WO2004065609A1 - アシルコエンザイムaを用いるアシル基転移酵素反応方法 - Google Patents

アシルコエンザイムaを用いるアシル基転移酵素反応方法 Download PDF

Info

Publication number
WO2004065609A1
WO2004065609A1 PCT/JP2004/000500 JP2004000500W WO2004065609A1 WO 2004065609 A1 WO2004065609 A1 WO 2004065609A1 JP 2004000500 W JP2004000500 W JP 2004000500W WO 2004065609 A1 WO2004065609 A1 WO 2004065609A1
Authority
WO
WIPO (PCT)
Prior art keywords
acyl
reaction
coa
acyl group
enzyme
Prior art date
Application number
PCT/JP2004/000500
Other languages
English (en)
French (fr)
Inventor
Motoaki Kamachi
Harumi Kamachi
Hirobumi Aoki
Tomoki Erata
Kenji Tajima
Original Assignee
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K.K. filed Critical Showa Denko K.K.
Priority to EP04703935.9A priority Critical patent/EP1591531B1/en
Priority to US10/542,733 priority patent/US7476521B2/en
Priority to JP2005508108A priority patent/JP4353484B2/ja
Publication of WO2004065609A1 publication Critical patent/WO2004065609A1/ja
Priority to US12/277,622 priority patent/US7943351B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/02Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • C12P7/625Polyesters of hydroxy carboxylic acids

Definitions

  • the present invention relates to a method for reacting an acyltransferase to various organic compounds by using acylcoenzyme A (hereinafter, coenzyme A may be referred to as CoA). More specifically, the present invention relates to a process for producing an acylated product using an acyltransferase, wherein the reaction is carried out continuously without adding an extremely expensive The present invention relates to a novel acyltransferase reaction method which enables the use of acyltransferases for industrial production of various compounds by dramatically improving the method.
  • the present invention relates to a CoA enzymatic coupling method in which a chemical thioesterification reaction is used as an acyl CoA regeneration system.
  • the present invention also relates to a method for producing an important physiologically active substance such as a sphingolipid using a CoA enzyme.
  • the present invention relates to a method for producing a polymer compound by an enzyme reaction. More specifically, the thioester exchange reaction and the high-molecular-weight polymerizing enzyme reaction coexist to regenerate the acylcoenzyme (Acil CoA) in the reaction system, thereby synthesizing the polymer compound from the thioester power consistently.
  • the present invention relates to a method for producing an efficient biodegradable polymer compound, particularly a polyester, which can be used. Background art
  • CoA is a substance that functions as an acyl carrier / activator in all species.
  • acetyl COA is a key substance in biological metabolism such as fatty acid and glucose that pass through the citrate cycle.
  • o A derivatives also play an important role in cholesterol and fatty acid biosynthesis.
  • CoA is an essential and indispensable substance as a capture factor (enzyme) for the enzyme-catalyzed reaction (CoA enzyme) involved in these metabolisms, and is represented by the following formula.
  • ACY is an acyl group.
  • CoA enzymes depending on the structure of the acyl group to be transferred and the substrate (compound into which the acyl group is introduced).
  • substrate compound into which the acyl group is introduced.
  • CoA enzymes for example, production of various antibiotics, drugs, various iridescent substances utilizing the polyketide synthesis pathway, amino acids, There are production examples of polyhydroxy acids and the like.
  • acyl CoA is consumed in the reaction equimolar to the acyl acceptor. Therefore, it is necessary to produce the required acyl COA at low cost.
  • in-vivo acyl CoA produced by fermentation is used, or acyl CoA produced separately from the production system.
  • in vivo fermentatively produced in vivo COA the in vivo produced Only certain acyl COAs, such as chill COA and malonyl COA, are available.
  • chill COA and malonyl COA the in vivo produced Only certain acyl COAs, such as chill COA and malonyl COA.
  • the method using acyl CoA produced separately from the production system is a versatile and commonly used method, but the acyl CoA produced in this way is extremely expensive. Equimolar amounts are still required for use in the group transfer reaction.
  • Examples of the method for producing acyl CoA include a chemical synthesis method using an acyl chloride, a chemical synthesis method using an acid anhydride, a chemical synthesis method using a mixed acid anhydride with octyl carbonate, and a chemical synthesis method using a thioester exchange.
  • J. Am. Chem. Soc, 1953, 75, 2520, J. Biol. Chem., 1985, 260 , 13181 and many other chemical synthesis methods are commonly used.
  • Sphingo lipids are lipids derived from sphingoid bases such as sphingosin and are present in the cell membranes of animals, plants and microorganisms. The exact function of human sphingolipids is not yet known, but these compounds are involved in nervous system electrical signaling and cell membrane stabilization. Glycosphingolipids have functions in the immune system, and in particular certain glycosphingolipids have been shown to function as receptors for bacterial toxins, and possibly also as bacteria and viruses.
  • Ceramides are a specific group of sphingolipids that contain sphingosine, dihydrosphingosine or bithsphingosine as a base. Ceramide is a major lipid component of the stratum corneum, the upper layer of skin, and has an important barrier function. have. Topical topical applications containing sphingolipids such as ceramides are known to improve, for example, the barrier function and moisture retention properties of the skin (Curatolo, Pharm. Res., 4: 271-277). (1987); Kerscher et al., Eur. J. Dermatol "1: 39-43 (1991).
  • Sphingoid bases themselves have been shown to mediate some physiological effects by inhibiting the activity of protein kinase C, a key enzyme in the signaling pathway.
  • sphingoid bases are included in cosmetic compositions or dermatological compositions for their anti-inflammatory and antimicrobial activities.
  • xenobiotic sphingolipid preparations for cosmetics are mainly extracted from animal sources, but are not only relatively expensive methods on an industrial scale, but also include those for e.g. spongiform encephalopathy (BSE).
  • BSE spongiform encephalopathy
  • Microorganisms such as the yeast Pichia ciferrii have been found to produce sphingolipids, sphingosine, phytosphingosine and / or their derivatives (Wickerham and Stodola, J. Bacteriol., 80: 484-491 ( 1960)). It provides a source of sphingolipids on its own, and a source of starting material to produce other commercially valuable compounds, and provides a viable substitute for the use of animal sources of these compounds. give.
  • microbial production is difficult to improve productivity due to the toxicity of sphingoid bases to microbial cells (Pinto et al., J. Bacteriol., 174: 2565-2574 (1992); Bibel et al., J. Invest. Dermatol., 93: 269-273 (1992)), and it has been desired to provide a more efficient production method.
  • PHA polyhydroxyalkanoate
  • PHB polyhydroxybutylate
  • PHV poly (3-hydroxypallate)
  • PHB-co-PHV poly ( 3-Hydroxybutylate-co-3-Hydroxyvalerate
  • JP-A-57-150393 US Pat. No. 4,393,167
  • JP-A-59-220192 European Patent Publication No. 0114086
  • JP-A-63-226291 Gazette '(European Patent Publication No. 0274151), JP-A-63-269989).
  • the productivity is low due to accumulation of PHA in the microorganisms, and there are many problems such as high costs for crushing the microorganisms and extracting and refining the PHA.
  • a method for producing PHA by fermentative production of microorganisms does not always produce a desired PHA due to a complicated metabolic pathway, and the variation of PHA is limited. Also, depending on the method of controlling fermentation production, it may become a copolymer instead of a desired homopolymer, and conversely, a copolymer. Even in one production, a homogeneous copolymer having a desired polymerization ratio cannot always be produced (FEMS Microbiol. Rev., 1992, 103, 207-214). Furthermore, in the purification process, since the desired PHA is extracted from microbial cells containing various compounds, there is a limit in improving the purity in industrial production. Thus, the production of PHA by microbial fermentation has various problems.
  • PHA polyhydroxyalkanoate synthase
  • PHA other than PHB can be synthesized by the same in vitro polymerization method, and the PHA variation that could not be achieved by the microbial fermentation method is no longer restricted, and the variation of PHA is greatly expanded.
  • Biomacromolecules, 2000, 1, 433-439, Appl. Microbiol. BiotechnoL, 2001, 56, 131-136, Macromolecules, 2001, 34, 6889-6894 In this method, it is possible to synthesize not only a homopolymer but also a copolymer.
  • acyl CoA in an in vitro polymerization method, acyl CoA must be used as a reaction starting material, but as described above, its synthesis has various problems. For this reason, the amount of acyl CoA used can be kept to an extremely small amount, and a method for producing a polymer compound using other compounds that can be easily synthesized industrially as starting materials The development of is desired.
  • acyl CoA is used as an enzyme substrate, and the enzyme is reacted to polymerize PHA, and the released CoA is released into the reaction system ( The following formula).
  • R is R.
  • One SH is an organic group representing CoA
  • R 1 is an arbitrary alkylene
  • n is an integer corresponding to the degree of polymerization.
  • acyl CoA must be used as a reaction substrate.Since acyl CoA is very expensive, phA is industrially used while using it as a reaction substrate. It must be said that it is extremely difficult to reduce the production cost of PH if it is produced in a low volume. Also, recycling CoA to acyl CoA requires a variety of enzymes that are difficult to obtain, and requires expensive compounds such as ATP. Furthermore, in the production method using PHA organisms, especially microorganisms, the variation of PHA is limited, and it is very likely that the copolymer will be polymerized by metabolism in the organism, so that only the desired PHA is produced. It can be difficult to do. For these reasons, there has been a demand for the development of a production method that reduces the production cost of PH by using, as a starting material, a compound that has many variations of PHA and can be easily synthesized in its production. Disclosure of the invention
  • the present invention provides an industrial acyl transferase reaction method using a CoA enzyme in an acyl CoA regeneration system, and in particular, an acylole transferase reaction method useful for production of biologically active substances such as biological substances.
  • the task is to
  • CoA coenzyme
  • an object of the present invention is to provide a method capable of efficiently producing a biodegradable polymer compound useful in an enzymatic reaction with a catalytic amount of a capture enzyme (CoA).
  • the present inventors have made intensive studies on the efficiency, speed, cost, selectivity, and the possibility of coupling with an enzymatic reaction for a regenerating system of acyl CoA, and as a result, a chemical synthesis method that has been used only for preparation so far.
  • the inventors have found that one of the thioester exchange reactions can be coupled with an enzyme reaction system, and completed the present invention.
  • This thioester exchange reaction proceeds in a neutral to weakly basic system, and the substrate specificity of the acyl group is extremely wide. Therefore, the CO enzyme that exhibits reactivity in the region where thioester exchange reaction can occur Coupling is possible with any of the above. Furthermore, the present inventors applied this coupling method to serine. C-palmitoyltransferase, which is a key enzyme in the sphingolipid biosynthesis pathway, to convert fatty acid via CoA from thiophenol fatty acid and serine. We succeeded in establishing a method for producing sphingoid bases, which are important bioactive substances, by decarboxylation of the chain.
  • the present inventors have conducted intensive studies to find new synthetic routes for various compounds related to PHA from organic compounds in order to develop a highly efficient method for producing PHA.
  • the reaction starting material can be replaced with a thiophenyl ester that can be easily synthesized.
  • the regeneration reaction of acyl CoA which is indispensable for the polymerization reaction, can also be performed.
  • the present inventors have found that the present invention can be carried out in the same reaction solution system, and that it is possible to drastically reduce the amount of acyl C A A while suppressing the concentration of C A A, thereby completing the present invention.
  • the present invention relates to the following acyl transferase reaction method.
  • acyltransferase reaction that transfers the acyl group of acylcoenzyme A (acyl CoA)
  • acyl CoA acyl CoA
  • a chemical thioester exchange reaction between the thiol compound and an acyl group donor, which is an acyl acylate is carried out from enzyme A. It is possible to react by producing and / or regenerating acyl-enzyme A in the reaction system. And a method of reacting an acyltransferase.
  • the reaction system simultaneously contains an acyl group donor, an acyl group acceptor, a coenzyme A, and an amyltransferase, and transfers the amyl group of the amyl group donor to koenzyme A by a chemical thiol exchange reaction.
  • the reaction system simultaneously contains an acyl group donor, an acyl group acceptor, a coenzyme II, and an acyltransferase, and the acyl group of the acyl group donor is transferred to the enzyme II by a chemical ester exchange reaction.
  • Te A wherein in the reaction for transferring the acyl group of the acyl group A to an acyl group receptor, the acyl transferase is a high-molecular-weight polymerizing enzyme, and Group transferase reaction method.
  • Ralstonia eutropha is Ralstonia eutropha ATCC 17699.
  • FIG. 1 is a scheme showing a power coupling reaction with an acyl CoA regeneration system by thioester exchange according to the present invention.
  • an acyl group donor, an acyl group acceptor, CoA, and an acyltransferase (CoA enzyme) are present in one system, and are consumed as the reaction proceeds.
  • the transfer of the acyl group can be carried out by a coupling reaction in which the acyl CoA is produced and regenerated by a chemical thioester exchange reaction between the acyl group donor and coenzyme A in the same system as the enzymatic reaction.
  • acyl C o A consumed by the progress of the reaction Is produced and regenerated by a chemical thioesterification reaction. This results in expensive files.
  • o Efficient acyl transfer reaction can be realized only by allowing a small amount of A to be present in the reaction system.
  • the product obtained by acyl CoA or transacylation reaction is further defined as an acyl group acceptor.
  • an efficient polymer formation reaction can be realized by repeating the acyl group transfer reaction.
  • the second embodiment (polymer formation reaction) is a part of the first embodiment (high-efficiency acyl group transfer reaction).
  • first embodiment high-efficiency acyl group transfer reaction
  • second embodiment polymer formation reaction
  • the Co A enzyme used in this embodiment is not particularly limited, except that acyl Co A is used as a capture factor (capsule).
  • these enzymes include acetylglutamate synthase (EC 2.3.1.1), acetoacetyl CoA thiolase (EC 2.3.1.19), and serine C-palmitoyltransferase (EC 2.3). 1.50), etc., and transferases belonging to the “EC 2.3.1.x” series.
  • These enzymes have been shown to exist in many organisms, and have been isolated and purified from various organisms (Enzyme Nomenclature, 178-199, Academic Press, INC. (1992)). Among them, enzymes exhibiting an optimum pH in a neutral to weakly basic range are more preferable.
  • CoA enzymes may be purified enzymes, but catalytic cells having CoA enzyme activity or processed products thereof can also be used. However, in this case, it is desirable to avoid the effects of enzymes other than those that use acyl CoA as a capture factor, by using a defective mutant, inhibiting the activity, or inactivating it.
  • the acyl donor used in the highly efficient transacylation according to the invention is C
  • C an acyl ester of a thiol compound
  • acyl thioester which is capable of non-catalytic thioester exchange reaction with A
  • aromatic thiols include: thiophenol, methinolate phenol, chlorothiophenol, 2-mercaptothiazole, 2-mercaptoimidazole, 2-mercaptotriazole, 2-mercaptobenzothiazole, 2-mercaptobenzoimidazole And 2-mercaptopyridine.
  • Particularly preferred examples include acyl esters of thiophenol (also referred to simply as "thiophenyl ester" in the present application, including cases where the phenyl group has a substituent).
  • acyl group corresponding to the thiol of the acyl ester there can be basically used without any restriction.
  • the alkyl chain of the aliphatic acyl group may be substituted, and a part or all of the alkyl chain may be cyclic.
  • the aromatic ring of the aromatic acyl group may be a carbocyclic ring, a heterocyclic ring or a condensed ring, and may be optionally substituted.
  • the substituent include a hydroxyl group, an alkyl group, an aryl group, an aralkyl group, an amino group, and halogens such as chlorine and bromine.
  • acyl group acceptor used in the high-efficiency acyl group transfer reaction according to the present invention as long as it can be used as a substrate for the CoA enzyme.
  • substrate specificity of enzyme By changing the enzyme according to the reaction conditions, or using a mutant whose substrate specificity has been altered by protein engineering, a substance that is not an ordinary suitable substrate of the enzyme can also be used as the acyl group receptor.
  • Preferred isyl group receptors are amino acids and amino acid derivatives, with natural amino acids and unnatural amino acids being particularly preferred.
  • the amino acid is serine and the enzyme is serine C-palmitoyltransferase
  • an efficient synthesis reaction of 3-ketodihydro sphingosine is obtained.
  • the acyl group receptor is sphingosine, which is an amino acid derivative
  • the enzyme is sphingosine N-acyltrans fluorescase
  • the reaction is an efficient ceramide synthesis reaction.
  • the product in the acyl group transfer reaction does not necessarily have the transferred acyl group as it is, and may undergo decarboxylation or rearrangement under the reaction conditions, and is generally determined by the enzyme and substrate used.
  • CoA used in the high-efficiency transacylation reaction according to the present invention may be produced by any method such as a chemical synthesis method, a semi-synthesis method, and a biological fermentation method, and can function as CoA. I just want it.
  • the reaction system used is a transesterification reaction of the acyl group donor and CoA, and the conversion of acyl CoA to the acyl group acceptor by the CoA enzyme used.
  • a transesterification reaction of the acyl group donor and CoA and the conversion of acyl CoA to the acyl group acceptor by the CoA enzyme used.
  • the reaction of the present invention may be performed at a temperature at which the stability of the CoA enzyme is ensured and the reaction proceeds.
  • the temperature is usually from 10 ° C to 45 ° C, preferably from 20 ° C to 40 ° C.
  • the reaction of the present invention is not particularly limited as long as the stability of the CoA enzyme is ensured and the reaction proceeds with respect to the concentration.
  • the reaction system may be an open type or a closed type. If odor or the like becomes a problem, the reaction may be performed in a closed system.
  • the present invention is also useful as a polymer generation reaction. Specifically, a polymer for synthesizing a polymer compound from a thioester in a solution in which a thioester exchange reaction and a polymer synthase reaction coexist.
  • the present invention relates to a method for producing a compound.
  • the polymer compound synthesized in the present invention is not limited as long as it is a high molecular compound synthesized from a thioester in a solution in which a thioester exchange reaction and a high-molecular-weight polymerizing enzyme reaction coexist.
  • Examples include polyhydroxyalkanoate (PHA), which is reported to be produced mainly by fermentative production of microorganisms. More than 90 species are known (FEMS Microbiol. Lett., 1995, 128, 219).
  • those having an alkyl chain of C2 or more in the side chain those having a long-chain alkyl group of C6 or more, or C10 or more, and an alkyl group branched to the side chain
  • those having a phenyl ring in the side chain those having a modifying group in the phenyl ring, those having a phenoxy ring in the side chain, and those having a modifying group in the phenyl ring Having a double bond or a triple bond in the side chain, showing good polymerizability in it, having a halogen element in the side chain, having a cyclo ring in the side chain, and having an epoxy ring in the side chain And the like.
  • PHAs can be homopolymers or copolymers composed of two or more units.
  • Alkyl group Int. J. Biol. Macromol., 1990, 12, 92-101
  • phenyl ring Macromol. Chem., 1990, 191, 1957-1965, Macromolecules, 1991, 24, 5256-5260, Macromolecules, 1996, 29, 1762-1766, etc.
  • phenoxy ring Macromolecules, 1996, 29, 3432-3435, Macromol. Chem. Phys., 1994, 195, 1665-1672, etc.
  • For double bonds see Appl. Environ. Microbiol., 1988, 54, 2924-2932, Int. J. Biol.
  • polymer compound examples include poly (3-hydroxyalkanoate) and poly (4-hydroxyalkanoate), which are well known to be produced mainly by fermentation of living organisms, especially microorganisms. I can do it. Furthermore, specifically, poly (3-hydroxybutyrate) can be specifically mentioned. These are merely examples, and all polymer compounds containing a polymer unit capable of forming a polymer by the method of the present invention are included. Further, a combination of a plurality of types of polymerization units may be included. The degree of polymerization is not particularly limited as long as the enzymatic reaction proceeds.
  • high-molecular-weight polymerization enzyme reaction that can be used in the present invention, and examples thereof include a reaction using hydroxyalkanoate-coenzyme A as acylchoenzyme A. Generated by the PHA.
  • the high-molecular-weight polymerizing enzyme used in the present invention may be a high-molecular-weight polymerizing enzyme that synthesizes a high-molecular compound using the substance produced by the thioester exchange reaction of the present invention as a substrate.
  • a high-molecular-weight polymerizing enzyme that synthesizes a high-molecular compound using the substance produced by the thioester exchange reaction of the present invention as a substrate.
  • PHA polyhydroxyalkanoate synthase
  • a wide variety of methods can be used to obtain high-molecular-weight polymerizing enzymes, such as extraction and purification from biological cells and extraction and purification from biological cultures.
  • PHAS can be extracted and purified from microbial cells. I can do it.
  • the amount of the enzyme that can be obtained by ordinary extraction and purification methods is extremely small, and in recent years, the PHAS gene has been isolated using genetic recombination technology (J. Biol. Chem ,, 1989, 264). , 15298-15303, J. Bacteriol., 1988, 170, 4431-4436, J. Bacteriol., 1988, 170, 5837-5847). Biochemistry, 1994, 33, 9311-9320, Protein Expression Purif., 1996, 7, 203-211).
  • an enzyme modified by a technique such as an immobilized enzyme can also be used.
  • the biological species derived from the high molecular weight polymerizing enzyme used in the present invention examples thereof include the genus Ralstonia, Pseudomonas, and Chromatium, which are well known for the production of PHA. ) It can control many microorganisms including the genus Ectothiorhodospira. It is also possible to obtain a high-molecular-weight synthase from a genetically-modified product having the high-molecular-weight synthase gene derived from these organisms as a donor.
  • the PHAS gene of Ralstonia eutropha ATCC17699 is isolated, a recombinant Escherichia coli is produced and cultured, and the desired PHAS is extracted and purified from the culture product. It can be used as a catalyst for polymer polymerization reaction.
  • the acyl group donor used in the polymer generation reaction according to the present invention is the same as the above-mentioned highly efficient acyl group transfer reaction except that the acyl group can be a structural unit of the polymer.
  • This thioester can easily undergo a thioester exchange reaction to convert it into acyl CoA, which is a thioester of CoA, by coexisting with a CoA salt under an alkaline condition (Int. Symp. Bacterial. Polyhydroxyalkanoates, 1996, 28-35).
  • CoA thioester is used as an enzyme substrate, and the enzyme reacts to polymerize PHA, and liberated CoA is released into the reaction system.
  • the C0A thioester includes both those charged at the beginning of the reaction and those generated by the progress of the reaction. In any case, the products are a polymer and C0A (the following formula).
  • R is R.—SH is an organic group representing CoA
  • R 1 is an arbitrary alkylene
  • n is an integer corresponding to the degree of polymerization.
  • the present invention is implemented by combining the above two reactions, that is, the two reactions of the thioester exchange reaction and the polymer polymerization reaction, and coexisting them in one reaction system.
  • a polymer compound is produced.
  • CoA released into the reaction system after the polymerization reaction and not reused was reacted with the thioester introduced into the reaction system to synthesize the thioester of CoA again. At least, this is used again as a substrate for the polymerization reaction (the following formula).
  • the present invention is a method for producing PHA with high efficiency.
  • the reaction conditions of the present invention are not particularly limited and are the same as in the high-efficiency transamination reaction.
  • the conditions for promoting the enzymatic reaction include a temperature of 0 ° C to 60 ° C, preferably The temperature is preferably from 10 to 50 ° C, more preferably from 20 to 40 ° C.
  • the reaction can be conveniently carried out at room temperature.
  • 11 be carried out between 3 and 12, preferably between 5 and 10, and more preferably between 7 and 9.
  • the condition in which the thioester exchange reaction and the polymer polymerization reaction coexist means that the thioester exchange reaction and the polymer polymerization reaction are present in the same aqueous solution, organic solvent, or a mixed solution thereof, or in the same reaction vessel. Is a situation where one kind of solution or a plurality of solutions exist in a mixed state or a separated state. In the case of a layered structure, the separation state may be oil droplets or visually suspended. Etc. are included. In any case, it suffices that the state necessary for the thioester exchange reaction and the polymer polymerization reaction be integrated and ensured. Then, as a starting material, a thioester that can be produced industrially efficiently is used, and this is used in the reaction system.
  • the thioester of CoA is used as a substrate for the polymerization reaction to produce a polymer compound.
  • Example 1 Synthesis of acylthiophenol (thiophenyl palmitate) 6 mL of anhydrous dichloromethane was added to a well-dried and nitrogen-substituted flask, and the mixture was stirred well while cooling on ice. Thereto, 2 mL of 2 M trimethylaluminum was slowly added. In addition, thiophenol was added slowly. After stirring at room temperature for 1 hour and 30 minutes, ethyl ethyl palmitate dissolved in 6 mL of anhydrous dichloromethane was slowly added and reacted. The reaction was monitored by TLC.
  • SPT Serine C-palmitoyltransferase
  • primers (SEQ ID NO: 1 and SEQ ID NO: 2) encoding the N-terminal sequence and C-terminal sequence were prepared from the entire base sequence of the above SPT, and the chromosomal DNA of Snhingomonas paucimobilis was mirrored under the following conditions.
  • a DNA fragment corresponding to the SPT coding region was prepared by PCR.
  • the N-terminal primer was provided with an NcoI site for connection of the vector
  • the C-terminal primer was provided with a HindIII site.
  • the prepared PCR fragment was subjected to agarose gel electrophoresis, extracted from the gel, and recovered by a column. This fragment was treated with the restriction enzyme NcoI-HindIII, ligated with the NcoI-Hindlll fragment of the plasmid pET21d, and transformed into the host E. coli BL21 (DE3) strain. The resulting transformant was cultured in 5 mL of an LB medium containing 50 ppm of ampicillin at 35 ° C. for 16 hours, and the cells were collected by centrifugation and washed with physiological saline.
  • Example 3 Power coupling between transesterification reaction and CoA enzyme reaction (water homogenous system) 2 mg of CoA sodium salt and 1 mg of L-serine in 100 mM HEPES-NaOH buffer (including ⁇ PL ⁇ , (pH 8.0) dissolved in 5 mL, and stirred well with a magnetic stirrer. A solution obtained by dissolving 3.5 mg of thiophenol palmitate in 0.1 mL of acetonitrile was mixed therewith. The stirring speed was reduced to such an extent that it was mixed gently, and 0.5 mL of the SPT crude enzyme solution was added, and the mixture was reacted at 37 ° C. for 24 hours.
  • reaction solution 75 described below was taken, added with 425 L of a 70.6 mM triethylamine Z ethanol solution, and stirred. The precipitate was removed by centrifugation for 5 minutes, the supernatant was taken at 100 / zL into an HP LC sample vial (300 ⁇ L micro insert), AQC reagent (Waters) solution was added, and the mixture was immediately stirred. After reacting at room temperature for more than 40 minutes, analysis was performed under the following HP LC conditions.
  • LC-VP series Shiadzu Corporation
  • LC-10ADVP Force ram oven CTO-10ACVP
  • Autosampler SIL-10AF System controller SCL-10AVP
  • Fluorescence detector 821-FP JASCO
  • Ex.244nm Em.398nm
  • GainxlOO Column SHODEXF-511A, 35 ° C
  • Example 4 Power coupling between transesterification reaction and CoA enzymatic reaction (oil-water two-layer system) 2 mg of CoA sodium salt and 1 mg of L-serine in 100 mM HEPES-NaOH buffer solution ( ⁇ ⁇ PLP) (PH 8.0) was dissolved in 5 mL, and the mixture was stirred well with a magnetic stirrer. A solution in which 3.5 mg of thiophenyl palmitate was dissolved in 5 mL of hexane was mixed therewith.
  • the extract was dried over magnesium sulfate, evaporated under reduced pressure, and dried under vacuum to obtain 3- (t-butyldimethylsilyl) butyrate. On ice, dissolve 870 mg of 3- (t-butyldimethylsilyl) butyrate and 452 mg of thiophenol in 6 ml of dichloromethane and add 2 ml of dichloromethane.
  • Reference Example 4 Preparation and purification of enzyme Ralstonia eutropha ATCC 17699 genomic DNA cuts out restriction enzymes EcoRI and SmaI fragment (approximately 5 kbp), clones them into pUC18 and adds PHA synthase gene (PHAS). Mid pTI305 was obtained. Next, a BamH I ⁇ Not I fragment (140 bp) of the DNA amplified by PCR with the following two primers using pT I 305 as a template and pT I 305 as a template And three types of BamHI and SmaI fragments of vector pQE30 (manufactured by Qiagen) were mixed and ligated to prepare plasmid pQEREC.
  • Escherichia coli BL21 This was introduced into Escherichia coli BL21 (pREP4) to prepare Escherichia coli BL21 (pQEREC) for enzyme preparation.
  • the Escherichia coli was cultured in 1000 ml of LB medium at 30 ° C. for 16 hours to accumulate enzymes in the cells, disrupted the cells by sonication, and then recovered soluble proteins in the cells.
  • This protein was passed through a Ni-NTA agarose gel column, and (His) -PhaC (six histidines were added to the N-terminus) was specifically adsorbed to the column. After washing, (His) -Pha C was eluted with imidazole, and 1 Omg was obtained as a purified enzyme after dialysis.
  • the molecular weight of the enzyme was 65 kDa on SDS-PAGE.
  • Sense Pfima aaggatccatggcgaccggcaaaggcgcgg (robot system (J ⁇ " ⁇ 3), antisense primer: tgcagcggaccggtggcctcggcctgccc (configuration lj number 4), cycle: (94 ° C 45 seconds, 58 ° C 30 seconds, 72 ° C 60 seconds) X 30 cycles
  • Example 5 Polymerization of poly ((R) -3-hydroxybutyrate)
  • 0.015 mg of the enzyme was added to 5 ml of a 10 OmM potassium phosphate solution, and the mixture was stirred well at room temperature. Keep the solution temperature at 30 ° C by slightly lowering the stirring speed, and add 5 ml of lmMC 0A sodium solution and 0.5 ml of 2 OmM 3 A solution of hydroxybutylate thiophenylester (dissolved in a 1: 1 solution of potassium phosphatase solution and acetonitrile) was added little by little, and the mixture was further reacted at 30 ° C. for 24 hours. Next, this solution was washed three times with 2 Oml of hexane, and the product in the solution was extracted and recovered with a 1 Om1 pore-form.
  • 0.015 mg of the enzyme was added to 5 ml of a 100 mM potassium phosphate solution, and the mixture was stirred well at room temperature.
  • the solution temperature was kept at 30 ° C by lowering the stirring speed slightly, and 5 ml of the lmM3-hydroxybutyrate CoA solution and 0.5 ml of the 20 mM 3-hydroxybutyrate thiophenylester solution (100 ml mM potassium phosphate solution and acetonitrile in 1: 1 solution) were added little by little, and the mixture was further reacted at 30 ° C. for 24 hours.
  • 0.015 mg of the enzyme was added to 5 ml of a 10 OmM potassium phosphate solution, and the mixture was stirred well at room temperature. Reduce the agitation speed to a low level, and add 5 ml of 1 mM (R, S) 13-hydroxyvalerate CoA and 0.5 ml of 2 OmM3 —hydroxyvalerate. (Dissolved in a 1: 1 solution of a 10 OmM potassium phosphate solution and acetonitrile) was added little by little, and the mixture was further reacted at room temperature for 24 hours. Next, this solution was washed three times with 20 ml of hexane, and the product in the solution was extracted and recovered with a 1 Om 1 pore-form.
  • Example 8 Polymerization of poly ((R) -3-hydroxybutyrate) from (R) -3-hydroxybutyrate thiophenol ester
  • the reaction is carried out continuously without adding an extremely expensive acylcoenzyme A (acyl CoA), thereby dramatically improving the productivity. can do. Therefore, various compounds can be produced by a novel coupling method that enables the use of an acyltransferase in an industrial production method.
  • a thioester exchange reaction is combined with an enzymatic reaction to accumulate and produce sphingoid bases without a cytotoxicity problem, which has been difficult with a conventional enzymatic method.
  • the regeneration reaction of capture enzyme CoA which is indispensable for the reaction, can be performed in the same reaction solution, dramatically reducing coenzyme consumption and economically reducing sphingoid bases. Can be manufactured.
  • various sphingoid bases can be produced inexpensively and purely, and the use thereof is dramatically expanded.
  • the reaction starting material is replaced with a thiophenyl ester that can be easily synthesized, and is essential for the polymerization reaction.
  • the regeneration reaction of the capture enzyme CoA can also be performed in the same reaction solution system, dramatically reducing the consumption of the capture enzyme, and making various PHs inexpensive, efficient and industrial. It can be manufactured and its applications are dramatically expanded.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明はアシルコエンザイムAのアシル基をアシル基受容体に転移するアシル基転移酵素反応方法において、アシルチオエステルとの化学的チオエステル交換反応によって、コエンザイムAよりアシルコエンザイムAを反応系内で生成および/または再生させて反応することを特徴とするアシル基転移酵素反応方法に関する。本発明によれば、高価なアシルCoAが反応系内で非酵素的に再生されるため、少量のアシルCoAとアシル基供与体及び受容体を系に投じるだけでアシル基転移酵素反応が連続的に進行する。従って、本発明の方法は、有用な生体分子を含む種々の化合物の工業的製造方法やポリエステル等の高分子の合成に適用できる。

Description

明 細 書 ァシルコェンザィム Aを用いるァシル基転移酵素反応方法 技術分野
本発明は、 ァシルコェンザィム A (以下、 コェンザィム Aを C o Aと表記 することがある。 ) による種々の有機化合物へのァシル基転移酵素反応方法 に関する。 さらに詳しく言えば、 本発明は、 ァシル基転移酵素を用いるァシ ルイ匕合物の製造方法において、 極めて高価なァシル C o Aを追加添加するこ となく反応を継続的に行い、 その生産性を飛躍的に改善することによってァ シル基転移酵素を種々の化合物の工業的製法に利用することを可能ならしめ た新規なァシル基転移酵素反応方法に関する。
さらに、 本発明は化学的チォエステル交換反応をァシル C o A再生系とし た C o A酵素カツプリング法に関する。
また、 本発明は C o A酵素を用いて、 スフインゴ脂質のごとき重要な生理 活性物質を製造する方法に関する。
さらに、 本発明は酵素反応による高分子化合物の製造方法に関する。 さら に詳しく言えば、 チォェステル交換反応と高分子重合酵素反応を共存させて ァシルコェンザィム (ァシル C o A) を反応系内で再生させてチォエステル 力 ら高分子化合物を一貫して合成することの出来る効率的な生分解性の高分 子化合物、 特にポリエステルの製造方法に関する。 背景技術
C o Aは全ての生物種でァシルキヤリァ/ァシルァクティベータ一として 機能する物質である。 例えば、 ァセチル C o Aはクェン酸回路を経由する脂 肪酸 ·グルコース等主要な生体代謝のキー物質である他、 ある種のァシル C o A誘導体はコレステロールや脂肪酸生合成においても重要な役割を果たし ている。 C o Aはこれらの代謝に関わる酵素触媒反応 (C o A酵素) の捕助 因子 (捕酵素) として必須であり、 代替不可能な物質であり、 下記式で表わ される。
Figure imgf000003_0001
(式中、 A C Yはァシル基である。 )
C o A酵素には、 転移させるァシル基の構造および基質 (ァシル基を導入 する化合物) により種々の C o A酵素が存在する。 従来、 各種の C o A酵素 を用いて物質を製造しょうとする試みは多く成されており、 例えば、 抗生物 質や医薬、ポリケチド合成経路を利用する各種ィ匕学物質の製造、ァミノ酸類、 ポリヒドロキシ酸などの製造例がある。
これらの方法ではァシル C o Aは反応においてァシル基受容体と等モル消 費される。 従って、 必要なァシル C o Aを廉価に生産する必要がある。
上記の方法では、 いずれも、 発酵的に生産される生体内のァシル C o Aを 用いるか、 生産系とは別個に製造したァシル C o Aを用いている。 発酵的に 生産される生体内のァシル C o Aを用いる場合は、 生体内で生産されるァセ チル C o Aやマロニル C o Aといった特定のァシル C o Aしか利用し得ない。 この課題を解決すべく、 ァセチル C o Aと各種脂肪酸間で酵素的にエステル 交換を行い、 非生体的なァシル C o Aを生産する技術も報告されている。 生 産系とは別個に製造したァシル C o Aを用いる方法は、 汎用性が有り一般的 に取られる方法であるが、 このようにして製造したァシル C o Aは極めて高 価であり、 ァシル基転移反応に使用するには等モル必要であることにかわり はない。
ァシル C o Aの製造方法としては、 ァシルク口ライドによる化学合成法、 酸無水物を用いる化学合成法、 ク口口炭酸ェチルとの混合酸無水物を用いる 化学合成法、 チォエステル交換による化学合成法 (Z. Naturforsch 29C, 469-474(1974) 、 Z. Naturforsch 30c, 352-358 (1975))、 J. Am. Chem. Soc, 1953, 75, 2520、 J. Biol. Chem., 1985, 260, 13181、 その他多くの化学合成法が一般に用い られている。 しかしながらこれらの化学的方法は一般にチオール基への選択 性が低いものが多く、 非選択的なァシル化反応により収量が低下する問題が あった。 これらの製法は現在も用いられるが、 ァシル C o Aの実験室的調製 法として用いられているにとどまつていた。
化学合成法の弱点を克服すべく、 酵素的ァシル C o Aの製造法も精力的に 研究されている。 すなわち、 ァセチル C o A合成酵素を用いる方法や脂肪酸 C o A合成酵素を用いる方法などが報告されている (Appl. Microbiol. BiotechnoL, 1994, 40, 699-709) 力 これらの酵素反応法ではその触媒である酵 素を必要量得ることが非常に困難である。
酵素を用いる製法に関しては、 これらをァシル C o A再生系として C o A 酵素反応と協同させたカップリング法に関する研究も報告されている。 すな わち、 ァシル基転移反応により消費されたァシル C o Aを酵素反応により再 生して再ぴ反応に用いるものであり、 ホスホトランスァセチラーゼを用いる 力ップリング法、 カルニチンァセチルトランスフェラーゼを用いる力ップリ ング法、 ァセチル C o A合成酵素を用いるカップリング法、 α—ケトグルタ ル酸脱水素酵素を用いるカツプリング法などである。 これらの方法はチォー ル基への選択性が高く、 特にァセチル C ο Α合成酵素は基質特異性が広く各 種のァシル C o Aを生成し得ることから有用である。
し力 しながら、 これらは酵素によりァシル C o Aを再生しており、 この様 な酵素的再生系は反応速度が遅いこと、 酵素が不安定であること、 反応に A T Pや比較的高価な副成分を必要とすること、 高濃度の C o Aでは反応でき ないことなど、 それぞれに課題が残されて一般に対象物の価格が余程高価で 無い限り、 ァシル C o Aを 10,000回以上回転させなければコスト的に工業的 製法とは成り得ないと言われており、 上記の方法は工業的製造法として充分 とは言えないものであった。 ジメチルァミノピリジンの N—ァセチル体を用 い非酵素反応を利用してァセチル C o Aを再生する試みもあるが (Bioorganic Chem., 1990, 18, 131-135) 、 大量の有機溶媒を使用し 2相系であるため生成物 の精製上問題があり、 工業的製法には適していない。
以上のように、 現在まで C o A酵素を工業的製法として利用することを可 能とするに充分な、 ァシル C o A再生系は知られていなかった。
スフインゴ脂質は、 スフインゴシンのようなスフインゴィド塩基に由来す る脂質であり、 動物、 植物及び微生物の細胞膜に存在する。 ヒトのスフイン ゴ脂質の正確な機能はまだわかっていないが、 この化合物群が、 神経系の電 気シグナル伝達および細胞膜の安定化に関与している。 スフインゴ糖脂質は、 免疫系において機能を有し、 特に特定のスフインゴ糖脂質は細菌毒の受容体 として、 またおそらくは細菌及びウィルスの受容体としても機能することが 示されている。
セラミ ドはスフインゴシン、 ジヒ ドロスフインゴシンまたはブイ トスフィ ンゴシンを塩基として含む、 スフインゴ脂質の特定のグループである。 セラ ミドは、 皮膚の上側層である角質層の主要脂質成分であり、 重要な障壁機能 を有している。 セラミドのようなスフインゴ脂質を含有する,祖成物の局所塗 布は、 例えば皮膚の障壁機能及び水分保持特性を改善することが知られてい る(Curatolo, Pharm. Res., 4:271-277(1987) ; Kerscher ら, Eur. J. Dermatol" 1:39-43(1991》。
スフインゴイド塩基それ自体は、 シグナル伝達経路において重要な酵素で あるプロティンキナーゼ Cの活性を阻害することによって、 いくつかの生理 的作用を媒介することがわかっている。 更に、 スフインゴイド塩基は、 化粧 組成物またはそれらの抗炎症活性及び抗菌活性のための皮膚科用組成物に含 まれる。
現在、 化粧品用の異種スフインゴ脂質調製物は、 主に動物供給源から抽出 されているが、 産業的規模では比較的経費のかかる方法であるばかりでなく、 例えばゥシ海綿状脳症 (B S E ) の潜在性のため動物組織以外の供給源から 入手できる純粋かつ構造の特定されたスフインゴ脂質の新規供給源に関心が 増している。
酵母 Pichia ciferriiのような微生物は、 スフインゴ脂質、スフインゴシン、 フ イトスフインゴシン及び またはそれらの誘導体を生成することが発見され ている (Wickerham及ぴ Stodola, J. Bacteriol., 80:484-491(1960))。スフインゴ脂質 それ自身の供給源、 及び他の商業的に価値のある化合物を生成するための出 発材料の供給源を提供し、 これらの化合物の動物性供給源の使用に対し実現 可能な代用を与える。 しかし微生物による生産は、 スフインゴイド塩基の微 生物細胞に対する毒性のために、 生産性の改善が困難であり(Pinto ら、 J. Bacteriol., 174:2565-2574(1992); Bibelら, J.Invest. Dermatol., 93:269-273(1992))、 より効率的な製造方法の提供が切望されていた。
また、 近年環境問題への意識の高まりから、 従来主流を占めてきた合成高 分子から環境に優しい生分解性高分子への関心が高まっている。
その一つであるポリヒドロキシアルカノエート (以下、 P HAと略記する ことがある。 ) は、 一般には微生物の発酵生産により製造され、 生分解性が 高いことから注目を集めているポリエステルであり、 9 0種以上の種類のも のが知られている (FEMS Microbiol. Lett., 1995, 128, 219-228) 。 その中でもポ リ (3—ヒ ドロキシプチレート) (以下、 P H Bと略記することがある。 ) 、 ポリ (3—ヒドロキシパレレート) (以下、 P HVと略記することがある。)、 ポリ (3—ヒ ドロキシプチレート一 c o— 3—ヒ ドロキシバレレート) (以 下、 P H B— c o— P HVと略記することがある。 ) は、 その製造のしゃす さ、及ぴその特性が良好であったことから研究開発が進んだ (特開昭 57-150393 号公報 (米国特許第 4393167号) 、 特開昭 59-220192号公報 (欧州特許公開第 0114086号) 、 特開昭 63-226291号公報'(欧州特許公開第 0274151号) 、 特開 昭 63-269989号公報)。 しかし微生物の発酵生産では微生物体内に P H Aを蓄 積するためにその生産性は低く、 また微生物を粉碎して P HAを抽出し、 精 製するためにコストもかかるなど問題点も多かつた。
その後、 発酵生産のメカニズムの解析が進んだことから微生物体内への P HAの蓄積濃度が飛躍的に向上し、 また、 微生物体内への P H Aの蓄積状態 の解析が進んだことから微生物からの抽出、 精製コストも下がる結果となり、 P H Aの微生物的製造の実用化が始まつた。
また、 P H Aを生産する微生物も多種に渡ることが次第に明らかになつて きたことから、 P H B、 P H V , P H B— c o— P H V以外の P HAへの研 究開発も急速に進み、 物性を改良するためコポリマーの研究開発もされてい る (特開昭 63-269989号公報、 特開昭 64-48821号公報、 特開平 1-156320号公 報、 特開平 1-222788号公報、 特開平 5-93049号公報) 。
しかし、 微生物の発酵生産による P HAの製造方法では複雑な生物代謝経 路を経るために必ずしも所望の P HAを作り出せるわけではなく、 また P H Aのバリエーションも限定される。 また発酵生産の制御方法によっては所望 のホモポリマーとならずにコポリマーになることもあり、 また逆にコポリマ 一生産においても必ずしも所望の重合比の均質なコポリマーを生産できる訳 ではない (FEMS Microbiol. Rev., 1992, 103, 207-214) 。 さらに精製工程におい ても多種の化合物を含む微生物菌体より所望の P H Aを取り出すために、 そ の純度の向上にも工業的生産においては限界がある。 このように微生物発酵 による P H Aの製造は様々な問題を抱えている。
一方、 近年急速に進んだ遺伝子組換え技術により、 P HAを重合する酵素 であるポリヒドロキシアルカノエートシンターゼ (P HA S ) の遺伝子が単 離され、 その発現を増強することにより P HAの生産の向上も図られるよう になった(特開平 7-265065号公報、特開平 10-108682号公報、特表 2001-516574 号公報 (W099/14313) ) 。
さらに遺伝子組換え技術を使うことで P HA Sの大量分離精製もできるよ うになり、微生物発酵を用いない P H Bのインビトロ (in vitro)重合方法が開 発され、 均質で高純度な P H Bが生産できるようになった (Proc. Natl. Acad. Sci., 1995, 92, 6279-6283、 Int. Symp. Bacterial. Polyhydroxyalkanoates, 1996, 28-35、 Eur. J. Biochem., 1994, 226, 71-80、 Appl. Microbiol. BiotechnoL, 1998, 49, 258-266、 Macromolecules, 2000, 33, 229-231)。
その後、 P H B以外の P HAも同様のインビトロ (in vitro)重合方法で合成 できることが示され、 微生物発酵法では達成できなかった P H Aのバリエ一 ションの制限が無くなり、 P H Aのバリエーションが格段に広がることが示 唆された(Biomacromolecules, 2000, 1, 433-439、 Appl. Microbiol. BiotechnoL, 2001, 56, 131-136、 Macromolecules, 2001, 34, 6889-6894) 。 この方法ではホモポリマ 一以外にコポリマーをも合成することが可能である。
し力、し、インビトロ (in vitro)重合方法では反応出発物質にァシル C o Aを 使用しなければならないが、 上述の通り、 その合成には種々の問題がある。 そのためァシル C o Aの使用量を極めて少量に抑えることや、 工業的に容 易に合成可能な他の化合物を出発物質として用いる高分子化合物の製造方法 の開発が望まれている。
一方、インビトロ (in vitro) 重合方法では、酵素の基質としてァシル C o A を用い、 酵素が反応して P HAが重合されると共に、 反応系内には遊離した C o Aが放出される (下記式) 。
R°— S†-0— C ~ R] 0 + R°— S— 0— C ~ R1— 0H
II 十 H
0 ノ 0
Figure imgf000009_0001
(式中、 R。は R。一 S Hが C o Aを表わす有機基であり、 R 1は任意のアルキ レン、 nは重合度に相当する整数である。 )
このように、 ァシル C o Aからのァシル基転移反応が 1回起こる度に繰り 返し単位が 1単位ずつ付加され、 C o Aが 1分子放出される。
インビトロ (in vitro)重合方法ではこの C o Aは遊離状態のまま反応系内に 留まり蓄積されるのみであり、 高分子重合反応の収率は反応系内に投入した ァシル。 o Aの当量を超えることはない。 このため P HAの生産性は極めて 低く、インビトロ (in vitro)重合方法で作製した P H Aのコストは非常に高価 にならざるを得ない。 更に重合が進むにつれて反応系内の C o A濃度が高ま ることで、 酵素反応への阻害効果も懸念される。
なお、 この遊離して反応系内に高濃度で存在する C o Aの有効利用方法と してリサイクリングする試みもなされている (FEMS Microbiology Letters, 1998, 168, 319-324) 。 これは重合酵素反応液中に酢酸とァセチル C o Aシンセター ゼと A T Pを共存させることで重合反応後に遊離してくる C o Aをァセチル C o Aに変換し、 さらにプロピオニル C o Aトランスフェラーゼと 3—ヒド ロキシプチレートも共存させることで重合酵素の基質となる 3—ヒドロキシ プチレート C o Aを得るものである。 しかしこの方法では精製が困難な酵素 を 3種類も使用し、 さらに極めて高価である A T Pも必須であることからェ 業的な生産方法に適用することは極めて難しい。
このようにインビトロ重合方法では、 その反応基質にァシル C o Aを使わ なければならず、 ァシル C o Aは非常に高価であることから、 これを反応基 質に用いたまま P HAを工業的に生産するのでは P HAの製造コストを下げ ることが極めて困難であると言わざるを得ない。 また C o Aをァシル C o A にリサイクリングするにも取得が困難な酵素が多種必要であり、 かつ、 A T Pのような高価な化合物が必要である。 さらに P H Aの生物、 特に微生物を 用いた製造方法では、 P HAのバリエーションは限定され、 更に生物体内で の代謝により共重合体が重合される可能性が非常に高く、 所望の P HAのみ を製造するのは難しいと言える。 これらのことから P HAのバリエーション が多く、 かつ、 その生産において簡易に合成できる化合物を出発物質に用い て、 P HAの製造コストが下がるような製造方法の開発が望まれていた。 発明の開示
本発明は、 ァシル C o A再生系で C o A酵素を用いる工業的なァシル基転 移酵素反応方法、 特に生体物質等の生理活性物質の生産に有用なアシノレ基転 移酵素反応方法を提供することを課題とする。
また、 本発明の課題は、 酵素反応で有用なスフインゴィ ド塩基類を製造す る全く新しい半合成製造方法を提供することにある。 さらにはその製造の際 に、 触媒量の補酵素 (C o A) で効率的に製造できる経済的な方法を提供す ることにある。
さらに、 本発明の課題は、 酵素反応で有用な生分解性の高分子化合物を製 造する際に、 触媒量の捕酵素 (C o A) で効率的に製造できる方法を提供す る^-とにめる。 本発明者らは、 ァシル C o Aの再生系について、 効率、 速度、 コスト、 選 択性および酵素反応とのカツプリング可否に関し鋭意研究した結果、 これま で調製にのみ用いられていた化学合成法の一つであるチォエステル交換反応 を酵素反応系とカツプリングし得ることを突き止め、 本発明を完成するに至 つに。
このチォエステル交換反応は中性〜弱塩基性域の系で進行すること、 ァシ ル基の基質特異性が極めて広いことから、 チォエステル交換反応が起こり得 る領域で反応性を示す C o A酵素の何れともカツプリングが可能である。 さらに、 本発明者らは、 このカップリング法をスフインゴ脂質生合成経路 におけるキー酵素であるセリン . C—パルミ トイルトランスフェラーゼに適 用し、 チォフエ-ル脂肪酸とセリンから、 C o Aを介した脂肪酸鎖の脱カル ボキシ的転移反応により、 重要な生理活性物質であるスフインゴィド塩基類 を生成する方法等を確立することに成功した。
さらに、 本発明者らは高効率な P H Aの製造方法を開発すべく、 有機化合 物から P H Aに関連する種々の化合物について新たにな合成経路を見出すベ く鋭意検討を行った結果、 インビト口重合方法にチォエステル交換反応を組 み合わせることで、 反応出発物質を容易に合成可能なチオフヱニルエステル に代替することが出来、 さらに重合反応で必須であるァシル C o Aについて もその再生反応を同一反応液系内で行うことが可能であり、 C o Aの濃度を 抑えつつ、 ァシル C o A消費量を劇的に減少させることが出来ることを見出 し、 本発明を完成するに至った。
すなわち、 本発明は、 以下のァシル基転移酵素反応方法に関する。
1 . ァシルコェンザィム A (ァシル C o A) のァシル基を転移するァシル 基転移酵素反応において、 チオール化合物のァシルェステルであるァシル基 供与体との化学的チォエステル交換反応によって、 コェンザィム Aよりァシ ルコェンザィム Aを反応系内で生成および/または再生させて反応させるこ とを特徴とするァシル基転移酵素反応方法。
2 . 反応系内にァシル基供与体、 ァシル基受容体、 コェンザィム A、 及び ァシル基転移酵素を同時に含み、 ァシル基供与体のァシル基を化学的チォェ ステル交換反応によってコェンザィム Aに転移させてァシルコェンザィム A とし、 ァシルコェンザィム Aのァシル基をァシル基受容体に転移させる前項 1に記載のァシル基転移酵素反応方法。
3 . ァシル基供与体のァシル基でァシルコェンザィム Aを生成およびノま たは再生しながら行う前項 2に記載のァシル基転移酵素反応方法。
4 . チオールィヒ合物が芳香族チオールである前項 2に記載のァシル基転移 酵素反応方法。
5 . 芳香族チオールが置換基を有していてもよレヽチオフェノールである前 項 4に記載のァシル基転移酵素反応方法。
6 . ァシル基受容体がアミノ酸および Zまたはその誘導体である前項 2に 記載のァシル基転移酵素反応方法。
7 . ァシル基受容体がセリンおよび Zまたはその誘導体である前項 2に記 載のァシル基転移酵素反応方法。
8 . ァシル基転移酵素がセリン C—パルミ トイルトランスフェラーゼで ある前項 1または 2に記載のァシル基転移酵素反応方法。
9 . セリン C—パルミ トイルトランスフェラーゼがスフインゴモナス ( Sphingomonas) 属細菌由来のものである前項 8に記載のァシル基転移酵素反 応方法。
1 0 . ァシル基転移酵素がス: 7インゴシン N—ァシ トランスフェラー ゼである前項 1または 2に記載のァシル基転移酵素反応方法。
1 1 . 反応系内にァシル基供与体、 ァシル基受容体、 コェンザィム Α、 及 びァシル基転移酵素を同時に含み、 ァシル基供与体のァシル基を化学的チォ ェステル交換反応によってコェンザィム Αに転移させてァシルコェンザィム Aとし、 ァシルコェンザィム Aのァシル基をァシル基受容体に転移させる反 応において、 ァシル基転移酵素が高分子重合酵素であり、 高分子化合物を合 成する前項 2に記載のァシル基転移酵素反応方法。
1 2 . ァシルコェンザィム Aまたはァシル基転移酵素反応による生成物を ァシル基受容体としてァシル基転移酵素反応を繰り返すことにより高分子化 合物を生成する前項 1 1に記載のァシル基転移酵素反応方法。
1 3 . ァシルチオエステルが芳香族チオールのァシルエステルである前項 1 1に記載のァシル基転移酵素反応方法。
1 4 . 芳香族チオールのァシルエステルがヒ ドロキシアルカノエートチォ フヱニルエステルである前項 1 3に記載のァシル基転移酵素反応方法。
1 5 . ヒ ドロキシアルカノエートチォフエニルエステルが 3—ヒ ドロキシ アルカノエートチオフェニルエステルである前項 1 4に記載のァシル基転移 酵素反応方法。
1 6 . 3—ヒ ドロキシアルカノエートチオフェニルエステルが 3—ヒ ドロ キシプチレートチォフエ-ルエステルである前項 1 5に記載のァシル基転移 酵素反応方法。
1 7 . 高分子重合酵素がポリヒドロキシアルカノエートシンターゼである 前項 1 1に記載のァシル基転移酵素反応方法。
1 8 . ポリヒ ドロキシァルカノエ一トシンターゼがラルストニア(Ralstonia) 属由来である前項 1 7に記載のァシル基転移酵素反応方法。
1 9 . ラルストニア (Ralstonia)属がラルストニア 'ユートロファ (Ralstonia eutropha) である前項 1 8に記載のァシル基転移酵素反応方法。
2 0 . ラルストニア 'ユートロファ (Ralstonia eutropha) がラルストニア · ユートロファ (Ralstonia eutropha) ATCC 17699である前項 1 9に記載のァシル 基転移酵素反応方法。
2 1 . 前項 7乃至 9のいずれかに記載のァシル基転移酵素反応を用いるス ド塩基類の製造方法。
2 2 . スフインゴィ ド塩基類が 3—ケトジヒ ドロスフインゴシンである前 項 2 1に記載の製造方法。
2 3 . 前項 1 0に記載のァシル基転移酵素反応を用いるセラミド類の製造 方法。
2 4 . 前項 1 1乃至 2 0のいずれかに記載のァシル基転移酵素反応を用い る高分子化合物の製造方法であって、 高分子化合物がポリエステル類である ポリエステル類の製造方法。
2 5 . ポリエステノレ類がポリヒドロキシアルカノエートである前項 2 4に 記載のポリエステル類の製造方法。
2 6 . ポリヒ ドロキシアルカノエートがポリ (3—ヒ ドロキシアル力ノエ ート) である前項 2 5に記載のポリエステル類の製造方法。
2 7 . ポリ (3—ヒドロキシアルカノエート) がポリ (3—ヒドロキシブ チレ一ト) である前項 2 6に記載のポリエステル類の製造方法。 図面の簡単な説明
図 1は、 本発明によるチォエステル交換によるァシル C o A再生系との力 ップリング反応を示すスキームである。 発明の詳細な説明
本発明によると、 図 1に示すように、 ァシル基供与体、 ァシル基受容体、 C o A、 及びァシル基転移酵素 (C o A酵素) を一つの系に存在させ、 反応 進行により消費されるァシル C o Aが、 酵素反応と同系内においてァシル基 供与体とコェンザィム Aとの化学的チォエステル交換反応により生成 ·再生 されるカツプリング反応によってァシル基転移反応を行うことができる。 本発明の一つの態様においては、 反応進行により消費されるァシル C o A を化学的チォエステル交換反応により生成 ·再生させる。 この結果、 高価な ァシル。 o Aを少量のみ反応系に存在させるだけで効率的なァシル基転移反 応を実現できる。
また、 本発明の別の態様においては、 ァシル C o Aまたはァシル基転移反 応による生成物をさらにァシル基受容体とする。 この結果、 ァシル基転移反 応の繰り返しにより効率的な重合体生成反応を実現できる。
上記第 2の態様 (重合体生成反応) は上記第 1の態様 (高効率ァシル基転 移反応) の一部であるが、 以下、 便宜上、 第 1の態様 (高効率ァシル基転移 反応) と第 2の態様 (重合体生成反応) に分けて説明する。
(1) 高効率ァシル基転移反応
(l-l)C o A酵素
この態様において使用する C o A酵素には、 ァシル C o Aを捕足因子 (捕 酵素) とするものである以外に特に制限は無い。これらの酵素の例としては、 ァセチルグルタミン酸シンターゼ (EC 2. 3. 1. 1) 、 ァセトァセチ ル Co Aチオラーゼ (EC 2. 3. 1. 9) 、 セリン C—パルミ トイル トランスフェラーゼ (EC 2. 3. 1. 50) 等、 「EC 2. 3. 1. x」 シリーズに属するトランスフェラ一ゼ類が挙げられる。 これらの酵素類 は既に多くの生物に存在することが明らかにされており、 各種の生物から分 離精製がなされている (Enzyme Nomenclature, 178-199, Academic Press, INC.(1992)) 。 中でも、 中性〜弱塩基性域に至適 p Hを示す酵素がさらに好適 である。 これら C o A酵素は精製酵素であってもよいが、 C o A酵素活性を 有する触媒菌体あるいはその処理物を用いることもできる。 但し、 この場合 は、 ァシル Co Aを捕欠因子とする目的以外の酵素の影響を、 欠損変異株の 使用、 活性阻害、 失活処理等により回避することが望ましい。
(1-2)ァシル基供与体
本発明による高効率ァシル基転移において使用するァシル基供与体は、 C o Aと非触媒的にチォエステル交換反応が起こり得るチオール化合物のァシ ルエステル (本願において単に 「ァシルチオエステル」 ともいう。 ) であれ ば制限は無いが、 芳香族チオールのァシルエステルが好ましい。 芳香族チォ 一ノレの例としては、 チォフエノーノレ、 メチノレチォフエノーノレ、 クロロチオフ ェノール、 2—メルカプトチアゾール、 2—メルカプトイミダゾール、 2— メルカプトトリァゾール、 2—メルカプトべンゾチアゾール、 2—メルカプ トベンゾイミダゾール、 2—メルカプトピリジン等を挙げることができる。 特に好適な例として、 チォフエノールのァシルエステル類 (フエニル基が置 換基を有する場合も含め、 本願において単に 「チオフェニルエステル」 とも いう。 ) が挙げられる。
ァシルエステルのチオールに対応するァシル基としては、 基本的に制限無 く使用することができる。 例えば、 ァセチル (CH3CO-) 、 プロピオニル (CH3CH2CO— ) 、 ブチリル (CH3CH2CH2CO— ) 、 イソブチリル ( (CH3) 2CHCO— ) 、 ァクリロイル (CH2 = CH_CO— ) 、 メタク リロイル (CH2 = C (CH3) -CO-) 、 パルミ トイル (CH3— [CH2] 14一 CO—) 、 ステアロイル (CH3— [CH2] 16— CO—) 、 ォレオイル (CH3- [CH2] 6— CH=CH— [CH2] 6— CO— ) ) 等の C2〜C2 ' 0の飽和または不飽和の脂肪族ァシル基、 ベンゾィル等の芳香族ァシル基な どが挙げられる。 もっとも、 これらは例示であり、 例えば、 脂肪族ァシル基 のアルキル鎖は置換されていてもよく、 一部または全部が環状でもよい。 芳 香族ァシル基の芳香環は炭素環でもへテロ環でも縮合環でもよく任意に置換 されていてもよい。 置換基の例としては、水酸基、 アルキル基、 ァリール基、 ァラルキル基、 アミノ基、 塩素、 臭素等のハロゲン等が挙げられる。
(1 - 3)ァシル基受容体
また、 本発明による高効率ァシル基転移反応において使用するァシル基受 容体は、 上記 C o A酵素の基質としうる限り制限は無い。 酵素の基質特異性 を反応条件によつて変化させることや、 タンパク質工学的に基質特異性を変 化させた変異体などを用いることにより、 酵素の通常の好適な基質でない物 質をもァシル基受容体とし得る。
好ましいァシル基受容体は、 アミノ酸、 アミノ酸誘導体であり、 天然アミ ノ酸、 非天然アミノ酸が特に好ましい。 例えば、 アミノ酸がセリンで酵素が セリン C一パルミ トイルトランスフェラーゼである場合、 3—ケトジヒ ド 口スフインゴシンの効率的合成反応となる。 また、 ァシル基受容体がアミノ 酸誘導体であるスフインゴシンで酵素がスフインゴシン N—ァシルトラン スフエラーゼである場合、 セラミ ドの効率的合成反応となる。 なお、 ァシル 基転移反応における生成物は、 転移したァシル基をそのまま有するとは限ら ず、 反応条件下で脱炭酸や転位等を経てもよく、 一般的には用いる酵素と基 質により定まる。
(1-4)反応条件
本発明による高効率ァシル基転移反応において使用する C o Aは、 化学合 成法、 半合成法、 生物発酵法などいずれの方法で製造されたものでもよく、 C o Aとして機能し得るものであれば良い。
本発明による高効率ァシル基転移反応において、 使用する反応系は、 ァシ ル基供与体と C o Aのエステル交換反応と、 用いる C o A酵素によるァシル C o Aからァシル基受容体へのァシル基転移反応が同時に進行する系である 限り制限は無く、 水均一系、 有機溶媒均一系、 あるいは有機溶媒一水二層系 等を用いることができる。
本発明の反応は、 C o A酵素の安定性が確保され、 反応が進行する温度で あればよい。 通常 1 0 °C〜4 5 °Cであり、 好ましくは、 2 0 °C〜4 0 °Cであ る。
本発明の反応は、 濃度に関しても C o A酵素の安定性が確保され、 反応が 進行するならば、 特に制限はない。 反応系は開放型でも密閉型でも良く、 臭気等が問題になる場合には密閉系 において反応を行えば良い。
( 2 )高分子生成反応
(2-1)高分子化合物
前述のように、 本発明は、 高分子生成反応としても有用であり、 具体的に はチォエステル交換反応と高分子重合酵素反応を共存させた溶液中でチォェ ステルから高分子化合物を合成する高分子化合物の製造方法に関するもので ある。
本発明において合成される高分子化合物としては、 チォエステル交換反応 と高分子重合酵素反応を共存させた溶液中でチォエステルから合成される高 分子化合物であれば制限はないが、 例としては、 これまで主に微生物の発酵 生産により製造されることが報告されているポリヒドロキシアルカノエート ( P H A) を挙げることが出来る。 その種類は 9 0種以上が知られている (FEMS Microbiol. Lett., 1995, 128, 219) 。 更に具体的には、側鎖に C 2以上の アルキル鎖を持つもの、 その中には C 6以上、 更には C 1 0以上の長鎖アル キル基を有するもの、 側鎖に分岐したアルキル基を持つもの、 側鎖にフエ二 ル環を持つもの、 その中にはフヱニル環に修飾基を有するもの、 側鎖にフエ ノキシ環を有するもの、 その中にはフヱノキシ環に修飾基を有するもの、 側 鎖に二重結合あるいは三重結合を有するもの、 その中には良好な重合性を示 すもの、 側鎖にハロゲン元素を有するもの、 側鎖にシクロ環を有するもの、 側鎖にエポキシ環を有するものなどがある。 これらの P H Aはホモポリマー であることもあれば、 2種類以上のュニットからなるコポリマーも含まれる。 具体的には、 アルキル基については Int. J. Biol. Macromol., 1990, 12, 92-101 など、 フエニル環については Macromol. Chem., 1990, 191, 1957-1965、 Macromolecules, 1991, 24, 5256-5260、 Macromolecules, 1996, 29, 1762-1766など、 フエノキシ環については Macromolecules, 1996, 29, 3432-3435、 Macromol. Chem. Phys., 1994, 195, 1665-1672など、 二重結合については Appl. Environ. Microbiol., 1988, 54, 2924-2932、 Int. J. Biol. Macromol., 1990, 12, 85-91、 J. Polym. Sci., Part A, 1995, 33, 1367-1374、 Macromolecules, 1994, 27, 1675-1679、 Macromolecules, 1998, 31, 1480-1486など、三重結合については Macromolecules, 1998, 31, 4760-4763 など、 ハロゲン元素については Macromolecules, 1990, 23,3705-3707、 J. Chem. Soc. Polym. Commun., 1990, 31, 404-406、 Macromolecules, 1992, 25, 1852-1857、 Macromolecules, 1996, 29, 4572-4581などエポキシ環につ いては Macromolecules, 1999, 32, 7389-7395などに示された P HAも含まれ、 炭素数も多様である。
高分子化合物の具体例としては、 主に生物、 特に微生物の発酵生産により 製造されることがよく知られているポリ (3—ヒドロキシアルカノエート) やポリ (4—ヒドロキシアルカノエート) を挙げることが出来る。 更に、 具 体的には特にポリ (3—ヒドロキシプチレート) を挙げることができる。 も つとも、 これらは例示であり、 本発明の方法によって高分子を形成し得る重 合単位を含む高分子化合物はすべて含まれる。 また、 複数の種類の重合単位 の組み合わせを含んでもよい。 重合度は酵素反応が進行する限りにおいて特 に制限はない。
本発明に利用できるの高分子重合酵素反応は制限はないが、 例としてはァ シルコェンザィム Aとしてヒドロキシアルカノエートコェンザィム Aを用い る反応を挙げることが可能であり、 その場合は高分子化合物として P H Aが 生成する。
(2-2) C o A酵素
本発明で使用する高分子重合酵素としては、 本発明のチォエステル交換反 応で生成する物質を基質として高分子化合物を合成する高分子重合酵素であ ればよい。 例えば、 ヒドロキシアルカノエート C o Aを基質とし、 P HAと する場合、 酵素であるポリヒドロキシアルカノエートシンターゼ (P HA S ) を用いることが出来る。 高分子重合酵素の取得方法は生物細胞から抽出精製 する方法、 あるいは生物培養物から抽出精製する方法など多種多様の方法が 使われるが、 例としては P HA Sは微生物細胞から抽出精製することが出来 る。 しかし通常の抽出精製方法では取得出来る酵素量が極めて少量に限られ ることから、 近年は遺伝子組換え技術を利用して P HA Sの遺伝子を単離し (J. Biol. Chem,, 1989, 264, 15298-15303、 J. Bacteriol., 1988, 170, 4431-4436、 J. Bacteriol., 1988, 170, 5837-5847) 、 高発現させることで高分子重合酵素を大量 に分離精製できる(J. Biochemistry, 1994, 33, 9311-9320、 Protein Expression Purif., 1996, 7, 203-211)。 また本発明の高分子重合反応で使用される酵素は、 そのま ま用いる場合のほかに、 固定化酵素などの手法で修飾した酵素を用いること もできる。
本発明で用いる高分子重合酵素の由来に生物種としては特に制限はないが、 例としては P HAの生産がよく知られているラルストニア (Ralstonia) 属、 シ ユードモナス (Pseudomonas) 属、 クロマチゥム (Chromatium) 属、 エタトチ ォロドスビラ (Ectothiorhodospira) 属をはじめ多くの微生物を举げることが出 来る。 またこれらの生物由来の高分子重合酵素遺伝子を供与体として有する 遺伝子組換え体から高分子重合酵素を取得することも可能である。 例として はラルストニア ·ユートロファ (Ralstonia eutropha) ATCC17699の P H A Sの 遺伝子を単離し、 その組換え体ェシエリキア コリ (Escherichia coli) を作製し て培養し、 その培養産物から所望の P HA Sを抽出精製して、 高分子重合反 応の触媒として用いることが可能である。
(2-3)ァシル基供与体
本発明による高分子生成反応において使用するァシル基供与体は、 ァシル 基が高分子の構造単位となり得るものであるという点を除いて、 前述の高効 率ァシル基転移反応と同様であり、 芳香族チオールのァシルエステルが好ま しい。 芳香族チオールの例は、 前記の通りである。 チォエステルの製法は例えば、 J. Am. Chem. Soc, 1973, 22, 5829に記載さ れている。
このチォエステルはアル力リ条件で C o A塩と共存させることで容易に C o Aのチォエステルであるァシル C o Aへと変換するチォエステル交換反応 が可能である (Int. Symp. Bacterial. Polyhydroxyalkanoates, 1996, 28-35) 。 チォエステル ► CoAチォエステル(ァシル CoA)
CoA
(2-4)ァシル基受容体
インビトロ重合方法では酵素の基質として C o Aチォエステルを用い、 酵 素が反応して P HAが重合されると共に、 反応系内には遊離した C o Aが放 出される。 C o Aチォエステルは反応当初に投入されるものと反応の進行に より生じたものの両者が含まれるが、 いずれにせよ、 生成物は重合体と C o Aである (下記式) 。
Figure imgf000021_0001
R°— S†-0— C ~ R1— 0十 H + R°— SH
。 ノ n+1 (C0A)
(式中、 R。は R。― S Hが C o Aを表わす有機基であり、 R 1は任意のアルキ レン、 nは重合度に相当する整数である。 )
本発明は、 上記 2つの反応、 つまりチォエステル交換反応と高分子重合反 応の 2つの反応を組み合わせて、 これらを 1つの反応系内で共存させて実施 することにより高分子化合物を製造する。 つまり、 重合反応後には反応系内 に遊離されてこれまでは再ぴ利用されることのなかった C o Aを、 反応系内 に投入したチォエステルと反応させて、 再び C o Aのチォエステルを合成せ しめ、 これを重合反応の基質として再び用いるものである (下記式) 。 チォエステノレ ^ CoAチォエステノレ(ァシル CoA) ► PHA
Figure imgf000022_0001
これにより反応系内に投入した C o Aの当量以上の高分子化合物を生成物 として得ることができるようになる。 特にこの C o Aがチォエステル化と遊 離を繰り返すことの反応回転数が多くなればなるほど、 高分子化合物の工業 的なコストを飛躍的に低価格化させることが可能となる。
また、 重合が進むにつれて反応系内の C o A濃度が高まることで酵素反応 への阻害効果をもたらすことがあるが、 本発明では、 その濃度を抑えること で P HAの生産性を高めるのに非常に有効である。 このように本発明は、 高 効率に P H Aを製造する方法である。
本発明の反応条件としては特に制限がなく、 高効率ァシル基転移反応と同 様であるが、例としては酵素反応が促進される条件として、温度としては 0 °C から 6 0 °C、 好ましくは 1 0 °Cから 5 0 °C、 さらに好ましくは 2 0 °Cから 4 0 °Cで行うことが望ましい。 簡便には室温下で反応を行うことも可能である。
11は3から 1 2、 好ましくは 5から 1 0、 さらに好ましくは 7から 9の間 で行うことが望ましい。
なお、 チォエステル交換反応と高分子重合反応が共存する状態とは、 チォ エステル交換反応と高分子重合反応が同一の水溶液、 有機溶媒、 あるいはそ の混合溶液中に存在すること、 あるいは同一反応容器内において一種の溶液、 あるいは複数の溶液が混合状態あるいは分離状態で存在している状況である。 分離状態は、 層状の場合、 油滴状に存在、 あるいは目視的に懸濁した状態な どが含まれる。 いずれにおいても、 チォエステル交換反応と高分子重合反応 に必要な状態が一体化して確保されていればよい。 そしてその出発物質とし ては工業的に効率的に製造可能なチォエステルを用いて、 これを反応系内で
C o Aのチォエステル化して重合反応の基質とし高分子化合物を製造する。 発明を実施するための最良の形態
以下、 実施例により本発明をより詳細に説明するが、 本発明はこれら実施 例によりなんら限定されるものではない。 実施例 1 :ァシルチオフエノール (チォフエニルパルミテート) の合成 よく乾燥させて窒素置換したフラスコに無水ジクロロメタン 6 m Lを添カロ し、 氷上で冷やしながらよく撹拌した。 そこに 2 Mトリメチルアルミニウム 2 m Lをゆつくりと添カ卩した。 さらにチォフエノールをゆつくりと添カ卩した。 室温で 1時間 3 0分撹拌を続けた後、 無水ジクロロメタン 6 m Lに溶解した パルミチン酸ェチルエステルをゆつくりと添加して反応させた。 反応は T L Cでモニターした。 反応終了後、 反応液にジクロロメタン 2 O m Lを加え、 更に気泡発生が無くなるまで 3 %塩酸水溶液を添加した。 この溶液を分液漏 斗に移して、 3 %塩酸水溶液で 3回、 飽和食塩水で 2回洗浄した後、 硫酸マ グネシゥムで乾燥、 ろ過して硫酸マグネシウムを除去した後、 エバポレーシ ヨンで濃縮し、 濃黄色のオイル状溶液を得た。 これをシリカゲルカラムクロ マトグラフィー (溶離液:へキサン Z酢酸ェチル = 2 Z l ) によって分離精 製してチオフェニルパルミテートを得た。 実施例 2 :セリン C—パルミ トイルトランスフェラーゼ (S P T) の調製 Sphingomonas属由来の上記酵素を大腸菌にクローン化した形質転換体から S P T粗酵素抽出液を得た。本形質転換体の作成法、 S P T精製法は Ikushiro, H.らによる 「The Journal of Biological Chemistry 276, 18249-18256 (2001)」 の記 載に従った。
まず、 上記 S PTの全塩基配列から、 N末端配列と C末端配列をコードす るプライマー (配列番号 1及び配列番号 2 ) を作成し、 Snhingomonas paucimobilisの染色体 D N Aを鏡型として、 以下の条件で P C Rにより S P T コード領域に相当する DNA断片を作成した。 このとき、 N末端用プライマ 一にはべクタ一^ ·の接続のため Nc o Iサイトを、 C末端用プライマーには Hind IIIサイトを設けた。
[プライマー]
N末端用: 7"フづマー 5 — accatgaccgaagccgccgctca— 3 (BG歹 (J番 1 ) C末端用プライマー 5, -taagctttcagccgatgacgccg- 3 ' (配列番号 2) [反応液組成]
LA Taqポリメラーゼ (Polymerase) 、
同酵素添付の標準緩衝液、
铸型染色体 < 1 μ g、
プライマー 各 1 μΜ、
dNTP 各 200//Μ、
液量 25 L〜 100 μ L。
[反応条件]
変成温度 94°C、 30秒、
ァニール温度 40 + 0. 25で/サイクル、 30秒、
伸張温度 72°C、 90秒。
作成した PCR断片をァガロースゲル電気泳動した後ゲルより抽出し、 力 ラムにより回収した。 この断片を制限酵素 Nc o I—Hind IIIで処理し、 ブラ スミ ド pET21 dの Nc o I— Hindlll断片とライゲーシヨンし、 宿主大腸 菌 BL 21 (DE 3) 株を形質転換した。 作成した形質転換体をァンピシリン 50 p pmを含む L B培地 5 m Lで、 35°C、 16時間培養した後、 菌体を遠心分離して回収し、 生理食塩水で洗 浄した。 洗浄菌体を S P T用緩衝液 ( 20 mMリン酸緩衝液 ( p H 6.5, 0. 1 mM EDTA, 5 mM DTT, 0.1 mM AEBSF (プロテア一 ゼ阻害剤) , 0·02πιΜ P LPを含む) ) 2 mLに再懸濁し、 氷冷しながら 超音波破砕機で約 10分間破砕した後、未破砕物を遠心分離(12,000 r pmX 10分間) して除去し粗酵素抽出液を得た。 実施例 3 :エステル交換反応と C o A酵素反応の力ップリング (水均一系) C o Aナトリゥム塩 2 m gと L—セリン lmgを 100 mM HEPES— N aOH緩衝液 (Ι ΟμΜ P L Ρを含む、 pH8.0) 5mLに溶解し、 マグ ネチックスターラーでよく撹拌した。 そこにチォフエ-ルパルミテート 3.5 mgをァセトニトリル 0.1 mLで溶解させた溶液を混合した。 撹拌速度を軽 く混ざる程度に落として S PT粗酵素液 0.5mLを添カ卩し、 24時間、 37°C で反応させた。 この溶液を 2 Nアンモニア溶液 1 m Lでアル力リ性とした後、 クロ口ホルム/メタノール (2 : 1 (v/v) ) 5 mLで溶液中の生成物を 抽出、 回収した。 抽出液をフィルターろ過した後適当に濃縮し、 下記の分析 法に従って 3—ケトジヒドロスフインゴシンを定量したところ、 生成量は約 1.0 mgであった。
[スフインゴシン類の分析法]
Tanaka, M.らによる Journal of Chromotography 284, 433-440 (1984)に記載の 方法に従い TLC-FID (Iatroscan) を用いてスフインゴシン類の定量分析を行つ た。 すなわち、 標準試料として 1〜 1 Omgのジヒ ドロスフインゴシン (ス フィンガニン) または 3—ケトジヒ ドロスフインゴシンをメタノール 1 mL に溶解した溶液 1 ;u Lを、 クロマトロッド S II (シリカゲル) に供し、 一次 展開液 (クロ口ホルム一メタノール一 1 5 Nアンモニア溶液 =60 : 10 : 1で展開した。展開後の口ッドを IATROSCAN TH— 1 0 TLC/FID Analyser (IATRON社製) に供することでスフィンゴシン類を検出定量した。
さらに詳細なスフインゴイ ド塩基類の定量分析は、 文献 (Analytical Biochemistry, 298 (2001) 283-292) などを参考にし、生成物を蛍光誘導体化した 後高速液体クロマトグラフィーによって分離分析した。
後述の反応液 75 を取り、 70. 6 mM トリェチルァミン Zエタノール 溶液 425 Lを添カ卩し撹拌した。 5分間遠心して沈殿を除き、 上清を HP LCサンプルバイアル (300 μ L微量インサート) に 1 00 /z Lを取り、 AQC試薬 (Waters社製) 溶液 を添加し、 直ちに撹拌した。 室温で 40分以上反応した後、 下記の HP LC条件で分析した。
本体: LC-VPシリーズ (島津製作所) (ポンプ LC-10ADVP、 力ラムオーブ ン CTO-10ACVP、 オートサンプラー SIL-10AF、 システムコントローラー SCL-10AVP)
検出器:蛍光検出器 821-FP (日本分光) Ex.244nm, Em.398nm、 GainxlOO カラム: SHODEXF-511A, 3 5°C
溶離液:ァセトニトリル Zメタノール Z水/トリメチルァミン =480/ 320/1 90/7、 1. 5 m 1 /m i nD
カラム再生方法:文献法の再生法はカラム圧が高くなりすぎエラーが出や すいため、 下記の通り変更した。
再生液 ァセトニトリル Zメタノール = 60Z40
I
溶離液より再生液へ 1分間のリニアグラディエントで切換え ( 1.5ml/min)
I
1 2分間再生液を通液 (1.5ml/min)
I
再生液より溶離液へ 1分間のリニアグラディエントで切換え (1.5ml/min) I
2分間溶離液を通液 (1.5ml/min) 後、 分析条件に戻す。
分析サイクル:試料分析毎にカラム再生系を入れる。 再生時はサンプル注 入しない。 比較例 1 :カップリング系を用いない C o A酵素反応
パルミ トイル C o A 1 Omgと L—セリン l mgを 1 00 mM HEPES— N a OH緩衝液 (1 0 μΜ P L Ρを含む、 pH8.0) 5mLに溶解し、 マ グネチックスターラーでよく撹拌した。 撹拌速度を軽く混ざる程度に落とし て S P T粗酵素液 0.5 m Lを添加し、 24時間、 3 7 °Cで反応させた。 この 溶液を 2 Nアンモニア溶液 lmLでアル力リ性とした後、 クロ口ホルム メ タノール (2 : 1 (v/v) ) 5 mLで溶液中の生成物を抽出、 回収した。 抽出液をフィルターろ過した後適当に濃縮し、 実施例 3と同様に分析した結 果、 3—ケトジヒドロスフインゴシンの生成量は約 0.02m gであった。 実施例 4 :エステル交換反応と C o A酵素反応の力ップリング (油水二層系) C o Aナトリゥム塩 2 m gと Lーセリン lmgを 1 00 mM HEPES— N a OH緩衝液 (Ι Ο μΜ P LPを含む、 pH8.0) 5mLに溶解し、 マグ ネチックスターラーでよく撹拌した。 そこにチォフエニルパルミテート 3.5 mgをへキサン 5mLで溶解させた溶液を混合した。 撹拌速度を軽く混ざる 程度に落として S P T粗酵素液 0.5 m Lを添加し、 24時間、 3 7 °Cで反応 させた。 この溶液を 2Nアンモニア溶液 lmLで酸性化した後、 クロ口ホル ム /メタノール (2 : 1 (v/v) ) 5 mLで溶液中の生成物を抽出、 回収 した。 抽出液をフィルターろ過した後適当に濃縮し、 実施例 3と同様にして 3—ケトジヒ ドロスフインゴシンを定量分析したところ、 生成量は約 2.2m gであった。 以下、 本発明による高分子化方法の例を挙げる。
参考例 1 (1) : 3—ォキソプチレートェチルエステルの合成
氷上で、 乾燥したフラスコ中で 3.9gのメルドラム酸を 18mlの脱水ジク ロロメタンに溶かして撹拌したところへ、 18m lの脱水ジクロロメタンに 溶解した 4.3 gのピリジンと 2.2 gのァセチノレクロライドの溶液を窒素気流下 でゆっく りと添加した。 撹拌は 0でで 1時間の後、 室温で 2時間行つた。 混 合液を分液漏斗に移し、 3%塩酸溶液で 2回、 飽和食塩水で 2回洗浄し、 硫 酸マグネシウムで乾燥後、 減圧下でエバポレーシヨンして、 ゆっく りと固化 する濃オレンジ色でオイル状の 3.6 gの粗ァシルイヒメルドラム酸を得た。 この 粗ァシル化メルドラム酸を 8 Omlの脱水エタノール中で還流した。 この時 二酸化炭素の発生が観察された。 溶媒をエバポレーシヨンで取り除き、 赤色 オイル状の 1.3 gの粗 3—ォキソブチレ一トェチルェステルを得た。 これをシ リカゲル 60のカラムクロマトグラフィー (20 cmX 1 c m、 溶離液は へキサン:酢酸ェチル =2 : 1) で精製し、 少し黄色でオイル状の 0.60 gの 精製 3—ォキソプチレートェチルエステルを得た。 収率は未精製品に対して 46%であった。 この化合物の NMR分析結果を以下に示す。
'Η NMR (in CDC13) δ 4.20(q, J=7.1Hz, 2H), 3.47(s, 2H), 2.27(s, 3H), 1.28(t, J=7.1Hz, 3H);
13 C NMR (in CDC13 ) δ 201.06, 167.44, 61.52, 50.29, 30.32, 14.29
. (2) : 3—ヒ ドロキシプチレートェチルエステルの合成
乾燥したフラスコ中で 75.6m gの水素化ホウ素ナトリウムを 2m 1の脱水 エタノールに溶かした溶液を撹拌し、 そこへ 52 Omgの 3—ォキソプチレ ,一トェチルエステルを 2m 1の脱水エタノールに溶解した溶液をゆつく りと 添加した。 撹拌は室温で 2時間行い、 その後 4m 1の水を添加した。 混合溶 液を分液漏斗へ移し、 ジクロロメタンで 2回抽出した後、 硫酸マグネシウム で乾燥し、 減圧下でエバポレーシヨンして、 薄い黄色のオイル状の 282m gの 3—ヒ ドロキシプチレートを得た。 この化合物の NMR分析結果を以下 に示す。
NMR (in CDC13 ) δ 4.17(q, J=7.1Hz, 2H), 4.17(m, 1H), 2.46(m, 2H), 1.28(t, J=7.1Hz, 3H), 1.23(d, J=6.3Hz, 3H);
13 C NMR (in CDC13 ) δ 172.93, 64.28, 60.68, 42.91, 22.49, 14.18 参考例 1 (3) : 3—ヒドロキシブチレートチオフェニルエステルの合成 氷上で乾燥したフラスコ中で 6 m 1の脱水ジクロロメタンを撹拌し、 そこ へ 2m lの 2Mトリメチルアルミニウムを窒素気流下でゆつく りと添加した。 そこへ続けて 2 mm o 1のチォフエノールをゆつく りと添カ卩した。 室温で 3 0分間撹拌し、 続けて 6 m 1の脱水ジクロロメタンに溶解した 3—ヒ ドロキ シブチレートを添加した。 反応は TLCでモニターレた。 この混合液に 20 m 1のジクロロメタンを加え、 気泡発生が止むまで 20 m 1の 3 %塩酸溶液 を添加した。 混合液を分液漏斗へ移し、 3%塩酸溶液で 2回、 飽和食塩水で 2回洗浄し、 硫酸マグネシウムで乾燥した後、 減圧下でエバポレーシヨンし て濃黄色のオイル状の 532mgの粗 3—ヒ ドロキシブチレ一トチォフエ二 ルエステルを得た。 これをシリカゲル 60のカラムクロマトグラフィー (2 0 οπιΧΦ 1 cm, 溶離液はへキサン:酢酸ェチル =2 : 1) で精製し、 透 明なオイノレ状の 125mgの 3—ヒドロキシブチレ一トチォフエ二ノレエステ ルを得た。 収率は未精製品に対して 24%であった。 その化合物の NMR分 析結果を以下に示す。
1 H NMR (in CDC13 ) δ 7.38(s, 5H), 4.33(m, 1H), 2.83(m, 2H), 1.25(d, 3H);
13C NMR (in CDC13 ) δ 198.24, 134.90, 130.07, 129.69, 127.61, 65.23, 52.02,
22.85 参考例 1 (4) : 3—ヒドロキシプチレート C o Aチォエステルの合成 小さなガラス瓶に 39.5m gのコェンザィム Aナトリゥム塩を 0.5m 1の 10 OmMリン酸カルシウム緩衝液 (pH8.0) に撹拌して溶かした溶液に、 9.8m gの 3—ヒドロキシブチレ一トチオフェニルエステルを O.lin 1のァセトニト リルに溶かした溶液を添加した。 撹拌は室温で 3時間続け、 次に 0.13m lの 1Mリン酸を添カ卩した。 混合液を 0.5m 1のジェチルエーテルで 3回洗浄し、 減圧下でエバポレーシヨンして 3 OmMの 3—ヒ ドロキシプチレート C o A チォエステル溶液を得た。
参考例 2 (1) : (R) 一 3—ヒドロキシブチレ一トチオフヱニルエステル の合成
2.53 gの tーブチノレジメチノレシリノレク口ライ ドを無水ジメチノレホノレムァミ ドに溶かして撹拌したところへ、 3.4 gのイミダゾールを添加し、 氷上、 窒素 気流下で 15分撹拌した。 更に無水ジメチルホルムァミ ドに溶解した 0.5 gの
(R) — 3—ヒドロキシプチレートを添加して室温でー晚撹拌した。 反応液 に 6 Om 1の飽和食塩水を加え、 ジェチルエーテル:石油エーテル = 1 : 3 溶液での抽出を 5回繰り返した。 抽出液を硫酸マグネシウムで乾燥後、 減圧 下でエバポレーシヨンした。 これをメタノール:テトラヒ ドロフラン =2 : 1溶液に溶解し、 1.5 gの炭酸力リゥムを含む 10mlの水溶液を加え、 室温 で一晚撹拌した。 反応液は飽和食塩水で希釈し、 更に 1 M硫酸で p Hを 3.0に 調整し、 ジェチルエーテル:石油エーテル: = 1 : 3溶液での抽出を 5回繰り 返した。抽出液を硫酸マグネシウムで乾燥後、減圧下でエバポレーション後、 真空乾燥して 3— ( t—プチルジメチルシリル) ブチレートを得た。氷上で、 870mgの 3— ( t—プチルジメチルシリル) ブチレートと 452mgの チォフエノールを 6m 1のジクロロメタンに溶解し、 これに 2m 1のジクロ ロメタンに溶解した 846m gのジシクロへキシルカルポジィミ ドを添加し 撹拌後、 室温で 10時間撹拌した。 20mlのジェチルエーテルを加えてろ 過後、 溶媒をエバポレーシヨンで取り除き、 フラッシュクロマトグラフィー (溶離液は 5 %酢酸ェチルを含むへキサン) で 330mgの 3— ( t—ブチ ルジメチルシリル) プチレートチオフェニルエステルを得た。 これを 2m l ァセトニトリルに溶解し、 更に 6 m 1の 5%フッ化水素を含むァセトニトリ ル溶液を加えた。 20分の反応後、 気泡が発生しなくなるまで飽和炭酸水素 ナトリウム溶液を添加し、 ジェチルエーテルで抽出後、 飽和食塩水で洗浄、 硫酸マグネシウムで乾燥後、 減圧下でエバポレーシヨンして 8 lmgの (R) 一 3—ヒドロキシプチレートチオフェニルエステルを得た。 参考例 2 (2) : (R) — 3—ヒ ドロキシブチレート C o Aチォエステルの 合成
3—ヒ ドロキシブチレート C o Aチォエステルの合成と同様にして、 3— ヒ ドロキシプチレート C o Aチォエステル溶液を得た。 参考例 3 (1) : 3—ォキソバレレートェチルエステルの合成
氷上で、 乾燥したフラスコ中で 3.9 gのメルドラム酸を 18 mlの脱水ジク ロロメタンに溶かして撹拌したところへ、 18mlの脱水ジクロロメタンに 溶^^した 4.3 gのピリジンと 2.5 gのプロピオニルクロライドの溶液を窒素気 流下でゆつくりと添加した。撹拌は 0°Cで 1時間の後、室温で 2時間行った。 混合液を分液漏斗に移し、 3%塩酸溶液で 2回、 飽和食塩水で 2回洗浄し、 硫酸マグネシウムで乾燥後、 減圧下でェパポレーシヨンして、 ゆっく りと固 化する濃オレンジ色でオイル状の 3.4 gの粗ァシルイヒメルドラム酸を得た。 こ の粗ァシルイヒメルドラム酸を 8 Om lの脱水エタノール中で還流した。 この 時二酸化炭素の発生が観察された。 溶媒をエバポレーシヨンで取り除き、 赤 色オイル状の 1.7 gの粗 3—ォキソバレレートェチルエステルを得た。 これを シリカゲル 60のカラムクロマトグラフィー (20 cmX 1 cm、 溶離液 はへキサン:酢酸ェチル =2 : 1) で精製し、 少し黄色でオイル状の 0.50 g の精製 3—ォキソバレレートェチルエステルを得た。 収率は未精製品に対し て 29%であった。 この化合物の NMR分析結果を以下に示す。
JH NMR (in CDC13) δ 4.19(q, J=7.1Hz, 2H), 3.40(s, 2H), 2.58(q, J=7.2Hz, 2H), 1.28(t, J=7.2Hz, 3H), 1.08(t, J=7.2Hz, 3H);
13 C NMR (in CDC13 ) δ 203.48, 180.07, 61.33, 49.03, 36.32, 14.13, 7.56 参考例 3 (2) : 3—ヒ ドロキシパレレートェチルエステルの合成
乾燥したフラスコ中で 75.6m gの水素化ホウ素ナトリウムを lm 1の脱水 エタノールに溶かした溶液を撹拌し、 そこへ 288mgの 3—ォキソバレレ ートェチルエステルを 1 m 1の脱水エタノールに溶解した溶液をゆつく りと 添加した。 撹拌は室温で 2時間行い、 その後 2m 1の水を添加した。 混合溶 液を分液漏斗へ移し、 ジクロロメタンで 2回抽出した後、 硫酸マグネシウム で乾燥し、 減圧下でエバポレーシヨンして、 薄い黄色のオイル状の 21 2m gの 3—ヒドロキシバレレートを得た。 この化合物の NMR分析結果を以下 に示す。
^NMR (in CDCI3) δ 4.17(q, J=7.1Hz, 2H), 3.94(m, 1H), 2.45(m, 2H), 1.57(m, 2H), 1.27(t, J=7.1Hz, 3H), 0.96(t, J=7.3Hz, 3H);
13 C NMR (in CDC13 ) δ 173.30, 69.64, 60.91, 41.46, 29.77, 14.40, 10.07 参考例 3 (3) : 3—ヒ ドロキシバレレートチォフエニルエステルの合成 氷上で乾燥したフラスコ中で 3 m 1の脱水ジクロロメタンを撹拌し、 そこ へ lm lの 2Mトリメチルアルミニウムを窒素気流下でゆつく りと添加した。 そこへ続けて lmm o 1のチォフエノールをゆっく りと添加した。 室温で 3 0分間撹拌し、 続けて 3mlの脱水ジクロロメタンに溶解した 3—ヒドロキ シパレレートを添カ卩した。 反応は TLCでモニターした。 この混合液に 10 m 1のジクロ口メタンを加え、 気泡発生が止むまで 10 m 1の 3 %塩酸溶液 を添加した。 混合液を分液漏斗へ移し、 3%塩酸溶液で 2回、 飽和食塩水で 2回洗浄し、 硫酸マグネシウムで乾燥した後、 減圧下でエバポレーシヨンし て濃黄色のオイル状の 258m gの粗 3—ヒドロキシバレレートチォフエ二 ルエステルを得た。 これをシリカゲル 60のカラムクロマトグラフィー (2 0 οπιΧΦ 1 cm, 溶離液はへキサン:酢酸ェチル =2 : 1) で精製し、 透 明なオイノレ状の 44mgの 3—ヒ ドロキシバレレートチォフエ二ノレエステノレ を得た。 収率は未精製品に対して 1 7%であった。 その化合物の NMR分析 結果を以下に示す。
1 H NMR (in CDC13 ) δ 7.39(s, 5H), 4.04(m, 1H), 2.82(m, 2H), 1.60(m, 2H), 0.98(t, J=7.1Hz, 3H);
13C NMR (in CDC13) δ 198.30, 134.67, 129.83, 129.46, 127.31, 70.04, 50.03, 29.67, 9.96 参考例 3 (4) ·· 3—ヒドロキシバレレート C o Aチォエステルの合成 小さなガラス瓶に 79mgのコェンザィム Aナトリゥム塩を 2m 1の 10 OmMリン酸カリウム緩衝液 (pH8.0) に撹拌して溶かした溶液に、 42m gの 3—ヒドロキシバレレートチォフエ二ノレエステルを 1 m 1のァセトニト リルに溶かした溶液を添加した。 撹拌は室温で 3時間続け、 次に 0.53m lの 11\ リン酸を添加した。 混合液を 2 m 1のジェチルエーテルで 3回洗浄し、 減圧下でエバポレーシヨンして 33mMの 3—ヒドロキシブチレート Co A チォエステル溶液を得た。
参考例 4 :酵素の作製と精製 ラルストニア .ユートロファ (Ralstonia eutropha) ATCC 17699のゲノム DN Aから制限酵素 E c oR Iと Sma I断片 (約 5 k b p ) を切り出し、 pU C 18にクローユングして P HA合成酵素遺伝子 (PHAS) を含むプラス ミド pT I 305を取得した。 次に ρΤ 1 305の No t l · S t u I断片 (1.6k b p) と、 pT I 305をテンプレートとして下記 2種のプライマー で P CRにより増幅した DNAの B amH I · No t I断片 (140 b p) と、 ベクター p QE 30 (キアゲン社製) の B a mH Iと Sma I断片の 3 種類を混合してライゲーシヨンし、 プラスミ ド pQERECを調整した。 こ れを大腸菌 BL 21 (pREP4) に導入して、 酵素調製用の大腸菌 B L 2 1 (pQEREC) を作製した。 この大腸菌を 1000m 1の LB培地中、 30°C で 16時間培養し、 菌体内に酵素を蓄積させ、 超音波処理によって菌体を破 壊した後、 菌体内の可溶性タンパク質を回収した。 このタンパク質を N i— NTAァガロースゲルカラムに通し、 (H i s) -P h a C (N末端にヒス チジンが 6個付加されている) を特異的にカラムに吸着させた。 洗浄後、 ィ ミダゾールを用いて (H i s) — Ph a Cを溶出し、 透析後に精製酵素とし て 1 Omgを得た。 酵素の分子量は SDS— PAGEで 65 kD aであった。 PCRの条件
センスプフイマ一: aaggatccatggcgaccggcaaaggcgcgg (酉己歹 (J畨"^ 3) 、 アンチセンスプライマー: tgcagcggaccggtggcctcggcctgccc (配歹 lj番号 4) 、 サイクル: ( 94 °C 45秒、 58 °C 30秒、 72 °C 60秒) X 30サイク ル。 実施例 5 :ポリ ( (R) — 3—ヒ ドロキシブチレート) の重合
5 m 1の 10 OmMリン酸カリゥム溶液に 0.015m gの酵素を添カ卩して室温 でよく撹拌した。 撹拌速度を軽く混ざる程度に落として溶液温度を 30°Cに 保ち、 ここに 5m 1の lmMC 0 Aナトリウム溶液と、 0.5mlの 2 OmM 3 ーヒ ドロキシプチレートチオフェニルエステル溶液 (l O OmMリン酸カリ ゥム溶液とァセトニトリルの 1 : 1溶液に溶解) を少しずつ添カ卩し、 さらに 30°Cで 24時間反応させた。 次にこの溶液を 2 Omlのへキサンで 3回洗 浄し、 更に 1 Om 1のクロ口ホルムで溶液中の生成物を抽出、 回収した。 こ れを 3回繰り返した。 抽出液はフィルターろ過した後、 300mlのメタノ ール中に滴下して 24時間放置した。 生成した沈殿物をフィルターろ過して 回収し、 真空乾燥機で乾燥し、 0.4mgのポリ ( (R) — 3—ヒドロキシプチ レート) を得た。 分子量 (ポリスチレン換算の GPC) は Mw=970000であ つた。 その化合物の NMR分析結果を以下に示す。
1 H NMR (in CDC13 ) δ 5.26(m, H), 2.53(m, 2H), 1.25(s, 3H);
13 C NMR (in CDCI3 ) δ 169.53, 67.99, 41.16, 20.15 比較例 2 :ポリ ( (R) — 3—ヒドロキシプチレート) の重合
5m 1の 10 OmMリン酸カリゥム溶液に 0.015m gの酵素を添カ卩して室温 でよく撹拌した。 撹拌速度を軽く混ざる程度に落として溶液温度を 30°Cに 保ち、 ここに 5mlの lmMCo Aナトリウム溶液を少しずつ添加し、 さら に 30°Cで 24時間反応させた。 次にこの溶液を 2 Om lのへキサンで 3回 洗浄し、 更に 1 Om 1のクロ口ホルムで溶液中の生成物を抽出、 回収した。 これを 3回繰り返した。 抽出液はフィルターろ過した後、 300m lのメタ ノール中に滴下して 24時間放置した。 しかし沈殿物は得られなかった。 実施例 6 : ( (R) 一 3—ヒドロキシプチレート) の重合
5m lの 100 mMリン酸カリゥム溶液に 0.015m gの酵素を添加して室温 でよく撹拌した。 撹拌速度を軽く混ざる程度に落として溶液温度を 30°Cに 保ち、 ここに 5m 1の lmM3—ヒドロキシブチレート C o A溶液と、 0.5m 1の 20mM3—ヒドロキシブチレ一トチオフェニルエステル溶液 (100 mMリン酸カリゥム溶液とァセトニトリルの 1 : 1溶液に溶解) を少しずつ 添加し、 さらに 30°Cで 24時間反応させた。 次にこの溶液を 2 Om 1のへ キサンで 3回洗浄し、 更に 1 Om 1のクロ口ホルムで溶液中の生成物を抽出、 回収した。 これを 3回繰り返した。 抽出液はフィルターろ過した後、 300 m 1のメタノール中に滴下して 24時間放置した。 生成した沈殿物をフィル ターろ過して回収し、 真空乾燥機で乾燥し、 0.3m gのポリ ( (R) — 3—ヒ ドロキシプチレート) を得た。
比較例 3 :ポリ ( (R) — 3—ヒドロキシブチレート) の重合
5m 1の 10 OmMリン酸カリゥム溶液に 0.015m gの酵素を添カ卩して室温 でよく撹拌した。 撹拌速度を軽く混ざる程度に落として溶液温度を 30°Cに 保ち、 5 m 1の lmM3—ヒドロキシプチレート C o Aを少しずつ添加し、 さらに 30°Cで 24時間反応させた。 次にこの溶液を 2 Omlのへキサンで 3回洗浄し、 更に 1 Om 1のクロ口ホルムで溶液中の生成物を抽出、 回収し た。 これを 3回繰り返した。 抽出液はフィルターろ過した後、 300mlの メタノール中に滴下して 24時間放置した。 生成した沈殿物をフィルターろ 過して回収し、 真空乾燥機で乾燥し、 0.2mgのポリ ( (R) — 3—ヒドロキ シブチレート) を得た。 比較例 4 :
5mlの 10 OmMリン酸カリゥム溶液に 0.015m gの酵素を添加して室温 でよく撹拌した。 撹拌速度を軽く混ざる程度に落として溶液温度を 30°Cに 保ち、 ここに 0.5m 1の 20mM3—ヒ ドロキシブチレ一トチォフエ二ノレエス テル溶液 ( 100 mMリン酸カリゥム溶液とァセトニトリルの 1 : 1溶液に 溶解) を少しずつ添加し、 さらに 30 °Cで 24時間反応させた。 次にこの溶 液を 2 Omlのへキサンで 3回洗浄し、 更に 1 Om 1のクロ口ホルムで溶液 中の生成物を抽出、 回収した。 これを 3回繰り返した。 抽出液はフィルター ろ過した後、 30 Om 1のメタノール中に滴下して 24時間放置した。 しか し沈殿物は得られなかつた。 実施例 7 :ポリ (3—ヒドロキシバレレート) の重合
5 m 1の 10 OmMリン酸カリゥム溶液に 0.015m gの酵素を添カ卩して室温 でよく撹拌した。 撹拌速度を軽く混ざる程度に落として、 ここに 5m lの 1 mM (R, S) 一 3—ヒ ドロキシバレレート C o Aと、 0.5m 1の 2 OmM3 —ヒ ドロキシバレレートチォフエ二ノレエステノレ溶液 (10 OmMリン酸カリ ゥム溶液とァセトニトリルの 1 : 1溶液に溶解) を少しずつ添加し、 さらに 室温で 24時間反応させた。 次にこの溶液を 20mlのへキサンで 3回洗浄 し、 更に 1 Om 1のクロ口ホルムで溶液中の生成物を抽出、 回収した。 これ を 3回繰り返した。 抽出液はフィルターろ過した後、 300m lのメタノー ル中に滴下して 24時間放置した。 生成した沈殿物をフィルターろ過して回 収し、 真空乾燥機で乾燥し、 0.3mgのポリ ( (R) 一 3—ヒ ドロキシバレレ ート) を得た。 その化合物の NMR分析結果を以下に示す。
1 H NMR (in CDC13 ) δ 5.12(m, H), 2.56(m, 2H), 1.53(m, 2H), 0.81(t, 3H);
13 C NMR (in CDC13 ) δ 169.71, 72.26, 39.17, 27.23, 9.76 比較例 5 :ポリ (3—ヒドロキシバレレート) の重合
5mlの 10 OmMリン酸カリゥム溶液に 0.015m gの酵素を添カ卩して室温 でよく撹拌した。撹拌速度を軽く混ざる程度に落として 5m 1の ImM (R, S) 一 3—ヒ ドロキシバレレート Co Aを少しずつ添カ卩し、 さらに室温で 2 4時間反応させた。 次にこの溶液を 2 Om 1のへキサンで 3回洗浄し、 更に 1 Om 1のクロ口ホルムで溶液中の生成物を抽出、 回収した。 これを 3回繰 り返した。 抽出液はフィルターろ過した後、 30 Om 1のメタノール中に滴 下して 24時間放置した。 生成した沈殿物をフィルターろ過して回収し、 真 空乾燥機で乾燥し、 O.lmgのポリ ( (R) — 3—ヒドロキシバレレート) を 得た。 実施例 8 : (R) -3 ーヒ ドロキシブチレートチォフエ-ルエステルから ポリ ( (R) — 3—ヒ ドロキシプチレート) の重合
5m 1の 10 OmMリン酸ナトリウム溶液 (pH7.5) 、 ImMCoAナト リゥム塩溶液に 0.015m gの酵素を添加して溶液温度を 30。Cに保ち撹拌した。 その上に 1 OmM (R) — 3—ヒドロキシプチレートチォフエ-ノレエステノレ を 5m 1のへキサン溶液を重層した。 撹拌速度を軽く混ざる程度に落として、 30°Cで 24時間反応させた。 反応後にへキサン層を除去し、 次に水層中か ら 5m 1のクロ口ホルムで溶液中の生成物を抽出した。 これを 2回繰り返し た。 抽出溶液をフィルターろ過した後、 20 Om 1のメタノール中に滴下し て 4 °Cで 24時間放置した。 生成した沈殿物をフィルターろ過して回収し、 真空乾燥機で乾燥し、 1.5mgのポリ ( (R) —3—ヒドロキシプチレート) を得た。 分子量 (ポリスチレン換算の G PC) は Mw = 1070000であった。 ま た、 添加した C o Aのチォエステル化と遊離の反応回転数は 3.4回である。 比較例 6 : (R) — 3—ヒドロキシブチレート C o Aチォエステルからポリ ( (R) 一 3—ヒドロキシプチレート) の重合
5m 1の 10 OmMリン酸ナトリウム溶液 (pH7.5) 、 1 mM (R) — 3 ーヒドロキシプチレート C o Aチォエステル溶液に 0.015m gの酵素を添カロし て溶液温度を 30°Cに保ち撹拌した。 撹拌速度を軽く混ざる程度に落として、 30°Cで 24時間反応させた。 反応後にへキサン層を除去し、 次に水層中か ら 5 m 1のクロ口ホルムで溶液中の生成物を抽出した。 これを 2回繰り返し た。 抽出溶液をフィルターろ過した後、 20 Om 1のメタノール中に滴下し て 4 °Cで 2 4時間放置した。 生成した沈殿物をフィルターろ過して回収し、 真空乾燥機で乾燥し、 0.4m gのポリ ( (R) — 3—ヒ ドロキシプチレート) を得た。 比較例 7 : (R) — 3—ヒドロキシプチレートチオフェニルエステルからポ リ ( (R) — 3—ヒドロキシブチレート) の重合
5 m lの 1 0 O mMリン酸ナトリウム溶液(p H7.5) に 0.015m gの酵素を 添カ卩して溶液温度を 3 0 °Cに保ち撹拌した。 その上に 1 O mM (R) 一 3— ヒドロキシプチレートチォフエニルエステルを 5 m 1のへキサン溶液を重層 した。撹拌速度を軽く混ざる程度に落として、 3 0 °Cで 2 4時間反応させた。 反応後にへキサン層を除去し、 次に水層中から 5 m 1のクロ口ホルムで溶液 中の生成物を抽出した。 これを 2回繰り返した。 抽出溶液をフィルターろ過 した後、 2 0 O m 1のメタノール中に滴下して 4 °Cで 2 4時間放置した。 沈 殿物は観察されなかった。 ' 産業上の利用可能性
ァシル基転移酵素を用レ、る本発明の方法によれば、 極めて高価なァシルコ ェンザィム A (ァシル C o A)を追加添加することなく反応を継続的に行い、 その生産性を飛躍的に改善することができる。 従って、 ァシル基転移酵素の 工業的製法への利用を可能とした新規なカップリング法により、 種々の化合 物を製造することができる。 本発明によれば、 スフインゴイド塩基類の製造 方法において、 酵素反応にチォエステル交換反応を組み合わせて、 従来の発 酵法による方法では困難であったスフインゴィ ド塩基類を細胞毒性の問題無 く蓄積生産せしめ、 さらに反応に必須である捕酵素ァシル C o Aについても その再生反応を同一反応液系内で行うことが可能となり、 補酵素の消費量が 劇的に減少し、 経済的にスフインゴイド塩基類を製造することができる。 こ の発明により、 様々なスフインゴィド塩基類を安価かつ純粋に製造できるよ うになり、 その用途が飛躍的に広がる。
また、 P H Aの製造方法において、 インビトロ (in vitro) 重合方法にチォェ ステル交換反応を組み合わせることにより、 反応出発物質を容易に合成可能 なチオフヱニルエステルに代替し、 さらに重合反応で必須である捕酵素ァシ ル C o Aについてもその再生反応を同一反応液系内で行うことが可能となり、 捕酵素の消費量を劇的に減少でき、 様々な P HAを安価に効率よく工業的に 製造でき、 その用途が飛躍的に広がる。

Claims

請 求 の 範 囲
1 . ァシルコェンザィム A (ァシル C o A) のァシル基を転移するァシル 基転移酵素反応において、 チオール化合物のァシルェステルであるァシル基 供与体との化学的チォエステル交換反応によって、 コェンザィム Aよりァシ ルコェンザィム Aを反応系内で生成およぴ または再生させて反応させるこ とを特徴とするァシル基転移酵素反応方法。
2 . 反応系内にァシル基供与体、 ァシル基受容体、 コェンザィム A、 及ぴ ァシル基転移酵素を同時に含み、 ァシル基供与体のァシル基を化学的チォェ ステル交換反応によってコェンザィム Aに転移させてァシルコェンザィム A とし、 ァシルコェンザィム Aのァシル基をァシル基受容体に転移させる請求 項 1に記載のァシル基転移酵素反応方法。
3 . ァシル基供与体のァシル基でァシルコェンザィム Aを生成および Zま たは再生しながら行う請求項 2に記載のァシル基転移酵素反応方法。
4 . チオール化合物が芳香族チオールである請求項 2に記載のァシル基転 移酵素反応方法。
5 . 芳香族チオールが置換基を有していてもよいチオフェノールである請 求項 4に記載のァシル基転移酵素反応方法。
6 . ァシル基受容体がアミノ酸および Zまたはその誘導体である請求項 2 に記載のァシル基転移酵素反応方法。
7 . ァシル基受容体がセリンおよび/ /またはその誘導体である請求項 2に 記載のァシル基転移酵素反応方法。
8 . ァシル基転移酵素がセリン C—パルミ トイルトランスフェラーゼで ある請求項 1または 2に記載のァシル基転移酵素反応方法。
9 . セリン C—パルミ トイルトランスフェラーゼがスフインゴモナス ( Sphingomonas) 属細菌由来のものである請求項 8に記載のァシル基転移酵素 反応方法。
1 0 . ァシル基転移酵素がスフインゴシン N—ァシルトランスフェラー ゼである請求項 1または 2に記載のァシル基転移酵素反応方法。
1 1 . 反応系内にァシル基供与体、 ァシル基受容体、 コェンザィム A、 及 びァシル基転移酵素を同時に含み、 ァシル基供与体のァシル基を化学的チォ エステル交換反応によってコェンザィム Aに転移させてァシルコェンザィム Aとし、 ァシルコェンザィム Aのァシル基をァシル基受容体に転移させる反 応において、 ァシル基転移酵素が高分子重合酵素であり、 高分子化合物を合 成する請求項 2に記載のァシル基転移酵素反応方法。
1 2 . ァシルコェンザィム Aまたはァシル基転移酵素反応による生成物を ァシル基受容体としてァシル基転移酵素反応を繰り返すことにより高分子化 合物を生成する請求項 1 1に記載のァシル基転移酵素反応方法。
1 3 . ァシルチオエステルが芳香族チオールのァシルエステルである請求 項 1 1に記載のァシル基転移酵素反応方法。
14. 芳香族チオールのァシルエステルがヒドロキシアルカノエートチォ フエニルエステルである請求項 13に記載のァシル基転移酵素反応方法。
15. ヒ ドロキシアルカノエートチォフエエルエステルが 3—ヒ ドロキシ アルカノエートチオフェニルエステルである請求項 14に記載のァシル基転 移酵素反応方法。
16. 3—ヒドロキシアルカノエートチオフェニルエステルが 3—ヒ ドロ キシブチレ一トチオフェニルエステルである請求項 1 5に記載のァシル基転 移酵素反応方法。
1 7. 高分子重合酵素がポリヒドロキシアルカノエートシンターゼである 請求項 1 1に記載のァシル基転移酵素反応方法。
18. ポリヒドロキシアルカノエートシンターゼがラルストニア(Ralstonia) 属由来である請求項 17に記載のァシル基転移酵素反応方法。
19. ラルストニア (Ralstonia)属がラルストニア 'ユートロファ (Ralstonia eutropha) である請求項 18に記載のァシル基転移酵素反応方法。
20. ラルストニア 'ユートロファ (Ralstonia eutropha) がラルストニア ' ユートロファ (Ralstonia eutropha) ATCC 17699である請求項 19に記載のァシ ル基転移酵素反応方法。
21. 請求項 7乃至 9のいずれかに記載のァシル基転移酵素反応を用いる スフインゴィ ド塩基類の製造方法。
2 2 . スフインゴィド塩基類が 3—ケトジヒドロスフインゴシンである請 求項 2 1に記載の製造方法。
2 3 . 請求項 1 0に記載のァシル基転移酵素反応を用いるセラミド類の製 造方法。
2 4 . 請求項 1 1乃至 2 0のいずれかに記載のァシル基転移酵素反応を用 いる高分子化合物の製造方法であって、 高分子化合物がポリエステル類であ るポリエステル類の製造方法。
2 5 . ポリエステル類がポリヒドロキシアルカノエートである請求項 2 4 に記載のポリエステル類の製造方法。
2 6 . ポリヒ ドロキシアルカノエートがポリ (3—ヒ ドロキシアル力ノエ 一ト) である請求項 2 5に記載のポリエステル類の製造方法。
2 7 . ポリ (3—ヒ ドロキシアルカノエート) がポリ (3—ヒ ドロキシプ チレート) である請求項 2 6に記載のポリエステル類の製造方法。
PCT/JP2004/000500 2003-01-22 2004-01-21 アシルコエンザイムaを用いるアシル基転移酵素反応方法 WO2004065609A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04703935.9A EP1591531B1 (en) 2003-01-22 2004-01-21 Process for acyl-transfer enzyme reactions with acyl- coenzyme a
US10/542,733 US7476521B2 (en) 2003-01-22 2004-01-21 Method for acyltransferase reaction using acyl coenzyme A
JP2005508108A JP4353484B2 (ja) 2003-01-22 2004-01-21 アシルコエンザイムaを用いるアシル基転移酵素反応方法
US12/277,622 US7943351B2 (en) 2003-01-22 2008-11-25 Method for acyltransferase reaction using acyl coenzyme A

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-13762 2003-01-22
JP2003013762 2003-01-22
JP2003094881 2003-03-31
JP2003-94881 2003-03-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10542733 A-371-Of-International 2004-01-21
US12/277,622 Division US7943351B2 (en) 2003-01-22 2008-11-25 Method for acyltransferase reaction using acyl coenzyme A

Publications (1)

Publication Number Publication Date
WO2004065609A1 true WO2004065609A1 (ja) 2004-08-05

Family

ID=32775174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000500 WO2004065609A1 (ja) 2003-01-22 2004-01-21 アシルコエンザイムaを用いるアシル基転移酵素反応方法

Country Status (4)

Country Link
US (2) US7476521B2 (ja)
EP (1) EP1591531B1 (ja)
JP (1) JP4353484B2 (ja)
WO (1) WO2004065609A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2060594A2 (en) 2007-11-14 2009-05-20 National University Corporation Hokkaido University Method for producing polymer
JP2009138174A (ja) * 2007-11-14 2009-06-25 Agri Bioindustry:Kk 高分子化合物の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008537878A (ja) * 2005-03-18 2008-10-02 マイクロビア, インコーポレイテッド 含油性酵母および真菌におけるカロテノイドの産生
FR2963362B1 (fr) 2010-07-30 2012-08-17 Pcas Biosolution Procede d'acylation enzymatique avec un donneur acyl-phosphonate
CN109896955A (zh) 2019-03-26 2019-06-18 沈阳金久奇科技有限公司 一种β-羟基羧酸酯的制备方法
DE202019105611U1 (de) 2019-10-11 2019-10-30 Shenyang Gold Jyouki Technology Co., Ltd. beta-Hydroxycarbonsäureester, hergestellt durch eine Carbonylierungsveresterungsreaktion in einer Kohlenmonoxidatmosphäre mittels eines Co-Katalysators

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150393A (en) 1980-11-18 1982-09-17 Ici Ltd Beta-hydroxy butyrate polymer and production thereof
EP0114086A2 (en) 1983-01-18 1984-07-25 Imperial Chemical Industries Plc Production of beta-hydroxybutyrate polymers
EP0274151A2 (en) 1986-12-02 1988-07-13 Rijksuniversiteit te Groningen A process for producing polyesters by fermentation; a process for producing optically active carboxylic acids and esters; articles of manufacture comprising polyester
JPS63269989A (ja) 1987-04-28 1988-11-08 Yoshiharu Doi 共重合体の製造法
JPS6448821A (en) 1987-08-18 1989-02-23 Mitsubishi Chem Ind Polyester copolymer and its production
JPH01156320A (ja) 1987-12-15 1989-06-19 Mitsubishi Kasei Corp ポリエステル共重合体およびその製造方法
JPH01222788A (ja) 1988-03-02 1989-09-06 Mitsubishi Kasei Corp ポリエステル共重合体の製造方法
JPH0593049A (ja) 1991-09-17 1993-04-16 Kanegafuchi Chem Ind Co Ltd 共重合体およびその製造方法
JPH07265065A (ja) 1994-03-29 1995-10-17 Kanegafuchi Chem Ind Co Ltd 共重合体の合成遺伝子による形質転換体および共重合体の製造方法
JPH10108682A (ja) 1996-08-14 1998-04-28 Rikagaku Kenkyusho ポリエステル重合酵素遺伝子及びポリエステルの製造方法
WO1999014313A2 (en) 1997-09-19 1999-03-25 Metabolix, Inc. Biological systems for manufacture of polyhydroxylalkanoate polymers containing 4-hydroxyacids
WO2002008428A2 (en) * 2000-07-21 2002-01-31 Metabolix, Inc. Production of polyhydroxyalkanoates from polyols

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448821U (ja) 1987-09-18 1989-03-27
AU2001285041A1 (en) * 2000-08-18 2002-03-04 Metabolix, Inc. Sulfur containing polyhydroxyalkanoate compositions and method of production

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150393A (en) 1980-11-18 1982-09-17 Ici Ltd Beta-hydroxy butyrate polymer and production thereof
US4393167A (en) 1980-11-18 1983-07-12 Imperial Chemical Industries Plc Polymer blends containing polymer of β-hydroxybutyric acid and chlorine or nitrile group containing polymer
EP0114086A2 (en) 1983-01-18 1984-07-25 Imperial Chemical Industries Plc Production of beta-hydroxybutyrate polymers
JPS59220192A (ja) 1983-01-18 1984-12-11 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− ベ−タ・ヒドロキシブチレ−ト重合体の製造方法
EP0274151A2 (en) 1986-12-02 1988-07-13 Rijksuniversiteit te Groningen A process for producing polyesters by fermentation; a process for producing optically active carboxylic acids and esters; articles of manufacture comprising polyester
JPS63226291A (ja) 1986-12-02 1988-09-20 リジュクスユニバシテイト テ グロニンゲン 酵素によるポリエステルの製造方法,光学活性カルボン酸およびエステルの製造方法,およびポリエステルを含む製品
JPS63269989A (ja) 1987-04-28 1988-11-08 Yoshiharu Doi 共重合体の製造法
JPS6448821A (en) 1987-08-18 1989-02-23 Mitsubishi Chem Ind Polyester copolymer and its production
JPH01156320A (ja) 1987-12-15 1989-06-19 Mitsubishi Kasei Corp ポリエステル共重合体およびその製造方法
JPH01222788A (ja) 1988-03-02 1989-09-06 Mitsubishi Kasei Corp ポリエステル共重合体の製造方法
JPH0593049A (ja) 1991-09-17 1993-04-16 Kanegafuchi Chem Ind Co Ltd 共重合体およびその製造方法
JPH07265065A (ja) 1994-03-29 1995-10-17 Kanegafuchi Chem Ind Co Ltd 共重合体の合成遺伝子による形質転換体および共重合体の製造方法
JPH10108682A (ja) 1996-08-14 1998-04-28 Rikagaku Kenkyusho ポリエステル重合酵素遺伝子及びポリエステルの製造方法
WO1999014313A2 (en) 1997-09-19 1999-03-25 Metabolix, Inc. Biological systems for manufacture of polyhydroxylalkanoate polymers containing 4-hydroxyacids
JP2001516574A (ja) 1997-09-19 2001-10-02 メタボリックス,インコーポレイテッド 4−ヒドロキシ酸を含むポリヒドロキシアルカノエートポリマー製造のための生物学的システム
WO2002008428A2 (en) * 2000-07-21 2002-01-31 Metabolix, Inc. Production of polyhydroxyalkanoates from polyols

Non-Patent Citations (56)

* Cited by examiner, † Cited by third party
Title
"Enzyme Nomenclature", 1992, ACADEMIC PRESS, INC., pages: 178 - 199
ANALYTICAL BIOCHEMISTRY, vol. 298, 2001, pages 283 - 292
ANTONIO R.V. ET AL: "Analysis of in vivo substrate specificity of the PHA synthase from Ralstonia eutropha: formation of novel copolyesters in recombinant Escherichia coli", FEMS MICROBIOLOGY LETTERS, vol. 182, no. 1, 2000, pages 111 - 117, XP002979705 *
APPL. ENVIRON. MICROBIOL, vol. 54, 1988, pages 2924 - 2932
APPL. MICROBIOL. BIOTECHNOL., vol. 40, 1994, pages 699 - 709
APPL. MICROBIOL. BIOTECHNOL., vol. 49, 1998, pages 258 - 266
APPL. MICROBIOL. BIOTECHNOL., vol. 56, 2001, pages 131 - 136
BIBEL ET AL., J. INVEST. DERMATOL., vol. 93, 1992, pages 269 - 273
BIOMACROMOLECULES, vol. 1, 2000, pages 433 - 439
BIOORGANIC CHEM., vol. 18, 1990, pages 131 - 135
CURATOLO, PHARM. RES., vol. 4, 1987, pages 271 - 277
EUR. J. BIOCHEM., vol. 226, 1994, pages 71 - 80
FEMS MICROBIOL. LETT., vol. 128, 1995, pages 219
FEMS MICROBIOL. LETT., vol. 128, 1995, pages 219 - 228
FEMS MICROBIOL. REV., vol. 103, 1992, pages 207 - 214
FEMS MICROBIOLOGY LETTERS,, vol. 168, 1998, pages 319 - 324
H. IKUSHIRO, THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 276, 2001, pages 18249 - 18256
INT. J. BIOL. MACROMOL., vol. 12, 1990, pages 85 - 91
INT. J. BIOL. MACROMOL., vol. 12, 1990, pages 92 - 101
INT. SYMP. BACTERIAL POLYHYDROXYALKANOATES, 1996, pages 28 - 35
J. AM. CHEM. SOC., vol. 22, 1973, pages 5829
J. AM. CHEM. SOC., vol. 75, 1953, pages 2520
J. BACTERIOL., vol. 170, 1988, pages 5837 - 5847
J. BACTERIOL..,, vol. 170, 1988, pages 4431 - 4436
J. BIOCHEMISTRY, vol. 33, 1994, pages 9311 - 9320
J. BIOL. CHEM., vol. 260, 1985, pages 13181
J. BIOL. CHEM., vol. 264, 1989, pages 15298 - 15303
J. CHEM. SOC. POLYM. COMMUN., vol. 31, 1990, pages 404 - 406
J. POLYM. SCI. PART A, vol. 33, 1995, pages 1367 - 1374
KERSCHER ET AL., EUR. J. DERMATO, vol. 1, 1991, pages 39 - 43
M. TANAKA, JOURNAL OF CHROMATOGRAPHY, vol. 284, 1984, pages 433 - 440
MACROMOL. CHEM. PHYS., vol. 195, 1994, pages 1665 - 1672
MACROMOL. CHEM., vol. 191, 1990, pages 1957 - 1965
MACROMOLECULES, vol. 23, 1990, pages 3705 - 3707
MACROMOLECULES, vol. 24, 1991, pages 5256 - 5260
MACROMOLECULES, vol. 25, 1992, pages 1852 - 1857
MACROMOLECULES, vol. 27, 1994, pages 1675 - 1679
MACROMOLECULES, vol. 29, 1996, pages 3432 - 3435
MACROMOLECULES, vol. 29, 1996, pages 4572 - 4581
MACROMOLECULES, vol. 31, 1998, pages 1480 - 1486
MACROMOLECULES, vol. 31, 1998, pages 4760 - 4763
MACROMOLECULES, vol. 32, 1999, pages 7389 - 7395
MACROMOLECULES, vol. 34, 2001, pages 6889 - 6894
MACROMOLECULES,, vol. 29, 1996, pages 1762 - 1766
MACROMOLECULES,, vol. 33, 2000, pages 229 - 231
NAGIEC M.M. ET AL: "The LCB2 gene of Saccharomyces and the related LCB1 gene encode subunits of serine palmitoyltransferase, the initial enzyme in sphingolipid synthesis", PNAS USA, vol. 91, 1994, pages 7899 - 7902, XP002979704 *
NARIMATSU S. ET AL: "Solubilization and partial characterization of fatty acyl-CoA: sphingosine acyltransferase (ceramide synthetase) from rat liver and brain", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 877, no. 3, 1986, pages 334 - 341, XP002979707 *
OUYANG T. ET AL: "A New Chemical Method for Synthesizing and Recycling Acyl Coenzyme A Thioesters", JOURNAL OF ORGANIC CHEMISTRY, vol. 56, no. 11, 1991, pages 3752 - 3755, XP002979703 *
PINTO ET AL., J. BACTERIOL., vol. 174, 1992, pages 2565 - 2574
PROC. NATL. ACAD. SCI., vol. 92, 1995, pages 6279 - 6283
PROTEIN EXPRESSION PURIF., vol. 7, 1996, pages 203 - 211
See also references of EP1591531A4
WICKERHAM; STODOLA, J. BACTERIOL., vol. 80, 1960, pages 484 - 491
YUAN W. ET AL: "Class I and III Polyhydroxyalkanoate Synthases from Ralstonia eutropha and Allochromatium vinosum: Characterization and Substrate Specificity Studies", ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, vol. 394, no. 1, 2001, pages 87 - 98, XP002979706 *
Z. NATURFORSCH., vol. 29C, 1974, pages 469 - 474
Z. NATURFORSCH., vol. 30C, 1975, pages 352 - 358

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2060594A2 (en) 2007-11-14 2009-05-20 National University Corporation Hokkaido University Method for producing polymer
JP2009138174A (ja) * 2007-11-14 2009-06-25 Agri Bioindustry:Kk 高分子化合物の製造方法

Also Published As

Publication number Publication date
EP1591531A4 (en) 2010-01-27
US7476521B2 (en) 2009-01-13
US7943351B2 (en) 2011-05-17
JP4353484B2 (ja) 2009-10-28
JPWO2004065609A1 (ja) 2006-05-18
US20090111153A1 (en) 2009-04-30
US20060148048A1 (en) 2006-07-06
EP1591531A1 (en) 2005-11-02
EP1591531B1 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
Ruth et al. Efficient production of (R)-3-hydroxycarboxylic acids by biotechnological conversion of polyhydroxyalkanoates and their purification
Ren et al. Bacterial poly (hydroxyalkanoates) as a source of chiral hydroxyalkanoic acids
Wescott et al. The solvent dependence of enzyme specificity
CN102027125B (zh) 己二酸酯或硫代酯合成
Parthasarathy et al. Substrate specificity of 2-hydroxyglutaryl-CoA dehydratase from Clostridium symbiosum: toward a bio-based production of adipic acid
CA2622537C (en) Biocatalytic manufacturing of (meth)acrylic esters
EP2236613B1 (en) Biochemical synthesis of 1,4-butanediamine
JP2006204255A (ja) アセチル−CoAアシルトランスフェラーゼ遺伝子破壊ポリヒドロキシアルカノエート生産菌、またこれを利用したポリヒドロキシアルカノエート生産方法
US7943351B2 (en) Method for acyltransferase reaction using acyl coenzyme A
WO2017209102A1 (ja) 3-ヒドロキシアジピン酸の製造方法
JP6948595B2 (ja) α−ヒドロムコン酸の製造方法
Takakura et al. Purification, characterization, and gene cloning of a novel aminoacylase from Burkholderia sp. strain LP5_18B that efficiently catalyzes the synthesis of N-lauroyl-l-amino acids
Habulin et al. Enzymatic synthesis of citronellol laurate in organic media and in supercritical carbon dioxide
AU2005224378B2 (en) Biocatalytic manufacturing of (meth)acrylylcholine or 2-(N,N-dimethylamino)ethyl (meth)acrylate
Hacking et al. Lipase catalysed acylation of hydroxylamine and hydrazine derivatives
Valencia et al. Seven-enzyme in vitro cascade to (3R)-3-hydroxybutyryl-CoA
BR112016000541B1 (pt) Método para produção de metacrilil-coa e conversão de metacrilil-coa em ácido metacrílico ou éster metacrilato
Xiong et al. Genetically Encoded Multienzyme Particles for the Biosynthesis of Putrescine from l-Arginine
Pazos Urrea Concentration and Esterification of Lactic Acid in Complex Coacervates
Würges Enzyme supported crystallization of chiral amino acids
JP5595400B2 (ja) 光学活性3−置換グルタル酸モノアミドの製造法
WO2017082374A1 (ja) Nε-アシル-L-リジンの製造方法
Lohith Enzymatic synthesis of selected amino acid esters of sugars
Friedrich et al. H16 Flagellation Ralstonia eutropha
JP2007302750A (ja) ラクトン構造を有する物質を原料とするポリヒドロキシアルカン酸の製造方法およびポリヒドロキシアルカン酸

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005508108

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006148048

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10542733

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004703935

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004703935

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10542733

Country of ref document: US