WO2004059156A2 - Combinaison de dispositifs de couplage de force et de chaleur - Google Patents

Combinaison de dispositifs de couplage de force et de chaleur Download PDF

Info

Publication number
WO2004059156A2
WO2004059156A2 PCT/EP2003/013875 EP0313875W WO2004059156A2 WO 2004059156 A2 WO2004059156 A2 WO 2004059156A2 EP 0313875 W EP0313875 W EP 0313875W WO 2004059156 A2 WO2004059156 A2 WO 2004059156A2
Authority
WO
WIPO (PCT)
Prior art keywords
heat
absorption capacity
power
cogeneration
heat absorption
Prior art date
Application number
PCT/EP2003/013875
Other languages
German (de)
English (en)
Other versions
WO2004059156A3 (fr
Inventor
Detlef Wüsthoff
Oliver Mehler
Original Assignee
Enginion Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enginion Ag filed Critical Enginion Ag
Priority to AU2003293793A priority Critical patent/AU2003293793A1/en
Publication of WO2004059156A2 publication Critical patent/WO2004059156A2/fr
Publication of WO2004059156A3 publication Critical patent/WO2004059156A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D18/00Small-scale combined heat and power [CHP] generation systems specially adapted for domestic heating, space heating or domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/02Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/12Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having two or more accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/10Gas turbines; Steam engines or steam turbines; Water turbines, e.g. located in water pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2103/00Thermal aspects of small-scale CHP systems
    • F24D2103/10Small-scale CHP systems characterised by their heat recovery units
    • F24D2103/13Small-scale CHP systems characterised by their heat recovery units characterised by their heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2103/00Thermal aspects of small-scale CHP systems
    • F24D2103/10Small-scale CHP systems characterised by their heat recovery units
    • F24D2103/17Storage tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Definitions

  • the invention relates to a composite of a plurality of cogeneration plants and / or cogeneration plants for the generation of
  • the invention further relates to a method for operating such a network and the use of a power arm coupling system in such a network.
  • Thermal energy is understood here to mean heat if the system is a combined heat and power system. Thermal energy can also be negative thermal energy, i.e. Be cold if the system is a combined heat and power system.
  • thermodynamics thermal energy is not completely converted into mechanical work. There is always residual heat, which is used to heat houses and to warm up Industrial water is used. For example, in modern systems, domestic water is heated to a temperature of 60 ° C and heating water to 40 ° C. The remaining energy can be converted into electrical current.
  • the known cogeneration plants are usually to a public
  • Power grid connected to which the electricity generated is fed. Otherwise they are independent. Every time heat is requested in heat-controlled systems, the cogeneration system is activated and, in addition to the required heat, additional electricity is generated for feeding into the power grid. Conversely, the operator of the cogeneration plant can usually use electricity from the power grid
  • Nuclear power plants or coal-fired power plants serve the basic supply and cover the minimum requirements. These cannot be switched on or off at short notice or dynamically modulated. However, at certain times, for example, early in the morning or in the evening, the electricity requirement is considerably higher. Since electricity cannot be stored on a large scale, so-called peak load power plants are used at these times. For example
  • the current demand can be determined. However, it is also possible to use a statistically determined current requirement that predicts the time course of the current requirement with sufficient accuracy.
  • the electricity-generating system is no longer based on the current heat requirements of the households or companies involved, but instead generates electricity whenever it is needed and on the systems where this is still economically possible.
  • the heat generated is stored in the heat store and can also be used at a later time.
  • the basic idea is that heat can be stored better in heat storage than electrical current, which B. in pump power plants would have to be stored in a roundabout way.
  • the reservoir preferably comprises a water reservoir.
  • the combined heat and power plant contains a heat exchanger through which working fluid flows to produce hot, low and high
  • Pressurized work equipment an engine for expanding the work equipment under work and a heat exchanger for recovering heat from the work equipment.
  • the engine can be formed by a rotary piston machine, the heat exchanger is a condenser for condensing the working fluid and there can be a feed water pump for conveying the working fluid in the direction of the
  • Heat exchanger may be provided. This creates a steam power process, for example a Clausius-Rankine cycle.
  • the working medium used in the cycle can be water or another suitable working medium.
  • the water vapor is overheated in the heat exchanger and can be expanded in the rotary piston machine. But it is also every other
  • Expansion machine possible with which a shaft can be driven.
  • the compressed water vapor is expanded with mechanical work and condensed to liquid water in a condenser. This releases heat that can be supplied to the heat accumulator.
  • the rotating shaft operates a power generator, which is connected to the public power grid.
  • a fuel cell heating device or any other working machine can be used in which electrical energy is obtained from heat.
  • the heat exchanger is preferably charged with the hot gases of a radiation burner, in particular a pore burner. This enables high heat transfer and can be set up in a very compact and easily controllable manner.
  • a radiation burner in particular a pore burner.
  • another burner for example the already existing burner or boiler of an existing one, can also be used
  • Heating system can be used.
  • the means for detecting the heat absorption capacity remaining in the heat stores include a thermometer for measuring the current water temperature in the water reservoir, and computing means for calculating the heat absorption capacity from the current water temperature. This can be done using a calculation formula, on the basis of data records or on the basis of stored characteristic curve fields.
  • a central control unit is preferably provided, which communicates with local control units of the combined heat and power units.
  • the network then works according to the master-slave principle, in which all information runs in a star shape from and to the central control unit.
  • This control unit can be provided with means for optimizing the efficiency of the network.
  • the activated cogeneration plants can be prioritized according to their individual efficiency. Depending on which system, for example, has the largest heat absorption capacity, this is then activated first.
  • the sequence of the query can be learned, for example, via a neural network. In systems where there is often a high heat requirement, it can be assumed that there is also a high heat absorption capacity and that a significant amount of electricity can be generated. Such systems can then be queried first.
  • the means for optimizing the efficiency can include storage means with which data about past process sequences can be stored. A statistical evaluation can then take place from this data, which likewise enables the query sequence and the activation to be optimized.
  • An artificial intelligence for example a neural network, can change the behavior of the
  • means are provided for detecting faulty or heat and power plants that require maintenance, and means for transmitting an error message to the central control unit.
  • communication means for direct communication of the combined heat and power units can be provided.
  • the central control unit can then be dispensed with if these are set up accordingly.
  • a control element is provided for a plurality of cogeneration plants having the same effect. This saves complex control elements when large amounts of electricity and heat are to be generated in parallel and simultaneously and the heat accumulator (s) have the appropriate heat absorption capacity.
  • the heat absorption capacity of a storage tank is characterized by the steps (a) connecting a cogeneration plant or a cogeneration plant to the storage facility,
  • combined heat and power plants can be connected to any, possibly unknown, heat storage.
  • the initialization process which takes place only once, when installing the combined heat and power plant, in particular, determines the maximum heat absorption capacity and can be stored in a memory.
  • the process can be automated and controlled by suitable software. Then the requirements for the knowledge of the installer are reduced and sources of error avoided.
  • the heat can be supplied by operating the combined heat and power plant at a fixed output.
  • the heat can be supplied by operating the combined heat and power system at a fixed temperature of the flow water supplied to the heat accumulator.
  • Heat supply in a fixed time interval and measurement of the temperature of the return can then be determined by a functional relationship or from characteristic curves, the heat absorption capacity.
  • Embodiments of the invention are the subject of the dependent claims.
  • Fig.l shows a network of six cogeneration plants, which are controlled by a central control unit.
  • Fig. 2 shows a network of equal, individually controlled power
  • FIG. 1 shows a composite, generally designated 10, of six power-arm coupling systems 12, 14, 16, 18, 20 and 22. Each of the combined heat and power plants 12, 14, 16, 18, 20 and 22 is with a generator shown separately
  • a central control unit 30 receives information about the electricity demand queried by the power network 26. This is shown by an arrow 32. If there is a demand for electricity that is not covered by the basic supply from other power plants or if the price of electricity is high, communication between the central control unit 30 and individual control units 34, 35, 37 and 39 of the combined heat and power plants is established. The heat absorption capacity of the heat accumulators 36, 38, 40, 42 and 46 connected to the combined heat and power plants is determined. In addition, the maintenance status of the combined heat and power plants, heat storage and the supply lines is determined. If a cogeneration plant fails because it is not in proper condition, it will not be taken into account in the further procedure. This is symbolized by the crossed out facility marked with ERROR consisting of 22, 35 and 38.
  • the heat absorption capacity of the other heat stores is determined.
  • the heat accumulator labeled 36 already has a high temperature. Its heat absorption capacity is almost exhausted.
  • the heat accumulators 40 and 42 have a medium temperature and accordingly a limited heat absorption capacity which is sufficient for electricity production.
  • the heat accumulator 40 constantly supplies heat to a heat consumer. This is represented by arrow 44.
  • the central control unit 30 has "learned" this by regularly querying the heat absorption capacity. Accordingly, it is to be expected that the power production with the combined heat and power system 12 can be carried out with higher efficiency than with the system 18.
  • the very large heat store 46 has a particularly low temperature and thus a very high heat absorption capacity.
  • Thermometers are arranged in the heat stores.
  • the thermometers deliver that
  • Temperature information to the individual control units 34, 35, 37 and 39 The latter communicates the temperature to the central control unit 30.
  • the latter determines the heat absorption capacity from the absolute temperature data or else temporal profiles and the stored data about the respective heat accumulator. Alternatively, the heat absorption capacity is already in the individual control units 34, 35, 37 and
  • this value e.g. B. also in the form of a boolean value heat absorption possible / heat absorption not possible to the central control unit. In the latter case, it is not possible to prioritize the connected systems. However, if there is information about which system can still produce how much electricity and, if so, with what degree of efficiency, it can be prioritized.
  • An activation signal is first communicated from the central control unit 30 to the individual control units 34, 35, 37 and / or 39. These activate the cogeneration plants in the order of the priority list. Conversely, the shutdown of the systems that are no longer required is carried out if they have not already done so due to
  • FIG. A total of 3 independent heat and electricity generators are shown here, which are also from cogeneration
  • Coupling systems 52 with heat storage 50 exist.
  • the heat and power generators are connected to an individual control system 54 for local heat and power production.
  • Each control system 54 evaluates the incoming data with regard to heat and / or electricity requirements itself. Then the control system 54 decides according to predetermined criteria, for example capacity of the heat store, energy requirement, electricity price, network requirement or the like, whether the connected system is to produce electricity economically or not.
  • the data of the other combined heat and power plants, the entire control systems of which are linked to one another via any connection or communication means, are taken into account. The advantage of this way of working is that any number of systems can be connected. You do not need to be linked to a central computer.
  • the current generators 24 are provided with means which ensure that the mains frequency is maintained by many feeders. So that no or little effort to Ne 'tzstabilmaschine is required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

L'invention concerne une combinaison de plusieurs dispositifs de couplage de force et de chaleur et/ou de dispositifs de couplage de force, de chaleur et de froid, destinée à produire de la chaleur et du courant électrique, l'énergie thermique pouvant être stockée dans des accumulateurs et le courant électrique pouvant être acheminé vers un réseau électrique. La combinaison selon l'invention est caractérisée en ce qu'elle comporte des éléments de détection de la capacité de stockage de chaleur restante dans les accumulateurs de chaleur, des éléments de sélection destinés à la sélection des dispositifs dont la capacité de stockage de chaleur maximale n'est pas encore atteinte, et permettant encore de produire du courant, et des éléments d'activation destinés à l'activation des dispositifs sélectionnés en fonction des besoins en courant.
PCT/EP2003/013875 2002-12-20 2003-12-08 Combinaison de dispositifs de couplage de force et de chaleur WO2004059156A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003293793A AU2003293793A1 (en) 2002-12-20 2003-12-08 Combination of heat and power coupling systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10261171A DE10261171B3 (de) 2002-12-20 2002-12-20 Verbund von Kraft-Wärme-Kopplungsanlagen
DE10261171.8 2002-12-20

Publications (2)

Publication Number Publication Date
WO2004059156A2 true WO2004059156A2 (fr) 2004-07-15
WO2004059156A3 WO2004059156A3 (fr) 2004-10-07

Family

ID=32336610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/013875 WO2004059156A2 (fr) 2002-12-20 2003-12-08 Combinaison de dispositifs de couplage de force et de chaleur

Country Status (3)

Country Link
AU (1) AU2003293793A1 (fr)
DE (1) DE10261171B3 (fr)
WO (1) WO2004059156A2 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1632651T3 (da) * 2004-09-02 2007-04-23 Swe Strom Und Fernwaerme Gmbh Fremgangsmåde til fremstilling af vandoplöselige katalysatorer
DE202005010265U1 (de) * 2005-06-28 2006-06-29 Reichelt, Maureen BHKW-System auf Abfall/Biomassebasis mit Wärmekopplung unter Einbezug von Alt-Deponien
US20100298996A1 (en) * 2007-10-16 2010-11-25 Gadinger Joerg Method for operating a power station
EP2163735A1 (fr) 2008-08-21 2010-03-17 C.R.F. Società Consortile per Azioni Système et procédé pour la gestion multi-objectifs de l'énergie électrique et thermique générée par un système de co/trigénération d'énergie dans une centrale électrique à sources multiples
DE102009011778A1 (de) * 2009-03-09 2010-09-23 Gerhard Prinz Energieversorgungssystem
DE102009044161A1 (de) * 2009-10-01 2010-04-08 Grönniger, Stefan System und Verfahren zur Steuerung miteinander gekoppelter Energieerzeugungs-, Speicher- und/oder Verbrauchseinheiten
PL424312A1 (pl) * 2018-01-19 2019-07-29 Wasko Spółka Akcyjna Autonomiczna stacja ładowania energią elektryczną pojazdów elektrycznych zasilana z układu kogeneracyjnego

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752697A (en) * 1987-04-10 1988-06-21 International Cogeneration Corporation Cogeneration system and method
DE4404272A1 (de) * 1993-02-10 1994-08-11 Hitachi Ltd Verfahren zum Betreiben von Anlagen und System zur Steuerung des Betriebs von Anlagen
DE19602330C1 (de) * 1996-01-24 1997-06-26 Meyer Fa Rud Otto Blockheizkraftwerk sowie Verfahren zu dessen Betrieb
WO1997038210A1 (fr) * 1996-04-03 1997-10-16 Siemens Aktiengesellschaft Procede et installation permettant de faire fonctionner une centrale thermique en montage-bloc avec chauffage a distance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003052127A (ja) * 2001-08-03 2003-02-21 Toho Gas Co Ltd コージェネレーション装置のネットワークシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752697A (en) * 1987-04-10 1988-06-21 International Cogeneration Corporation Cogeneration system and method
DE4404272A1 (de) * 1993-02-10 1994-08-11 Hitachi Ltd Verfahren zum Betreiben von Anlagen und System zur Steuerung des Betriebs von Anlagen
DE19602330C1 (de) * 1996-01-24 1997-06-26 Meyer Fa Rud Otto Blockheizkraftwerk sowie Verfahren zu dessen Betrieb
WO1997038210A1 (fr) * 1996-04-03 1997-10-16 Siemens Aktiengesellschaft Procede et installation permettant de faire fonctionner une centrale thermique en montage-bloc avec chauffage a distance

Also Published As

Publication number Publication date
AU2003293793A8 (en) 2004-07-22
AU2003293793A1 (en) 2004-07-22
WO2004059156A3 (fr) 2004-10-07
DE10261171B3 (de) 2004-06-24

Similar Documents

Publication Publication Date Title
EP3590169B1 (fr) Procédé de gestion d'énergie pour système énergétique et système énergétique
DE102016015503A1 (de) Heiz- und/oder Kühlsystem mit prädiktivem Energiemanagement
EP0697120B1 (fr) Appareil de gestion pour generateurs d'energie electrique
EP3683648B1 (fr) Procédé de commande d'une installation d'alimentation en énergie
EP3433827B1 (fr) Procédé de commande d'une installation de distribution d'énergie multivalente
EP3561983A1 (fr) Procédé de fonctionnement d'un système d'alimentation en énergie
DE102013108879A1 (de) Verfahren zum Betreiben eines Kraftwerkssystems
DE102012103617B4 (de) Fossilbefeuertes Kraftwerk mit Wärmespeicher
DE10261171B3 (de) Verbund von Kraft-Wärme-Kopplungsanlagen
WO2009077163A2 (fr) Système de chauffage producteur de courant
WO2014041037A2 (fr) Dispositif convertisseur d'énergie et procédé pour fournir une puissance de régulation
DE102010025115A1 (de) Verfahren zum Betreiben einer Solaranlage
DE102018213862A1 (de) Verfahren zum Steuern eines Austauschs von Energie zwischen Energiesubsystemen zu angeglichenen Konditionen; Steuerungszentrale; Energiesystem; Computerprogramm sowie Speichermedium
EP2700802B1 (fr) Centrale de cogénération avec un accumulateur d'électricité intégré
DE2605527A1 (de) Heizkraftwerk
DE102007019351B3 (de) Verfahren zur hierarchischen Energieversorgung eines Warmwasserspeichers
DE202015004324U1 (de) Steuereinheit als Energieleitführung der BHKW Schwarmstromerzeugung und Verwendung
DE102021006564A1 (de) Verfahren zum betreiben eines heizungssystems mit brennstoffzelle und heizungssystem mit brennstoffzelle
DE102021203798A1 (de) Verfahren zum betreiben eines heizungssystems mit brennstoffzelle und heizungssystem mit brennstoffzelle
EP3433684A1 (fr) Dispositif et procédé de configuration d'une installation d'alimentation en énergie multivalente
EP3433824B1 (fr) Procédé pour commander une installation d'alimentation en énergie polyvalente
EP3433825B1 (fr) Procédé de commande d'un système d'alimentation en énergie électrique multivalent
DE102018110044B4 (de) Verfahren und Vorrichtung zum aufeinander abgestimmten Betreiben von elektrischen Einrichtungen
DE102015010941A1 (de) Netzstabilisierende Stromversorgung
AT517698B1 (de) Warmwasserbereitungsanlage

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP