WO2004069777A1 - Method for producing alkylene derivative and method for regenerating catalyst for producing alkylene derivative - Google Patents

Method for producing alkylene derivative and method for regenerating catalyst for producing alkylene derivative Download PDF

Info

Publication number
WO2004069777A1
WO2004069777A1 PCT/JP2004/001322 JP2004001322W WO2004069777A1 WO 2004069777 A1 WO2004069777 A1 WO 2004069777A1 JP 2004001322 W JP2004001322 W JP 2004001322W WO 2004069777 A1 WO2004069777 A1 WO 2004069777A1
Authority
WO
WIPO (PCT)
Prior art keywords
quaternary
catalyst
water
quaternary phosphonium
phosphonimoxide
Prior art date
Application number
PCT/JP2004/001322
Other languages
French (fr)
Japanese (ja)
Other versions
WO2004069777A8 (en
Inventor
Masahiko Yamagishi
Kazuki Kawabe
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003031391A external-priority patent/JP4333153B2/en
Priority claimed from JP2003078178A external-priority patent/JP4273799B2/en
Priority claimed from JP2003088281A external-priority patent/JP4273802B2/en
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Publication of WO2004069777A1 publication Critical patent/WO2004069777A1/en
Publication of WO2004069777A8 publication Critical patent/WO2004069777A8/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/09Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
    • C07C29/10Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes
    • C07C29/103Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes of cyclic ethers
    • C07C29/106Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes of cyclic ethers of oxiranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/09Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
    • C07C29/10Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates
    • C07D317/38Ethylene carbonate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a method for producing an alkylene derivative such as alkylenedic alcohol or alkylenedalycol, and more specifically, an alkylene oxide such as ethylene oxide using a quaternary phosphonimoxide and / or bromide catalyst.
  • Water reacting in the presence of carbon dioxide to produce an alkylene glycol such as ethylene glycol, or a method of reacting an alkylene oxide with carbon dioxide to produce ethylene carbonate and the like,
  • the present invention relates to a method for efficiently recovering a quaternary phosphonimoxide and a Z or promide catalyst from this reaction system and recycling the catalyst.
  • the alkylene glycol means an alkylene glycol having about 2 to about 10 carbon atoms such as ethylene glycol and propylene glycol, and the alkylene glycol is, for example, ethylene glycol and propylene glycol. It means an alkylene carbonate having about 2 to 10 carbon atoms such as a ponate.
  • Ethylene glycol is produced on a large scale by hydrolyzing ethylene oxide (ethylene oxide) by directly reacting it with water.
  • ethylene glycol is used in the hydrolysis.
  • a large excess of water over the stoichiometric amount of ethylene oxide must be used. For this reason, it is necessary to distill the generated aqueous solution of ethylene glycol to dehydrate a large excess of water, and there is a problem that a large amount of energy is required to obtain purified ethylene glycol.
  • This reaction is a two-stage reaction in which ethylene carbonate is generated by the reaction of ethylene oxide and carbon dioxide, and ethylene glycol is generated by hydrolysis of the ethylene carbonate.
  • This two-stage reaction proceeds in the same reactor due to the presence of water in the reaction system, but an additional reactor may be provided in the subsequent stage to complete the second-stage reaction.
  • diethylene glycol and triethylene dalicol are hardly produced as by-products, so that the hydrolysis can be carried out with a slight excess of water than the stoichiometric amount. Costs can be greatly reduced.
  • carbon dioxide is generated by hydrolysis of ethylene carbonate generated by the reaction between ethylene oxide and carbon dioxide, this carbon dioxide is recycled and reused.
  • ethylene glycol can be produced from ethylene oxide.
  • a variety of catalysts have been proposed for the production of Z- and Z- or ethylene-potionates.
  • One of the preferred catalysts is an organic phosphonium salt, particularly preferably a quaternary phosphonium salt. Or bromide (Japanese Patent Publication No. 55-47673).
  • an alkali metal carbonate may be used in combination with such an organic phosphonium salt as a co-catalyst (Japanese Patent Application Laid-Open No. H12-128814).
  • the raw material ethylene oxide is produced by the oxidation of ethylene.
  • chlorohydrocarbons such as ethyl chloride are used to control the selectivity of the reaction system. It is supplied as an agent (Japanese Patent Application Laid-Open No. 2-104579).
  • the method of producing ethylene glycol or ethylene carbonate by reacting ethylene oxide with water or carbon dioxide in the presence of carbon dioxide is an industrially advantageous method having no problem of by-products as described above. However, there is a problem that the reaction efficiency is reduced by continuing the reaction.
  • the present inventors have studied the cause of the reduction in the reaction efficiency, and have found that the cause is that the quaternary phosphonimoxide or promide catalyst in the reaction system is converted into chloride having low catalytic activity. In fact, about 20% by weight of the quaternary phosphonimoxide or promide catalyst in the reaction system was converted to quaternary phosphonium chloride by operating the apparatus for about one year.
  • the quaternary phosphonium chloride having low reaction activity derived from the catalyst is separated and removed from the reaction system, and the quaternary phosphonium chloride or promide having high activity is separated. Only need to leave. However, it has not been clarified conventionally that the decrease in reaction efficiency over time is due to the time-dependent conversion to chloride. Furthermore, regarding the method of separating quaternary phosphonimoxide or promide, which is a catalyst of the reaction system, from quaternary phosphonium chloride, quaternary phosphonium chloride is converted to quaternary phosphonimoxide or promide. There was no study on how to do it. Disclosure of the invention
  • the present invention solves the above-mentioned conventional problems, and reacts an alkylene oxide such as ethylene oxide with water or carbon dioxide in the presence of carbon dioxide using a quaternary phosphonimoxide and a Z or bromide catalyst.
  • alkylene glycols such as ethylene glycol or alkylene derivatives such as alkylene forces such as ethylene carbonate
  • quaternary phosphonium chloride generated in the reaction system is efficiently removed.
  • the gist of the present invention is characterized by the following description.
  • a method for producing an alkylene derivative comprising a reaction step of reacting an alkylene oxide with water in the presence of carbon dioxide to produce an alkylene glycol using a quaternary phosphonimoxide or bromide catalyst,
  • the alkylene glycol is removed from at least a part of the reaction solution and Z or the catalyst solution so that the molar ratio of the alkylene glycol to the catalyst is 20 times or less, and then the catalyst is recovered by mixing with water.
  • a method for producing an alkylene derivative is provided.
  • quaternary phosphonimoxide and Z or bromide as a catalyst, reacting alkylene oxide containing a chlorine compound as an impurity with water in the presence of carbon dioxide to form alkylene glycol.
  • a method for regenerating a catalyst comprising converting into a phosphonimoxide and Z or promide to precipitate in water.
  • a quaternary phosphonidyl chloride and Z or promide are converted to quaternary phosphonidomonodide and Z or promide, and
  • a method for regenerating a catalyst comprising:
  • a mixture containing a quaternary phosphonium chloride and a quaternary phosphonimoxide and / or bromide is a reaction solution extracted from the reaction step, or water or Z or The method according to the above (8) or (9), which is a residue after at least part of the alkylene derivative of the target product is distilled off.
  • a quaternary phosphonimoxide and Z or a promide as a catalyst.
  • the quaternary phosphonium chloride is added.
  • a process for producing an alkylene derivative comprising converting muchloride into a quaternary phosphonimidyl monohydrate and Z or promide, precipitating and recovering in water, and circulating the reaction process.
  • a method for producing an alkylene derivative comprising a reaction step of reacting an alkylene oxide with carbon dioxide to produce an alkylene carbonate, using a quaternary phosphonimoxide and / or a promide as a catalyst,
  • Iodide and / or bromide are added to a mixture containing quaternary phosphonium chloride and quaternary phosphonium chloride-dyd and Z or promide obtained from the reaction step, and the mixture is derived from quaternary phosphonium chloride.
  • a quaternary phosphonimoxide and / or or promide by precipitating chlorine in an organic solvent as an inorganic chloride, and circulating the same in the reaction step. .
  • a reaction solution containing a catalyst at a high concentration and / or a catalyst solution are mixed with water, chlorine salts derived from the catalyst remain dissolved in the solution side, but iodine salts or bromide salts precipitate. Will come.
  • iodine salts, bromine salts, and chloride salts are all soluble in alkylene glycol peralkylene carbonate, but iodide salts or bromine salts have low solubility in water, and chlorine salts have low solubility in water. high.
  • the catalyst can be precipitated as follows.
  • cooling is not necessarily required. However, cooling is preferred to reduce the solubility of the catalyst.
  • the separated liquid after solid-liquid separation and recovery of the quaternary phosphonimide or promide contains the quaternary phosphonium chloride chloride, which is a quaternary phosphonium chloride. It can be recovered after being converted to quaternary phosphonimoxide or bumuide by ion exchange or the like, or can be recycled to the reaction process in a solution state.
  • an alkylene glycol and an alkylene glycol are reacted with an alkylene oxide and water or carbon dioxide in the presence of carbon dioxide using a quaternary phosphonimoxide and / or bromide catalyst.
  • a quaternary phosphonimoxide and / or bromide catalyst Adding iodide and Z or bromide to a mixture containing quaternary phosphonium chloride and quaternary phosphonium iodide and / or promide obtained from the reaction step to be formed
  • the quaternary phosphonium chloride in this mixture can be converted to a chloride and / or a promide.
  • the quaternary phosphonimoxide and Z or promide which are present in advance, and the quaternary phosphonimoxide and Z or bromide formed by the reaction of the quaternary phosphonium chloride with iodide and Z or bromide are converted into It can be precipitated in water and recovered as a precipitate.
  • reaction liquid the liquid flowing out of the reactor or the liquid extracted from the reactor
  • reaction liquid water, alkylene glycol and alkylene carbonate are separated from the reaction liquid by distillation to concentrate the catalyst.
  • the resulting liquid may be simply referred to as “catalyst liquid”.
  • the present invention can be directly applied to the reaction mixture containing the catalyst extracted from the reaction step of alkylene glycol or alkylene carbonate as the mixture to be treated. After removing part or all of the alkylene glycol or alkylene carbonate as the solvent by evaporation, water is added to the liquid catalyst liquid or solid residue to precipitate and recover a part of the catalyst. (Hereinafter, the operation of adding water to this catalyst solution or solid residue to precipitate and recover a part of the catalyst may be referred to as “pre-recovery”. ).
  • the concentration of the quaternary phosphonium chloride in the mixture to be treated can be increased, and the conversion to the quaternary phosphonimoxide and / or promide and the recovery rate can be increased. .
  • quaternary phosphonimoxide and Z or promide have lower solubility in water than quaternary phosphonium chloride
  • quaternary phosphonimoxide and / or bromide can be obtained by adding water in this manner. Most of the quaternary phosphonium chloride is dissolved in water.
  • the concentration of the quaternary phosphonium chloride in the mixture to be treated can be increased, and its conversion to quaternary phosphonium chloride and / or bromide and the recovery rate can be increased. .
  • quaternary phosphonium chloride when iodide, Z or bromide is added to quaternary phosphonium chloride dissolved in water, quaternary phosphonium chloride precipitates as iodide and / or promide, and is contained in the solution. Chloride corresponding to the added compound remains dissolved. Therefore, quaternary phosphonium chloride can be easily separated and recovered as quaternary phosphonimoxide and Z or bromide by solid-liquid separation of the deposited precipitate.
  • the quaternary phosphonimoxide and Z or promide thus recovered can be recycled to the reaction step of alkylene glycol or alkylene carbonate. Furthermore, according to the present invention, a mixture containing a quaternary phosphonium chloride obtained from the reaction step or obtained from the above-mentioned recovery step, and a quaternary phosphonimoxide and Z or bromide is further provided. It is possible to recover quaternary phosphonimoxide and Z or promide by adding iodide and Z or bromide to the organic solvent and precipitating quaternary phosphonium chloride-derived chlorine as an inorganic chloride in an organic solvent. It is.
  • a reaction step of reacting an alkylene oxide with water or carbon dioxide in the presence of carbon dioxide using a quaternary phosphonimoxide and Z or a bromide catalyst to produce alkylene glycol or alkylene carbonate.
  • chlorine derived from quaternary phosphonium chloride is precipitated as an inorganic chloride having low solubility in an organic solvent in an organic solvent, and separated from the quaternary phosphonium chloride dissolved in the organic solvent. And Z or promide can be recovered.
  • an operation of precipitating chlorine derived from quaternary phosphonium chloride as an inorganic chloride in an organic solvent may be referred to as an “inorganic chloride precipitating operation”.
  • inorganic chloride precipitating operation In order to precipitate chlorine of quaternary phosphonium chloride as inorganic chloride, iodide and Z or bromide are added, and quaternary phosphonium chloride and quaternary phosphonium chloride and / or promide are added.
  • Mixtures containing may also be referred to as “mixtures to be treated”.
  • the quaternary phosphonium chloride is converted to chloride or promide, and chloride derived from chloride is precipitated as an inorganic chloride in an organic solvent, and the separated liquid is separated into quaternary phosphonium chloride in an organic solvent. It is one in which nimoxide and / or promide are dissolved. Therefore, by removing the organic solvent from this separated solution by evaporation, quaternary phosphonodioxide and / or promide can be recovered as a solid. The recovered quaternary phosphonimoxide and Z or promide can be recycled as it is or after dissolving in an appropriate solvent after washing with water if necessary, to the alkylene glycol or alkylene carbonate reaction step. . BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention provides a method similar to the method for producing an alkylene glycol, in which the reaction conditions are changed, the reaction temperature is lowered, and the amount of alkylene glycol, such as ethylene glycol, is suppressed.
  • Alkylene carbonates such as ethylene carbonate
  • the present invention can also be applied to a reaction for producing a unit, and also to a reaction in which both an alkylene glycol and an alkylene glycol are used as target products.
  • a method of adding iodide to the mixture to be treated, converting quaternary phosphonium chloride to quaternary phosphonium iodide and recovering the same will be exemplified.
  • Bromide may be added in place of iodide to convert quaternary phosphonium chloride to quaternary phosphonium bromide, and the iodine and bromide may be added in combination to add quaternary phosphonium chloride. It may be converted into quaternary phosphonimoxide and quaternary phosphonium bromide and recovered.
  • a method of adding quaternary phosphonium chloride to a quaternary phosphonium chloride by adding inorganic iodide to the mixture to be treated and a method of precipitating chlorine derived from quaternary phosphonium chloride as inorganic chloride are exemplified.
  • Bromide may be added in place of iodide to convert quaternary phosphonium chloride to quaternary phosphonium promide and to precipitate chlorine derived from quaternary phosphonium chloride as inorganic chloride.
  • quaternary phosphonimoxide catalyst there are compounds described in Japanese Patent Publication No. 58-22448. Representative examples include triphenylmethyl phosphonimoxide, triphenyl propyl phosphonimoxide, triphenylbenzyl phosphonimoxide, tributyl methyl phosphonimoxide and the like. . It is preferable that such a quaternary phosphonimoxide catalyst be supplied to the reaction system in a molar amount of 0.01 to 0.05 times the molar amount of ethylene oxide.
  • quaternary phosphonium bromide catalyst When a quaternary phosphonium bromide catalyst is used, a promide catalyst corresponding to the above-mentioned quaternary phosphonimudide catalyst can be used, and the preferable usage thereof is the same as that of the quaternary phosphonimudide catalyst.
  • an alkali metal carbonate may coexist as a co-catalyst in the reaction system, whereby the production efficiency of ethylene glycol can be increased.
  • Alkali metal carbonate can coexist in the reaction system by adding a hydroxide, carbonate or bicarbonate of an alkali metal such as sodium or potassium, preferably potassium. Even when the compounds are added, they exist as carbonates in the reaction system. In this case, it is preferable that the alkali metal carbonate, preferably potassium carbonate, is present in a molar ratio of 0.01 to 1 with respect to the quaternary phosphonium iodide.
  • the amount of water relative to ethylene oxide can be reduced to the stoichiometric amount, and may be less depending on the type of reaction, but it is usually 1.0 to 10.0 times the molar amount of ethylene oxide. It is preferable to use it.
  • carbon dioxide has a sufficient effect in an amount of not more than equimolar to ethylene oxide, and is used in an amount of about 0.1 to 5.0 mol per mol of ethylene oxide under ordinary conditions. However, there is no strict limit on the ratio of these quantities.
  • the reaction temperature varies depending on the type of alkylene oxide, the type of catalyst, the composition of the reaction solution at the beginning of the reaction, and the like, but is generally in the range of 50 to 180 ° C.
  • the pressure is the amount of carbon dioxide.
  • the temperature varies depending on the reaction temperature and the like, and also varies with the progress of the reaction, but is generally in the range of 0.5 to OMPa.
  • the type of the reactor is not particularly limited as long as the gas-liquid reaction can be smoothly performed.
  • the number of reactors and the residence time are also selected so that the desired conversion can be achieved.
  • a reactor is added as necessary to hydrolyze ethylene glycol in the reaction solution.
  • reaction solution or the catalyst solution is extracted from such a reaction step, and when the molar ratio of the alkylene glycol to the catalyst contained in the solution is higher than 20 times, the reaction solution or catalyst solution is 20 times. Thereafter, water and alkylenedalycol or alkylenedalycol are removed so as to be preferably twice or less, and then mixed with water again.
  • the catalyst is precipitated and recovered by simply mixing water.
  • the temperature of the reaction solution extracted from the reaction step is about 100 to 180 ° C. It is preferable to cool the temperature of the liquid after mixing the reaction liquid and water to 30 or less, preferably about 0 to 20 ° C., thereby precipitating quaternary phosphonimoxide in a more efficient manner. be able to. The necessity of this cooling is determined by the temperature of the reaction solution, the temperature of the water to be mixed, and the mixing amount.
  • Ethylene glycol water may be contained at least partially, preferably most, for example, from the liquid extracted from the reaction step so that a certain concentration becomes 40% by weight or more. If water is mixed with the liquid after the removal of), quaternary phosphonimide can be precipitated without the need for cooling. Can be well precipitated.
  • the amount of water varies depending on the amount of quaternary phosphonimoxide in the reaction solution, the amount of ethylene glycol, the amount of chlorine salt, the presence or absence of cooling, the desired recovery efficiency of quaternary phosphonimoxide, and the like. It tends to be difficult to filter, and the efficiency of dissolving the quaternary phosphonium chloride tends to decrease.
  • the amount of water added in one treatment is appropriately determined within a range of 0.1 or more, preferably in a range of 0.1 to 5 times by weight of the liquid to be treated.
  • the liquid phase separated from the solid can be used again as a reaction solution, a catalyst solution, or washing water for the catalyst from which ethylene dalicol has been separated.
  • concentration of quaternary phosphonium chloride contained in the quaternary phosphonium chloride recovered will increase due to an increase in the concentration of quaternary phosphonium chloride contained in the washing water.
  • reaction solution is washed several times and gradually replaced with washing water having a low quaternary phosphonium chloride concentration can be implemented without any problem.
  • cooled water or a slurry of quaternary phosphonium dihydrate is pre-existing in a vessel, and the reaction solution or catalyst solution and water are supplied continuously or batchwise, and the obtained mixture is continuously or It is also possible to extract in batches and collect the precipitate contained in this by filtration.
  • ethylene glycol In order to separate ethylene glycol from the reaction solution, for example, an operation of distilling and separating ethylene glycol under reduced pressure may be performed. Water is also separated with the ethylenedalicol.
  • the precipitate obtained by mixing the reaction solution and water as described above is usually a highly active quaternary phosphonimoxide catalyst having an iodine salt content of 90% by weight or more and a chloride salt content of 10% by weight or less. And can be effectively recycled to the reaction process.
  • the separated solution after separating the precipitate of quaternary phosphonium dihydrate contains chlorinated quaternary phosphonium chloride.
  • This quaternary phosphonium chloride is obtained by subjecting the separated solution to dehalogenation treatment with an OH-type anion exchange resin and neutralizing it with hydrogen iodide or directly converting chlorine ion to iodine ion with an ion exchange resin substituted with iodine. It is converted to quaternary phosphonimoxide by a method such as exchange.
  • the catalyst can be regenerated, and the obtained regenerated catalyst can also be effectively recycled to the reaction step.
  • a part of the reaction solution is continuously or intermittently withdrawn from the continuously operating reactor to recover the quaternary phosphonimoxide catalyst, and the recovered quaternary phosphonide is recovered.
  • the mouldide catalyst may be circulated through the reactor.
  • chloride salts are removed within a range that does not excessively increase the cost of recovering the catalyst.
  • the weight ratio of chloride to iodine in the reactor is in the range of 0.01 to 1.0, the reaction solution is continuously or intermittently withdrawn to keep the reaction efficiency high. Processing is preferred.
  • the amount of withdrawal is not particularly limited, but is preferably about 0.1 to 100% by weight with respect to the amount of the reaction solution or the amount of the catalyst solution, respectively.
  • the ratio and composition of quaternary phosphonium chloride and chloride contained in the mixture to be treated containing quaternary phosphonium chloride and chloride are the same as those of chlorine in the ethylene glycol production process. Varies depending on the iodine ratio, bleeding location, and subsequent processing (pre-recovery operation, etc.) shown below.
  • the abundance ratio and concentration of quaternary phosphonium chloride and chloride in the mixture to be treated are not particularly limited, but the higher the ratio of chloride to chloride and the higher the concentration of chloride, the higher the efficiency of the recovery operation.
  • the molar ratio of quaternary phosphonium chloride to quaternary phosphonium chloride in the mixture to be treated is 1/20 or more, and more preferably 1 Z 10 or more.
  • the concentration of quaternary phosphonium chloride in the mixture is preferably at least 0.1% by weight, particularly preferably at least 1% by weight.
  • Part of the liquid in the ethylene glycol production process is withdrawn as a liquid containing the catalyst.
  • the extraction location is not particularly limited as long as the solution contains a catalyst present in the process.
  • ethylene carbonate is produced by the reaction of ethylene oxide and carbon dioxide
  • ethylene glycol is produced by the hydrolysis of ethylene carbonate. It is a two-stage reaction. Therefore, when the liquid is withdrawn from this production process, if this reaction is carried out in two reactors provided in series, it may be withdrawn from either reactor or withdrawn from both reactors.
  • the concentration of quaternary phosphonium chloride and chloride in the mixture to be treated must be increased in order to increase the recovery of quaternary phosphonium chloride in the subsequent process.
  • the distillation method can be carried out in a distillation tower, but a simple evaporator may be used.
  • the mixture is concentrated until the concentration of the quaternary phosphonimoxide in the mixture to be treated becomes 1Z20 mol times or more of the solvent.
  • this concentration operation by distillation is carried out under reduced pressure, preferably at 4 OO torr (53.2 Pa) or less, preferably at a temperature of 60 to 210. It is preferred to carry out.
  • the high-concentration catalyst solution obtained by distilling and concentrating the reaction solution contains quaternary phosphonimoxide and quaternary phosphonimoxide formed by chlorination of quaternary phosphonimoxide in the ethylene glycol production process. Contains muchloride.
  • the catalyst solution may be a solution obtained by taking the reaction solution out of the process and concentrating the catalyst solution, and the catalyst extracted from the distillation column that separates the catalyst solution from water, ethylene glycol, and ethylene carbonate in the process. It may be a liquid.
  • any ionic compound that can be ion-exchanged with quaternary phosphonium chloride and that dissociates in water can be used. It may be selected as appropriate, but alkali metal salts such as sodium salt and potassium salt, or hydrogen acid and the like are preferable in terms of solubility, toxicity, price and the like.
  • alkali metal salts such as sodium salt and potassium salt, or hydrogen acid and the like are preferable in terms of solubility, toxicity, price and the like.
  • any ionic compound that can dissociate in water and that can be ion-exchanged with quaternary borophorum chloride can be used. However, from the viewpoints of solubility, toxicity, and price, sodium salts, potassium salts, etc. Are preferred.
  • the added amount of iodide may be equal to or more than the equivalent of the quaternary phosphonium chloride present in the mixture to be treated.
  • a suitable range is 0.5 to 10 moles, preferably 1 to 5 moles, per 1 mole of the quaternary phosphonium chloride present in the mixture to be treated. Adding more iodide than necessary increases recovery, but excess iodide is lost.
  • Addition of iodide can be carried out in the form of a solid or organic solvent solution or an aqueous solution.However, in the case of industrial implementation, liquid is more convenient to handle, so add it as an organic solvent solution or as an aqueous solution Is preferred.
  • the amount of water may be sufficient to dissolve iodide, and the amount depends on the iodide used. For example, when potassium iodide is used, its saturation solubility in water is 60%, so it may be added so that the concentration of potassium iodide in the treated product is lower than this. Usually, it is preferably added as an aqueous solution of about 1 to 60% by weight.
  • the apparatus for adding iodide to the mixture to be treated can be carried out in any type of vessel, but is preferably carried out in a vessel equipped with a stirrer to promote the ion exchange reaction.
  • the quaternary phosphonium chloride present in the mixture to be treated is converted into quaternary phosphonium chloride, and is precipitated in water together with the quaternary phosphonium chloride already present in the mixture to be treated.
  • the precipitated quaternary phosphonimoxide is collected by filtration.
  • filtration method There is no particular limitation on the filtration method, and centrifugation or the like can be applied in addition to filtration using a normal filter.
  • the quaternary phosphonium chloride recovered as a solid may contain about 10% by weight of quaternary phosphonium chloride and added iodide. Even with this concentration, it is possible to circulate it in the ethylene glycol reaction step as it is, but if necessary, wash it with water to increase the purity of the quaternary phosphonimoxide and then recycle it. Since the water used for washing contains quaternary phosphonimoxide, it can be used for the next washing or reused as water for dissolving the iodide added to the mixture to be treated as described above. It is.
  • the recovered quaternary phosphonimoxide can be, for example, dissolved in ethylene glycol and circulated to the reaction system.
  • the embodiment in which the quaternary phosphonium chloride is converted to the quaternary phosphonium chloride and recovered is described. This operation can be performed in an organic solvent.
  • quaternary phosphonium chloride is converted to quaternary phosphonium monodide by performing an operation of precipitating an inorganic chloride in an organic solvent and then recovered will be described.
  • the inorganic chloride precipitation operation of the present invention is performed on this catalyst solution.
  • ethylene glycol and / or ethylene carbonate in the high-concentration catalyst solution is further removed to obtain a substantially solvent-free solid, which is redissolved in another organic solvent, the solubility of inorganic chloride is reduced. Is further reduced, and the deposition efficiency is improved.
  • organic solvent used here those having a low ability to dissolve inorganic chloride and a high ability to dissolve quaternary phosphonium salts are desirable.
  • Suitable solvents include aliphatic halogenated hydrocarbons, ketones, alcohols, nitriles, amides, urea compounds, carbonates.
  • alcohol examples include ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 1,1-dimethylethanol, and 1-pentanol.
  • Examples of the aliphatic halogenated hydrocarbon include methylene chloride, chloroform, 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2-trichloroethane, and 1,2-dichloropropane. , 1,3-dichloropropane, 1,2,3-trichloropropane, 1,4-dichlorobutane, 1,6-dichlorohexane and the like.
  • nitriles include acetonitrile, propionitrile, ptyronitrile, adiponitrile, benzonitrile and the like.
  • amide include dimethylformamide and dimethylacetamide.
  • urea compound include tetramethyl perylene, 1,3-dimethylimidazolidin-2-one, and the like.
  • ketones include acetone, methyl ethyl ketone, and methyl isopropyl ketone.
  • carbonate include ethylene carbonate, propylene carbonate, and butyl carbonate.
  • One of these organic solvents may be used alone, or two or more thereof may be used in combination.
  • the amount of the organic solvent to be added is not particularly limited, but is usually 1 to 10 times by weight of the total of quaternary phosphonium chloride and chloride in the mixture to be treated.
  • sodium fluoride is a suitable combination because it dissolves well in acetone.
  • potassium iodide dissolves in ethylene glycol, and such a combination is also suitable.
  • complete dissolution of iodide in organic solvents is not always necessary. Even if the iodide has a small amount of saturated dissolution, iodide is added to the mixture to be treated and then consumed by reacting with quaternary phosphonium chloride. Progresses. As a result, an amount exceeding the solubility can react to form an inorganic salt.
  • the selection of iodide and the organic solvent requires iodide and the inorganic salt formed by the reaction of this iodide with quaternary phosphonium chloride. And the solubility in organic solvents. Examples of such a combination include butanol and ethylene glycol with respect to potassium iodide.
  • the apparatus for adding iodide to the mixture to be treated can be carried out in any type of vessel, but is preferably carried out in a vessel equipped with a stirrer to promote the ion exchange reaction.
  • the quaternary phosphonium in the quaternary phosphonium chloride present in the mixture to be treated becomes quaternary phosphonium oxide, while chlorine precipitates as an inorganic chloride.
  • the precipitation temperature is not particularly limited, and is determined in consideration of the dissolution temperature dependency of the inorganic chloride, the boiling point and viscosity of the organic solvent used, and the solubility of the quaternary phosphonium salt. Usually, it is performed at a normal temperature of 0 to 50 ° C. The reaction between iodide and quaternary phosphonium chloride proceeds rapidly when the viscosity of the solvent is low.
  • the solvent is a high-viscosity solvent or the solubility of iodide is low, it is desirable to increase the mixing time.
  • the reaction is preferably completed in about 1 minute to 3 hours. By this operation, the quaternary phosphonium chloride of the quaternary phosphonium chloride in the organic solvent is converted to chloride at a conversion of 90% or more, and the inorganic chloride precipitates.
  • the precipitated inorganic chloride is removed by filtration.
  • the method of filtration is not particularly limited, and besides ordinary filtration by filtration, centrifugation or the like can be applied.
  • the quaternary phosphonimoxide which is a catalyst
  • the quaternary phosphonimoxide and the quaternary phosphonimoxide are removed by evaporating the organic solvent from the filtrate. If added in excess, iodide is recovered as a solid.
  • the removal of the organic solvent can be performed with a usual evaporator. As described above, the evaporation of the organic solvent is performed at a temperature of 200 ° C or less by reducing the pressure as necessary in consideration of the heat resistance of the recovered quaternary phosphonimoxide. It is desirable to do.
  • the purity of the quaternary phosphonium iodide recovered in this way is 90% or more, excluding the iodide added in an excessive amount and the remaining solvent, so that it can be used directly or in a suitable solvent such as ethylene glycol.
  • the solid can be dissolved in water and recycled to the reaction step.
  • the recovered solid is washed with water to remove the remaining iodide and the solvent before the solid is recycled to the reaction step.
  • the recovered solid may be added with washing water to form a slurry, which may be filtered or centrifuged.
  • the amount of washing water to be added is preferably not more than 2 times the weight of the recovered solid in consideration of the loss of dissolution in the washing water.
  • the solvent is removed by the same operation without filtering the inorganic chloride, and then the above-mentioned washing is performed to dissolve and remove the inorganic compound in water. It is also possible.
  • the concentration of the quaternary phosphonimoxide is 1 Z 20 mol times or more of ethylene glycol, or water is added to the high concentration catalyst solution concentrated to such a concentration. After mixing, the mixture is cooled and quaternary phosphonimoxide is selectively precipitated and recovered before recovery.
  • the amount of water to be added is arbitrary, but if it is too small, a sufficient precipitation effect cannot be obtained, so that at least the water is dissolved. It is necessary to add 0.1 weight times or more of the class phosphonimoxide.
  • the upper limit of the amount of water to be added is not particularly limited, but is preferably about 5 times by weight or less with respect to the dissolved quaternary phosphonido monodide so as not to excessively increase the treatment capacity. It is preferable that the temperature at the time of the precipitation operation be lower, since the amount of quaternary phosphonimoxide remaining in water is small. It is preferably carried out at 0 to 30 ° C.
  • the remaining aqueous solution from which the precipitated quaternary phosphonium chloride was recovered contains the quaternary phosphonium chloride and quaternary phosphonium chloride which did not precipitate.
  • the remaining aqueous solution obtained by collecting the above quaternary phosphonimoxide is treated as a mixture to be treated, concentrated if necessary, and then added with iodide to form a quaternary phosphonimoxide of quaternary phosphonium chloride. Conversion and precipitation can be performed.
  • the concentration is performed so that the concentration of the quaternary phosphonium chloride in the mixture to be treated before adding iodide becomes 1% by weight or more, and the conversion efficiency of the quaternary phosphonium chloride and the quaternary phosphonium chloride are increased. It is preferable from the viewpoint of the recovery efficiency of moodide.
  • the type of iodide to be added, the concentration and method of addition, the method of filtering off the precipitate, the subsequent treatment, and the like are the same as those in Application Example I described above.
  • the pre-recovery preferably 90% or more, more preferably 99% or more of the water of the aqueous solution containing quaternary phosphonium chloride and chloride is removed by evaporation to obtain the mixture to be treated.
  • An inorganic chloride precipitation operation can be performed. That is, the mixture to be treated is dissolved in an organic solvent in an amount of 1 to 10 times by weight the total of the quaternary phosphonium chloride and iodide in the mixture to be treated, and iodide is added thereto. I do.
  • the type of iodide to be added, the concentration and method of addition, the method of filtering off the precipitate, the subsequent treatment, and the like are the same as those in Application Example I described above.
  • the quaternary phosphonimide monodide can be further recovered by removing the organic solvent from the organic solvent solution after solid-liquid separation of the inorganic chloride precipitate, and can be recovered earlier. It can be reused with grade phosphonimide.
  • the concentration of the quaternary phosphonimide is 120 times or more higher than that of ethylenedalicol, or the concentrated catalyst solution concentrated to such a concentration is further concentrated to 90% of the solvent.
  • the above is distilled off.
  • the residue solidifies with cooling.
  • the quaternary phosphonium chloride in the residue can be eluted to the water side and removed.
  • the temperature of the water to be washed is preferably low, because the amount of quaternary phosphonimoxide dissolved in the washing water is small. It is preferably carried out at 0 to 30 ° C.
  • the amount of water used for washing is not particularly limited, but in consideration of washing efficiency and the loss of quaternary phosphonium moxide to wastewater, it is 0.5 to 10 times by weight of the solid residue to be washed. Desirably.
  • the water used for cleaning does not need to be pure water, and the recycled water in the process can be used. It can also be used repeatedly.
  • an aqueous solution containing a quaternary phosphonimoxide is preferable since the dissolution loss of the quaternary phosphonimoxide in water can be reduced.
  • the washed water contains the quaternary phosphonium chloride eluted and the quaternary phosphonium chloride dissolved slightly.
  • an oxide can be added to convert and precipitate quaternary phosphonium chloride into quaternary phosphonium chloride.
  • concentration of the quaternary phosphonium chloride in the mixture to be treated before adding iodide is preferably 1% by weight or more.
  • an aqueous iodide solution may be used as washing water.
  • the concentration of the iodide aqueous solution to be used may be such that the iodide concentration in the water after washing is the concentration in the state of the above-mentioned added and mixed state.
  • the aqueous solution containing the quaternary phosphonium chloride and chloride is preferably removed by evaporating water, preferably 90% or more, more preferably 99% or more, as the mixture to be treated, as inorganic chloride.
  • a precipitation operation can be performed. That is, the mixture to be treated is
  • the quaternary phosphonium chloride and iodide in the mixture to be treated are dissolved in an organic solvent in an amount of 1 to 10 times by weight based on the total weight of the mixture, and iodide is added thereto.
  • the type of iodide to be added, the concentration and method of addition, the method of filtering off the precipitate, the subsequent treatment, and the like are the same as those in Application Example I described above.
  • the quaternary phosphonimide monodide can be further recovered by removing the organic solvent from the organic solvent solution after solid-liquid separation of the inorganic chloride precipitate, and can be recovered earlier. It can be reused with grade phosphonimoxide.
  • the concentration of the quaternary phosphonimoxide is 1 Z 20 times or more of ethylene glycol, or the concentrated catalyst solution thus concentrated is further concentrated, and 90% or more of the solvent is distilled. Since the liquid state can be maintained by maintaining the temperature at 90 ° C or higher after removing, quaternary phosphonimide is precipitated by adding water and then cooling to 0 to 40 ° C. It is also possible.
  • the concentrated residue can be crystallized by supplying the concentrated residue alone or continuously with water to cold water or slurry already existing. Also in this case, the remaining aqueous solution obtained by separating and recovering the precipitated quaternary phosphonimoxide contains quaternary phosphonimoxide and chloride which did not precipitate.
  • an iodide can be added to convert and precipitate quaternary phosphonium chloride into quaternary phosphonium chloride. .
  • the quaternary phosphonium chloride concentration of the mixture to be treated before adding the iodide is preferably 1% by weight or more, and the kind of the added iodide, the added concentration and the adding method, the method of filtering the precipitate, and The processing and the like are the same as in the method of Application Example I described above.
  • an aqueous iodide solution can be used by heating instead of water.
  • the aqueous solution containing the quaternary phosphonium chloride and chloride is preferably removed by evaporating water, preferably 90% or more, more preferably 99% or more, as the mixture to be treated, as inorganic chloride.
  • a precipitation operation can be performed. That is, the mixture to be treated is
  • the quaternary phosphonium chloride and iodide in the mixture to be treated are dissolved in an organic solvent in an amount of 1 to 10 times by weight based on the total weight of the mixture, and iodide is added thereto.
  • the type of iodide to be added, the concentration and method of addition, the method of filtering off the precipitate, the subsequent treatment, and the like are the same as those in Application Example I described above.
  • the present invention is applied to quaternary phosphonium chloride and chloride which still remain in the separated liquid after iodide is added to precipitate inorganic chloride, which is subjected to solid-liquid separation. It is also possible. That is, it is possible to repeatedly add iodide and remove inorganic chloride until the desired recovery rate is reached.
  • the reaction solution and / or the catalyst solution is continuously or intermittently extracted from the continuously operating reaction process, and concentrated and Z or pre-recovered as necessary.
  • the quaternary phosphonium chloride is converted into quaternary phosphonium chloride and the quaternary phosphonium chloride is recovered, and the recovered quaternary phosphonium chloride catalyst may be circulated through the reactor.
  • the amount of the reaction solution and / or the catalyst solution to be withdrawn to recover the quaternary phosphonium dihydrate catalyst but the quaternary phosphonium chloride may be used within a range not excessively increasing the catalyst recovery cost.
  • the reaction solution and Z It is preferable that the liquid is continuously or intermittently withdrawn and processed.
  • the amount to be withdrawn is not particularly limited, but is preferably about 0.1 to about 100% by weight of the reaction solution or the catalyst solution in the system.
  • Carbon dioxide 2. OMPa pressurized residence time lHr, 100 ° C in the first reactor, tributylmethylphosphonumodide 5 parts by weight ZHr as a catalyst, carbon dioxide 0.8 parts by weight / Hr, raw material ethylene oxide aqueous solution (60% by weight) 78 parts by weight
  • a reaction solution containing (EG) was obtained. This was transferred to a second reactor with a total residence time of 2 hours, a pressure of 0.5 MPa, and a temperature of 150 ° C to hydrolyze the ethylene carbonate contained therein, and an aqueous solution of ethylene dalicol containing a catalyst66. 5 parts by weight / hr were obtained.
  • the obtained reaction solution was distilled by a vacuum distillation column at 140 ° C. and 11 kPa (8 OmmHg) to obtain a dehydrated liquid from the column bottom. Most of the ethylene glycol was evaporated by a reduced-pressure evaporator operated at (60 mmHg), and 13 parts by weight of Hr was recovered from the bottom of the evaporator in the concentrated catalyst solution. It was circulated to one reactor and the composition of the catalyst solution after one year of continuous operation was as follows.
  • Ethylene glycol about 59% by weight
  • Iodine salt (quaternary phosphonimoxide): about 33% by weight
  • Chlorine salt (quaternary phosphonium chloride): about 6% by weight
  • Concentrated liquid A While keeping the liquid after removing the ethylene glycol (hereinafter referred to as “concentrated liquid A”) at 95 T :, add a 3% by weight aqueous solution of potassium iodide and cool to 20 ° C with stirring and mixing for 1 hour. It was left still. The potassium iodide added here was equimolar to the chloride salt in concentrate A, and the amount of water used was equal to the weight of concentrate A.
  • the precipitate was analyzed by solid-liquid separation with a suction filter and analyzed.
  • the composition of the precipitate was as follows. It was found that 90% by weight of the iodine salt and the chlorine salt in the extracted liquid A was 90% by weight. This corresponds to efficient separation as a quaternary phosphonimoxide catalyst.
  • Chlorine salt (quaternary phosphonium chloride) About
  • Example 11 Example 11 In Example 11, to the concentrated solution A after separation and removal of ethylene dalicol, an equivalent amount of distilled water was added to the concentrated solution A in place of the aqueous solution of iodide, and the same operation was performed to precipitate a solid. I let it.
  • the precipitate When the precipitate was analyzed by solid-liquid separation, the precipitate contained 94% by weight of the iodine salt and about 13% by weight of the chloride salt in the above extracted liquid A.
  • the quaternary phosphonide iodide catalyst was used. It was confirmed that the salt could be efficiently separated from the chloride salt. About 6% by weight of the iodine salt and about 87% by weight of the chlorine salt in the withdrawn liquid A were also dissolved in the liquid from which the precipitate was separated (hereinafter referred to as “separated liquid A”).
  • Separation liquid A obtained in Example 12 was distilled, and water in separation liquid A was concentrated by distilling off 50% by weight of water.
  • potassium iodide was added as a 50% by weight aqueous solution in an amount of 1.2 mol times the chlorine salt in the solution, and the mixture was allowed to stand at 20 for 1 hour.
  • the precipitate was analyzed by solid-liquid separation, about 75% by weight of the chlorine salt in the above extracted liquid A could be efficiently separated as a quaternary phosphonimoxide catalyst in the precipitate. It was confirmed that. '' Example 2-1
  • the obtained reaction solution was distilled by a reduced-pressure distillation column having a bottom of 140 ° C and 11 kPa (8 OmmHg) to obtain a dehydrated liquid from the bottom of the column.
  • Most of the ethylene glycol was evaporated by a reduced pressure evaporator operated at 60 mmHg), and 13 parts by weight of a catalyst solution enriched in the catalyst was recovered from the bottom of the evaporator.
  • the recovered catalyst solution was recycled to the first reactor as a catalyst.
  • the composition of the catalyst liquid after one year of continuous operation was as follows.
  • Chlorine salt (quaternary phosphonium chloride) About 6% by weight
  • concentrate A water of the same weight as the concentrate A was added, and the mixture was cooled to 20 while stirring and mixing, and then allowed to stand for 1 hour.
  • precipitate A The precipitate (hereinafter, referred to as “precipitate A”) was subjected to solid-liquid separation with a suction filter, and the obtained filtrate (hereinafter, referred to as “filtrate A”) was analyzed. It was as follows, and contained about 80% by weight of the chlorine salt in the extracted liquid A.
  • Ethylene glycol about 7% by weight
  • Iodine salt (quaternary HOUSHONOMUYUDIDE): about 1% by weight
  • Chlorine salt (quaternary phosphonium chloride): about 10% by weight
  • Ethylene glycol about 1% by weight
  • Iodine salt (4th grade HOUSHONOMUMO I-Dide): about 80% by weight
  • Chlorine salt (quaternary phosphonium chloride): about 2% by weight
  • Potassium carbonate 1% by weight or less Water and ethylene glycol contained in filtrate A were removed using an evaporator operated at 140 ° C. The pressure was reduced as water and ethylene glycol were removed, and the pressure was finally maintained at 5 torr (660 Pa) for 30 minutes. By this operation, the amounts of water and ethylene glycol contained in the distillation residue became 10% by weight or less. An equal weight of acetone was added to the residue after removing water and ethylene glycol in this manner. Next, the obtained liquid was transferred to a storage tank with a stirrer, and 1.2 mol times of sodium iodide with respect to the contained chlorine salt was added as a solid, followed by stirring at room temperature for 1 hour.
  • the precipitate deposited by this inorganic chloride precipitation operation was subjected to solid-liquid separation with a suction filter and analyzed.
  • the precipitate contained sodium chloride equivalent to 98% by weight or more of the chloride in filtrate A. Were present.
  • the filtrate obtained by the solid-liquid separation (hereinafter referred to as “filtrate B”) is introduced into an evaporator operated at 110 torr (660 Pa) at 110, and the filtrate in the filtrate B is filtered.
  • solid B was analyzed and found to have the following composition.
  • Ethylene glycol : 1% by weight or less Iodine salt (quaternary phosporium moxide): about 81% by weight Chloride salt (quaternary phosphonium chloride): 1% by weight or less
  • Example 2-2 When the operation was continued while collecting and circulating the catalyst in this way, efficient operation could be continued without a problem of a reduction in reaction efficiency in the ethylene glycol production process.
  • Example 2-2 When the operation was continued while collecting and circulating the catalyst in this way, efficient operation could be continued without a problem of a reduction in reaction efficiency in the ethylene glycol production process.
  • Example 2-1 an equal weight of normal butanol as an organic solvent was added to and dissolved in the concentrate A from which ethylene glycol was separated and removed. This solution was transferred to a storage tank equipped with a stirrer, solid potassium iodide in an equimolar amount to the chloride salt contained in the solution was added, and mixed at room temperature for 2 hours.
  • Iodine salt (quaternary HOUSHONOMUYUDIDE) About 80% by weight
  • Chlorine salt (quaternary phosphonium chloride) 1% by weight or less
  • Example 11 100 g of the dehydrated reaction solution was taken out from the bottom of the vacuum distillation column. The ratio of ethylene glycol to the catalyst contained therein was 87%. An equal weight of water was added thereto and the mixture was cooled to 0 ° C, but no precipitation occurred.
  • Example 11 To the filtrate obtained in Example 12 was added a 50% by weight aqueous solution of iodinated rim with respect to the chlorate in the solution at a molar ratio of 1 mol, and the mixture was allowed to stand at 20 ° C. for 1 hour. The precipitate was analyzed by solid-liquid separation. As a result, it was confirmed that approximately 87% by weight of the chlorate in the filtrate was able to be efficiently separated as a quaternary phosphonimoxide catalyst in the precipitate.
  • Industrial applicability 100 g of the dehydrated reaction solution was taken out from the bottom of the vacuum distillation column. The ratio of ethylene glycol to the catalyst contained therein was 87%. An equal weight of water was added thereto and
  • an alkylene oxide such as ethylene oxide is reacted with water or carbon dioxide in the presence of carbon dioxide using a quaternary phosphonimoxide and Z or a promide catalyst to form an alkylene glycol such as ethylene glycol or
  • a quaternary phosphonimoxide or a promide catalyst is efficiently recovered from the reaction system and used in a circulating manner, or formed in the reaction system.
  • the quaternary phosphonium chloride thus obtained can be efficiently converted to quaternary phosphonimoxide and Z or promide and recovered, and this can be recycled to the reaction system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

A method for producing alkylene glycol or alkylene carbonate wherein alkylene oxide is reacted with water or carbon dioxide in the presence of carbon dioxide by the use of a quaternary phosphonium iodide or bromide catalyst, characterized in that the quaternary phosphonium iodide or bromide catalyst is recovered efficiently from the reaction system and is circulated for use, and in that quaternary phosphonium chloride formed in the reaction system is converted efficiently to quaternary phosphonium iodide or bromide, and the resultant iodide or bromide is recovered and circulated to the reaction system for use.

Description

明 細 書 アルキレン誘導体の製造方法及びアルキレン誘導体製造用触媒の再生方法 技術分野  Description Method for producing alkylene derivative and method for regenerating catalyst for producing alkylene derivative
本発明は、 アルキレンダリコ一ル又はアルキレンダリコール等のアルキレン誘導 体の製造方法、 詳しくは、 4級ホスホニゥムョーダイド及び/又はブロマイド触媒 を用いて、 エチレンォキシド等のアルキレンォキシドと水とを、 二酸化炭素の存在 下に反応させて、 エチレングリコール等のアルキレングリコールを製造する方法、 又は、 アルキレンォキシドと二酸化炭素とを反応させて、 エチレンカーボネート等 を製造する方法に関し、 特に、 この反応系から 4級ホスホニゥムョ一ダイド及び Z 又はプロマイド触媒を効率的に回収して循環使用する方法に関する。  The present invention relates to a method for producing an alkylene derivative such as alkylenedic alcohol or alkylenedalycol, and more specifically, an alkylene oxide such as ethylene oxide using a quaternary phosphonimoxide and / or bromide catalyst. Water, reacting in the presence of carbon dioxide to produce an alkylene glycol such as ethylene glycol, or a method of reacting an alkylene oxide with carbon dioxide to produce ethylene carbonate and the like, The present invention relates to a method for efficiently recovering a quaternary phosphonimoxide and a Z or promide catalyst from this reaction system and recycling the catalyst.
なお、 本発明におけるアルキレングリコールとは、 例えば、 エチレングリコール 、 プロピレングリコール等の炭素数 2〜1 0程度のアルキレングリコールを意味し 、 アルキレン力一ポネートとは、 例えば、 エチレン力一ポネート、 プロピレン力一 ポネート等の炭素数 2〜 1 0程度のアルキレンカーポネ一トを意味する。 背景技術  In the present invention, the alkylene glycol means an alkylene glycol having about 2 to about 10 carbon atoms such as ethylene glycol and propylene glycol, and the alkylene glycol is, for example, ethylene glycol and propylene glycol. It means an alkylene carbonate having about 2 to 10 carbon atoms such as a ponate. Background art
エチレングリコ一ルは、 エチレンォキシド (酸化エチレン) を水と直接反応させ て加水分解することにより、 大規模に製造されているが、 この方法では、 加水分解 に際し、 ジェチレングリコ一ルゃトリエチレングリコ一ル等の副生を抑制するため に、 エチレンォキシドに対して化学量論量よりも大過剰の水を使用しなければなら ない。 そのため、 生成したエチレングリコール水溶液を蒸留して大過剰の水を脱水 する必要があり、 精製されたエチレングリコ一ルを取得するのに多大のエネルギー を要するという問題がある。  Ethylene glycol is produced on a large scale by hydrolyzing ethylene oxide (ethylene oxide) by directly reacting it with water. In this method, ethylene glycol is used in the hydrolysis. In order to suppress by-products such as ethylene glycol, a large excess of water over the stoichiometric amount of ethylene oxide must be used. For this reason, it is necessary to distill the generated aqueous solution of ethylene glycol to dehydrate a large excess of water, and there is a problem that a large amount of energy is required to obtain purified ethylene glycol.
この問題を解決する方法として、 二酸化炭素の存在下に水とエチレンォキシドと を反応させることにより、 エチレングリコールを製造する方法が提案されている。 この反応は、 エチレンォキシドと二酸化炭素との反応でェチレンカーボネートが生 成し、 ェチレンカーボネートが加水分解されることによりエチレングリコ一ルが生 成する 2段反応である。 .この 2段反応は、 反応系に水が存在するため、 同一の反応 器内でも進行するが、 第 2段目の反応を完結させるために、 後段に更に反応器を設 けてもよい。 エチレンカーボネートの加水分解では、 ジエチレングリコールやトリ エチレンダリコール等は殆ど副生しないため、 加水分解は化学量論量より若干過剰 の水で行わせることができ、 生成したエチレンダリコール水溶液の脱水に要する費 用を大きく減少させることができる。 なお、 エチレンォキシドと二酸化炭素との反 応で生成したエチレンカーボネートの加水分解で二酸化炭素が生成するため、 この 二酸化炭素は循環再使用される。  As a method for solving this problem, there has been proposed a method for producing ethylene glycol by reacting water and ethylene oxide in the presence of carbon dioxide. This reaction is a two-stage reaction in which ethylene carbonate is generated by the reaction of ethylene oxide and carbon dioxide, and ethylene glycol is generated by hydrolysis of the ethylene carbonate. This two-stage reaction proceeds in the same reactor due to the presence of water in the reaction system, but an additional reactor may be provided in the subsequent stage to complete the second-stage reaction. In the hydrolysis of ethylene carbonate, diethylene glycol and triethylene dalicol are hardly produced as by-products, so that the hydrolysis can be carried out with a slight excess of water than the stoichiometric amount. Costs can be greatly reduced. In addition, since carbon dioxide is generated by hydrolysis of ethylene carbonate generated by the reaction between ethylene oxide and carbon dioxide, this carbon dioxide is recycled and reused.
また、 この方法では、 反応条件を低温化して原料水量を低下させることでェチレ ングリコールの生成量を抑え、 エチレン力一ポネートを製造することも可能である このようにしてエチレンォキシドからエチレングリコール及び Z又はエチレン力 ーポネートを製造する際の触媒としては種々のものが提案されているが、 その好ま しいものの一つは有機ホスホニゥム塩、 特に好ましくは 4級ホスホニゥムョーダイ ド又はブロマイドである (特公昭 5 5— 4 7 6 1 7号公報) 。 また、 このような有 機ホスホニゥム塩に助触媒としてアルカリ金属の炭酸塩を併用しても良い (特開平 1 2 - 1 2 8 8 1 4号公報) 。 In this method, it is also possible to suppress the production of ethylene glycol by lowering the reaction conditions and lowering the amount of raw water, thereby producing ethylene glycol. In this way, ethylene glycol can be produced from ethylene oxide. A variety of catalysts have been proposed for the production of Z- and Z- or ethylene-potionates. One of the preferred catalysts is an organic phosphonium salt, particularly preferably a quaternary phosphonium salt. Or bromide (Japanese Patent Publication No. 55-47673). Further, an alkali metal carbonate may be used in combination with such an organic phosphonium salt as a co-catalyst (Japanese Patent Application Laid-Open No. H12-128814).
ところで、 原料のエチレンォキシドは、 エチレンの酸化により製造されるが、 そ の際、 反応系には、 酸化反応の選択性を向上させるためにェチルクロライド等のク ロロ炭化水素が選択性調節剤として供給される (特開平 2— 1 0 4 5 7 9号公報) 。 二酸化炭素の存在下でエチレンォキシドと水又は二酸化炭素とを反応させてェチ レングリコール又はエチレンカーボネートを製造する方法は、 上述の如く、 副生物 の問題のない工業的に有利な方法であるが、 反応を継続することにより、 反応効率 が低下するという問題がある。  By the way, the raw material ethylene oxide is produced by the oxidation of ethylene. At that time, in order to improve the selectivity of the oxidation reaction, chlorohydrocarbons such as ethyl chloride are used to control the selectivity of the reaction system. It is supplied as an agent (Japanese Patent Application Laid-Open No. 2-104579). The method of producing ethylene glycol or ethylene carbonate by reacting ethylene oxide with water or carbon dioxide in the presence of carbon dioxide is an industrially advantageous method having no problem of by-products as described above. However, there is a problem that the reaction efficiency is reduced by continuing the reaction.
本発明者らは、 この反応効率低下の原因について検討した結果、 反応系内の 4級 ホスホニゥムョ一ダイド又はプロマイド触媒が触媒活性の低いクロライドに変換さ れることが原因であることを知見した。 実際、 約 1年の装置の稼動により、 反応系 内の 4級ホスホニゥムョーダイド又はプロマイド触媒の 2 0重量%程度が 4級ホス ホニゥムクロライドに変換されていた。  The present inventors have studied the cause of the reduction in the reaction efficiency, and have found that the cause is that the quaternary phosphonimoxide or promide catalyst in the reaction system is converted into chloride having low catalytic activity. In fact, about 20% by weight of the quaternary phosphonimoxide or promide catalyst in the reaction system was converted to quaternary phosphonium chloride by operating the apparatus for about one year.
4級ホスホニゥムョーダイド又はプロマイドが 4級ホスホニゥムクロライドに変 換される理由は、 原料のエチレンォキシドに不純物として含まれる塩素化合物が反 応系内に導入されることによるものと考えられた。 即ち、 前述の如く、 エチレンォ キシドの製造工程では、 反応の選択性の向上のために反応系にクロ口炭化水素が選 択性調節剤として供給されているが、 このクロ口炭化水素に含まれる塩素は、 精製 系を経てもなお製品エチレンォキシドに塩素化合物として残留するため、 これがェ チレンダリコール又はエチレンカーボネートの製造工程に混入することとなる。 こ の製品エチレンォキシドに混入して導入される塩素化合物により  The reason that quaternary phosphonimoxide or promide is converted to quaternary phosphonium chloride is thought to be that chlorine compounds contained as impurities in the raw material ethylene oxide are introduced into the reaction system. Was done. That is, as described above, in the process of producing ethylene oxide, a hydrocarbon is supplied as a selectivity regulator to the reaction system in order to improve the selectivity of the reaction, but is included in the hydrocarbon. Chlorine remains in the product ethylene oxide as a chlorine compound even after passing through the purification system, and is contaminated in the production process of ethylene glycol or ethylene carbonate. The chlorine compound introduced into the product ethylene oxide
、 その反応機構の詳細は明らかではないが、 4級ホスホニゥムョーダイド又はプロ マイドが 4級ホスホニゥムクロライドに変換されるものと考えられる。 Although the details of the reaction mechanism are not clear, it is considered that quaternary phosphonimoxide or promide is converted to quaternary phosphonium chloride.
従って、 エチレングリコール又はエチレン力一ポネ一卜の製造工程では、 反応系 から触媒由来の反応活性の低い 4級ホスホニゥムクロライドを分離除去し、 高活性 の 4級ホスホニゥムョーダイド又はプロマイドのみを残すようにする必要がある。 しかしながら、 従来においては、 経時による反応効率の低下がこのクロライドへの 経時的変換に起因するものであるとの解明もなされていない。 ましてや、 反応系の 触媒である 4級ホスホニゥムョ一ダイド又はプロマイドと 4級ホスホニゥムクロラ ィドとを分離する方法につ,いても、 4級ホスホニゥムクロライドを 4級ホスホニゥ ムョーダイド又はプロマイドに変換する方法についても全く検討されていなかった。 発明の開示  Therefore, in the process of producing ethylene glycol or ethylene glycol, the quaternary phosphonium chloride having low reaction activity derived from the catalyst is separated and removed from the reaction system, and the quaternary phosphonium chloride or promide having high activity is separated. Only need to leave. However, it has not been clarified conventionally that the decrease in reaction efficiency over time is due to the time-dependent conversion to chloride. Furthermore, regarding the method of separating quaternary phosphonimoxide or promide, which is a catalyst of the reaction system, from quaternary phosphonium chloride, quaternary phosphonium chloride is converted to quaternary phosphonimoxide or promide. There was no study on how to do it. Disclosure of the invention
本発明は上記従来の問題点を解決し、 4級ホスホニゥムョーダイド及び Z又はブ 口マイド触媒を用いて二酸化炭素の存在下にエチレンォキシド等のアルキレンォキ シドと水又は二酸化炭素とを反応させてェチレングリコ一ル等のアルキレングリコ ール又はエチレンカーボネート等のアルキレン力一ポネ一ト等のアルキレン誘導体 を製造する方法において、 反応系で生成した 4級ホスホニゥムクロライドを効率的 に除去するか、 又は該 4級ホスホニゥムクロライドを 4級ホスホニゥムョーダイド 及び 又はプロマイドに変換して回収しこれを反応系に循環使用することにより、 反応系内の触媒活性を高く維持し、 アルキレン誘導体の生成反応を長期に亘り安定 かつ効率的に行う方法を提供することを目的とする。 The present invention solves the above-mentioned conventional problems, and reacts an alkylene oxide such as ethylene oxide with water or carbon dioxide in the presence of carbon dioxide using a quaternary phosphonimoxide and a Z or bromide catalyst. In the process for producing alkylene glycols such as ethylene glycol or alkylene derivatives such as alkylene forces such as ethylene carbonate, quaternary phosphonium chloride generated in the reaction system is efficiently removed. Or or by converting the quaternary phosphonium chloride to quaternary phosphonimoxide and / or promide and collecting and recycling it to the reaction system, It is an object of the present invention to provide a method for maintaining the catalyst activity in a reaction system at a high level and stably and efficiently performing a production reaction of an alkylene derivative for a long period of time.
本発明は以下の記載を特徴とする要旨とするものである。  The gist of the present invention is characterized by the following description.
(1) 4級ホスホニゥムョ一ダイド又はブロマイド触媒を用いて、 二酸化炭素の存 在下にアルキレンォキシドと水とを反応させてアルキレングリコールを生成させ る反応工程を備えるアルキレン誘導体の製造方法において、  (1) A method for producing an alkylene derivative, comprising a reaction step of reacting an alkylene oxide with water in the presence of carbon dioxide to produce an alkylene glycol using a quaternary phosphonimoxide or bromide catalyst,
少なくとも一部の反応液及び Z又は触媒液から、 触媒に対するアルキレングリコ ールのモル比が 20倍以下になるようにアルキレングリコールを除去し、 次いで 水と混合することにより触媒を回収することを特徴とするアルキレン誘導体の製 造方法。  The alkylene glycol is removed from at least a part of the reaction solution and Z or the catalyst solution so that the molar ratio of the alkylene glycol to the catalyst is 20 times or less, and then the catalyst is recovered by mixing with water. A method for producing an alkylene derivative.
(2) 触媒に対するアルキレングリコールのモル比を 2倍以下にすることを特徴と する上記 (1) に記載の製造方法。  (2) The production method according to the above (1), wherein the molar ratio of the alkylene glycol to the catalyst is twice or less.
(3) 水と混合し触媒を回収する際の操作温度が 30°C以下であることを特徴とす る上記 (1) 又は (2) に記載の製造方法。  (3) The method according to the above (1) or (2), wherein the operating temperature at the time of mixing with water to recover the catalyst is 30 ° C or less.
(4) 混合する水の量が回収する触媒に対して、 0. 1重量倍以上であることを特 徵とする上記 (1) ないし (3) のいずれかに記載の製造方法。  (4) The method according to any one of (1) to (3) above, wherein the amount of water to be mixed is at least 0.1 times the weight of the recovered catalyst.
(5) 水と混合した後、 固液分離し触媒を固体として分離した後、 前記反応工程に 循環することを特徴とする上記 (1) ないし (4) のいずれかに記載の製造方法。 (5) The method according to any one of the above (1) to (4), wherein after mixing with water, solid-liquid separation is performed to separate the catalyst into a solid, and then the mixture is circulated to the reaction step.
( 6 ) 固液分離により分離された液を触媒洗浄水として循環使用することを特徴と する上記 (5) に記載の製造方法。 (6) The method according to (5), wherein the liquid separated by the solid-liquid separation is circulated and used as catalyst washing water.
(7) アルキレンォキシドがエチレンォキシドであることを特徴とする上記 (1) ないし (6) のいずれかに記載の製造方法。  (7) The method according to any one of the above (1) to (6), wherein the alkylene oxide is ethylene oxide.
(8) 4級ホスホニゥムョーダイド及び Z又はブロマイドを触媒として用いて、 二 酸化炭素の存在下に塩素化合物を不純物として含有するアルキレンォキシドと水 とを反応させてアルキレングリコールを生成させる反応工程から得られた、 4級 ホスホニゥムクロライドと 4級ホスホニゥムョ一ダイド及び Z又はプロマイドと を含有する混合物と、 ヨウ化物及び Z又は臭化物を混合することにより、 該 4級 ホスホニゥムクロライドを 4級ホスホニゥムョーダイド及び Z又はプロマイドに 変換して水中で析出させることを特徴とする触媒再生方法。  (8) Using quaternary phosphonimoxide and Z or bromide as a catalyst, reacting alkylene oxide containing a chlorine compound as an impurity with water in the presence of carbon dioxide to form alkylene glycol. Mixing the quaternary phosphonium chloride obtained from the step and a mixture containing quaternary phosphonium chloride and Z or promide with iodide and Z or bromide to obtain the quaternary phosphonium chloride. A method for regenerating a catalyst, comprising converting into a phosphonimoxide and Z or promide to precipitate in water.
(9) 4級ホスホニゥムョ一ダイド及び Z又はブロマイドを触媒として用いて、 ァ ルキレンォキシドと二酸化炭素とを反応させてアルキレンカーボネートを生成さ せる反応工程から得られた、 4級ホスホニゥムクロライドと 4級ホスホニゥムョ 一ダイド及び Z又はプロマイドとを含有する混合物と、 ヨウ化物及び/又は臭化 物を混合することにより、 該 4級ホスホニゥムクロライドを 4級ホスホニゥムョ 一ダイド及び Z又はプロマイドに変換して水中で析出させることを特徴とする触 媒再生方法。  (9) A quaternary phosphonium chloride and a quaternary obtained from a reaction step of reacting alkylene oxide with carbon dioxide to form an alkylene carbonate using a quaternary phosphonimoxide and Z or bromide as a catalyst. By mixing iodide and / or bromide with a mixture containing phosphonidomonodide and Z or promide, the quaternary phosphonidyl chloride and Z or promide are converted to quaternary phosphonidomonodide and Z or promide, and A method for regenerating a catalyst, comprising:
(10) 4級ホスホニゥムクロライドと 4級ホスホニゥムョーダイド及び/又はブ ロマイドとを含有する混合物が、 前記反応工程から抜き出された反応液、 或いは 該反応液から水及ぴ Z又は目的生成物のアルキレン誘導体の少なくとも一部を蒸 留除去した後の残留物であることを特徴とする上記 (8) 又は (9) に記載の方 法。  (10) A mixture containing a quaternary phosphonium chloride and a quaternary phosphonimoxide and / or bromide is a reaction solution extracted from the reaction step, or water or Z or The method according to the above (8) or (9), which is a residue after at least part of the alkylene derivative of the target product is distilled off.
(11) 4級ホスホニゥムクロライドと 4級ホスホニゥムョーダイド及び/又はブ ロマイドとを含有する混合物が、 前記反応工程から抜き出された反応液、 或いは 該反応液から水及び z又は目的生成物のアルキレン誘導体の少なくとも一部を蒸 留除去した後の残留物と、 水を混合して前記触媒を固体として析出させ、 これを 分離した後の水溶液であることを特徴とする上記 (8) 又は (9) に記載の方法。(11) a mixture containing a quaternary phosphonium chloride and a quaternary phosphonimoxide and / or bromide, a reaction solution extracted from the reaction step, or Water and the residue obtained by distilling off at least a part of z or the alkylene derivative of the target product from the reaction solution are mixed with water to precipitate the catalyst as a solid. The method according to (8) or (9) above, wherein
(12) 析出させた 4級ホスホニゥムョ一ダイド及び 又はプロマイドを回収して 前記反応工程に循環させることを特徴とする上記 (8) ないし (11) のいずれ か記載の方法。 (12) The method according to any one of the above (8) to (11), wherein the precipitated quaternary phosphonimide and / or promide are recovered and circulated to the reaction step.
(13) 4級ホスホニゥムョ一ダイド及び/又はプロマイドを触媒として用いて、 二酸化炭素の存在下に塩素化合物を不純物として含有するアルキレンォキシドと 水とを反応させてアルキレングリコールを生成させる反応工程から得られた、 4 級ホスホニゥムクロライドと 4級ホスホニゥムョ一ダイド及び/又はプロマイド とを含有する混合物に、 ヨウ化物及び Z又は臭化物を添加して 4級ホスホニゥム クロライド由来の塩素を無機塩化物として有機溶媒中で析出させることにより、 4級ホスホニゥムョ一ダイド及び/ /又はプロマイドを回収することを特徴とする 触媒再生方法。  (13) Using a quaternary phosphonimide and / or promide as a catalyst, reacting an alkylene oxide containing a chlorine compound as an impurity with water in the presence of carbon dioxide to produce an alkylene glycol. Iodide and Z or bromide are added to a mixture containing quaternary phosphonium chloride and quaternary phosphonium chloride and / or promide, and chlorine derived from quaternary phosphonium chloride is converted to an inorganic solvent as an inorganic chloride. A method for regenerating a catalyst, comprising recovering quaternary phosphonimide and / or promide by precipitating in a catalyst.
(14) 4級ホスホニゥムョーダイド及び Z又はプロマイドを触媒として用いて、 アルキレンォキシドと二酸化炭素とを反応させてアルキレン力一ポネートを生成 させる反応工程から得られた、 4級ホスホニゥムクロライドと 4級ホスホニゥム ョーダイド及び Z又はプロマイドとを含有する混合物に、 ヨウ化物及び Z又は臭 化物を添加して 4級ホスホニゥムクロライド由来の塩素を無機塩化物として有機 溶媒中で析出させることにより、 4級ホスホニゥムョ一ダイド及び/又はブロマ ィドを回収することを特徴とする触媒再生方法。  (14) A quaternary phosphonidium obtained from a reaction step of reacting an alkylene oxide with carbon dioxide to form an alkylene cation using a quaternary phosphonimoxide and Z or a promide as a catalyst. By adding iodide and Z or bromide to a mixture containing chloride and quaternary phosphonium chloride and Z or promide to precipitate chlorine derived from quaternary phosphonium chloride as inorganic chloride in an organic solvent. A method for regenerating a catalyst, comprising recovering quaternary phosphonimoxide and / or bromide.
(15) 4級ホスホニゥムクロライドと 4級ホスホニゥムョーダイド及び/又はプ ロマイドとを含有する混合物が、 下記 (a) 〜 (c) のいずれかであることを特 徴とする上記 (13) 又は (14) に記載の方法。  (15) The above-mentioned (1), wherein the mixture containing a quaternary phosphonium chloride and a quaternary phosphonium chloride and / or a promide is any of the following (a) to (c): 13) or the method according to (14).
(a) 前記反応工程から抜き出した反応液に水を添加して前記触媒を析出させ 、 これを分離した後の水溶液を脱水して得られる液又は固体、  (a) a liquid or solid obtained by adding water to the reaction liquid extracted from the reaction step to precipitate the catalyst, and dehydrating an aqueous solution after separating the same,
(b) 前記反応工程から抜き出した反応液から水及び Z又は目的生成物のアル キレン誘導体の少なくとも一部を蒸留除去した後の残留物に、 水を添加して 前記触媒を固体として析出させ、 これを分離した後の水溶液を脱水して得ら れる液又は固体、  (b) adding water to a residue obtained by distilling off water and at least a part of the alkylene derivative of the target product from water from the reaction solution extracted from the reaction step to precipitate the catalyst as a solid by adding water; A liquid or solid obtained by dehydrating the aqueous solution after separation,
(c) (a) 又は (b) で、 脱水して得られた液又は固体を、 有機溶媒に溶解 して得られる液。  (c) A liquid obtained by dissolving the liquid or solid obtained by dehydration in (a) or (b) in an organic solvent.
(16) 4級ホスホニゥムクロライドと 4級ホスホニゥムョーダイド及び Z又はプ ロマイドとを含有する混合物が、 下記 (d) , (e) のいずれかであることを特 徵とする上記 (13) 又は (14) に記載の方法。  (16) The above (d) wherein the mixture containing a quaternary phosphonium chloride and a quaternary phosphonium chloride and Z or promide is any of the following (d) and (e): 13) or the method according to (14).
( d ) 前記反応工程から抜き出した反応液を有機溶媒で希釈した液、  (d) a solution obtained by diluting the reaction solution extracted from the reaction step with an organic solvent,
( e ) 前記反応工程から抜き出した該反応液から水及び/又は目的生成物のァ ルキレン誘導体の少なくとも一部を蒸留除去した後の残留物、 或いは該 残留物を有機溶媒に溶解して得られる液、  (e) a residue obtained by distilling and removing at least a part of water and / or an alkylene derivative of a target product from the reaction solution extracted from the reaction step, or a residue obtained by dissolving the residue in an organic solvent Liquid,
(17) 回収した 4級ホスホニゥムョ一ダイド及ぴ Z又はプロマイドを前記反応 工程に循環させることを特徴とする上記 (13) ないし (16) のいずれかに記 載の方法。 ( 1 8 ) 4級ホスホニゥムョーダイド及び/又はプロマイドを触媒として用いて、 アルキレンォキシドと二酸化炭素とを反応させてアルキレン力一ポネ一卜を生成 させる反応工程を備えるアルキレン誘導体の製造方法において、 (17) The method according to any one of the above (13) to (16), wherein the recovered quaternary phosphonimoxide and Z or promide are circulated to the reaction step. (18) Production of an alkylene derivative comprising a reaction step of reacting alkylene oxide with carbon dioxide using a quaternary phosphonimoxide and / or promide as a catalyst to generate an alkylene force component. In the method,
該反応工程から得られた、 4級ホスホニゥムクロライドと 4級ホスホニゥムョ 一ダイド及び Z又はプロマイドとを含有する混合物に、 ヨウ化物及び Z又は臭化 物を添加することにより、 該 4級ホスホニゥムクロライドを 4級ホスホニゥムョ 一ダイド及び Z又はプロマイドに変換して水中で析出させて回収し、 反応工程に 循環させることを特徴とするアルキレン誘導体の製造方法。  By adding iodide and Z or bromide to a mixture obtained from the reaction step and containing quaternary phosphonium chloride and quaternary phosphonium chloride and Z or promide, the quaternary phosphonium chloride is added. A process for producing an alkylene derivative, comprising converting muchloride into a quaternary phosphonimidyl monohydrate and Z or promide, precipitating and recovering in water, and circulating the reaction process.
( 1 9 ) 4級ホスホニゥムョ一ダイド及び/又はプロマイドを触媒として用いて、 アルキレンォキシドと二酸化炭素とを反応させてアルキレンカーボネートを生成 させる反応工程を備えるアルキレン誘導体の製造方法において、  (19) A method for producing an alkylene derivative comprising a reaction step of reacting an alkylene oxide with carbon dioxide to produce an alkylene carbonate, using a quaternary phosphonimoxide and / or a promide as a catalyst,
該反応工程から得られた、 4級ホスホニゥムクロライドと 4級ホスホニゥムョ —ダイド及び Z又はプロマイドとを含有する混合物に、 ヨウ化物及び/又は臭化 物を添加して 4級ホスホニゥムクロライド由来の塩素を無機塩化物として有機溶 媒中で析出させることにより、 4級ホスホニゥムョーダイド及び/ ^又はプロマイ ドを回収し、 反応工程に循環させることを特徴とするアルキレン誘導体の製造方 法。 本発明においては、 触媒を高濃度に含有する反応液及び/又は触媒液と水とを混 合すると、 触媒由来の塩素塩は液側に溶解したままであるが、 ヨウ素塩又は臭素塩 は析出してくる。 即ち、 ヨウ素塩、 臭素塩、 塩素塩はいずれもアルキレングリコ一 ルゃアルキレンカーボネートにはよく溶解するが、 ヨウ素塩又は臭素塩は水に対す る溶解性が低く、 塩素塩は水に対する溶解性が高い。 この析出した 4級ホスホニゥ ムョ一ダイド又はプロマイドを固液分離することにより、 容易に触媒を分離回収す ることができる。  Iodide and / or bromide are added to a mixture containing quaternary phosphonium chloride and quaternary phosphonium chloride-dyd and Z or promide obtained from the reaction step, and the mixture is derived from quaternary phosphonium chloride. A quaternary phosphonimoxide and / or or promide by precipitating chlorine in an organic solvent as an inorganic chloride, and circulating the same in the reaction step. . In the present invention, when a reaction solution containing a catalyst at a high concentration and / or a catalyst solution are mixed with water, chlorine salts derived from the catalyst remain dissolved in the solution side, but iodine salts or bromide salts precipitate. Will come. In other words, iodine salts, bromine salts, and chloride salts are all soluble in alkylene glycol peralkylene carbonate, but iodide salts or bromine salts have low solubility in water, and chlorine salts have low solubility in water. high. By performing solid-liquid separation of the precipitated quaternary phosphonium hydroxide or promide, the catalyst can be easily separated and recovered.
本発明においては、 例えば、 次のようにして触媒を析出させることができる。 In the present invention, for example, the catalyst can be precipitated as follows.
① 触媒を含有する反応液及び Z又は触媒液と水とを混合した後冷却する。 (1) Mix the reaction solution containing the catalyst and Z or the catalyst solution with water and then cool.
② 触媒を含有する反応液及び/又は触媒液からアルキレングリコールの少なくと も一部を除去した後、 水と混合する。  ② After removing at least a part of alkylene glycol from the reaction solution and / or catalyst solution containing the catalyst, mix with water.
この場合、 冷却操作は必ずしも必要ではない。 しかし、 触媒の溶解度を低下させ るために、 冷却することが好ましい。  In this case, a cooling operation is not necessarily required. However, cooling is preferred to reduce the solubility of the catalyst.
このようにして、 回収した 4級ホスホニゥムョ一ダイド又はプロマイドは反応ェ 程に循環使用することができる。  In this way, the quaternary phosphonimoxide or promide thus recovered can be recycled to the reaction step.
一方、 4級ホスホニゥムョ一ダイド又はプロマイドを固液分離して回収した後の 分離液には、 塩素塩の 4級ホスホニゥムクロライドが含まれているが、 この 4級ホ スホニゥムクロライドは、 イオン交換等により 4級ホスホニゥムョーダイド又はブ 口マイドに変換させた後回収し、 又は溶液状態で反応工程に循環使用することがで きる。  On the other hand, the separated liquid after solid-liquid separation and recovery of the quaternary phosphonimide or promide contains the quaternary phosphonium chloride chloride, which is a quaternary phosphonium chloride. It can be recovered after being converted to quaternary phosphonimoxide or bumuide by ion exchange or the like, or can be recycled to the reaction process in a solution state.
また、 本発明においては、 4級ホスホニゥムョ一ダイド及び/又はブロマイド触 媒を用いて、 二酸化炭素の存在下にアルキレンォキシドと水又は二酸化炭素とを反 応させてアルキレングリコール又はアルキレン力一ポネートを生成させる反応工程 から得られた、 4級ホスホニゥムクロライドと 4級ホスホニゥムョーダイド及び 又はプロマイドとを含有する混合物に、 ヨウ化物及び Z又は臭化物を添加すること により、 この混合物中の 4級ホスホニゥムクロライドをョ一ダイド及び/又はプロ マイドに変換させることが可能である。 これにより、 予め存在する 4級ホスホニゥ ムョーダイド及び Z又はプロマイドと、 4級ホスホニゥムクロライドとヨウ化物及 び Z又は臭化物との反応で生成した 4級ホスホニゥムョ一ダイド及び Z又はブロマ ィドとを、 水中で析出させて沈殿物として回収することができる。 Further, in the present invention, an alkylene glycol and an alkylene glycol are reacted with an alkylene oxide and water or carbon dioxide in the presence of carbon dioxide using a quaternary phosphonimoxide and / or bromide catalyst. Adding iodide and Z or bromide to a mixture containing quaternary phosphonium chloride and quaternary phosphonium iodide and / or promide obtained from the reaction step to be formed Thus, the quaternary phosphonium chloride in this mixture can be converted to a chloride and / or a promide. As a result, the quaternary phosphonimoxide and Z or promide, which are present in advance, and the quaternary phosphonimoxide and Z or bromide formed by the reaction of the quaternary phosphonium chloride with iodide and Z or bromide are converted into It can be precipitated in water and recovered as a precipitate.
なお、 以下において、 4級ホスホニゥムクロライドを 4級ホスホニゥムョ一ダイ ド及び Z又はプロマイドに変換するために、 ヨウ化物及び/又は臭化物を添加する 、 4級ホスホニゥムクロライドと 4級ホスホニゥムョ一ダイド及び/又はプロマイ ドとを含有する混合物を 「処理対象混合物」 と称す場合がある。 又、 以下において 、 反応器から流出する液ないし反応器から抜き出した液を単に 「反応液」 と称し、 この反応液から水及びアルキレングリコ一ル、 アルキレンカーボネートを蒸留分離 することにより、 触媒が濃縮された液を単に 「触媒液」 と称す場合がある。  In the following, iodide and / or bromide are added in order to convert quaternary phosphonium chloride into quaternary phosphonium chloride and Z or bromide.Quarterary phosphonium chloride and quaternary phosphonium chloride are added. And / or a mixture containing bromide may be referred to as a “mixture to be treated”. In the following, the liquid flowing out of the reactor or the liquid extracted from the reactor is simply referred to as "reaction liquid", and water, alkylene glycol and alkylene carbonate are separated from the reaction liquid by distillation to concentrate the catalyst. The resulting liquid may be simply referred to as “catalyst liquid”.
本発明は、 この処理対象混合物として、 アルキレングリコール又はアルキレン力 ーボネートの反応工程から抜き出した触媒を含有する反応液に対して、 そのまま適 用することが可能であるが、 別法としてこの反応液中の溶媒であるアルキレンダリ コール又はアルキレンカーボネートの一部又は全量を蒸発除去した後の液状の触媒 液又は固体状の残留物に対して水を添加して触媒の一部を析出させて回収した後の 液に適用することも可能である (以下において、 この触媒液又は固体状の残留物に 水を添加して触媒の一部を析出させて回収する操作を 「前回収」 と称す場合があ る。 ) 。 このような前回収処理を経ることにより、 処理対象混合物の 4級ホスホニ ゥムクロライドの濃度を高めることができ、 その 4級ホスホニゥムョーダイド及び /又はプロマイドへの転換、 回収率を高めることができる。  The present invention can be directly applied to the reaction mixture containing the catalyst extracted from the reaction step of alkylene glycol or alkylene carbonate as the mixture to be treated. After removing part or all of the alkylene glycol or alkylene carbonate as the solvent by evaporation, water is added to the liquid catalyst liquid or solid residue to precipitate and recover a part of the catalyst. (Hereinafter, the operation of adding water to this catalyst solution or solid residue to precipitate and recover a part of the catalyst may be referred to as “pre-recovery”. ). Through such a pre-recovery treatment, the concentration of the quaternary phosphonium chloride in the mixture to be treated can be increased, and the conversion to the quaternary phosphonimoxide and / or promide and the recovery rate can be increased. .
即ち、 4級ホスホニゥムョーダイド及び Z又はプロマイドは水に対する溶解度が 4級ホスホニゥムクロライドよりも低いことから、 このように水を添加することに より、 4級ホスホニゥムョ一ダイド及び/又はブロマイドの多くは析出し、 一方、 4級ホスホニゥムクロライドの多くは水に溶解する。 このような前回収処理を経る ことにより、 処理対象混合物の 4級ホスホニゥムクロライドの濃度を高めることが でき、 その 4級ホスホニゥムョ一ダイド及び/又はブロマイドへの転換、 回収率を 高めることができる。  That is, since quaternary phosphonimoxide and Z or promide have lower solubility in water than quaternary phosphonium chloride, quaternary phosphonimoxide and / or bromide can be obtained by adding water in this manner. Most of the quaternary phosphonium chloride is dissolved in water. Through such a pre-recovery treatment, the concentration of the quaternary phosphonium chloride in the mixture to be treated can be increased, and its conversion to quaternary phosphonium chloride and / or bromide and the recovery rate can be increased. .
また、 更に別法として、 上記前回収を行う際に、 触媒液又は固体状の残留物に添 加する水の代わりにヨウ化物及び Z又は臭ィヒ物を溶解させた水溶液を使用してもよ く、 これにより、 4級ホスホニゥムョーダイド及び Z又はブロマイドの回収率を高 めることができる。  As a further alternative, in the above-mentioned pre-recovery, an aqueous solution in which iodide, Z, or odor is dissolved is used instead of water added to the catalyst solution or solid residue. As a result, the recovery of quaternary phosphonimoxide and Z or bromide can be improved.
いずれの方法においても、 水に溶解している 4級ホスホニゥムクロライドにヨウ 化物及び Z又は臭化物を添加すると 4級ホスホニゥムクロライドはョ一ダイド及び 又はプロマイドとして析出沈殿し、 溶液中には添加した化合物に対応するクロラ イドが溶解したまま残る。 従って、 析出した沈殿を固液分離することにより、 容易 に 4級ホスホニゥムクロライドを 4級ホスホニゥムョーダイド及び Z又はプロマイ ドとして分離回収することができる。  In either method, when iodide, Z or bromide is added to quaternary phosphonium chloride dissolved in water, quaternary phosphonium chloride precipitates as iodide and / or promide, and is contained in the solution. Chloride corresponding to the added compound remains dissolved. Therefore, quaternary phosphonium chloride can be easily separated and recovered as quaternary phosphonimoxide and Z or bromide by solid-liquid separation of the deposited precipitate.
このようにして回収した 4級ホスホニゥムョ一ダイド及び Z又はプロマイドはァ ルキレングリコール又はアルキレンカ一ポネ一卜の反応工程へ循環使用することが できる。 また、 更に、 本発明によれば、 該反応工程から得られた、 又は上記回収工程から 得られた 4級ホスホニゥムクロライドと 4級ホスホニゥムョーダイド及び Z又はブ ロマイドとを含有する混合物にョゥ化物及び Z又は臭化物を添加して 4級ホスホニ ゥムクロライド由来の塩素を無機塩化物として有機溶媒中で析出させることにより、 4級ホスホニゥムョーダイド及び Z又はプロマイドを回収することが可能である。 すなわち、 4級ホスホニゥムョーダイド及び Z又はブロマイド触媒を用いて、 二 酸化炭素の存在下に、 アルキレンォキシドと水又は二酸化炭素とを反応させてアル キレングリコール又はアルキレンカーボネートを生成させる反応工程から得られた、 4級ホスホニゥムクロライドと 4級ホスホニゥムョ一ダイド及び/又はプロマイド とを含有する混合物に、 ヨウ化物及び/又は臭ィ匕物を添加することにより、 この混 合物中の 4級ホスホニゥムクロライドを 4級ホスホニゥムョーダイド及び Z又はブ ロマイドに変換させることが可能である。 一方、 4級ホスホニゥムクロライド由来 の塩素を有機溶媒への溶解度の低い無機塩化物として有機溶媒中で析出させ、 これ を分離することにより、 有機溶媒中に溶解した 4級ホスホニゥムョーダイド及び Z 又はプロマイドを回収することができる。 The quaternary phosphonimoxide and Z or promide thus recovered can be recycled to the reaction step of alkylene glycol or alkylene carbonate. Furthermore, according to the present invention, a mixture containing a quaternary phosphonium chloride obtained from the reaction step or obtained from the above-mentioned recovery step, and a quaternary phosphonimoxide and Z or bromide is further provided. It is possible to recover quaternary phosphonimoxide and Z or promide by adding iodide and Z or bromide to the organic solvent and precipitating quaternary phosphonium chloride-derived chlorine as an inorganic chloride in an organic solvent. It is. That is, a reaction step of reacting an alkylene oxide with water or carbon dioxide in the presence of carbon dioxide using a quaternary phosphonimoxide and Z or a bromide catalyst to produce alkylene glycol or alkylene carbonate. By adding an iodide and / or a bromide to a mixture containing a quaternary phosphonium chloride and a quaternary phosphonimide and / or promide obtained from It is possible to convert quaternary phosphonium chloride to quaternary phosphonium chloride and Z or bromide. On the other hand, chlorine derived from quaternary phosphonium chloride is precipitated as an inorganic chloride having low solubility in an organic solvent in an organic solvent, and separated from the quaternary phosphonium chloride dissolved in the organic solvent. And Z or promide can be recovered.
また、 以下において、 上述の如く、 4級ホスホニゥムクロライド由来の塩素を有 機溶媒中で無機塩化物として析出させる操作を 「無機塩化物析出操作」 と称す場合 がある。 又、 4級ホスホニゥムクロライドの塩素を無機塩化物として析出させるた めに、 ヨウ化物及び Z又は臭化物を添加する、 4級ホスホニゥムクロライドと 4級 ホスホニゥムョーダイド及び/又はプロマイドとを含有する混合物も 「処理対象混 合物」 と称す場合がある。  In the following, as described above, an operation of precipitating chlorine derived from quaternary phosphonium chloride as an inorganic chloride in an organic solvent may be referred to as an “inorganic chloride precipitating operation”. In order to precipitate chlorine of quaternary phosphonium chloride as inorganic chloride, iodide and Z or bromide are added, and quaternary phosphonium chloride and quaternary phosphonium chloride and / or promide are added. Mixtures containing may also be referred to as “mixtures to be treated”.
4級ホスホニゥムクロライドをョ一ダイド又はプロマイドに変換し、 クロライド 由来の塩素を無機塩化物として有機溶媒中で析出させて、 これを分離した後の分離 液は、 有機溶媒中に 4級ホスホニゥムョーダイド及び/又はプロマイドが溶解した ものである。 従って、 この分離液の有機溶媒を蒸発除去することにより、 4級ホス ホニゥムョーダイド及び/又はプロマイドを固体として回収することができる。 回 収した 4級ホスホニゥムョーダイド及び Z又はプロマイドは所望により水で洗浄し た後に、 そのまま或いは適当な溶媒に溶解させて、 アルキレングリコール又はアル キレンカーボネートの反応工程へ循環使用することができる。 発明を実施するための最良の形態  The quaternary phosphonium chloride is converted to chloride or promide, and chloride derived from chloride is precipitated as an inorganic chloride in an organic solvent, and the separated liquid is separated into quaternary phosphonium chloride in an organic solvent. It is one in which nimoxide and / or promide are dissolved. Therefore, by removing the organic solvent from this separated solution by evaporation, quaternary phosphonodioxide and / or promide can be recovered as a solid. The recovered quaternary phosphonimoxide and Z or promide can be recycled as it is or after dissolving in an appropriate solvent after washing with water if necessary, to the alkylene glycol or alkylene carbonate reaction step. . BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明のアルキレングリコールの製造方法の実施の形態を詳細に説明する。 なお、 以下においては、 本発明を、 4級ホスホニゥムョーダイド触媒を用いてェ チレンォキシドからエチレングリコールを製造する反応に適用する場合について主 に説明するが、 これに限定されることはない。 例えば、 本発明は、 プロピレンォキ シドからのプロピレングリコ一ルの製造等の各種アルキレングリコールの製造にも 好適に適用できる。  Hereinafter, embodiments of the method for producing an alkylene glycol of the present invention will be described in detail. In the following, a case where the present invention is applied to a reaction for producing ethylene glycol from ethylenoxide using a quaternary phosphonimoxide catalyst will be mainly described, but the present invention is not limited thereto. For example, the present invention can be suitably applied to the production of various alkylene glycols such as the production of propylene glycol from propylene oxide.
また、 触媒として 4級ホスホニゥムブロマイドを用いる場合、 或いは、 触媒として 4級ホスホニゥムョーダイドと 4級ホスホニゥムブロマイドとを併用する場合にも 同様に適用することができる。 The same applies to the case where quaternary phosphonium bromide is used as a catalyst, or the case where quaternary phosphonimoxide and quaternary phosphonium bromide are used in combination as catalysts.
更にまた、 本発明は、 前述の如く、 このアルキレングリコールの製造方法と同様 の手法で、 反応条件を変更し、 反応温度を低温下してエチレングリコール等のアル キレンダリコールの生成量を抑え、 エチレンカーボネート等のアルキレンカーボネ 一卜を製造する反応にも適用することができ、 また、 アルキレン力一ポネートとァ ルキレングリコールとの両方を目的生成物とする反応にも適用することができる。 また、 以下においては、 処理対象混合物にヨウ化物を添加して、 4級ホスホニゥ ムクロライドを 4級ホスホニゥムョーダイドに変換して回収する方法を例示する。 ヨウ化物に代えて臭化物を添加して、 4級ホスホニゥムクロライドを 4級ホスホニ ゥムブロマイドに変換して回収してもよく、 また、 ヨウ化物と臭化物を併用添加し て 4級ホスホニゥムクロライドを 4級ホスホニゥムョ一ダイド及び 4級ホスホニゥ ムプロマイドに変換して回収してもよい。 Furthermore, as described above, the present invention provides a method similar to the method for producing an alkylene glycol, in which the reaction conditions are changed, the reaction temperature is lowered, and the amount of alkylene glycol, such as ethylene glycol, is suppressed. Alkylene carbonates such as ethylene carbonate The present invention can also be applied to a reaction for producing a unit, and also to a reaction in which both an alkylene glycol and an alkylene glycol are used as target products. In the following, a method of adding iodide to the mixture to be treated, converting quaternary phosphonium chloride to quaternary phosphonium iodide and recovering the same will be exemplified. Bromide may be added in place of iodide to convert quaternary phosphonium chloride to quaternary phosphonium bromide, and the iodine and bromide may be added in combination to add quaternary phosphonium chloride. It may be converted into quaternary phosphonimoxide and quaternary phosphonium bromide and recovered.
更に、 以下においては、 処理対象混合物に無機ヨウ化物を添加して 4級ホスホニ ゥムクロライドを 4級ホスホニゥムョ一ダイドに変換する方法と共に、 4級ホスホ ニゥムクロライド由来の塩素を無機塩化物として析出させる方法を例示する。 ヨウ 化物に代えて臭化物を添加して、 4級ホスホニゥムクロライドを 4級ホスホニゥム プロマイドに変換すると共に、 4級ホスホニゥムクロライド由来の塩素を無機塩化 物として析出させてもよく、 また、 ヨウ化物と臭化物を併用添加して 4級ホスホニ ゥムクロライドを 4級ホスホニゥムョーダイド及び 4級ホスホニゥムブロマイドに 変換すると共に、 4級ホスホニゥムクロライド由来の塩素を無機塩化物として析出 させてもよい。  Further, in the following, a method of adding quaternary phosphonium chloride to a quaternary phosphonium chloride by adding inorganic iodide to the mixture to be treated and a method of precipitating chlorine derived from quaternary phosphonium chloride as inorganic chloride are exemplified. I do. Bromide may be added in place of iodide to convert quaternary phosphonium chloride to quaternary phosphonium promide and to precipitate chlorine derived from quaternary phosphonium chloride as inorganic chloride. Chloride and bromide to convert quaternary phosphonium chloride into quaternary phosphonimoxide and quaternary phosphonium bromide, and to precipitate chlorine derived from quaternary phosphonium chloride as inorganic chloride. Good.
本発明に適用可能な 4級ホスホニゥムョーダイド触媒としては、 特公昭 5 8 - 2 2 4 4 8号公報に記載の化合物がある。 代表的なものとしては、 トリフエ二ルメチ ルホスホニゥムョーダイド、 トリフエニルプロピルホスホニゥムョーダイド、 トリ フエニルベンジルホスホニゥムョーダイド、 卜リブチルメチルホスホニゥムョーダ イド等が挙げられる。 このような 4級ホスホニゥムョーダイド触媒は、 エチレンォ キシドに対して 0 . 0 0 1〜0 . 0 5倍モルとなるように反応系に供給するのが好 ましい。 なお、 4級ホスホニゥムブロマイド触媒を用いる場合、 上記 4級ホスホニ ゥムョ一ダイド触媒に対応するプロマイド触媒を用いることができ、 その好適な使 用量は、 4級ホスホニゥムョ一ダイド触媒と同等である。  As the quaternary phosphonimoxide catalyst applicable to the present invention, there are compounds described in Japanese Patent Publication No. 58-22448. Representative examples include triphenylmethyl phosphonimoxide, triphenyl propyl phosphonimoxide, triphenylbenzyl phosphonimoxide, tributyl methyl phosphonimoxide and the like. . It is preferable that such a quaternary phosphonimoxide catalyst be supplied to the reaction system in a molar amount of 0.01 to 0.05 times the molar amount of ethylene oxide. When a quaternary phosphonium bromide catalyst is used, a promide catalyst corresponding to the above-mentioned quaternary phosphonimudide catalyst can be used, and the preferable usage thereof is the same as that of the quaternary phosphonimudide catalyst.
本発明においては、 反応系内に助触媒としてアルカリ金属の炭酸塩を共存させて もよく、 これによりエチレングリコールの生成効率を高めることができる。 アル力 リ金属の炭酸塩を反応系内に共存させるには、 ナトリウム又はカリウム、 好ましく はカリウム等のアルカリ金属の水酸化物、 炭酸塩、 又は重炭酸塩を添加すればよく 、 いずれのアルカリ金属化合物を添加しても、 これらは反応系内では炭酸塩として 存在する。 この場合、 アルカリ金属の炭酸塩、 好ましくは炭酸カリウムは、 4級ホ スホニゥムョーダイドに対してモル比で 0 . 0 1〜1となるように存在させること が好ましい。  In the present invention, an alkali metal carbonate may coexist as a co-catalyst in the reaction system, whereby the production efficiency of ethylene glycol can be increased. Alkali metal carbonate can coexist in the reaction system by adding a hydroxide, carbonate or bicarbonate of an alkali metal such as sodium or potassium, preferably potassium. Even when the compounds are added, they exist as carbonates in the reaction system. In this case, it is preferable that the alkali metal carbonate, preferably potassium carbonate, is present in a molar ratio of 0.01 to 1 with respect to the quaternary phosphonium iodide.
エチレンォキシドに対する水の量は化学量論量まで減らすことが可能であり、 ま た、 反応形式によってはそれ以下でもよいが、 通常エチレンォキシドに対して 1 . 0〜1 0 . 0倍モル程度用いることが好ましい。 また、 二酸化炭素はエチレンォキ シドに対し当モル以下の量で十分な効果が得られ、 通常の条件下においてはェチレ ンォキシド 1モル当り 0 . 1〜5 . 0モル程度用いられる。 しかし、 これらの量比 については必ずしも厳密な制限はない。  The amount of water relative to ethylene oxide can be reduced to the stoichiometric amount, and may be less depending on the type of reaction, but it is usually 1.0 to 10.0 times the molar amount of ethylene oxide. It is preferable to use it. In addition, carbon dioxide has a sufficient effect in an amount of not more than equimolar to ethylene oxide, and is used in an amount of about 0.1 to 5.0 mol per mol of ethylene oxide under ordinary conditions. However, there is no strict limit on the ratio of these quantities.
反応温度はアルキレンォキシドの種類、 触媒の種類、 反応当初の反応液組成等に より異なるが、 一般に 5 0〜1 8 0 °Cの範囲で行われる。 圧力は二酸化炭素の量、 反応温度等によって異なり、 また反応の進行に伴い、 その経過に応じても変化する が、 一般に 0 . 5〜5 . O M P aの範囲で行われる。 The reaction temperature varies depending on the type of alkylene oxide, the type of catalyst, the composition of the reaction solution at the beginning of the reaction, and the like, but is generally in the range of 50 to 180 ° C. The pressure is the amount of carbon dioxide, The temperature varies depending on the reaction temperature and the like, and also varies with the progress of the reaction, but is generally in the range of 0.5 to OMPa.
反応器の形式は気液反応を円滑に行うことができるものであればよく、 特に限定 はない。 また反応器の数、 滞留時間も所望の転化率が達成できるように選択される 。 なお、 エチレングリコ一ルを製造する場合は、 必要に応じて反応器を付加して反 応液中のエチレン力一ポネートを加水分解する。  The type of the reactor is not particularly limited as long as the gas-liquid reaction can be smoothly performed. The number of reactors and the residence time are also selected so that the desired conversion can be achieved. When producing ethylene glycol, a reactor is added as necessary to hydrolyze ethylene glycol in the reaction solution.
反応器から出た反応液は、 水及ぴェチレングリコ一ルの大部分を蒸留により分離 する。 残った触媒を含む液 (触媒液) は、 触媒を再度反応に使用するために反応器 に循環される。 反応系から 4級ホスホニゥムョーダイド又はプロマイド触媒を効率的に回収して循 環使用する態様 反応器を出た後の反応液から触媒を回収する場合、 そのままでは触媒濃度が薄く 触媒が析出しにくいため、 一度、 反応液に含まれる水及びエチレングリコールを除 去し触媒濃度を高めた後 (エチレングリコール除去後の触媒) 再び水と混合するこ とが好ましい。  From the reaction solution discharged from the reactor, most of water and ethylene glycol are separated by distillation. The liquid containing the remaining catalyst (catalyst liquid) is circulated to the reactor so that the catalyst can be used for the reaction again. A mode in which a quaternary phosphonimoxide or promide catalyst is efficiently recovered from the reaction system and used in a cyclic manner.When the catalyst is recovered from the reaction solution after leaving the reactor, the catalyst concentration is low and the catalyst precipitates as it is. Therefore, it is preferable to once remove the water and ethylene glycol contained in the reaction solution to increase the catalyst concentration (the catalyst after removing the ethylene glycol), and then mix it with water again.
触媒液を使用して触媒を回収する場合は、 そのままでも水を混合することにより 触媒を回収することが可能であるが、 触媒の回収率を上げるために更に蒸留により 含まれるエチレングリコールを除去した後に水と混合して触媒を回収する事が好ま しい。  When using a catalyst solution to recover the catalyst, it is possible to recover the catalyst by mixing water as it is.However, to increase the recovery rate of the catalyst, the ethylene glycol contained was further removed by distillation. It is preferable to recover the catalyst by mixing with water later.
即ち、 本反応においては、 このような反応工程から反応液又は触媒液の少なくと も一部を抜き出し、 液に含まれるアルキレングリコールと触媒のモル比が、 2 0倍 より高い時は 2 0倍以下、 好ましくは 2倍以下になるように水及びアルキレンダリ コール又はアルキレンダリコールを除去した後、 再び水と混合する。  That is, in this reaction, at least a part of the reaction solution or the catalyst solution is extracted from such a reaction step, and when the molar ratio of the alkylene glycol to the catalyst contained in the solution is higher than 20 times, the reaction solution or catalyst solution is 20 times. Thereafter, water and alkylenedalycol or alkylenedalycol are removed so as to be preferably twice or less, and then mixed with water again.
又、 液に含まれるアルキレングリコールと触媒のモル比が、 2 0倍モル比より低 い時は単に水を混合することにより触媒を析出させ回収する。  When the molar ratio between the alkylene glycol and the catalyst contained in the liquid is lower than the 20-fold molar ratio, the catalyst is precipitated and recovered by simply mixing water.
反応工程から抜き出した液と水と混合する場合は 4級ホスホニゥムョ一ダイドを 析出するため冷却することが必要となる場合がある。 即ち、 水あるいはエチレング リコールに対し 4級ホスホニゥムョ一ダイドの溶解度は、 温度が低いほど小さくな る。  When mixing the liquid extracted from the reaction step with water, it may be necessary to cool down to precipitate quaternary phosphonimoxide. That is, the solubility of quaternary phosphonimide in water or ethylene glycol decreases as the temperature decreases.
一般に反応工程から抜き出した反応液は、 1 0 0〜1 8 0 °C程度である。 この反 応液と水とを混合した後の液の温度を 3 0 以下、 好ましくは 0〜2 0 °C程度に 冷却することが好ましく、 これにより 4級ホスホニゥムョ一ダイドをより効率的に 析出させることができる。 この冷却の要否は、 反応液の温度や混合する水の温度及 び混合量によつて決められる。  Generally, the temperature of the reaction solution extracted from the reaction step is about 100 to 180 ° C. It is preferable to cool the temperature of the liquid after mixing the reaction liquid and water to 30 or less, preferably about 0 to 20 ° C., thereby precipitating quaternary phosphonimoxide in a more efficient manner. be able to. The necessity of this cooling is determined by the temperature of the reaction solution, the temperature of the water to be mixed, and the mixing amount.
また、 確実に析出せしめるには冷却のみではなく、 種晶を添加あるいは予め存在 せしめると安定して晶出させる効果が大きい。  In addition, not only cooling to ensure the precipitation, but also the addition of a seed crystal or pre-existing seed crystal has a large effect of stabilizing crystallization.
また、 反応工程から抜き出した液から生成物のエチレングリコールの少なくとも 一部、 好ましくはその大部分、 例えば § ^某濃度が 4 0重量%以上となるように、 ェ チレングリコール (水を含んでもよい) を除去した後の液に水を混合した場合には、 冷却を必要とすることなく、 4級ホスホニゥムョ一ダイドを析出させることができ るが、 4 0で以下になるように冷却するとより効率よく析出させることができる。 水の混合量は、 反応液中の 4級ホスホニゥムョーダイド量ゃエチレングリコール 量、 塩素塩量、 冷却の有無、 所望とする 4級ホスホニゥムョ一ダイドの回収効率等 によって異なるが、 少な過ぎると濾過しづらくなる傾向があり、 また、 4級ホスホ ニゥムクロライドを溶解させる効率が低下する傾向にある。 一方、 多過ぎると 4級 ホスホニゥムョ一ダイドを分離した後の液相に含まれる 4級ホスホニゥムョ一ダイ ドの量が増加する。 一般的には、 1回の処理での水の添加量は処理する液に対して 0 . 1以上、 好ましくは 0 . 1〜 5重量倍の範囲で、 適宜決定される。 Ethylene glycol (water may be contained at least partially, preferably most, for example, from the liquid extracted from the reaction step so that a certain concentration becomes 40% by weight or more. If water is mixed with the liquid after the removal of), quaternary phosphonimide can be precipitated without the need for cooling. Can be well precipitated. The amount of water varies depending on the amount of quaternary phosphonimoxide in the reaction solution, the amount of ethylene glycol, the amount of chlorine salt, the presence or absence of cooling, the desired recovery efficiency of quaternary phosphonimoxide, and the like. It tends to be difficult to filter, and the efficiency of dissolving the quaternary phosphonium chloride tends to decrease. On the other hand, if the amount is too large, the amount of quaternary phosphonimides contained in the liquid phase after separation of quaternary phosphonimides will increase. In general, the amount of water added in one treatment is appropriately determined within a range of 0.1 or more, preferably in a range of 0.1 to 5 times by weight of the liquid to be treated.
固体と分離した後の液相は再度反応液、 触媒液又はエチレンダリコールを分離し た触媒の洗浄水として使用できる。 この場合、 洗浄水として繰り返し使用すると、 洗浄水中に含まれる 4級ホスホニゥムクロライドの濃度が増える事により、 回収す る 4級ホスホニゥムョーダイドに含まれる 4級ホスホニゥムクロライドの濃度が増 大するため、 1〜 5回洗浄に使用した後新しい洗浄水と交換する。  The liquid phase separated from the solid can be used again as a reaction solution, a catalyst solution, or washing water for the catalyst from which ethylene dalicol has been separated. In this case, if used repeatedly as washing water, the concentration of quaternary phosphonium chloride contained in the quaternary phosphonium chloride recovered will increase due to an increase in the concentration of quaternary phosphonium chloride contained in the washing water. To increase the volume, replace it with fresh water after using it 1 to 5 times.
反応液の洗浄を複数回実施し、 徐々に 4級ホスホニゥムクロライド濃度が低い洗 浄水に置き換えていく方法も問題なく実施できる。  A method in which the reaction solution is washed several times and gradually replaced with washing water having a low quaternary phosphonium chloride concentration can be implemented without any problem.
本操作の具体的態様として、 ベッセルに冷却した水あるいは 4級ホスホニゥムョ 一ダイドのスラリーを予め存在させ、 ここに反応液又は触媒液と水を連続あるいは バッチで供給し、 得られた混合物を連続あるいはバッチで抜き出し、 これに含まれ る析出物を濾過回収することも可能である。  As a specific embodiment of this operation, cooled water or a slurry of quaternary phosphonium dihydrate is pre-existing in a vessel, and the reaction solution or catalyst solution and water are supplied continuously or batchwise, and the obtained mixture is continuously or It is also possible to extract in batches and collect the precipitate contained in this by filtration.
なお、 反応液からエチレングリコールを分離するには、 例えば、 減圧下でェチレ ングリコールを蒸留分離する操作を行えばよい。 エチレンダリコールに同伴して水 も分離される。  In order to separate ethylene glycol from the reaction solution, for example, an operation of distilling and separating ethylene glycol under reduced pressure may be performed. Water is also separated with the ethylenedalicol.
このように反応液と水とを混合して得られる析出物は、 通常、 ヨウ素塩含有量 9 0重量%以上、 塩素塩含有量 1 0重量%以下の高活性 4級ホスホニゥムョーダイド 触媒であり、 反応工程に有効に循環使用することができる。  The precipitate obtained by mixing the reaction solution and water as described above is usually a highly active quaternary phosphonimoxide catalyst having an iodine salt content of 90% by weight or more and a chloride salt content of 10% by weight or less. And can be effectively recycled to the reaction process.
なお、 4級ホスホニゥムョ一ダイドの析出物を分離した後の分離液は塩素塩の 4 級ホスホニゥムクロライドを含むものである。 この 4級ホスホニゥムクロライドは 、 分離液を OH型陰イオン交換樹脂で脱ハロゲン処理して、 ヨウ化水素で中和した り、 ヨウ素で置換された陰ィォン交換樹脂で直接塩素ィオンをヨウ素イオンに交換 する方法等により、 4級ホスホニゥムョーダイドに変換される。 こうして、 触媒再 生することができ、 得られた再生触媒もまた、 反応工程に有効に循環使用すること ができる。  The separated solution after separating the precipitate of quaternary phosphonium dihydrate contains chlorinated quaternary phosphonium chloride. This quaternary phosphonium chloride is obtained by subjecting the separated solution to dehalogenation treatment with an OH-type anion exchange resin and neutralizing it with hydrogen iodide or directly converting chlorine ion to iodine ion with an ion exchange resin substituted with iodine. It is converted to quaternary phosphonimoxide by a method such as exchange. Thus, the catalyst can be regenerated, and the obtained regenerated catalyst can also be effectively recycled to the reaction step.
本発明の適用には、 連続稼動している反応器から、 連続的に又は間欠的に反応液 の一部を抜き出して 4級ホスホニゥムョーダイド触媒の回収を行い、 回収した 4級 ホスホニゥムョーダイド触媒を反応器に循環させればよい。 この場合、 4級ホスホ 二ゥムョ一ダイド触媒の回収のために抜き出す反応液量及び Z又は触媒液の量には 特に制限はないが、 触媒の回収コストを過度に高めない範囲で塩素塩を除去して反 応効率を高く維持するために、 反応器内のヨウ素塩に対する塩素塩の重量比が 0 . 0 1〜1 . 0の範囲になったところで反応液を連続的又は間欠的に抜き出して処理 することが好ましい。 抜き出し量としては、 特に制限はないが、 それぞれ反応液量 又は触媒溶液量に対して 0 . 1〜1 0 0重量%程度が好ましい。 反応系中の 4級ホスホニゥムクロライドを 4級ホスホニゥムョーダイド及び/又は プロマイドに変換して回収しこれを反応系に循環使用する態様 本発明に係る、 4級ホスホニゥムクロライドとョ一ダイドとを含有する処理対象 混合物に含まれる 4級ホスホニゥムクロライドとョ一ダイドの比率、 組成はェチレ ングリコ一ル製造プロセス内の塩素とヨウ素の比率、 ブリードする場所、 以下に示 すその後の処理 (前回収操作の有無等) により変化する。 処理対象混合物中の 4級 ホスホニゥムクロライドとョ一ダイドの存在比、 濃度は特に限定がないが、 ョーダ ィドに対するクロライドの比率及びクロライドの濃度が高い方が回収操作の効率の 面からは望ましく、 好ましくは処理対象混合物中の 4級ホスホニゥムョ一ダイドに 対する 4級ホスホニゥムクロライドが、 モル比で、 1 / 2 0倍以上、 さらに好まし くは 1 Z 1 0以上であり、 処理対象混合物中の 4級ホスホニゥムクロライドの濃度 が 0. 1重量%以上、 特に 1重量%以上であることが好ましい。 In the application of the present invention, a part of the reaction solution is continuously or intermittently withdrawn from the continuously operating reactor to recover the quaternary phosphonimoxide catalyst, and the recovered quaternary phosphonide is recovered. The mouldide catalyst may be circulated through the reactor. In this case, there is no particular limitation on the amount of the reaction solution and the amount of Z or the catalyst solution withdrawn to recover the quaternary phosphodiester catalyst, but chloride salts are removed within a range that does not excessively increase the cost of recovering the catalyst. When the weight ratio of chloride to iodine in the reactor is in the range of 0.01 to 1.0, the reaction solution is continuously or intermittently withdrawn to keep the reaction efficiency high. Processing is preferred. The amount of withdrawal is not particularly limited, but is preferably about 0.1 to 100% by weight with respect to the amount of the reaction solution or the amount of the catalyst solution, respectively. An embodiment in which the quaternary phosphonium chloride in the reaction system is converted to quaternary phosphonimoxide and / or promide, recovered, and recycled to the reaction system. According to the present invention, the ratio and composition of quaternary phosphonium chloride and chloride contained in the mixture to be treated containing quaternary phosphonium chloride and chloride are the same as those of chlorine in the ethylene glycol production process. Varies depending on the iodine ratio, bleeding location, and subsequent processing (pre-recovery operation, etc.) shown below. The abundance ratio and concentration of quaternary phosphonium chloride and chloride in the mixture to be treated are not particularly limited, but the higher the ratio of chloride to chloride and the higher the concentration of chloride, the higher the efficiency of the recovery operation. Desirably, preferably, the molar ratio of quaternary phosphonium chloride to quaternary phosphonium chloride in the mixture to be treated is 1/20 or more, and more preferably 1 Z 10 or more. The concentration of quaternary phosphonium chloride in the mixture is preferably at least 0.1% by weight, particularly preferably at least 1% by weight.
本発明を適用する具体例としては、 処理対象混合物を得る方法とヨウ化物の添加 方法別に以下の各方法が挙げられる。 これらを順に説明するが、 本発明は何ら以下 の方法に限定されるものではない。  Specific examples to which the present invention is applied include the following methods depending on the method of obtaining the mixture to be treated and the method of adding iodide. These will be described in order, but the present invention is not limited to the following method.
[適用例 I ]  [Application Example I]
触媒を含有する液としてエチレングリコール製造プロセス内の液を一部抜き出す 。 プロセス内に存在する触媒を含有する液であれば、 特に抜き出し場所は限定され るものではない。 前述の如く、 エチレンォキシドからのエチレングリコールの生成 反応は、 エチレンォキシドと二酸化炭素との反応でェチレンカーボネートが生成し 、 エチレンカーボネートが加水分解されることによりエチレングリコ一ルが生成す る 2段反応である。 従って、 この製造プロセスからの液の抜き出しは、 この反応を 直列に 2段に設けた反応器で行う場合、 いずれの反応器から抜き出してもよく、 両 方の反応器から抜き出してもよい。  Part of the liquid in the ethylene glycol production process is withdrawn as a liquid containing the catalyst. The extraction location is not particularly limited as long as the solution contains a catalyst present in the process. As described above, in the production reaction of ethylene glycol from ethylene oxide, ethylene carbonate is produced by the reaction of ethylene oxide and carbon dioxide, and ethylene glycol is produced by the hydrolysis of ethylene carbonate. It is a two-stage reaction. Therefore, when the liquid is withdrawn from this production process, if this reaction is carried out in two reactors provided in series, it may be withdrawn from either reactor or withdrawn from both reactors.
反応器の出口で液を抜き出す場合、 後工程での 4級ホスホニゥムョーダイドの回 収率を高くするには、 処理対象混合物中の 4級ホスホニゥムクロライド、 ョ一ダイ ドの濃度が高い方が好ましいので、 この場合は溶媒である水、 エチレングリコール 又はエチレン力一ポネートを留去して濃縮することが好ましい。 留去する方法は蒸 留塔でも可能であるが、 単純な蒸発缶を使用してもよい。 好ましくは、 処理対象混 合物中の 4級ホスホニゥムョーダイドの濃度が溶媒の 1 Z 2 0モル倍以上になるま で濃縮する。 4級ホスホニゥム塩の耐熱性を考慮すると、 この蒸留による濃縮操作 は、 減圧下、 好適には 4 O O t o r r ( 5 3 . 2 P a ) 以下で、 好適には 6 0〜2 1 0の温度で実施するのが好ましい。  When extracting the liquid at the outlet of the reactor, the concentration of quaternary phosphonium chloride and chloride in the mixture to be treated must be increased in order to increase the recovery of quaternary phosphonium chloride in the subsequent process. In this case, it is preferable to concentrate by distilling off the solvent water, ethylene glycol or ethylene glycol. The distillation method can be carried out in a distillation tower, but a simple evaporator may be used. Preferably, the mixture is concentrated until the concentration of the quaternary phosphonimoxide in the mixture to be treated becomes 1Z20 mol times or more of the solvent. Considering the heat resistance of the quaternary phosphonium salt, this concentration operation by distillation is carried out under reduced pressure, preferably at 4 OO torr (53.2 Pa) or less, preferably at a temperature of 60 to 210. It is preferred to carry out.
反応液の蒸留濃縮により得られた高濃度触媒液には、 4級ホスホニゥムョーダイ ドとエチレングリコール製造プロセス内で 4級ホスホニゥムョーダイドが塩素化さ れて生成した 4級ホスホニゥムクロライドが含有される。 なお、 触媒液としては、 反応液をプロセス外に取り出して濃縮したものであってもよく、 プロセス内の、 水 、 エチレングリコール、 エチレンカーボネートと触媒液とを分離する蒸留塔から抜 き出した触媒液であってもよい。  The high-concentration catalyst solution obtained by distilling and concentrating the reaction solution contains quaternary phosphonimoxide and quaternary phosphonimoxide formed by chlorination of quaternary phosphonimoxide in the ethylene glycol production process. Contains muchloride. The catalyst solution may be a solution obtained by taking the reaction solution out of the process and concentrating the catalyst solution, and the catalyst extracted from the distillation column that separates the catalyst solution from water, ethylene glycol, and ethylene carbonate in the process. It may be a liquid.
4級ホスホニゥムョ一ダイドを回収するために用いるヨウ化物としては、 4級ホ スホニゥムクロライドとイオン交換できるような、 水中で解離するイオン性化合物 であればいずれも適用可能であり、 当業者が適宜選択すればよいが、 溶解度、 毒性 、 価格等の点で、 ナトリウム塩、 カリウム塩等のアルカリ金属塩又は水素酸等が好 ましい。 無機ヨウ化物としては, 4級ホウホニゥムクロライドとイオン交換できるような 、 水中で解離するイオン性化合物であれば適用可能であるが、 溶解度、 毒性、 価額 の面から、 ナトリウム塩、 カリウム塩などのアルカリ金属塩が好ましい。 As the iodide used for recovering the quaternary phosphonimoxide, any ionic compound that can be ion-exchanged with quaternary phosphonium chloride and that dissociates in water can be used. It may be selected as appropriate, but alkali metal salts such as sodium salt and potassium salt, or hydrogen acid and the like are preferable in terms of solubility, toxicity, price and the like. As the inorganic iodide, any ionic compound that can dissociate in water and that can be ion-exchanged with quaternary borophorum chloride can be used. However, from the viewpoints of solubility, toxicity, and price, sodium salts, potassium salts, etc. Are preferred.
ヨウ化物の添加量としては、 処理対象混合物中に存在する 4級ホスホニゥムクロ ライドの等量以上であればよい。 好適な範囲としては、 処理対象混合物中に存在す る 4級ホスホニゥムクロライド 1モルに対して、 0 . 5〜1 0倍モル、 好ましくは 1〜 5倍モルであればよい。 ヨウ化物を必要以上に添加することは回収率を高めは するが、 過剰のヨウ化物はロスとなる。  The added amount of iodide may be equal to or more than the equivalent of the quaternary phosphonium chloride present in the mixture to be treated. A suitable range is 0.5 to 10 moles, preferably 1 to 5 moles, per 1 mole of the quaternary phosphonium chloride present in the mixture to be treated. Adding more iodide than necessary increases recovery, but excess iodide is lost.
ヨウ化物の添加は固体又は有機溶媒溶液、 水溶液の形態で行うことができるが、 工業的に実施する場合、 液体である方が取り扱い上便利であるので、 有機溶媒溶液 として、 又は水溶液として添加するのが好ましい。  Addition of iodide can be carried out in the form of a solid or organic solvent solution or an aqueous solution.However, in the case of industrial implementation, liquid is more convenient to handle, so add it as an organic solvent solution or as an aqueous solution Is preferred.
水溶液の場合、 水の量はヨウ化物を溶解するに足る量であればよく、 その量は使 用するヨウ化物に依存する。 例えば、 ヨウ化カリウムを使用する場合は、 水に対す る飽和溶解度が 6 0 %であるので、 処理物中のヨウ化カリウム濃度がこれ以下とな るように添加すればよい。 通常、 1〜6 0重量%程度の水溶液として添加するのが 好ましい。  In the case of an aqueous solution, the amount of water may be sufficient to dissolve iodide, and the amount depends on the iodide used. For example, when potassium iodide is used, its saturation solubility in water is 60%, so it may be added so that the concentration of potassium iodide in the treated product is lower than this. Usually, it is preferably added as an aqueous solution of about 1 to 60% by weight.
処理対象混合物にヨウ化物を添加する装置はどのような形態の容器でも実施可能 であるが、 イオン交換反応を促進するために攪拌装置を有したベッセルで行うのが 好ましい。  The apparatus for adding iodide to the mixture to be treated can be carried out in any type of vessel, but is preferably carried out in a vessel equipped with a stirrer to promote the ion exchange reaction.
この操作により処理対象混合物中に存在する 4級ホスホニゥムクロライドは 4級 ホスホニゥムョ一ダイドに変換され、 既に処理対象混合物中に存在していた 4級ホ スホニゥムョ一ダイドと共に水中で析出する。 析出させる温度は低温の方が水中へ の 4級ホスホニゥムョ一ダイドの残存が少なく好ましい。 好適には 0〜3 0 で行 われる。  By this operation, the quaternary phosphonium chloride present in the mixture to be treated is converted into quaternary phosphonium chloride, and is precipitated in water together with the quaternary phosphonium chloride already present in the mixture to be treated. The lower the temperature for the precipitation, the less the quaternary phosphonimidide remains in the water. Preferably, it is performed at 0 to 30.
析出した 4級ホスホニゥムョーダイドは、 これを濾別して回収する。 濾過の方法 は特に制限はなく、 通常のフィルターによる濾過のほか、 遠心分離などが適用可能 である。  The precipitated quaternary phosphonimoxide is collected by filtration. There is no particular limitation on the filtration method, and centrifugation or the like can be applied in addition to filtration using a normal filter.
固体として回収された 4級ホスホニゥムョーダイドは、 4級ホスホニゥムクロラ ィドと添加したヨウ化物を 1 0重量%程度含有する場合がある。 この濃度であって もこのままエチレングリコールの反応工程に循環させることは可能であるが、 必要 に応じて、 水により洗浄を行い 4級ホスホニゥムョ一ダイドの純度を上げてから循 環使用する。 洗浄に用いた後の水は 4級ホスホニゥムョーダイドを含むので、 次の 洗浄に用いるか、 前述の処理対象混合物に添加するョゥ化物を溶解させるための水 として再使用することも可能である。  The quaternary phosphonium chloride recovered as a solid may contain about 10% by weight of quaternary phosphonium chloride and added iodide. Even with this concentration, it is possible to circulate it in the ethylene glycol reaction step as it is, but if necessary, wash it with water to increase the purity of the quaternary phosphonimoxide and then recycle it. Since the water used for washing contains quaternary phosphonimoxide, it can be used for the next washing or reused as water for dissolving the iodide added to the mixture to be treated as described above. It is.
回収した 4級ホスホニゥムョーダイドは、 例えば、 エチレングリコールに溶解さ せて反応系に循環させることができる。  The recovered quaternary phosphonimoxide can be, for example, dissolved in ethylene glycol and circulated to the reaction system.
以上のとおり、 4級ホスホニゥムクロライドを 4級ホスホニゥムョ一ダイドに変 換し、 回収する態様を説明した。 この操作は有機溶媒中でも実施することができる 。 以下に、 有機溶媒中で無機塩化物を析出する操作をすることによって 4級ホスホ ニゥムクロライドを 4級ホスホニゥムョ一ダイドに変換し、 回収する態様について 説明する。  As described above, the embodiment in which the quaternary phosphonium chloride is converted to the quaternary phosphonium chloride and recovered is described. This operation can be performed in an organic solvent. Hereinafter, an embodiment in which quaternary phosphonium chloride is converted to quaternary phosphonium monodide by performing an operation of precipitating an inorganic chloride in an organic solvent and then recovered will be described.
得られた高濃度触媒液には、 溶媒としてエチレングリコール及び Z又はエチレン カーボネー卜が存在するため、 この触媒液に対して本発明の無機塩化物析出操作を 施すことも可能であるが、 ヨウ化物を添加した際に生成する無機塩化物の溶解能力 が低い他の有機溶媒を添加することも好適である。 また、 高濃度触媒液中のェチレ ングリコール及び/又はエチレンカーボネー卜を更に除去して実質的に無溶媒の固 体とし、 これを他の有機溶媒で再溶解させると、 無機塩化物の溶解度がより一層低 下して析出効率が向上し、 望ましい。 Since the obtained high-concentration catalyst solution contains ethylene glycol and Z or ethylene carbonate as a solvent, the inorganic chloride precipitation operation of the present invention is performed on this catalyst solution. Although it is possible to apply, it is also preferable to add another organic solvent having a low ability to dissolve inorganic chloride generated when iodide is added. Further, when ethylene glycol and / or ethylene carbonate in the high-concentration catalyst solution is further removed to obtain a substantially solvent-free solid, which is redissolved in another organic solvent, the solubility of inorganic chloride is reduced. Is further reduced, and the deposition efficiency is improved.
ここで使用される有機溶媒としては、 無機塩化物の溶解力が低い一方で 4級ホス ホニゥム塩を溶解させる能力が高いものが望ましい。 好適な溶媒としては、 脂肪族 ハロゲン化炭化水素、 ケトン、 アルコール、 二トリル、 アミド、 尿素化合物、 炭酸 エステルが挙げられる。  As the organic solvent used here, those having a low ability to dissolve inorganic chloride and a high ability to dissolve quaternary phosphonium salts are desirable. Suitable solvents include aliphatic halogenated hydrocarbons, ketones, alcohols, nitriles, amides, urea compounds, carbonates.
このうち、 アルコールとしては、 例えば、 エタノール、 1一プロパノール、 2— プロパノール、 1—ブタノ一ル、 2—ブ夕ノール、 2—メチルー 1一プロパノール 、 1 , 1ージメチルエタノール、 1一ペン夕ノール、 2一ペンタノ一ル、 3—ペン タノ一ル、 3—メチル _ 1—ブ夕ノール、 2 _メチル一 1—プ夕ノール、 1 , 1一 ジメチルー 1一プロパノール、 1一へキサノール、 2—へキサノール、 3—へキサ ノール、 2—メチルー 1一ペン夕ノール、 4ーメチルー 2—ペンタノ一ル、 1—へ プタノ一ル、 2—ヘプ夕ノール、 3—ヘプ夕ノール、 4—ヘプ夕ノール、 1ーォク 夕ノール、 2—ォクタノール、 2—ェチルー 1一へキサノール、 1ーノナノ一ル、 2—ノナノール、 1ーデカノール、 1一ゥンデカノ一ル、 1一ドデカノール、 1, 6一へキサンジオール、 シクロペン夕ノール、 シクロへキサノール、 ベンジルアル コール、 フエネチルアルコール等が挙げられる。  Of these, examples of alcohol include ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 1,1-dimethylethanol, and 1-pentanol. 2-pentanol, 3-pentanol, 3-methyl_1-butanol, 2-methyl-1-butanol, 1,1-dimethyl-1-propanol, 1-hexanol, 2- Hexanol, 3-Hexanol, 2-Methyl-1-pentanol, 4-Methyl-2-pentanol, 1-Heptanol, 2-Heptanol, 3-Hepanol, 4-Hepanol, 4-Hepanol 1-octanol, 2-octanol, 2-ethyl-1 hexanol, 1-nonanol, 2-nonanol, 1-decanol, 1-decanol, 1-dodecanol, 1,6-hexanediol, Ropen evening Nord, cyclohexane hexanol, benzyl alcohol, full energy chill alcohol.
脂肪族ハロゲン化炭化水素としては、 例えば、 塩化メチレン、 クロ口ホルム、 1 , 2—ジクロロェタン、 1, 1, 1一トリクロロェタン、 1 , 1, 2—トリクロロェ タン、 1 , 2—ジクロ口プロパン、 1, 3—ジクロ口プロパン、 1 , 2 , 3—トリ クロ口プロパン、 1, 4—ジクロロブタン、 1 , 6—ジクロロへキサン等が挙げら れる。  Examples of the aliphatic halogenated hydrocarbon include methylene chloride, chloroform, 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2-trichloroethane, and 1,2-dichloropropane. , 1,3-dichloropropane, 1,2,3-trichloropropane, 1,4-dichlorobutane, 1,6-dichlorohexane and the like.
二トリルとしては、 例えば、 ァセトニトリル、 プロピオ二トリル、 プチロニトリ ル、 アジポニトリル、 ベンゾニトリル等が挙げられる。 アミドとしては、 例えば、 ジメチルホルムアミド、 ジメチルァセトアミド等が挙げられる。 尿素化合物として は、 例えば、 テトラメチルゥレア、 1, 3—ジメチルイミダゾリジン— 2—オン等 が挙げられる。 ケ卜ンとしては、 アセトン、 メチルェチルケトン、 メチルイソプロ ピルケトン等が挙げられる。 炭酸エステルとしては、 エチレンカーボネート、 プロ ピレン力一ポネー卜、 プチレンカーボネート等が挙げられる。  Examples of nitriles include acetonitrile, propionitrile, ptyronitrile, adiponitrile, benzonitrile and the like. Examples of the amide include dimethylformamide and dimethylacetamide. Examples of the urea compound include tetramethyl perylene, 1,3-dimethylimidazolidin-2-one, and the like. Examples of ketones include acetone, methyl ethyl ketone, and methyl isopropyl ketone. Examples of the carbonate include ethylene carbonate, propylene carbonate, and butyl carbonate.
有機溶媒は、 これらの 1種を単独で用いてもよく、 2種以上を混合して用いても よい。 有機溶媒の添加量は、 特に制限はないが、 通常、 処理対象混合物中の 4級ホ スホニゥムクロライドとョ一ダイドの合計の 1〜1 0重量倍である。  One of these organic solvents may be used alone, or two or more thereof may be used in combination. The amount of the organic solvent to be added is not particularly limited, but is usually 1 to 10 times by weight of the total of quaternary phosphonium chloride and chloride in the mixture to be treated.
例えばョゥ化ナ卜リゥムはァセトンによく溶解するので好適な組み合わせである 。 またヨウ化カリウムはエヂレングリコ一ルに溶解するのでこのような組み合わせ も好適である。 ただし、 この塲合、 有機溶媒へのヨウ化物の完全溶解は必ずしも必 要ではない。 ヨウ化物の飽和溶解量が微量であっても、 処理対象混合物中に添加さ れた後、 ヨウ化物は 4級ホスホニゥムクロライドと反応して消費されるのでその分 を補充するようにさらに溶解が進行する。 結果的に溶解度を上回る量が反応して無 機塩ィヒ物を生成させることができる。 ヨウ化物と有機溶媒の選択で必要なのは、 ョ ゥ化物と、 このヨウ化物と 4級ホスホニゥムクロライドとの反応で生成する無機塩 化物とで、 有機溶媒に対するモル溶解度に差があることである。 このような組み合 わせとして、 ヨウ化カリウムに対するブ夕ノール、 エチレングリコールが例として 挙げられる。 For example, sodium fluoride is a suitable combination because it dissolves well in acetone. In addition, potassium iodide dissolves in ethylene glycol, and such a combination is also suitable. However, complete dissolution of iodide in organic solvents is not always necessary. Even if the iodide has a small amount of saturated dissolution, iodide is added to the mixture to be treated and then consumed by reacting with quaternary phosphonium chloride. Progresses. As a result, an amount exceeding the solubility can react to form an inorganic salt. The selection of iodide and the organic solvent requires iodide and the inorganic salt formed by the reaction of this iodide with quaternary phosphonium chloride. And the solubility in organic solvents. Examples of such a combination include butanol and ethylene glycol with respect to potassium iodide.
処理対象混合物にヨウ化物を添加する装置はどのような形態の容器でも実施可能 であるが、 イオン交換反応を促進するために攪拌装置を有したベッセルで行うのが 好ましい。  The apparatus for adding iodide to the mixture to be treated can be carried out in any type of vessel, but is preferably carried out in a vessel equipped with a stirrer to promote the ion exchange reaction.
この操作により処理対象混合物中に存在する 4級ホスホニゥムク口ライドの 4級 ホスホニゥムは 4級ホスホニゥムョーダイドとなり、 一方、 塩素は無機塩化物とし て析出する。 この析出温度は特に限定されるものではなく、 無機塩化物の溶解温度 依存性、 使用する有機溶媒の沸点、 粘度、 4級ホスホニゥム塩の溶解度を鑑みて決 定される。 通常は 0〜5 0 °Cの常温で行われる。 ヨウ化物と 4級ホスホニゥムクロ ライドとの反応は、 溶媒の粘度が低ければ迅速に進行するが、 高粘度溶媒であった り、 ヨウ化物の溶解度が低い場合は、 混合時間を長くすることが望ましい。 好適に は 1分〜 3時間程度で反応は完了する。 この操作により有機溶媒中の 4級ホスホニ ゥムクロライドの 4級ホスホニゥムは 9 0 %以上の転化率でョ一ダイドに変換され ると共に、 無機塩化物が沈殿する。  As a result of this operation, the quaternary phosphonium in the quaternary phosphonium chloride present in the mixture to be treated becomes quaternary phosphonium oxide, while chlorine precipitates as an inorganic chloride. The precipitation temperature is not particularly limited, and is determined in consideration of the dissolution temperature dependency of the inorganic chloride, the boiling point and viscosity of the organic solvent used, and the solubility of the quaternary phosphonium salt. Usually, it is performed at a normal temperature of 0 to 50 ° C. The reaction between iodide and quaternary phosphonium chloride proceeds rapidly when the viscosity of the solvent is low. However, when the solvent is a high-viscosity solvent or the solubility of iodide is low, it is desirable to increase the mixing time. The reaction is preferably completed in about 1 minute to 3 hours. By this operation, the quaternary phosphonium chloride of the quaternary phosphonium chloride in the organic solvent is converted to chloride at a conversion of 90% or more, and the inorganic chloride precipitates.
析出した無機塩化物は、 これを濾別して除去する。 濾過の方法は特に制限はなく 、 通常のフィル夕一による濾過のほか、 遠心分離等が適用可能である。  The precipitated inorganic chloride is removed by filtration. The method of filtration is not particularly limited, and besides ordinary filtration by filtration, centrifugation or the like can be applied.
無機塩化物を濾過分離した後の濾液には触媒である 4級ホスホニゥムョーダイド が溶解しているため、 この濾液から有機溶媒を蒸発除去することにより、 4級ホス ホニゥムョーダイド及び過剰量添加した場合はヨウ化物が固体として回収される。 有機溶媒の除去は通常の蒸発器で実施可能である。 この有機溶媒の蒸発除去は、 前 述の如く、 回収された 4級ホスホニゥムョーダイドの耐熱性を考慮して、 必要に応 じて減圧することにより 2 0 0 °C以下の温度で実施することが望ましい。  Since the quaternary phosphonimoxide, which is a catalyst, is dissolved in the filtrate after the inorganic chloride is separated by filtration, the quaternary phosphonimoxide and the quaternary phosphonimoxide are removed by evaporating the organic solvent from the filtrate. If added in excess, iodide is recovered as a solid. The removal of the organic solvent can be performed with a usual evaporator. As described above, the evaporation of the organic solvent is performed at a temperature of 200 ° C or less by reducing the pressure as necessary in consideration of the heat resistance of the recovered quaternary phosphonimoxide. It is desirable to do.
このようにして回収した 4級ホスホニゥムョーダイドの純度は、 過剰量添加した ヨウ化物と残存する溶媒を除くと、 9 0 %以上のものであるので、 そのまま或いは エチレングリコール等の適当な溶媒に溶解させて反応工程へ循環使用することがで きるが、 好ましくは回収した固体は、 反応工程に循環使用する前に、 水で洗浄して 残存するヨウ化物及び溶媒を除去する。 この水洗には、 回収固体に洗浄水を添加し てスラリー状とし、 これを濾過又は遠心分離すればよい。 この場合、 洗浄水への溶 解ロスを考慮して、 添加する洗浄水量は回収固体に対して 2重量倍以下とすること が好ましい。  The purity of the quaternary phosphonium iodide recovered in this way is 90% or more, excluding the iodide added in an excessive amount and the remaining solvent, so that it can be used directly or in a suitable solvent such as ethylene glycol. The solid can be dissolved in water and recycled to the reaction step. Preferably, the recovered solid is washed with water to remove the remaining iodide and the solvent before the solid is recycled to the reaction step. In the water washing, the recovered solid may be added with washing water to form a slurry, which may be filtered or centrifuged. In this case, the amount of washing water to be added is preferably not more than 2 times the weight of the recovered solid in consideration of the loss of dissolution in the washing water.
上記方法における無機塩化物の除去方法の別法として、 無機塩化物を瀘別せずに 溶媒の除去を同様の操作により行い、 その後上記水洗を行うことにより無機化合物 を水に溶解させて除去することも可能である。  As another method of removing inorganic chloride in the above method, the solvent is removed by the same operation without filtering the inorganic chloride, and then the above-mentioned washing is performed to dissolve and remove the inorganic compound in water. It is also possible.
本発明の別の実施態様として、 以下の方法がある。  As another embodiment of the present invention, there is the following method.
[適用例 II] [Application Example II]
適用例 Iにおいて、 4級ホスホニゥムョーダイドの濃度がエチレングリコールに 対して 1 Z 2 0モル倍以上であるか、 或いはこのような濃度に濃縮した高濃度触媒 液に対して、 水を添加混合した後冷却して 4級ホスホニゥムョ一ダイドを選択的に 析出させてこれを回収する前回収を行う。 ここで、 水の添加量は任意であるが、 少 なすぎる場合は十分な析出効果を得ることができないため、 少なくとも溶存する 4 級ホスホニゥムョーダイドの 0 . 1重量倍以上を添加する必要がある。 水の添加量 の上限については特に制限はないが、 処理容量を過度に大きくしないために溶存す る 4級ホスホニゥムョ一ダイドに対して 5重量倍以下程度とするのが好ましい。 この析出操作時の温度は低温の方が、 水中への 4級ホスホニゥムョーダイドの残 存量が少なく好ましい。 好適には 0〜3 0 °Cで行われる。 In Application Example I, the concentration of the quaternary phosphonimoxide is 1 Z 20 mol times or more of ethylene glycol, or water is added to the high concentration catalyst solution concentrated to such a concentration. After mixing, the mixture is cooled and quaternary phosphonimoxide is selectively precipitated and recovered before recovery. Here, the amount of water to be added is arbitrary, but if it is too small, a sufficient precipitation effect cannot be obtained, so that at least the water is dissolved. It is necessary to add 0.1 weight times or more of the class phosphonimoxide. The upper limit of the amount of water to be added is not particularly limited, but is preferably about 5 times by weight or less with respect to the dissolved quaternary phosphonido monodide so as not to excessively increase the treatment capacity. It is preferable that the temperature at the time of the precipitation operation be lower, since the amount of quaternary phosphonimoxide remaining in water is small. It is preferably carried out at 0 to 30 ° C.
析出した 4級ホスホニゥムョーダイドを回収した残りの水溶液には、 析出しなか つた 4級ホスホニゥムョ一ダイドと 4級ホスホニゥムクロライドが存在する。 上記 4級ホスホニゥムョーダイドを回収した残りの水溶液を処理対象混合物とし て、 必要に応じて濃縮した後、 ヨウ化物を添加して、 4級ホスホニゥムクロライド の 4級ホスホニゥムョーダイドへの変換と析出を行うことができる。 濃縮は、 ヨウ 化物を添加する前の処理対象混合物中の 4級ホスホニゥムクロライド濃度が 1重 量%以上となるように行うことが、 4級ホスホニゥムクロライドの変換効率及び 4 級ホスホニゥムョーダイドの回収効率の面で好ましい。  The remaining aqueous solution from which the precipitated quaternary phosphonium chloride was recovered contains the quaternary phosphonium chloride and quaternary phosphonium chloride which did not precipitate. The remaining aqueous solution obtained by collecting the above quaternary phosphonimoxide is treated as a mixture to be treated, concentrated if necessary, and then added with iodide to form a quaternary phosphonimoxide of quaternary phosphonium chloride. Conversion and precipitation can be performed. The concentration is performed so that the concentration of the quaternary phosphonium chloride in the mixture to be treated before adding iodide becomes 1% by weight or more, and the conversion efficiency of the quaternary phosphonium chloride and the quaternary phosphonium chloride are increased. It is preferable from the viewpoint of the recovery efficiency of moodide.
添加するヨウ化物種、 添加濃度及び添加方法、 析出物の濾別方法、 その後の処理 等は前述の適用例 Iの方法と同様である。  The type of iodide to be added, the concentration and method of addition, the method of filtering off the precipitate, the subsequent treatment, and the like are the same as those in Application Example I described above.
ただし、 この場合は既に系内に水が存在しているので、 ヨウ化物は固体として添 加することが可能であり、 これにより、 結果的に使用する水の量が減少するので排 水への 4級ホスホニゥムョーダイドの溶解口スが低減できる。  However, in this case, since water already exists in the system, iodide can be added as a solid, and as a result, the amount of water used is reduced, so that iodine is discharged. The dissolution opening of quaternary phosphonimoxide can be reduced.
また、 前回収実施後、 4級ホスホニゥムクロライドとョ一ダイドを含有する水溶 液の水の好ましくは 9 0 %以上、 より好ましくは 9 9 %以上を蒸発させて除去した ものを処理対象混合物として、 無機塩化物析出操作することができる。 即ち、 この 処理対象混合物を、 処理対象混合物中の 4級ホスホニゥムクロライドとョ一ダイド の合計に対して 1〜1 0重量倍の有機溶媒で溶解させ、 これに対してヨウ化物の添 加を行う。  In addition, after the pre-recovery is performed, preferably 90% or more, more preferably 99% or more of the water of the aqueous solution containing quaternary phosphonium chloride and chloride is removed by evaporation to obtain the mixture to be treated. An inorganic chloride precipitation operation can be performed. That is, the mixture to be treated is dissolved in an organic solvent in an amount of 1 to 10 times by weight the total of the quaternary phosphonium chloride and iodide in the mixture to be treated, and iodide is added thereto. I do.
添加するヨウ化物種、 添加濃度及び添加方法、 析出物の濾別方法、 その後の処理 等は前述の適用例 Iの方法と同様である。  The type of iodide to be added, the concentration and method of addition, the method of filtering off the precipitate, the subsequent treatment, and the like are the same as those in Application Example I described above.
なお、 この方法において、 高濃度触媒液に 4級ホスホニゥムョ一ダイドを析出さ せるために添加する水の代わりにヨウ化物水溶液を添加することも可能であり、 こ の場合には、 後段のヨウ化物の添加は不要となる。  In this method, it is also possible to add an aqueous iodide solution in place of the water added to precipitate the quaternary phosphonimoxide in the high-concentration catalyst solution, and in this case, the iodide in the latter stage is used. Is unnecessary.
いずれの場合も、 無機塩化物の析出物を固液分離した後の有機溶媒溶液から、 有 機溶媒を除去することにより 4級ホスホニゥムョ一ダイドを更に回収することがで き、 先に回収した 4級ホスホニゥムョ一ダイドと共に再使用することができる。 さらなる別の実施態様として、 以下の方法がある。  In each case, the quaternary phosphonimide monodide can be further recovered by removing the organic solvent from the organic solvent solution after solid-liquid separation of the inorganic chloride precipitate, and can be recovered earlier. It can be reused with grade phosphonimide. As yet another embodiment, there is the following method.
[適用例 III]  [Application example III]
適用例 Iにおいて、 4級ホスホニゥムョ一ダイドの濃度がエチレンダリコールに 対して 1 2 0倍以上であるか、 或いはこのような濃度に濃縮した高濃度触媒液を 更に濃縮し、 溶媒の 9 0 %以上を留去する。 この場合、 残留物 (蒸留残渣) は冷却 と共に固化する。 この固化した残留物を適量の水で洗浄することにより、 残留物中 の 4級ホスホニゥムクロライドを水側へ溶出させて除去することができる。 この場 合も洗浄する水の温度は低温の方が洗浄水中への 4級ホスホニゥムョーダイドの溶 解量が少なく好ましい。 好適には 0〜3 0 °Cで行われる。  In Application Example I, the concentration of the quaternary phosphonimide is 120 times or more higher than that of ethylenedalicol, or the concentrated catalyst solution concentrated to such a concentration is further concentrated to 90% of the solvent. The above is distilled off. In this case, the residue (distillation residue) solidifies with cooling. By washing the solidified residue with an appropriate amount of water, the quaternary phosphonium chloride in the residue can be eluted to the water side and removed. In this case, too, the temperature of the water to be washed is preferably low, because the amount of quaternary phosphonimoxide dissolved in the washing water is small. It is preferably carried out at 0 to 30 ° C.
洗浄に用いる水の量は、 特に制限はないが、 洗浄効率と排水への 4級ホスホニゥ ムョーダイドのロスを勘案すると、 洗浄される固体残留物の 0 . 5〜1 0重量倍で あることが望ましい。 洗浄に用いる水は純水である必要はなく、 プロセス内のリサ ィクル水が使用可能である。 また、 何度も循環使用することも可能である。 特に、 4級ホスホニゥムョーダイドを含む水溶液であれば、 4級ホスホニゥムョーダイド の水中への溶解ロスを低減できるので好ましい。 The amount of water used for washing is not particularly limited, but in consideration of washing efficiency and the loss of quaternary phosphonium moxide to wastewater, it is 0.5 to 10 times by weight of the solid residue to be washed. Desirably. The water used for cleaning does not need to be pure water, and the recycled water in the process can be used. It can also be used repeatedly. In particular, an aqueous solution containing a quaternary phosphonimoxide is preferable since the dissolution loss of the quaternary phosphonimoxide in water can be reduced.
洗浄後の水には溶出した 4級ホスホニゥムクロライドとわずかに溶解した 4級ホ スホニゥムョ一ダイドが存在する。  The washed water contains the quaternary phosphonium chloride eluted and the quaternary phosphonium chloride dissolved slightly.
これを処理対象混合物として、 上述の如く、 必要に応じてこれを濃縮した後、 ョ ゥ化物を添加して 4級ホスホニゥムクロライドの 4級ホスホニゥムョ一ダイドへの 変換と析出を行うことができる。 この場合においても、 ヨウ化物を添加する前の処 理対象混合物の 4級ホスホニゥムクロライド濃度としては 1重量%以上が好ましく As a mixture to be treated, as described above, after concentrating the mixture as necessary, an oxide can be added to convert and precipitate quaternary phosphonium chloride into quaternary phosphonium chloride. . Also in this case, the concentration of the quaternary phosphonium chloride in the mixture to be treated before adding iodide is preferably 1% by weight or more.
、 添加ヨウ化物種、 添加濃度及び添加方法、 析出物の濾別方法、 その後の処理等 は前述の適用例 Iの方法と同様である。 The type of iodide added, the concentration and method of addition, the method of separating the precipitate by filtration, the subsequent treatment, and the like are the same as those in Application Example I described above.
この場合においても、 既に系内に水が存在しているので、 ヨウ化物は固体で添加 することが可能であり、 これにより、 結果的に使用する水の量が減少するので排水 への 4級ホスホニゥムョーダイドの溶解ロスが低減できる。  In this case, too, water is already present in the system, so iodide can be added as a solid. Dissolution loss of phosphonimoxide can be reduced.
また、 上記洗浄操作を行って、 洗浄後の水を処理対象混合物としてヨウ化物を添 加する方法においては、 工程を短縮して実施する形態として、 洗浄水としてヨウ化 物水溶液を使用することもできる。 この場合、 用いるヨウ化物水溶液の濃度は洗浄 後の水中のヨウ化物濃度が、 前述の添加混合した状態の濃度となるような濃度であ ればよい。  Further, in the method of adding iodide as a mixture to be treated by performing the above-mentioned washing operation and adding water after washing, as an embodiment of shortening the process, an aqueous iodide solution may be used as washing water. it can. In this case, the concentration of the iodide aqueous solution to be used may be such that the iodide concentration in the water after washing is the concentration in the state of the above-mentioned added and mixed state.
この 4級ホスホニゥムクロライドとョ一ダイドを含有する水溶液の水の好ましく は 9 0 %以上、 より好ましくは 9 9 %以上を蒸発させて除去したものを処理対象混 合物として、 無機塩化物析出操作することができる。 即ち、 この処理対象混合物を The aqueous solution containing the quaternary phosphonium chloride and chloride is preferably removed by evaporating water, preferably 90% or more, more preferably 99% or more, as the mixture to be treated, as inorganic chloride. A precipitation operation can be performed. That is, the mixture to be treated is
、 処理対象混合物中の 4級ホスホニゥムクロライドとョ一ダイドの合計に対して 1〜1 0重量倍の有機溶媒で溶解させ、 これに対してヨウ化物の添加を行う。 添加するヨウ化物種、 添加濃度及び添加方法、 析出物の濾別方法、 その後の処理 等は前述の適用例 Iの方法と同様である。 The quaternary phosphonium chloride and iodide in the mixture to be treated are dissolved in an organic solvent in an amount of 1 to 10 times by weight based on the total weight of the mixture, and iodide is added thereto. The type of iodide to be added, the concentration and method of addition, the method of filtering off the precipitate, the subsequent treatment, and the like are the same as those in Application Example I described above.
なお、 この方法においても、 洗浄水の代わりにヨウ化物水溶液を使用することも 可能であり、 この場合、 後段のヨウ化物の添加は不要となる。  In this method, it is also possible to use an aqueous iodide solution instead of the washing water, and in this case, it is not necessary to add the iodide in the latter stage.
いずれの場合も、 無機塩化物の析出物を固液分離した後の有機溶媒溶液から、 有 機溶媒を除去することにより 4級ホスホニゥムョ一ダイドを更に回収することがで き、 先に回収した 4級ホスホニゥムョーダイドと共に再使用することができる。 また、 上記 4級ホスホニゥムョーダイドの濃度がエチレングリコールに対して 1 Z 2 0倍以上であるか、 そのように濃縮した高濃度触媒液を更に濃縮し、 溶媒の 9 0 %以上を留去した後に 9 0 °C以上の温度を保つことで液体状態を保つことができ るので、 ここに水を添加した後に 0〜4 0 °Cに冷却して 4級ホスホニゥムョ一ダイ ドを析出させることも可能である。 あるいは既に存在している冷水またはスラリー に上記濃縮残留物を単独であるいは水と同時に連続供給して晶出させることができ る。 この場合も析出した 4級ホスホニゥムョーダイドを分離回収した残りの水溶液 には、 析出しなかった 4級ホスホニゥムョーダイドとクロライドが存在する。 これを処理対象混合物として、 上述の如く、 必要に応じてこれを濃縮した後、 ョ ゥ化物を添加して 4級ホスホニゥムクロライドの 4級ホスホニゥムョ一ダイドへの 変換と析出を行うことができる。 この場合においても、 ヨウ化物を添加する前の処理対象混合物の 4級ホスホニゥ ムクロライド濃度としては 1重量%以上が好ましく、 添加ヨウ化物種、 添加濃度及 び添加方法、 析出物の濾別方法、 その後の処理等は前述の適用例 Iの方法と同様で める。 In each case, the quaternary phosphonimide monodide can be further recovered by removing the organic solvent from the organic solvent solution after solid-liquid separation of the inorganic chloride precipitate, and can be recovered earlier. It can be reused with grade phosphonimoxide. In addition, the concentration of the quaternary phosphonimoxide is 1 Z 20 times or more of ethylene glycol, or the concentrated catalyst solution thus concentrated is further concentrated, and 90% or more of the solvent is distilled. Since the liquid state can be maintained by maintaining the temperature at 90 ° C or higher after removing, quaternary phosphonimide is precipitated by adding water and then cooling to 0 to 40 ° C. It is also possible. Alternatively, the concentrated residue can be crystallized by supplying the concentrated residue alone or continuously with water to cold water or slurry already existing. Also in this case, the remaining aqueous solution obtained by separating and recovering the precipitated quaternary phosphonimoxide contains quaternary phosphonimoxide and chloride which did not precipitate. As a mixture to be treated, as described above, after concentrating the mixture as necessary, an iodide can be added to convert and precipitate quaternary phosphonium chloride into quaternary phosphonium chloride. . Also in this case, the quaternary phosphonium chloride concentration of the mixture to be treated before adding the iodide is preferably 1% by weight or more, and the kind of the added iodide, the added concentration and the adding method, the method of filtering the precipitate, and The processing and the like are the same as in the method of Application Example I described above.
しかして、 この場合においても、 既に系内に水が存在しているので、 ヨウ化物は 固体で添加することが可能であり、 これにより、 結果的に使用する水の量が減少す るので排水への 4級ホスホニゥムョーダイドの溶解ロスが低減できる。  However, even in this case, since water is already present in the system, it is possible to add iodide as a solid, and as a result, the amount of water used is reduced. The dissolution loss of quaternary phosphonimoxide in water can be reduced.
また、 上記工程を短縮する実施する形態として、 水の代りにヨウ化物水溶液を加 温して使用することもできる。  Further, as an embodiment for shortening the above steps, an aqueous iodide solution can be used by heating instead of water.
この 4級ホスホニゥムクロライドとョ一ダイドを含有する水溶液の水の好ましく は 9 0 %以上、 より好ましくは 9 9 %以上を蒸発させて除去したものを処理対象混 合物として、 無機塩化物析出操作することができる。 即ち、 この処理対象混合物を The aqueous solution containing the quaternary phosphonium chloride and chloride is preferably removed by evaporating water, preferably 90% or more, more preferably 99% or more, as the mixture to be treated, as inorganic chloride. A precipitation operation can be performed. That is, the mixture to be treated is
、 処理対象混合物中の 4級ホスホニゥムクロライドとョ一ダイドの合計に対して 1〜1 0重量倍の有機溶媒で溶解させ、 これに対してヨウ化物の添加を行う。 添加するヨウ化物種、 添加濃度及び添加方法、 析出物の濾別方法、 その後の処理 等は前述の適用例 Iの方法と同様である。 The quaternary phosphonium chloride and iodide in the mixture to be treated are dissolved in an organic solvent in an amount of 1 to 10 times by weight based on the total weight of the mixture, and iodide is added thereto. The type of iodide to be added, the concentration and method of addition, the method of filtering off the precipitate, the subsequent treatment, and the like are the same as those in Application Example I described above.
この方法においても、 上記水の代わりにヨウ化物水溶液を使用することも可能で あり、 この場合、 後段のヨウ化物の添加は不要となる。  In this method, it is also possible to use an iodide aqueous solution instead of the water, and in this case, it is not necessary to add the iodide in the latter stage.
全ての実施態様を通して、 ヨウ化物を添加し無機塩化物を析出させて、 これを固 液分離した後の分離液になお残存する 4級ホスホニゥムクロライドとョ一ダイドに 関して本発明を適用することも可能である。 即ち、 所望の回収率に達するまで繰り 返しヨウ化物の添加、 無機塩化物の除去を実施することも可能である。  Throughout all embodiments, the present invention is applied to quaternary phosphonium chloride and chloride which still remain in the separated liquid after iodide is added to precipitate inorganic chloride, which is subjected to solid-liquid separation. It is also possible. That is, it is possible to repeatedly add iodide and remove inorganic chloride until the desired recovery rate is reached.
本発明の適用には、 連続稼動している反応プロセスから、 連続的に又は間欠的に 反応液及び/又は触媒液の少なくとも一部を抜き出して、 必要に応じて濃縮及び Z 又は前回収を行った後、 4級ホスホニゥムクロライドの 4級ホスホニゥムョーダイ ドへの変換及び 4級ホスホニゥムョ一ダイドの回収を行い、 回収した 4級ホスホニ ゥムョーダイド触媒を反応器に循環させればよい。 この場合、 4級ホスホニゥムョ 一ダイド触媒の回収のために抜き出す反応液及び/又は触媒液の量には特に制限は ないが、 触媒の回収コストを過度に高めない範囲で 4級ホスホニゥムクロライドを 除去して反応効率を高く維持するために、 反応器内のョーダイドに対する 4級ホス ホニゥムクロライドの重量比が 0 . 0 1〜1 . 0の範囲になったところで反応液及 び Z又は触媒液を連続的又は間欠的に抜き出して処理することが好ましい。 抜き出 し量としては、 特に制限はないが、 それぞれ系内の反応液量又は触媒液量に対して 0 . 1〜: L 0 0重量%程度が好ましい。 実施例  In the application of the present invention, at least a part of the reaction solution and / or the catalyst solution is continuously or intermittently extracted from the continuously operating reaction process, and concentrated and Z or pre-recovered as necessary. After that, the quaternary phosphonium chloride is converted into quaternary phosphonium chloride and the quaternary phosphonium chloride is recovered, and the recovered quaternary phosphonium chloride catalyst may be circulated through the reactor. In this case, there is no particular limitation on the amount of the reaction solution and / or the catalyst solution to be withdrawn to recover the quaternary phosphonium dihydrate catalyst, but the quaternary phosphonium chloride may be used within a range not excessively increasing the catalyst recovery cost. When the weight ratio of quaternary phosphonium chloride to iodide in the reactor is in the range of 0.01 to 1.0, the reaction solution and Z It is preferable that the liquid is continuously or intermittently withdrawn and processed. The amount to be withdrawn is not particularly limited, but is preferably about 0.1 to about 100% by weight of the reaction solution or the catalyst solution in the system. Example
以下に実施例を挙げて本発明をより具体的に説明する。 本発明は、 かかる実施例 に限定して解釈されるべきでないことはもちろんである。 実施例 1一 1  Hereinafter, the present invention will be described more specifically with reference to examples. Of course, the present invention should not be construed as being limited to such embodiments. Example 11
二酸化炭素 2 . O M P aで加圧した滞留時間 l H r、 1 0 0 °Cの第 1反応器に、 触媒としてトリブチルメチルホスホニゥムョーダイド 5重量部 ZH r、 炭酸力リゥ ム 0. 8重量部/ Hr、 原料エチレンォキシド水溶液 (60重量%) 78重量部 Z Hrを供給することによりエチレンカーボネート及びエチレングリコール Carbon dioxide 2. OMPa pressurized residence time lHr, 100 ° C in the first reactor, tributylmethylphosphonumodide 5 parts by weight ZHr as a catalyst, carbon dioxide 0.8 parts by weight / Hr, raw material ethylene oxide aqueous solution (60% by weight) 78 parts by weight
(EG) を含む反応液を得た。 これを全量滞留時間 2Hr、 圧力 0. 5MP a、 温 度 150°Cの第 2反応器に移液して含有されるエチレンカーボネートを加水分解し て、 触媒を含有するエチレンダリコールの水溶液 66. 5重量部/ H rを得た。 得られた反応液を塔底 140°C、 11 kP a (8 OmmHg) の減圧蒸留塔によ り蒸留して塔底から脱水された液を得、 これをさらに 140° (:、 8 kP a (60m mHg) で操作される減圧蒸発器によりエチレングリコールの大部分を蒸発させ、 蒸発器底部より触媒が濃縮された触媒液を 13重量部ノ Hrを回収した。 回収した 触媒液は触媒として第 1反応器へ循環使用した。 1年の連続運転後の触媒液の組成 は下記の通りであった。  A reaction solution containing (EG) was obtained. This was transferred to a second reactor with a total residence time of 2 hours, a pressure of 0.5 MPa, and a temperature of 150 ° C to hydrolyze the ethylene carbonate contained therein, and an aqueous solution of ethylene dalicol containing a catalyst66. 5 parts by weight / hr were obtained. The obtained reaction solution was distilled by a vacuum distillation column at 140 ° C. and 11 kPa (8 OmmHg) to obtain a dehydrated liquid from the column bottom. Most of the ethylene glycol was evaporated by a reduced-pressure evaporator operated at (60 mmHg), and 13 parts by weight of Hr was recovered from the bottom of the evaporator in the concentrated catalyst solution. It was circulated to one reactor and the composition of the catalyst solution after one year of continuous operation was as follows.
[触媒液組成]  [Catalyst liquid composition]
エチレングリコール :約 59重量%  Ethylene glycol: about 59% by weight
ヨウ素塩 (4級ホスホニゥムョーダイド) :約 33重量%  Iodine salt (quaternary phosphonimoxide): about 33% by weight
塩素塩 (4級ホスホニゥムクロライド) :約 6重量%  Chlorine salt (quaternary phosphonium chloride): about 6% by weight
炭酸カリウム :約 2重量% 上記組成に到達後、 この触媒液の一部を 0. 02重量部 ZHrで抜き出す運転に 変更した。 抜き出した触媒液 (以下、 「抜き出し液 A」 と称す。 ) をフラッシュべ ッセルに供給し、 3 t o r r (4 O OP a) 、 128での条件 % % % %で、 液中に含まれる エチレングリコールの約 93重量%を除去した。  Potassium carbonate: about 2% by weight After reaching the above composition, the operation was changed to an operation in which part of this catalyst solution was withdrawn at 0.02 parts by weight ZHr. The extracted catalyst liquid (hereinafter referred to as “extracted liquid A”) is supplied to the flash vessel, and the ethylene glycol contained in the liquid is obtained under the conditions of 3 torr (4 O OP a), 128%%%% Was removed by about 93% by weight.
エチレングリコール除去後の液 (以下、 「濃縮液 A」 と称す。 ) を 95T:に保つ たまま、 3重量%ヨウ化カリウム水溶液を添加し撹拌混合しながら 20°Cまで冷却 した後、 1時間静置した。 ここで添加したヨウ化カリウムは濃縮液 A中の塩素塩と 等モル、 使用した水の量は濃縮液 Aと等重量であった。  While keeping the liquid after removing the ethylene glycol (hereinafter referred to as “concentrated liquid A”) at 95 T :, add a 3% by weight aqueous solution of potassium iodide and cool to 20 ° C with stirring and mixing for 1 hour. It was left still. The potassium iodide added here was equimolar to the chloride salt in concentrate A, and the amount of water used was equal to the weight of concentrate A.
析出物を吸引濾過器により固液分離して分析したところ、 この析出物の組成は下 記の通りであり、 これは、 上記抜き出し液 A中のヨウ素塩及び塩素塩のうち 90重 量%を 4級ホスホニゥムョーダイド触媒として効率的に分離することができたこと に相当する。  The precipitate was analyzed by solid-liquid separation with a suction filter and analyzed. The composition of the precipitate was as follows. It was found that 90% by weight of the iodine salt and the chlorine salt in the extracted liquid A was 90% by weight. This corresponds to efficient separation as a quaternary phosphonimoxide catalyst.
[析出物組成]  [Precipitate composition]
水 約 18重  About 18 water
エチレングリコール 約 2重 ί  Ethylene glycol About double 重
ヨウ素塩 (4級ホスホニゥムョーダイド) 約 80重』  Iodine salt (quaternary phosphonimoxide) Approx.
塩素塩 (4級ホスホニゥムクロライド) 約  Chlorine salt (quaternary phosphonium chloride) About
炭酸カリウム 1重量%以下 この析出物をエチレンダリコールに溶解させ、 反応器に循環した。  Potassium carbonate 1% by weight or less This precipitate was dissolved in ethylene dalicol and circulated to the reactor.
このようにして触媒の回収及び循環を行いながら、 運転を継続したところェチレ ングリコールの製造工程に置いて反応効率の低下の問題なく効率的な運転を継続す ることができた。 実施例 1一 2 実施例 1一 1において、 エチレンダリコールを分離除去後の濃縮液 Aに、 ヨウ化 力リゥム水溶液の代わりに濃縮液 Aと等量の蒸留水を添加して同様の操作を行い固 体を析出させた。 When the operation was continued while recovering and circulating the catalyst in this way, efficient operation could be continued in the production process of ethylene glycol without a reduction in reaction efficiency. Example 11 Example 11 In Example 11, to the concentrated solution A after separation and removal of ethylene dalicol, an equivalent amount of distilled water was added to the concentrated solution A in place of the aqueous solution of iodide, and the same operation was performed to precipitate a solid. I let it.
析出物を固液分離して分析したところ、 この析出物には、 上記抜き出し液 A中の ヨウ素塩の 94重量%、 塩素塩の約 13重量%が含まれており、 4級ホスホニゥム ョーダイド触媒を塩素塩から効率的に分離することができたことが確認された。 析出物を分離した液 (以下 「分離液 A」 と称す。 ) には同じく抜き出し液 A中の ヨウ素塩の約 6重量%、 塩素塩の約 87重量%が溶解していた。 この分離液 Aに対 し、 液中の塩素塩に対し 1. 2モル倍のヨウ化カリウムを 50重量%水溶液として 添加し、 20°Cで 1時間静置した。 析出物を固液分離して分析したところ、 この析 出物中には、 上記抜き出し液 A中の塩素塩のうち 50重量%を 4級ホスホニゥムョ 一ダイド触媒として効率的に分離することができたことが確認された。 実施例 1一 3  When the precipitate was analyzed by solid-liquid separation, the precipitate contained 94% by weight of the iodine salt and about 13% by weight of the chloride salt in the above extracted liquid A. The quaternary phosphonide iodide catalyst was used. It was confirmed that the salt could be efficiently separated from the chloride salt. About 6% by weight of the iodine salt and about 87% by weight of the chlorine salt in the withdrawn liquid A were also dissolved in the liquid from which the precipitate was separated (hereinafter referred to as “separated liquid A”). To this separated solution A, 1.2 mol times of potassium iodide with respect to the chlorine salt in the solution was added as a 50% by weight aqueous solution, and the mixture was allowed to stand at 20 ° C for 1 hour. The precipitate was subjected to solid-liquid separation and analyzed. In this precipitate, 50% by weight of the chlorine salt in the above extracted liquid A could be efficiently separated as a quaternary phosphonimide monodide catalyst. It was confirmed that. Example 11
実施例 1一 2で得られた分離液 Aを蒸留し、 分離液 A中の水を 50重量%を留去 して濃縮した。 この濃縮液に対し、 液中の塩素塩に対し 1. 2モル倍のヨウ化カリ ゥムを 50重量%水溶液として添加し、 20でで 1時間静置した。 析出物を固液分 離して分析したところ、 この析出物中には、 上記抜き出し液 A中の塩素塩のうち約 75重量%を 4級ホスホニゥムョ一ダイド触媒として効率的に分離することができ たことが確認された。 ' 実施例 2— 1  Separation liquid A obtained in Example 12 was distilled, and water in separation liquid A was concentrated by distilling off 50% by weight of water. To this concentrated solution, potassium iodide was added as a 50% by weight aqueous solution in an amount of 1.2 mol times the chlorine salt in the solution, and the mixture was allowed to stand at 20 for 1 hour. When the precipitate was analyzed by solid-liquid separation, about 75% by weight of the chlorine salt in the above extracted liquid A could be efficiently separated as a quaternary phosphonimoxide catalyst in the precipitate. It was confirmed that. '' Example 2-1
二酸化炭素 2. OMP aで加圧した滞留時間 lHr、 100 °Cの第 1反応器に、 触媒としてトリブチルメチルホスホニゥムョーダイド 5重量部 /H r、 炭酸力リゥ ム 0. 8重量部 ZHr、 原料エチレンォキシド水溶液 (60重量%) 78重量部 Z Hrを供給することによりエチレンカーボネート及びエチレングリコール (EG) を含む反応液を得た。 これを全量滞留時間 2Hr、 圧力 0. 5MP a、 温度 15 0°Cの第 2反応器に移液して含有されるエチレン力一ポネートを加水分解して、 触 媒を含有するエチレンダリコールの水溶液 66. 5重量部/ H rを得た。  Carbon dioxide 2. OMPa pressurized residence time lHr, 1st reactor at 100 ° C, tributyl methyl phosphonimoxide as catalyst 5 parts by weight / Hr, carbon dioxide rim 0.8 parts by weight ZHr A raw material ethylene oxide aqueous solution (60% by weight) was supplied with 78 parts by weight of ZHr to obtain a reaction solution containing ethylene carbonate and ethylene glycol (EG). This was transferred to a second reactor having a total residence time of 2 hours, a pressure of 0.5 MPa, and a temperature of 150 ° C, and the contained ethylene ponionate was hydrolyzed to produce ethylene dalicol containing a catalyst. An aqueous solution of 66.5 parts by weight / Hr was obtained.
得られた反応液を塔底 140°C、 11 kP a (8 OmmHg) の減圧蒸留塔によ り蒸留して塔底から脱水された液を得、 これをさらに 140°C、 8 kP a (60m mHg) で操作される減圧蒸発器によりエチレングリコールの大部分を蒸発させ、 蒸発器底部より触媒が濃縮された触媒液を 13重量部 ZHrを回収した。 回収した 触媒液は触媒として第 1反応器へ循環使用した。 1年の連続運転後の触媒液の組成 は下記の通りであった。  The obtained reaction solution was distilled by a reduced-pressure distillation column having a bottom of 140 ° C and 11 kPa (8 OmmHg) to obtain a dehydrated liquid from the bottom of the column. Most of the ethylene glycol was evaporated by a reduced pressure evaporator operated at 60 mmHg), and 13 parts by weight of a catalyst solution enriched in the catalyst was recovered from the bottom of the evaporator. The recovered catalyst solution was recycled to the first reactor as a catalyst. The composition of the catalyst liquid after one year of continuous operation was as follows.
[触媒液組成]  [Catalyst liquid composition]
エチレングリコール 約 59重量%  About 59% by weight of ethylene glycol
ヨウ素塩 (4級ホスホニゥムョーダイド) 約 33重量%  Iodine salt (quaternary phosphonimoxide) 33% by weight
塩素塩 (4級ホスホニゥムクロライド) 約 6重量%  Chlorine salt (quaternary phosphonium chloride) About 6% by weight
炭酸カリウム 約 2重量% 上記組成に到達後、 この触媒液の一部を 0. 02重邐 :部 ZHrで抜き出す運転に 変更した。 抜き出した触媒液 (以下、 「抜き出し液 A」 と称す。 ) をフラッシュべ ッセルに供給し、 3 t o r r (4 O OP a) 、 128°Cの条件で、 液中に含まれる エチレングリコールの約 93重量%を除去した。 エチレングリコール除去後の液Potassium carbonate Approximately 2% by weight After reaching the above composition, the operation was changed to withdrawing a part of this catalyst solution at 0.02 weight: part ZHr. Flash the extracted catalyst solution (hereinafter referred to as “extracted solution A”). The solution was supplied to the vessel to remove about 93% by weight of ethylene glycol contained in the solution under the conditions of 3 torr (4O OPa) and 128 ° C. Liquid after removing ethylene glycol
(以下、 「濃縮物 A」 と称す。 ) を 95°Cに保ったまま、 濃縮物 Aと等重量の水を 添加し撹拌混合しながら 20 まで冷却した後、 1時間静置した。 (Hereinafter referred to as “concentrate A”). While maintaining the temperature at 95 ° C., water of the same weight as the concentrate A was added, and the mixture was cooled to 20 while stirring and mixing, and then allowed to stand for 1 hour.
析出物 (以下、 「析出物 A」 と称す。 ) を吸引濾過器により固液分離し、 得られ た濾液 (以下、 「濾液 A」 と称す。 ) を分析したところ、 この濾液 Aの組成は下記 の通りであり、 上記抜き出し液 A中の塩素塩のうちの約 80重量%を含むものであ つた。  The precipitate (hereinafter, referred to as “precipitate A”) was subjected to solid-liquid separation with a suction filter, and the obtained filtrate (hereinafter, referred to as “filtrate A”) was analyzed. It was as follows, and contained about 80% by weight of the chlorine salt in the extracted liquid A.
[濾液 A組成]  [Filtrate A composition]
水 :約 78重量%  Water: about 78% by weight
エチレングリコール :約 7重量%  Ethylene glycol: about 7% by weight
ヨウ素塩 (4級ホウスホニゥムョーダイド) :約 1重量%  Iodine salt (quaternary HOUSHONOMUYUDIDE): about 1% by weight
塩素塩 (4級ホスホニゥムクロライド) :約 10重量%  Chlorine salt (quaternary phosphonium chloride): about 10% by weight
炭酸カリウム : 4重量% 一方、 前記析出物 Aを分析したところ、 この析出物 Aの組成は下記の通りであり 、 これは、 上記抜き出し液 A中のヨウ素塩のうちの約 98重量%を含むものであつ た。  Potassium carbonate: 4% by weight On the other hand, when the precipitate A was analyzed, the composition of the precipitate A was as follows, which contained about 98% by weight of the iodine salt in the extracted liquid A. It was a thing.
[析出物 A組成]  [Precipitate A composition]
水 :約 16重量%  Water: about 16% by weight
エチレングリコール :約 1重量%  Ethylene glycol: about 1% by weight
ヨウ素塩 (4級ホウスホニゥムョ一ダイド) :約 80重量%  Iodine salt (4th grade HOUSHONOMUMO I-Dide): about 80% by weight
塩素塩 (4級ホスホニゥムクロライド) :約 2重量%  Chlorine salt (quaternary phosphonium chloride): about 2% by weight
炭酸カリウム : 1重量%以下 濾液 Aに含まれる水及びエチレングリコールを 140°Cで操作される蒸発器を用 いて除去した。 水とエチレングリコールの除去に従い圧力を低下させ、 最終的に 5 t o r r (660 P a) で 30分保持した。 この操作で蒸留残渣に含まれる水とェ チレングリコールの量は 10重量%以下となった。 このようにして水とエチレング リコールを除去した後の残留物に等重量のアセトンを添加した。 次に得られた液を 攪拌機付き貯槽に移送して、 含有される塩素塩に対し 1. 2モル倍のヨウ化ナトリ ゥムを固体のまま添加して室温で 1時間攪拌をした。  Potassium carbonate: 1% by weight or less Water and ethylene glycol contained in filtrate A were removed using an evaporator operated at 140 ° C. The pressure was reduced as water and ethylene glycol were removed, and the pressure was finally maintained at 5 torr (660 Pa) for 30 minutes. By this operation, the amounts of water and ethylene glycol contained in the distillation residue became 10% by weight or less. An equal weight of acetone was added to the residue after removing water and ethylene glycol in this manner. Next, the obtained liquid was transferred to a storage tank with a stirrer, and 1.2 mol times of sodium iodide with respect to the contained chlorine salt was added as a solid, followed by stirring at room temperature for 1 hour.
この無機塩化物析出操作で析出した析出物を吸引濾過器で固液分離して分析した ところ、 この析出物中には、 濾液 A中の塩素塩の 98重量%以上に相当する塩化ナ トリウムが存在した。 一方、 この固液分離で得られた濾液 (以下、 「濾液 B」 と称 す。 ) を 5 t o r r (660 Pa) 、 110 で操作される蒸発器に導入して、 濾 液 B中のァ  The precipitate deposited by this inorganic chloride precipitation operation was subjected to solid-liquid separation with a suction filter and analyzed. The precipitate contained sodium chloride equivalent to 98% by weight or more of the chloride in filtrate A. Were present. On the other hand, the filtrate obtained by the solid-liquid separation (hereinafter referred to as “filtrate B”) is introduced into an evaporator operated at 110 torr (660 Pa) at 110, and the filtrate in the filtrate B is filtered.
セトンとエチレングリコールの実質的に全量を蒸発させ、 得られた固体を等重量の 水と混合して洗浄した後、 吸引濾過器で固液分離した。 得られた固体 (以下、 「固 体 B」 と称す。 ) を分析したところ、 下記組成であった。 After substantially the entire amount of seton and ethylene glycol was evaporated, the obtained solid was mixed with an equal weight of water, washed, and then subjected to solid-liquid separation with a suction filter. The obtained solid (hereinafter, referred to as “solid B”) was analyzed and found to have the following composition.
[固体 B組成]  [Solid B composition]
水 :約 17重量%  Water: about 17% by weight
エチレングリコール: : 1重量%以下 ヨウ素塩 (4級ホウスホニゥムョーダイド) :約 8 1重量% 塩素塩 (4級ホスホニゥムクロライド) : 1重量%以下 Ethylene glycol:: 1% by weight or less Iodine salt (quaternary phosporium moxide): about 81% by weight Chloride salt (quaternary phosphonium chloride): 1% by weight or less
ヨウ化ナトリウム :約 1重量% この固体 Bと前記析出物 Aとを合わせたものは、 抜き出し液 A中のョゥ素塩及び 塩素塩の約 9 8重量%を 4級ホスホニゥムョーダイドとして含むものであり、 これ らを等重量のエチレングリコールに溶解させて、 反応器へと循環使用した。  Sodium iodide: about 1% by weight This solid B and the above-mentioned precipitate A are combined, and about 98% by weight of the iodine salt and the chlorine salt in the withdrawal liquid A is converted into a quaternary phosphonimoxide. These were dissolved in an equal weight of ethylene glycol and recycled to the reactor.
このようにして触媒の回収及び循環を行いながら運転を継続したところ、 ェチレ ングリコールの製造工程において反応効率の低下の問題なく、 効率的な運転を継続 することができた。 実施例 2— 2  When the operation was continued while collecting and circulating the catalyst in this way, efficient operation could be continued without a problem of a reduction in reaction efficiency in the ethylene glycol production process. Example 2-2
実施例 2— 1において、 エチレングリコールを分離除去後の濃縮物 Aに、 有機溶 媒として等重量のノルマルブタノールを添加して溶解させた。 この溶液を攪拌機付 きの貯槽に移送し、 液中に含まれる塩素塩と等モル量の固体状のヨウ化カリウムを 添加して常温で 2時間混合した。  In Example 2-1, an equal weight of normal butanol as an organic solvent was added to and dissolved in the concentrate A from which ethylene glycol was separated and removed. This solution was transferred to a storage tank equipped with a stirrer, solid potassium iodide in an equimolar amount to the chloride salt contained in the solution was added, and mixed at room temperature for 2 hours.
'析出物を吸引濾過器により固液分離して分析したところ、 この析出物中には、 濃 縮物 Aに含まれる塩素塩の 9 5重量%以上に相当する塩化カリウムが存在した。 一方、 濾液を 5 t o r r ( 6 6 0 P a ) 、 1 1 0でで操作される蒸発器に導入し 、 濾液中のプ夕ノールとエチレングリコールの実質的に全量を蒸発させ、 得られた 固体を等重量の水と混合して洗浄した後、 吸引濾過器で固液分離した。 得られた固 体を分析したところ、 下記組成であり、 抜き出し液 A中のヨウ素塩及び塩素塩の約 9 5重量%を 4級ホスホニゥムョーダイドとして含むものであった。  'When the precipitate was subjected to solid-liquid separation by a suction filter and analyzed, potassium chloride equivalent to 95% by weight or more of the chlorine salt contained in the concentrate A was present in the precipitate. On the other hand, the filtrate was introduced into an evaporator operated at 5 torr (660 Pa), 110, and substantially all of the solvent and ethylene glycol in the filtrate were evaporated to obtain a solid. Was mixed with an equal weight of water and washed, followed by solid-liquid separation with a suction filter. When the obtained solid was analyzed, it had the following composition and contained about 95% by weight of the iodine salt and the chloride salt in the withdrawn liquid A as quaternary phosphonimoxide.
[固体 成] [Solid component]
水 約 1 8重量%  Water about 18% by weight
エチレングリコール: 2重量%  Ethylene glycol: 2% by weight
ヨウ素塩 (4級ホウスホニゥムョーダイド) 約 8 0重量%  Iodine salt (quaternary HOUSHONOMUYUDIDE) About 80% by weight
塩素塩 (4級ホスホニゥムクロライド) 1重量%以下  Chlorine salt (quaternary phosphonium chloride) 1% by weight or less
ヨウ化カリウム 約 1重量%以下 この固体を等重量のエチレングリコールに溶解させて、 反応器へと循環使用した このようにして触媒の回収及び循環を行いながら運転を継続したところ、 ェチレ ングリコールの製造工程において反応効率の低下の問題なく、 効率的な運転を継続 することができた。 比較例 1  Potassium iodide Approximately 1% by weight or less This solid was dissolved in an equal weight of ethylene glycol and circulated to the reactor. The operation was continued while recovering and circulating the catalyst in this way. Efficient operation was able to be continued without the problem of reduction in reaction efficiency in the manufacturing process. Comparative Example 1
実施例 1一 1において減圧蒸留塔の塔底から脱水された反応液 1 0 0 gを取り出 した。 この中に含まれる触媒に対するエチレングリコールの比率は 8 7 %であった 。 これに等重量の水を添加して 0 °Cまで冷却したが析出は生じなかつた。 実施例 1一 4 実施例 1一 2で得られた濾液に、 液中の塩素酸塩に対し 1モル倍のヨウ化力リゥ ムを 5 0重量%水溶液として添加し、 2 0 °Cで 1時間静置した。 析出物を固液分離 して分析した。 その結果、 この析出物中には、 上記濾液中の塩素酸塩のうち約 8 7 重量%を 4級ホスホニゥムョ一ダイド触媒として効率的に分離することができたこ とが確認できた。 産業上の利用可能性 In Example 11, 100 g of the dehydrated reaction solution was taken out from the bottom of the vacuum distillation column. The ratio of ethylene glycol to the catalyst contained therein was 87%. An equal weight of water was added thereto and the mixture was cooled to 0 ° C, but no precipitation occurred. Example 11 To the filtrate obtained in Example 12 was added a 50% by weight aqueous solution of iodinated rim with respect to the chlorate in the solution at a molar ratio of 1 mol, and the mixture was allowed to stand at 20 ° C. for 1 hour. The precipitate was analyzed by solid-liquid separation. As a result, it was confirmed that approximately 87% by weight of the chlorate in the filtrate was able to be efficiently separated as a quaternary phosphonimoxide catalyst in the precipitate. Industrial applicability
本発明によれば、 4級ホスホニゥムョ一ダイド及び Z又はプロマイド触媒を用い て二酸化炭素の存在下にエチレンォキシド等のアルキレンォキシドと水又は二酸化 炭素とを反応させてエチレングリコール等のアルキレングリコール又はエチレン力 ーポネート等のアルキレンカーボネート等のアルキレン誘導体を製造する方法にお いて、 反応系から 4級ホスホニゥムョーダイド又はプロマイド触媒を効率的に回収 して循環使用するか、 又は、 反応系で生成した 4級ホスホニゥムクロライドを効率 的に 4級ホスホニゥムョーダイド及び Z又はプロマイドに変換して回収し、 これを 反応系に循環使用することができる。 このため、 触媒活性の低い 4級ホスホニゥム クロライドの系内蓄積を防止すると共に、 これを触媒活性の高い 4級ホスホニゥム ョーダイド及び Z又はプロマイドに変換して循環使用することにより、 系内の触媒 活性を高く維持し、 アルキレン誘導体の生成反応を長期に亘り安定かつ効率的に行 うことができる。 なお、 本発明の明細書の開示として、 本出願の優先権主張の基礎となる、 日本特 許願 2 0 0 3— 0 3 1 3 9 1号 (2 0 0 3年 2月 7日出願) 、 日本特許出願 2 0 0 3— 0 7 8 1 7 8号 (2 0 0 3年 3月 2 0日出願) 及び日本特許願 2 0 0 3 - 0 8 8 2 8 1号 (2 0 0 3年 3月 2 7日出願) の全明細書の内容をここに引用し取り込 むものである。  According to the present invention, an alkylene oxide such as ethylene oxide is reacted with water or carbon dioxide in the presence of carbon dioxide using a quaternary phosphonimoxide and Z or a promide catalyst to form an alkylene glycol such as ethylene glycol or In a method for producing an alkylene derivative such as an alkylene carbonate such as an ethylene carbonate, a quaternary phosphonimoxide or a promide catalyst is efficiently recovered from the reaction system and used in a circulating manner, or formed in the reaction system. The quaternary phosphonium chloride thus obtained can be efficiently converted to quaternary phosphonimoxide and Z or promide and recovered, and this can be recycled to the reaction system. Therefore, it is possible to prevent the accumulation of quaternary phosphonium chloride having low catalytic activity in the system and convert it to quaternary phosphonium chloride and Z or promide having high catalytic activity and to recycle them to reduce the catalytic activity in the system. It can be maintained at a high level, and the formation reaction of the alkylene derivative can be performed stably and efficiently over a long period of time. As the disclosure of the specification of the present invention, Japanese Patent Application No. 2003-003 3391 (filed on February 7, 2003), which is the basis of the priority claim of the present application, Japanese Patent Application No. 2 0 0 3 0 7 8 1 7 8 (filed on March 20, 2003) and Japanese Patent Application 2 0 3-0 8 8 2 8 1 (2 0 (Filed on March 27) is incorporated herein by reference.

Claims

請求 の 範 囲 The scope of the claims
I . 4級ホスホニゥムョーダイド又はブロマイド触媒を用いて、 二酸化炭素の存在 下にアルキレンォキシドと水とを反応させてアルキレングリコールを生成させる 反応工程を備えるアルキレン誘導体の製造方法において、 I. A method for producing an alkylene derivative comprising a reaction step of reacting an alkylene oxide with water in the presence of carbon dioxide to produce an alkylene glycol using a quaternary phosphonimoxide or bromide catalyst,
少なくとも一部の反応液及び Z又は触媒液から、 触媒に対するアルキレングリコ —ルのモル比が 2 0倍以下になるようにアルキレングリコールを除去し、 次いで 水と混合することにより触媒を回収することを特徴とするアルキレン誘導体の製 造方法。  From at least a part of the reaction solution and Z or the catalyst solution, remove the alkylene glycol so that the molar ratio of the alkylene glycol to the catalyst becomes 20 times or less, and then recover the catalyst by mixing with water. A method for producing an alkylene derivative.
2 . 触媒に対するアルキレングリコールのモル比を 2倍以下にすることを特徴とす る請求項 1に記載の製造方法。  2. The method according to claim 1, wherein the molar ratio of the alkylene glycol to the catalyst is set to twice or less.
3 . 水と混合し触媒を回収する際の操作温度が 3 0 °C以下であることを特徴とする 請求項 1又は 2に記載の製造方法。  3. The production method according to claim 1, wherein an operation temperature at the time of mixing with water to recover the catalyst is 30 ° C. or lower.
4. 混合する水の量が回収する触媒に対して、 0 . 1重量倍以上であることを特徴 とする請求項 1ないし 3のいずれかに記載の製造方法。  4. The method according to claim 1, wherein the amount of water to be mixed is at least 0.1 times the weight of the recovered catalyst.
5 . 水と混合した後、 固液分離し触媒を固体として分離した後、 前記反応工程に循 環することを特徴とする請求項 1ないし 4のいずれかに記載の製造方法。  5. The production method according to any one of claims 1 to 4, wherein after mixing with water, solid-liquid separation is performed to separate the catalyst as a solid, and then the mixture is recycled to the reaction step.
6 . 固液分離により分離された液を触媒洗浄水として循環使用することを特徴とす る請求項 5に記載の製造方法。  6. The production method according to claim 5, wherein the liquid separated by the solid-liquid separation is circulated and used as catalyst washing water.
7 . アルキレンォキシドがエチレンォキシドであることを特徴とする請求項 1ない し 6のいずれかに記載の製造方法。  7. The method according to any one of claims 1 to 6, wherein the alkylene oxide is ethylene oxide.
8 . 4級ホスホニゥムョーダイド及び Z又はブロマイドを触媒として用いて、 二酸 化炭素の存在下に塩素化合物を不純物として含有するアルキレンォキシドと水と を反応させてアルキレングリコールを生成させる反応工程から得られた、 4級ホ スホニゥムクロライドと 4級ホスホニゥムョーダイド及び Z又はプロマイドとを 含有する混合物と、 ヨウ化物及び Z又は臭化物を混合することにより、 該 4級ホ スホニゥムクロライドを 4級ホスホニゥムョーダイド及び Z又はプロマイドに変 換して水中で析出させることを特徴とする触媒再生方法。  8. Reaction of alkylene oxide containing chlorine compound as impurity and water in the presence of carbon dioxide to form alkylene glycol using quaternary phosphonimoxide and Z or bromide as catalyst The quaternary phosphonium chloride is obtained by mixing a mixture containing the quaternary phosphonium chloride and the quaternary phosphonimoxide and Z or promide, obtained from the step, with iodide and Z or bromide. A method for regenerating a catalyst, comprising converting muchloride to quaternary phosphonimoxide and Z or promide to precipitate in water.
9 . 4級ホスホニゥムョーダイド及び/又はブロマイドを触媒として用いて、 アル キレンォキシドと二酸化炭素とを反応させてアルキレンカーボネートを生成させ る反応工程から得られた、 4級ホスホニゥムクロライドと 4級ホスホニゥムョ一 ダイド及び Z又はプロマイドとを含有する混合物と、 ヨウ化物及び Z又は臭化物 を混合することにより、 該 4級ホスホニゥムクロライドを 4級ホスホニゥムョ一 ダイド及び/又はプロマイドに変換して水中で析出させることを特徴とする触媒 再生方法。  9. Using quaternary phosphonimoxide and / or bromide as a catalyst, alkylene oxide reacts with carbon dioxide to produce alkylene carbonate. By mixing a mixture containing quaternary phosphonimoxide and Z or promide with iodide and Z or bromide, the quaternary phosphonium chloride is converted to quaternary phosphonimoxide and / or promide in water. A method for regenerating a catalyst, which comprises precipitating.
1 0 . 4級ホスホニゥムクロライドと 4級ホスホニゥムョーダイド及び Z又はプロ マイドとを含有する混合物が、 前記反応工程から抜き出された反応液、 或いは該 反応液から水及び/又は目的生成物のアルキレン誘導体の少なくとも一部を蒸留 除去した後の残留物であることを特徴とする請求項 8又は 9に記載の方法。 10. A mixture containing a quaternary phosphonium chloride and a quaternary phosphonimoxide and Z or a promide may be a reaction solution extracted from the reaction step, or water and / or an objective solution from the reaction solution. 10. The method according to claim 8, wherein the residue is a residue obtained by distilling and removing at least a part of the product alkylene derivative.
I I . 4級ホスホニゥムクロライドと 4級ホスホニゥムョ一ダイド及び/又はプロ マイドとを含有する混合物が、 前記反応工程から抜き出された反応液、 或いは該 反応液から水及び Z又は目的生成物のアルキレン誘導体の少なくとも一部を蒸留 除去した後の残留物と、 水を混合して前記触媒を固体として析出させ、 これを分 離した後の水溶液であることを特徴とする請求項 8又は 9に記載の方法。 II. A mixture containing a quaternary phosphonium chloride and a quaternary phosphonium amide and / or a promide is a reaction solution extracted from the reaction step, or water and Z or a target product from the reaction solution. Distill at least part of the alkylene derivative The method according to claim 8 or 9, wherein the catalyst is precipitated as a solid by mixing the residue after the removal with water, and the aqueous solution is separated.
1 2 . 析出させた 4級ホスホニゥムョーダイド及び Z又はプロマイドを回収して前 記反応工程に循環させることを特徴とする請求項 8ないし 1 1のいずれか記載の 方法。  12. The method according to any one of claims 8 to 11, wherein the precipitated quaternary phosphonimoxide and Z or promide are recovered and circulated to the reaction step.
1 3 . 4級ホスホニゥムョーダイド及び/又はブロマイドを触媒として用いて、 二 酸化炭素の存在下に塩素化合物を不純物として含有するアルキレンォキシドと水 とを反応させてアルキレングリコールを生成させる反応工程から得られた、 4級 ホスホニゥムクロライドと 4級ホスホニゥムョーダイド及び/又はプロマイドと を含有する混合物に、 ヨウ化物及び/又は臭化物を添加して 4級ホスホニゥムク 口ライド由来の塩素を無機塩化物として有機溶媒中で析出させることにより、 4 級ホスホニゥムョーダイド及び/又はプロマイドを回収することを特徴とする触 媒再生方法。  13.4 Reaction of reacting alkylene oxide containing chlorine compound as an impurity with water in the presence of carbon dioxide using quaternary phosphonimoxide and / or bromide as a catalyst to form alkylene glycol Iodide and / or bromide are added to a mixture containing quaternary phosphonium chloride and quaternary phosphonium iodide and / or promide obtained from the step to remove chlorine derived from quaternary phosphonium chloride. A catalyst regeneration method comprising recovering quaternary phosphonimoxide and / or promide by precipitating them in an organic solvent as inorganic chlorides.
1 4. 4級ホスホニゥムョーダイド及び 又はブロマイドを触媒として用いて、 ァ ルキレンォキシドと二酸化炭素とを反応させてアルキレンカーボネートを生成さ せる反応工程から得られた、 4級ホスホニゥムクロライドと 4級ホスホニゥムョ 一ダイド及び Z又はプロマイドとを含有する混合物に、 ヨウ化物及び/又は臭化 物を添加して 4級ホスホニゥムク口ライド由来の塩素を無機塩化物として有機溶 媒中で析出させることにより、 4級ホスホニゥムョーダイド及び Z又はプロマイ ドを回収することを特徴とする触媒再生方法。  14. Using quaternary phosphonimoxide and / or bromide as a catalyst, quaternary phosphonium chloride obtained from the reaction step of reacting alkylene oxide with carbon dioxide to produce alkylene carbonate, By adding iodide and / or bromide to a mixture containing quaternary phosphonidomonodide and Z or promide to precipitate chlorine derived from quaternary phosphonium chloride as an inorganic chloride in an organic solvent. A catalyst regeneration method comprising recovering quaternary phosphonimoxide and Z or bromide.
1 5 . 4級ホスホニゥムクロライドと 4級ホスホニゥムョ一ダイド及び 又はプロ マイドとを含有する混合物が、 下記 (a ) 〜 (c ) のいずれかであることを特徴 とする請求項 1 3又は 1 4に記載の方法。  15. The mixture containing a quaternary phosphonium chloride and a quaternary phosphonium chloride and / or a promide is any one of the following (a) to (c). The method described in 4.
( a ) 前記反応工程から抜き出した反応液に水を添加して前記触媒を析出させ 、 これを分離した後の水溶液を脱水して得られる液又は固体、  (a) a liquid or solid obtained by adding water to the reaction liquid extracted from the reaction step to precipitate the catalyst, and dehydrating an aqueous solution after separating the catalyst,
( b ) 前記反応工程から抜き出した反応液から水及び Z又は目的生成物のアル キレン誘導体の少なくとも一部を蒸留除去した後の残留物に、 水を添加して 前記触媒を固体として析出させ、 これを分離した後の水溶液を脱水して得ら れる液又は固体、  (b) water is added to the residue obtained by distilling and removing water and at least a part of the alkylene derivative of the target product from water from the reaction solution extracted from the reaction step, and water is added to precipitate the catalyst as a solid; A liquid or solid obtained by dehydrating the aqueous solution after separation,
( c ) ( a ) 又は (b ) で、 脱水して得られた液又は固体を、 有機溶媒に溶解 して得られる液。  (c) A liquid obtained by dissolving the liquid or solid obtained by dehydration in (a) or (b) in an organic solvent.
1 6 . 4級ホスホニゥムクロライドと 4級ホスホニゥムョ一ダイド及び Z又はプロ マイドとを含有する混合物が、 下記 (d ) , ( e ) のいずれかであることを特徴 とする請求項 1 3又は 1 4に記載の方法。  16. The mixture containing a quaternary phosphonium chloride and a quaternary phosphonium chloride and Z or a promide is one of the following (d) and (e): The method described in 14 above.
( d ) 前記反応工程から抜き出した反応液を有機溶媒で希釈した液、  (d) a solution obtained by diluting the reaction solution extracted from the reaction step with an organic solvent,
( e ) 前記反応工程から抜き出した該反応液から水及び /又は目的生成物のァ ルキレン誘導体の少なくとも一部を蒸留除去した後の残留物、 或いは該 残留物を有機溶媒に溶解して得られる液、  (e) a residue obtained by distilling and removing at least a portion of water and / or an alkylene derivative of a target product from the reaction solution extracted from the reaction step, or a residue obtained by dissolving the residue in an organic solvent Liquid,
1 7 . 回収した 4級ホスホニゥムョーダイド及び/ "又はプロマイドを前記反応工程 • に循環させることを特徴とする請求項 1 3ないし 1 6のいずれかに記載の方法。 17. The method according to any one of claims 13 to 16, wherein the recovered quaternary phosphonimoxide and / or promide is circulated to the reaction step.
1 8 . 4級ホスホニゥムョーダイド及び Z又はブロマイドを触媒として用いて、 ァ ルキレンォキシドと二酸化炭素とを反応させてアルキレン力一ポネートを生成さ せる反応工程を備えるアルキレン誘導体の製造方法において、 該反応工程から得られた、 4級ホスホニゥムクロライドと 4級ホスホニゥムョ 一ダイド及び/又はプロマイドとを含有する混合物に、 ヨウ化物及び Z又は臭化 物を添加することにより、 該 4級ホスホニゥムクロライドを 4級ホスホニゥムョ 一ダイド及び/又はプロマイドに変換して水中で析出させて回収し、 反応工程に 循環させることを特徴とするアルキレン誘導体の製造方法。 18.8.4 A method for producing an alkylene derivative comprising a reaction step of reacting alkylene oxide with carbon dioxide by using quaternary phosphonimoxide and Z or bromide as a catalyst to produce an alkylene atom monoponate, By adding iodide and Z or bromide to a mixture obtained from the reaction step and containing a quaternary phosphonium chloride and a quaternary phosphonium chloride and / or promide, the quaternary phosphonium chloride is added. A process for producing an alkylene derivative, comprising converting muchloride into a quaternary phosphonimidyl monodide and / or promide, precipitating and collecting the same in water, and circulating the alkylene derivative in a reaction step.
9 . 4級ホスホニゥムョーダイド及び Z又はプロマイドを触媒として用いて、 ァ ルキレンォキシドと二酸化炭素とを反応させてアルキレン力一ポネ一卜を生成さ せる反応工程を備えるアルキレン誘導体の製造方法において、  9. A method for producing an alkylene derivative comprising a reaction step of reacting alkylene oxide with carbon dioxide using quaternary phosphonimoxide and Z or promide as a catalyst to generate an alkylene force component. ,
該反応工程から得られた、 4級ホスホニゥムクロライドと 4級ホスホニゥムョ 一ダイド及び 又はプロマイドとを含有する混合物に、 ヨウ化物及び Z又は臭化 物を添加して 4級ホスホニゥムクロライド由来の塩素を無機塩化物として有機溶 媒中で析出させることにより、 4級ホスホニゥムョ一ダイド及び Z又はプロマイ ドを回収し、 反応工程に循環させることを特徴とするアルキレン誘導体の製造方 法。  Iodide and Z or bromide are added to a mixture containing quaternary phosphonium chloride and quaternary phosphonium chloride and / or promide obtained from the reaction step, and the mixture is derived from quaternary phosphonium chloride. A method for producing an alkylene derivative, comprising recovering quaternary phosphonimoxide and Z or bromide by precipitating chlorine as an inorganic chloride in an organic solvent, and circulating the same in a reaction step.
PCT/JP2004/001322 2003-02-07 2004-02-09 Method for producing alkylene derivative and method for regenerating catalyst for producing alkylene derivative WO2004069777A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003-031391 2003-02-07
JP2003031391A JP4333153B2 (en) 2003-02-07 2003-02-07 Method for producing alkylene glycol
JP2003-078178 2003-03-20
JP2003078178A JP4273799B2 (en) 2003-03-20 2003-03-20 Method for producing alkylene derivative
JP2003-088281 2003-03-27
JP2003088281A JP4273802B2 (en) 2003-03-27 2003-03-27 Method for producing alkylene derivative

Publications (2)

Publication Number Publication Date
WO2004069777A1 true WO2004069777A1 (en) 2004-08-19
WO2004069777A8 WO2004069777A8 (en) 2005-04-07

Family

ID=32854108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001322 WO2004069777A1 (en) 2003-02-07 2004-02-09 Method for producing alkylene derivative and method for regenerating catalyst for producing alkylene derivative

Country Status (3)

Country Link
KR (1) KR100880135B1 (en)
TW (1) TW200422285A (en)
WO (1) WO2004069777A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009071651A1 (en) * 2007-12-06 2009-06-11 Shell Internationale Research Maatschappij B.V. Process for the preparation of alkylene glycol
WO2011136127A1 (en) * 2010-04-28 2011-11-03 三菱化学株式会社 Process for production of alkylene carbonates and/or alkylene glycols

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101431123B1 (en) * 2011-08-24 2014-08-19 롯데케미칼 주식회사 Method for regenerating catalysts used in the production of alkylene carbonate and/or alkylene glycol and preparation method of alkylene carbonate and/or alkylene glycol
WO2013028039A2 (en) * 2011-08-24 2013-02-28 롯데케미칼 주식회사 Method of regenerating a catalyst for synthesis of alkylene carbonate and/or alkylene glycol, and a method for producing alkylene carbonate and/or alkylene glycol
KR101535471B1 (en) * 2013-07-12 2015-07-14 두양산업 주식회사 Method for regenerating catalyst for producing alkylene derivative

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419905A (en) * 1977-07-15 1979-02-15 Showa Denko Kk Preparation of alkylene glycols
JPS5921634A (en) * 1982-06-14 1984-02-03 サイエンティフィック・デザイン・カンパニー・インコーポレーテッド Manufacture of ethylene glycol from ethylene oxide aqueous solution
JP2000128814A (en) * 1998-10-27 2000-05-09 Mitsubishi Chemicals Corp Production of ethylene glycol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419905A (en) * 1977-07-15 1979-02-15 Showa Denko Kk Preparation of alkylene glycols
JPS5921634A (en) * 1982-06-14 1984-02-03 サイエンティフィック・デザイン・カンパニー・インコーポレーテッド Manufacture of ethylene glycol from ethylene oxide aqueous solution
JP2000128814A (en) * 1998-10-27 2000-05-09 Mitsubishi Chemicals Corp Production of ethylene glycol

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009071651A1 (en) * 2007-12-06 2009-06-11 Shell Internationale Research Maatschappij B.V. Process for the preparation of alkylene glycol
US8329959B2 (en) 2007-12-06 2012-12-11 Shell Oil Company Process for the preparation of alkylene glycol
RU2480446C2 (en) * 2007-12-06 2013-04-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Method of producing alkylene glycol
US8530706B2 (en) 2007-12-06 2013-09-10 Shell Oil Company Process for the preparation of alkylene glycol
WO2011136127A1 (en) * 2010-04-28 2011-11-03 三菱化学株式会社 Process for production of alkylene carbonates and/or alkylene glycols
JP5725019B2 (en) * 2010-04-28 2015-05-27 三菱化学株式会社 Process for producing alkylene carbonate and / or alkylene glycol

Also Published As

Publication number Publication date
WO2004069777A8 (en) 2005-04-07
KR20050098900A (en) 2005-10-12
TW200422285A (en) 2004-11-01
KR100880135B1 (en) 2009-01-23
TWI313260B (en) 2009-08-11

Similar Documents

Publication Publication Date Title
EP0476009B1 (en) Extraction process for removal of impurities from terephthalic acid filtrate
JP5660048B2 (en) Process for producing ethylene carbonate and ethylene glycol
JP2016104771A (en) Method for producing lactic acid
US20100234653A1 (en) Processes for making alkyl halides
WO2004069777A1 (en) Method for producing alkylene derivative and method for regenerating catalyst for producing alkylene derivative
KR101663347B1 (en) Process for production of alkylene carbonates and/or alkylene glycols
JP4273802B2 (en) Method for producing alkylene derivative
JP4333153B2 (en) Method for producing alkylene glycol
US6531108B1 (en) Process for producing free hydroxylamine aqueous solution
JP4273799B2 (en) Method for producing alkylene derivative
JP2845745B2 (en) Production method of high purity methanesulfonyl fluoride
JP4465697B2 (en) Method for recovering aprotic polar solvent from aqueous solution
JP2003267904A (en) Method for producing ditrimethylolpropane
WO1999025676A1 (en) Apparatus and method for recovering sorbic acid
JP3780703B2 (en) Method for producing 2-butyloctanedioic acid
JPH08283197A (en) Production of naphthalenedicarboxylic acid
JP2874281B2 (en) Method for separating and purifying biphenyl-4,4'-diol
JPS61167633A (en) Purification of allyl alcohol
JPS5943945B2 (en) ε↓−Method for purifying caprolactam
JPH11189567A (en) Production of fumaric acid
JPS6121547B2 (en)
JP2023086457A (en) Method for producing ethylene carbonate
JP3882859B2 (en) Method for producing hydrated hydrazine
JPS627912B2 (en)
JP2000159722A (en) Production of fumaric acid

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
CFP Corrected version of a pamphlet front page

Free format text: REVISED ABSTRACT RECEIVED BY THE INTERNATIONAL BUREAU AFTER COMPLETION OF THE TECHNICAL PREPARATIONS FOR INTERNATIONAL PUBLICATION

WWE Wipo information: entry into national phase

Ref document number: 1499/KOLNP/2005

Country of ref document: IN

Ref document number: 01499/KOLNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 20048033584

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057014521

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057014521

Country of ref document: KR

122 Ep: pct application non-entry in european phase