specific DNA probes from cells or tissues of interest.
  • the source of mRNA typically is total RNA isolated from human tumors or tumor cell lines, and corresponding normal tissues or cell lines.
  • RNA can be isolated from a variety of primary tumors or tumor cell lines. If the source of mRNA is a primary tumor, mRNA can be extracted, for example, from frozen or archived paraffin-embedded and fixed (e.g. formalin- fixed) tissue samples, which are routinely prepared and preserved in everyday clinical practice.
  • PCR amplified inserts of cDNA clones are applied to a substrate in a dense array.
  • the microarrayed genes, immobilized on the microchip at 10,000 elements each, are suitable for hybridization under stringent conditions.
  • Fluorescently labeled cDNA probes may be generated through incorporation of fluorescent nucleotides by reverse transcription of RNA extracted from tissues of interest. Labeled cDNA probes applied to the chip hybridize with specificity to each spot of DNA on the array. After stringent washing to remove non-specifically bound probes, the chip is scanned by confocal laser microscopy or by another detection method, such as a CCD camera.
  • Quantitation of hybridization of each arrayed element allows for assessment of corresponding mRNA abundance.
  • dual color fluorescence separately labeled cDNA probes generated from two sources of RNA are hybridized pairwise to the array. The relative abundance of the transcripts from the two sources corresponding to each specified gene is thus determined simultaneously.
  • the miniaturized scale of the hybridization affords a convenient and rapid evaluation of the expression pattern for large numbers of genes. Such methods have been shown to have the sensitivity required to detect rare transcripts, which are expressed at a few copies per cell, and to reproducibly detect at least approximately two-fold differences in the expression levels (Schena et al, Proc. Natl. Acad. Sci. USA 93(2):106-149 (1996)).
  • Microarray analysis can be performed by commercially available equipment, following manufacturer's protocols, such as by using the Affymetrix GenChip technology, or Agilen 's microarray technology.
  • microarray methods for large-scale analysis of gene expression makes it possible to search systematically for molecular markers of cancer classification and outcome prediction in a variety of tumor types.
  • Serial analysis of gene expression is a method that allows the simultaneous and quantitative analysis of a large number of gene transcripts, without the need of providing an individual hybridization probe for each transcript.
  • a short sequence tag (about 10-14 bp) is generated that contains sufficient information to uniquely identify a transcript, provided that the tag is obtained from a unique position within each transcript.
  • many transcripts are linked together to form long serial molecules, that can be sequenced, revealing the identity of the multiple tags simultaneously.
  • the expression pattern of any population of transcripts can be quantitatively evaluated by determining the abundance of individual tags, and identifying the gene corresponding to each tag. For more details see, e.g. Velculescu et al, Science 270:484-487 (1995); and Velculescu et al, Cell 88:243-51 (1997). 5.
  • MPSS Massively Parallel Signature Sequencing
  • This method is a sequencing approach that combines non-gel-based signature sequencing with in vitro cloning of millions of templates on separate 5 ⁇ m diameter microbeads.
  • a microbead library of DNA templates is constructed by in vitro cloning. This is followed by the assembly of a planar array of the template-containing microbeads in a flow cell at a high density (typically greater than 3 x 10 6 microbeads/cm 2 ).
  • the free ends of the cloned templates on each microbead are analyzed simultaneously, using a fluorescence-based signature sequencing method that does not require DNA fragment separation. This method has been shown to simultaneously and accurately provide, in a single operation, hundreds of thousands of gene signature sequences from a yeast cDNA library. 6.
  • Immunohistochemistry methods are also suitable for detecting the expression levels of the prognostic markers of the present invention.
  • antibodies or antisera preferably polyclonal antisera, and most preferably monoclonal antibodies specific for each marker are used to detect expression.
  • the antibodies can be detected by direct labeling of the antibodies themselves, for example, with radioactive labels, fluorescent labels, hapten labels such as, biotin, or an enzyme such as horse radish peroxidase or alkaline phosphatase.
  • unlabeled primary antibody is used in conjunction with a labeled secondary antibody, comprising antisera, polyclonal antisera or a monoclonal antibody specific for the primary antibody. Immunohistochemistry protocols and kits are well known in the art and are commercially available.
  • proteome is defined as the totality of the proteins present in a sample (e.g. tissue, organism, or cell culture) at a certain point of time.
  • Proteomics includes, among other things, study of the global changes of protein expression in a sample (also referred to as "expression proteomics").
  • Proteomics typically includes the following steps: (1) separation of individual proteins in a sample by 2-D gel electrophoresis (2-D PAGE); (2) identification of the individual proteins recovered from the gel, e.g. my mass spectrometry or N-terminal sequencing, and (3) analysis of the data using bioinformatics.
  • Proteomics methods are valuable supplements to other methods of gene expression profiling, and can be used, alone or in combination with other methods, to detect the products of the prognostic markers of the present invention.
  • EGFR Inhibitors are valuable supplements to other methods of gene expression profiling, and can be used, alone or in combination with other methods, to detect the products of the prognostic markers of the present invention.
  • the epidermal growth factor receptor (EGFR) family (which includes EGFR, erb-B2, erb-B3, and erb-B4) is a family of growth factor receptors that are frequently activated in epithelial malignancies.
  • the epidermal growth factor receptor (EGFR) is known to be active in several tumor types, including, for example, ovarian cancer, pancreatic cancer, non- small cell lung cancer ⁇ NSCLC ⁇ , breast cancer, and head and neck cancer.
  • EGFR inhibitors such as ZD1839 (also known as gefitinib or Iressa); and OSI774 (Erlotinib, TarcevaTM), are promising drug candidates for the treatment of cancer.
  • Iressa a small synthetic quinazoline, competitively inhibits the ATP binding site of
  • EGFR a growth-promoting receptor tyrosine kinase
  • Another EGFR inhibitor [ag yano-
  • [bgr]methyl-N-[(trifluoromethoxy)phenyl]-propenamide (LFM-A12), has been shown to inhibit the proliferation and invasiveness of human breast cancer cells.
  • Cetuximab is a monoclonal antibody that blocks the EGFR and EGFR-dependent cell growth. It is currently being tested in phase IE clinical trials.
  • TarcevaTM has shown promising indications of anti-cancer activity in patients with advanced ovarian cancer, and non-small cell lung and head and neck carcinomas.
  • the present invention provides valuable molecular markers that predict whether a patient who is a candidate for treatment with an EGFR inhibitor drug is likely to respond to treatment with an EGFR inhibitor.
  • EGFR inhibitors represent both small organic molecule and anti-EGFR antibody classes of drugs.
  • the findings of the present invention are equally applicable to other EGFR inhibitors, including, without limitation, antisense molecules, small peptides, etc.
  • RNA repair and/or amplification steps may be included, if necessary, and RNA is reverse transcribed using gene specific promoters followed by RT-PCR. Finally, the data are analyzed to identify the best treatment option(s) available to the patient on the basis of the characteristic gene expression pattern identified in the tumor sample examined.
  • An important aspect of the present invention is to use the measured expression of certain genes by cancer (e.g. lung cancer) tissue to provide prognostic information.
  • cancer e.g. lung cancer
  • the assay typically measures and incorporates the expression of certain normalizing genes, including well known housekeeping genes, such as GAPDH and Cypl.
  • normalization can be based on the mean or median signal (Ct) of all of the assayed genes or a large subset thereof (global normalization approach).
  • Ct mean or median signal
  • the number (N) of cancer tissues in this reference set should be sufficiently high to ensure that different reference sets (as a whole) behave essentially the same way. If this condition is met, the identity of the individual cancer tissues present in a particular set will have no significant impact on the relative amounts of the genes assayed.
  • the cancer tissue reference set consists of at least about 30, preferably at least about 40 different FPE cancer tissue specimens. Unless noted otherwise, normalized expression levels for each mRNA/tested tumor/patient will be expressed as a percentage of the expression level measured in the reference set. More specifically, the reference set of a sufficiently high number (e.g. 40) of tumors yields a distribution of normalized levels of each mRNA species.
  • a gene expression study was designed and conducted with the primary goal to molecularly characterize gene expression in paraffin-embedded, fixed tissue samples of NSCLC patients who did or did not respond to treatment with an EGFR inhibitor. The results are based on the use of one EGFR inhibitor. Study design
  • Molecular assays were performed on paraffin-embedded, formalin-fixed tumor tissues obtained from 29 individual patients diagnosed with NSCLC. Patients were included in the study only if histopathologic assessment, performed as described in the Materials and Methods section, indicated adequate amounts of tumor tissue. All patients had a history of prior treatment for NSCLC, and the nature of pretreatment varied. Materials and Methods Each representative tumor block was characterized by standard histopathology for diagnosis, semi-quantitative assessment of amount of tumor, and tumor grade. A total of 6 sections (10 microns in thickness each) were prepared and placed in two Costar Brand Microcentrifuge Tubes (Polypropylene, 1.7 mL tubes, clear; 3 sections in each tube). If the tumor constituted less than 30% of the total specimen area, the sample may have been dissected by the pathologist, putting the tumor tissue directly into the Costar tube.
  • mRNA was extracted and purified from fixed, paraffin-embedded tissue samples, and prepared for gene expression analysis as described above.
  • ABI PRISM 7900TM Molecular assays of quantitative gene expression were performed by RT-PCR, using the ABI PRISM 7900TM Sequence Detection SystemTM (Perkin-Elmer-Applied Biosystems, Foster City, CA, USA).
  • ABI PRISM 7900TM consists of a thermocycler, laser, charge-coupled device (CCD), camera and computer. The system amplifies samples in a 384- well format on a thermocycler. During amplification, laser-induced fluorescent signal is collected in real-time through fiber optics cables for all 384 wells, and detected at the CCD. The system includes software for running the instrument and for analyzing the data. Analysis and Results
  • Tumor tissue was analyzed for 185 cancer-related genes and 7 reference genes.
  • the threshold cycle (CT) values for each patient were normalized based on the mean of all genes for that particular patient. Clinical outcome data were available for all patients.
  • One analysis categorized complete or partial response [RES] as one group, and stable disease (min of 3 months) or progressive disease as the other group [NR].
  • the second analysis grouped patients with respect to clinical benefit, where clinical benefit was defined as partial response, complete response, or stable disease at 3 months. Response (partial response and complete response) was determined by the Response
  • Stable disease was designated as the absence of aggressive disease for 3 or more months.
  • RES response
  • NR non- response
  • a t test was performed on the group of patients classified as RES or NR and the p- values for the differences between the groups for each gene were calculated.
  • the following table lists the 23 genes for which the p-value for the differences between the groups was ⁇ 0.10. In this case response was defined as a partial or complete response, the former being >50% shrink of the tumor and the latter being disappearance of the tumor. As shown, response was identified in two patients.
  • CD44S.1 0.0729 -1.3075 1.90370 15 0.076315 15 2
  • VEGF.1 1.3981 2.3817 -1.82941 15 0.087285 15 2
  • the elevated expression of STAT5A, STAT5B, WISPl, CKAP4, FGFR1, cdc25A or RASSFlin a tumor is an indication that the patient is not likely to respond well to treatment with an EGFR inhibitor.
  • elevated expression of ErbB3 is an indication that the patient is likely to respond to EGFR inhibitor treatment.
  • Table 2 below the binary analysis was carried with respect to clinical benefit, defined as either partial response, complete response, or stable disease. As shown, 5 patients met these criteria for clinical benefit.
  • Table 3 shows the accession numbers and amplicon sequences used during the PCR amplification of the genes identified.
  • Table 4 shows the accession numbers and the sequences of the primer/probe sets used during the PCR amplification of the genes identified. For each gene the forward primer sequence is identified as f2, the probe sequence as p2, and the reverse primer sequence as r2.
  • tissue samples from NSCLC were obtained using tissue samples from NSCLC, the conclusions drawn from the tissue expression profiles are equally applicable to other cancers, such as, for example, colon cancer, ovarian cancer, pancreatic cancer, breast cancer, and head and neck cancer.
  • CKAP NM_006825 1702 1768 AAAGCCTCAGTCAGCCAAGTGGAGGCGGACTTGAAAATGCTCAGGACTGCTGTGGACAGTTTGGTT
  • G-Calenin NM_002230 229 297 TCAGCAGCAAGGGCATCATGGAGGAGGATGAGGCCTGCGGGCGCCAGTACACGCTCAAGAAAACCACC
  • H2AFZ NM_002106 135 206 CCGGAAAGGCCAAGACAAAGGCGGTTTCCCGCTCGCAGAGAGCCGGCTTGCAGTTCCCAGTGGGCCGTATT
  • IGF1R NMJ.00875 3 4 67 3550 GCATGGTAGCCGAAGATTTCACAGTCAA TCGGAGATTTTGGTATGACGCGAGATATCTATGAGACAGACTATTACCGGAAA
  • NRG1 NM 13957 1697 1780 CGAGACTCTCCTCATAGTGAAAGGTATGTGTCAGCCATGACCACCCCGGCTCGTATGTCACCTGTAGATTTCCACACGCCAAG
  • WISP1 NM .03882 913 ' 988 AGAGGCATCCATGAACTTCACACTTGCGGGCTGCATCAGCACACGCTCCTATCAACCCAAGTACTGTGGAGTTTG
  • YB-1 NM 00 559 551 627 AGACTGTGGAGTTTGATGTTGTrGAAGGAAAAGGGTGCGGAGGCAGCAAATGTTACAGGTCCTGGTGGTGTTCC
  • CD44s ' M59040 S3104/CD44s.p1 CACCGACAGCACAGACAGAATCCC ⁇ 24 cdc25A NM_001 * 789 ' S0070/cdc25A.f4 TCTTGCTGGCTACGCCTCTT 20 cdc25A NM 301789 S0071/cdc25A.p4 TGTCCCTGTTAGACGTCCTCCGTCCATA 28 cdc25A NM_001789 S0072/cdc25A.r4 CTGCATTGTGGCACAGTTCTG 21
  • DIABLO NM_019887 S0808/DIABLO.f1 CACAATGGCGGCTCTGAAG 19
  • H2AFZ N.M D02106 S3012/H2AFZ.f2 CCGGAAAGGCCAAGACAA 18
  • IGF1 R NM D0Q875 S1250/IGF1 R.r3 TTTCCGGTAATAGTCTGTCTCATAGATATC 30
  • NME1 NM 000269 S2527/NME1.r3 ATGTATAATGTTCCTGCCAACTTGTATG 28

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Hospice & Palliative Care (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Oncology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
PCT/US2004/003596 2003-02-06 2004-02-05 Gene expression markers for response to egfr inhibitor drugs Ceased WO2004071572A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006503407A JP2006521793A (ja) 2003-02-06 2004-02-05 Egfrインヒビター薬物に応答性の遺伝子発現マーカー
EP04708653A EP1590487A2 (en) 2003-02-06 2004-02-05 Gene expression markers for response to egfr inhibitor drugs
CA002515096A CA2515096A1 (en) 2003-02-06 2004-02-05 Gene expression markers for response to egfr inhibitor drugs
AU2004211955A AU2004211955B2 (en) 2003-02-06 2004-02-05 Gene expression markers for response to EGFR inhibitor drugs
AU2009208748A AU2009208748A1 (en) 2003-02-06 2009-08-14 Gene expression markers for response to EGFR inhibitor drugs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US44596803P 2003-02-06 2003-02-06
US60/445,968 2003-02-06

Publications (2)

Publication Number Publication Date
WO2004071572A2 true WO2004071572A2 (en) 2004-08-26
WO2004071572A3 WO2004071572A3 (en) 2005-01-13

Family

ID=32869443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/003596 Ceased WO2004071572A2 (en) 2003-02-06 2004-02-05 Gene expression markers for response to egfr inhibitor drugs

Country Status (6)

Country Link
US (2) US20040157255A1 (enExample)
EP (1) EP1590487A2 (enExample)
JP (1) JP2006521793A (enExample)
AU (2) AU2004211955B2 (enExample)
CA (1) CA2515096A1 (enExample)
WO (1) WO2004071572A2 (enExample)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006034879A3 (en) * 2004-09-30 2006-08-03 Epigenomics Ag Epigenetic methods and nucleic acids for the detection of lung cell proliferative disorders
WO2006101925A2 (en) 2005-03-16 2006-09-28 Osi Pharmaceuticals, Inc. Biological markers predictive of anti-cancer response to epidermal growth factor receptor kinase inhibitors
WO2007035744A1 (en) 2005-09-20 2007-03-29 Osi Pharmaceuticals, Inc. Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
JP2007252312A (ja) * 2006-03-24 2007-10-04 Japan Health Science Foundation 上皮成長因子受容体−チロシンキナーゼ阻害剤に対する肺ガンの感度測定方法および肺ガン治療剤のスクリーニング方法
WO2009021680A1 (en) * 2007-08-14 2009-02-19 F. Hoffmann-La Roche Ag Predictive marker for egfr inhibitor treatment
WO2009021674A1 (en) * 2007-08-14 2009-02-19 F. Hoffmann-La Roche Ag Predictive markers for egfr inhibitor treatment
WO2009021673A1 (en) * 2007-08-14 2009-02-19 F. Hoffmann-La Roche Ag Predictive markers for egfr inhibitors treatment
WO2010015536A1 (en) * 2008-08-05 2010-02-11 F. Hoffmann-La Roche Ag Predictive marker for egfr inhibitor treatment
US7939272B2 (en) 2007-10-03 2011-05-10 Osi Pharmaceuticals, Inc. Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
WO2011109572A2 (en) 2010-03-03 2011-09-09 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
WO2011109584A2 (en) 2010-03-03 2011-09-09 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
US8017321B2 (en) 2004-01-23 2011-09-13 The Regents Of The University Of Colorado, A Body Corporate Gefitinib sensitivity-related gene expression and products and methods related thereto
EP2288727A4 (en) * 2008-05-14 2011-09-14 Genomic Health Inc PATIENT RESPONSE PREDICTORS FOR TREATMENT WITH EGF RECEPTOR INHIBITORS
US8048621B2 (en) 2007-10-03 2011-11-01 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
EP2492688A1 (en) 2011-02-23 2012-08-29 Pangaea Biotech, S.A. Molecular biomarkers for predicting response to antitumor treatment in lung cancer
WO2012116040A1 (en) 2011-02-22 2012-08-30 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors in hepatocellular carcinoma
WO2012149014A1 (en) 2011-04-25 2012-11-01 OSI Pharmaceuticals, LLC Use of emt gene signatures in cancer drug discovery, diagnostics, and treatment
EP2454598A4 (en) * 2009-07-15 2012-12-26 Nestec Sa ACTIVE SUBSTANCE SELECTION FOR ANTIBODY ARRAYS
CN102854315A (zh) * 2005-05-11 2013-01-02 霍夫曼-拉罗奇有限公司 化学治疗应答者的确定
US8377636B2 (en) 2007-04-13 2013-02-19 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to kinase inhibitors
US8383357B2 (en) 2005-03-16 2013-02-26 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to epidermal growth factor receptor kinase inhibitors
WO2013033380A1 (en) 2011-08-31 2013-03-07 Genentech, Inc. Diagnostic markers
WO2013055530A1 (en) 2011-09-30 2013-04-18 Genentech, Inc. Diagnostic methylation markers of epithelial or mesenchymal phenotype and response to egfr kinase inhibitor in tumours or tumour cells
US8609349B2 (en) 2008-02-25 2013-12-17 Nestec S.A. Drug selection for breast cancer therapy using antibody-based arrays
US9068230B2 (en) 2007-11-07 2015-06-30 Genentech, Inc. Methods and compositions for assessing responsiveness of B-cell lymphoma to treatment with anti-CD40 antibodies
CN104946597A (zh) * 2015-03-23 2015-09-30 大连医科大学附属第一医院 稳定表达GFP的shRNA靶向干扰YB-1基因人肺腺癌A549细胞株
US9250243B2 (en) 2006-09-21 2016-02-02 Nestec S.A. Drug selection for lung cancer therapy using antibody-based arrays
US9285369B2 (en) 2006-09-21 2016-03-15 Nestec S.A. Antibody-based arrays for detecting multiple signal transducers in rare circulating cells
US9434994B2 (en) 2004-05-27 2016-09-06 The Regents Of The University Of Colorado, A Body Corporate Methods for prediction of clinical outcome to epidermal growth factor receptor inhibitors by non-small cell lung cancer patients
US9617600B2 (en) 2009-04-18 2017-04-11 Genentech, Inc. Methods for assessing responsiveness of B-cell lymphoma to treatment with anti-CD40 antibodies
US9664683B2 (en) 2011-09-02 2017-05-30 Pierian Holdings, Inc. Profiling of signal pathway proteins to determine therapeutic efficacy
US9719995B2 (en) 2011-02-03 2017-08-01 Pierian Holdings, Inc. Drug selection for colorectal cancer therapy using receptor tyrosine kinase profiling

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050059012A1 (en) * 2002-07-31 2005-03-17 Daniel Afar Diagnosis of ZD1839 resistant tumors
US7483554B2 (en) * 2003-11-17 2009-01-27 Aureon Laboratories, Inc. Pathological tissue mapping
US7505948B2 (en) * 2003-11-18 2009-03-17 Aureon Laboratories, Inc. Support vector regression for censored data
US7467119B2 (en) * 2003-07-21 2008-12-16 Aureon Laboratories, Inc. Systems and methods for treating, diagnosing and predicting the occurrence of a medical condition
WO2005086068A2 (en) * 2004-02-27 2005-09-15 Aureon Laboratories, Inc. Methods and systems for predicting occurrence of an event
EP1789923A1 (en) * 2004-08-11 2007-05-30 Aureon Laboratories, Inc. Systems and methods for automated diagnosis and grading of tissue images
WO2006045991A1 (en) * 2004-10-25 2006-05-04 Astrazeneca Ab Method to predict whether a tumor will react to a chemotherapeutic treatment
US7449442B2 (en) * 2005-07-12 2008-11-11 Children's Medical Center Corporation EGFR inhibitors promote axon regeneration
US7700299B2 (en) * 2005-08-12 2010-04-20 Hoffmann-La Roche Inc. Method for predicting the response to a treatment
ATE520979T1 (de) * 2005-08-24 2011-09-15 Bristol Myers Squibb Co Biomarker und verfahren zur bestimmung der empfindlichkeit gegenüber modulatoren des egf(epidermal growth factor)-rezeptors
US20070128636A1 (en) * 2005-12-05 2007-06-07 Baker Joffre B Predictors Of Patient Response To Treatment With EGFR Inhibitors
DE102006048249A1 (de) * 2006-08-10 2008-02-14 Wolff Prof. Dr. Schmiegel Biomarker für Leberentzündung
DK2081950T3 (da) * 2006-09-21 2013-06-03 Nuclea Biomarkers Llc Med irinotecanbehandling forbundne ekspressionsprofiler
US20100203043A1 (en) * 2007-04-13 2010-08-12 Ree Anne H Treatment and diagnosis of metastatic prostate cancer with inhibitors of epidermal growth factor receptor (egfr)
JP5368445B2 (ja) * 2007-08-14 2013-12-18 エフ.ホフマン−ラ ロシュ アーゲー Egfr阻害因子治療のための予測マーカー
WO2009054939A2 (en) * 2007-10-19 2009-04-30 Cell Signaling Technology, Inc. Cancer classification and methods of use
EP2065475A1 (en) * 2007-11-30 2009-06-03 Siemens Healthcare Diagnostics GmbH Method for therapy prediction in tumors having irregularities in the expression of at least one VEGF ligand and/or at least one ErbB-receptor
KR100996994B1 (ko) * 2008-08-18 2010-11-25 울산대학교 산학협력단 간세포암종 수술후 재발 또는 재발 발병 위험성의 진단방법
JPWO2010064702A1 (ja) * 2008-12-05 2012-05-10 国立大学法人 東京大学 癌の予後を予測するためのバイオマーカー
WO2010084998A1 (en) * 2009-01-26 2010-07-29 Kyushu University, National University Corporation A method of predicting the efficacy of a drug
JP2012519170A (ja) * 2009-02-26 2012-08-23 オーエスアイ・ファーマシューティカルズ,エルエルシー 生体内の腫瘍細胞のemtステータスをモニターするためのinsitu法
US20120252856A1 (en) * 2009-12-11 2012-10-04 Dignity Health Pi3k/akt pathway subgroups in cancer: methods of using biomarkers for diagnosis and therapy
US10731221B2 (en) 2009-12-11 2020-08-04 Dignity Health Diagnosing IDH1 related subgroups and treatment of cancer
WO2012097368A2 (en) * 2011-01-14 2012-07-19 Response Genetics, Inc. Her3 and her4 primers and probes for detecting her3 and her4 mrna expression
EP2756309B1 (en) * 2011-09-12 2015-07-22 Universiteit Gent Neuregulin-1-based prognosis and therapeutic stratification of colorectal cancer
KR101941054B1 (ko) * 2016-07-20 2019-01-23 연세대학교 산학협력단 암 예후 예측을 위한 조성물 및 이를 포함하는 키트
CN106680515B (zh) * 2016-10-21 2018-06-12 杭州金式麦生物科技有限公司 用于肺癌诊断的多分子标志物组合

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4699877A (en) * 1982-11-04 1987-10-13 The Regents Of The University Of California Methods and compositions for detecting human tumors
USRE35491E (en) * 1982-11-04 1997-04-08 The Regents Of The University Of California Methods and compositions for detecting human tumors
US7838216B1 (en) * 1986-03-05 2010-11-23 The United States Of America, As Represented By The Department Of Health And Human Services Human gene related to but distinct from EGF receptor gene
US5015568A (en) * 1986-07-09 1991-05-14 The Wistar Institute Diagnostic methods for detecting lymphomas in humans
US5202429A (en) * 1986-07-09 1993-04-13 The Wistar Institute DNA molecules having human BCL-2 gene sequences
US4968603A (en) * 1986-12-31 1990-11-06 The Regents Of The University Of California Determination of status in neoplastic disease
US5831066A (en) * 1988-12-22 1998-11-03 The Trustees Of The University Of Pennsylvania Regulation of bcl-2 gene expression
US5858678A (en) * 1994-08-02 1999-01-12 St. Louis University Apoptosis-regulating proteins
US5830753A (en) * 1994-09-30 1998-11-03 Ludwig Institute For Cancer Research Isolated nucleic acid molecules coding for tumor rejection antigen precursor dage and uses thereof.
US6716575B2 (en) * 1995-12-18 2004-04-06 Sugen, Inc. Diagnosis and treatment of AUR1 and/or AUR2 related disorders
CA2239692C (en) * 1995-12-18 2008-12-16 Sugen, Inc. Diagnosis and treatment of aur-1 and/or aur-2 related disorders
US5670325A (en) * 1996-08-14 1997-09-23 Exact Laboratories, Inc. Method for the detection of clonal populations of transformed cells in a genomically heterogeneous cellular sample
US5741650A (en) * 1996-01-30 1998-04-21 Exact Laboratories, Inc. Methods for detecting colon cancer from stool samples
US5821082A (en) * 1996-05-23 1998-10-13 St. Louis University Health Sciences Center Anti-proliferation domain of a human Bcl-2 and DNA encoding the same
US6020137A (en) * 1996-08-14 2000-02-01 Exact Laboratories, Inc. Methods for the detection of loss of heterozygosity
US6146828A (en) * 1996-08-14 2000-11-14 Exact Laboratories, Inc. Methods for detecting differences in RNA expression levels and uses therefor
US6143529A (en) * 1996-08-14 2000-11-07 Exact Laboratories, Inc. Methods for improving sensitivity and specificity of screening assays
US6100029A (en) * 1996-08-14 2000-08-08 Exact Laboratories, Inc. Methods for the detection of chromosomal aberrations
US6203993B1 (en) * 1996-08-14 2001-03-20 Exact Science Corp. Methods for the detection of nucleic acids
US5928870A (en) * 1997-06-16 1999-07-27 Exact Laboratories, Inc. Methods for the detection of loss of heterozygosity
US5952178A (en) * 1996-08-14 1999-09-14 Exact Laboratories Methods for disease diagnosis from stool samples
US5861278A (en) * 1996-11-01 1999-01-19 Genetics Institute, Inc. HNF3δ compositions
CA2271783C (en) * 1996-11-20 2013-04-16 Yale University Survivin, a protein that inhibits cellular apoptosis, and its modulation
US5830665A (en) * 1997-03-03 1998-11-03 Exact Laboratories, Inc. Contiguous genomic sequence scanning
US6033893A (en) * 1997-06-26 2000-03-07 Incyte Pharmaceuticals, Inc. Human cathepsin
US6020135A (en) * 1998-03-27 2000-02-01 Affymetrix, Inc. P53-regulated genes
CA2330929A1 (en) * 1998-06-06 1999-12-16 Genostic Pharma Limited Probes used for genetic profiling
US6696558B2 (en) * 1998-09-09 2004-02-24 The Burnham Institute Bag proteins and nucleic acid molecules encoding them
US20020039764A1 (en) * 1999-03-12 2002-04-04 Rosen Craig A. Nucleic, acids, proteins, and antibodies
US6692916B2 (en) * 1999-06-28 2004-02-17 Source Precision Medicine, Inc. Systems and methods for characterizing a biological condition or agent using precision gene expression profiles
US6960439B2 (en) * 1999-06-28 2005-11-01 Source Precision Medicine, Inc. Identification, monitoring and treatment of disease and characterization of biological condition using gene expression profiles
US6710170B2 (en) * 1999-09-10 2004-03-23 Corixa Corporation Compositions and methods for the therapy and diagnosis of ovarian cancer
US6271002B1 (en) * 1999-10-04 2001-08-07 Rosetta Inpharmatics, Inc. RNA amplification method
US6750013B2 (en) * 1999-12-02 2004-06-15 Protein Design Labs, Inc. Methods for detection and diagnosing of breast cancer
WO2001051661A2 (en) * 2000-01-13 2001-07-19 Amsterdam Support Diagnostics B.V. A universal nucleic acid amplification system for nucleic acids in a sample
US6322986B1 (en) * 2000-01-18 2001-11-27 Albany Medical College Method for colorectal cancer prognosis and treatment selection
WO2001055454A1 (en) * 2000-01-28 2001-08-02 Althea Technologies, Inc. Methods for analysis of gene expression
WO2001075162A2 (en) * 2000-03-31 2001-10-11 University Of Louisville Research Foundation, Inc. Microarrays to screen regulatory genes
MXPA03000575A (es) * 2000-07-21 2004-12-13 Global Genomics Ab Metodos para analisis e identificacion de genes transcritos e impresion dactilar.
US20030224460A1 (en) * 2000-09-22 2003-12-04 Pedersen Finn Skou Novel compositions and methods for lymphoma and leukemia
US6602670B2 (en) * 2000-12-01 2003-08-05 Response Genetics, Inc. Method of determining a chemotherapeutic regimen based on ERCC1 expression
US6582919B2 (en) * 2001-06-11 2003-06-24 Response Genetics, Inc. Method of determining epidermal growth factor receptor and HER2-neu gene expression and correlation of levels thereof with survival rates
WO2002047007A2 (en) * 2000-12-07 2002-06-13 Phase It Intelligent Solutions Ag Expert system for classification and prediction of genetic diseases
WO2002057787A2 (en) * 2001-01-12 2002-07-25 Yale University Detection of survivin in the biological fluids of cancer patients
US7776518B2 (en) * 2001-01-12 2010-08-17 Yale University Detection of survivin in the biological fluids of cancer patients
IL157872A0 (en) * 2001-03-12 2004-03-28 Monogen Inc A panel for detecting a generic disease state containing a plurality of probes and using cell-based diagnosis
AU2002343443A1 (en) * 2001-09-28 2003-04-14 Whitehead Institute For Biomedical Research Classification of lung carcinomas using gene expression analysis
US6964850B2 (en) * 2001-11-09 2005-11-15 Source Precision Medicine, Inc. Identification, monitoring and treatment of disease and characterization of biological condition using gene expression profiles
US20030198972A1 (en) * 2001-12-21 2003-10-23 Erlander Mark G. Grading of breast cancer

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8017321B2 (en) 2004-01-23 2011-09-13 The Regents Of The University Of Colorado, A Body Corporate Gefitinib sensitivity-related gene expression and products and methods related thereto
US9434994B2 (en) 2004-05-27 2016-09-06 The Regents Of The University Of Colorado, A Body Corporate Methods for prediction of clinical outcome to epidermal growth factor receptor inhibitors by non-small cell lung cancer patients
WO2006034879A3 (en) * 2004-09-30 2006-08-03 Epigenomics Ag Epigenetic methods and nucleic acids for the detection of lung cell proliferative disorders
WO2006101925A2 (en) 2005-03-16 2006-09-28 Osi Pharmaceuticals, Inc. Biological markers predictive of anti-cancer response to epidermal growth factor receptor kinase inhibitors
US9244058B2 (en) 2005-03-16 2016-01-26 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to epidermal growth factor receptor kinase inhibitors
US8383357B2 (en) 2005-03-16 2013-02-26 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to epidermal growth factor receptor kinase inhibitors
US8093011B2 (en) 2005-03-16 2012-01-10 Haley John D Biological markers predictive of anti-cancer response to epidermal growth factor receptor kinase inhibitors
CN102854315A (zh) * 2005-05-11 2013-01-02 霍夫曼-拉罗奇有限公司 化学治疗应答者的确定
WO2007035744A1 (en) 2005-09-20 2007-03-29 Osi Pharmaceuticals, Inc. Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
EP2372363A1 (en) 2005-09-20 2011-10-05 OSI Pharmaceuticals, Inc. Biological markers predictive of anti-cancer response to insulin-like growth factor-1
JP2007252312A (ja) * 2006-03-24 2007-10-04 Japan Health Science Foundation 上皮成長因子受容体−チロシンキナーゼ阻害剤に対する肺ガンの感度測定方法および肺ガン治療剤のスクリーニング方法
US9250243B2 (en) 2006-09-21 2016-02-02 Nestec S.A. Drug selection for lung cancer therapy using antibody-based arrays
US9575066B2 (en) 2006-09-21 2017-02-21 Nestec S.A. Antibody-based arrays for detecting multiple signal transducers in rare circulating cells
US10527622B2 (en) 2006-09-21 2020-01-07 Société des Produits Nestlé S.A. Antibody-based arrays for detecting multiple signal transducers in rare circulating cells
US9285369B2 (en) 2006-09-21 2016-03-15 Nestec S.A. Antibody-based arrays for detecting multiple signal transducers in rare circulating cells
US10473640B2 (en) 2006-09-21 2019-11-12 Société des Produits Nestlé S.A. Drug selection for gastric cancer therapy using antibody-based arrays
US8377636B2 (en) 2007-04-13 2013-02-19 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to kinase inhibitors
WO2009021673A1 (en) * 2007-08-14 2009-02-19 F. Hoffmann-La Roche Ag Predictive markers for egfr inhibitors treatment
AU2008286333B2 (en) * 2007-08-14 2013-11-14 F. Hoffmann-La Roche Ag Predictive marker for EGFR inhibitor treatment
WO2009021680A1 (en) * 2007-08-14 2009-02-19 F. Hoffmann-La Roche Ag Predictive marker for egfr inhibitor treatment
WO2009021674A1 (en) * 2007-08-14 2009-02-19 F. Hoffmann-La Roche Ag Predictive markers for egfr inhibitor treatment
US7939272B2 (en) 2007-10-03 2011-05-10 Osi Pharmaceuticals, Inc. Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
US8048621B2 (en) 2007-10-03 2011-11-01 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
CN101910414B (zh) * 2007-11-07 2016-01-13 健泰科生物技术公司 用于评估b细胞淋巴瘤对抗cd40抗体治疗的响应性的方法和组合物
US9068230B2 (en) 2007-11-07 2015-06-30 Genentech, Inc. Methods and compositions for assessing responsiveness of B-cell lymphoma to treatment with anti-CD40 antibodies
US10436786B2 (en) 2008-02-25 2019-10-08 Société des Produits Nestlé S.A. Methods for detecting truncated receptors using antibody-based arrays
US9274116B2 (en) 2008-02-25 2016-03-01 Nestec S.A. Drug selection for breast cancer therapy using antibody-based arrays
US8609349B2 (en) 2008-02-25 2013-12-17 Nestec S.A. Drug selection for breast cancer therapy using antibody-based arrays
EP2288727A4 (en) * 2008-05-14 2011-09-14 Genomic Health Inc PATIENT RESPONSE PREDICTORS FOR TREATMENT WITH EGF RECEPTOR INHIBITORS
WO2010015536A1 (en) * 2008-08-05 2010-02-11 F. Hoffmann-La Roche Ag Predictive marker for egfr inhibitor treatment
US9617600B2 (en) 2009-04-18 2017-04-11 Genentech, Inc. Methods for assessing responsiveness of B-cell lymphoma to treatment with anti-CD40 antibodies
EP2454598A4 (en) * 2009-07-15 2012-12-26 Nestec Sa ACTIVE SUBSTANCE SELECTION FOR ANTIBODY ARRAYS
AU2010273319B2 (en) * 2009-07-15 2015-01-22 Nestec S.A. Drug selection for gastric cancer therapy using antibody-based arrays
WO2011109584A2 (en) 2010-03-03 2011-09-09 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
WO2011109572A2 (en) 2010-03-03 2011-09-09 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
US9719995B2 (en) 2011-02-03 2017-08-01 Pierian Holdings, Inc. Drug selection for colorectal cancer therapy using receptor tyrosine kinase profiling
US10401364B2 (en) 2011-02-03 2019-09-03 Soiété Des Produits Nestlé S.A. Drug selection for colorectal cancer therapy using receptor tyrosine kinase profiling
WO2012116040A1 (en) 2011-02-22 2012-08-30 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors in hepatocellular carcinoma
EP2492688A1 (en) 2011-02-23 2012-08-29 Pangaea Biotech, S.A. Molecular biomarkers for predicting response to antitumor treatment in lung cancer
WO2012113819A1 (en) 2011-02-23 2012-08-30 Pangaea Biotech, S.L. Molecular biomarkers for predicting response to antitumor treatment in lung cancer
US9896730B2 (en) 2011-04-25 2018-02-20 OSI Pharmaceuticals, LLC Use of EMT gene signatures in cancer drug discovery, diagnostics, and treatment
WO2012149014A1 (en) 2011-04-25 2012-11-01 OSI Pharmaceuticals, LLC Use of emt gene signatures in cancer drug discovery, diagnostics, and treatment
WO2013033380A1 (en) 2011-08-31 2013-03-07 Genentech, Inc. Diagnostic markers
US11261498B2 (en) 2011-08-31 2022-03-01 Genentech, Inc. Methods for diagnosing and treating cancer
US9664683B2 (en) 2011-09-02 2017-05-30 Pierian Holdings, Inc. Profiling of signal pathway proteins to determine therapeutic efficacy
WO2013055530A1 (en) 2011-09-30 2013-04-18 Genentech, Inc. Diagnostic methylation markers of epithelial or mesenchymal phenotype and response to egfr kinase inhibitor in tumours or tumour cells
CN104946597A (zh) * 2015-03-23 2015-09-30 大连医科大学附属第一医院 稳定表达GFP的shRNA靶向干扰YB-1基因人肺腺癌A549细胞株

Also Published As

Publication number Publication date
CA2515096A1 (en) 2004-08-26
AU2009208748A1 (en) 2009-09-10
EP1590487A2 (en) 2005-11-02
US20080176229A1 (en) 2008-07-24
JP2006521793A (ja) 2006-09-28
AU2004211955A1 (en) 2004-08-26
US20040157255A1 (en) 2004-08-12
WO2004071572A3 (en) 2005-01-13
AU2004211955B2 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
AU2004211955B2 (en) Gene expression markers for response to EGFR inhibitor drugs
AU2003295598B2 (en) Gene expression profiling of EGFR positive cancer
US20050164218A1 (en) Gene expression markers for response to EGFR inhibitor drugs
US7723033B2 (en) Prediction of likelihood of cancer recurrence
JP4723472B2 (ja) 乳癌予後診断のための遺伝子発現マーカー
DK2163650T3 (en) Genekspressionsmarkører for prediction of response to chemotherapy
JP2006521793A5 (enExample)
JP2006506093A5 (enExample)
AU2004248120A1 (en) Gene expression markers for predicting response to chemotherapy
US20120004127A1 (en) Gene expression markers for colorectal cancer prognosis
AU2017228579B2 (en) Prediction of likelihood of cancer recurrence
HK1148320A (en) Gene expression markers for response to egfr inhibitor drugs
HK1227946A1 (en) Gene expression markers for breast cancer prognosis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004211955

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2515096

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006503407

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2004211955

Country of ref document: AU

Date of ref document: 20040205

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004211955

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004708653

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004708653

Country of ref document: EP