WO2004055206A1 - Verfahren zur generierung eines gentechnisch veränderten organismus für das wirk substanzscreening - Google Patents

Verfahren zur generierung eines gentechnisch veränderten organismus für das wirk substanzscreening Download PDF

Info

Publication number
WO2004055206A1
WO2004055206A1 PCT/EP2003/012870 EP0312870W WO2004055206A1 WO 2004055206 A1 WO2004055206 A1 WO 2004055206A1 EP 0312870 W EP0312870 W EP 0312870W WO 2004055206 A1 WO2004055206 A1 WO 2004055206A1
Authority
WO
WIPO (PCT)
Prior art keywords
organism
expression
protein
gene
genetically modified
Prior art date
Application number
PCT/EP2003/012870
Other languages
English (en)
French (fr)
Inventor
Bert Klebl
Anja Stadler
Rosemarie SÖLLNER
Ekkehard Leberer
Almut Nitsche
Original Assignee
Aventis Pharma Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aventis Pharma Deutschland Gmbh filed Critical Aventis Pharma Deutschland Gmbh
Priority to CA002509333A priority Critical patent/CA2509333A1/en
Priority to AU2003283409A priority patent/AU2003283409A1/en
Priority to DE50313671T priority patent/DE50313671D1/de
Priority to JP2004559696A priority patent/JP4630067B2/ja
Priority to AT03775367T priority patent/ATE508201T1/de
Priority to EP03775367A priority patent/EP1576186B1/de
Priority to CN2003801065234A priority patent/CN1726290B/zh
Publication of WO2004055206A1 publication Critical patent/WO2004055206A1/de
Priority to NO20053344A priority patent/NO20053344D0/no
Priority to HK06107826.9A priority patent/HK1087734A1/xx

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/033Rearing or breeding invertebrates; New breeds of invertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1086Preparation or screening of expression libraries, e.g. reporter assays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1072Differential gene expression library synthesis, e.g. subtracted libraries, differential screening
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1079Screening libraries by altering the phenotype or phenotypic trait of the host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms

Definitions

  • heterologous expression means the expression of a gene foreign to the organism or the expression of a gene inherent in the organism with a changed expression pattern, in particular increased or reduced expression, and / or temporally and / or spatially (for example other compartments, for higher organisms for example other tissues) altered expression.
  • the heterologous expression leads to a detectable, changed phenotype, usually an inhibition of yeast growth.
  • growth inhibition means a reduced proliferation rate and / or a reduced growth in size and also includes cell death (apoptotic or necrotic).
  • the type of growth inhibition that occurs also depends on the organism, so proliferation arrest or lysis is more likely to be observed in yeasts, whereas apoptosis can also be observed in some cases in eukaryotic cells that originally come from multicellular cells. If the heterologous expression leads to an externally perceptible change in the behavior and / or morphology of the organism (i.e. a changed phenotype), the genetically modified organism can simply be used for the active substance screening, the effectiveness of the tested substances based on their ability, the phenotype (for example the growth inhibition) can be canceled or reduced, can be determined.
  • any externally perceptible change in the genetically modified organism shape, size, etc. or its behavior (growth, cell division rate, etc.) is compared to that of the genetically unmodified or that or that Heterologous proteins or fragments not expressing organism. Phenotyping thus means bringing about such a change.
  • this prior art method has the disadvantage that only a small proportion of heterologously expressed genes produce a phenotype of the genetically modified organism that can be used for active substance screening.
  • the invention is based on the knowledge of the inventors that the lack of a detectable phenotype in the case of heterologous expression of most genes is due to the fact that the genetically modified organism up-regulates or down-regulates the expression of its own genes in response to the expression of the heterologously expressed protein or protein fragment compensatively differentially regulated).
  • differentially regulated means differently regulated than in the non-genetically modified organism, or without the heterologous expression of the heterologously expressed protein or protein fragment.
  • Compensatory means that this differential gene regulation is a response to the heterologous expression of the protein or protein fragment.
  • the invention enables the development of a platform technology in a cellular, in contrast to the simple biochemical, model, preferably the yeast.
  • the assay system can be used to identify inhibitors, for example from chemical libraries, from combichem libraries and from natural product extracts.
  • the assay system can be adapted to 96-, 384- or 1536-well plates or other formats common for cellular assays. The format to be selected depends in part. also depending on the chosen organism, the selection lies in the area of professional skill.
  • the method according to the invention is particularly suitable for genes or proteins or fragments whose heterologous expression in the desired organism does not lead to a detectable change in the phenotype compared to that of the genetically unchanged organism or which expresses the protein or fragment non-heterologously.
  • protein kinases can be tested as well as other gene products that trigger a transcriptional response.
  • it can also be used in the case of a detectably changed phenotype, in particular when a changed phenotype can be detected, but is not suitable or is not suitable for use in active substance screening for certain reasons. This can be enhanced by the phenotyping or changed so that it can be used for drug screening.
  • phenotyping therefore denotes induction or Enhancement of a phenotype in the genetically modified organism heterogeneously expressing the protein or fragments or the proteins or fragments or distinguishable from the non-genetically modified organism.
  • Suitable organisms are preferably cells, here eukaryotic cells as well as prokaryotic, but also multicellular, non-human organisms which are suitable for active substance screening, e.g. Drosophila and preferably C. Elegans.
  • Preferred eukaryotic cells are cultivated cell lines that were originally obtained from multicellular organisms, e.g. 3T3, CHO, Heia, but also other or eukaryotic unicellular organisms, especially yeasts.
  • yeasts those of the strains S. cerevisiae or S. pombe are particularly suitable.
  • Suitable laboratory strains of yeast cells or suitable eukaryotic cell lines are well known to the person skilled in the art.
  • the heterologous expression can include the introduction of a foreign gene or the changed expression of a gene belonging to the organism, for example through the introduction of a corresponding expression vector.
  • the necessary Genetic engineering changes can relate to changes in the organ set (e.g. due to stable vectors that integrate into the genome or through different types of mutagenase), be episomal or simply include the introduction of suitable vectors that require constant selection by means of one or more selection markers to remain in the organism , The most suitable type depends on various factors, including the type of organism, and can easily be determined by the person skilled in the art.
  • This can be brought about or enhanced, for example, by reducing or abolishing the expression of one or more genes that are upregulated in a compensatory manner (this can be done, for example, by genomic knock out of one or more of the genes that are compensatively differentially regulated or by mutagenesis) or by increasing the expression of one or more compensatory downregulated ones Genes occur.
  • Suitable reporters are known to the person skilled in the art, in particular all types of self-luminous proteins (for example GFP, BFP etc.) are suitable, but also other reporters with which a detectable signal can be generated (for example luciferase, ⁇ -galactosidase) and growth markers for auxotrophic strains such as HIS3, URA3, LEU2, TRP1, and antibiotic resistance genes such as for Kanamycin or G418. Other types of phenotyping are also conceivable.
  • the phenotyping is carried out by deletion, mutagenesis or overexpression of at least one compensatively regulated gene.
  • the genetic modification expediently comprises the introduction of a vector which enables the inducible expression of the protein or protein fragment, preferably one which is regulated with promoters regulated by galactose (GAL1 / GAL10) or copper (CUP1), vector which can be induced by tetracycline, or tissue-specific inducible promoters such as e.g. hsp16-2, unc-119, unc-54, mec-7, or myo-3 in C. elegans. ,
  • GAL1 / GAL10 galactose
  • CUP1 copper
  • the organism is C.elegans, a prokaryotic or eukaryotic cell, and particularly preferably a yeast cell, preferably a yeast cell from the S. cerevisiae strain.
  • the analysis of the changed gene expression is preferably carried out by DNA / RNA profiling with the aid of cDNA or oligonucleotide microarrays, but can in principle include all changes in the mRNA or protein steady state (transcription, translation, stabilization etc.), and thus also by protein profiling as well as with the help of protein arrays (.
  • the phenotyping is carried out by reducing or abolishing the compensatory differential regulation. If the compensatively differentially regulated gene is more strongly expressed than in control organisms, the reduction or elimination takes place by completely or partially inhibiting the increased expression.
  • the knock out of the compensatively differentially regulated gene comprises the knock in of a reporter gene such as, for example, ⁇ -galactosidase, luciferase, or growth markers such as HIS3, ADE2, URA3, or resistance markers such as, for example, for kanamycin.
  • a reporter gene such as, for example, ⁇ -galactosidase, luciferase, or growth markers such as HIS3, ADE2, URA3, or resistance markers such as, for example, for kanamycin.
  • the reporter gene can then be used in the subsequent assay as a signal to detect and quantify the effectiveness of the active substances to be tested.
  • at least part of the coding sequence of the differentially regulated gene is preferably exchanged for the coding sequence (also includes parts of this sequence which are sufficient to be detectable) of a reporter gene (for example luciferase, ⁇ -galactosidase, etc.).
  • a reporter gene for example luciferase, ⁇ -galactosidase, etc.
  • the compensatively differentially regulated gene is less strongly expressed than in the control organism, the reduction or abolition takes place by increasing the expression, preferably by crossing, introducing an episomal or another selectable expression vector or by genomic knock-in (the above methods are particularly suitable for the Use of yeast as an organism).
  • the reduction or removal of the compensatory differential regulation preferably leads to an inhibition of growth of the genetically modified organism, but other phenotypes can also be advantageous.
  • Another aspect of the invention relates to a genetically modified, phenotyped organism that was produced by the method according to the invention.
  • the invention relates to a genetically modified organism with genetically modified expression of at least one of its own or a foreign gene which leads to compensatory differential regulation of at least one other gene which is specific to the organism, and thus preferably prevents or inhibits the occurrence of an evaluable / detectable / usable phenotype and with phenotype brought about by reducing / abolishing the compensatory differential expression of the gene or by labeling the compensatively differentially regulated gene product.
  • Another aspect of the invention relates to the use of a genetically modified organism produced according to the invention for screening for substances with an effect on the function of the heterologous protein or protein fragment and also for a method for identifying substances with an effect on the function of the heterologous protein or protein fragment.
  • the invention also relates to an assay for active substance screening with a phenotyped organism according to the invention by determining the phenotype (eg growth inhibition due to induced heterologous overexpression of a protein), bringing the substance to be tested into contact with the organism and observing a possible one Change in the phenotype, preferably its at least partial decline in behavior or morphology of the wild-type organism (that is, at least partial restoration of the phenotype of the parent organism, for example cancellation of growth inhibition). Also affected are substances which are identified as effective by a method or an assay according to the invention.
  • the phenotype eg growth inhibition due to induced heterologous overexpression of a protein
  • the phenotype that is produced in this case is the inhibition of yeast growth.
  • the test principle is based on the inhibition of yeast growth, which are used as living “test tubes”. Inhibition of growth means here, for example, a cell cycle arrest or the lysis of the affected cells.
  • Yeasts are used because their genetic manipulation makes them ideal. Human (or other exogenous) kinases are overexpressed in yeast under the control of a galactose inducible promoter (GAL1 / 10). The yeasts are transformed and cultivated using standard methods. For example, vectors from the p41x-GAL1 or p42x-GAL11 series are used as the vector.
  • YRWS21 MATa pdr1 D :: KanMX pdr3D :: KanMX his3D1 leu2D0 met15D0 lys2D0 ura3D0
  • 2.YRWS39 MATa pdr5D :: KanMX yor1 D :: KanMX his3D1 leu2D0 MET15 lys2D0 ura3D0
  • 3.YRWXD14 MAT1 p2M3 MET15 lys2D0 ura3D0
  • High-throughput screening can then be used to search for biological and chemical molecules which reduce or remove the inhibition of growth - ie which lead to the growth of the yeast cultures. All the techniques described to date are known to the person
  • the desired protein kinases are cloned into a yeast expression vector of choice, in this example p413 GAL1 (D. Mumberg et al. (1994) full length and with a C-terminal tag, e.g. MYC tag).
  • p413 GAL1 D. Mumberg et al. (1994) full length and with a C-terminal tag, e.g. MYC tag.
  • the overexpression of the exogenous kinases in the yeast is increased by adding galactose according to the standard protocol (20 g / ml medium) for 4 to 6 Hours at 30 ° C induced.
  • the expression of the kinases is determined by immunoblots according to the standard protocol with the aid of antibodies against the selected day (for example: anti-MYC: AB1364 (Chemikon) or M5546 (Sigma); anti-HA: HA-11-A (Biotrend) or 55138 (ICN )) checked.
  • RNA is then hybridized with the chip-coupled oligonucleotides (on the microarrays) at 45 ° C. for 16 hours.
  • the direct comparison of the kinase-transformed yeast RNA with the mock-transformed yeast RNA reveals yeast genes that are differentially regulated by an overexpressed protein kinase.
  • Investigations by the inventors have shown that a certain number of RNAs for a genetic intervention, for example in the overexpression of an exogenous protein kinase Yeast genes are up-regulated and a certain number is down-regulated (Table 1). This was done using the example of the human kinase PAK1.
  • Table 2 56 genes were down-regulated (data not shown). An increase in the number of RNA copies for certain genes could possibly occur for compensatory reasons. Compensatory in this specific example means that the defect in the genetically modified strain caused by the deletion of the CLA4 gene is to be weakened by the increased expression of genes which can take over the function of CLA4 in whole or in part. In order to prove this thesis, some of the upregulated genes were selected for further experiments (see “2nd deletion" in Table 3).
  • MATD yeast strains were selected for this (can be obtained from EUROSCARF or Research Genetics, for example), which carry deletions in the up-regulated genes.
  • the deletions are marked with marker genes, ie marker genes, for example for antibiotic resistance or for necessary growth factors such as certain amino acids, are integrated into the respective yeast genome.
  • the selected deletion strains were crossed with the CLA4 deletion strain (YEL252, MATa) according to standard yeast genetic methods (Methods in Yeast Genetics: A Cold Spring Harbor Course Manual (1994)). After the crossing, selection was made on diploid yeast. They were made to form spores. This creates 4 haploid spores from a diploid yeast cell, which can be divided into 4 haploid yeast clones for germination. Accordingly, the genes are redistributed from the diploid strain. In 25% of all cases, the 2 deletions of the different parent strains will be combined in a new haploid clone. This can easily be tracked using the various selective markers.
  • the growth-inhibited strains can no longer compensate for the expression of the plasmid-encoded protein kinase due to the respective deletions. These systems can then be transferred to the HTS. If overexpression of certain wild-type kinases in combination with the DNA microarray experiment is not sufficient (as described above for wild-type PAK1, see Table 2) to induce growth inhibition, mutants of the respective kinase are produced and used instead of the Wiid-type kinases (also for gene expression experiments with the DNA microarrays). These mutants can be produced according to the principle of random mutagenesis with the aim of obtaining hyperactive mutants.
  • the kinase constructs are labeled with a C-terminal tag using the method of Tugendreich et al. (2001) used. It has thus been shown for the first time and surprisingly by the inventors' work that the deletion of compensatively differentially regulated genes can lead to growth inhibition and the knowledge associated with this can be used to set up a standardized platform assay for protein kinases. In the current Experiments have shown growth inhibition with a frequency of 23%. The deletion strains which show growth inhibition after the transformation with the plasmid-encoded protein kinase can now be transferred to the HTS by optimization (testing of the various “drug transporter knockouts”) as described above. In the FIG. 1, the invention is exemplified with reference to points 1 , 4,6-10.
  • the platform assay according to the invention enables the HTS of all protein kinases (as described on the basis of human PAK1) in homogeneous and therefore inexpensive assay systems.
  • the system is also suitable for determining IC 50 values in compound screening.
  • the gene expression experiments also lead to the identification of RNAs of genes which are repressed by the expression of exogenous kinases.
  • the promoters of these repressed genes can serve as reporters in the HTS.
  • the yeast promoters are fused to so-called reporter genes such as ⁇ -galactosidase, luciferase, growth markers such as HIS3, URA3, LEU2, or TRPI, etc. These constructs are transformed into the yeast strain for the HTS. There they serve as growth markers for compounds that cancel the growth inhibition in the affected strain.
  • the platform assay can also be used as a so-called multiplex system.
  • a multiplex system is understood to mean that different proteins or protein fragments, for example kinases, are tested in the same assay at the same time in one approach.
  • the individual phenotyped yeast strains are constructed.
  • the exogenous protein kinases are integrated using standard methods (see above).
  • these yeast strains are mixed to a homogeneous culture.
  • the expression of the protein kinases in the homogeneous yeast strain mixture leads to growth inhibition, since the expression of each individual kinase itself triggers growth inhibition in the phenotyped yeast strain.
  • the HTS identifies compounds that lead to the growth of at least one yeast strain. Now it is important to assign the affected kinase to the compounds.
  • This technology is not only applicable to protein kinases, but to all proteins or substances that trigger a transcriptional response in yeast.
  • this platform assay enables, for example, the HTS of all protein kinases (not only those which immediately produce a phenotype with heterologous expression) in homogeneous and therefore inexpensive assay systems.
  • the system is also suitable for determining IC 50 values in compound screening.
  • yeasts Sacharomyces cerevisiae
  • yeasts Sacharomyces cerevisiae
  • the Affymetrix experiments ("gene expression analysis) were carried out exactly according to Klebl et al. (2001) Biochem. Biophys. Res. Commun. 286, 714-720.
  • Tugendreich S., Perkins, E., Couto, J., Barthmaier, P., Sun, D., Tang, S., Tulac, S., Nguyen, A., Yeh, E. r Mays, A., Wallace, E., Lila, T., Shivak, D., Prichard, M., Andrejka, L., Kim, R. and T. Melese (2001).
  • HSP12 12 kDa heat shock protein induced by 6.55 'heat, osmotic (HOG1-, PBS2- dependent) or oxidative stress, stationary phase, HSF1, MSN2, YAP1; Chaperone (member of the hydrophilin family) 5 STREs
  • HSP26 Heat Shock Protein. Induced by 4.76 Osmostress, HSF1, MSN2, heat, H 2 0 2 ; 29% identical to Hsp42p; chaperone; 4 STREs
  • HSP82 Heat Shock Protein 97% identical to 2.67 Hsc82p, similar to the mammalian HSP90 (complementable by human HSP90); chaperone; induced by HSF1, SKN7, YAP1, H 2 0 2 ; has ATPase activity; partly regulated by the HOG1 signaling pathway, binds to Ste11 p; HSP90 activity is modulated by Sch9p
  • SKN7 transcription factor involved in the response 2.60 to oxidative stress (H 2 0 2 ) & G1 cell cycle control (appearance of the buds); interacts with Rho1 p, Mbp1 p, Cdc42p & genetically with PKC1; needed for N 2 - withdrawal induced pseudphyphal growth; Cooperates with Yap1 p in gene expression induction; not involved in the heat shock; May be involved in the HOG1 signal path; Part of a two-component system; Transcription activation stimulated by Skn7p depends on the Ras / PKA signaling pathway
  • CYP2 member of the cyclophilin family Heat Shock 2.37 protein, isomerase, chaperone
  • ATM1 ABC superfamily member required for 2.03 growth; may function in sensing iron; 43% identical to human ABC7
  • GUT1 glycerol kinase catalyzes conversion of 3.37 glycerol to glycerol-3-phosphate, induced by ADR1, IN02, IN04, glycerol; strong similarity to human GK; activity is reduced during osmotic stress
  • PCY1 pyruvate carboxylase I converts pyruvate to 2.50 oxalacetate for gluconeogenesis; 93%, 30%, 38% identical to Pyc2p, Hfa1 p, Dur1, 2p; similar to human PYC
  • TSL1 Component of trehalose-6-phosphate 2.40 synthase / phosphatase complex; induced by STE12, STE7, TEC1, osmotic stress & repressed by cAMP, glucose; contains STREs
  • GLK1 glucokinase specific for aldohexoses 73%, 2.09 38%, 37% identical to Ydr516p, Hxklp, Hxk2p; induced by GCR1, HOG1, MSN2, MSN4 & repressed by cAMP, cold; protein increased upon H 2 Q 2 , G1 phase
  • RPN10 Non-ATPase component of the 26S 2.46 proteasome complex, binds ubiquitin-lysozyme conjugates in vitro; C-terminus binds to ubiquitin
  • AAP1 Ala / Arg aminopeptidase related to other 2.00 Zn2 + metalloproteases & mammalian Zn2 + aminopeptidases
  • GCV1 Glycine decarboxylase T subunit functions 2.31 in pathway for Gly degradation
  • YCK1 CKI isoform 77%, 50%, 41% identical to 2.21 Yck2p, Yck3p, Hrr25p and 50-55% with human isoforms; germaylgeranylated; yckl ⁇ yck ts displays hyperpolarized growth, hypersensitivity towards ⁇ Zn 2+ a, nd multiple drugs, resistance to Mn 2 " +
  • Cell cycle C control PCL5 yclin that associates with Pho85p belongs to 2.73 to Pcl1 / 2p subfamily
  • HAP4 Transcription factor component of the 2.48 Hap2 / 3/4 / 5p-complex involved in activation of CCAAT box-containing genes (SOD2, eg)
  • RNA processing / RP 1 Subunit of ribonuclease P & Rnase MRP modification 2.49 ribonucleoprotein particles, needed for tRNA & 5.8S rRNA processing; 23% identical to hRpp30
  • PRP8 U5 snRNA-associated splicing factor 2.41 essential RNA binding protein; 62% identical to human PRP8; component of the spliceosome
  • DUR1,2 urea amidolyase contains urea caroxylase 2.21 & allophanate hydrolase activities; repressed by NH 4 + & induced by N 2 starvation, mating pheromone, Arg, rapamycin (N 2 utilization gene)
  • MSC1 Functions in the meiotic homologous 4.62 chromatid recombination pathway
  • SAGA Ada-Spt 2.82 transcriptional regulatory complex
  • SAGA-like complex SAGA-like complex
  • NuA4 complex TRA1 Essential component of the Ada-Spt 2.82 transcriptional regulatory complex
  • VAB36 Vac8p-binding protein of 36 kDa; 2 putative 2.75 STREs
  • YBL064C Mitochondrial thiol peroxidase of the 1-Cys 2.55 family; one of the 4 peroxidases in Sun; uses thioredoxin as electron donor; induced upon oxidative stress; reduces H 2 O 2 in the presence of DTT
  • HSP30 heat shock protein localized in 6.30 plasma membrane
  • YOL154W protein similar to zinc 5.24 metalloproteinases
  • YDL037C protein similar to glucan 1, 4-D- 4.95 glucosidase

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Environmental Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Die Anmeldung betrifft ein Verfahren zur Generierung eines gentechnisch veränderten Organismus für das Wirksubstanzscreening mit den Schritten a) Herbeiführung der heterologen Expression mindestens eines Proteins oder Proteinfragmentes durch gentechnische Veränderung des Organismus, b) Analyse des veränderten Genexpressionsmusters und Identifizierung kompensatorisch differentiell regulierter Gene, und c) Phänotypisierung des Organismus, sowie einen gentechnisch veränderten Organismus erhältlich durch dieses Verfahren.

Description

VERFAHREN ZUR GENERIERUNG EINES GENTECHNISCH VERÄNDERTEN ORGANISMUS
FÜR DAS WIRKSUBSTANZSCREENING
Es ist bekannt, zum Wirksubstanzscreening, gentechnisch veränderte Hefen einzusetzen, die das Zielprotein, welches durch die zu testende Substanz inhibiert werden soll, heterolog exprimieren. Heterologe Expression bedeutet im im Rahmen dieser Erfindung die Expression eines dem Organismus fremden Gens oder die Expression eines dem Organismus eigenen Gens mit verändertem Expressionsmuster, insbesondere verstärkter oder verminderter Expression, und/oder zeitlich und/oder räumlich (z.B. andere Kompartimente, bei höheren Organismen z.B. andere Gewebe) veränderter Expression. Im einfachsten Fall führt die heterologe Expression zu einem detektierbaren, veränderten Phänotyp, meist einer Wachstumsinhibierung der Hefe. Wachstumsinhibierung bedeutet im Rahmen der vorliegenden Erfindung eine verminderte Proliferationsrate und/oder ein vermindertes Größenwachstum und schließlt auch den Zelltod (apoptotisch oder nekrotisch ) ein. Die Art der auftretenden Wachstumsinhibierung hängt auch vom Organismus ab, so ist bei Hefen eher ein Proliferationsarrest oder eine Lyse zu beobachten, bei eukaryontischen Zellen, die ursprünglich aus Vielzellern stammen, ist dagegen z.T. auch Apoptose zu beobachten. Führt die heterologe Expression zu einer von aussen wahrnehmbaren Veränderung von Verhalten und/oder Morphologie des Organismus (also einem veränderten Phänotyp), so kann der gentechnisch veränderte Organismus einfach für das Wirksubstanzscreening eingesetzt werden, wobei die Wirksamkeit der getesteten Substanzen anhand ihrer Fähigkeit, den Phänotyp (z.B. die Wachstumsinhibierung) aufzuheben oder zu vermindern, feststellbar ist. Dies erfolgt beim Beispiel Hefesystem mit Wachstumsinhibierung als verändertem Phänotyp vorzugsweise durch einfache Wachstumsassays, die sich auch für das Hochdurchsatz-Screening (HTS) eignen. Als veränderter Phänotyp wird jede von aussen wahrnehmbare Veränderung des gentechnisch veränderten Organismus (Gestalt, Größe, etc.) oder seines Verhaltens (Wachstum, Zellteilungsrate, etc.) gegenüber dem des gentechnisch nicht veränderten bzw. Dem das oder die heterologen Proteine oder -Fragmente nicht exprimierenden Organismus bezeichnet. Phänotypisierung bezeichnet somit die Herbeiführung einer solchen Veränderung. Dieses Verfahren des Standes der Technik weist jedoch den Nachteil auf, dass nur ein geringer Teil heterolog exprimierter Gene einen für das Wirksubstanzscreening nutzbaren Phänotyp des gentechnisch veränderten Organismus hervorbringt. So wird vermutet, daß beispielsweise nur ca. 20-30% aller heterolog exprimierten Kinasen eine für das Wirksubstanzscreening nutzbare Wachstumshemmung in der Hefe verursachen. Bei den übrigen 70-80% ist die Wachstumshemmung so gering, dass sie für das Screening nicht nutzbar ist ( zu geringer Unterschied im Vergleich zur Kontrolle führt zu einem hohen Hintergrund und somit zu einer zu hohen Zahl an falsch Positiven), oder sie ist gar nicht vorhanden.
Es besteht daher Bedarf an einem Verfahren zur Generierung eines gentechnischen Organismus für das Wirksubstanzscreening, welcher die Nachteile des Standes der Technik nicht aufweist und insbesondere dafür geeignet ist, auch solche heterolog exprimierten Gene dem Wirksubstanzscreening zuzuführen, welche in dem sie heterolog exprimierenden Organismus keinen bzw. keinen für das Screening, insbesondere das HTS, nutzbaren Phänotyp hervorbringen. Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Generierung eines gentechnisch veränderten Organismus für das Wirksubstanzscreening mit den Schritten
a) Herbeiführung der heterologen Expression mindestens eines Proteins oder Proteinfragmentes durch gentechnische Veränderung des Organismus. b) Vorzugsweise schließt sich hieran die Bestimmung des Phänotyps des gentechnisch veränderten Organismus an. c) Analyse des veränderten Genexpressionsmusters und Identifizierung kompensatorisch differentiell regulierter Gene. d) Phänotypisierung des Organismus (vorzugsweise durch Deletion, Mutagenese, oder Überexpression der kompensatorisch regulierten Gene zur Verstärkung oder Generierung eines Phänotyps in Kombination mit dem heterolog exprimierten Protein oder Proteinfragment). Die Erfindung beruht auf der Erkenntnis der Erfinder, dass das Fehlen eines detektierbaren Phänotyps bei heterologer Expression der meisten Gene darauf beruht, dass der gentechnisch veränderte Organismus die Expression eigener Gene als Antwort auf die Expression des heterolog exprimierten Proteins oder Proteinfragmentes hoch- oder herunterreguliert (d.h. kompensatorisch differentiell reguliert). Differentiell reguliert bedeutet in diesem Fall, anders reguliert als im nicht gentechnisch veränderten Organismus, bzw. ohne die heterologe Expression des heterolog exprimierten Proteins oder Proteinfragmentes. Kompensatorisch bedeutet, dass diese Differentielle Genregulation eine Antwort auf die heterologe Expression des Proteins oder Proteinfragmentes ist.
Die Erfindung ermöglicht die Entwicklung einer Plattformtechnologie in einem zellulären, im Gegensatz zum einfach biochemischen, Modell, vorzugsweise der Hefe. Mit dem Assaysystem können Inhibitoren beispielsweise aus chemischen Bibliotheken, aus Combichembibliotheken und aus Naturstoffextrakten identifiziert werden. Das Assaysystem kann auf 96-, 384- oder 1536-well Platten oder andere für zelluläre Assays gängige Formate angepasst werden. Das zu wählende Format hängt z.T. auch vom gewählten Organismus ab, die Auswahl liegt dabei im Bereich des fachmännischen Könnens.
Das erfindungsgemäße Verfahren eignet sich insbesondere für Gene bzw. Proteine oder -Fragmente, deren heterologe Expression im gewünschten Organismus zu keiner detektierbaren Veränderung des Phänotyps gegenüber dem der gentechnisch unveränderten, bzw. das Protein oder -Fragment nicht heterolog exprimierenden Organismus führt. Es können beispielsweise Proteinkinasen ebenso wie andere Genprodukte getestet werden, die eine transkriptioneile Antwort auslösen. Es ist jedoch ebenso bei detektierbar verändertem Phänotyp anwendbar, insbesondere dann, wenn zwar ein veränderter Phänotyp detektierbar ist, aber aus bestimmten Gründen für den Einsatz im Wirksubstanzscreening nicht geeignet oder nicht zweckmäßig ist. Dieser kann durch die Phänotyisierung verstärkt oder so verändert werden, dass er für das Wirkstoff-Screening nutzbar ist. Die Phänotypisierung bezeichnet im Rahmen der vorliegenden Erfindung demnach die Herbeiführung oder Verstärkung eines vom das oder die Proteine oder -Fragmente nicht heterolog exprimierenden bzw. vom nicht gentechnisch veränderten Organismus unterscheidbaren Phänotyps im das oder die Proteine oder -Fragmente heterolog exprimierenden, gentechnisch veränderten Organismus.
Als Organismen eignen sich vorzugsweise Zellen, hier eukaryontische Zellen ebenso wie prokaryontische, aber auch vielzellige nicht-humane Organismen, die sich für das Wirksubstanzscreening eignen, z.B. Drosophila und vorzugsweise C. Elegans. Als eukaryontische Zellen eignen sich vorzugsweise kultivierte Zellinien, die ursprünglich aus vielzelligen Organismen gewonnen wurden, z.B. 3T3, CHO, Heia, aber auch andere oder eukaryontische einzellige Organismen, insbesondere Hefen. Unter den Hefen eignen sich wiederum insbesondere solche der Stämme S. cerevisiae oder S. pombe. Dem Fachmann sind geeignete Laborstämme von Hefezellen oder geeignete eukaryontische Zelllinien hinlänglich bekannt.
Als Proteine und Proteinfragmente kommen grundsätzlich alle die in Frage, deren heterologe Expression im Organismus zu einer Veränderung des Expressionsmusters eigener Gene führt. Vorteilhaft sind alle Proteine und-fragmente, die für die Findung neuer Wirkstoffe von Interesse sind, im Rahmen dieser Erfindung sind besonders bevorzugt Kinasen, Phosphatasen, GPCRs, (insbesondere kleine) GTPasen, Proteasen und lonenkanäle.
Der Begriff Wirksubstanzscreening umfasst im Rahmen dieser Erfindung jede Art der Suche von Substanzen, die sich auf die Aktivität eines oder mehrerer bestimmter Zielgene und/oder Zielproteine auswirken, unter Einsatz mindestens eines gentechnisch veränderten Organismus. Es kommen dabei grundsätzlich alle Arten von Substanzen in Frage, beispielsweise alle Arten von Naturstoffen (also in der Natur vorkommende Moleküle, insbesondere Biomoleküle) ebenso wie nicht natürlich vorkommende, synthetisch hergestellte Chemikalien und von Naturstoffen, insbesondere biologischen Molekülen abgeleitete Substanzen/ Derivate (z.B. modifizierte Peptide oder Oligonukleotide).
Die heterologe Expression kann die Einschleusung eines fremden Gens aber auch die veränderte Expression eines Organismus-eigenen Gens, z.B. durch die Einschleusung eines entsprechenden Expressionsvektors umfassen. Die dazu notwendige, gentechnische Veränderung kann dabei die Veränderung des Organismengenoms (z.B. durch stabile, ins Genom integrierende Vektoren oder durch verschiedene Arten der Mutagenase) betreffen, episomal sein oder einfach die Einschleusung geeigneter Vektoren umfassen, die zum Verbleib im Organismus der ständigen Selektion mittels eines oder mehrerer Selektionsmarker bedürfen. Die bestgeeignete Art hängt von verschiedenen Faktoren, u.a. auch von der Art des Organismus ab und ist für den zuständigen Fachmann einfach bestimmbar.
Die heterologe Expression betrifft dabei mindestens ein Protein oder -fragment, kann aber auch mehrere Proteine oder -fragmente betreffen. Es kann zweckmässig sein, die Expression des heterologen Proteins/Fragmentes durch geeignete Methoden (PCR, Northern-, Westemblot etc.) zu verifizieren, bevor das Genexpressionsmuster des gentechnisch veränderten Organismus mit dem ohne die Expression des heterologen Proteins verglichen und so analysiert wird. Die Analyse erfolgt durch geeignete Massnahmen, die dem Fachmann hinlänglich bekannt sind, insbesondere eignet sich dazu der Einsatz von von Array- (vzw. DNA/RNA oder Protein Microarrays) oder Chip Systemen. Durch Vergleich der Expressionsmuster eines Kontroll Organismus (z.B. eines Wildtyp Organismus oder eines Organismus, in den lediglich der Leervektor eingeschleust wurde oder bei induzierbaren Systemen der gentechnisch veränderte Organismus, bei dem die Expression des heterologen Gens nicht induziert ist) und des gentechnisch veränderten, das heterologe Gen exprimierenden Organismus. Solche Genprodukte, die im Expressionsmuster des gentechnisch veränderten, das heterologe Gen exprimierenden Organismus im Gegensatz zu dem Expressionsmuster des Kontrollorganismus überhaupt / verstärkt/ vermindert oder gar nicht auftauchen, werden somit als kompensatorisch differentiell regulierte Gene erachtet und können für die Phänotypisierung des gentechnisch veränderten Organismus eingesetzt werden.
Die Phänotypisierung bezeichnet die Herbeiführung oder Verstärkung eines vom Wildtyporganismus unterscheidbaren Phänotyps im gentechnisch veränderten Organismus (oder, bei induzierbaren Systemen, eines Phänotyps, der nur bei heterologer Expression des oder der Proteine oder -Fragmente durch den gentechnisch veränderten Organismus ausgebildet wird und im nicht-induziertem Zustand des Organismus, wenn das oder die Proteine oder -Fragmente nicht exprimiert werden, nicht ausgebildet ist), vorzugsweise handelt es sich dabei um einen für die Auswertung in HTS Wirksubstanzscreeninggeeigneten Phänotyp. Die Herbeiführung oder Verstärkung kann dabei beispielsweise auf der Minderung oder Aufhebung der Expression eines oder mehrerer kompensatorisch hochregulierter Gene (dies kann z.B. durch genomischen Knock Out einer oder mehrerer der kompensatorisch differentiell regulierten Gene oder durch Mutagenese erfolgen) oder der verstärkten Expression eines oder mehrerer kompensatorisch herunterregulierter Gene erfolgen. (Dies kann z.B. durch heterologe Expression einer oder mehrerer kompensatorisch differentiell herunterregulierter Gene mit geeigneten Expressionsvektoren erfolgen.) Auf diese Weise kann ein dem Organismus- eigener, durch das heterolog exprimierte Gen herbeigeführter Phänotyp, der durch die kompensatorisch differentielle Regulation eines oder mehrer Gene unterbunden wurde, zu Tage gebracht werden (vorzugsweise die Wachstumshemmung, insbesondere bei vielzelligen Organismen kommen hier aber auch andere Phänotypen in Frage).
Eine weitere Möglichkeit ist auch die Markierung eines oder mehrerer Gene, die kompensatorisch hochreguliert sind, mittels eines geeigneten Markers / Tags (der z.B. an das Genprodukt gekoppelt ist) oder mittels eines Reporters, der unter der Kontrolle des Enhancers und/oder Promotors des kompensatorisch hochregulierten Gens steht und in den Organismus eingeschleust wird. Geeignete Reporter sind dem zuständigen Fachmann bekannt, hier eignen sich insbesondere alle Arten von selbstleuchtenden Proteinen (z.B. GFP, BFP etc.), aber auch andere Reporter, mit denen ein detektierbares Signal erzeugt werden kann (z.B. Luziferase, ß-Galaktosidase) sowie Wachstumsmarker für auxotrophe Stämme wie z.B. HIS3, URA3, LEU2, TRP1 , und Antibiotika-Resistenz Gene wie z.B. für Kanamycin bzw. G418. Auch andere Arten der Phänotypisierung sind denkbar.
Im Anschluß an die Phänotypisierung ist es zweckmäßig, den Erfolg der Phänotypisierung durch geeignete Methoden (z.B. Messung der Proliferationsrate, Zellzählung oder Bestimmung von Größe oder Morphologie, etc. und Vergleich mit dem Phänotyp bei nicht erfolgender heterologer Expression) zu überprüfen. Gemäß einer bevorzugten Durchführungsform des erfindungsgemäßen Verfahrens erfolgt die Phänotypisierung durch Deletion, Mutagenese oder Überexpression mindestens eines kompensatorisch regulierten Gens.
Gemäß einer bevorzugten Ausführungsform erfolgt die Phänotypisierung durch Minderung/Aufhebung der kompensatorisch differentiellen Expression oder durch Markierung mindestens eines kompensatorisch differentiell regulierten Genes. Die heterologe Expression kann dabei zur kompensatorischen Hoch- als auch Herunterregulation mindestens einer organismeneigenen Gens, aber auch dazu führen, dass eines oder mehrere Gene hoch-, eine oder mehrere andere herunterreguliert werden.
Besonders zweckmäßig ist es auch, wenn die heterologe Expression des Proteins oder -Fragmentes induzierbar ist. Geeignete Systeme sind dem zuständigen Fachmann bekannt, so eignen sich beispielsweise Galaktose-, oder Kupfer-regulierte Promotoren, das Tet-On Tet-Off System, etc. Dabei kann entweder die Expression eines dem Organismus fremden oder eigenen Gens induzierbar angeschaltet werden (induzierbarer Knock-In) oder die Expression eines dem Organismus eigenen Gens wird induzierbar vermindert oder ganz ausgeschaltet (induzierbarer Knock-Out). Hierbei umfasst die gentechnische Veränderung zweckmäßigerweise die Einschleusung eines Vektors, der die induzierbare Expression des Proteins oder Proteinfragmentes ermöglicht, vorzugsweise eines mit Galactose- (GAL1/GAL10) oder Kupfer- (CUP1) regulierten Promotoren , , Tetracyclin induzierbaren Vektors oder gewebsspezifisch induzierbare Promotoren wie z.B. hsp16-2, unc-119, unc-54, mec-7, oder myo-3 in C. elegans. .
Gemäß einer bevorzugten Ausführungsform ist der Organismus C.elegans, eine prokaryontische oder eukaryontische Zelle, und besonders bevorzugt eine Hefezelle, vorzugsweise eine Hefezelle vom Stamm S. cerevisiae.
Die Analyse der veränderten Genexpression wird bevorzugt durch DNA / RNA Profiling mit Hilfe von cDNA oder Oligonukleotid -Microarrays durchgeführt, kann aber grundsätzlich alle Verändungen des mRNA oder Protein steady State (Transkription, Translation, Stabilisierung etc.) umfassen, und somit auch durch Protein Profiling genauso wie mit Hilfe Protein-arrays (erfolgen. Bei einer vorteilhaften Ausgestaltung des Verfahrens erfolgt die Phänotypisierung durch Minderung oder Aufhebung der kompensatorisch differentiellen Regulation. Ist das kompensatorisch differentiell regulierte Gen stärker exprimiert als in Kontrollorganismen, erfolgt die Minderung oder Aufhebung durch vollständige oder teilweise Inhibierung der verstärkten Expression. Vorzugsweise erfolgt dies durch Kreuzung mit einem Deletionsstamm und anschliessender Selektion der Doppelmutanten (eignet sich insbesondere bei Hefe als Organismus), durch genomischen Knock Out mit geeigneten Vektoren (diese sind dem Fachmann bekannt und ebenfalls sehr gut geeignet in Hefen, hier vor allem Saccharomyces cerevisiae), der Mutagenese durch Strahlung und/oder mutagene Substanzen oder die Einschleusung von antisense Vektoren o.a., die die Proteinproduktion des betreffenden Gens inhibieren. Hierbei ist es besonders vorteilhaft, wenn der Knock Out des kompensatorisch differentiell regulierten Genes den Knock In eines Reportergens wie z.B ß-Galaktosidase, Luziferase, oder Wachstumsmarker wie HIS3, ADE2, URA3, oder Resistenzmarker wie z.B. für Kanamycin umfasst. Das Reportergen kann dann im nachfolgenden Assay als Signal genutzt werden, die Wirksamkeit der zu testenden Wirksubstanzen zu detektieren und zu quantifizieren. Hierbei erfolgt vorzugsweise ein Austausch mindestens eines Teiles der kodierenden Sequenz des differentiell regulierten Genes gegen die kodierende Sequenz (umfasst auch Teile dieser Sequenz, die ausreichen, detektierbar zu sein) eines Reportergens (z.B. Luziferase, ß- Galaktosidase etc). Ist das kompensatorisch differentiell regulierte Gen weniger stark exprimiert als im Kontrollorganismus, erfolgt die Minderung oder Aufhebung durch Verstärkung der Expression, vorzugsweise durch Einkreuzung, Einschleusung eines episomalen oder eines anderen selektionsfähigen Expressionsvektors oder durch genomischen Knock-In (vorstehende Methoden eignen sich besonders gut für die Verwendung von Hefe als Organismus). Vorzugsweise führt die Minderung oder Aufhebung der kompensatorisch differentiellen Regulation zu einer Wachstumsinhibierung des gentechnisch veränderten Organismus, andere Phänotypen können aber ebenso vorteilhaft sein.
Ein weiterer Aspekt der Erfindung bezieht sich auf einen gentechnisch veränderten, phänotypisierten Organismus, der durch das erfindungsgemäße Verfahren erzeugt wurde. Insbesondere betrifft die Erfindung einen gentechnisch veränderten Organismus mit gentechnisch veränderter Expression mindestens eines eigenen oder fremden Gens, die zur kompensatorisch differentiellen Regulation mindestens eines anderen, dem Organismus eigenen Gens führt, und so vorzugsweise das Auftreten eines auswertbaren/detektierbaren/nutzbaren Phänotyps unterbindet oder hemmt und mit durch Minderung/Aufhebung der kompensatorisch differentiellen Expression des Genes oder durch Markierung des kompensatorisch differentiell regulierten Genproduktes herbeigeführten Phänotyp.
Ein weiterer Aspekt der Erfindung betrifft die Verwendung eines erfindungsgemäß hergestellten gentechnisch veränderten Organismus zum Screening nach Substanzen mit einer Wirkung auf die Funktion des heterologen Proteins oder Proteinfragmentes sowie auf ein Verfahren zur Identifizierung von Substanzen mit einer Wirkung auf die Funktion des heterologen Proteins oder Proteinfragmentes.
Gemäß eines weiteren Aspektes, bezieht sich die Erfindung ebenso auf einen Assay zum Wirksubstanzscreening mit einem erfindungsgemäßen phänotypisierten Organismus durch Feststellung des Phänotyps (z.B. einer Wachstumsinhibierung infolge induzierter heterologer Überexpression eines Proteins), in Kontakt bringen der zu testenden Substanz mit dem Organismus und Beobachten einer möglichen Veränderung des Phänotyps, vorzugsweise dessen zumindest teilweisen Rückgang zu Verhalten bzw. Morphologie des Wildtyp-Organismus (also zumindest teilweiser Wiederherstellung des Phänotyps des Ausgangsorganismus, z.B. Aufhebung der Wachstumsinhibierung). Weiterhin sind Substanzen betroffen, die durch ein erfindungsgemäßes Verfahren oder einen erfindungsgemäßen Assay als wirksam identifiziert werden.
Die Erfindung wird nachfolgend anhand von Beispielen näher erläutert. Beispiel"! : Entwicklung einer Plattformtechnologie zur Identifizierung von Wirksubstanzen, die sich auf die Aktivität von Kinasen auswirken, auf Basis von Hefe als Organismus. Der herbeigeführte Phänotyp ist in diesem Fall die Wachstumshemmung der Hefen. Das Testprinzip beruht somit auf der Wachstumshemmung von Hefen, die als lebendes „Reagenzglas" verwendet werden. Unter Wachstumshemmung versteht man hier beispielsweise einen Zellzyklusarrest oder die Lyse der betroffenen Zellen. Hefen werden verwendet, da sie sich aufgrund ihrer genetischen Manipulierbarkeit ideal eignen. Humane (oder andere exogene) Kinasen werden in der Hefe unter der Kontrolle eines Galaktose-induzierbaren Promoters (GAL1/10) überexprimiert. Die Transformation und Kultivierung der Hefen erfolgt dabei nach Standardmethoden. Als Vektor werden z.B. Vektoren der Reihe p41x-GAL1 oder p42x-GAL11 verwendet.
In ca. 30% aller zu testenden Kinasen wird die Überexpression bereits zur Wachstumshemmung in Hefe führen (Tugendreich et al. (2001)). Dieses Vorgehen wird in der Figur 1 mit den Schritten 1 ,3,5 dokumentiert. Kinasen, deren Überexpression zur Wachstumshemmung führt, werden in einen geeigneten Hefestamm integriert und anschließend ins Hochdurchsatzscreening (HTS) überführt. Hefestämme vom Stammhintergrund „MATa his3D1 leu2D0 met15D0 ura3D0" (BY4741 von EUROSCARF) werden in diesem Beispiel verwendet.
Während der Assayentwicklung für das HTS werden die Bedingungen optimiert, indem verschiedene „Drug Transporter"-Deletionsmutanten im oben beschriebenen Stammhintergrund getestet werden. Für alle in diesem Beispiel zu testenden Proteinkinasen werden die Stämme mit den folgenden Deletions-Kombinationen getestet: 1. YRWS21 (MATa pdr1 D::KanMX pdr3D::KanMX his3D1 leu2D0 met15D0 lys2D0 ura3D0) 2. YRWS39 (MATa pdr5D::KanMX yor1 D::KanMX his3D1 leu2D0 MET15 lys2D0 ura3D0) 3. YRWS14 (MATa pdr5D::KanMX snq2D::KanMX his3D1 leu2D0 MET15 lys2D0 ura3D0)4. YRWS13 (MATa snq2D::KanMX yor1 D::KanMX his3D1 leu2D0 MET15 lys2D0 uraSDO) 5. YRWS44 (MATa pdr5D::KanMX snq2G::KanMX yor1 D::KanMX his3D1 leu2D0 met15G0 lys2D0 ura3D0). Im Hochdurchsatzscreening kann dann nach biologischen und chemischen Molekülen gesucht werden, die die Wachstumshemmung mindern oder aufheben - d.h., die zum Wachsen der Hefekulturen führen. Alle bislang beschriebenen Techniken sind dem zuständigen Fachmann bekannt.
Wie oben beschrieben, verursachen ca. 30% aller exogenen Kinasen Wachstumshemmung in der Hefe. Daher verursachen ca. 70% aller überexprimierten Kinasen keine oder nur geringe Wachstumshemmung. Um das Prinzip der Wachstumshemmung der Hefe als Plattformtechnik für das Compoundscreening von allen Proteinkinasen zu nutzen, müssen auch die verbleibenden 70% der Proteinkinasen eine Wachstumshemmung hervorrufen. Dazu bedarf es der vorliegenden Erfindung.
Die gewünschten Proteinkinasen werden in einen Hefe-Expressionsvektor der Wahl, in diesem Beispiel p413 GAL1 (D. Mumberg et al. (1994) in Volllänge und mit einem C- terminalen Tag, z.B. MYC-Tag) kloniert. Nach Transformation mit der Lithium-Azetat Methode nach Standardprotokoll (s. Methods in Yeast Genetics) und Kultivierung in einem geeigneten Medium wird die Überexpression der exogenen Kinasen in der Hefe durch Zugabe von Galaktose nach Standardprotokoll (20 g/ml Medium) für 4 bis 6 Stunden bei 30°C induziert. Die Expression der Kinasen wird durch Immunoblots nach Standardprotokoll mit Hilfe von Antikörpern gegen den gewählten Tag (z.B: anti-MYC: AB1364 (Chemikon) oder M5546 (Sigma); anti-HA: HA-11-A (Biotrend) oder 55138 (ICN)) überprüft.
Nach dem immunologischen Expressionsnachweis in der Hefe werden Veränderungen der Genexpression - ausgelöst durch die Expression der exogenen Kinasen - in der Hefe (die kompensatorisch differentielle Regulation) mit Hilfe von DNA-Microarrays untersucht. DNA-Microarrays sind Trägermaterialen, an welche spezifische Oligonukleotide chemisch gekoppelt sind. Die einzelnen Oligonukleotide repräsentieren hier individuelle Gene. DNA-Microarrays werden als Werkzeuge eingesetzt, die das momentane Expressionsmuster des gesamten Genoms der Hefe abdecken können. Für solch ein Experiment werden Kinase-transformierte Hefen mit mock-transformierten (leeres Plasmid) Hefen als Kontrolle verglichen. Aus beiden Stämmen wird die Gesamt-RNA mit Standardmethoden präpariert. Die RNA wird dann mit den Chip-gekoppelten Oligonukleotiden (auf den Microarrays) bei 45°C für 16h hybridisiert. Der direkte Vergleich der Kinase-transformierten Hefe-RNA mit der mock- transformierten Hefe-RNA deckt Hefegene auf, die durch eine überexprimierte Proteinkinase kompensatorisch differentiell reguliert werden. Untersuchungen der Erfinder haben gezeigt, dass durch einen genetischen Eingriff, z.B. bei der Überexpression einer exogenen Proteinkinase, eine bestimmte Anzahl an RNAs für Hefegene hochreguliert und eine bestimmte Anzahl herunterreguliert wird (Tabelle 1). Das wurde am Beispiel der humanen Kinase PAK1 durchgeführt.
Tabelle 1 : 2 Gene werden hochreguliert, 11 Gene werden herunterreguliert. Ferner konnten die Erfinder erstmals zeigen, dass viele der hochregulierten Gene aus kompensatorischen Gründen hochreguliert werden. In diesem Fall wurde ein S. cerevisiae Wildtypstamm (W303-1a (Stammhintergrund oder Bezugsquelle)) verglichen mit Stamm, der eine Deletion im Saccharomyces cerevisiae Gen cla4 (Ucla4) (YEL252) hat. Bis auf die Deletion in dem Gen für CLA4 sind beide Stämme isogen, d.h. identisch. Beim direkten Vergleich der RNA-Präparationen aus den zwei verschiedenen Stämmen (W303-1a und YEL252) tauchten 110 verschiedene RNAs aus dem Hefegenom als hochreguliert auf (Tabelle 2).
Tabelle 2: 56 Gene wurden herunterreguliert (Daten nicht gezeigt). Eine Erhöhung der RNA-Kopienzahl für bestimmte Gene könnte dabei möglicherweise aus kompensatorischen Gründen auftreten. Kompensatorisch bedeutet in diesem konkreten Beispiel, dass der durch die Deletion des CLA4-Gens verursachte Defekt im gentechnisch veränderten Stamm durch die vermehrte Expression von Genen abgeschwächt werden soll, die die Funktion von CLA4 ganz oder teilweise übernehmen können. Um diese These zu beweisen, wurden einige der hochregulierten Gene für weiterführende Experimente ausgewählt (siehe „2. Deletion" in Tabelle 3).
Tabelle 3: Dazu wurden MATD-Hefestämme ausgesucht (können z.B von EUROSCARF oder Research Genetics bezogen werden), die Deletionen in den jeweils hochregulierten Genen tragen. Die Deletionen sind mit Markergenen gekennzeichnet, d.h. Markergene z.B. für eine Antibiotika-Resistenz oder für notwendige Wachstumsfaktoren wie z.B bestimmte Aminosäuren sind in das jeweilige Hefegenom integriert. Die ausgesuchten Deletionsstämme wurden nach hefegenetischen Standardmethoden (Methods in Yeast Genetics: A Cold Spring Harbor Course Manual (1994)) mit dem CLA4-Deletionsstamm (YEL252, MATa) gekreuzt. Nach der Kreuzung wurde auf diploide Hefen selektiert. Die wurden zur Sporenbildung veranlasst. Dabei entstehen aus einer diploiden Hefezelle, 4 haploide Sporen, die zur Keimung in 4 haploide Hefeklone aufgeteilt werden können. Demnach kommt es zur Neuverteilung der Gene aus dem diploiden Stamm. In 25% aller Fälle werden die 2 Deletionen der unterschiedlichen Ausgangsstämme in einem neuen haploiden Klon vereint sein. Das kann anhand der verschiedenen Selektivmarker einfach verfolgt werden.
Mit dieser Standardmethode wurde versucht 13 verschiedene Doppeldeletionen herzustellen. In nur 0 Fällen waren die Doppeldeletionen lebensfähig,, in 3 Fällen kam es nie zu der Doppeldeletion (Tabelle 3 „lethal"). In allen 3 Fällen wurden 40 Asci getestet. Daher ist klar, dass die Kombination beider Deletionen zum Absterben der betroffenen Spore führt. Sie sind also synthetisch lethal. Es konnte gezeigt werden, dass in allen 13 Fällen, die Doppeldeletionen entweder synthetisch lethal waren oder anderweitige synthetische Phänotypen gezeigt haben (Tabelle 3). Diese Untersuchung bestätigt die These, dass die betroffenen Gene hochreguliert wurden, um Defekte, ausgelöst durch das Fehlen von CLA4, zu kompensieren. Für die Erfindung ist wichtig, dass in den untersuchten Fällen (13 Doppeldeletionen) 3 Kombinationen und damit 23% aller möglichen Doppeldeletionen synthetische Lethalität zeigten (Tabelle 3). Im Experiment mit dem Dcla4-Stamm wurden 110 Gene hochreguliert (Tabelle 2). Auf die gleiche Weise wurden im oben beschriebenen Ansatz durch die Überexpression von humanem PAK1 die mRNAs für 2 Gene hochreguliert (Tabelle 1). Folglich werden auch diese Gene aus kompensatorischen Gründen hochreguliert. Aufgrund der geringen Anzahl an hoch regulierten Genen und der damit verbundenen niedrigen Erfolgsrate für synthetisch lethale Kombinationen, verzichteten wir auf das Folgeexperiment, Stämme zu identifizieren, die in der Kombination aus Deletionen in den hochregulierten Genen (mit YMR096W oder HIS3 aus Tabelle 1) und der Expression von humanem PAK1 einen synthetisch lethalen Phänotyp zeigten. Vielmehr wurde eine hyperaktive Mutante von humanem PAK1 hergestellt, nämlich humanes PAK1 DCRIB. Diese Mutante wurde wieder mit Standardmethoden in Hefe transformiert. Aufgrund der hohen Kinaseaktivität löste dieses Proteins Wachstumshemmung in der Hefe aus. Ein geeigneter Stamm zum Testen für niedermolekulare Substanzen war identifiziert. Das Ziel war erreicht. Trotzdem wurde auch für diesen Fall ein differentielles Expressionsprofil mit den DNA-Microarrays aufgenommen, um die Validität der Erfindung zu untermauern (Tabelle 4). Tabelle 4: 55 verschiedene Hefegene wurden aufgrund der hohen Kinaseaktivität kompensatorisch hochreguliert, 3 Gene wurden herabreguliert (nicht gezeigt). Für den Fall, dass die hohe Aktivität der PAK1 -Mutante nicht ausgereicht hätte, um Wachstumshemmung in der Hefe auszulösen, könnten nun Deletionsstämme für die hochregulierten Gene getestet werden. Die PAK1 -Mutante müsste in den jeweiligen Deletionsstämmen exprimiert werden. Den Wert einer 23%-igen Erfolgschance auf einen synthetischen-Phänotyp zugrundelegend, würden dann in ca. 13 Hefestämmen die Expression der humanen PAK1 -Mutante Wachstumshemmung hervorrufen. Damit wäre ein Stamm zum Testen von potenziellen Kinaseinhibitoren identifiziert. In dem Fall des Testens von humanen Kinasen in der Hefe müssten die Ausgangsstämme nicht gekreuzt werden, da die humanen Kinasen Galaktose- abhängig von einem Plasmid exprimiert wird. Dieses Plasmid muss nur in den jeweiligen Deletionsstamm transformiert und die Expression der Kinase induziert werden. In 23% aller Fälle der zu testenden Stämme wird Wachstumshemmung (Lethalität) beobachten werden können. Die wachstumsgehemmten Stämme können aufgrund der jeweiligen Deletionen die Expression der plasmidkodierten Proteinkinase nicht mehr kompensieren. Damit können diese Systeme ins HTS überführt werden. Sollte eine Überexpression von bestimmten Wildtyp-Kinasen in Kombination mit dem DNA-Microarray-Experiment nicht ausreichen (wie oben für Wildtyp-PAK1 beschrieben, siehe Tabelle 2) um Wachstumshemmung hervorzurufen, dann werden Mutanten der jeweiligen Kinase hergestellt und anstelle der Wiidtypkinasen eingesetzt (auch für die Genexpressionsexperimente mit den DNA-Microarrays). Diese Mutanten können nach dem Prinzip der zufälligen Mutagenese hergestellt werden, mit dem Ziel hyperaktive Mutanten zu gewinnen. Zur Mutagenese werden die Kinasekonstrukte mit einem C-terminalen Tag nach der Methode von Tugendreich et al. (2001) verwendet. Es wurde somit durch Arbeiten der Erfinder erstmals und überraschend gezeigt, dass die Deletion von kompensatorisch differentiell Regulierten Genen zur Wachstumshemmung führen kann und der damit verbundenen Erkenntnis einen standardisierten Plattformassay für Proteinkinasen aufzubauen. In den aktuellen Experimenten wurde Wachstumshemmung mit einer Frequenz von 23% nachgewiesen. Die Deletionsstämme, die nach der Transformation mit der plasmidkodierten Proteinkinase Wachstumshemmung zeigen, können nun wie oben beschrieben durch Optimierung (Austesten der verschiedenen „Drug-Transporter- Knockouts") ins HTS überführt werden. In der Figurl ist die Erfindung beispielhaft an Hand der Punkte 1 ,4,6-10 dargestellt.
Außer durch Einkreuzung der Deletionen kompensatorisch differentiell regulierter Gene hätte deren Deletion auch durch andere Methoden, wie genomischen Knock Out der Kinase exprimierenden Hefe selbst erfolgen können. Bei Hefen ist jedoch die Ausschaltung kompensatorisch differentiell regulierter Gene durch Einkreuzen von Deletionen oder der genomische Knock Out aufgrund der Einfachheit der Vorgehensweise besonders vorteilhaft. Bei anderen Organismen können sich demgegenüber eher andere Methoden eignen. So ist im Beispiel von eukaryontischen Zelllinien, und im Falle von mehrzelligen Organismen, wie Drosophila oder C. Elegans eher die Anwendung von Antisense-Verfahren wie RNAi geeignet. Die Auswahl von jeweils für die einzelnen Organismen geeigneten Maßnahmen liegt im Bereich fachmännischen Könnens.
Der erfindungsgemäße Plattformassay ermöglicht das HTS aller Proteinkinasen (wie an Hand von humanem PAK1 beschrieben) in homogenen und daher kostengünstigen Assaysystemen. Das System ist auch zur Bestimmung von IC50-Werten im Compoundscreening geeignet.
Die Genexpressionsexperimente führen, wie im Beispiel beschrieben, auch zur Identifizierung von RNAs von Genen, die durch die Expression von exogenen Kinasen reprimiert werden. Die Promotoren dieser reprimierten Gene können im HTS als Reporter dienen. Dazu werden die Hefepromotoren an sogenannte Reportergene wie ß-Galactosidase, Luciferase, Wachstumsmarker wie HIS3, URA3, LEU2, oder TRPI , etc. fusioniert. Diese Konstrukte werden in den Hefestamm für das HTS transformiert. Dort dienen sie als Wachstumsmarker für Verbindungen, welche die Wachstumshemmung in dem betroffenen Stamm aufheben. Beispiel 2: Der Plattformassay kann auch als sogenanntes Multiplexsystem eingesetzt werden. Unter Multiplexsystem wird verstanden, daß verschiedene Proteine oder Proteinfragmente z.B. Kinasen im gleichen Assay zur gleichen Zeit in einem Ansatz getestet werden. Dazu werden zunächst die individuellen phänotypisierten Hefestämme konstruiert. Die exogenen Proteinkinasen werden mit Standardmethoden integriert (s.o.). Dann werden diese Hefestämme zu einer homogenen Kultur vermischt. Die Expression der Proteinkinasen in dem homogenen Hefestamm Gemisch führt zur Wachstumshemmung, da auch die Expression jeder einzelnen Kinase an sich im phäntypisierten Hefestamm Wachstumshemmung auslöst. Im HTS werden Verbindungen identifiziert, die zum Wachstum von mindestens einem Hefestamm führen. Nun gilt es, den Verbindungen die betroffene Kinase zuzuordnen. Das wird über die sogenannte „colony PCR" Methode (A.J.P. Brown and M. Tuite (1998)) erreicht. Dazu werden einige, wenige Mikroliter aus den wachsenden Hefekulturen nach Anleitung (A.J.P. Brown and M. Tuite (1998)) lysiert. Aus (dem Gemisch an) genomischer DNA (inklusive integrierten Proteinkinasen) wird/werden mit spezifischen Primern für die unterschiedlichen Proteinkinasen die betroffene(n)/gehemmte(n) Kinase(n) durch quantitative RT-PCR zweifelsfrei identifiziert. Somit können durch das Mischen von verschiedenen Hefestämmen zu gleichen Teilen, unterschiedliche Kinasen in einem einzigen Screen getestet werden. Der Vorteil ist eine enorme Kosten- und Zeitersparnis.
Diese Technologie ist nicht nur auf Proteinkinasen anwendbar, sondern auf alle Proteine oder Substanzen, die eine transkriptionelle Antwort in der Hefe auslösen. Dieser Plattformassay ermöglicht im Gegenstand zu Assays des Standes der Technik z.B. das HTS aller Proteinkinasen (nicht nur solcher, die bereits auf Anhieb bei heterologer Expression einen Phänotyp hervorbringen) in homogenen und daher kostengünstigen Assaysystemen. Das System ist auch zur Bestimmung von IC50- Werten im Compoundscreening geeignet.
Diese Technologie ist nicht nur auf Proteinkinasen anwendbar, sondern auf alle Proteine oder Substanzen, die eine transkriptionelle Antwort in der Hefe auslösen. Methoden: Für genetische Manipulationen wurden die Standardmethoden nach Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual. Second edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 545 pp. eingesetzt.
Wachstumsbedingungen, Kreuzungsbedingungen und genetische Manipulationen an Hefen (Saccharomyces cerevisiae) wurden gemäß Guthrie, C. and G.R. Fink (1991) Guide to Yeast Genetics and Molecular Biology, Volume 194, J.N. Abelson and M.l. Simon, eds. (San Diego, CA: Academic Press Inc.) durchgeführt. Die Affymetrix- Experimente ("gene expression analysis) wurden exakt nach Klebl et al. (2001) Biochem. Biophys. Res. Commun. 286, 714-720 durchgeführt.
Literatur:
Brown, A.J.P. and M. Tuite (1998). PCR-Based Gene Targeting in Saccharomyces cerevisiae. Methods Microbiol. 26, 67-81.
Methods in Yeast Genetics; A Cold Spring Harbor Course Manual; 1994 Edition; Kaiser, C, Michaelis, S., and A. Mitchell; Cold Spring Harbor Laboratory Press. Mumberg, D., Müller, R. and M. Funk (1994). Regulatable Promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucl. Acids Res. 22, 5767-5768.
Tugendreich, S., Perkins, E., Couto, J., Barthmaier, P., Sun, D., Tang, S., Tulac, S., Nguyen, A., Yeh, E.r Mays, A., Wallace, E., Lila, T., Shivak, D., Prichard, M., Andrejka, L., Kim, R. and T. Melese (2001). A streamlined process to phenotypically profile heterologous cDNAs in parallel using yeast cell-based assays. Genome Res. 11 , 1899-1912.
Tabelle 1 :
2 Gene sind hochreguliert im ste20Δ Stamm YEL206, der hPAK1 exprimiert
Anmerkungen Genfunktion x-fach hoch reguliert
YMR096W Stationärphasenprotein 2.15
HIS3 Imidazolglycerolphosphat Dehydratase; 7. Schritt der 6.77 Histidin Biosynthese
11 Gene sind herunterreguliert im ste20Δ Stamm YEL206 J der hPAK1 exprimiert
Anmerkungen Genfunktion x-fach herunter reguliert
STE20 Serine/Threonine Proteinkinase des 47.62 Pheromonresponse Sicjnaltransduktionsweges
FRE7 Protein mit schwacher Ähnlichkeit zu Frelp und 11.70 Fre2p, involviert in den Eisentransport
MFA1 Matingpheromon a-Faktor, exportiert aus der 3.70 Zelle durch Steδp
YLR042C Unbekannt 3.27
GPH1 Glykogenphosphorylase, setzt α-D-Glukose-1- 2.63 Phosphat frei
FREI Eisen- und Kupferreductase, wirkt auf Fe2+ 2.55 Ionen Cheiate
YHR087W Unbekannt 2.31
CWP1 Mannoprotein der Zellwand; Mitglied der PAU1 2.27 Familie
YJL217W Unbekannt 2.25
CTR1 Kupfer Transportprotein; benötigt für hochaffine 2.17 Aufnahme von Kupfer Ionen;
FET4 Niedrigaffines Fe(ll) Transportprotein 2.00
Tabelle 2:
110 Gene sind hochreguliert im cla4D Stamm YEL252
Anmerkungen Genfunktion x-fach hoch reguliert
Zellwand eil der D-1 ,3-Glucansynthase, AufrechtFKS2 Bestandt 6.81 funktioniert wahrscheinlich als alternative erhaltung Untereinheit zu Fkslp (88% identisch); 55% identisch mit Fks3p; interagiert mit Rhol p; fkslAfks2Δ ist lethal
ECM29 Möglicherweise involviert in Zellwandstruktur 3.13 oder Biosynthese
SPI1 Durch GPI Anker an die Zellwand gebunden; 2.72 induziert durch Msn2/4p
SBE22 Notwendig für Wachstum der Buds; involviert 2.08 in die Integrität der Zellwand
Zellulärer Stress HSP12 12 kDa Heat Shock Protein, induziert durch 6.55' Hitze, osmotischen (HOG1-, PBS2- dependent) oder oxidativen Stress, stationäre Phase, HSF1 , MSN2, YAP1; Chaperon (Mitglied der Hydrophilin Familie) 5 STREs
HSP26 Heat Shock Protein.induziert durch 4.76 Osmostress, HSF1, MSN2, Hitze, H202; 29% identisch mit Hsp42p; Chaperon; 4 STREs
HSP82 Heat Shock Protein, 97% identisch mit 2.67 Hsc82p, ähnlich dem Säuger HSP90 (komplementierbar durch humanes HSP90); Chaperon; induziert durch HSF1 , SKN7, YAP1 , H202; hat ATPase Aktivität; z.T. reguliert durch den HOG1 Signalweg, bindet an Ste11 p; HSP90 Aktivität wird durch Sch9p moduliert
GPX2 Glutathionperoxidase, induziert durch YAP1 2.64
& Oxidantien
SKN7 Transkriptionsfaktor involviert in die Antwort 2.60 auf oxidativen Stress (H202) & G1 Zellzykluskontrolle (Auftreten der Buds); interagiert mit Rho1 p, Mbp1 p, Cdc42p & genetisch mit PKC1 ; benätigt für das N2- Entzug-induzierte pseudphyphale Wachstum; Kooperiert mit Yap1 p bei der Genexpressionsinduktion; nicht involviert in den Heat Shock; Wirkt ggf im HOG1 Signalweg mit; Teil eines Zweikomponentensystems; Transkriptionsaktivierung stimuliert durch Skn7p ist abhängig vom Ras/PKA Signalweg
SOD2 Mitochondriale Mn2+ Superoxidedismutase, 2.57 induziert durch HAP1 ,2,3,4,5 & reprimiert durch cAMP (RAS2); transkriptionelle Antwort auf H2O2 is Yap1 p- & Skn7p- abhängig; induziert durch Msn2/4p
ICT1 k.o. höhere Widerstandsfähigkeit gegenüber 2.41 Cu2+ als Wildtyp; mitochondriaie Energie Transfer Signatur
CYP2 Mitglied der Cyclophilin Familie, Heat Shock 2.37 Protein, Isomerase, Chaperon
HSP42 Heat Shock Protein, involviert in die 2.28 Wiederherstellung des Zytoskeletts während leicheter Stresseinwirkung; induziert durch HOG1 , MSN2/4, EtOH, H202; 3 STREs
MSN4 Transkriptionsfaktor, starke Ähnlichkeit zu 2.15 Msn2p; Regulation der Trehalosekonzentration während Stress; 39 Gene abhängig von Msn2/4p für die Induktion bei diauxischem Shift und repπ'miert durch cAMP: ALD3, GDH3, GLK1 , HOR2, HSP104, HXK1 , PGM2, SOD2, SSA3, SSA4, TKL2.TPS1 , ARA.z.B. Ras2p kontrolliert die Stressresponse- Genexpression durch Msn2/4p & Yap1 p; TOR-Signaltransduktion kontrolliert die nukleare Lokalisation von Nährstoff- regulierten Transkriptionsfaktoren ukleotid ADE2 Phosphoribosylaminoimidazol Karboxylase Stoffwechsel 5.96 (AIR Dekarboxylase); weisse vs. rote Kolonien
ADE17 5-Aminoimidazole-4-Karboxamid 3.42 RibonuKleotid (AICAR) Transformylase/IMP Zyklohydrolase; weisse vs. rote Kolonien
DCD1 Deoxycyticylat Deaminase; k.o. hat 2.50 gesteigerten dCTP Pool
Transport kleiner RF7 Involvid in uptake of copper and iron; weak Moleküle 4.98 similarity to Frelp
YH 048W 29% identical to Ygr138p, Ypr156p, and 33% 4.20 to FI p; MFS-MDR member
PH089 High-affinity Na+-dependent phosphate 2.76 transporter;
YGR138C Member of the cluster I (familyl) of the MFS- 2.54 MDR; 89% identical to Ypr156p
YER053C MCF member 2.40
TAF1 Triacetylfuscerinine C transporter (MDR- 2.24 MFS); 56%, 46%, 46% identical to Arn1 p, Ycl073p, Ykr106p
MUP3 Low affinity amino acid permease (Met 2.16 permease); APC family member
ATM1 ABC superfamily member, required for 2.03 growth; may function in sensing iron; 43% identical to human ABC7
Carbohydrate QD£3 NADPH-specific aldose reductase, induced metabolism 3.61 by osmotic stress, MSN2/4, 0.1 M LiCI; 36%, 34%, 34% identical to Yjr096p, Gcy1 p, Yprlp; STREs and PDSEs; similar to human 305B protein (neonatal cholestatic hepatitis)
GPH1 Glycogen phosphorylase repressed by 3.49 cAMP; stress-inducible
GUT1 Glycerol kinase, catalyzes conversion of 3.37 glycerol to glycerol-3-phosphate, induced by ADR1 , IN02, IN04, glycerol; strong similarity to human GK; activity is reduced during osmotic stress
PCY1 Pyruvate carboxylase I; converts pyruvate to 2.50 oxalacetate for gluconeogenesis; 93%, 30%, 38% identical to Pyc2p, Hfa1 p, Dur1 ,2p; similar to human PYC
TSL1 Component of trehalose-6-phosphate 2.40 synthase/phosphatase complex; induced by STE12, STE7, TEC1, osmotic stress & repressed by cAMP, glucose; contains STREs
GLK1 Glucokinase specific for aldohexoses; 73%, 2.09 38%, 37% identical to Ydr516p, Hxklp, Hxk2p; induced by GCR1, HOG1, MSN2, MSN4 & repressed by cAMP, cold; protein increased upon H2Q2, G1 phase
Protein YPS3 GPI-anchored aspartyl protease (yapsin) at degradation 3.40 the plasma membrane; 45%, 36%, 47% identical to Mkc7p, Sstlp, Ypslp
UBI4 Ubiquitin polyprotein, mature ubiquitin is 3.27 cleaved from polyubiquitin (Ubi4p) or from fusions with ribosomal proteins Rps31p, Rpl40Ap, Rpl40Bp; ribosomal heat shock protein & protein conjugation factor; 90% identical to Rpl40A/Bp and 100% to Rps31p; induced HSF1 , MSN2, starvation, heat shock; required for survival of cell stress; k.o. is hypersensitive to H202, N2- and C2- starvation; has STREs & HSEs
VID24 Required for vacuolar import and 2.82 degradation of Fbp1 p
RPN10 Non-ATPase component of the 26S 2.46 proteasome complex, binds ubiquitin- lysozyme conjugates in vitro; C-terminus binds to ubiquitin
BUL1 Involved in ubiquitination pathway, binds to 2.12 ubiquitin ligase
AAP1 Ala/Arg aminopeptidase, related to other 2.00 Zn2+ metalloproteases & mammalian Zn2+ aminopeptidases
DNA synthesis pj|v| \ Transcription factor which binds ssDNA; 3.27 required for replication in mitochondria
Amino add YMR250W Similar to glutamate decarboxylase metabohsm 3.11
GDH2 Glutamate DH, primary pathway to generate 2.83 NH4 + from glutamate, induced by rapamycin; gets phosphorylated in response to N2 starvation (inactivation; PAK-dependent)
GCV1 Glycine decarboxylase T subunit, functions 2.31 in pathway for Gly degradation
CHA1 Mitochondrial L-Ser/L-Thr deaminase, 2.17 catalyzes conversion of Ser to pyruvate & Thr to D-ketobutyrate; induced by
Ser, Thr, S1L1. CHA4 Signal YGL179C Ser/Thr protein kinase with similarity to transduction 3.10 Elmlp (31%), Paklp (49%), Kin82p (30%), Gin4p (29%)
KSP1 Ser/Thr protein kinase that suppresses 2.85 prp20A when overexpressed
SLT2 Ser/Thr protein kinase of the MAP kinase 2.77 family involved in the cell wall integrity pathway, polarized growth, responseto nutrient availability, heat shock; interacts with Rlmlp, Swi4/6p, Mkk1/2p, Spa2p, Ptp2/3p, phosphoryiates Swi4/6p & functions as regulator of the SBF complex; kinase activity induced by pheromone (requires Ste20p, but not Ste12p); kinase activity is cell cycle regulated
STE20 Ser/Thr protein kinase of pheromone 2.25 response pathway, participates also in filamentous growth and STE vegetative growth pathways;
YCK1 CKI isoform, 77%, 50%, 41 % identical to 2.21 Yck2p, Yck3p, Hrr25p and 50-55% with human isoforms; gernaylgeranylated; ycklΔyckts displays hyperpolarized growth, hypersensitivity towards^Zn 2+ a , nd multiple drugs, resistance to Mn 2"+
YHR046C Myo-inositol-1 (or-4)-monophosphatase, 2.17 participates in inositol cycle of Ca2+ signaling & inositol biosynthesis; similar to human MYOP (anti-manic, and - depressive actions of Li+)
SCH9 Ser/Thr protein kinase activated by cAMP; 2.17 46%, 44%, 42% identical to Ypk2p, Ypklp, Tpk3p & 49% to human AKT1 ,2; controls FGM pathway; k.o. has modest defect in pseudohyphal growth and displays hyperinvasive growth
PTP2 PTPase involved in Hog1 p and pheromone 2.01 response pathways; interacts with Hog1 p, Slt2p; induced by SLT2, YAP1 , heat, osmotic stress; dephosphorylates Hoglp, Fus3p; posttranslationally regulated by Hoglp; 2 STREs
Lipid, fatty acid spholipase B, releases GPI into the 3,01 & sterol PLB3 Pho medium metabolism
ERG7 Lanosterol synthase (ergosterol 2.30 biosynthesis), essential
Membrane fusion YHR138C Involved in vacuolar fusion with sequence 2.81 similarity to Pbi2p
Cell cycle C control PCL5 yclin that associates with Pho85p, belongs 2.73 to Pcl1/2p subfamily
PolII transcription GAT2 GATA Zr Ainger transcription factor, 2.73 required for expression of N2 catabolite repression-sensitive genes
HAP4 Transcription factor, component of the 2.48 Hap2/3/4/5p-complex involved in activation of CCAAT box-containing genes (SOD2, e.g.)
STP4 Transcription factor with strong homology to 2.17 Stp1 ,2,3p; involved in tRNA splicing and branched-chain amino acid uptake
SNF6 Transcription factor, component of the SWI- 2.13 SNF global transcription activator complex; acidic domains of Gcn4p, Swiδp, Hap4p interact directly with SWI-SNF complex
SETI Transcription factor of the trithorax f am ily of 2.04 SET-domain-containing proteins, participates in control of transcription and chromosome structure; similar to human HRX Zn 2+ finger protein
Energy generation MDH2 Cytosolic malate DH (glyoxylate cycle); 2.60 induced by N2 source limitation & repressed by cAMP, glucose; 3 STREs
RNA processing/ RP 1 Subunit of ribonuclease P & Rnase MRP modification 2.49 ribonucleoprotein particles, needed for tRNA & 5.8S rRNA processing; 23% identical to hRpp30
PRP8 U5 snRNA-associated splicing factor; 2.41 essential RNA-binding protein; 62% identical to human PRP8; component of the spliceosome
RRP4 3'-5'-exoribonuclease required for 3'- 2.38 processing of ribosomal 5.8S rRNA; component of the nuclear & cytoplasmid forms of the 3'-5'-exosome complex; essential; induced in S-phase
DBP8 Similar to DEAD box family of RNA helicases 2.33
Other metabolism YNL274C Potential D-ketoisocaproate reductase, 2.26 induced by YAP1 , H2Q2 '
DUR1,2 Urea amidolyase, contains urea caroxylase 2.21 & allophanate hydrolase activities; repressed by NH4 + & induced by N2 starvation, mating pheromone, Arg, rapamycin (N2 utilization gene)
Protein UBP5 Ubiquitin-specific protease homologous to modification 2.17 Doa4p & human Tre-2; member of rhodanese homology family
Protein synthesis SR 1 Mitochondrial arginyl-tRNA synthetase, 61 % 2.17 identical to Ydr341 p
Vesicular 7 transport SFB3 Possible component of COPII vesicles, 2.1 involved in transport of Pma1 p from eR to Golgi; interacts with Sec23p
Cytokinesis CDC12 Essential pari of the septin complex at the 2.09 neck; required for pheromone-induced morphogenesis; septin assembly depends on Cla4p & Ste20p (Cdc42p, Cdc24p); mislocalized in yck2
Mating response SSF1 Suppressor of sterile four; 94% identical to 2.06 Ssf2p; ssfl Gssf2D is lethal; multicopy suppressor of hsp90-loss-of-function mutation
Unknown YHR214W 100%, 77%, 74% identical to Yar066p, 9.88 Yil169p, Yol155p YAR066W 100%, 77%, 74% identical to Yhr214p, 7.59 Yil169p, Yol155p
RTA1 Resistant to aminocholesterol; induced by 4.64 TEC1. STE7, STE12
MSC1 Functions in the meiotic homologous 4.62 chromatid recombination pathway
YHL021C Induced by STE12, TEC1 , STE7 4.35
YHR209W Putative SAM-dependent methyltransferase 4.26
COS8 Protein family of conserved sequences 3.74
YNR014W 30% identical to Ymr206p; 4 putative STREs 3.44
YIR042C - 3.37
YCL049C - 3.28
YHR087W - 3.19
YHR078W 4 potential transmembrane Segments 3.00
TRA1 Essential component of the Ada-Spt 2.82 transcriptional regulatory complex (SAGA), SAGA-like complex, & NuA4 complex
BTN2 Elevated expression with yhc3Δ; 38% 2.77 identical to human HOOK1
VAB36 Vac8p-binding protein of 36 kDa; 2 putative 2.75 STREs
YFL063W Similarto subtelomeric proteins 2.68
YHR112C Similar to cystathione D-synthase Str2p & 2.56 other transulfuration enzymes, also similar to human CGL (cystathioninuria)
YBL064C Mitochondrial thiol peroxidase of the 1-Cys 2.55 family; one of the 4 peroxidases in S.o.; uses thioredoxin as electron donor; induced upon oxidative stress; reduces H2O2 in the presence of DTT
YSC83 Induced mRNA levels during sporulation 2.46
BOP1 Bypass of PAM1 (PAM1 = multicopy 2.45 suppressor of loss of PP2A)
YHR045W 5 potential transmembrane domains 2.44
YHR033W Induced by N2 source limitation & repressed 2.42 by cAMP
YPR009W Putative Zn^-finger domain; 34% identical to ' 2.40 Sutl p
YLL064C Member of the seripauperin family 2.39
YPL137C Similar to Mhplp (27%), Yor227p (43%) 2.39
YHR182W - 2.37
YDR222W - 2.37
YHR146W Similar to pheromone adaption protein 2.36 Mdql p
Figure imgf000027_0001
YHR073W Similar to human oxysterol-binding protein; 2.20 interacts with Spo12p
YJL217W - 2.17
YHR192W - 2.11
YDL231C Putative Zn^+ finger domain 2.10
YDR391C 57%, 41% identical to Yor013p, Yor012p 2.05
Tabelle 3:
Figure imgf000029_0001
Tabelle 4:
55 Gene sind hochreguliert im ste20Δ Stamm YEL206, der hPAKIΔCRIB exprimiert
Anmerkungen Genfunktion x-fach hoch reguliert
PH05 Reprimierbare saure Phosphatase; benötigt 10.19 Glykosylierung für Aktivität
ZRT1 Hochaffines Zink Transportprotein; Mitglied der 10.12 ZIP Familie
PHOll Sezemierte Saure Phosphatase 7.67
HSP30 Heat shock Protein, lokalisiert in 6.30 Plasmamembran
PHO12 Sezemierte Saure Phosphatase 5.80
YIL057C Unbekannt 5.70
YOL154W Protein mit Ähnlichkeit zu Zink 5.24 Metalloproteinasen
YPL274W Hochaffine S-Adenosylmethionin Permease 5.16
C1T3 Mitochondriale Zitratsynthase 5.15
RTA1 Protein, das in den 7-Aminocholesterol 5.14 Wiederstand involviert ist
YEL070W Protein mit Ähnlichkeit zu E.coli D-Mannonat 5.09 Oxidoreductase
YDL037C Protein mit Ähnlichkeit zu Glucan 1 ,4-D- 4.95 Glukosidase
YHR136C Putativer Inhibitor des Pho80-Pho85p Cyclin- 4.84 abhängignen Kinase Komplexes
LEE1 Unbekannt 4.59
YMR303C Alkohol Dehydrogenase II; oxidiert Ethanol zu 4.07 Acetaldehyde

Claims

Patentansprüche
1. Verfahren zur Generierung eines gentechnisch veränderten Organismus für das Wirksubstanzscreening mit den Schritten a) Herbeiführung der heterologen Expression mindestens eines Proteins oder Proteinfragmentes durch gentechnische Veränderung des Organismus b) Analyse des veränderten Genexpressionsmusters und Identifizierung kompensatorisch differentiell regulierter Gene c) Phänotypisierung des Organismus
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Phänotypisierung durch Minderung/Aufhebung der kompensatorisch differentiellen Expression oder durch Markierung mindestens eines kompensatorisch differentiell regulierten Gens erfolgt.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die gentechnische Veränderung die heterologe Expression mindestens eines dem Organismus eigenen und oder fremdem Proteins oder Proteinfragmentes bewirkt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die gentechnische Veränderung die Verminderung oder Ausschaltung der Expression mindestens eines dem Organismus eigenen Proteins bewirkt.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die veränderte Expression induzierbar ist.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die gentechnische Veränderung die Einschleusung eines Vektors umfasst, der die induzierbare Expression des Proteins oder Proteinfragmentes ermöglicht, vorzugsweise eines mit Galactose, Kupfer Tetracyclin oder anderen vergleichbar induzierbaren Vektoren.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die gentechnische Veränderung einen Knock Out, vorzugsweise einen induzierbaren Knock Out umfasst.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Organismus Drosophila, C. elegans, eine prokaryontische oder eine eukaryontische Zelle ist.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Zelle eine Hefezelle, vorzugsweise eine Hefezelle vom Stamm S. cerevisiae ist.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Analyse der veränderten Genexpression mit Hilfe von DNA- oder Protein-Microarrays erfolgt.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Phänotypisierung durch Minderung oder Aufhebung der Expression des kompensatorisch differentiell regulierten Gens erfolgt.
12. Verfahren nach Anspruch 11 , dadurch gekennzeichnet, dass das kompensatorisch differentiell exprimierte Gen gegenüber Kontrollorganismen verstärkt exprimiert wird und die Minderung oder Aufhebung durch zumindest teilweise Inhibierung der verstärkten Expression erfolgt.
13. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Knock Out des differentiell exprimierten Genes den Austausch mindestens eines Teiles der kodierenden Sequenz des differentiell regulierten Gens gegen die kodierende Sequenz eines Reportergens oder Teile der Reportergensequenz, die ausreichen, detektierbar zu sein, erfolgt.
14. Verfahren nach Anspruch 11 , dadurch gekennzeichnet, dass das differentiell exprimierte Gen weniger stark exprimiert wird als in Kontrollorganismen und die Minderung oder Aufhebung durch Verstärkung seiner Expression erfolgt.
15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Minderung oder Aufhebung zu einer Wachstumsinhibierung des Organismus führt.
16. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Phänotypisierung durch Markierung des Genproduktes des kompensatorisch differentiell regulierten Genes erfolgt.
17. Gentechnisch veränderter, phänotypisierter Organismus, erhalten durch ein Verfahren nach einem der Ansprüche 1 bis 16.
18. Gentechnisch veränderter Organismus mit a) gentechnisch veränderter Expression mindestens eines eigenen oder fremden Gens, die zur kompensatorisch differentiellen Expression mindestens eines anderen, dem Organismus eigenen Gens führt, und b) mit durch Minderung/Aufhebung der kompensatorisch differentiellen Expression des Genes oder durch Markierung des kompensatorisch differentiell regulierten Genproduktes herbeigeführten Phänotyp.
19. Verwendung eines gentechnisch veränderten Organismus nach einem der Ansprüche 17 oder 18 zum Screening nach Substanzen mit einer Wirkung auf die Funktion des heterologen Proteins oder Proteinfragmentes.
20. Verfahren zur Identifizierung von Stoffen mit Wirkung auf die Funktion des heterolog exprimierten Proteins oder Proteinfragmentes umfassend die Verwendung eines Organismus gemäß einem der Ansprüche 17 oder 18.
21. Assay zum Wirksubstanzscreening mit mindestens einem phänotypisierten Organismus nach einem der Ansprüche 17 oder 18 mit den Schritten b) Feststellung des Phänotyps des Organismus c) in Kontakt bringen der zu testenden Substanz mit dem Organismus d) Beobachten einer möglichen Veränderung des Phänotyps.
22. Substanzen, die durch ein Verfahren nach Anspruch 20 oder einen Assay gemäß Anspruch 21 als den Phänotyp zumindest mindernd identifiziert werden.
PCT/EP2003/012870 2002-12-17 2003-11-18 Verfahren zur generierung eines gentechnisch veränderten organismus für das wirk substanzscreening WO2004055206A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA002509333A CA2509333A1 (en) 2002-12-17 2003-11-18 Method for generating a genetically modified organism for screening active substances
AU2003283409A AU2003283409A1 (en) 2002-12-17 2003-11-18 Method for generating a genetically modified organism for screening active substances
DE50313671T DE50313671D1 (de) 2002-12-17 2003-11-18 Verfahren zur generierung eines gentechnisch veränderten organismus für das wirksubstanzscreening
JP2004559696A JP4630067B2 (ja) 2002-12-17 2003-11-18 活性物質をスクリーニングするために遺伝学的に改変された生物を製造する方法
AT03775367T ATE508201T1 (de) 2002-12-17 2003-11-18 Verfahren zur generierung eines gentechnisch veränderten organismus für das wirksubstanzscreening
EP03775367A EP1576186B1 (de) 2002-12-17 2003-11-18 Verfahren zur generierung eines gentechnisch veränderten organismus für das wirksubstanzscreening
CN2003801065234A CN1726290B (zh) 2002-12-17 2003-11-18 产生用于筛选活性物质的经遗传修饰生物的方法
NO20053344A NO20053344D0 (no) 2002-12-17 2005-07-08 Fremgangsmate for a generere en genetisk modifisert organisme for a screene aktive substanser.
HK06107826.9A HK1087734A1 (en) 2002-12-17 2006-07-13 Method for generating a genetically modified organism for screening active substances

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10258885A DE10258885A1 (de) 2002-12-17 2002-12-17 Verfahren zur Generierung eines gentechnisch veränderten Organismus
DE10258885.6 2002-12-17

Publications (1)

Publication Number Publication Date
WO2004055206A1 true WO2004055206A1 (de) 2004-07-01

Family

ID=32519000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/012870 WO2004055206A1 (de) 2002-12-17 2003-11-18 Verfahren zur generierung eines gentechnisch veränderten organismus für das wirk substanzscreening

Country Status (14)

Country Link
US (1) US20040143854A1 (de)
EP (1) EP1576186B1 (de)
JP (1) JP4630067B2 (de)
KR (2) KR101215854B1 (de)
CN (1) CN1726290B (de)
AT (1) ATE508201T1 (de)
AU (1) AU2003283409A1 (de)
CA (1) CA2509333A1 (de)
DE (2) DE10258885A1 (de)
HK (1) HK1087734A1 (de)
NO (1) NO20053344D0 (de)
RU (1) RU2376364C2 (de)
WO (1) WO2004055206A1 (de)
ZA (1) ZA200504212B (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1774017A2 (de) * 2004-07-26 2007-04-18 Dow Gloval Technologies Inc. Verfahren zur verbesserten proteinexpression durch strain-engineering
WO2007124115A2 (en) * 2006-04-20 2007-11-01 Trustees Of Boston College Compositions and methods for identifying inhibitors and activators of cyclic amp phosphodiesterases
US9394571B2 (en) 2007-04-27 2016-07-19 Pfenex Inc. Method for rapidly screening microbial hosts to identify certain strains with improved yield and/or quality in the expression of heterologous proteins
US9453251B2 (en) 2002-10-08 2016-09-27 Pfenex Inc. Expression of mammalian proteins in Pseudomonas fluorescens
US9580719B2 (en) 2007-04-27 2017-02-28 Pfenex, Inc. Method for rapidly screening microbial hosts to identify certain strains with improved yield and/or quality in the expression of heterologous proteins

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063225A (ja) * 2005-09-01 2007-03-15 Takeda Chem Ind Ltd イミダゾピリジン化合物
EP1948614A2 (de) * 2005-11-18 2008-07-30 Takeda San Diego, Inc. Glucokinaseaktivatoren
EP2001875A2 (de) 2006-03-08 2008-12-17 Takeda San Diego, Inc. Glucokinase-aktivatoren
WO2007143434A2 (en) * 2006-05-31 2007-12-13 Takeda San Diego, Inc. Indazole and isoindole derivatives as glucokinase activating agents
JP5419706B2 (ja) 2006-12-20 2014-02-19 タケダ カリフォルニア インコーポレイテッド グルコキナーゼアクチベーター
WO2008116107A2 (en) * 2007-03-21 2008-09-25 Takeda San Diego, Inc. Piperazine derivatives as glucokinase activators
EP2632250A1 (de) * 2010-10-29 2013-09-04 F.Hoffmann-La Roche Ag Mausmodell einer entzündung mit löschung der il33 n-terminaldomäne
HUP1100657A2 (en) * 2011-11-29 2013-06-28 Eotvos Lorand Tudomanyegyetem Transgenic caenorhabditis elegans
CN110172454B (zh) * 2019-05-23 2020-11-13 浙江大学 一种s-腺苷甲硫氨酸合成酶突变体及其高通量筛选方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002063029A1 (en) * 2001-02-02 2002-08-15 Iconix Pharmaceuticals, Inc. Alteration of phenotype due to heterologous genes
WO2003016568A2 (en) * 2001-08-15 2003-02-27 Virtek Proteomics Inc Yeast arrays, methods of making such arrays, and methods of analyzing such arrays

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0758392A1 (de) * 1994-04-26 1997-02-19 Cadus Pharmaceutical Corporation Die expression von funktionaler, menschlicher adenylyl-cyclase in hefe
AU1582799A (en) * 1997-11-07 1999-05-31 Iconix Pharmaceuticals, Inc. Surrogate genetics target characterization method
EP1141416A1 (de) * 1998-12-31 2001-10-10 Iconix Pharmaceuticals, Inc. Verfahren zur etablierung eines signalweg-reporter systems
WO2001046403A1 (en) * 1999-12-22 2001-06-28 Iconix Pharmaceuticals, Inc. Synthetic lethal expression screen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002063029A1 (en) * 2001-02-02 2002-08-15 Iconix Pharmaceuticals, Inc. Alteration of phenotype due to heterologous genes
WO2003016568A2 (en) * 2001-08-15 2003-02-27 Virtek Proteomics Inc Yeast arrays, methods of making such arrays, and methods of analyzing such arrays

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ATIENZA J M ET AL: "Yeast Model System for Study of Mammalian Phosphodiesterases", METHODS: A COMPANION TO METHODS IN ENZYMOLOGY, ACADEMIC PRESS INC., NEW YORK, NY, US, vol. 14, no. 1, January 1998 (1998-01-01), pages 35 - 42, XP004466609, ISSN: 1046-2023 *
CAUMONT ANNE B ET AL: "Expression of functional HIV-1 integrase in the yeast Saccharomyces cerevisiae leads to the emergence of a lethal phenotype: Potential use for inhibitor screening", CURRENT GENETICS, vol. 29, no. 6, 1996, pages 503 - 510, XP002272320, ISSN: 0172-8083 *
D. MUMBERG ET AL.: "Volllänge und mit einem C-terminalen Tag, z.B. MYC-Tag/kloniert", NACH TRANSFORMATION MIT DER LITHLUM-AZETAT-METHODE NACH STANDARD PROTOKOLL, 1994
PAUSCH M H: "G-protein-coupled receptors in Saccharomyces cerevisiae: high-throughput screening assays for drug discovery", TRENDS IN BIOTECHNOLOGY, ELSEVIER PUBLICATIONS, CAMBRIDGE, GB, vol. 15, no. 12, 1 December 1997 (1997-12-01), pages 487 - 494, XP004097426, ISSN: 0167-7799 *
TUGENDREICH STUART ET AL: "A streamlined process to phenotypically profile heterologous cDNAs in parallel using yeast cell-based assays", GENOME RESEARCH, vol. 11, no. 11, November 2001 (2001-11-01), pages 1899 - 1912, XP002272319, ISSN: 1088-9051 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9453251B2 (en) 2002-10-08 2016-09-27 Pfenex Inc. Expression of mammalian proteins in Pseudomonas fluorescens
US10041102B2 (en) 2002-10-08 2018-08-07 Pfenex Inc. Expression of mammalian proteins in Pseudomonas fluorescens
US9458487B2 (en) 2002-10-08 2016-10-04 Pfenex, Inc. Expression of mammalian proteins in pseudomonas fluorescens
EP1774017A4 (de) * 2004-07-26 2009-05-06 Dow Global Technologies Inc Verfahren zur verbesserten proteinexpression durch strain-engineering
EP2412816A3 (de) * 2004-07-26 2012-05-16 Pfenex, Inc. Verfahren zur verbesserten Proteinexpression durch Strain-Engineering
KR101340708B1 (ko) * 2004-07-26 2013-12-20 다우 글로벌 테크놀로지스 엘엘씨 균주 조작에 의한 개선된 단백질 발현 방법
US9109229B2 (en) 2004-07-26 2015-08-18 Pfenex Inc. Process for improved protein expression by strain engineering
EP1774017A2 (de) * 2004-07-26 2007-04-18 Dow Gloval Technologies Inc. Verfahren zur verbesserten proteinexpression durch strain-engineering
WO2007124115A3 (en) * 2006-04-20 2007-12-21 Trustees Boston College Compositions and methods for identifying inhibitors and activators of cyclic amp phosphodiesterases
WO2007124115A2 (en) * 2006-04-20 2007-11-01 Trustees Of Boston College Compositions and methods for identifying inhibitors and activators of cyclic amp phosphodiesterases
US9394571B2 (en) 2007-04-27 2016-07-19 Pfenex Inc. Method for rapidly screening microbial hosts to identify certain strains with improved yield and/or quality in the expression of heterologous proteins
US9580719B2 (en) 2007-04-27 2017-02-28 Pfenex, Inc. Method for rapidly screening microbial hosts to identify certain strains with improved yield and/or quality in the expression of heterologous proteins
US10689640B2 (en) 2007-04-27 2020-06-23 Pfenex Inc. Method for rapidly screening microbial hosts to identify certain strains with improved yield and/or quality in the expression of heterologous proteins

Also Published As

Publication number Publication date
DE10258885A1 (de) 2004-07-15
CA2509333A1 (en) 2004-07-01
EP1576186A1 (de) 2005-09-21
DE50313671D1 (de) 2011-06-16
RU2005122470A (ru) 2006-05-10
US20040143854A1 (en) 2004-07-22
AU2003283409A1 (en) 2004-07-09
RU2376364C2 (ru) 2009-12-20
ATE508201T1 (de) 2011-05-15
EP1576186B1 (de) 2011-05-04
NO20053344L (no) 2005-07-08
KR20050085806A (ko) 2005-08-29
CN1726290A (zh) 2006-01-25
JP2006509512A (ja) 2006-03-23
JP4630067B2 (ja) 2011-02-09
HK1087734A1 (en) 2006-10-20
ZA200504212B (en) 2006-02-22
CN1726290B (zh) 2012-09-05
KR20120038025A (ko) 2012-04-20
NO20053344D0 (no) 2005-07-08
KR101215854B1 (ko) 2012-12-31

Similar Documents

Publication Publication Date Title
EP1576186B1 (de) Verfahren zur generierung eines gentechnisch veränderten organismus für das wirksubstanzscreening
García et al. Genomic profiling of fungal cell wall-interfering compounds: identification of a common gene signature
Entian et al. Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a systematic approach
Rabitsch et al. Kinetochore recruitment of two nucleolar proteins is required for homolog segregation in meiosis I
Brown et al. MIF2 is required for mitotic spindle integrity during anaphase spindle elongation in Saccharomyces cerevisiae.
Yamamoto et al. Pds1p, an inhibitor of anaphase in budding yeast, plays a critical role in the APC and checkpoint pathway (s).
Palancade et al. Nucleoporins prevent DNA damage accumulation by modulating Ulp1-dependent sumoylation processes
Fernandez-Alvarez et al. Identification of O-mannosylated virulence factors in Ustilago maydis
Chen et al. Contribution of peroxisomal docking machinery to mycotoxin biosynthesis, pathogenicity and pexophagy in the plant pathogenic fungus Fusarium graminearum
López-García et al. A genomic approach highlights common and diverse effects and determinants of susceptibility on the yeast Saccharomyces cerevisiae exposed to distinct antimicrobial peptides
US20080287317A1 (en) Yeast arrays, methods of making such arrays, and methods of analyzing such arrays
Dumond et al. A large‐scale study of Yap1p‐dependent genes in normal aerobic and H2O2‐stress conditions: the role of Yap1p in cell proliferation control in yeast
Santos et al. Sbe2p and sbe22p, two homologous Golgi proteins involved in yeast cell wall formation
Jung et al. Accumulation of P-bodies in Candida albicans under different stress and filamentous growth conditions
Latterich et al. Isolation and characterization of osmosensitive vacuolar mutants of Saccharomyces cerevisiae
Hu et al. α1-Tubulin FaTuA1 plays crucial roles in vegetative growth and conidiation in Fusarium asiaticum
Andrusiak Adapting S. cerevisiae chemical genomics for identifying the modes of action of natural compounds
Azad et al. The transcription factor Rap1p is required for tolerance to cell-wall perturbing agents and for cell-wall maintenance in Saccharomyces cerevisiae
KR20100044175A (ko) 효모 세포 세트, 표적 후보 분자 동정 방법, 작용 기작 해석 방법 및 스크리닝 방법
Santos et al. The transcriptional response of Saccharomyces cerevisiae to proapoptotic concentrations of Pichia membranifaciens killer toxin
EP1341922B1 (de) Hefestamm zur prüfung der geno- und zytotoxizität komplexer umweltkontaminationen
Brul et al. Functional genomics for food microbiology: molecular mechanisms of weak organic acid preservative adaptation in yeast.
US8173387B2 (en) Method of examining chemical using gene-disrupted strain
Ogbede Understanding cellular response to drugs and toxins with yeast genomics tools
Bresson et al. Posttranscriptional regulation of cell wall integrity in budding yeast

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003775367

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005/04212

Country of ref document: ZA

Ref document number: 200504212

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2509333

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1249/CHENP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2004559696

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038A65234

Country of ref document: CN

Ref document number: 1020057011453

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2005122470

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020057011453

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003775367

Country of ref document: EP