WO2004070083A1 - ステンレス鋼材の不働態化処理方法及び燃料電池用ステンレス鋼製セパレータの製造方法 - Google Patents

ステンレス鋼材の不働態化処理方法及び燃料電池用ステンレス鋼製セパレータの製造方法 Download PDF

Info

Publication number
WO2004070083A1
WO2004070083A1 PCT/JP2003/016675 JP0316675W WO2004070083A1 WO 2004070083 A1 WO2004070083 A1 WO 2004070083A1 JP 0316675 W JP0316675 W JP 0316675W WO 2004070083 A1 WO2004070083 A1 WO 2004070083A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
solution
passivation
alkaline solution
treatment
Prior art date
Application number
PCT/JP2003/016675
Other languages
English (en)
French (fr)
Inventor
Osamu Ishigami
Tetsuya Kondo
Yoshimitsu Ogawa
Original Assignee
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003031732A external-priority patent/JP4133397B2/ja
Priority claimed from JP2003295274A external-priority patent/JP4327530B2/ja
Application filed by Honda Motor Co., Ltd. filed Critical Honda Motor Co., Ltd.
Priority to CA2497404A priority Critical patent/CA2497404C/en
Priority to EP03768210A priority patent/EP1591560B8/en
Priority to AU2003292789A priority patent/AU2003292789A1/en
Priority to US10/528,794 priority patent/US7785425B2/en
Publication of WO2004070083A1 publication Critical patent/WO2004070083A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/62Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a passivation treatment method for a stainless steel material for a separator used in a fuel cell and a method for producing a stainless steel separator.
  • the solid polymer electrolyte fuel cell has a structure in which a desired output is obtained by stacking a plurality of fuel cells. Therefore, the separator that separates each fuel cell is more complex than a resin material during stacking. Metal materials, which are advantageous for their strength against pressure and miniaturization after lamination, are considered promising. In particular, the use of stainless steel is being studied because it forms a passive film with high corrosion resistance against the acidic atmosphere around the cell electrode.
  • a passivation treatment method for forming such a passivation film of a stainless steel material a method using an acidic solution as a treatment liquid (for example, (1) Japanese Patent Application Laid-Open No. 61-270,396, ( 2) Japanese Patent No. 9_184096 and (3) Japanese Patent No. 2000-0-32 31 52), a neutral to weakly acidic solution is used as a treatment liquid. ((4) Japanese Published Patent Application No. 10-280-63) is known.
  • the above publication (1) describes a passivation treatment method in which a stainless steel material is passivated with, for example, dilute nitric acid.
  • the above publication (2) describes a surface treatment method for electrolytically treating stainless steel with an aqueous solution of nitric acid and chromic acid.
  • the above publication (3) describes a method for producing a separator in which stainless steel is pickled with a mixed acid of nitric acid and hydrofluoric acid, and then a passive film is formed with nitric acid.
  • the above publication (4) describes a passivation treatment method in which a solution containing a neutral salt electrolyte and hydrogen peroxide is applied to a stainless steel sheet in the form of a liquid film.
  • metal ions are eluted into the treatment solution because an acid is used for the passivation treatment.
  • Ni 2 + and Cr 6 + elute. Therefore, the treatment of the waste liquid containing the metal after the passivation treatment is costly.
  • the treatment liquid is applied in a liquid film state, that is, by applying with a brush or the like, spraying with a sprayer, or repeating exposure to the atmosphere while immersing.
  • productivity is low, resulting in high costs.
  • a method for treating the stainless steel material as described above a method of performing degreasing and passivation treatment (for example, (5) Japanese Patent Publication No. 10-5020341), a method of degreasing and etching. (For example, (6) Japanese Patent Application Publication No. 9-291400), and those that perform degreasing and polishing (for example, (7) Japanese Patent Application Publication No. 2000-282 276) And Japanese Patent Application Laid-Open No. 2001-21864 discloses an apparatus that performs pickling.
  • the above publication (5) provides an alkali-based formulation for cleaning and passivating the surface of a stainless steel plate, and the cleaning solution for the surface of the stainless steel is composed of an alkali component excluding an alkali salt such as carbonate. Consists of chelating agent + water + surfactant.
  • the above publication (6) discloses that an aqueous solution containing sodium hydroxide and sulfuric acid having a pH of 10-12.5 is electrolytically treated as an electrolyte to remove rolling oil adhering to the surface after cold rolling of stainless steel and to remove stainless steel. It reduces the concentration of Cr component in the passive film formed on the surface and improves the etching properties of the material.
  • the above publication (7) discloses that polishing is performed while spraying an alkaline solution onto the surface of a cold-rolled stainless steel sheet, removing the smudge (dirt) present on the steel sheet surface after cold rolling, and then polishing.
  • the purpose is to produce a stainless steel polished product having a surface property free from patterns and pit defects.
  • the publication (8) discloses that stainless steel is pickled with an acidic aqueous solution to expose one or more of conductive carbide inclusions and boride inclusions on the surface of the stainless steel.
  • the neutralization treatment is carried out with an aqueous solution having a water resistance of 7 or more to prevent an increase in contact electric resistance, and then further washing with water and drying.
  • An object of the present invention relates to a passivation treatment method for a stainless steel material, which facilitates waste liquid treatment of a treatment liquid, and further reduces the number of treatment steps to reduce the cost required for the passivation treatment.
  • the time required for cleaning the stainless steel material used for the separators was shortened, the amount of processing liquid required for cleaning was reduced, the waste liquid processing cost was reduced, and To simplify the process.
  • the present invention relates to a passivation of a stainless steel material having a passivation film formed on the surface layer of the stainless steel material by immersing the stainless steel material in an alkaline solution at 40 to 60 ° C. and a pH of 9 to 12. A method for chemical conversion is provided.
  • passivation treatment can be performed only by immersion in a single solution. And the cost of the lead layer can be further reduced.
  • a pH buffer solution is added to the alkaline solution, or the alkaline solution itself has a pH buffering effect, and air bubbling is performed on the alkaline solution to increase the amount of dissolved oxygen in the alkaline solution. Therefore, it is preferable to promote the formation of the hydroxide constituting the passive film and to suppress the pH from being lowered by the carbon dioxide dissolved in the alkaline solution.
  • the air valve ring dissolves carbon dioxide together with oxygen in the alkaline solution, and this carbon dioxide increases H + in the alkaline solution and lowers pH.
  • H buffer or providing the alkaline solution itself with a pH buffering effect, a decrease in pH can be suppressed by the pH buffer or the alkaline solution itself.
  • the stainless steel material after the immersion step is dried at a temperature of 100 to 200 ° C.
  • the passive film formed with the alkaline solution can be further stabilized, and the corrosion resistance can be further improved.
  • the surroundings of the electrodes are in an acidic atmosphere, but after being immersed in an alkaline solution with a pH of 9 to 12 and separated by heating and drying at 100 to 200 ° C.
  • an alkaline solution with a pH of 9 to 12 and separated by heating and drying at 100 to 200 ° C.
  • acid-induced corrosion is suppressed to form a passive film containing hydroxides and oxide components of Fe, Cr, and Ni. And stable power generation can be maintained over a long period of time.
  • the present invention provides a step of applying a lubricant to a stainless steel material to press-mold a gas flow path and a cooling water flow path, and a step of press-forming a cleaning solution for cleaning. Removing the lubricant adhering to the stainless steel material by spraying the stainless steel material, and removing the cleaning solution adhering to the stainless steel material by spraying the washing water onto the stainless steel material.
  • Ion exchange water A step of removing washing water remaining on the stainless steel material by spraying the stainless steel material, a step of spraying a passivation-use alkaline solution on the stainless steel material to passivate the stainless steel material, A step of removing the passivation solution attached to the stainless steel material by spraying exchanged water onto the stainless steel material; a step of heating and drying the stainless steel material; An overnight manufacturing method was configured.
  • the spray can enhance the lubricant removal effect. Compared to the removal step by immersion, the removal time can be reduced and the amount of the alkaline solution for cleaning required for removal can be reduced.
  • the time required for these cleaning and passivation treatments can be reduced as compared with the conventional immersion method.
  • the amount of washing water and ion exchange water required for washing can be reduced.
  • the cleaning solution and the passivation treatment solution are made the same alkaline, the respective waste liquids can be treated at the same time, and the cost can be reduced.
  • the alkaline solution for passivation treatment is a solution having a pH of 9 to 12 and a temperature of 40 to 60 ° C.
  • the alkaline solution for passivation treatment is a solution to which a pH buffer is added.
  • Spraying of the passivation solution with a pH buffer prevents the pH drop due to carbon dioxide dissolved in the passivation solution with a pH buffer As a result, a passive film can be efficiently and stably formed.
  • the heating and drying treatment is performed at 100 to 200 ° C.
  • the passive film formed with the alkaline solution can be further stabilized, and the corrosion resistance can be further improved.
  • the alkaline solution for washing is preferably a solution obtained by adding a surfactant to a basic salt.
  • the cleaning solution is a solution in which a surfactant is added to a basic salt, it is possible to prevent bubbles from being easily generated and prevent problems such as drainage caused by bubbles.
  • FIGS. 1B and 1C are explanatory diagrams showing a passivation treatment method for a stainless steel separator according to the present invention, wherein FIG. 1A is a process diagram, and FIGS. 1B and 1C are It is a sectional view of the separation at each stage.
  • FIG. 2 is a first graph showing the results of a corrosion test on a sample containing a stainless steel material, which was subjected to the passivation treatment method according to the present invention.
  • FIG. 3 is a second graph showing the results of a corrosion test on a sample containing a stainless steel material, which was subjected to the passivation treatment method according to the present invention.
  • FIG. 4 is a third graph showing the results of a corrosion test on a sample containing a stainless steel material, which was subjected to the passivation treatment method according to the present invention.
  • FIG. 5 is a fourth graph showing the results of a corrosion test of a stainless steel material for confirming the air bubbling effect and the heat drying effect of the passivation treatment method according to the present invention.
  • FIG. 6 is a fifth graph showing the results of a corrosion test on a sample containing a stainless steel material, which was subjected to the passivation treatment method according to the present invention.
  • FIG. 7 is a sixth graph showing the effects of publishing and a pH buffer in the passivation treatment method according to the present invention.
  • FIGS. 8B and 8C are explanatory diagrams illustrating a method for manufacturing a stainless steel separator according to the present invention.
  • FIG. 8A is a process diagram
  • FIGS. 8B and 8C are process diagrams.
  • FIG. 2 is a cross-sectional view of the separation material of FIG.
  • FIG. 9 is an explanatory diagram comparing the production methods of stainless steel separators.
  • FIGS. 10A and 10B are explanatory diagrams showing a first experimental example for confirming the effect of spray cleaning in the method for producing a stainless steel separator according to the present invention.
  • FIG. 10A shows sample preparation and effects. The flow chart of the confirmation, FIG. 10B is a graph for comparison.
  • FIGS. 11A and 11B are explanatory diagrams showing a second experimental example for confirming the cleaning time of spray cleaning in the method for producing a stainless steel separator according to the present invention.
  • Fig. 11B is a flow chart for creating and confirming the effects, and is a graph for comparison.
  • FIGS. 12A and 12B are explanatory diagrams showing a third experimental example for confirming the spray rinsing time in the method for producing a stainless steel separator according to the present invention
  • FIG. Fig. 12B is a flow chart for creating and confirming the effects, and is a graph for comparison.
  • FIG. 13 is a graph showing a fourth experimental example for confirming the effect of the passivation treatment using a spray in the method for producing a stainless steel separator according to the present invention.
  • FIG. 14 is a graph showing a fifth experimental example for confirming the penetration resistance of a passivated product by a spray in the method of manufacturing a stainless steel separator according to the present invention.
  • FIG. 1A the passivation processing method at the separation is described in order. Note that STxx indicates a step number (the same applies hereinafter).
  • ST 01 A plurality of press-formed materials 11 formed by press-forming a stainless steel material are prepared.
  • Press molding is used to supply fuel gas and oxidizing gas to the fuel cell and to form grooves for discharging generated water when the separator formed in the final process is assembled into the fuel cell. To do.
  • processing tank 13 filled with processing solution 12 (pH 9 ⁇ 12, concentration 0.0004 ⁇ 0.08wt%) in which STO a OH is dissolved in distilled water (purified water) Soak material 1 1
  • the temperature of the treatment liquid 12 was 40 to 60 ° C., and the immersion time was 10 minutes.
  • the amount of air bubbling is from 1,000 to 2,000 cm 3 / min (the same applies hereinafter).
  • ST03 Immerse the film-forming material ⁇ ⁇ 7 on which the passive film was formed in ST 02 in a water tank 16 filled with distilled water (purified water) 14 and wash with water.
  • the press-formed material 11 includes a base material 22 and an altered layer 23 formed on the surface of the base material 22.
  • 24 is a conductive material contained in the base material 22.
  • the altered layer 23 is formed by a rolling process of a stainless steel material before press forming, and is made of, for example, an oxide or an intermetallic compound contained in a stainless steel plate that has been crushed to have a reduced particle size. .
  • FIG. 1C shows that the passivation film 26 was formed on the surface layer of the base material 22 of the film forming material 17 by the passivation treatment with the treatment liquid 12 (see FIG. 1A).
  • the specimen in which the passivation film is formed
  • the specimen is formed by changing the pH of the NaOH aqueous solution in the passivation treatment step of STO 2 in the process shown in Fig.
  • This is the data obtained by measuring the corrosion current density after heating and drying in ST04.) If the corrosion current density is small, it means that corrosion is difficult.
  • the vertical axis of the graph represents the corrosion current density (unit: A / cm 2 ), and the horizontal axis represents the pH of the NaOH aqueous solution.
  • the broken line indicates the corrosion current density (3.6 ⁇ A / cm 2 ) of the test piece on which a passivation film was formed using conventional nitric acid as a treatment solution (the same applies hereinafter).
  • Test solution an aqueous solution of sulfuric acid (p H 3, concentration 0.005%, temperature 90 D C)
  • Specimen potential 638.8 mV—constant (set based on the saturated gizzard electrode (SCE))
  • SCE saturated gizzard electrode
  • Test method Measure the corrosion current density after holding the above test piece potential for 30 minutes
  • the pH of the aqueous NaOH solution is preferably from 9 to 12.
  • the heating temperature in the heating and drying process of ST04 in the process shown in Fig. 1A The following table shows the results obtained by measuring the corrosion current density of the test pieces on which the passive films were formed by changing the respective values.
  • the heating time is 10 minutes at any heating temperature.
  • the vertical axis of the graph represents the corrosion current density (unit: // A / cm 2 ), and the horizontal axis represents the heating temperature (unit: C).
  • the corrosion current density of the test piece to form a passive film conventional nitric acid shown by dashed lines as the processing liquid, in the following about 2 1 0 ° C is approximately 3. 6 At A / cm 2, the Above temperature, it grows rapidly.
  • the corrosion current density of the test piece by the passivation treatment of the embodiment shown in FIG. 1A is larger at a temperature lower than 100 ° C. and larger at a temperature of Are almost the same, and become larger above 200 C.
  • the heating temperature is desirably 100 to 200 ° C.
  • Fig. 4 shows the data obtained by measuring the corrosion current density for four types of test specimens on which a passive film was formed based on the process shown in Fig. 1A.
  • the vertical axis is the corrosion current density (unit: / A / cm 2 ).
  • the samples are as follows.
  • Sample B No passivation treatment was performed, and heat drying was performed at 100 ° C for 10 min.
  • Sample C Passivation treatment was performed by immersion in a NaOH aqueous solution at pH 10 and 50 ° C for 1 Om in. Do not heat dry
  • Sample D 1 Omin immersion in NaOH aqueous solution at pH 10 and 50 ° C as passivation treatment and 1 Omin in heat drying at 100 ° C
  • the corrosion current density of Sample B is small. That is, the difference between these corrosion current densities is the effect of heating and drying (100 ° C, 1 Omin). Also, when comparing Sample A and Sample C, the corrosion current density of Sample C is small. That is, the difference between these corrosion current densities is the effect of the passivation treatment (pH 10, 50 ° C, 10 min).
  • Example 1A the test piece on which the passivation film was formed in the process shown in Fig. 1A was used as Example 1, and Comparative Example 2 was prepared. To The test was performed under the following conditions.
  • Test solution pH 3, 90 ° C sulfuric acid aqueous solution
  • test piece (Example 1) on which the passivation film was formed in the process of Fig. 1A and the comparative example ⁇ were prepared, and each was immersed in an acid for a long time and a predetermined potential was applied.
  • the corrosion current density was measured after a predetermined time, and was performed under the following conditions.
  • Test solution pH 3, 90 ° C sulfuric acid aqueous solution
  • Test piece potential 638.8 mV vs. SCE
  • the treatment solution was an aqueous solution of NaOH at PH10, a concentration of 0.0004 Wt%, and a temperature of 50 ° C, and the immersion time was 1 Omi ⁇ , and air bubbling was performed.
  • the heating and drying temperature was 110 ° C. and the time was 1 Omin.
  • the treatment solution was a NaOH aqueous solution at PH10, a concentration of 0.0004 wt%, and a temperature of 50 ° C, and immersion time was 1 Omin, and air bubbling was performed. Heat drying was not performed.
  • the corrosion current density in the corrosion durability test was 0.14 A / cm 2 .
  • the passivation treatment conditions were a nitric acid aqueous solution having a concentration of 50 wt% and a temperature of 50 ° C, an immersion time of 1 Omin, no air publishing, and drying at room temperature.
  • the passivation treatment conditions were a nitric acid aqueous solution having a concentration of 50 wt% and a temperature of 50 ° C, an immersion time of 1 Omin, no air publishing, and drying at room temperature.
  • the passivation treatment conditions (Example 1) of the present invention can form a passivation film having corrosion resistance equivalent to that of the conventional passivation treatment using nitric acid (Comparative Example 2).
  • Fig. 5 shows the data obtained by measuring the corrosion current density by preparing four types of test pieces on which a passive film was formed based on the process shown in Fig. 1A and one type of test piece without a passive film.
  • the vertical axis is the corrosion current density (unit: ju AZ cm 2 ).
  • the samples are as follows.
  • Sample E Perform air coupling and heat drying (temperature is 110 ° C, time is 1 O min (this temperature and time are the same for other samples in this test)).
  • Specimen untreated, ie, not immersed in an alkali treatment solution and does not form a passive film
  • the passivation film was changed by changing the immersion time in the Al treatment solution, i.e., NaOH aqueous solution, in the passivation treatment process of S-102 in the process shown in Fig. 1A.
  • the data showing the measured corrosion current density of the test piece on which the pits were formed are shown.
  • the solid line shows the data obtained when air bubbling was performed, and the broken line shows the data obtained when air babbling was not performed.
  • the vertical axis of the graph shows the corrosion current density (unit: / A / cm 2 ), and the horizontal axis shows the immersion time of the alkaline treatment solution (unit: min).
  • the time required for immersion in the alkali treatment solution that is, the time required for the passivation treatment step
  • the productivity of separation can be increased.
  • Treatment liquid L 1.1 wt% Na 2 CO 3 aqueous solution
  • Treatment solution M Add 0.005wt% Na2CO3 aqueous solution to 0.00002wt% Na0H aqueous solution
  • Treatment liquid N adding 0. 1 1 wt% of N a 2C O 3 aqueous solution 0. 0003 wt% of N NaOH aqueous solution
  • Processing solution P adding 0. 01 1 wt% of N a 2 C 0 3 aqueous N a 0 H aqueous solution of 0. 003 wt%
  • Treatment solution Q 0.0005 wt% NaOH aqueous solution
  • the pH of the treatment liquid decreases greatly as bubbling continues because of only the NaOH aqueous solution.
  • the degree of decrease in the pH of the treatment liquid decreases as the concentration of the Na 2 CO 3 aqueous solution continues with the treatment liquids M, N, and P.
  • the treatment liquid L decreases the degree of p H is the concentration of N a 2 C0 3 aqueous solution than other treatment liquid to Koi Most small goods, i.e., the largest p H buffering effect in the treatment liquid L.
  • the addition of a pH buffer solution or the use of an alkaline solution having a pH buffering function can suppress a decrease in pH and stabilize the quality of a passive film. Can be.
  • the treatment solution was changed in the passivation treatment process of ST 02 in the process of Fig. 1A, and a passivation film was formed on the test piece with each treatment solution, and the corrosion current density of each test piece was measured. did.
  • Treatment temperature during passivation treatment is 50 ° C, immersion time is 1 Omin, air bath The amount of dissolved oxygen in the treatment solution was 7.0 to 7.9 mgZl 000 cm 3 , and after the passivation treatment, heat drying was performed at 110 ° C. and 10 min.
  • the corrosion test conditions are the same as in Fig. 2.
  • the treating solution S was a 0.0004 wt% NaOH aqueous solution and had a pH of 84. As a result, the corrosion current density was 3.6 A / cm 2 .
  • Treatment liquid T is, I. In 1 wt% of N a2C0 3 solution, was p H 1 1. 01. As a result, the corrosion current density was 3.6 «A / cm 2 .
  • the treatment liquid U was obtained by adding a 0.13 wt% aqueous solution of Na 2 CO 3 to a 0.0003 wt% aqueous Na 0 H solution, and thus had a pH of 10.81. As a result, the corrosion current density was 3. 5 AZc m 2.
  • Treatment liquid V is obtained by adding N a2 C0 3 aqueous solution 0. 33 wt% to 0. 0.003 wt% of N NaOH aqueous solution, was p HI 0. 92. As a result, the corrosion current density was 3.6 A / cm 2 .
  • Processing solution W is in which the composition is added 0. 53 wt% of N a2C0 3 aqueous N a 0 H aqueous solution of 0. 00002wt%, was p hM O. 99. As a result, the corrosion current density was 3.7 A / cm 2 .
  • alkaline solution of the present invention is not limited to the N NaOH aqueous solution, N a 2 CO
  • the ⁇ buffer of the present invention is not limited to Na 2 C03, but may be borax (Na 2 ⁇ 4 ⁇ 7 ), amino acids, alanine, aspartic acid, cysteine, glutamine, It may be lysine, isoleucine, leucine, methine, phenylalanine, or proline.
  • air publishing was performed to promote the formation of hydroxide.
  • the present invention is not limited to this, and showering (where an alkaline solution is poured into the treatment tank in a shower shape) is performed to reduce the pressure. More oxygen may be dissolved in the neutral solution.
  • FIG. 8A the manufacturing method for Separet will be described in order.
  • a plurality of press-formed materials 11 are formed by press-forming a stainless steel thin plate 10 with a press die 31 (more specifically, an upper die 32 and a lower die 33).
  • a passivation alkaline solution (hereinafter simply referred to as a "passivation treatment liquid") is sprayed on the press forming material 1 1 with a spray device 38 to passivate the press forming material 1. 1 forms a passive film.
  • the spray dissolves oxygen in the passivation solution and increases the amount of dissolved oxygen in the passivation solution, thereby promoting hydroxide formation.
  • a passive film having hydroxides and oxide components of Fe, Cr, and Ni is formed, when the separator is incorporated into a fuel cell, the periphery of the electrode is generated during fuel cell power generation. Even in an acidic atmosphere, corrosion due to acid can be suppressed, and stable power generation can be maintained for a long time.
  • the mechanism for promoting hydroxide formation is as described above.
  • the film forming material 17 is heated and dried in the heating dryer 18. When the film-forming material 17 is dried, a separation is formed.
  • the press-formed material 11 includes a base material 22 and a conductive material 24 (for example, Cr 2 B) included in the base material 22. It is the one that was caught.
  • FIG. 8C shows that the passivation film 26 was formed on the surface layer of the base material 22 of the film forming material 17 by the passivation treatment.
  • the conductor 24 is in a state of protruding from the passive film 26 (that is, in a state where it is caught).
  • FIG. 9 the process from degreasing to heating and drying of the stainless steel material was compared between the example (the present embodiment) and the comparative example.
  • the embodiment will be described in detail with reference to FIG.
  • the upper part shows an example, and the lower part shows a comparative example.
  • STXXX in the figure indicates a step number.
  • Spray water washing W 1 is performed. That is, in order to remove the cleaning solution attached to the press-formed material, tap water or industrial water as cleaning water is sprayed onto the press-formed material and washed. At this time, the required time is 0.25 minutes and the amount of liquid used is 2.5 L.
  • Spray water washing W2 is performed. That is, in order to remove tap water or industrial water adhering to the press-formed material, ion-exchanged water is sprayed onto the press-formed material and washed. At this time, the required time is 0.25 minutes and the amount of liquid used is 2.5 L.
  • the provision of the above-mentioned spray rinsing W1 and spray rinsing W2 is because cost is reduced by using tap water or industrial water which is cheaper than ion-exchange water, and then ion-exchange water is used. This is to remove chlorine components contained in tap water or industrial water. Chlorine components hinder the passivation reaction.
  • ST 14... Perform spray passivation treatment That is, a passivation treatment is performed by spraying an NaOH aqueous solution (pH 9 to 12, 40 to 60 ° C) as a passivation treatment liquid onto the press-formed material. The required time at this time is 10 minutes.
  • Spray washing W3 is performed. That is, in order to remove the passivation treatment liquid adhering to the film forming material, ion-exchanged water is sprayed onto the film forming material and washed. At this time, the required time is 0.5 minutes and the amount of liquid used is 5 L.
  • ST 16 1 Heat-dry the film-forming material at 200 to 200 ° C. The required time at this time is 10 minutes.
  • the total time required from degreasing to heating and drying in the example is 22 minutes.
  • the total amount of liquid used in spray degreasing and spray rinsing W1 to spray rinsing W3 is 20 L.
  • ST 101 Perform ultrasonic degreasing. That is, ultrasonic degreasing of the press-formed material is performed using an alkaline solution for cleaning. At this time, the required time is 5 minutes, and the amount of liquid used is 150 pieces. (The immersion method is an overflow method, and the amount of bar flow per unit time is 30 minutes. The same applies to the comparative examples below.) .
  • ST102 Perform immersion degreasing. That is, the press-formed material is immersed in an alkaline solution for cleaning and degreased. At this time, the required time is 5 minutes and the amount of liquid used is 150 L.
  • ST 103 Immersion water washing W1 is performed. That is, the press-formed material is immersed in tap water and washed with water. At this time, the required time is 1 minute and the amount of liquid used is 30 L.
  • ST104 Immersion water washing W2 is performed. That is, the press-formed material is immersed in ion-exchanged water and washed with water. At this time, the required time is 1 minute and the amount of liquid used is 30 L.
  • ST 105 Perform immersion passivation treatment. That is, the press-formed material is immersed in an alkaline solution for passivation treatment, and the passivation treatment is performed. The required time at this time is 10 minutes.
  • immersion water washing W 3 is performed. That is, the film-forming material is immersed in ion-exchanged water and washed with water. At this time, the required time is 6 minutes and the amount of liquid used is 180 L.
  • ST 107 Heat and dry the film forming material.
  • the required time at this time is 10 minutes. From the above, the total time required from degreasing to heating and drying in the comparative example is 38 minutes.
  • the total amount of liquid used for degreasing and immersion washing W1 to immersion washing W3 is 540 L.
  • the spray method of the example was able to reduce the required time by 16 minutes and the amount of liquid used by 520 L compared to the dipping method of the comparative example.
  • Fig. 1 OA and Fig. 10B the cleaning power (degreasing power) of spray cleaning and ultrasonic cleaning / immersion cleaning was compared using an alkaline cleaning solution.
  • Fig. 1 In OA, the flow of sample preparation and effect confirmation is explained step by step.
  • the above-mentioned grease is trade name: Cosmo Grease Max N 0.1, composition: lubricating base oil approx. 91 wt%, thickener (lithium stone) approx. 7 wt%, lubricating oil additive approx. 2 wt %, Manufacturer: Cosmo Oil Lubricant Co., Ltd.
  • Machine oil is trade name: N 0.630 Press working oil, Composition: Petroleum hydrocarbon (mineral oil) Approx. 50 wt%, Chlorine extreme pressure additive 10-50 wt%, Sulfur extreme pressure additive Agent 1 to 10 wt%, Manufacturer name: Nippon Kogyo Oil Co., Ltd.
  • the flameproofing agent is trade name: Non-Raster P30F, composition: anti-foaming additive, film-forming agent, solvent, manufacturer: Usilo Chemical Industry Co., Ltd.
  • n-Hexane solvent is spectroscopically analyzed with an infrared spectrometer, and the oil content is measured.
  • Fig. 108 is a graph showing the amount of oil in each test piece obtained by OA in Fig. 1 OA, the vertical axis shows the amount of oil remaining in the test piece (unit: mg / cm 2 ), and the horizontal axis shows each washing method .
  • the oil amount is 3. 5 mg cm @ 2
  • ultrasonic case of cleaning and immersion cleaning is 0. 55 m g / / cm 2
  • spray cleaning Ultrasonic cleaning ⁇ Oil content is 73% less than immersion cleaning. That is, spray cleaning has higher cleaning power (degreasing power).
  • the cleaning power (degreasing power) was compared by the cleaning time between spray cleaning and immersion cleaning using the alkaline solution for cleaning.
  • the solution temperature is 40 ° C and the spray pressure is 1 kgf / cm 2 .
  • the solution temperature is 40 ° C.
  • test piece spray-washed and a test piece immersed and washed by the above process were prepared for each washing time, and the oil content of each test piece was measured.
  • the washing times were 0 (zero) minutes (unwashed), 1 minute, 3 minutes, 5 minutes, 10 minutes, 15 minutes and 20 minutes.
  • Figure 1 1 B is a graph showing the relationship between the oil content and the cleaning time of each specimen obtained in FIG. 1 1 A, the vertical axis represents oil amount (in mg / cm 2), the horizontal axis washing Indicates time (unit is min).
  • the spray cleaning, oil amount before cleaning 3. decreased rapidly from 5 mg / cm 2 in 1 minute washing time to 0. 1 4 mg / cm 2, then became almost flat.
  • the cleaning time (degreasing time) can be greatly reduced in spray cleaning as compared with immersion cleaning.
  • Figure 12 compares the cleaning power of spray water washing and immersion water washing depending on the washing time.
  • test piece spray-washed and a test piece immersed in the above process were prepared for each washing time, and each test piece was immersed in exchange water.
  • the washing time was set to 15 minutes, 30 minutes, 45 minutes (only spray water washing), 60 minutes and 120 minutes.
  • ⁇ 12B is a graph showing the relationship between the pH of the ion-exchanged water and the washing time, wherein the vertical axis represents the pH and the horizontal axis represents the washing time (unit: sec).
  • the pH can be reduced in a shorter time than in the immersion water washing, that is, the water washing can be performed in a shorter time.
  • Fig. 13 the test pieces (passed to heating and drying) on which passivation films were formed at each treatment time by passivation treatment by spraying and passivation treatment by immersion, respectively.
  • the corrosion current density was measured and compared.
  • Three specimens were prepared for each treatment condition, the corrosion current density was measured, and the average of the three specimens was plotted on a graph.
  • the broken line indicates the required value of the corrosion current density (5.1 ⁇ , ⁇ / cm 2 ).
  • Test solution sulfuric acid aqueous solution (PH3, concentration 0.005%, temperature 90 ° C)
  • Specimen potential 638.8 mV—constant (set based on saturated gall electrode (SCE))
  • SCE saturated gall electrode
  • Test method Measure the corrosion current density after holding the test piece potential for 30 minutes. The passivation treatment conditions are shown below.
  • Treatment solution Na0H aqueous solution (pH 10.7 ⁇ 11, temperature 60 ° C)
  • Treatment solution NaOH aqueous solution (pH 10.8, temperature 50 ° C)
  • the corrosion current density was equivalent between the spray method and the immersion method for each treatment time.
  • the spray method and the immersion method are both less than the required value in 3 minutes or more. There was no difference in treatment time between the immersion method and the immersion method.
  • the penetration resistance (contact resistance) of the separator manufactured by the spray method and that of the separator manufactured by the immersion method were measured and compared.
  • the vertical axis of the graph represents the penetration resistance (unit: ⁇ ⁇ cm 2 ), and the horizontal axis represents the two conditions when measuring the penetration resistance.
  • the conditions for measuring the penetration resistance are as follows: one is to measure the penetration resistance during the separation by contacting two separators, and the other is to measure the penetration resistance between the two separators. This was measured by measuring the penetration resistance between separators (here, described as separators and electrodes) with one piece of carbon paper sandwiched between them. Separation at the time of penetration resistance measurement
  • the surface pressure for one night is the value when the penetration resistance becomes stable when the surface pressure is gradually increased.
  • the passivation treatment conditions are shown below.
  • Treatment solution NaOH aqueous solution (pH 0.7 to 11; temperature 60 ° 0
  • Treatment solution NaOH aqueous solution (pH 10.8, temperature 50 ° C)
  • the penetration resistance between the separator and the electrode between the separator and the electrode is the same between the spray method and the immersion method, and the penetration resistance between the separator and the electrode is the target value of 20.5 m ⁇ cm 2 Was below.
  • hydroxide formation was promoted by showering the alkaline solution for passivation.
  • the alkaline solution for passivation was added. Blowing air into the tank storing the solution (ie, an air valve ring) may further promote hydroxide formation.
  • Industrial applicability In the present invention, a stainless steel material is immersed in an alkaline solution at 40 to 60 ° C. and a pH of 9 to 12 to form a passive film on the surface layer of the stainless steel material. There is no elution of metal ions from steel, and passivation treatment can be performed only by immersion in a single solution, which can reduce costs including waste liquid treatment. On the other hand, by performing cleaning and passivation treatment such as degreasing by spraying, the treatment can be sped up. Therefore, the present invention is useful for manufacturing a fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Fuel Cell (AREA)

Abstract

プレス成形素材(11)を、40~60℃で且つpH9~12の処理液(12)に浸漬することで、プレス成形素材の表層部に不働態皮膜(26)を形成する。プレス成形素材からの金属イオンの溶出がなく、また、単一の溶液への浸漬のみで不働態化処理を行うことができ、廃液処理を含めたコストを低減できる。また、一方で、プレス成形素材をスプレーにより脱脂、洗浄、不働態化処理する。スプレーによって脱脂、洗浄、不働態化処理の迅速化、脱脂、洗浄、不働態化処理に要する処理液の量を減らすことができる。

Description

ステンレス鋼材の不働態化処理方法
及び燃料電池用ステンレス鋼製セパレー夕の製造方法 技術分里?
本発明は、 燃料電池に用いるセパレータ用ステンレス鋼材の不働態化処理方法 及びステンレス鋼製セパレ一夕の製造方法に関する。 背景技術
固体高分子電解質型燃料電池は、 各燃料電池セルを複数積層することで所望の 出力を得る構造であるため、 各燃料電池セルを仕切るセパレー夕としては、 樹脂 材料に比較して積層時の加圧力に対する強度や積層後の小型化が有利な金属材料 が有力視されている。 特に、 ステンレス鋼材は、 セルの電極部分周囲の酸性雰囲 気に対して高い耐食性を備える不働態皮膜を形成することから採用が検討されて いる。
このようなステンレス鋼材の不働態皮膜を形成する不働態化処理方法として、 酸性溶液を処理液とするもの (例えば、 (1 ) 日本公開特許第 6 1 - 2 7 0 3 9 6号公報、 (2 ) 日本公開特許第 9 _ 1 8 4 0 9 6号公報及び (3 ) 日本公開特 許第 2 0 0 0— 3 2 3 1 5 2号公報)、 中性〜弱酸性溶液を処理液とするもの ( ( 4 ) 日本公開特許第 1 0— 2 8 0〗 6 3号公報) が知られている。
上記公報 (1 ) には、 ステンレス鋼材を、 例えば希硝酸で不働態化処理する不 働態化処理方法が記載されている。
上記公報 (2 ) には、 硝酸とクロム酸との水溶液でステンレス鋼を電解処理す る表面処理方法が記載されている。
上記公報 (3 ) には、 ステンレス鋼を硝酸とフッ酸との混酸で酸洗した後に、 硝酸で不働態皮膜を形成するセパレー夕の製造方法が記載されている。
上記公報 (4 ) には、 中性塩電解質と過酸化水素とを含有する溶液をステンレ ス鋼板に液膜状に塗布して行う不働態化処理方法が記載されている。 上記の公報 (1 )、 公報 (2 ) 及び公報 (3 ) では、 いずれも、 不働態化処理 に酸を使用するために処理液中に金属イオンが溶出する。 例えば、 硝酸の場合に は、 N i 2 +、 C r 6 +が溶出する。 従って、 不働態化処理を終えた後の金属ィ才 ンを含む廃液の処理に多くのコス卜が掛かる。
また、 公報 (4 ) では、 処理液を液膜状態、 即ち刷毛等を使って塗る、 噴霧器 を使って噴霧する、 浸漬しながら大気中暴露を繰り返す等して塗布するため、 ェ 程数が多くなリ、 生産性が低く、 結果的にコス卜高となる。
更に、 上記のようなステンレス鋼材の処理方法として、 脱脂及び不働態化処理 を行うもの (例えば、 (5 ) 日本公表特許第 1 0— 5 0 3 2 4 1号公報)、 脱脂 及びエッチングを行うもの (例えば、 (6 ) 日本公開特許第 9— 2 9 1 4 0 0号 公報)、 脱脂及び研磨を行うもの (例えば、 (7 ) 日本公開特許第 2 0 0 0— 2 8 2 2 7 6公報)、 酸洗を行うもの (例えば、 (8 ) 日本公開特許第 2 0 0 1 — 2 1 4 2 8 6公報) が知られている。
上記公報 (5 ) は、 ステンレス鋼板表面を洗浄し且つ不働態化するアルカリべ ースの処方物を提供するものであり、 ステンレス鋼表面の洗浄液は、 炭酸塩等の アルカリ塩を除くアルカリ成分 +キレー卜剤 +水 +界面活性剤からなる。
上記公報 (6 ) は、 水酸化ナトリウムと硫酸を含む p H 1 0 - 1 2 . 5の水溶 液を電解質として電解処理し、 ステンレス冷間圧延後の表面に付着した圧延油を 除去するとともにステンレス表面にできた不働態皮膜中の C r成分を低濃度化し て材料のエッチング性を改善するものである。
上記公報 (7 ) は、 冷間圧延を施したステンレス鋼板の表面にアルカリ性溶液 を吹き付けつつ'ブラッシングを行い、 冷間圧延後に鋼板表面に存在するスマッジ (よごれ) を除去した後、 研磨を行うことで、 模様及びピット疵のない表面性状 を有するステンレス鋼研磨品を製造するものである。
上記公報 (8 ) は、 ステンレス鐧を酸性水溶液で酸洗してその表面に導電性を 有する炭化物系金属介在物及び硼化物系金属介在物のうちの 1種以上を露出さ せ、 次いで p Hが 7以上であるアル力リ性水溶液により中和処理を行って接触電 気抵抗の増大を防止し、 その後さらに水洗、 乾燥するものである。
酸洗は、 ステンレス鋼を酸性水溶液に浸漬する、 又はステンレス鋼表面に酸性 水溶液をシャワーすることで行う。
上記の公報 (5 ) では、 ステンレス鋼板をアルカリベースの溶液に浸潰し、 公 報 (6 ) では、 ステンレス冷間圧延材を水酸化ナトリウムと硫酸を含む水溶液に 浸漬するため、 例えば、 処理槽から処理液をオーバーフローさせながら浸漬する オーバーフロー式浸漬法によって洗浄すれば、処理液の使用量が多くなリ、また、 浸漬法では洗浄が徐々に行われるため、 処理時間も長くなる。 更に、 ステンレス 鋼材に付着した油脂量が多ければ、 洗浄後に油脂が残留することがあり、 確実な 洗浄が行えない場合がある。
また、 公報 (8 ) では、 酸とアルカリとの各溶液を使用するため、 廃液の処理 を別々に行う必要があり、 コス卜が嵩む。
更に、 公報 (7 ) では、 ステンレス鋼板にアルカリ性溶液を吹き付けつつブラ ッシングを行うため、 ブラッシングの駆動力を発生させるための駆動源が必要と なる。 簡単な設備で処理を行うことができれば、 設備に要するコス卜を低減でき る。 発明の開示
本発明の目的は、 ステンレス鋼材の不働態化処理方法に関し、 処理液の廃液処 理を容易にし、 しかも処理工程数を少なくして不働態ィ匕処理に要するコストを低 減すること、 並びに、 燃料電池用ステンレス鋼製セパレー夕の製造方法に関し、 セパレー夕の材料となるステンレス鋼材の洗浄に要する時間を短縮するとともに 洗浄に要する処理液の使用量を低減し、 廃液の処理コストを抑え、 設備の簡素化 を図ることにある。
本発明は、 ステンレス鋼材を、 4 0〜6 0 °Cで且つ p H 9〜1 2のアルカリ性 溶液に浸漬することで、 ステンレス鋼材の表層部に不働態皮膜を形成したステン レス鋼材の不働態化処理方法を提供する。
ステンレス鋼材をアル力リ性溶液により不働態化処理することで、 ステンレス 鋼材からの金属イオンの溶出がなく、 酸によリ不働態化処理するのに比べて、 廃 液処理に要するコス卜を低減することができる。
また、 単一の溶液への浸漬のみで不働態化処理を行うことができ、 処理工程数 が少なく、 よリー層コスト低減を図ることができる。
好ましくは、 アルカリ性溶液に p H緩衝液を添加する、 又はアルカリ性溶液自 体に P H緩衝作用を備え、 このアルカリ性溶液にエアバブリングを行うことで、 アル力リ性溶液中の溶存酸素量の増加によつて不働態皮膜を構成する水酸化物の 形成を促進させ、 且つアル力リ性溶液中に溶解する二酸化炭素によって p Hが低 下するのを抑えるのが良い。
エアバブリングを行うと、 アルカリ性溶液中の溶存酸素量が増加することで 0 H -が増加し、 増加した O H -と金属イオンとが結合するために水酸化物の形成 を促進させることができる。
また、 エアバルブリングは、 アルカリ性溶液中に酸素とともに二酸化炭素をも 溶解させるため、 この二酸化炭素によってアル力リ性溶液中に H +が増加して p Hを低下させるが、 アルカリ性溶液中に予め p H緩衝液を添加する、 又はアル力 リ性溶液自体に P H緩衝効果を備えることにより、 p H緩衝液又はアル力リ性溶 液自体で p Hの低下を抑えることができる。
また、 好ましくは、 浸漬工程を終えたステンレス鋼材を、 1 0 0 ~ 2 0 0 °Cに 保って乾燥させるのが良い。
1 0 0〜2 0 0 °Cでの加熱乾燥によって、 アル力リ性溶液で形成した不働態皮 膜をより安定させることができ、 耐食性を一層向上させることができる。
更に、 ステンレス鋼材を燃料電池用セパレー夕とするのが良い。
燃料電池の発電中は、 電極周囲が酸性雰囲気となるが、 p H 9〜l 2のアル力 リ性溶液に浸漬後、 1 0 0〜2 0 0 °Cでの加熱乾燥で得られたセパレー夕の表面 では、 従来の硝酸不働態化処理方法と同様に、 F e, C r, N iの水酸化物及び 酸化物成分を有する不働態皮膜を形成するために、 酸による腐食を抑制すること ができ、 安定した発電を長期に亘つて維持することができる。
また、 別の側面では、 本発明は、 ステンレス鋼材に潤滑剤を塗布してガス流路 及び冷却水流路をプレス成形する工程と、 洗浄用アル力リ性溶液をプレス成形し た後のステンレス鋼材にスプレーすることによリステンレス鋼材に付着した潤滑 剤を除去する工程と、 洗浄水をステンレス鋼材にスプレーすることによリステン レス鋼材に付着した洗浄用アル力リ性溶液を除去する工程と、 イオン交換水をス テンレス鋼材にスプレーすることによりステンレス鋼材に残留する洗浄水を除去 する工程と、 ステンレス鋼材を不働態化処理するために不働態化処理用アル力リ 性溶液をステンレス鋼材にスプレーする工程と、 イオン交換水をステンレス鋼材 にスプレーすることによリステンレス鋼材に付着した不働態化処理用アル力リ性 溶液を除去する工程と、 ステンレス鋼材を加熱乾燥する工程と、 から燃料電池用 ステンレス鋼製セパレ一夕の製造方法を構成した。 洗浄用アル力リ性溶液をステ ンレス鋼材にスプレーすることによリステンレス鋼材に付着した潤滑剤を除去す る工程を設けたことで、 スプレーによって潤滑剤除去効果を高めることができ、 従来の浸漬による除去工程に比べて、 除去時間を短縮することができるとともに 除去に要する洗浄用アルカリ性溶液の量を減らすことができる。
また、 洗浄水及びイオン交換水による洗浄、 不働態化処理をもスプレーで行う ことにより、 これらの洗浄及び不働態化処理に要する時間を従来の浸漬法に比べ てよリー層短縮することができ、 また、 洗浄に要する洗浄水、 イオン交換水の量 を減らすことができる。
更に、 洗浄用溶液と不働態化処理用溶液とを同じアルカリ性としたので、 それ ぞれの廃液を同時に処理することができ、 コス卜を抑えることができる。
また更に、 従来のようなブラッシング等に必要な駆動源が不要であるから、 設 備の簡素化を図ることができ、 設備に要するコス卜を低減することができる。 好ましくは、 不働態化処理用アルカリ性溶液を、 p H 9〜1 2で且つ 4 0〜 6 0 °Cとした溶液とするのが良い。
ステンレス鋼材を不働態化処理用アル力リ性溶液により不働態化処理するの で、 ステンレス鋼材からの金属イオンの溶出がなく、 酸によリ不働態化処理する のに比べて、 廃液処理に要するコストを低減することができ、 また、 単一の溶液 でのスプレーのみで不働態化処理を行うことができ、 処理工程数が少なく、 より 一層コス卜低減を図ることができる。
また、 好ましくは、 不働態化処理用アルカリ性溶液を、 p H緩衝液を添加した 溶液とするのが良い。
不働態化処理用アル力リ性溶液のスプレーによって、 不働態化処理用アル力リ 性溶液中に溶解する二酸化炭素による p Hの低下を、 p H緩衝液によって抑える ことができ、 不働態皮膜を効率良く且つ安定して形成することができる。
更に、 好ましくは、 加熱乾燥処理を、 1 0 0〜2 0 0 °Cにて行うのが良い。
1 0 0〜2 0 0 °Cでの加熱乾燥によって、 アルカリ性溶液で形成した不働態皮 膜をより安定させることができ、 耐食性を一層向上させることができる。
また更に、 好ましくは、 洗浄用アルカリ性溶液を、 塩基性塩に界面活性剤を添 加した溶液とするのが良い。
洗浄用アル力リ性溶液を、 塩基性塩に界面活性剤を添加した溶液としたので、 泡が発生し難くなリ、 泡による排水性等の不具合を防ぐことができる。 図面の簡単な説明
図 1 A、 図 1 B及び図 1 Cは、 本発明に係るステンレス鋼材製セパレー夕の不 働態化処理方法を示す説明図であり、 図 1 Aは工程図、 図 1 B及び図 1 Cは各ェ 程でのセパレー夕の断面図である。
図 2は、 本発明に係る不働態化処理方法を実施したステンレス鋼材を含む試料 による腐食試験の結果を示す第 1グラフである。
図 3は、 本発明に係る不働態化処理方法を実施したステンレス鋼材を含む試料 による腐食試験の結果を示す第 2グラフである。
図 4は、 本発明に係る不働態化処理方法を実施したステンレス鋼材を含む試料 による腐食試験の結果を示す第 3グラフである。
図 5は、 本発明に係る不働態化処理方法のエアバブリング効果及び加熱乾燥効 果を確認するステンレス鋼材の腐食試験の結果を示す第 4グラフである。
図 6は、 本発明に係る不働態化処理方法を実施したステンレス鋼材を含む試料 による腐食試験の結果を示す第 5グラフである。
図 7は、 本発明に係る不働態化処理方法のパブリング及び p H緩衝液の作用を 示す第 6グラフである。
図 8 A、 図 8 B及び図 8 Cは、 本発明に係るステンレス鋼製セパレー夕の製造 方法を示す説明図であり、 図 8 Aは工程図、 図 8 B及び図 8 Cは各工程でのセパ レー夕素材の断面図である。
図 9は、 ステンレス鋼製セパレー夕の製造方法を比較する説明図である。 図 1 OA及び図 1 0 Bは、 本発明に係るステンレス鋼製セパレー夕の製造方法 におけるスプレー洗浄の効果を確認する第 1実験例を示す説明図であり、 図 1 0 Aは試料作成及び効果確認のフロー図、 図 1 0 Bは比較のためのグラフである。 図 1 1 A及び図 1 1 Bは、 本発明に係るステンレス鋼製セパレー夕の製造方法 におけるスプレー洗浄の洗浄時間を確認する第 2実験例を示す説明図であリ、 図 1 1 Aは試料作成及び効果確認のフロー図、 図 1 1 Bは比較のためのグラフであ る。
図 1 2 A及び図 1 2 Bは、 本発明に係るステンレス鋼製セパレー夕の製造方法 におけるスプレー水洗の水洗時間を確認する第 3実験例を示す説明図であリ、 図 1 2 Aは試料作成及び効果確認のフロー図、 図 1 2 Bは比較のためのグラフであ る。
図 1 3は、 本発明に係るステンレス鋼製セパレー夕の製造方法におけるスプレ 一による不働態化処理の効果を確認する第 4実験例を示すグラフである。
図 1 4は、 本発明に係るステンレス鋼製セパレー夕の製造方法におけるスプレ 一による不働態化処理品の貫通抵抗を確認する第 5実験例を示すグラフである。 発明を実施するための最良の形態
図 1 Aではセパレー夕の不働態化処理方法を順に説明する。 なお、 S Tx xは ステップ番号を示す (以下同じ)。
S T 0 1…ステンレス鋼材をプレス成形した複数のプレス成形素材 1 1を準備す る。
プレス成形は、 最終工程でできたセパレー夕を燃料電池に組込んだときに、 燃 料電池に燃料ガスや酸化剤ガスを供給したり、 生成した水を排出するための溝等 を形成するために行う。
S T O a OHを蒸留水(精製水)に溶解させた処理液 1 2 (p H 9~ 1 2、 濃度 0. 00004〜0. 08w t%) を満たした処理槽 1 3に複数のプレス成 形素材 1 1を浸漬する。 処理液 1 2の温度は 40〜60°C、 浸漬時間は 1 0分で あり、 ェアバプリングを実施した。 エアバブリング量は 1 000〜 2000 cm 3/m i nである (以下同じ)。 W
- 8 - エアパブリングとは、 処理液 1 2の溶存酸素量を増加させて水酸化物形成を促 進させるために処理液 1 2中に空気を吹き込むことをいう。 このようなエアバブ リングによる水酸化物形成の促進のメカニズムは次のように推定される。
処理液 1 2中では以下に示す反応が進行する。
M = Mn + +n e— (a) O 2 + H2O+ 2 e- = 2 OH" (b)
Mn + +nOH- = M (OH) n (c) 式 (a) では金属 Mがイオン化し、 エアバブリングによって、 式 (b) に示す ように、 酸素から OH-が生成される。 この結果、 処理液 1 2中の OH-が増加 し、 式 (c) に示すように、 金属イオンと増加した OH-とから水酸化物の生成 が促進される。
また処理液 1 2中では、 エアバブリングによって以下に示す反応も進行する。 CO2 + H2O→ HC03-+H+ (d)
Figure imgf000010_0001
式 (d) に示すように、 二酸化炭素と水とから H+が生成され、 更に式 (e) に示すように、 HC03-からも H+が生成され、 H+が増加するために処理液 1 2の p Hは低下することになる。
しかし、 処理液 1 2に p H緩衝液として予め、 例えば N a2C03 (C03 2 - が共役塩基となる。) を添加するため、 処理液 1 2の p Hの低下を抑えることが できる。
ST03…蒸留水 (精製水) 1 4を満たした水槽 1 6に S T 02にて不働態皮膜 を形成した皮膜形成材〗 7を浸し、 水洗する。
S TO 4…水洗後の皮膜形成材 1 7を加熱乾燥機 1 8内で加熱乾燥させる。 加熱 温度は 1 00〜200°C、 加熱乾燥時間は 1 0分である。 皮膜形成材 1 7を乾燥後に、 セパレー夕ができる。
図 1 Bにおいて、 プレス成形素材 1 1は、 母材 22と、 この母材 22の表層部 にできた変質層 23とからなる。なお、 24は母材 22に含まれる導電物である。 変質層 23は、 プレス成形前のステンレス鋼材の圧延工程によって形成される ものであり、 酸化物や、 ステンレス鋼板に含まれていた金属間化合物が砕かれて 粒径の小さくなつたもの等からなる。
図 1 Cは、 処理液 1 2 (図 1 A参照) による不働態化処理によって皮膜形成材 1 7の母材 22の表層部に不働態皮膜 26が形成されたことを示す。
図 2では、 図 1 Aに示した工程における S T O 2の不働態化処理工程での N a OH水溶液の p Hを変化させてそれぞれ不働態皮膜を形成した試験片 (セパレー 夕に相当するもので、 S T 04で加熱乾燥後のものである。) の腐食電流密度を 測定したデータを示す。腐食電流密度が小さければ、腐食し難いことを意味する。 グラフの縦軸は腐食電流密度 (単位は A/cm2)、 横軸は N aOH水溶液の P Hを表す。 また、 破線は従来の硝酸を処理液として不働態皮膜を形成した試験 片の腐食電流密度 (3. 6 μ A/cm2) である (以下同じ)。
以下に腐食試験条件を示す。
•腐食試験条件
試験溶液:硫酸水溶液 ( p H 3、 濃度 0. 005 %、 温度 90 DC)
試験片電位: 638. 8mV—定 (飽和甘こう電極 (S C E) を基準に設定) 以下、 「638. 8mV v s. S C E」 と記載する。
試験方法:上記試験片電位を 30分間保持後に腐食電流密度を測定
この試験条件は、 以降に示す腐食試験に共通のものである。
N aOH水溶液の p Hによる腐食電流密度の変化を見てみると、 N aOH水溶 液の p Hが 7及び 8では、 腐食電流密度が 4 A/c m 2を越え、 N aOH水溶 液の p Hが 9 ~ 1 2では腐食電流密度が硝酸で処理したものとほぼ同等の値であ リ、 N aOH水溶液の p Hが 1 3になると、 腐食電流密度は硝酸で処理したもの よりも大きくなる。
従って、 N aOH水溶液の p Hは 9〜1 2が望ましい。
図 3では、 図 1 Aに示した工程における S T 04の加熱乾燥工程での加熱温度 を変化させてそれぞれ不働態皮膜を形成した試験片の腐食電流密度を測定したデ 一夕を示す。 加熱時間はどの加熱温度でも 1 0分である。 グラフの縦軸は腐食電 流密度 (単位は// A/c m2)、 横軸は加熱温度 (単位は。 C) を表す。 また、 破 線で示した従来の硝酸を処理液として不働態皮膜を形成した試験片の腐食電流密 度は、約 2 1 0°C以下ではほぼ 3. 6 At A/ cm 2であり、 この温度を越えると、 急激に大きくなる。
図 1 Aに示した実施の形態の不働態化処理による試験片の腐食電流密度は、 硝 酸を処理液としたものに対して、 1 00°C未満では大きく、 1 00〜200°Cで はほぼ同等であり、 200 Cを越えると大きくなる。
従って、 加熱温度は 1 00〜200°Cが望ましい。
図 4では、 図 1 Aに示した工程に基づき不働態皮膜を形成した試験片を 4種用 意し、 腐食電流密度を測定したデータを示す。 縦軸は腐食電流密度 (単位は/ A /cm2) である。 試料は以下の通りである。
,試料
試料 A:不働態化処理及び加熱乾燥は行わない
試料 B :不働態化処理は行わず、 加熱乾燥として 1 00°Cで 1 0m i n行う 試料 C:不働態化処理として p H 1 0、 50°Cの N a OH水溶液で 1 Om i n 浸漬を行い、 加熱乾燥は行わない
試料 D:不働態化処理として p H 1 0、 50°Cの N a OH水溶液で 1 Om i n 浸漬を行い、 加熱乾燥として 1 00°Cで 1 Om i n行う
試料 Aと試料 Bとで比較すると、 試料 Bの腐食電流密度が小さい。 即ち、 これ らの腐食電流密度の差が加熱乾燥 (1 00°C、 1 Om i n) の効果である。 また、試料 Aと試料 Cとで比較すると、試料 Cの腐食電流密度が小さい。即ち、 これらの腐食電流密度の差が不働態化処理 (p H 1 0、 50°C、 1 0m i n) の 効果である。
試料 Dでは、 試料 B及び試料 Cよりも更に腐食電流密度は小さくなリ、 硝酸で 処理したものとほぼ同等の値になる。
また、 以下の表に示す浸漬試験及び腐食耐久試験を実施した。
Figure imgf000013_0001
浸漬試験は、 図 1 Aの工程で不働態皮膜を形成した試験片を実施例 1 とし、 他に 比較例 2を準備して、 それぞれを酸に長時間浸潰させて鲭が発生するかどうかを 確認するものでぁリ、 以下の条件で行った。
-浸漬試験条件
試験溶液: p H 3、 90 °Cの硫酸水溶液
浸漬時間:連続 2200時間
腐食耐久試験は、 図 1 Aの工程で不働態皮膜を形成した試験片 (実施例 1 ) と 比較例〗を準備してそれぞれを、 酸中に長時間浸漬させるとともに所定の電位を 印可して所定時間の後に腐食電流密度を測定するものであり、 以下の条件で行つ た。
•腐食耐久試験条件
試験溶液: p H 3、 90 °Cの硫酸水溶液
試験片電位: 638. 8mV v s. S C E
電位印可時間:連続 500時間
実施例 1は、 不働態処理条件として、 処理液が P H 1 0、 濃度 0. 0004W t % 温度 50°Cの N a OH水溶液であり、 浸漬時間は 1 Om i η、 エアバブリ ングを実施し、 加熱乾燥の温度は 1 1 0°C、 時間は 1 Om i nであった。
結果としては、 浸漬試験での鎬の発生は無く、 腐食耐久試験での腐食電流密度 は 0. 1 A/c m2であった。
比較例 1は、 不働態化処理条件として、 処理液が P H 1 0、 濃度 0. 0004 w t %、 温度 50°Cの N aOH水溶液であリ、 浸漬時間は 1 Om i n、 エアバブ リングを実施し、 加熱乾燥は行わなかった。
この結果、 腐食耐久試験での腐食電流密度は 0. 1 4 A/c m2であった。 比較例 2は、 不働態化処理条件として、 処理液が濃度 50 w t %、 温度 50 °C の硝酸水溶液であり、 浸漬時間は 1 Om i n、 エアパブリングは実施せず、 乾燥 は室温で行った。
この結果、浸漬試験での鯖の発生は無く、腐食耐久試験での腐食電流密度は 0. 1 5 n A/c m2であった。
このように、 本発明の不働態化処理条件 (実施例 1 ) は、 従来行っていた硝酸 による不働態化処理条件 (比較例 2) と同等な耐食性を有する不働態皮膜を形成 することができる。 図 5では、 図 1 Aに示した工程に基づき不働態皮膜を形成した試験片を 4種、 不働態皮膜を形成しない試験片を 1種用意し、 腐食電流密度を測定したデータを 示す。 縦軸は腐食電流密度 (単位は ju A Z c m 2 ) である。 試料は以下の通りで ある。
-試料
試料 E :ェアバプリング及び加熱乾燥(温度は 1 1 0 °C、時間は 1 O m i n (こ の温度、 時間はこの試験の他の試料でも同じ)) を行う
試料 F :エアパブリングは行わず、 加熱乾燥を行う
試料 G :ェアバプリングを行い、 加熱乾燥は行わない
試料 H :ェアバプリング、 加熱乾燥は共に行わない
試料」 :未処理、 即ち、 アルカリ処理液への浸漬は未実施で、 不働態皮膜を形 成しない
試料 Eと試料 Fとで比較すると、 加熱乾燥を行った場合に、 エアパブリングを 行った試料 Eの方が腐食電流密度は小さい。
また、 試料 Gと試料 Hとで比較すると、 両試料共に加熱乾燥を行わなず、 試料 Gでは、 試料 Hに対して、 パブリングを行うことでアルカリ処理液中の溶存酸素 量が 1 0 0 0 c m 3当たり 3 . 8〜4 . 4 m gから 7 . 6 ~ 8 . O m gというよ うに約 2倍に増加し、 試料 Gの方が腐食電流密度は小さくなる。
以上の試料 Eと試料 Fとの腐食電流密度の差、 及び試料 Gと試料 Hとの腐食電 流密度の差がパブリングの効果でぁリ、 試料 Eでは、 硝酸で処理したものとほぼ 同等の腐食電流密度になる。
また、 試料 Eと試料 Gとの比較から、 エアパブリングを行った場合に、 加熱乾 燥を行った試料 Eの方が腐食電流密度は小さく、加熱乾燥の効果は大きい。また、 試料 Fと試料 Hとの比較から、 エアパブリングを行わなかった場合に、 試料 Fの 方が腐食電流密度は小さく、 やはり加熱乾燥の効果は大きい。
更に、 試料 Hと試料」との比較から、 アルカリ処理液による浸漬の効果、 即ち 不働態皮膜の耐食性の効果が分かる。
図 6では、 図 1 Aに示した工程における S丁 0 2の不働態化処理工程でのアル 力リ処理液、 即ち N a O H水溶液への浸漬時間を変化させてそれぞれ不働態皮膜 を形成した試験片の腐食電流密度を測定したデータを示し、 実線はエアバブリン グを行ったもの、 破線はェアバプリングを行わなかったものを示す。 グラフの縦 軸は腐食電流密度 (単位は/ A/cm2)、 横軸はアルカリ処理液浸漬時間 (単 位は m i n) を表す。
エアパブリングを行わない場合には、 従来の硝酸を処理液としたときの腐食電 流密度 3. 6 A/c m2に達するまでに 1 5m i n必要とするが、 ェアバプリ ングを行った場合は、 1 Om i nで 3. 6 A/ c m 2に達する。 これが、 本発 明のアルカリ処理液浸漬時間 1 Om i nの根拠である。
このように、 ェアバプリングを行うことによってアルカリ処理液浸漬時間、 即 ち不働態化処理工程に要する時間を短縮することができ、 セパレー夕の生産性を 高めることができる。
図 7では、 図 1 Aに示した工程における S TO 2の不働態化処理工程で、 不働 態化処理を行う処理液を変化させ、 それぞれの処理液についてバブリングを行い ながら所定時間毎に P Hを測定した。 グラフの縦軸は処理液 p H、 横軸はバブリ ング時間 (単位は m i n) を表す。 各処理液の成分は以下の通りである。
-処理液
処理液 L : 1. 1 w t %の N a 2 C O 3水溶液
処理液 M : 0. 00002 w t %の N a 0 H水溶液に 0. 55w t %のN a 2 CO 3水溶液を添加
処理液 N : 0. 0003 w t %の N aOH水溶液に 0. 1 1 wt %のN a 2C O 3水溶液を添加
処理液 P : 0. 003 w t %の N a 0 H水溶液に 0. 01 1 wt %のN a 2 C 03水溶液を添加
処理液 Q : 0. 0005wt %のN aOH水溶液
処理液 Qでは、 N aOH水溶液のみのために、 バブリングを続けるにつれて次 第に処理液の P Hが大きく低下する。
処理液 M, N, Pでは、 パブリングを続けると、 N a2CO3水溶液の濃度が 高いものほど処理液の p Hの低下度合いは小さく、 処理液 Mではほぼ横ばいにな る。 処理液 Lでは、 他の処理液よりも N a2C03水溶液の濃度が高ぃためにp H の低下度合いは最も小ざい、 即ち、 処理液 Lでの p H緩衝効果が最も大きい。 このように、 エアパブリングを行う場合に、 p H緩衝液の添加又は p H緩衝作 用を備えるアルカリ性溶液を使用すれば、 P H低下を抑えることができ、 不働態 皮膜の品質を安定させることができる。
更に、 p H緩衝液である N a 2 C03水溶液の耐食性への影響を確認するため に、 以下の腐食試験を実施した。
Figure imgf000017_0001
腐食試験は、 図 1 Aの工程における S T 02の不働態化処理工程で処理液を変 化させてそれぞれの処理液で試験片に不働態皮膜を形成し、 各試験片の腐食電流 密度を測定した。
不働態化処理時の処理液温度は 50°C、 浸漬時間は 1 Om i n、 ェアバブリン グによる処理液中の溶存酸素量は 7 · 0〜7. 9mgZl 000 cm3、 不働態 化処理後は 1 1 0°C、 1 0m i nの加熱乾燥を行った。 腐食試験条件は図 2の場 合と同一である。
処理液 Sは、 0. 0004 w t %の N a O H水溶液で、 p H I O. 84であつ た。 結果としては、 腐食電流密度は 3. 6 A/cm2であった。
処理液 Tは、 Ί . 1 w t %の N a2C03水溶液で、 p H 1 1. 01であった。 結果としては、 腐食電流密度は 3. 6 « A/cm2であった。
処理液 Uは、 0. 0003 w t %の N a 0 H水溶液に 0. 1 1 wt %の N a2 CO 3水溶液を添加したのもで、 p H 1 0. 8 1であった。 結果としては、 腐食 電流密度は 3. 5 AZc m2であった。
処理液 Vは、 0. 0.003 w t %の N aOH水溶液に 0. 33wt %のN a2 C03水溶液を添加したもので、 p H I 0. 92であった。 結果としては、 腐食 電流密度は 3. 6 A/c m2であった。
処理液 Wは、 組成が 0. 00002wt %の N a 0 H水溶液に 0. 53 w t % の N a2C03水溶液を添加したもので、 p hM O. 99であった。 結果として は、 腐食電流密度は 3. 7 A/ cm 2であった。
このように、 アル力リ性溶液に p H緩衝液である N a 2 CO 3水溶液を添加す る、 又はアルカリ性を示す p H緩衝液 N a2C03水溶液を用いても、 耐食性へ の影響はない。
尚、 本発明のアルカリ性溶液としては、 N aOH水溶液に限らず、 N a2CO
3 (炭酸ナトリウム)、 N a H2 P04 (リン酸 2水素ナトリウム)、 N a2H PO
4 (リン酸水素 2ナトリウム)、 N as P04 (リン酸 3ナトリウム)、 N a4 Ρ2 Or (ピロリン酸ナトリウム)、 N a20 · n S i O (水ガラス (ケィ酸ナ卜リウ 厶))、 N a2B 407 (四ホウ酸ナトリウム)、 ΚΟΗ (水酸化カリウム)、 K2C 03 (炭酸カリウム)、 ΚΗ2 Ρ θ4 (リン酸 2水素カリウム)、 Κ2Η ΡΟ4 (リ ン酸水素 2カリウム)、 Κ3 Ρ04 (リン酸 3カリウム)、 Κ4 Ρ2Οτ (ピロリン 酸カリウム)、 Κ2 Β 4Ο7 (四ホウ酸カリウム) の各水溶液でも差し支えない。 また、 本発明の ρ Η緩衝液としては、 N a2C03に限らず、 ホウ砂 (N a2 Β4θ7)、 アミノ酸、 ァラニン、 ァスパラギン酸、 システィン、 グルタミン、 グ リシン、 イソロイシン、 ロイシン、 メチ才ニン、 フエ二ルァラニン、 プロリンで もよい。
更に、 本発明では、 水酸化物形成促進のためにエアパブリングを実施したが、 これに限らず、 シャワーリング (アルカリ性溶液をシャワー状に処理槽に注ぐこ と) を実施してアル力リ性溶液により多くの酸素を溶解させてもよい。
図 8 Aにおいてセパレ一夕の製造方法を順に説明する。
( A ) ステンレス鋼製薄板 1 0をプレス型 3 1 (詳しくは、 上型 3 2及び下型 3 3である。) でプレス成形して、 複数のプレス成形素材 1 1を造る。
( B ) プレス成形素材 1 1を洗浄する。 詳しくは、 ステンレス鋼製薄板〗 0を プレス成形する際にステンレス鋼製薄板 1 0とプレス型 3 1 との潤滑を良くする ために塗布した油脂がプレス成形素材 1 〗 に付着しているので、 洗浄液 (詳細は 後述する。) をプレス成形素材 1 1 にスプレー装置 3 6でスプレーして油脂を除 去 (脱脂) し、 次に、 水 (詳細は後述する。) をプレス成形素材 1 1 に別のスプ レー装置でスプレーしてプレス成形素材 1 1 に付着した洗浄液を除去 (水洗) す る。
( C ) プレス成形素材 1 1 に不働態化処理用アルカリ性溶液 (以下、 単に Γ不 働態化処理液」 と記す。) をスプレー装置 3 8でスプレーして不働態化処理し、 プレス成形素材 1 1 に不働態皮膜を形成する。
このとき、 スプレーによって不働態化処理液中に酸素が溶解し、 不働態化処理 液中の溶存酸素量が増加するため、 水酸化物形成が促進する。 例えば、 F e, C r, N iの水酸化物及び酸化物成分を有する不働態皮膜が形成されると、 セパレ 一夕を燃料電池に組込んだ場合、 燃料電池の発電中に電極周囲が酸性雰囲気にな つても、 酸による腐食を抑制することができ、 安定した発電を長期に亘つて維持 することができる。 水酸化物形成の促進のメカニズムは前述の通りである。
( D ) 不働態皮膜を形成して出来た皮膜形成材 1 7には不働態化処理液が付着 しているので、 皮膜形成材 1 7に水を別のスプレー装置でスプレーして皮膜形成 材 1 7を水洗する。
( E ) 皮膜形成材 1 7を加熱乾燥機 1 8内で加熱乾燥させる。 皮膜形成材 1 7 を乾燥させると、 セパレー夕が出来る。 図 8 Bにおいて、 プレス成形素材 1 1は、 母材 22と、 この母材 22に含まれ る導電物 24 (例えば、 C r 2 B) とからなり、 導電物 24を母材 22の表面か ら頭出しさせたものである。
図 8 Cは、 不働態化処理によって、 皮膜形成材 1 7の母材 22の表層部に不働 態皮膜 26を形成したことを示す。 導電物 24は、 不働態被膜 26から突出した 状態 (即ち、 頭出しした状態) にある。
図 9ではステンレス鋼材の脱脂から加熱乾燥までを実施例 (本実施形態) と比 較例とで比較した。 実施例については、 図 1の内容を詳細に説明する。 上段は実 施例、 下段は比較例を示す。 図中の S TXXXはステップ番号を示す。
まず、 実施例についてステップ毎に説明する。
S T 1 レ ··スプレー脱脂を行う。 即ち、 前述の洗浄液としての 60°Cの洗浄用 アルカリ性溶液をプレス成形素材に 1 k g f /cm2の圧力でスプレーして脱脂 する。 このときの所要時間は 1分、 使用液量は 1 0 L (リツ卜ル) である (単位 時間当たりのスプレー量は 1 0 L/分である。 以下実施例において同じ。)。 洗浄用アルカリ性溶液とは、 炭酸塩、 リン酸塩、 カルボン酸塩のアルカリ性塩 (主にナトリウム塩) に界面活性剤 (ポリオキシエチレン =アルキルエーテル C 1 2 - 1 5) を加えた洗剤 (商品名:パクナ ·スプレー 50 _N、 メーカー名 :ュケン工業 (株)) である。
S T 1 2…スプレー水洗 W 1を行う。 即ち、 プレス成形素材に付着した洗浄用 アル力リ性溶液を除去するために、 洗浄水としての水道水又は工業用水をプレス 成形素材にスプレーして水洗する。 このときの所要時間は 0. 25分、 使用液量 は 2. 5 Lである。
S T 1 3…スプレー水洗 W2を行う。 即ち、 プレス成形素材に付着した水道水 又は工業用水を除去するために、 イオン交換水をプレス成形素材にスプレーして 水洗する。 このときの所要時間は 0. 25分、 使用液量は 2. 5 Lである。 上記 したスプレー水洗 W1 とスプレー水洗 W 2とを設けたのは、 イオン交換水よりも 安価な水道水又は工業用水を使用することでコス卜を低減し、 次に、 イオン交換 水を使用することで、 水道水又は工業用水に含まれる塩素成分を除去するためで ある。 塩素成分は不働態化反応を妨げる。 ST 1 4…スプレー不働態化処理を行う。 即ち、 不働態化処理液として N aO H水溶液 (p H 9〜1 2、 40〜60°C) をプレス成形素材にスプレーして不働 態化処理を行う。 このときの所要時間は 1 0分である。
ST 1 5…スプレー水洗 W3を行う。 即ち、 皮膜形成材に付着した不働態化処 理液を除去するために、 イオン交換水を皮膜形成材にスプレーして水洗する。 こ のときの所要時間は 0. 5分、 使用液量は 5 Lである。
ST 1 6 1 00〜200°Cで皮膜形成材の加熱乾燥を行う。 このときの所要 時間は 1 0分である。
以上より、 実施例の脱脂から加熱乾燥までの所要時間の合計は 22分となる。 また、 スプレー脱脂及びスプレー水洗 W 1〜スプレー水洗 W 3での使用液量の合 計は 20 Lとなる。
次に、 比較例についてステップ毎に説明する。
ST 1 0 1…超音波脱脂を行う。 即ち、 洗浄用アルカリ性溶液によりプレス成 形素材の超音波脱脂を行う。 このときの所要時間は 5分、 使用液量は 1 50しで ある (浸漬法はオーバーフロー式であり、 単位時間当たりの才一バーフロー量は 30し 分である。 以下比較例において同じ。)。
S T 1 02…浸漬脱脂を行う。 即ち、 プレス成形素材を洗浄用アルカリ性溶液 に浸潰し、 脱脂する。 このときの所要時間は 5分、 使用液量は 1 50 Lである。
S T 1 03…浸漬水洗 W1を行う。 即ち、 プレス成形素材を水道水に浸漬し、 水洗する。 このときの所要時間は 1分、 使用液量は 30 Lである。
S T 1 04…浸漬水洗 W 2を行う。 即ち、 プレス成形素材をイオン交換水に浸 潰し、 水洗する。 このときの所要時間は 1分、 使用液量は 30 Lである。
ST 1 05…浸漬不働態化処理を行う。 即ち、 プレス成形素材を不働態化処理 用アルカリ性溶液に浸潰し、 不働態化処理を実施する。 このときの所要時間は 1 0分である。
S T 1 06…浸漬水洗 W 3を行う。即ち、皮膜形成材をイオン交換水に浸潰し、 水洗する。 このときの所要時間は 6分、 使用液量は 1 80 Lである。
ST 1 07…皮膜形成材を加熱乾燥する。このときの所要時間は 1 0分である。 以上より、 比較例の脱脂から加熱乾燥までの所要時間の合計は 38分となる。 また、 脱脂及び浸潰水洗 W 1〜浸漬水洗 W 3での使用液量の合計は 540 Lとな る。
以上の実施例と比較例とから、 実施例のスプレー法は、 比較例の浸漬法に比べ て所要時間で 1 6分短縮し、 使用液量で 520 L低減することができた。
図 1 OA及び図 1 0 Bでは、 洗浄用アルカリ性溶液を使用して、 スプレー洗浄 と超音波洗浄 ·浸漬洗浄とでの洗浄力 (脱脂力) の比較を行った。
図 1 OAにおいて、 試料作成及び効果確認の流れをステップ毎に説明する。
S T 21…エッチング処理を行い、 ステンレス鋼材製の試験片の導電物頭出し を行う。
ST22…試験片に油脂 (グリース、 工作油及び防鎬剤を混合したもの) を塗 布する。
上記したグリースとは、 商品名:コスモグリースマックス N 0. 1、 組成:潤 滑油基油 約 9 1 w t %、 増稠剤 (リチウム石鹼) 約 7 w t %、 潤滑油添加剤 約 2w t %、 メーカー名:コスモ石油ルブリカンッ (株) である。
工作油とは、商品名: N 0. 630 プレス工作油、組成:石油系炭化水素(鉱 物油) 約 50 w t %、 塩素系極圧添加剤 1 0〜 50 w t %、 硫黄系極圧添加 剤 1〜 1 0 w t %、 メーカー名: 日本工作油 (株) である。
防鑌剤とは、 商品名:ノンラスター P 30 F、 組成:防鎬添加剤、 造膜剤、 溶 剤、 メーカー名:ュシロ化学工業 (株) である。
ST 23…試験片を前述の洗浄用アル力リ性溶液で洗浄する。
このとき、 (1 ) スプレー洗浄する場合は、 溶液温度 60°C、 洗浄時間 1分、 スプレー圧力 1 k g f /c m2であり、 (2) 超音波洗浄及び浸漬洗浄を行う場 合は、 超音波洗浄での溶液温度 40°C、 洗浄時間 5分、 浸漬洗浄での溶液温度 4 0°C、 洗浄時間 5分である。
ST 24…試験片を水洗する。
ST 25…試験片を乾燥させる。
ST 26…洗浄の効果を確認するために、試験片を n—へキサン溶剤に浸潰し、 試験片に残留した油脂分を n—へキサン溶剤中に溶解させて抽出する。
S T 27… n—へキサン溶剤を赤外分光装置で分光分析し、油分量を測定する。 図 1 08は図1 OAで得られた各試験片の油分量を示すグラフであり、 縦軸は 試験片に残留した油分量 (単位は mg/cm2)、 横軸は各洗浄方法を示す。
未洗浄の場合は、 油分量は 3. 5mg cm2, 超音波洗浄 ·浸漬洗浄の場合 は 0. 55 mg //c m2、 スプレー洗浄の場合は 0. 1 5mg_ cm2となり、 スプレー洗浄は、 超音波洗浄 ·浸漬洗浄に対して油分量が 73%少ない。 即ち、 スプレー洗浄の方が洗浄力 (脱脂力) が高い。
図 1 1 A及び図 1 1 Bでは、 洗浄用アルカリ性溶液を使用して、 スプレー洗浄 と浸漬洗浄とでの洗浄時間による洗浄力 (脱脂力) の比較を行った。
図 1 1 Aにおいて、 試料作成及び効果確認の流れをステップ毎に説明する。
ST 3 1…エッチング処理にてステンレス鋼材製の試験片の導電物頭出しを行 ラ。
S T 3 2…試験片に油脂 (図 1 0で使用したものと同一のものである。) を塗 布する。
ST 33…試験片を前述の洗浄用アルカリ性溶液で洗浄 (脱脂) する。
このとき、 (1 ) スプレー洗浄する場合は、 溶液温度 40°C、 スプレー圧力 1 k g f /cm2である。 (2) 浸漬洗浄する場合は、 溶液温度 40°Cである。
S T 34…試験片を水洗する。
ST 35…試験片を乾燥させる。
S T 26…洗浄の効果を確認するために、試験片を n—へキサン溶剤に浸潰し、 試験片に残留した油脂分を n—へキサン溶剤中に溶解させて抽出する。
ST 37 —へキサン溶剤を赤外分光装置で分光分析し、 試験片に残留した 油分量を測定する。
実験は、 洗浄時間毎に、 上記工程によってスプレー洗浄した試験片及び浸漬洗 浄した試験片をそれぞれ作成し、 それぞれの試験片の油分量を測定した。
洗浄時間は、 0 (ゼロ) 分 (未洗浄)、 1分、 3分、 5分、 1 0分、 1 5分及 び 20分とした。
図 1 1 Bは図 1 1 Aで得られた各試験片の油分量と洗浄時間との関係を示すグ ラフであり、 縦軸は油分量 (単位は mg/c m2)、 横軸は洗浄時間 (単位は m i n) を表す。 スプレー洗浄では、洗浄前の油分量 3. 5mg/cm2から洗浄時間 1分で 0. 1 4mg/c m2まで急激に減少し、 その後はほぼ横ばいとなった。
これに対して、 浸漬洗浄では、 洗浄前の油分量 3. 5 rngZ cm 2が洗浄時間 1分で 1. OmgZcm2まで少なくなリ、その後は時間と共に油分量が低下し、 20後にスプレー洗浄とほぼ同等になった(スプレー洗浄 0. 08mgZcm2、 浸漬洗浄 0. 1 3mg/cm2)。
このように、 スプレー洗浄では、 浸漬洗浄に比べて洗浄時間 (脱脂時間) を大 幅に短縮することができる。
図 1 2では、 スプレー水洗と浸漬水洗とでの水洗時間による洗浄力の比較を行 つた。
図 1 2 Aにおいて、 試料作成及び効果確認の流れをステップ毎に説明する。
S T4 1…ホウ素を添加したステンレス鋼材製の試験片を準備する。
ST42…試験片を洗浄用アル力リ性溶液に 3分間浸漬する。
ST43…スプレー水洗する場合は、 試験片への水のスプレー量を〗 01_ 分 とする。
S T44…浸漬水洗する場合は、 オーバーフロー式での水量を 1 0 Lノ分とす る。
S T45…試験片をイオン交換水に 60分間浸漬する。
ST46…試験片を浸潰しておいたイオン交換水の p Hを測定する。
実験は、 水洗時間毎に、 上記工程によってスプレー水洗した試験片及び浸漬水 洗した試験片をそれぞれ作成し、それぞれの試験片をィ才ン交換水に浸漬した後、
P Hを測定した。
水洗時間は、 1 5分、 30分、 45分 (スプレー水洗のみ)、 60分及び 1 2 0分とした。
囡 1 2 Bは、 イオン交換水の p Hと水洗時間との関係を示すグラフであり、 縦 軸は p H、 横軸は水洗時間 (単位は s e c) を表す。
スプレー水洗では、 水洗時間 1 5分で p Hが 7. 1 7まで低下し、 水洗時間が 増しても p Hはほぼ横ぱいとなる。
これに対して浸漬水洗では、 水洗時間 1 5分で p Hが 7. 70までしか低下せ ず、 その後、 水洗時間が増すにつれて徐々に低下したが、 水洗時間が 1 20分で もスプレー水洗での p Hまでは下がらなかつた。
このように、 スプレー水洗では、 浸漬水洗に比べて短時間で p Hを低下させる ことができる、 即ち、 短時間の水洗が可能になる。
図 1 3では、 スプレーによる不働態化処理と浸漬による不働態化処理とでそれ ぞれ処理時間毎に不働態皮膜を形成した試験片 (最終的に加熱乾燥まで行ったも のである。) の腐食電流密度を測定し、 比較した。 試験片は処理条件毎に 3個ず つ用意して腐食電流密度を測定し、 3個の平均をグラフにプロットした。 グラフ の縦軸は腐食電流密度 (単位は; u AZc m2)、 横軸は不働態化処理の処理時間 (単位は m i n) を表す。 また、 破線は腐食電流密度の要件値 (5. 1 μ,Α/c m2) である。
以下に腐食実験条件を示す。
•腐食実験条件
試験溶液 :硫酸水溶液 ( P H 3、 濃度 0. 005 %、 温度 90 °C)
試験片電位: 638. 8mV—定 (飽和甘こう電極 (S C E) を基準に設定) 以下、 Γ638. 8mV v s. S C EJ と記載する。
試験方法 :上記試験片電位を 30分間保持後に腐食電流密度を測定 不働態化処理条件を以下に示す。
•スプレー法
処理液 : N a 0 H水溶液 ( p H 1 0. 7〜 1 1、 温度 60 °C)
スプレー量 : 1 00し 分
スプレー時間: 1 0分
加熱乾燥 : 1 1 0°C、 1 0分
•浸漬法
処理液 : N aOH水溶液 (p H 1 0. 8、 温度 50°C)
浸漬時間 : 1 0分
加熱乾燥 : 1 1 0°C、 1 0分
腐食電流密度は、各処理時間共に、スプレー法と浸漬法とで同等な値となった。 即ち、 スプレー法と浸漬法とでは、 共に 3分以上で要件値以下となり、 スプレー 法と浸漬法とでは処理時間の差は無かった。
図 1 4では、 スプレー法にて製造したセパレー夕と浸漬法にて製造したセパレ 一夕による貫通抵抗 (接触抵抗) を測定し、 比較した。 グラフの縦軸は貫通抵抗 (単位は πιΩ · cm2), 横軸は貫通抵抗を測定するときの 2つの条件を表す。 貫通抵抗を測定するときの条件とは、 一つは、 セパレー夕 2枚を接触させてセ パレー夕間の貫通抵抗を測定したもの、 他の一つは、 2枚のセパレー夕間に電極 となるカーボンペーパーを 1枚挟んでセパレータ間 (ここでは、 セパレー夕 '電 極間と記載した。) の貫通抵抗を測定したものである。 貫通抵抗測定時のセパレ 一夕間の面圧については、 面圧を次第に大きくしたときに貫通抵抗が安定したと きのものである。
不働態化処理条件を以下に示す。
-スプレー法
処理液 : N aOH水溶液 (p H 1 0. 7〜1 1、 温度60°0
スプレー量 : 1 001_ 分
スプレー時間: 1 0分
加熱乾燥 : 1 1 0°C、 1 0分
•浸漬法
処理液 : N a O H水溶液 ( p H 1 0. 8、 温度 50 °C)
浸漬時間 : 1 0分
加熱乾燥 : 1 1 0°C、 1 0分
セパレー夕間の貫通抵抗及びセパレー夕■電極間の貫通抵抗は、 それぞれスプ レー法と浸潰法とで同等となり、セパレー夕 ·電極間の貫通抵抗は、目標値 20. 5 m Ω · cm2を下回った。
尚、 本発明では、 不働態化処理用アルカリ性溶液をシャワーすることで水酸化 物形成を促進させたが、 不働態化処理用アルカリ性溶液のシャワーに加え、 不働 態化処理用アル力リ性溶液を蓄えておくタンク内にエアを吹き込むこと (即ち、 エアバルブリングである。) で水酸化物形成を更に促進させてもよい。 産業上の利用可能性 本発明においては、 ステンレス鋼材を、 4 0〜6 0 °Cで且つ p H 9〜1 2のァ ルカリ性溶液に浸漬することでステンレス鋼材の表層部に不働態皮膜を形成する ために、 ステンレス鋼材からの金属イオンの溶出がなく、 単一の溶液への浸漬の みで不働態化処理を行えて、 廃液処理を含めコスト低減が図れる。 また一方で、 脱脂等の洗浄、 不働態化処理をスプレーで行うことにより、 処理の迅速化が図れ る。 従って、 本発明は燃料電池の製造に有用である。

Claims

請 求 の 範 囲
1 . ステンレス鋼材を、 4 0〜6 0 °Cで且つ p H 9〜1 2のアルカリ性溶液に浸 漬することで、 前記ステンレス鋼材の表層部に不働態皮膜を形成することを特徴 としたステンレス鋼材の不働態化処理方法。
2 . 前記アルカリ性溶液に p H緩衝液を添加する、 又はアルカリ性溶液自体に p H緩衝作用を備え、 このアルカリ性溶液にエアパブリングを行うことで、 アル力 リ性溶液中の溶存酸素量の増加によつて不働態皮膜を構成する水酸化物の形成を 促進させ、 且つアル力リ性溶液中に溶解する二酸化炭素によって p Hが低下する のを抑えることを特徴とする請求項 1に記載のステンレス鋼材の不働態化処理方 法。
3 . 前記浸漬工程を終えたステンレス鋼材を、 1 0 0〜2 0 0 °Cに保って乾燥さ せることを特徴とする請求項 1 に記載のステンレス鋼材の不働態化処理方法。
4 . 前記ステンレス鋼材は燃料電池用セパレー夕であることを特徴とする請求項 3に記載のステンレス鋼材の不働態化処理方法。
5 . ステンレス鋼製薄板に潤滑剤を塗布してガス流路及び冷却水流路をプレス成 形する工程と、
洗浄用アルカリ性溶液をプレス成形した後の前記ステンレス鋼製薄板にスプレ 一することによリステンレス鋼製薄板に付着した前記潤滑剤を除去する工程と、 洗浄水を前記ステンレス鋼製薄板にスプレーすることによりステンレス鋼製薄 板に付着した前記洗浄用アル力リ性溶液を除去する工程と、
イオン交換水を前記ステンレス鋼製薄板にスプレーすることによリステンレス 鋼製薄板に残留する前記洗浄水を除去する工程と、
前記ステンレス鋼製薄板を不働態化処理するために不働態化処理用アル力リ性 溶液を前記ステンレス鋼製薄板にスプレーする工程と、
イオン交換水を前記ステンレス鋼製薄板にスプレーすることによリステンレス 鋼製薄板に付着した前記不働態化処理用アルカリ性溶液を除去する工程と、 前記ステンレス鋼製薄板を加熱乾燥する工程と、
から構成したことを特徴とする燃料電池用ステンレス鋼製セパレー夕の製造方 法。
6. 前記不働態化処理用アルカリ性溶液は、 p H 9〜1 2で且つ 40〜60°Cと した溶液であることを特徴とする請求項 5に記載の燃料電池用ステンレス鋼製セ パレー夕の製造方法。
7. 前記不働態化処理用アルカリ性溶液は、 P H緩衝液を添加した溶液であるこ とを特徴とする請求項 6に記載の燃料電池用ステンレス鋼製セパレ一夕の製造方 法。
8. 前記加熱乾燥処理は、 〗 00〜200°Cにて行うことを特徴とする請求項 5 に記載の燃料電池用ステンレス鋼製セパレー夕の製造方法。
9. 前記洗浄用アルカリ性溶液は、 塩基性塩に界面活性剤を添加した溶液である ことを特徴とする請求項 5に記載の燃料電池用ステンレス鋼製セパレー夕の製造 方法。
PCT/JP2003/016675 2003-02-07 2003-12-25 ステンレス鋼材の不働態化処理方法及び燃料電池用ステンレス鋼製セパレータの製造方法 WO2004070083A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2497404A CA2497404C (en) 2003-02-07 2003-12-25 Method for passivating stainless steel product and method for producing stainless steel separator for fuel cell
EP03768210A EP1591560B8 (en) 2003-02-07 2003-12-25 Method for passivating stainless steel product and method for producing stainless steel separator for fuel cell
AU2003292789A AU2003292789A1 (en) 2003-02-07 2003-12-25 Method for passivating stainless steel product and method for producing stainless steel separator for fuel cell
US10/528,794 US7785425B2 (en) 2003-02-07 2003-12-25 Method for passivating stainless steel product and method for producing stainless steel separator for fuel cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003031732A JP4133397B2 (ja) 2003-02-07 2003-02-07 ステンレス鋼材の不働態化処理方法
JP2003-031732 2003-02-07
JP2003-295274 2003-08-19
JP2003295274A JP4327530B2 (ja) 2003-08-19 2003-08-19 燃料電池用ステンレス鋼製セパレータの製造方法

Publications (1)

Publication Number Publication Date
WO2004070083A1 true WO2004070083A1 (ja) 2004-08-19

Family

ID=32852698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016675 WO2004070083A1 (ja) 2003-02-07 2003-12-25 ステンレス鋼材の不働態化処理方法及び燃料電池用ステンレス鋼製セパレータの製造方法

Country Status (6)

Country Link
US (1) US7785425B2 (ja)
EP (1) EP1591560B8 (ja)
KR (1) KR101017053B1 (ja)
AU (1) AU2003292789A1 (ja)
CA (1) CA2497404C (ja)
WO (1) WO2004070083A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7105063B1 (en) * 2006-01-23 2006-09-12 Xerox Corporation Method and materials for extending fuser member life
JP4996864B2 (ja) 2006-03-13 2012-08-08 トヨタ自動車株式会社 燃料電池用セパレータおよび燃料電池用セパレータの製造方法
DE102007005232B4 (de) * 2007-01-30 2019-06-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Brennstoffzellenanordnung und ein Verfahren zu deren Herstellung
KR100777123B1 (ko) * 2007-04-18 2007-11-19 현대하이스코 주식회사 연료전지용 스테인리스강 분리판 및 그 제조방법
KR100895068B1 (ko) * 2007-06-05 2009-05-04 엄창훈 스테인레스 스틸 파이프의 표면처리 방법
KR100909374B1 (ko) * 2008-05-06 2009-07-24 현대하이스코 주식회사 표면개질 공정과 열처리 공정을 포함하는 연료전지용스테인리스 분리판 및 그 제조방법
GB2475334B (en) 2009-11-17 2016-02-03 Intelligent Energy Ltd Plate processing
JP6327903B2 (ja) 2013-07-26 2018-05-23 株式会社三井ハイテック 薄板凹凸部材の製造装置及び製造方法
KR101462623B1 (ko) * 2014-02-04 2014-11-20 주식회사 위스코하이텍 금속기재의 표면처리방법
CN107419259B (zh) * 2017-08-15 2019-08-06 江苏新行健实业有限公司 一种不锈钢件表面钝化处理工艺
CN110875481B (zh) * 2018-09-04 2023-03-07 北京科技大学 一种恒流电化学氮化改性pemfc不锈钢双极板的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161373A (ja) * 1984-08-31 1986-03-29 Agency Of Ind Science & Technol 溶融炭酸塩型燃料電池用セパレ−タの製造法
JP2000336483A (ja) * 1999-05-26 2000-12-05 Asahi Chem Ind Co Ltd 金属表面処理方法等

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3413160A (en) * 1965-10-24 1968-11-26 Dow Chemical Co Passivation of ferrous metal surface
US4430128A (en) * 1980-12-05 1984-02-07 The Dow Chemical Company Aqueous acid composition and method of use
US4382825A (en) * 1981-07-08 1983-05-10 Amchem Products, Inc. Alkaline cleaner for ferrous-based metal surfaces
US4497667A (en) * 1983-07-11 1985-02-05 Amchem Products, Inc. Pretreatment compositions for metals
US5211663A (en) * 1991-06-24 1993-05-18 Smith & Nephew Richards, Inc. Passivation methods for metallic medical implants
US6440598B1 (en) * 1997-10-14 2002-08-27 Nisshin Steel Co., Ltd. Separator for low temperature type fuel cell and method of production thereof
JP4495796B2 (ja) 1999-05-12 2010-07-07 日新製鋼株式会社 ステンレス鋼製低温型燃料電池用セパレータ及びその製造方法
JP2002012990A (ja) * 2000-06-28 2002-01-15 Hitoshi Soyama 金属被加工物表面のキャビテーションによる耐食処理法およびキャビテーション浸食の低減方法及び耐食性およびキャビテーション浸食防止性を向上させる加工処理をした加工物
AU2002363057A1 (en) * 2001-08-03 2003-05-06 Elisha Holding Llc An electrolytic and electroless process for treating metallic surfaces and products formed thereby
CA2413558C (en) * 2001-12-05 2007-06-05 Honda Giken Kogyo Kabushiki Kaisha Fuel cell metallic separator and method for manufacturing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161373A (ja) * 1984-08-31 1986-03-29 Agency Of Ind Science & Technol 溶融炭酸塩型燃料電池用セパレ−タの製造法
JP2000336483A (ja) * 1999-05-26 2000-12-05 Asahi Chem Ind Co Ltd 金属表面処理方法等

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1591560A4 *

Also Published As

Publication number Publication date
KR20050097914A (ko) 2005-10-10
EP1591560A1 (en) 2005-11-02
EP1591560A4 (en) 2009-12-30
US20050241732A1 (en) 2005-11-03
KR101017053B1 (ko) 2011-02-23
CA2497404C (en) 2011-09-20
US7785425B2 (en) 2010-08-31
CA2497404A1 (en) 2004-08-19
AU2003292789A1 (en) 2004-08-30
EP1591560B1 (en) 2011-07-06
EP1591560B8 (en) 2012-01-04

Similar Documents

Publication Publication Date Title
WO2005026411A1 (ja) アルミニウムまたはアルミニウム合金用アルカリ洗浄液及び洗浄方法
KR102572078B1 (ko) 스테인레스강의 부동태 표면 처리방법
WO2004070083A1 (ja) ステンレス鋼材の不働態化処理方法及び燃料電池用ステンレス鋼製セパレータの製造方法
CN105543826A (zh) 一种形成高耐蚀磷化膜的常温磷化液、制备方法及磷化工艺
CN102747351B (zh) 镁合金黑色氧化工艺
CN101560657B (zh) 一种镁合金表面化学转化处理的方法
JP2013534562A (ja) アルミニウムのための前処理プロセス及びそれに用いられる高エッチング洗浄剤
CN107937895A (zh) 一种具有良好耐磨性能的不锈钢处理方法
JP4327530B2 (ja) 燃料電池用ステンレス鋼製セパレータの製造方法
JP4242653B2 (ja) カルボキシル化による金属表面処理方法
CN100489157C (zh) 不锈钢产品的钝化方法和用于燃料电池的不锈钢隔板的制造方法
TW201202480A (en) Process for preparing and treating a substrate
KR20080107036A (ko) 스테인레스 스틸 파이프의 표면처리 방법
CN102747354B (zh) 镁合金黑色氧化液
CA1160981A (en) Dewatering metal surface using aliphatic carboxylic acid salt
CN112160002B (zh) 一种在铜合金表面进行表面活化处理的方法
CN109652790B (zh) 铝合金环保型化学转化处理方法
CN109338382A (zh) 铝板化学清洗工艺
CN115369411B (zh) 一种环保的冷轧钛及钛合金板材表面洁净工艺
CN104988562B (zh) 一种铸造件电泳处理方法
JP7087975B2 (ja) セパレータの製造方法
JP4500115B2 (ja) 沸水耐黒変性に優れた飲料容器用アルミ合金材
JP5095932B2 (ja) 樹脂被覆アルミニウム板及びその製造方法
CN105821404A (zh) 一种四合一型刷涂化学转化液
CN117604511A (zh) 一种型钢加工用表面处理工艺

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2497404

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10528794

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038A1330X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057007703

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003768210

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057007703

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003768210

Country of ref document: EP