WO2004064511A1 - 釣竿 - Google Patents

釣竿 Download PDF

Info

Publication number
WO2004064511A1
WO2004064511A1 PCT/JP2003/000689 JP0300689W WO2004064511A1 WO 2004064511 A1 WO2004064511 A1 WO 2004064511A1 JP 0300689 W JP0300689 W JP 0300689W WO 2004064511 A1 WO2004064511 A1 WO 2004064511A1
Authority
WO
WIPO (PCT)
Prior art keywords
fishing rod
total length
resonance frequency
fishing
rod
Prior art date
Application number
PCT/JP2003/000689
Other languages
English (en)
French (fr)
Inventor
Gouki Kawashita
Muneki Okada
Toshihisa Kishimoto
Masahide Kanazawa
Atsushi Morita
Ryozo Okuda
Original Assignee
Shimano Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimano Inc. filed Critical Shimano Inc.
Priority to JP2004567145A priority Critical patent/JP4599173B2/ja
Priority to PCT/JP2003/000689 priority patent/WO2004064511A1/ja
Priority to AU2003303782A priority patent/AU2003303782A1/en
Priority to CNB03825851XA priority patent/CN100421554C/zh
Priority to EP03815448A priority patent/EP1595448A1/en
Priority to TW093100930A priority patent/TW200420226A/zh
Publication of WO2004064511A1 publication Critical patent/WO2004064511A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K87/00Fishing rods

Definitions

  • the present invention relates to a fishing rod, and more particularly to a fishing rod made of a fiber reinforced resin in which carbon fibers are impregnated with a synthetic resin in reinforcing fibers such as glass fibers.
  • fishing rods made of a natural material are difficult to mass-produce uniformly because of the material, and is expensive and complicated to maintain.
  • fishing rods made of this kind of natural material generally produce excellent “rod condition” by skilled craftsmen, and it is difficult to mass-produce them. Therefore, there has been a continuing demand for fishing rods made of artificial fiber-reinforced resin materials to produce the same tone as fishing rods made of natural materials.
  • the present inventors have conducted sharp studies in view of the above problems, and as a result, have found that the most important factor that a fisherman feels good in "the condition of the rod" is the resonance vibration of the fishing rod.
  • the present invention is based on such findings.
  • the relationship between the total length of the fishing rod and the primary resonance frequency of the fishing rod is 1.5 to 2.2 Hz when the total length is 2400 mm, 1.4 to 1.8 Hz when the total length is 2700 mm, and 1.1 to 1.2 Hz when the total length is 3000 nm. : L.6Hz, total length force 0.9 to 1.6Hz for S3300mm, 0.9 to 1.5Hz for 3600mm, 0.9 to 1.5Hz for 3900mm Set to. This area is the area shown in Table 1 below.
  • the “first resonance frequency” here is the frequency of the fishing rod measured by the following method. First, a range of 80mm from the rod end side of the fishing rod is clamped and fixed by the clamping body, and the fishing rod is maintained in the horizontal direction. Vibration is applied to the fishing rod from the shaker via this holding body (frequency of the fishing rod). The acceleration in this shaker is detected by an acceleration sensor and is set as the input acceleration (A). On the other hand, the replacement sheet at a position 180 nm from the end of the fishing rod at the base end (Rule 26) The speed is detected by the acceleration sensor and is set as the output acceleration (B) (see Fig. 4).
  • this B / A ratio is plotted against the frequency of the fishing rod, and the frequency in a state where the B / A ratio peaks (resonant vibration state) is determined by the smaller frequency of the fishing rod.
  • the primary and secondary resonance frequencies are set in order from.
  • An example of a draf in which this B / A ratio is plotted against the frequency of a fishing rod is shown below (this graph is an example, and does not directly base the content of the present invention).
  • the frequencies at the peaks in order from the left side of the graph are the first, second, and third resonance frequencies, respectively.
  • the total length of the fishing rod is 8 feet (2400 mm) and the primary resonance frequency of the fishing rod is in the range of 1.5 to 2.2 mm, and the total length is 9 feet (2700 mm) and the A fishing rod whose primary resonance frequency is in the range of 1.4 to 1.8 Hz, a fishing rod whose total length is 10 feet (3000 mm) and whose primary resonance frequency is in the range of ll to 1.6 Hz, and whose total length is A fishing rod whose length is 12 feet (3600 mm), whose length is 12 feet (3600 mm) and whose primary resonance frequency of the fishing rod is in the range of 0.9 to 1.6 Hz, and whose primary resonance frequency of the fishing rod is Fishing rods in the range of 0.9 to 1.5 Hz, and fishing rods with a total length of 13 feet (3900 mm) and a primary resonance frequency of the fishing rod in the range of 0.9 to: 1.4 Hz are also included.
  • this “8 shaku (2400 mm)” is a concept that is set with a certain width for manufacturing or customary purposes. Therefore, this "8 shaku” is actually 2370mii! The length may be up to about 2490 mm. Similarly, “9 shaku” to “13 shaku” are set with a certain width in manufacturing or custom. ⁇ S
  • the relationship between the total length of the fishing rod and the secondary resonance frequency of the fishing rod is expressed as 5.2-7.3 Hz when the total length is 2400 mni on one axis and the other axis is the resonance frequency. Is 4.5 to 6.3 Hz when the total length is 2700 mm, 4.3 to 5.6 Hz when the total length is 3000 mni, 3.7 to 5.6 Hz when the total length is 3300 mm, 3.5 to 5.3 Hz when the total length is 3600 mm, and when the total length is 3900 mm. Set within the area surrounded by each point of 3.5 to 4.9 Hz. This area is the area shown in Table 3 below.
  • the “second-order resonance frequency” is the second-order resonance frequency at the frequency obtained by the above-described measurement method.
  • the total length of the fishing rod is 8 feet (2400 mm) and the secondary resonance frequency of the fishing rod is in the range of 5.2 to 7.3 Hz.
  • the total length is 9 feet (2700 mm) and the second A fishing rod with a next resonance frequency in the range of 4.5 to 6.3 Hz, a fishing rod with a total length of 10 feet (3000 mm) and a secondary resonance frequency of the fishing rod in the range of 4.3 to 5.6 Hz, a total length of 1 A fishing rod that is 1 foot (3300 mm) and the secondary resonance frequency of the fishing rod is in the range of 3.7 to 5.6 Hz.
  • the total length is 12 feet (3600 mm) and the secondary resonance frequency of the fishing rod is 3.5 to Fishing rod in the 5.3Hz range.
  • Fishing rods with a total length of 13 feet (3900 nmi) and a secondary resonance frequency of the fishing rod in the range of 3.5 to 4.9 Hz are also included.
  • the relationship between the total length of the fishing rod and the third resonance frequency of the fishing rod is expressed as 11.6-15.4 Hz when the total length is 2400 mm on one axis and the other axis is the resonance frequency.
  • 10.5 to 13.4 Hz for a total length of 2700 nmi 9.4 to 1 for a total length of 3000 mm Replacement paper (Rule 26) 2.1Hz, 8.5 ⁇ 12.0Hz when the total length is 3300mm, 8.5 ⁇ : LI. 2Hz when the total length is 3600mm, 8.2 ⁇ :
  • L0.5Hz Set This area is the area shown in Table 4 below.
  • the tertiary resonance frequency is the third-order resonance frequency at the frequency obtained by the above-described measurement method.
  • the total length of the fishing rod is 8 feet (2400 mm) and the tertiary resonance frequency of the fishing rod is in the range of 11.6 to 15.4 Hz, and the total length is 9 feet (2700 mm) and A fishing rod whose tertiary resonance frequency is in the range of 10.5-13.4 Hz, a fishing rod whose total length is 10 feet (3000 mm) and whose tertiary resonance frequency is in the range of 9.4-12.1 Hz, and whose total length is 1
  • a fishing rod with a length of 3 m (3300 mm) and a tertiary resonance frequency of the fishing rod in the range of 8.5 to 12.0 Hz, a total length of 12 m (3600 imn) and a tertiary resonance frequency of the fishing rod of 8.5 to 13.0 Hz A fishing rod in the range of 11.2 Hz, the total length is 13 feet (3900 mm), and the third resonance frequency of the fishing rod Force S8.2 ⁇ : A fishing rod in the range of
  • FIG. 1 is an overall view of a fishing rod employing one embodiment of the present invention.
  • FIG. 2 is an enlarged sectional view of the center rod 2 of FIG.
  • Figure 3 Diagram showing the manufacturing process of the rod.
  • FIG. 4 is a diagram showing a measurement state of a resonance frequency of a fishing rod according to the present invention.
  • FIG. 5 is a view showing a mode of measuring the rigidity of a fishing rod according to the present invention.
  • Replacement Form (Rule 26)
  • Figure 6 Reference diagram for the finite element model.
  • Figure 7 Reference diagram in the link model.
  • This fishing rod is a spatula used for spatula fishing. As shown in Fig. 1, it is composed of three rods: a main rod 1, a middle rod 2, and a head rod 3, in order from the near side. These rods are formed by firing a prepreg material in which a synthetic resin is impregnated into a reinforcing fiber such as carbon fiber or glass fiber. As will be described in detail later, a high-density pre-preda is also partially laminated. Each of these rods is painted so that its appearance resembles natural bamboo. For example, bamboo nodes and branches may be painted three-dimensionally (see Fig. 2).
  • the rod bodies are sequentially connected in a so-called side-by-side manner.
  • the rod-side end of the middle rod 2 is partially inserted into the head-end end of the original rod.
  • the method of connecting the rod bodies is not limited to the joint type, and it is naturally possible to apply a well-known method (for example, a swing type or a spigot type).
  • a grip 4 formed by winding a cord body impregnated with urethane resin or the like is provided at the end of the base rod 1 at the base end thereof. 5 is installed.
  • the total length of the spatula when these three rods are connected in sequence is 9 shaku (2700mm).
  • the structure of the rod body constituting the spatula rod will be described with the middle rod 2 as an example.
  • the inner pole 2 includes a main layer 11, a heavy layer 12, which is laminated in a certain range in the axial direction as an outer layer of the main layer 11, and a peripheral surface of the main layer 11 and the heavy layer 12. And a paint layer 13 laminated on the substrate.
  • the main layer 11 is a layer formed by laminating a prepreg material.
  • the same pre-preda material may be laminated, or different pre-prede materials may be laminated.
  • the carbon fibers may be oriented in the circumferential direction or in a direction at a certain angle from the circumferential direction. Examples thereof include those obtained by processing a prepreg material impregnated with an epoxy resin into a tape shape, those obtained by processing a carbon fiber oriented in an axial direction and impregnating an epoxy resin into a sheet shape, and the like.
  • the weight layer 12 is made of a high specific gravity pre-predator material having a large specific gravity.
  • the high-density pre-predator material is, for example, a glass scream impregnated with an epoxy resin and further mixed with a metal powder such as tungsten.
  • This high-density pre-predator has a thickness of about 500 to 600 g Zm 2 and a thickness of about 0.100 to 0.15 Omm.
  • the high-density pre-predator material is laminated on the main layer 11 at a predetermined axial position obtained by calculation as described later.
  • the paint layer 13 is formed by applying a synthetic resin coating material such as an epoxy resin or a urethane resin.
  • a synthetic resin coating material such as an epoxy resin or a urethane resin.
  • the step between the main layer 11 and the weight layer 12 is eliminated by the paint layer 13.
  • the pre-predator material is partially wound, or partially epoxy resin. Thickly, and shaving it into a predetermined shape to form bamboo nodes.
  • the other rods also have the same structure, although their diameters and the like are different, and the description is omitted.
  • the spatula rod Next, a method for manufacturing the spatula rod will be described. For example, the case where the total length is 2700 mm and the secondary resonance frequency is set to 5.45 Hz will be described.
  • the diameter and length of the planned original rod 1 to the head rod 3 ⁇ length 'pre-predder material ⁇ elasticity of the high-density pre-predator material ⁇ weight Simulate the weight distribution of each rod so that the number of movements becomes 5.45 Hz, and calculate the axial range in which the high specific gravity pre-preda material is to be laminated for each rod.
  • a method such as a finite element method or a link model can be used.
  • a fishing rod is a cantilever composed of N one-dimensional beam elements having two degrees of freedom in the translation and rotation directions at the node. Model with an elastic beam. Each beam element has a uniform cross section within the element Assume that The mode shape corresponding to the resonant frequency is calculated under the boundary conditions where one end is the fixed end and the other end is the free end.
  • Equation 1 The equation of motion of a fishing rod with constraints can be derived as Equation 1.
  • the necessary pre-preda material P1 is wound around the mandrel 100 provided according to the diameter or taper change of each rod body (as described above, A tape-shaped material or a sheet-shaped material can be wound), and a high-density pre-predator material P2 is wound around the calculated predetermined axial direction range (FIG. 3 (b)).
  • Several ply windings of the high-density prepredder material P2 may be used to produce sufficient weight.
  • FIG. 3 (b) only one sheet of the high-density pre-prepared material P2 is wound on the pre-prepared material P1, but two or more high-density pre-prepared materials P 2 are wound at intervals in the axial direction.
  • an epoxy resin is applied to the peripheral surface to prepare rod materials corresponding to the original rod 1 to the tip rod 3, and these are fired in a furnace. After firing, the peripheral surface is polished, and both ends are cut to have a predetermined axial length to manufacture each rod body.
  • the total length is 2700 mm and the secondary resonance frequency is set to 5.45 Hz, but the resonance frequency in a favorable vibration mode differs according to the length of the rod. .
  • the resonance frequency may be set for each whole length of the fishing rod in the area of Table 1 on the coordinate axis where the other axis is the resonance frequency.
  • the resonance vibration is set for each total length of the fishing rod within the area shown in Table 4 on the coordinate axis where one axis is the total length and the other axis is the resonance frequency. Set a number.
  • a high specific gravity pre-preda is laminated to produce a weight distribution by changing the weight partially in the axial direction of the rod body. It is also possible to adopt a method such as disposing it on the peripheral surface.
  • a spatula is described, but the type of fishing rod is not limited to this.
  • fishing rods of a type other than a spatula rod in general, bending, rigidity, restoration of the original state, etc. are important factors for operability in throwing in a mechanism or catching fish, etc. Therefore, it is naturally possible to apply the present invention to other types of fishing rods.
  • the fishing line guide may be arranged at a predetermined position, and the weight distribution may be produced by partially changing the weight in the axial direction of the rod body.
  • the weight of the fishing rod we calculated the weight of the weight that can be added to the fishing rod material in order to adjust the resonance frequency, taking into account the materials, coating, and fishing rod parts necessary for manufacturing the fishing rod. Specifically, the weight of the weight that can be added was calculated for each entire length of the spatula from multiple existing spatula. Table 5 shows the results.
  • a range adjustable as the first to third resonance frequencies of the spatula rod was simulated and calculated.
  • the finite element method described above was used for the simulation.
  • the layout of the heavy strata one or more heavy strata will be placed on the pole within a range that does not exceed the total addable weight shown in Table 5.
  • the placement position is Any position on the pole is acceptable, but it is effective to control the vibration by arranging it at the position of the antinode of the vibration during resonance vibration.
  • the unit is Hz.
  • the resonance frequency generally decreases as heavy objects such as paint and parts are added. Therefore, the material to which no heavy material such as paint or parts is added is the upper limit of the primary to tertiary resonance frequencies for each length of each rod body. This is shown in Table 7 below.
  • the unit is Hz. Within the range obtained in this way, by setting the resonance frequency in the first to third order, respectively, in a fishing rod that mass-produces a good fishing rod ⁇ rod condition '' industrially Can also be realized.
  • a spatula rod with a total length of 9 shaku (2700 mm) was manufactured while varying the weight distribution and stiffness. 18 types of samples were manufactured, and the first to third resonance frequencies were produced for each spatula rod. Was measured (see Table 8).
  • the overall score of the sensitivity evaluation decreases as the primary resonance frequency increases. Since the average sensory evaluation score was 20.9 points on average and 4.3 points on standard deviation, 16.6 points (20.9 points-4.3 points) were evaluated as "poor evaluation.” Assuming that the boundary point is “normal”, the first resonance frequency at the boundary point is calculated as 1.88 Hz. In general, it matches the upper limit of the primary resonance frequency specified in the case of the present invention with a length of 9 (2700 mm).
  • the overall sensitivity evaluation score 'decreases as in the case of the first order.
  • the calculated frequency is 5.99Hz.
  • the present invention matches the upper limit of the secondary resonance frequency specified at the time of 9 shaku (270 Omm).
  • the overall score of the sensitivity evaluation decreases as the third resonance frequency increases.
  • the 16.6 point is defined as the boundary point between “Poor evaluation j” and “Normal evaluation”
  • the calculated frequency is 13.47 Hz. Approximately, it matches the upper limit of the third resonance frequency specified when measuring 9 feet (2700 mm) in the present invention.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Fishing Rods (AREA)

Abstract

本発明は、天然素材から製造される釣竿と同様の良好な竿の調子を演出できる繊維強化樹脂素材からなる釣竿を提供するものである。この釣竿は、一方の軸を全長,他方の軸を共振振動数とした座標軸において、全長が2400mmの場合に1.5~2.2Hz、全長が2700mmの場合に1.4~1.8Hz、全長が3000mmの場合に1.1~1.6Hz、全長が3300mmの場合に0.9~1.6Hz、全長が3600mmの場合に0.9~1.5Hz、全長が3900mmの場合に0.9~1.4Hzとなる各点で囲まれた領域内にある。

Description

明細書 釣竿 [技術分野]
本発明は釣竿、 特に、 炭素繊維がガラス繊維などの強化繊維に合成樹脂を含浸 させた繊維強化樹脂からなる釣竿に関する。
[背景技術]
近時の多くの釣竿は、 炭素繊維やガラス繊維などの強化繊維に合成樹脂を含浸 させた繊維強化樹脂素材から構成されている。 このような素材を用いることで、 軽量化 ·物理的強度の向上などを図っている。 また、 釣竿は、 仕掛けの投げ入れ や魚の取込などの際の操作性のために、 屈曲性 ·剛性 ·原状回復性等も重要な要. 素とされる。 そこで、 釣竿の太さや肉厚等を調整して良好な釣竿の特性 (竿の調 子) を演出している。 例えば、 竿体を製造するための繊維強化樹脂素材を部分的 に積層させながら卷回する技術 (例えば、 日本国:特開 2 0 0 2— 2 0 9 4 7 7 号公報、 図 2参照) や、 軸方向で部分的に弾性の異なる繊維強化樹脂素材を巻回 する技術 (例えば、 日本国:特開平 1 1— 2 8 9 9 2 5号公報、 図 2参照) など が提案されている。
このように多くの釣竿が繊維強化樹脂素材から製造され、 剛性 ·橈りなどの調 整も図られているが、 未だ完全に釣人の欲求を満足するものではない。 特に、 へ ラ釣りに用いられるヘラ竿では 「竿の調子」 が最も重要な要素とされ、 天然竹か らなる釣竿が最も竿の調子に優れるものとされて重宝されている。 そして、 繊維 強化樹脂からなるヘラ竿は、 天然竹からなるヘラ竿に竿の調子において及ばない と評されるのである。
しかし、 このような天然素材からなる釣竿は、 その素材故に均一量産化が困難 であり高価で且つ手入れも煩雑である。 また、 この種の天然素材からなる釣竿は 熟練した職人によって優れた 「竿の調子」 を演出しているのが一般的であり、 ェ 業量産化も困難である。 そこで、 人工の繊維強化樹脂素材からなる釣竿において、 天然素材からなる釣 竿と異ならない竿の調子を演出することが求め続けられている。
本発明の課題は、 天然素材から製造される釣竿と同様の良好な竿の調子を演出 できる繊維強化樹脂素材からなる釣竿を提供することにある。
[発明の開示]
本発明者等は、 上記問題点に鑑み鋭利研究を重ねた結果、 釣人が 「竿の調子」 を良好と感じる最も重要な要素が、 釣竿の共振振動にあることを見いだした。 本 発明は係る知見に基づくものである。
即ち、 釣竿の全長と釣竿の第 1次の共振振動数との関係を、 全長が 2400mmの 場合に 1.5〜2.2Hz、 全長が 2700mmの場合に 1.4〜1.8Hz、 全長が 3000nmiの場合 に 1.1〜: L.6Hz、 全長力 S3300mmの場合に 0.9〜1.6Hz、 全長が 3600mmの場合に 0. 9〜1.5Hz、全長が 3900mmの場合に 0.9〜: l.4Hzとなる各点で囲まれる領域内に設 定する。 この領域は、 以下の表 1に示される領域である。
(表 1 )
Figure imgf000003_0001
釣竿の全長毎にその第 1次の共振振動数を所定の範囲内に設定することで、 天 然竹から構成した釣竿と同様に優れた 「竿の調子」 を演出できる。
ここでいう 「第 1次の共振振動数」 とは、 以下のような方法で測定された釣竿 の振動数である。 まず、 釣竿の竿元側端部から 80mmの範囲を挟持体で挟持して 固定し、 釣竿を水平方向に維持する。 この挟持体を介して加振器から釣竿に振動 を加える (釣竿の振動数)。 この加振器における加速度を加速度センサーで検知し て入力加速度 (A)とする。 一方、 釣竿の竿元側端部より 180nmiの位置における加 差替え用紙(規則 26) 速度を加速度センサーで検知して出力加速度 (B)とする (図 4参照)。 そして、 こ の B/Aの比を釣竿の振動数に対してプロットし、この B/Aの比がピークとなった状 態 (共振振動状態) の振動数を、 釣竿の振動数の小さい方から順に第 1次, 第 2 次の共振振動数とした。 この B/Aの比を釣竿の振動数に対してプロットしたダラ フの一例を以下に示す (なお、 このグラフは一例であり、 本件発明の内容を直接 基礎付けるものではない)。
(表 2 )
Figure imgf000004_0001
グラフの左側から順にピークとなった際の振動数が、 順に第 1次, 第 2次, 第 3次の共振振動数である。
そして、 この領域には、 全長が 8尺 (2400mm) であり釣竿の第 1次の共振振 動数が 1.5〜2·2Ηζの範囲にある釣竿、 全長が 9尺 (2700mm) であり釣竿の第 1 次の共振振動数が 1.4〜1.8Hzの範囲にある釣竿、 全長が 1 0尺 (3000mm) であ り釣竿の第 1次の共振振動数が l.l〜1.6Hzの範囲にある釣竿、 全長が 1 1尺 (33 00mm) であり釣竿の第 1次の共振振動数が 0.9~1.6Hzの範囲にある釣竿、 全長 が 1 2尺 (3600mm) であり、 釣竿の第 1次の共振振動数が 0.9〜1.5Hzの範囲に ある釣竿、 全長が 1 3尺 (3900mm) であり釣竿の第 1次の共振振動数が 0.9〜: 1. 4Hzの範囲にある釣竿もそれぞれ含まれる。
なお、 この 「8尺 (2400mm)」 とは、 製造上乃至慣習上一定の幅をもって設定 される概念である。 よって、 この 「8尺」 が実際には 2370mii!〜 2490mm程度の 長さとなる場合もある。 「9尺」 〜 「1 3尺」 についても同様に、 製造上乃至慣習 上一定の幅をもって設定される。 籙 S
また、 釣竿の全長と釣竿の第 2次の共振振動数との関係を、 一方の軸を全長, 他方の軸を共振振動数とした座標軸において、 全長が 2400mniの場合に 5.2〜7.3 Hz、 全長が 2700mmの場合に 4.5〜6.3Hz、 全長が 3000mniの場合に 4.3〜5.6Hz 、 全長が 3300mmの場合に 3.7〜5.6Hz、 全長が 3600mmの場合に 3.5〜5.3Hz、 全 長が 3900mmの場合に 3.5〜4.9Hzとなる各点で囲まれた領域内に設定する。 この 領域は、 以下の表 3に示される領域である。
(表 3 )
Figure imgf000005_0001
2400 2700 3000 3300 3600 3900
釣竿の全長 釣竿の全長毎にその第 2次の共振振動数を所定の範囲内に設定することで、 天 然竹から構成した釣竿と同様に優れた 「竿の調子」 を演出できる。 なお、 ここで いう 「第 2次の共振振動数」 とは、 上述の測定方法で得られた振動数での第 2次 の共振振動数である。
そして、 この領域には、 全長が 8尺 (2400mm) であり釣竿の第 2次の共振振 動数が 5.2〜7.3Hzの範囲にある釣竿、 全長が 9尺 (2700mm) であり釣竿の第 2 次の共振振動数が 4.5〜6.3Hzの範囲にある釣竿、 全長が 1 0尺 (3000mm) であ り釣竿の第 2次の共振振動数が 4.3〜5.6Hzの範囲にある釣竿、 全長が 1 1尺 (33 00mm) であり釣竿の第 2次の共振振動数が 3.7〜5.6Hzの範囲にある釣竿、 全長 が 1 2尺 (3600mm) であり釣竿の第 2次の共振振動数が 3.5〜5.3Hzの範囲にあ る釣竿。 全長が 1 3尺 (3900nmi) であり釣竿の第 2次の共振振動数が 3.5〜4.9 Hzの範囲にある釣竿も含まれることになる。
さらに、 釣竿の全長と釣竿の第 3次の共振振動数との関係を、 一方の軸を全長 , 他方の軸を共振振動数とした座標軸において、全長が 2400mmの場合に 11.6〜1 5.4Hz, 全長が 2700nmiの場合に 10.5〜13.4Hz、 全長が 3000mmの場合に 9.4〜1 犛替え用紙(規則 26》 2.1Hz, 全長が 3300mmの場合に 8.5〜12.0Hz、 全長が 3600mmの場合に 8.5〜: LI. 2Hz、全長が 3900mmの場合に 8.2〜: L0.5Hzとなる各点で囲まれた領域内に設定す る。 この領域は、 以下の表 4に示される領域である。
(表 4 ) ' ノ
titon
Figure imgf000006_0001
2400 ' 2700 3000 3300 3600 3900
釣竿の全長 釣竿の全長毎にその第 3次の共振振動数を所定の範囲内に設定することで、 天 然竹から構成した釣竿と同様に優れた 「竿の調子」 を演出できる。 なお、 ここで いう 「第 3次の共振振動数」 とは、 上述の測定方法で得られた振動数での第 3次 の共振振動数である。
― そして、 この領域には、 全長が 8尺 (2400mm) であり釣竿の第 3次の共振振 動数が 11.6〜15.4Hzの範囲にある釣竿、 全長が 9尺 (2700mm) であり釣竿の第 3次の共振振動数が 10.5〜13.4Hzの範囲にある釣竿、 全長が 1 0尺 (3000mm) であり釣竿の第 3次の共振振動数が 9.4〜12.1Hzの範囲にある釣竿、 全長が 1 1 尺 (3300mm) であり釣竿の第 3次の共振振動数が 8.5〜12.0Hzの範囲にある釣 竿、 全長が 1 2尺 (3600imn) であり釣竿の第 3次の共振振動数が 8.5〜: 11.2Hz の範囲にある釣竿、 全長が 1 3尺 (3900mm) であり釣竿の第 3次の共振振動数 力 S8.2〜: L0.5Hzの範囲にある釣竿も含まれることになる。
[図面の簡単な説明]
図 1 :本発明の 1つの実施形態を採用した釣竿の全体図である。
図 2 :図 1の中竿 2の拡大断面図である。
図 3 :竿体の製造過程を示した図である。
図 4 :本発明における釣竿の共振振動数の測定状態を示した図である。
図 5 :本発明における釣竿の剛性の測定態様を示した図である。 差替え用紙(規則 26》 図 6 :有限要素モデルにおける参考図である。
図 7 : リンクモデルにおける参考図である。
[発明を実施するための最良の形態]
以下、 本発明の 1つの実施形態を採用した釣竿について説明する。
(ヘラ竿の構造)
この釣竿はヘラ鮒釣りに用いられるヘラ竿である。 図 1に示すように、 手元側 から順に、 元竿 1、 中竿 2、 穂先竿 3の 3本の竿体から構成される。 これらの竿 体は炭素繊維若しくはガラス繊維などの強化繊維に合成樹脂を含浸させたプリプ レグ素材を焼成して形成されている。 後に詳しく説明するように、 部分的に高比 重プリプレダも積層される。 これらの竿体は、 それぞれ外観を天然竹に似せて塗 装されており、 例えば、 竹の節や枝跡などを立体的に塗装してもよい (図 2参照
) o
各竿体は、 いわゆる並継形式によって順次連結され、 例えば、 元竿.1の穂先側 端部に中竿 2の竿元側端部が部分的に挿入され連結される。 もっとも、 この竿体 同士の連結方法は並継形式に限定されるものではなく、 周知の手法 (例えば、 振 出形式, インロー継ぎ形式など) を適用することも当然に可能である。 また、 元 竿 1の竿元側端部にはウレタン樹脂等を含浸させた紐体を卷回して形成されるグ リップ 4が設けられ、 穂先竿 3の穂先側端部には釣糸係止具 5が装着されている 。 なお、 これら 3本の竿体を順次連結した際のヘラ竿の全長は 9尺 (2700mm) となる。
次に、 図 2において、 このヘラ竿を構成する竿体の構造を、 中竿 2を例に説明 する。
中竿 2は、 本層 1 1と、 本層 1 1の外周層として軸方向の一定の範囲において 積層されている重量層 1 2と、 これら本層 1 1と重量層 1 2との周面に積層され る塗料層 1 3とを有する。
本層 1 1は、 プリプレダ素材を積層してなる層である。 プリプレダ素材は同一 のものを積層する場合や、 異なる種類のものを積層する場合がある。 例えば、 炭 素繊維が周方向乃至周方向から一定の角度をもった方向に配向されるようにして エポキシ樹脂を含浸させたプリプレダ素材をテープ状に加工したものや、 炭素繊 維を軸方向に配向しエポキシ樹脂を含浸させたプリプレダ素材をシート状に加工 したものなどが例示できる。
重量層 1 2は、 比重の大きな高比重プリプレダ素材から構成される。 高比重プ リプレダ素材とは、 例えば、 ガラススクリームにエポキシ樹脂を含浸させてさら にタングステンなどの金属粉末を混入したものである。 そして、 この高比重プリ プレダは 5 0 0〜6 0 0 g Zm2、 厚さ 0 . 1 0 0〜0 . 1 5 O mm程度のもので ある。 この高比重プリプレダ素材を、 後述のように計算して得る所定の軸方向位 置において、 上述の本層 1 1上に積層する。
塗料層 1 3は、 エポキシ樹脂やウレタン樹脂等の合成樹脂塗材を塗布して形成 される。 本層 1 1と重量層 1 2との段差はこの塗料層 1 3によって解消される。 また、 図 2に示すように、 中竿 2を天然竹のような外観を有するように、 竹の節 などを形成する場合には、 プリプレダ素材を部分的に卷回し、 若しくは部分的に エポキシ樹脂を厚塗りして、 所定の形状に削って竹の節などを形成する。 なお、 他の竿体もその径等を異にするが同様の構造であり、 その説明は省略する。
(ヘラ竿の製造方法)
次に、 このヘラ竿の製造方法について説明する。 例えば、 全長が 2700mmであ り、 その第 2次の共振振動数を 5.45Hzに設定する場合を説明する。
まず、 予定する元竿 1〜穂先竿 3を連結して一本のヘラ竿とした際の釣竿の第 2次の共振振動数が 5.45Hzとなるように、 竿体上の重量バランスを計算する。 即 ち、 予定する元竿 1〜穂先竿 3の径 ·長さ 'プリプレダ素材 ·高比重プリプレダ 素材の弾性 ·重さなどから、 第 2次の共振振動となる際の釣竿の振動数 (共振振 動数) が 5.45Hzとなるような各竿体における重量分布をシミュレートし、 上述の 高比重プリプレダ素材を積層するべき軸方向範囲を個々の竿体毎に算出する。 こ のような重量分布をシミュレートするには、 有限要素法あるいはリンクモデル等 の手法を用いることが出来る。
例えば、 有限要素法による解析としては、 図 6に示すように、 釣竿を節点で並 進方向と回転方向との 2つの自由度を有する N個の一次元のはり要素から構成さ れる片持ちの弾性はりでモデル化する。 各はり要素では要素内で一様断面である と仮定する。 一端を固定端とし、 他端を自由端としての境界条件のもとで共振振 動数それに対応するモード形状を計算する。
また、 リンクモデルによる解析としては、 釣竿は使用中に大きな変形を起こす ので大変形 (幾何学的非線形性) に'対応したマルチボディダイナミクスによるモ デル化を行う。 図 5に示すよう.に、 ここでは、 節点に回転パネを有する N個の剛 体リンクからなるマルチボディを用いてモデル化する。 リンクモデルを用いて釣 竿をモデル化することにより、 隣り合う剛体リンク同士の姿勢角に制限がなくな るので、 どのような大変形でも記述することができる。 拘束条件付きの釣竿の運 動方程式は、 式 1として導出できる。
(式 1 )
Figure imgf000009_0001
IY J
次に、 図 3 (a)に示すように、 それぞれの竿体の径乃至テーパ変化にあわせて設 けられているマンドレル 1 0 0に必要なプリプレダ素材 P 1を卷回し (上述のよ うに、テープ状のものゃシート状のものを巻回できる)、上記算出した所定の軸方 向範囲には高比重プリプレダ素材 P 2を巻回する (図 3 (b))。 重量を十分に演出 するために高比重プリプレダ素材 P 2を数プライ巻回してもよい。 また、 図 3(b) では一枚の高比重プリプレダ素材 P 2のみをプリプレダ素材 P 1上に卷回してい るが、 軸方向に間隔を隔てて 2以上の高比重プリプレダ素材 P 2を卷回してもよ レ、。
さらに、 周面にエポキシ榭脂を塗布して、 元竿 1〜穂先竿 3に相当する竿素材 をそれぞれ作成し、 これらを炉内において焼成する。 焼成後、 周面を研磨加工し 、 両端を切断して所定の軸方向長さとして、 各竿体を製造する。
ここでは、 全長が 2700mmであり、 その第 2次の共振振動数を 5.45Hzに設定す る場合を例示しているが、 良好な振動モードにおける共振振動数は竿体の長さに 応じて異なる。
例えば、 第 1次の共振振動数でヘラ竿を設定する場合には、 一方の軸を全長, 他方の軸を共振振動数とした座標軸における表 1の領域内において、 釣竿の全長 毎に共振振動数を設定するとよい。
また、 第 2次の共振振動数でヘラ竿を設定する場合には > 一方の軸を全長, 他 方の軸を共振振動数とした座標軸における表 3の領域内において、 釣竿の全長毎 に共振振動数を 定するとよい。
さらに、 第 3次の共振振動数でヘラ竿を設定する場合には、 一方の軸を全長, 他方の軸を共振振動数とした座標軸における表 4の領域内において、 釣竿の全長 毎に共振振動数を設定するとよい。
なお、 このヘラ竿は、 高比重プリプレダを積層することで、 竿体の軸方向で部 分的に重量を変化させて重量分布を演出しているが、 例えば、 リング状の部材を 竿体の周面に配置する等の手法を採用することもできる。
この実施形態では、 ヘラ竿において説明しているが、 釣竿の種類はこれに限定 されるものではない。 ヘラ竿以外の種類の釣竿であっても、 一般に、 釣竿では仕 掛けの投げ入れや魚の取込などの際の操作性のために屈曲性 ·剛性 ·原状回復性 等が重要な要素とされるのであるから、 他の種類の釣竿に本発明を適用すること は当然に可能である。 例えば、 フライ用の釣竿, ルアー用の釣竿などに本発明を 適用することも極めて効果的である。 この場合、 釣糸ガイ ド所定の位置に配置し て、 竿体の軸方向で部分的に重量を変化させて重量分布を演出してもよい。
[実施例]
次に、 本発明について、 実施例を示して説明する。
〈各共振振動における下限値及び上限値について〉
釣竿においては、 「竿の調子」 を演出するべく、種々の重量及ぴ剛性を有するも のが存在する。 しかし、 これらの重量及び剛性も無制限に設定できるものではな い。 過度に重い釣竿は使用に耐え難く、 剛性が過剰あるいは過少な釣竿も魚を釣 り上げ得るものではない。 即ち、 釣竿として現実に用い得る釣竿の舍重量乃至剛 性が存在しており、 釣竿の良好な共振振動数を設定するにあたっても、 これを検 討する必要がある。 そこで、 製造可能な釣竿の重量及び剛性を周知の釣竿より算 出し、 ここから釣竿の良好な共振振動数を設定するにあたっての下限値及び上限 値を算定した。 .
釣竿の重量に関しては、 釣竿を製造する際に必要な素材, 塗装, 釣竿部品等を 加味して、 共振振動数を調整するために釣竿素材に付加可能な錘の重量を設定算 出した。 具体的には、 既存の複数のヘラ竿から、 付加可能な錘の重量をヘラ竿の 全長毎に算出した。 結果を表 5に示す。
(表 5 )
Figure imgf000011_0001
※単位は全て gである。 釣竿の剛性に関しては、 種々の測定方法があるが、 以下のような手法によって 剛性を測定することができる。 即ち、 複数の竿体を連結して一本の釣竿とし、 そ の竿元側端部を水平方向から 7 0度の角度で固定する。 穂先側端部に 3 0 0 g程 加重し、 先端の水平面からの高さが釣竿の全長の何%に当たるかでランク分けを する (図 5参照)。 そして、 ランク 0を先端位置が全長の 0〜 3 %の範囲、 ランク 1を先端位置が全長の 3〜 6 %の範囲、 ランク 2を先端位置が全長の 6〜 9 %の 範囲と定義する。 ヘラ竿では比較的剛性の低いものが好ましいとする釣人がいる ので、 ランク 0を実現するための釣竿の剛性を設定した。
このようにして得た付加可能な錘の重量及び剛性値から、 ヘラ竿の窠 1次〜第 3次の共振振動数として調整可能な範囲をシミュレートし算出した。 シミュレー シヨンには具体的には上述の有限要素法を用いた。 もっとも、 リンクモデル等の 手法を用いることも出来る。 重量層の配置については、 合計で表 5の付加可能重 量を超えない範囲で竿に重量層を 1箇所あるいは複数箇所配置する。 配置位置は 竿上いずれの位置でも構わないが、 共振振動しているときの振動の腹 .節の位置 に配置するのが振動をコントロールするには効果的である。 このためシミュレー シヨンにおいては、 振動の腹 ·節の位置に合計で表 5の付加可能重量を越えない 範囲で配置可能な様々な組合せにおける第 1次〜第 3次の共振振動数を算出し、 調整可能な振動数の範囲を得た。 このようにして得られた各釣竿の全長毎の第 1 次〜第 3次の共振振動数の下限値を以下の表 6に示す。
(表 6 )
Figure imgf000012_0001
※単位は Hz また、 一般的に塗装、 部品等の重量物を付加するにつれて共振振動数は低下す る。 従って塗装、 部品等の重量物を付加していない素材が各竿体の全長毎の第 1 次〜第 3次の共振振動数の上限値となる。 これを以下の表 7に示す。
(表 7 )
Figure imgf000012_0002
※単位は Hz このようにして得られる範囲内において、 それぞれ第 1次〜第 3次における共 振振動数を設定することで、 良好な釣竿の 「竿の調子」 を工業的に量産する釣竿 においても実現できることになる。
〈感性評価〉
全長 9尺 (2700mm) となるヘラ竿を、 それぞれ重量分布や剛性を変化させな がら 1 8種類のサンプルを製造し、 それぞれのヘラ竿毎に、 第 1次〜第 3次の共 振振動数を測定した (表 8参照)。
(表 8 )
Figure imgf000013_0001
これらの 1 8本のサンプルを 7人の釣師に提供し、 実際に竿を振ってもらい、 「総合的な振り心地」 について、 それぞれ 5点満点として、 感応評価テストを行 つた。 各釣師の評価を合計し、 これを総合得点 (3 5点満点) として、 各サンプ ルの得点とした。 (表 9参照)
(表 9 )
官能評価の結果と総合得点
Figure imgf000014_0001
このようにして得られた官能評価総合得点データと第 1次〜第 3次の共振振動 数について回帰分析を行いプロットした。
結果を表 1 0 1 2として示す。
(表 1 o)
第 1次共振振動数と得点
35
y = -55.28X + 120.75
30
25
20
15
10
5
0
1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00
第 1次の共振振動数 (H z)
第 1次共振振動数の増加に伴って感応評価総合得点は低下して行くことがわか る。 官能評価総合得点は平均値が 20. 9点、 標準偏差が 4. 3点であったので 、 1 6. 6点 (20. 9点— 4. 3点) を 「評価が悪レ、」 ·「評価が普通」 の境界 点とすると、 境界点での第 1次共振振動数は計算上 1.88Hzとなる。 凡そ、 本件 発明において 9尺 (2700mm) の際に特定する第 1次共振振動数の上限値に整合 している。
Tl o 第 2次共振振動数と得点
35
y = -9.6874x + 74.602
30
25
20
Hiia 15
5.00 5.20 5.40 5.60 5.80 6.00 6.20
第 2次の共振振動数 (H z)
第 2次共振振動数の増加に伴っても、 第 1次の場合と同様に感応評価総合得点 ' が低下している。 第 1次の場合と同様に 16. 6点を 「評価が悪い」 '「評価が普 通」 の境界点とすると計算上 5.99Hzとなる。 凡そ、 本件発明において 9尺 (270 Omm) の際に特定する第 2次共振振動数の上限値に整合している。
(表 1 2)
第 3次共振振動数と得点
Figure imgf000017_0001
11, 50 12.00 12.50 13.00 13.50
第 3次の共振振動数 (H z)
第 3次共振振動数の増加に伴つても、 第 1次の場合と同様に感応評価総合得点 が低下している。 第 1次の場合と同様に 1 6. 6点を 「評価が悪い j ·「評価が普 通」 の境界点とすると計算上 13.47Hzとなる。 凡そ、 本件発明において 9尺 (27 00mm) の際に特定する第 3次共振振動数の上限値に整合している。
[産業上の利用可能性]
以上のように、 本発明によれば、 天然素材から製造される釣竿と同様の良好な 竿の調子を演出できる。

Claims

請求の範囲
1 . 釣竿の全長と釣竿の第 1次の共振振動数との関係が、
一方の軸を全長, 他方の軸を共振振動数とした座標軸において、
全長が 2400mmの場合に 1.5〜2.2Hz、
全長が 2700mmの場合に 1·4〜1.8Ηζ、
全長が 3000mmの場合に 1.1〜1.6Ηζ、
全長が 3300mmの場合に 0·9〜1.6Ηζ、
全長が 3600mmの場合に 0.9〜1·5Ηζ、
全長が 3900nmiの場合に 0.9〜: l.4Hz、 となる各点で囲まれた領域内にある釣竿
2 . 釣竿の全長と釣竿の第 2次の共振振動数との関係が、
一方の軸を全長, 他方の軸を共振振動数とした座標軸において、
全長が 2400mmの場合に 5.2〜7.3Ηζ、
全長が 2700mmの場合に 4·5〜6.3Ηζ、
全長が 3000nimの場合に 4.3〜5.6Ηζ、
全長が 3300mmの場合に 3.7〜5.6Ηζ、
全長が 3600mmの場合に 3.5〜5.3Ηζ、
全長が 3900nmiの場合に 3.5〜4.9Ηζ、 となる各点で囲まれた領域内にある釣竿 。
3 . 釣竿の全長と釣竿の第 3次の共振振動数との関係が、
—方の軸を全長, 他方の軸を共振振動数とした座標軸において、
全長が 2400mmの場合に 11.6〜15.4Ηζ、
全長が 2700mmの場合に 10.5〜: 13.4Ηζ、
全長が 3000mmの場合に 9.4〜12.1Ηζ、
全長が 3300nmiの場合に 8.5〜: L2.0Hz、
全長が 3600mmの場合に 8.5〜: 11.2Hz、
全長が 3900mmの場合に 8.2〜: 10.5Ηζ、 となる各点で囲まれた領域内にある釣 竿。
4 . 魚釣りに用いる釣竿であって、
全長が 8尺 (2400mm) であり、 釣竿の第 1次の共振振動数が 1.5〜2.2Hzの範 囲にある釣竿。
5 . 魚釣りに用いる釣竿であって、
全長が 9尺 (2700mm) であり、 釣竿の第 1次の共振振動数が 1.4〜1.8Hzの範 囲にある釣竿。 ,
6 . 魚釣りに用いる釣竿であって、
全長が 1 0尺 (3000mm) であり、 釣竿の第 1次の共振振動数が 1.:!〜 1.6Hzの 範囲にある釣竿。
7 . 魚釣りに用いる釣竿であって、
全長が 1 1尺 (3300mm) であり、 釣竿の第 1次の共振振動数が 0.9〜1.6Hzの 範囲にある釣竿。
8 . 魚釣りに用いる釣竿であって、
全長が 1 2尺 (3600mm) であり、 釣竿の第 1次の共振振動数が 0.9〜1.5Hzの 範囲にある釣竿。
9 . 魚釣りに用いる釣竿であって、
全長が 1 3尺 (3900mm) であり、 釣竿の第 1次の共振振動数が 0.9〜1.4Hzの 範囲にある釣竿。
1 0 . 魚釣りに用いる釣竿であって、
全長が 8尺 (2400mm) であり、 釣竿の第 2次の共振振動数が 5.2〜7.3Hzの範 囲にある釣竿。
1 1 . 魚釣りに用いる釣竿であって、
全長が 9尺 (2700mm) であり、 釣竿の第 2次の共振振動数が 4.5〜6.3Hzの範 囲にある釣竿。
1 2 . 魚釣りに用いる釣竿であって、
全長が 1 0尺 (3000mm) であり、 釣竿の第 2次の共振振動数が 4.3〜5.6Hzの 範囲にある釣竿。
1 3 . 魚釣りに用いる釣竿であって、
全長が 1 1尺 (3300mm) であり、 釣竿の第 2次の共振振動数が 3.7〜5.6Hzの 範囲にある釣竿。
14. 魚釣りに用いる釣竿であって、
全長が 1 2尺 (3600mm) であり、 釣竿の第 2次の共振振動数が 3.5〜5.3Hzの 範囲にある釣竿。
1 5. 魚釣りに用いる釣竿であって、
全長が 1 3尺 (3900mm) であり、 釣竿の第 2次の共振振動数が 3.5〜4.9Hzの 範囲にある釣竿。
1 6. 魚釣りに用いる釣竿であって、
全長が 8尺 (2400mm) であり、 釣竿の第 3次の共振振動数が 11.6〜15.4Hzの 範囲にある釣竿。
1 7. 魚釣りに用いる釣竿であって、
全長が 9尺 (2700mm) であり、 釣竿の第 3次の共振振動数が 10.5〜13.4Hzの 範囲にある釣竿。
1 8. 魚釣りに用いる釣竿であって、
全長が 1 0尺 (3000mm) であり、 釣竿の第 3次の共振振動数が 9.4〜12.1Hz の範囲にある釣竿。
1 9. 魚釣りに用いる釣竿であって、
全長が 1 1尺 (3300mm) であり、 釣竿の第 3次の共振振動数が 8.5〜12.0Hz の範囲にある釣竿。
20. 魚釣りに用いる釣竿であって、
全長が 1 2尺 (3600mm) であり、 釣竿の第 3次の共振振動数が 8.5〜: L1.2Hz の範囲にある釣竿。
2 1. 魚釣りに用いる釣竿であって、
全長が 1 3尺 (3900mm) であり、 釣竿の第 3次の共振振動数が 8.2〜: L0.5Hz の範囲にある釣竿。
PCT/JP2003/000689 2003-01-24 2003-01-24 釣竿 WO2004064511A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004567145A JP4599173B2 (ja) 2003-01-24 2003-01-24 釣竿
PCT/JP2003/000689 WO2004064511A1 (ja) 2003-01-24 2003-01-24 釣竿
AU2003303782A AU2003303782A1 (en) 2003-01-24 2003-01-24 Fishing rod
CNB03825851XA CN100421554C (zh) 2003-01-24 2003-01-24 钓鱼杆
EP03815448A EP1595448A1 (en) 2003-01-24 2003-01-24 Fishing rod
TW093100930A TW200420226A (en) 2003-01-24 2004-01-14 Fishing rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/000689 WO2004064511A1 (ja) 2003-01-24 2003-01-24 釣竿

Publications (1)

Publication Number Publication Date
WO2004064511A1 true WO2004064511A1 (ja) 2004-08-05

Family

ID=32750599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000689 WO2004064511A1 (ja) 2003-01-24 2003-01-24 釣竿

Country Status (6)

Country Link
EP (1) EP1595448A1 (ja)
JP (1) JP4599173B2 (ja)
CN (1) CN100421554C (ja)
AU (1) AU2003303782A1 (ja)
TW (1) TW200420226A (ja)
WO (1) WO2004064511A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012222A (ja) * 2006-07-10 2008-01-24 Yokohama Rubber Co Ltd:The スウィングシミュレーション方法およびゴルフクラブの設計方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5517512B2 (ja) * 2009-07-13 2014-06-11 株式会社シマノ 釣り竿

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04320637A (ja) * 1991-04-19 1992-11-11 Daiwa Seiko Inc 釣竿
JPH0634459U (ja) * 1992-10-16 1994-05-10 ダイワ精工株式会社 釣 竿
JP2000083518A (ja) * 1998-09-14 2000-03-28 Shimano Inc 釣 竿

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04207129A (ja) * 1990-11-30 1992-07-29 Kazuo Nomura 多根強健育苗法とその育苗装置
US6092324A (en) * 1995-05-26 2000-07-25 The Orvis Company, Inc. Damped fishing rod
JP2000038518A (ja) * 1998-07-24 2000-02-08 Dainippon Ink & Chem Inc 樹脂組成物およびそれを含有するコーティング剤
JP2001204305A (ja) * 2000-01-27 2001-07-31 Ryobi Ltd 釣 竿
TW523397B (en) * 2001-05-02 2003-03-11 Shimano Kk Fishing rod with plug-in fishing line

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04320637A (ja) * 1991-04-19 1992-11-11 Daiwa Seiko Inc 釣竿
JPH0634459U (ja) * 1992-10-16 1994-05-10 ダイワ精工株式会社 釣 竿
JP2000083518A (ja) * 1998-09-14 2000-03-28 Shimano Inc 釣 竿

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012222A (ja) * 2006-07-10 2008-01-24 Yokohama Rubber Co Ltd:The スウィングシミュレーション方法およびゴルフクラブの設計方法

Also Published As

Publication number Publication date
JPWO2004064511A1 (ja) 2006-05-18
TW200420226A (en) 2004-10-16
AU2003303782A1 (en) 2004-08-13
EP1595448A1 (en) 2005-11-16
TWI326580B (ja) 2010-07-01
AU2003303782A2 (en) 2004-08-13
CN1735340A (zh) 2006-02-15
JP4599173B2 (ja) 2010-12-15
CN100421554C (zh) 2008-10-01

Similar Documents

Publication Publication Date Title
CN110362898B (zh) 用于单根造纸纤维特性及动态形变过程的计算机模拟方法
KR100970510B1 (ko) 장대 및 낚싯대
WO2004064511A1 (ja) 釣竿
JP2006031430A (ja) ゴルフクラブの設計または選定支援装置およびゴルフボールの設計または選定支援装置
JP4385023B2 (ja) 釣竿の製造方法
KR100938379B1 (ko) 낚싯대군
KR100942710B1 (ko) 낚싯대
JP2005027587A (ja) 竿体及び釣竿
JP5476025B2 (ja) ゴルフクラブシャフトの設計変数及び製造方法
JP2003058584A (ja) ゴルフクラブシャフトの静的物性値のシミュレーション方法及び該シミュレーション方法を用いたゴルフクラブシャフト設計システム
JP2006087451A (ja) ゴルフスウィングの評価方法
JP2004290391A (ja) ゴルフシャフト
JP5517512B2 (ja) 釣り竿
JP6492639B2 (ja) ゴルフクラブ及びシャフト
TW469139B (en) Golf club shaft with controllable feel and balance using combination of fiber-reinforced plastics and metal-coated fiber-reinforced plastics
JP2005160729A (ja) ゴルフクラブシャフト

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN JP KR NZ US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004567145

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057013081

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003825851X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003815448

Country of ref document: EP

Ref document number: 2003303782

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020057013081

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003815448

Country of ref document: EP