WO2004049425A1 - 半導体装置用金ボンディングワイヤおよびその製造方法 - Google Patents

半導体装置用金ボンディングワイヤおよびその製造方法 Download PDF

Info

Publication number
WO2004049425A1
WO2004049425A1 PCT/JP2003/012740 JP0312740W WO2004049425A1 WO 2004049425 A1 WO2004049425 A1 WO 2004049425A1 JP 0312740 W JP0312740 W JP 0312740W WO 2004049425 A1 WO2004049425 A1 WO 2004049425A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
orientation
area
crystal
bonding
Prior art date
Application number
PCT/JP2003/012740
Other languages
English (en)
French (fr)
Inventor
Tomohiro Uno
Shinichi Terashima
Kohei Tatsumi
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003026065A external-priority patent/JP4141854B2/ja
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to US10/502,676 priority Critical patent/US7390370B2/en
Publication of WO2004049425A1 publication Critical patent/WO2004049425A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/4851Morphology of the connecting portion, e.g. grain size distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Definitions

  • the present invention relates to a gold bonding wire for a semiconductor device used for connecting an electrode on a semiconductor element to an external lead, and a method for manufacturing the same.
  • a bonding wire that connects between the electrodes on the semiconductor element and the external terminals it has a wire diameter of about 20 to 50 ⁇ m and is made of high-purity 4N-based (purity> 99 • 99% by mass) gold.
  • Bonding wire is mainly used.
  • the bonding wire connection technology is generally a heat bonding method combined with ultrasonic waves, and requires a general-purpose bonding apparatus, a cabling jig used to connect a wire through the inside thereof, and the like.
  • the tip of the wire is heated and melted by arc heat input, and a pole is formed by surface tension.Then, the pole is crimped onto the electrode of the semiconductor element heated in the range of 150 to 300 ° C.
  • the wire is directly bonded to the external lead side by ultrasonic bonding.
  • the Si chip, the bonding wire, and the lead frame at the portion where the Si chip is attached are protected. Sealing with epoxy resin.
  • Gold bonding due to the trend toward higher integration and thinner semiconductor devices.
  • the characteristics that the keyer should satisfy are also diversifying.For example, in order to support high-density wiring and narrow pitch, gold bonding wires must be longer, thinner or have higher loops, and semiconductor devices must be thinner. In order to make it possible, a low loop is required.
  • the bonding partner materials for bonding wires have also changed, and in the wiring and electrode materials on silicon substrates, Cu and Cu alloys suitable for higher integration have begun to be used in addition to the conventional A1 alloy. I have.
  • the electrode members such as A1 alloy, Cu, Cu alloy, etc. are also required to have small ball joints corresponding to the narrow pitch, and secure joint strength, pole deformation, high-temperature joint reliability, etc. Becomes more important.
  • the needs for gold bonding wire connection include narrower pitch, thinner wire, multi-pin long wire, high bonding property, etc. Demands are becoming more stringent.
  • the wires are deformed and come into contact with adjacent wires, and the pitch becomes narrower, the wires become longer, and the wires become thinner.
  • wire flow the deformation of the wire during resin sealing
  • the need for narrower pitch is accelerating, the current mass production level is 60 m pitch, but the development of 50 ⁇ pitch is also progressing. It is expected to be put into practical use two to three years later, to the extremely narrow pitch of 45 ⁇ m.
  • technologies that can achieve extremely narrow pitches of 20 ⁇ m are beginning to be expected in the future.
  • the bonding must be performed in a low temperature range of 150 to 170 ° C. This is dozens of times compared to bonding at 210 to 300 ° C in the case of a lead frame.
  • the temperature of C becomes low. Therefore, it is required to achieve narrow pitch bonding at low temperatures, and both ball bonding and edge bonding are extremely severe due to delay of diffusion at low temperatures, reduction of bonding area, miniaturization of cavities, etc. Characteristics and reliability are required.
  • the basic characteristics of the wire that satisfy these requirements are that the shape of the loop in the bonding process can be controlled with high precision, and that the bondability to the electrodes and leads has been improved. It is desirable to satisfy the overall characteristics, such as being able to suppress wire deformation in the mounting process.
  • the mainstream method for increasing the bonding wire strength has been to add multiple alloying elements.
  • the addition of alloying elements is limited to a few ppm to tens of ppm in order to prevent oxidation of the pole part and an increase in electrical resistance.
  • the wire deformation was not sufficiently controlled, and the strength of the heat-affected zone (neck) when forming the poles was not sufficient.
  • high-concentration alloy wires that have been added to a total amount of about 1% by increasing the amount added have begun to be used in some ICs, but the effect of improving wire deformation during resin sealing is not sufficient. There are concerns about problems such as a decrease in bonding to the lead side.
  • Japanese Patent Application Laid-Open No. 56-21354 discloses that an Ag core is coated with Au.
  • Japanese Patent Application Laid-Open No. 59-155161 discloses a wire having a core made of a conductive metal and having a Au-plated surface. , Has been disclosed.
  • all general-purpose products have higher strength and higher bondability than wires composed of a single member that falls into that category. It is expected to satisfy
  • Wires that can be used for narrow pitch bonding between adjacent electrodes of 50 / zm or less have high strength and high elasticity, loop controllability, bondability, wire flow suppression, and other issues that have been addressed in the past. While improving, it is necessary to simultaneously satisfy new issues such as edge bonding and relining.
  • Bonding wires that support narrow-pitch bonding have high strength, high elasticity, and high rigidity to suppress wire flow, and at the same time, satisfy the contradictory characteristics of improving loop controllability and bonding performance, and at a low cost. It is necessary to comprehensively satisfy such requirements as being able to cope with the development of new technologies and minimizing the increase in electrical resistance.
  • edge bonding was little problematic for conventional pitches of 70 ⁇ m or more, but it will be more important to improve the edge bonding in future narrow-pitch connections.
  • wires have a complex behavior that undergoes large deformation at high speed, good joint strength is secured according to the joining partner, and ⁇ small poles for narrow pitch after edge joining are formed During the process, the shape of the wire cut is stabilized, and the deformation of the ball part is significantly different, forming a special joint structure.
  • edge bonding was secured without considering such phenomena.Therefore, wire material factors for improving edge bonding were hardly clarified, and wire products with enhanced edge bonding. Few examples have been reported. Rather, it has often been pointed out that in general, the weldability of high-strength wires decreases at low temperatures.
  • the present invention provides gold bonding for semiconductor elements that has high strength and high bending rigidity excellent in narrowing pitch, thinning, and long wire, has improved bonding properties, and is excellent in industrial mass production.
  • An object of the present invention is to provide a wire and a method for manufacturing the wire.
  • the present inventors have comprehensively improved high strength and high elasticity for realizing narrow pitch connection, ⁇ edge joining property, wire flow suppression, etc., and also improved leaning of the ball upright part.
  • the gist of the present invention for achieving the above object is as follows.
  • the ratio of the area of the crystal grain having the [111] orientation to the area of the crystal grain having the [100] orientation is 1 among the crystal orientations in the wire longitudinal direction.
  • a gold bonding wire for a semiconductor device characterized in that the number is 2 or more.
  • the crystal in the wire longitudinal direction at the center is Of the orientations, [111] orientation with respect to the area of the crystal grain having the [100] orientation
  • I 11 Rc / Ra I X100 (%) is less than 30%, and the ratio Ra in the entire wire cross section is 1.2 or more.
  • the radius of the wire is R
  • the width of the crystal orientation in the wire longitudinal direction is 1/10 or more of the wire radius R in the wire radial direction.
  • R be the radius of the wire, and It is characterized in that there is at least one or more layers in the radial direction having a width of 1 Z10 or more of the wire radius R and an area ratio of crystal grains having [100] orientation of 50% or more.
  • the ratio of the total area of the crystal grains in the [111] direction and the [100] direction to the crystal orientation in the wire longitudinal direction is 50% or more.
  • the crystal orientation in the wire longitudinal direction at the center is defined as The semiconductor device according to any one of (1) to (8), wherein the ratio of the total area of the crystal grains in the [111] direction and the [100] direction to the center is 60% or more.
  • the ratio of the total area of the crystal grains in the [111] direction and the [100] direction to the center is 60% or more.
  • the surface layer portion has a depth in the wire longitudinal direction.
  • the ratio of the area of the crystal grain having the [111] orientation to the area of the crystal grain having the [100] orientation is 1.6 or more, and the crystal having the [100] orientation in the entire wire cross section.
  • a gold bonding wire for a semiconductor device wherein the ratio of the area of crystal grains having a [111] orientation to the area of the grains is 1.2 or more.
  • the bonding wire contains Au as a main component, and as an additive component, the total concentration of one or more elements selected from Y, Ca, Yb, or Eu is 0.002 to 0.03 mass%, La, Tb , Dy, or the total concentration C 2 of at least one element selected from Nd is 0.002 wt%, and in the range of 0.1 ⁇ C ZCS rather 10 for the concentration relationship thereof additive component, (1) - (13)
  • the gold bonding wire for a semiconductor device according to any one of (13) and (14).
  • the ratio Rs of the area of the crystal grains having the [111] orientation to the area of the crystal grains having the [100] orientation in the crystal orientation in the wire longitudinal direction at the outer periphery of the bonding wire is at least 1.2.
  • the gold bonding wire for a semiconductor device according to any one of (15) to (17).
  • the gold bonding wire for a semiconductor device according to any one of (1) to (20), wherein the number of crystal grains in a cross section perpendicular to the longitudinal direction of the bonding wire is 0.04 to 4 / ⁇ m 2 .
  • (22) A method of manufacturing a bonding key from a structural material in a process in which rolling, pre-heat treatment, secondary wire drawing, and post-heat treatment are combined at least once in each order.
  • the area processing rate in the processing is 95% or more
  • the heating temperature (absolute temperature) of the pre-heat treatment is 20 to 70% of the melting point of the material
  • the area processing rate of the secondary drawing is 99%.
  • the heating temperature (absolute temperature) of the post-heat treatment is carried out in a temperature range of 20 to 70% with respect to the recrystallization temperature of the material, the production of a gold bonding wire for a semiconductor device.
  • the area processing rate in the rolling process and the primary drawing process is 95% or more, and the heating temperature (absolute temperature) of the pre-heat treatment is in a temperature range of 20 to 70% with respect to the melting point of the material.
  • Area rate of secondary wire drawing is 99.5% or more, average wire drawing speed is 50 ⁇ : 1000m / min, bath temperature of wire drawing is 5 ⁇ 45 ° C, and heating temperature of the post heat treatment (Absolute temperature) in the temperature range of 20 to 70% of the recrystallization temperature of the material, and the sweeping force is in the range of 0.2 to 70 mN. Method.
  • the area processing rate in each of the rolling and primary drawing is 95% or more, and the heating temperature (absolute temperature) of the pre-heat treatment is in a temperature range of 30 to 70% with respect to the melting point (absolute temperature) of the material.
  • the area processing rate in the secondary wire drawing is 99 • 5% or more
  • average wire drawing speed is 100-800m / min, difference in tension before and after die is in the range of 0:!
  • the heating temperature (absolute temperature) of the post heat treatment is For a semiconductor device characterized by a temperature range of 30 to 70% with respect to the crystal temperature (absolute temperature), and a drawing angle at a die exit at a primary drawing and a secondary drawing at a die outlet is 30 ° or less. Manufacturing method of gold bonding wire.
  • the heating temperature Te absolute temperature
  • Tm absolute temperature
  • FIG. 1 is a diagram showing crystal grain boundaries of a gold bonding wire (wire diameter 25 ⁇ ) measured by EBSP.
  • FIG. 2 is a diagram showing crystal grain boundaries of a gold bonding wire (wire diameter: 18 im) measured by EBSP. BEST MODE FOR CARRYING OUT THE INVENTION
  • the bonding wire has a fibrous texture extending in the wire longitudinal direction, and of the crystal orientation in the wire longitudinal direction, the area of the crystal grain having the [111] orientation with respect to the area of the crystal grain having the [100] orientation
  • the strength and the elastic modulus can be increased. For example, it was confirmed that a strength of 300 MPa or more and an elastic modulus of 90 MPa or more could be achieved.
  • increasing the elastic modulus has a greater effect than strength, and it has been difficult to achieve such effects with conventional material designs that rely on element addition.
  • the strength can be increased without increasing the electrical resistance, which is a great advantage including application to high-performance LSI such as ASIC.
  • the reason why the ratio of the area of the crystal grains having the [111] orientation to the area of the crystal grains having the [100] orientation (hereinafter, simply referred to as the area ratio of [111] / [100]) is set to a range of 1.2 or more. If the ratio is less than 1.2, the effect of suppressing the wire flow due to the increase in the elastic modulus is small. More preferably, the area ratio of [111] / [100] is more than 1.4. This is because if the area ratio is 1.4 or more, the effect of suppressing the wire flow can be enhanced. Even more preferably, when the area ratio of [111] / [100] is 2.5 or more, the effect of suppressing wire flow can be further enhanced by increasing the modulus of elasticity and bending stiffness.
  • the upper limit of the area ratio of [111] / [100] is particularly limited. However, if it is less than 20, stable production is relatively easy. This is because it is difficult to completely exclude crystal grains having the [100] orientation and only crystal grains having the [111] orientation at a mass production level. '
  • the area ratio of [111] / [100] is usually less than 1.2. It was less than 1.1 at the level of products that can be stably obtained.
  • the crystal orientation in the present invention is such that the angle difference between the crystal orientation and the longitudinal direction of the wire is within 10 °. This is because, within this range, the characteristics of each crystal orientation are obtained, and the degree of influence on various characteristics of the bonding wire can be effectively utilized.
  • a regular loop shape can be obtained by making good use of elastic deformation and plastic deformation due to a complicated loop trajectory.
  • the loop shape in the vertical direction of the semiconductor chip is a combination of linear portions, curved portions, bent portions, and the like.
  • the horizontal wire shape of the semiconductor chip has a linear shape.
  • Conventional element addition With the material design, it was difficult to achieve both a complicated loop shape having these curved portions and bent portions and linearity.
  • the area ratio of the crystal grains having the [111] orientation is 55% or more, and the [111] orientation with respect to the area of the crystal grains having the [100] orientation is more preferable.
  • the bonding wire has a crystal grain area ratio of 1.2 or more. This means that in addition to the area ratio of the crystal grains having the [111] orientation, the ratio of the area of the crystal grains having the [111] orientation to the area of the crystal grains having the [100] orientation should be 1.2 or more. This is because wire deformation during resin sealing can be suppressed, and the effect of improving the mass production yield of narrow-pitch connection can be further enhanced.
  • the area ratio of the crystal grains having the [100] orientation is in the range of 3 to 20%, high-speed loop control becomes easy, and the shape variation of the highest portion is reduced. It is more desirable that the appropriate range of joining conditions such as load and ultrasonic vibration be increased, so that the mass production yield at the time of bonding can be improved. This is because it may be difficult to control the wire deformation when an external force is applied from the perpendicular direction of the wire length, etc., with only the [100] orientation, and the area ratio of the crystal grains having the [100] orientation is 3 to It is considered that by setting the range to 20%, the productivity is improved by making the loop control and the change from elastic deformation to plastic deformation at the time of wire joining more smooth. Where [100] plane If the product ratio is less than 3%, the above effect is small. If the product ratio is more than 20%, there is a concern that the effects such as high strength and high elastic modulus due to the crystal grains of [111] orientation may be suppressed.
  • the area ratio of [111] / [100] in addition to setting the ratio Ra of the entire wire section to 1.2 or more, the difference between the ratio Rc at the center and the ratio Ra of the entire wire section is calculated.
  • the absolute value of the ratio I 1 —RcZRa I is less than 30%, and the uniformity of the structure over the entire cross section of the wire allows the wire to be deformed in any direction after pole bonding to the tip. In the normal loop formation to be performed, it is possible to suppress the fall of the wire in the upright portion and to improve the Leeging property.
  • the [100] orientation of the crystal orientation in the wire longitudinal direction at the surface layer is To the area of the crystal grains
  • the ratio of the area of the crystal grain having the [111] orientation is 1.6 or more, and the area of the crystal grain having the [111] orientation to the area of the crystal grain having the [100] orientation in the entire wire cross section Setting the ratio to 1.2 or more is effective in simultaneously satisfying high strength and high elasticity, suppression of wire flow, control of loop shape, slidability, and high rigidity.
  • the sliding resistance with the cabillaries is reduced, Improves loop controllability for ultra-fine wires with a wire diameter of 15 ⁇ m or less, suppresses scratches on the wire surface, etc., and also improves wire surface conditions due to filler impact during resin sealing. Furthermore, in addition to the above-mentioned structure control of the surface layer, by forming a structure in which the area ratio of [111] / [100] is 1.2 or more in the entire wire cross section, the rigidity is increased, The effect of suppressing the wire flow during sealing can be further enhanced.
  • the area ratio of [111] / [100] in the surface layer is set to 1.6 or more is that if the ratio is less than 1.6, the above-described effect of improving the slidability and high rigidity is small.
  • the boundary between the center part and the surface part is distinguished from the wire surface by R / 3, and the distribution of crystal orientations is defined, so that sliding is performed.
  • the highest effect of improving dynamics and high rigidity was confirmed.
  • the area ratio of [111] / [100] in the surface layer is 2.5 or more, and the area ratio of [111] / [100] averaged over the entire cross section is 1.2 or more. By doing so, a higher effect of simultaneously improving mobility and suppressing wire flow can be obtained.
  • the structure of the wire In order to reduce the parachute of the loop height, it is necessary to control the structure of the wire. In addition to controlling the crystal orientation such as the [111] or [100] orientation, the crystal grain per unit area is also required. It was also found that the number was significantly involved. That is, the number of crystal grains in the cross section perpendicular to the longitudinal direction of the wire is 0.04 to 4 / ⁇ m 2 , and of the crystal orientation in the longitudinal direction of the wire, [111] / [100] It is confirmed that high strength is achieved by setting the area ratio to 1.4 or more, and that even if the wire length exceeds 5 mm, the parachute of the loop height can be reduced and good characteristics of loop controllability can be obtained. did.
  • the reason for the range of the number of crystal grains is as follows. In but less than 0.04 Roh m 2, is for causing to induce variation in the loop-shaped when directional difference of adjacent crystal grains is large, also, four / mu m 2 than ultrafine grain This is because it is difficult to achieve uniform bonding over the entire wire in a normal bonding wire manufacturing process.
  • the area ratio of [111] / [100] in the entire wire is 1.2 or more, and in the radial direction of the wire, the width of 1/10 or more of the wire radius R is [111]
  • the linearity of the loop-formed wire can be further improved if the bonding wire has at least one layer having an area ratio of [100] / [100] of 1.6 or more. This is because a layer having a high [111] / [100] area ratio of 1.6 or more has a high crystallinity and a high elastic modulus due to a uniform crystal orientation. It is considered that the reduction in wire height improves the linearity of the wire.
  • a high self-effect can be obtained when the layer in which the area ratio of [111] Z [100] is 1.6 or more has a width of 1/10 or more of the wire radius R in the wire radius direction. . More preferably, if the area ratio of [111] / [100] is 2 or more, and the width of the layer is 15% or more of the wire radius R in the radial direction of the wire, higher effects can be obtained. It is necessary to have at least one layer having the same orientation, and it is more preferable to have at least two layers.
  • a bonding wire having at least one layer of a region in which the area ratio of crystal grains having a [111] orientation is 60% or more in a width of 1 Z10 or more of the wire radius R in the wire radial direction. If, The linearity can be further improved by increasing the strength and elastic modulus. here, [
  • the area ratio of the crystal grains having the [111] orientation By setting the area ratio of the crystal grains having the [111] orientation to be 60% or more, the effect of increasing the elastic modulus can be further enhanced as compared with the case where the area ratio of [111] / [100] is 1.6 or more. Is possible. It has been confirmed that this effect can be improved even when connecting a thin wire with a wire diameter of 20 ⁇ m or less to a length of 3 or more, which has been difficult to achieve with conventional wires.
  • the area ratio of [111] / [100] in the entire radius is 1.2 or more, and the radius of the radius R is 1 Z10 or more and less than 13 in the wire radial direction.
  • a bonding wire having at least one layer having a region in which the area ratio of 111] / [100] is less than 0.9 can further improve the stability during loop formation.
  • the plastic deformation of the wire becomes non-uniform in the longitudinal and vertical directions of the wire, which increases the dispersion of the loop shape.
  • the crystal orientation is oriented to [100], and the loop shape is stabilized by the action of relaxing the non-uniformity of plastic deformation. It is thought to be done.
  • a layer having a [111] / [100] area ratio of less than 0.9 exists at a width of 1/10 or more of the wire radius R in the wire radial direction, so that a high effect can be obtained. If the width of the layer is 1/3 or more of the wire radius, there is a concern that loop control becomes difficult. This effect can be obtained not only with thin lines but also with thick lines with a diameter of 30 ⁇ m or more. More preferably, if the area ratio of [111] / [100] is less than 0.6 and the layer width is 15% or more of the wire radius R in the radial direction of the wire, higher effects can be obtained. It is necessary to have at least one layer with the same orientation, and it is more desirable to have at least two layers.
  • the total area ratio of the crystal grains of [111] and [100] can be controlled entirely or partially. In this way, the characteristics such as high strength and high elasticity, loop controllability, and wire flow suppression can be further improved, and mass production of narrow pitch connection can be improved.
  • the area ratio of [111] / [100] in the entire wire is 1.2 or more, and the [111] orientation and [100] If the bonding wire has a ratio Pm of 50% or more of the total area of the crystal grains in the orientation, it is possible to enhance the effect of achieving both the improvement of the edge bonding property and the reduction of the wire bending failure.
  • edge bonding properties may be reduced.
  • ⁇ ⁇ ⁇ ⁇ Plasma cleaning on the substrate is effective as a means to improve the strength of edge joints, but ⁇
  • edge jointability bending defects due to plastic deformation of wires occur. It becomes.
  • the problem that the improvement of the edge bonding property and the reduction of the wire bending defect are interconnected is hardly known until now, and it is apparent when a fine wire is connected on a substrate at a narrow pitch. It is a problem that needs to be improved in order to promote mass production of narrow pitch connections in the future.
  • the effect of improving the edge bonding property at a low temperature of 165 ° C or less, which is more suitable for substrate connection can be further enhanced, and more preferably, 70% or more.
  • adaptability to narrow pitches of 40 ⁇ m or less can be further improved by achieving both improvement in edge bonding and reduction of wire bending defects with a fine line of 18 m or less.
  • the area ratio of [111] / [100] in the whole wire is 1.2 or more, and the portion from the center of the wire of radius R to R / 2 is the center.
  • a bonding pie that has a ratio Pc of 60% or more of the total area of the crystal grains in the [111] and [100] directions to the central portion is 60% or more.
  • the area ratio of [111] / [100] in the entire wire in the crystal orientation in the wire longitudinal direction is 1.2 or more, and RZ 3 Is defined as the surface area, the ratio Ps of the total area of the crystal grains in the [111] and [100] directions to the surface area among the crystal orientations in the wire longitudinal direction in the surface area is 50%.
  • the value obtained by dividing the wire deformation after sealing by the wire length is generally used as the wire flow rate.
  • the cause of the variation in wire flow rate is that the flow direction of the resin in the mold is not constant, and the flow rate of each wire changes depending on the direction of the external force applied to the wire length. Is received.
  • the area ratio of [111] / [100] in the entire wire must be less than 1.2.
  • the total area of the crystal grains in the [111] and [100] directions in the surface region is the above. It has been found that it is important to set the proportion Ps in the surface area to 50% or more.
  • the reason why Ps is set to 50% or more is that if Ps is less than 50%, the effect of reducing the standard deviation of the flow rate is small.
  • Ps is 60% or more, the effect of stabilizing the wire flow rate can be enhanced even if the wire length is as long as 4 mm or more.
  • the crystal orientation other than the [111] orientation and the [100] orientation is oriented in the orientation [110], [112], [122], etc., thereby suppressing the occurrence of cracks on the wire surface. It is also possible to get If tight loop control is performed to form a low loop, the problem is that the neck is damaged by heat near the ball. Simply by increasing or decreasing the mechanical properties such as wire strength, or simply controlling the [111] / [100] area ratio of the entire wire on the tissue side, such neck damage can be prevented. It is considered difficult to reduce.
  • the wire length to be observed is determined at least in the longitudinal direction of the wire by a length equal to or longer than the wire diameter. More preferably, by measuring at least 1.5 times the wire diameter, Average information can be obtained to improve the reproducibility of the measurement.
  • the observation length is 1.5 times or more, more preferably 3 times or more the wire diameter.
  • At least two or more crystal grains with a length of 70% or more in the wire longitudinal direction and a crystal orientation in the wire longitudinal direction at an angle of 15 ° or less in a wire longitudinal cross section of 5 times or more the wire diameter are provided.
  • the strength and the elastic modulus can be increased, and the effect of reducing the resin flow of the coil can be further promoted.
  • the mechanical properties can be improved by ensuring the length of the crystal grains with uniform crystal orientation. The effect is further enhanced.
  • the bonding wire has a fibrous texture extending in the longitudinal direction of the wire.Focusing on the grain structure of the cross section in the longitudinal direction of the wire, the radius of the wire is defined as the distance from the center of the wire to RZ 2. Is defined as the center and the outer part is classified as the outer periphery.
  • the ratio of the area of the crystal grains having the [111] orientation to the area of the crystal grains having the [100] orientation at the center hereinafter, [111] ] / [100]
  • Rs is the area ratio of [111] / [100] in the outer periphery.
  • the orientation control of this texture is characterized by the fact that while improving high strength and high elasticity, it also achieves the deformability and joining strength of the edge joints. By design, these effects were difficult to achieve.
  • the control of the key structure focusing on the area ratio of [in] / [100] is performed by the edge bonding. It is effective for comprehensive management of properties, loop control, high-strength thinning, etc. In other words, by controlling the area ratio of [111] / [100], it is possible to promote high strength and high elastic modulus, and there is no problem in conventional high strength by adding a high concentration of elements. Good pole forming properties can also be achieved at the same time.
  • the sphericity is good and it is advantageous for narrow pitch connection. This is because the control of the crystal grains in the [111] and [100] directions has an effect on the wire breaking properties after edge bonding, and also on the microstructure formation during solidification of the pole part. It is thought that there is.
  • the absolute value of the difference ratio between Rc and Rs which is the area ratio of [111] / [100] in the center and the outer periphery, is calculated as follows. The reason for this is that if it is less than 30%, it is difficult to simultaneously improve both strength and high bondability, although both can be satisfied to some extent. There is no particular upper limit on the difference ratio, but if it is less than 90%, stable production is relatively easy. More preferably, the difference ratio between Rc and Rs is more than 40%. This is because if it is 40% or more, it is effective to further improve the edge bonding property to the electrode on a soft material such as a substrate or a tape. More preferably, if the difference ratio is 50% or more, a high effect of improving the edge bondability at a low temperature of 160 ° C. or less can be obtained. This is because adaptability can be improved.
  • the area from the center of the wire to R / 3, which is 1/3 of the radius R, is the core
  • the area from the outer surface to 2 RZ3 is the surface layer. If the area ratio of [111] / [100] in the core and the surface layer is Rd and Rf, respectively, the absolute value of the difference ratio I 1 -Rd / Rf I X100 (%) is 30% This is more desirable. This is because 2 RZ 3 is divided from the surface to the surface layer and the remaining R / 3 is divided to the core, so that the part corresponding to the outer periphery described above becomes thicker and the effect of suppressing wire flow is further enhanced. It is thought that it can be raised. Of the crystal orientation in the wire longitudinal direction in the longitudinal section of the wire
  • the radius of the wire / 2 is used as the boundary to distinguish between the center and the outer periphery.
  • the area ratio Rc of [111] / [100] at the center and the area ratio Rs of [111] / [100] at the outer periphery are Rs
  • the absolute value I 1 _Rc / Rs I X100 (%) of the difference ratio with respect to ⁇ is 30% or more, and the area ratio of [111] / [100] averaged over the entire longitudinal section of the wire Ra Bonding wire with a ratio of 1.0 or more, while simultaneously satisfying both high strength and high bondability, improve the linearity of the wire, and further enhance the effect of suppressing the wire flow Thus, it is possible to cope with a fine pitch connection of a fine wire.
  • a regular loop shape is formed as the overall result of many processes such as a complicated loop trajectory, opening and closing of a clamp that clamps a wire, and adjustment of wire feeding by the tension of air flow. It is possible. Therefore, it is necessary to control the elastic and plastic deformation of the wire.
  • the area ratio Ra of [111] Z [100] averaged over the entire wire cross section is increased to increase the bending stiffness, It is effective to increase the yield strength.
  • the wire is suppressed both elastically and plastically.
  • the wire flow can be further reduced.
  • the reason that the average [111] / [100] area ratio Ra over the entire wire cross section is 1.0 or more is that when Ra is less than 1.0, the bending stiffness and yield strength are simultaneously increased. If Ra is 1.0 or more, increasing the elastic modulus and bending stiffness will increase the linearity of the wire even if a wire with a diameter of 18 ⁇ or less is used. This is because the wire flow is also reduced, and the applicability to narrow pitch connections of 40 ⁇ or less can be further enhanced. More preferably, the Ra is 1.2 or more. If this is 1.2 or more, it is necessary to improve the controllability of the curved part and the bent part in complicated loop shapes such as trapezoidal loops and step loops necessary for narrow pitch connection, and the linearity of the loop at the same time. Was confirmed.
  • the portion from the center of the wire to RZ 3 is the core, and the area ratio Rd of [111] / [100] in the core is 0.
  • Bonding wires in the range of 1 to 0.8 provide high strength and ⁇ edge bonding properties at the same time, and ⁇ improve the fatigue properties at the edge bonding part to increase reliability. be able to. As a result, even when a fine wire having a diameter of 20 / zm or less and a microfabricated kyaryr are used, it is possible to sufficiently secure the edge bonding property, and it is possible to increase the mass productivity of the narrow pitch connection.
  • the region of the wire core corresponds to a portion deeper than the center from the wire center to RZ2. Utilizing the [100] orientation structure in the region from the center to R / 3 (this is called the core), the effect of improving the reliability of the edge joint is further enhanced without impairing the high strength. be able to.
  • the reason for setting the area ratio Rd of [111] / [100] in the core to be in the range of 0.1 to 0.8 is that if Rd is less than 0.1, the strength at ultra-fine wires of 15 / zm or less is secured. This is because the effect of enhancing the fatigue characteristics of the edge joint is reduced if the ratio exceeds 0.8.
  • the difference ratio between the area ratio Rc and Rs between the center and the outer periphery is calculated as I 1 —Rc Z Rs IX 100 ( %) Is 30% or more, the core ratio Rd is in the range of 0.1 to 0.8, and the average area ratio [111] / [100] Ra of the entire wire cross section is 1.0.
  • the effects expected from the control of each structure such as higher strength and improved edge jointability, reduction of wire flow by increasing bending rigidity and yield strength, etc.
  • the tensile strength in the vicinity of the edge joint in a short span of 1 mm or less could be increased.
  • the effect of improving the strength while simultaneously satisfying the high strength and the edge joining property can be further improved. Can be obtained.
  • the leaning property which is the fall of the wire in the upright part near the ball joint, poses a problem for narrow pitch connections of 50 m or less.
  • the linearity described above represents the average linearity of the entire loop, whereas the linearity is equivalent to the linearity in a local region near the upper portion of the ball joint. .
  • the difference between the area ratio Rc and Rs of [111] / [100] between the central part and the outer part of the wire is 30% or more in absolute value, and the area of [111] Z [100] at the outer part Increasing the ratio Rs to 1.2 or more is effective in improving the leaning performance.
  • the effect of relatively reducing the area ratio of [111] / [100] at the center makes it relatively easy to locally curve and bend when forming a loop.
  • By increasing the area ratio of [] / [100] it is thought that the effect of preventing the top of the pole from falling down etc. will work and the Lee-Jung property will be improved.
  • the area directly above the pole is the area where the recrystallization occurs due to the thermal effect when the ball is melted, and the strength is generally the lowest.
  • increasing the area ratio of [111] / [100] in the outer periphery of the wire bus to reduce the strength reduction due to the heat effect is one of the factors contributing to the improvement of the leaning performance. It is considered one.
  • the reason why the area ratio Rs of [111] / [100] in the outer peripheral portion is set to a range of 1.2 or more is that if Rs is less than 1.2, a sufficient effect of improving the leaning property can be obtained. Is difficult. More preferably, this Rs is more than 1.5. This is a narrow pitch connection When the loop height is higher than 300 ⁇ m, the problem can occur more frequently when the loop height is increased. This is because the effect of improving the lining performance can be sufficiently obtained.
  • the absolute value of the difference ratio between Rc and Rs of [111] / [100] between the central portion and the outer peripheral portion of the wire is caused to be 30% or more, and the [111] / [100] area at the outer peripheral portion.
  • By setting the value in the range of ⁇ 0.8 it is possible to reduce the bend in reverse step bonding, which has been considered difficult to cope with, and to promote the mass production of multilayer chip connection. It is also possible.
  • the wedge joint In reverse step bonding, the wedge joint is located at a higher position than the pole joint, and the length of the wire upright near the pole joint is several times longer than that of normal bonding. Due to the structure, the frequency of failures such as bending and falling of wires is high. The cause of the defect is similar to that of Lee Jung described above. Therefore, in the vicinity of the inside of the wire, the outer periphery, and the vicinity of the surface layer,
  • the wire In narrow-pitch connection using fine wires, the wire is cut off on the inner wall of the cabillary, and the wire surface is likely to be scratched and clogging inside the cabillary is likely to occur. It has been found that this can be improved by controlling the texture in the region of the outermost surface of the wire.
  • the wire length at the outermost surface is Direction
  • the crystal orientation in the present invention preferably includes one in which the angle difference between the crystal orientation and the longitudinal direction of the wire is within 10 °.
  • the angle difference between the crystal orientation and the longitudinal direction of the wire is within 10 °.
  • individual crystals have a certain degree of angular difference, and even a small angle may be obtained by experimental methods such as sample preparation and crystal orientation measurement. There is a difference.
  • the range of the angle difference is within 10 °, the characteristics of each crystal orientation are obtained, and the degree of influence on various characteristics of the bonding wire can be effectively used. If the angle difference exceeds 10 °, there is a concern that the effect on wire characteristics will differ.
  • Multi-pin '' Wire length and loop to respond to the trend of narrow pitch Increasingly, wire connections of different heights are mixed in a single IC, and with this, problems caused by loop height variations are increasing. For example, if the loop shape can always be obtained stably, it is possible to reduce the risk of wire contact by changing the loop height of adjacent wires alternately. There is a limit to good control of the loop height. In the conventional mounting structure, where the wire length was as short as about 3, the loop height was controlled by the length of the heat-affected zone near the pole, so that the loop height could be controlled relatively. In contrast, recent multi-pin, narrow-pitch connections require wire lengths longer than 5 mm and use in a wide range of high and low loops, and it is extremely difficult to reduce loop height variations. Is important.
  • the bonding wires (1) and (21) of the present invention have been described above.
  • the texture of the bonding wire has not been known so far, and no reports have been reported.
  • the texture of various metals is known as rolled material, drawn thin wire, etc.
  • the unification regarding the relationship between the metal processing method, the composition and the texture, and the relationship between the texture and the use performance of members is unified. No opinion has been obtained.
  • X-ray diffraction and electron diffraction by TEM were used.However, such as a bonding wire, a fine wire of about 25 ⁇ m diameter and a relatively soft metal wire were used. Measurement of texture was difficult.
  • FIG. 1 shows an example of EBSP measurement for a gold bonding wire having a wire diameter of 25 ⁇ m, and the crystal orientation was measured accurately.
  • the relationship between the area ratio of crystal grains having the [111] orientation and the [100] orientation according to the present invention is also expressed by the relationship between the volume ratios of the crystal orientations obtained by the respective X-ray diffraction methods. It was confirmed that the same notation could be used.
  • the intensity of X-rays is obtained as a characteristic reflecting the area. That is, the [111] orientation or
  • the ratio of the area of the crystal grains having the orientation can be represented by the ratio of the X-ray intensity of each crystal orientation.
  • the ratio of the X-ray intensity of the crystal having the [111] orientation to the X-ray intensity of the crystal having the [100] orientation is 1.2 or more. Due to this, strength and elastic modulus can be increased, and wire flow during resin sealing can be reduced. Further, the relationship between the area ratios of the crystal grains having the [111] direction or the [100] direction according to the present invention can also be expressed by the ratio of the X-ray intensity of each crystal direction.
  • Means for controlling the crystal orientation are roughly classified into manufacturing techniques and alloying components, and each is described below.
  • a bonding wire is manufactured from a structural material in a process that combines rolling, pre-heat treatment, secondary wire drawing, and post-heat treatment at least once each.
  • the area processing rate in the rolling is 95% or more
  • the heating temperature (absolute temperature) of the pre-heat treatment is in a temperature range of 20 to 70% with respect to the melting point (absolute temperature) of the material.
  • the area processing rate of the secondary wire drawing is 99.5% or more
  • the heating temperature (absolute temperature) of the post heat treatment is 20 to 70% of the recrystallization temperature (absolute temperature) of the material. It should be implemented. By this method, it becomes possible to adjust the crystal grains in the [111] direction and the [100] direction in the longitudinal direction of the wire.
  • the rolling process rolling using a round groove roll or a square groove roll, swaging rolling, or the like can be used, and a part of a large die wire can be included.
  • the total workability of rolling can be expressed as ⁇ 1-(Dg / Df) 2 ⁇ X 100 (%), where Df and Dg are the average diameters of the wires before and after rolling, respectively.
  • a die for wire drawing is mainly used, and a wire drawing machine uses a device capable of drawing at once with a plurality of dies, and the average radius of the wire before and after the wire drawing is completed.
  • Rf and Rg respectively, then ⁇ 1 — (Rg / Rf) 2
  • the inner wall of the die is preferably made of a hard metal or diamond, because it has excellent stability and the like.
  • Heat treatment methods include a method in which the wire is wound and placed in a heating oven and heated all at once, and a continuous heat treatment method in which the wire is heated while being continuously moved in a heating furnace of a fixed length. Is available.
  • the heating temperature (absolute temperature) of the heat treatment is lower than 20% of the melting point of the raw material, it is difficult to align the [111] and [100] crystal orientations in the subsequent drawing process.
  • the temperature is higher than 70%, even if the wire is drawn to the final wire diameter, the ratio of the orientation other than [111] increases, so the area ratio of [111] / [100] is 1. This is because it will be difficult to keep it above 2.
  • the reason why the heating temperature of the post heat treatment was set to the temperature range of 20 to 70% of the recrystallization temperature of the raw material is that the crystal of [111] was not uniform and the temperature of the recrystallization temperature was less than 20%. At a low temperature, problems such as wire bending due to residual processing strain occur, and at a temperature higher than 70%, oxidation of the wire surface becomes remarkable, and the edge bonding property decreases.
  • the reason why the melting point was used as the reference for the pre-heat treatment temperature is that it has a strong relationship with the melting point, whereas the reason for using the recrystallization temperature in the post-heat treatment is that the degree of wire drawing differs.
  • the post-heat treatment temperature In order to make the structure of the final stage the same in the material, the post-heat treatment temperature must also be adjusted, and since the effect of the degree of work is indirectly reflected in the recrystallization temperature, the temperature is set based on the recrystallization temperature. This is because azimuth control becomes easier by determining the range.
  • There are several methods for determining the recrystallization temperature For example, it is possible to use the vicinity of the temperature at which the elongation at break increases, indicating the relationship between temperature and elongation at break, as the recrystallization temperature. it can.
  • the disordered crystal orientation produced by rolling has a role to have a certain direction, and the direction of the processed texture obtained by subsequent wire drawing can be developed.
  • Recovery ⁇ Recrystallization can be performed to control [111] and [100] crystal grains at the same time.
  • the heating temperature (absolute temperature) of the pre-heat treatment is in a temperature range of 20 to 70% with respect to the melting point (absolute temperature) of the material, and the area processing rate of the secondary drawing is 99.5% or more.
  • the average drawing speed is 50 ⁇ : 1000m / min
  • the bath temperature of drawing is 5 ⁇ 45 ° C
  • the heating temperature (absolute temperature) of the post heat treatment is the recrystallization temperature (absolute temperature) of the material.
  • the temperature is in the range of 20 to 70%, and the sweeping force is in the range of 0.2 to 70 mN.
  • the average drawing speed is 50 to; LOOO m / min, the drawing bath temperature is 5 to 45 ° C, and the sweeping force of post heat treatment.
  • the value in the range of 0.2 to 70 mN it becomes easier to increase the uniformity of the crystal orientation over the entire cross section and to adjust the orientation of the texture in the surface layer.
  • the distribution of the structure over the entire wire cross section is not local, but is the length of the wire. It is possible to control with high precision in the long distance range in the direction. Therefore, although it is difficult to specify these parameter conditions independently, some conditions will be explained.
  • the reason for setting the average drawing speed to 50 ⁇ ; lOOOOmZ is that if it is less than 50mZ, there will be variations in the longitudinal direction or mass productivity will decrease.If it exceeds lOOOOmZ, Dynamic recrystallization due to heat generation during drawing, etc. is also a concern, making it difficult to maintain uniform crystal orientation. If the temperature of the wire drawing bath is less than 5 ° C, there is a concern that the wire surface will be cooled.
  • the bath temperature exceeds 45 ° C
  • recovery progresses in the outermost surface area of the wire, causing tissue variability and increasing the burden on workers, leading to work errors. It is concerned.
  • the sweeping force of the post-heat treatment is less than 0.2 mN
  • the wire fluctuates as the wire moves in the furnace, causing unevenness in the heat treatment state. If it exceeds 70 mN, the wire diameter of the fine wire This is due to concerns about fluctuations and the like.
  • the total workability of the rolling process is 95% or more
  • the total workability of the wire drawing is 99.5% or more
  • the heating temperature (absolute temperature) of the pre-heat treatment is determined by the melting point of the raw material. It is more preferable that the heating temperature of the post-heat treatment is 30 to 70% of the recrystallization temperature of the raw material.
  • the die order and the wire entrance angle to the die It is also effective to optimize the tension and the like during wire drawing. For example, by keeping the angle at which the wire enters the die and adjusting the tension at the time of drawing, it is possible to uniformize the tissue or control the orientation of the surface layer over the entire wire cross section. It is easy to produce a homogeneous bonding wire that is not localized but controlled over a long distance range (tens to millions of meters) in the longitudinal direction of the wire.
  • the dies used at the stage close to the final wire diameter have the above-mentioned area reduction rate of 10% or more.
  • the above-mentioned structure in the center or surface layer of the wire is managed. It becomes possible.
  • By effectively utilizing the addition of elements in the wire in addition to controlling the structure mainly by the manufacturing method, it is possible to further improve the refining property, which is an issue of recent narrow pitches.
  • Au which is the current mainstream wire material, is the main component, and the total concentration of one or more elements selected from the group consisting of Y, Ca, Yb, and Eu is SO • 002 to 0.03 mass%, La, Tb , Dy, or the total concentration C 2 of one or more elemental selected from Nd is 0.002% by mass and is contained in a range of 0.1 ⁇ C / C s ⁇ 10 for the concentration relationship thereof additive component
  • the use of a gold alloy bonding wire not only promotes the formation of crystal grains in the [111] orientation, but also can further enhance, among other things, the rejunging characteristics.
  • the structure in the heat-affected zone near the pole portion is controlled by the addition of the above-mentioned component elements, thereby improving the Ljung property. Further improvements can be made.
  • 0.002 wt% if there had the C 2 is less than 0.002% by weight, because the effect of the microstructure control is small, whereas,. If 1 is 0.03 mass percent, or C 2 is a more than 0.05 wt%, Ru der because the strength of the pole junction on A1 alloy pad decreases.
  • the effect of controlling the crystal orientation is further promoted by combining the above-described manufacturing method with a wire material in which the concentration relationship between the two element groups is set to the range of (h C / C 2 ⁇ 6). , [111] and [1 It becomes easier to set the orientation of the crystal orientation in the range of the present invention.
  • Means for controlling the crystal orientation are roughly classified into manufacturing techniques and alloying components, and each is described below.
  • At least one of the steps of rolling, primary drawing, pre-heating, secondary drawing, and post-heating is combined at least once in each order.
  • the heating temperature (absolute temperature) of the post heat treatment is 30 to 70% of the recrystallization temperature (absolute temperature) of the material.
  • the drawing angle at the die exit in secondary drawing is 30 ° or less It is manufactured.
  • the area reduction rate in rolling can be expressed as ⁇ 1 (Dg / Df) 2 ⁇ X 100 (%), where Df and Dg are the average diameters of the wires before and after rolling, respectively. it can.
  • dies for wire drawing are mainly used, and the wire drawing machine uses a device that can draw with multiple dies at once. Assuming that the average radius of the wire after drawing is Rf and Rg, respectively, the area processing rate can be expressed by ⁇ 1 (Rg / Rf) 2 ⁇ X 100 (%).
  • the inner wall of the die is preferably made of a hard metal or a diamond, because it has excellent stability and the like.
  • Heat treatment methods include a method in which the wire is placed in a heating oven with the wire wound up and heated all at once, and a continuous heat treatment method in which the wire is heated while being continuously moved in a heating furnace of a fixed length. Is available.
  • the reason for setting the average wire drawing speed to 100 to 800 m / min is that if it is less than 100 m / min, variation in the longitudinal direction occurs or mass productivity decreases. If it is more than 800 m / min, There is also concern about dynamic recrystallization due to heat generated during drawing, etc., and it is difficult to maintain uniform crystal orientation.
  • the reason that the difference in tension before and after the die was 0.l to 50MPa is because the effect of controlling the processing strain near the wire surface by controlling the difference in tension before and after the die is less than 0. If this is the case, tissue cracks are likely to occur in the longitudinal direction of the wire, and if it exceeds 50 MPa, disconnection of fine wires will be a problem. You.
  • the drawing angle at the die exit for primary drawing and secondary drawing is 30 ° or less, the processing distortion in the vertical cross section in the wire longitudinal direction is locally controlled, so that the wire inside and outside the wire can be controlled. It is easy to control the tissue at the outer periphery.
  • the conditions are not necessarily the same.By changing the conditions such as the sweep angle depending on the wire diameter, the distribution of crystal orientations near the center and near the surface can be improved. It can help make a difference.
  • the area reduction rate, wire drawing speed, heat treatment temperature, etc. of die processing are relatively easy to change and control, and the effects are easily obtained.
  • at least 10% or more of each of the three types of dies with a reduction in area of less than 7%, 7 to: 11%, and 11 to 20% By using this, it is relatively easy to individually control the crystal orientation near the center and near the surface.
  • the combination of the three types of dice such as the number of dice, the order, and the like, it is possible to finely adjust the crystal orientation ratio within the range of the wire tissue specified in the present invention.
  • the heating temperature Te (absolute temperature) force S at both ends of the furnace and the heating temperature Tm (absolute temperature) at the center are 0.02 ⁇ !
  • a heating furnace with a temperature distribution that is as low as about 0.3 Tm the wire is continuously swept and subjected to heat treatment, thereby changing the recrystallization behavior near the center and near the surface layer.
  • the bonding wire is mainly composed of Au
  • the structure according to the present invention can be obtained relatively easily.
  • Au is the main component, and Be, Ca, La, In, Gd, Nd, Nd, ce, Dy, total concentration of one or more elements selected from Tb or Y C 3 0, 0005 to 0.02 wt%, or Ag, Sn, Pd, Pt or Cu force, et least one member selected total concentration C 4 of the element from 0.003 to 0.1 wt% Dearuko and desirable.
  • the total concentration C 3 is from 0.005 to 0.015 wt% of the element group, the tissue more easily becomes able to configure the mass productivity of management or the like becomes easy according to the present invention More desirable for reasons such as
  • the necessary components are added, and the gold alloys of the chemical components shown in Tables 1 to 5 are melt-cast in a melting furnace, and the ingot is roll-rolled. Then, pre-heat treatment was performed in a heating furnace, wire drawing was performed using a die, and post-heat treatment was performed while heating the wire while continuously sweeping the wire to produce a bonded wire.
  • the final wire diameter was mainly 20 ⁇ m or less.
  • a specific manufacturing process will be described. First, make a lump with a diameter of 6 to 30 mm.
  • thin rolls were used at a speed of 30 to 200 m / min until the wire diameter became 0.5 to 1.5 mm.
  • an oven heating furnace was used for heating for 0.1 to 2 hours in a furnace set at 250 to 800 ° C, and then allowed to cool in the atmosphere outside the furnace.
  • a continuous wire drawing machine that can set multiple dies and a diamond-coated die are used. The wire drawing speed is in the range of 80 to 400 m / sec, and the bath temperature for wire drawing is 20 to 35 °. C went. Ultrasonic cleaning was performed before use to clean the inner wall of the die.
  • the reduction rate of the dies used is classified into two types: 5 to 8%, which is a reduced surface, and 12 to 15%, which is a high reduction surface.
  • the number of the high reduction dies accounts for 35 to 80% of the total .
  • an infrared heating furnace with a 20 cm soaking zone is used, and in a furnace set at 250 to 700 ° C, the speed is 50 to 800 m / min, and the sweeping force is 2 to 60 mN.
  • the heat treatment was performed while continuously moving the steel sheet so that the elongation value in the tensile test was adjusted to 3 to 5%.
  • Table 3 The specific production method of each example described in Table 2 is as shown in Table 3.
  • the bonding wire was connected using a general-purpose automatic wire bonder and pole / ⁇ edge bonding.
  • pole bonding a ball is formed at the tip of the wire by arc discharge, and the ball is electrically charged. It was bonded to the pole film by thermocompression combined with ultrasonic waves. Further, the other end of the wire was joined to the lead frame or the lead portion on the BGA substrate by a right edge.
  • a narrow-pitch connection with an electrode spacing of 50 / Zm was performed.
  • the joining partner is an A1 alloy film (Al-1% Si, Al-0.5% Cu ⁇ A1-1% Si-0.5% Cu) with a thickness of about 0.8 ⁇ , which is the material of the electrode film on the silicon substrate.
  • A1 alloy film Al-1% Si, Al-0.5% Cu ⁇ A1-1% Si-0.5% Cu
  • Cu wiring (AuO.01 ⁇ mZNiO.4 ⁇ mZCuO.4 ⁇ m) was used.
  • the other party of Uejji junction, A g plating on the surface (thickness: 1 ⁇ 4 ⁇ ⁇ ) Au-plated / Ni plated / Cu wiring is formed on the decorated with Lee Zadoff frame, or surface A glass epoxy resin substrate was used.
  • Strength and elastic modulus which are typical mechanical properties of the wire, were measured by a tensile test.
  • the sample length was 10 mm , the number of samples was 5, and the average value was used.
  • the wire structure was etched and observed by SEM, and the number of crystal grains was taught.
  • the crystal orientation was measured by the EBSP method in a certain region of the sample whose cross section was polished in the same manner. Calculate the area ratio of [111] or [100] crystal grains in the entire wire cross-section. Also, the area from the center of the radius R of the wire to RZ 2 is the center, and the area from the wire surface to R / 3 is Assuming that the portion at the depth is the surface layer portion, the area ratio of the crystal grains of the [111] orientation in the center portion and the surface layer portion in the longitudinal section of the wire was determined.
  • the loop shape stability (loop controllability) in the bonding process was measured by measuring the loop height at three locations for each wire and evaluating the standard deviation of the loop height. The number of samples was 50, and an optical microscope was used for measurement. At the measurement points, three locations where the loop height variation easily occurs were located directly above the ball, at the highest point, and at the center of the wire length. If the standard deviation of the loop height was 1/2 or more of the wire diameter, it was determined that the dispersion was large, and if it was less than 1Z2, the dispersion was determined to be small and good.
  • Judgment is made based on the standard.If the variation is small at all three points, it is judged that the loop shape is stable.If it is indicated by ⁇ mark, and if there is one place with large variation, It is marked with a triangle because it is relatively good, with a triangle when there are two spots, and with an X when all three spots are large.
  • the wire length is 4 mm long (shape 1), which is frequently used in BGA, etc., and 6 mm long (shape 2) as a long span, where it is more difficult to obtain a stable loop shape. Each was evaluated.
  • the loop height was measured at the highest point and the center of the wire length, and the loop height was measured. If the standard deviation of the diameter is 1 Z2 or more of the wire diameter, it is determined that the dispersion is large. If the standard deviation of the loop height at all four locations measured at two locations at two different loop heights is small at all four locations, it is judged that the loop shape is stable and is displayed with a ⁇ mark. If there is only one place with a large variation, it is indicated by a triangle because it is relatively good, and if two or more places have a large variation, it is indicated by a triangle.
  • edge bonding properties a resin substrate having Au plating / Ni-plated ZCu wiring formed on a surface was used as a bonding partner.
  • the temperature of the stage on which the sample was mounted was set at 175 ° C, a low temperature at which edge bonding was more severe.
  • evaluation criteria ten 200-pin chips were used, and a total of 2,000 wires were connected. In the case where two or more defective phenomena such as peeling were observed, it was indicated by ⁇ due to insufficient edge bondability.There was no problem with continuous bonding, and there was no defect in subsequent observation.
  • edge bondability is good, and is indicated by a mark ⁇ , which is intermediate between the two. If continuous peeling is possible but one peeling is recognized, it is usually a problem. Since it must not be done, it is indicated by a triangle.
  • wire flow resin flow
  • a lead frame on which a semiconductor element bonded so that the wire span is approximately 4 mm is mounted with epoxy resin using a molding device.
  • the inside of the semiconductor element sealed with resin is projected with X-rays, the flow amount of the part with the largest wire flow is measured, and the average value of the wire is measured.
  • the value (percentage) divided by the span length was defined as the wire flow after sealing.
  • the wire flow determined above If the standard deviation is within 0.8%, the stability of the wire flow is judged to be good, and ⁇ mark.If it is within the range of 0.8 to 2%, there is no problem in practical use. ⁇ , 2% If this is the case, there is a concern about practical problems.Therefore, when the wire was drawn to a wire diameter of 18 ⁇ m, the number of breaks per lump of 1 kg If the number of breaks is less than 5 times / kg and the standard deviation of the breaking strength of 30 wires is suppressed to less than 4.9 mN, good productivity can be ensured, and the mark ⁇ If either one of the conditions of the breaking strength is not satisfied, mark ⁇ , the number of disconnections per lump of 1 kg is 0.5 times Z kg or more, and the standard deviation of 30 breaking strengths is 4 If the value is 9 mN or more, it is necessary to further improve the mass productivity, so this is indicated by a triangle.
  • Table 1 shows the relationship between wire organization and bonding performance.
  • Tables 2 and 3 show the relationship between the additive composition of the bonding wire containing Au as a main component and the manufacturing method and the wire structure.
  • the evaluation result of the bonding wire according to the present invention was used as an example, and a case where the configuration deviated from the present configuration was used as a comparative example.
  • the bonding wires according to the present invention (1) are Examples 1 to 15, and the bonding wires according to the present invention (2) are Examples 1 to 6, 9, 10, 12 to 15:
  • the bonding wires according to the invention (3) are Examples 1 to 8, 12 to 15, and the bonding wires according to the invention (10) are Examples 3 to 6, 8, 9, 11, 12, 15, and
  • the bonding wire according to the invention (21) is Examples 1 to: L2.
  • the comparative example in Table 1 is a case where the structure of the bonding wire in (1) of the present invention is not satisfied.
  • Tables 2 and 3 show the added elements, manufacturing methods, and structures of the bonding wires containing Au as a main component. Examples 16 to 31 correspond to the present invention (22) to (24). A wire manufactured by a manufacturing method that satisfies any of the conditions
  • Examples 16 to 27 are Au alloy bonding wires having the composition of the present invention (14).
  • Examples 28 to 31 are not satisfied with the composition of the present invention (14), but are related to the present invention. This is when the manufacturing method is used.
  • Comparative Examples 5 to 9 are cases where the production methods described in the present inventions (22) to (24) are not satisfied and the structure of the bonding mechanism in the present invention (1) is not satisfied.
  • the bonding wires according to the present invention (4) are Examples 32 to 34
  • the bonding wires according to the present invention (5) are Examples 34 and 35
  • the bonding wire according to the present invention (6) is The bonding wires according to Examples 35 to 37 and the present invention (7) are Examples 36 and 37
  • the bonding wires according to the present invention (13) are Examples 32, 34, 36 and 37.
  • the bonding wires according to the present invention (8) are Examples 42 to 49
  • the bonding wires according to the present invention (9) are Examples 43 to 49 and 51, according to the present invention (11).
  • Related bonding wires are Examples 42 and 44 to 49.
  • Crystal orientation ratio Crystal wire Center and cross section The ratio of [111] / [100] is the number of grains Material Wire diameter Whole wire Surface layer
  • the ratio of [111] '/ [100] is the number of grains.
  • the bonding wires of Examples 1 to 15 according to the present invention have a high strength and a high strength of 300 MPa or more and an elastic modulus of 90 MPa or more because the area ratio of [111] / [100] is 1.2 or more.
  • the modulus of elasticity reduces wire flow to less than 4.0%.
  • the wire flow is reduced to less than 3.5%
  • the wire flow is 2%. The improvement was confirmed to be less than .5%.
  • the bonding wires of Comparative Examples 1 to 4 had a strength of 270 MPa or less and an elastic modulus of less than 80 MPa because the area ratio of [111] / [100] was less than 1.2.
  • the wire flow was a high value of 5% or more.
  • the area ratio of the crystal grains having the [111] orientation according to the present invention (2) was 55%.
  • the absolute value of the difference ratio of Ra, I 1 RcZRa I X100 (%), is less than 30%, and the ratio Ra over the entire wire cross section is 1.2 or more.
  • the bonding performance it was confirmed that the lining of the ball upright was improved.
  • Examples 9 to 12 or Comparative Examples 1 to 4 which did not satisfy the organizational structure of the present invention (3) such an improvement effect was not recognized.
  • the area ratio of [111] / [100] in the surface portion of the wire is 1.6 or more, and the area ratio of [111] / [100] in the entire wire cross section is 1 or more.
  • a structure of 2 or more was confirmed.
  • the bonding performance it was also observed that the mobility was improved, the loop controllability became easier, and clogging was reduced and the wire surface flaws were reduced. .
  • Examples 1, 2, 7, 10, 12 and Comparative Examples 1 to 4 which did not satisfy the organizational structure of the present invention (4), such an improvement effect was not recognized.
  • Examples 16 to 31 show that any one of the manufacturing conditions described in the present invention (22) to (24) was used. By being satisfied, they achieved that the desired organization, the area ratio of [111] / [100] was 1.2 or more. Comparing the results, Examples 16 to 27 having the component constitution of the present invention (14) and Examples 28 to 31 not satisfying the component constitution of the present invention (14) have a partial difference in the structure or use performance. Was observed. For example, in Examples 4 to 7, which correspond to the use performance of the bonding wire having the component constitution of Examples 25 to 27, excellent improvement was observed due to the refining property.
  • a layer having an area ratio of [111] / [100] of 1.6 or more exists with a width of RZ 10 or more in the wire radial direction.
  • the linearity was better in the low loop having a maximum loop height of 100 ⁇ m or less and the high loop having a maximum loop height of 300 ⁇ m or more.
  • the linearity was further improved because the ratio of the area of [111] in the layer was 60% or more.
  • a layer having an area ratio of [111] / [100] of less than 0.9 exists in a width of R / 10 or more and less than RZ3 in the wire radial direction. Therefore, compared to Examples 32-34 and 38-41 that do not satisfy the conditions, the loop shape is more stable in the low loop with the maximum loop height of 100 ⁇ m or less and the high loop with the maximum loop height of 300 ⁇ m or more The properties were good. In particular, in Examples 36 and 37, the loop shape stability was further improved because the area ratio of [100] in the layer was 50% or more.
  • the bonding wires of Examples 42 to 49 according to the present invention which do not satisfy the conditions, have a total area ratio of the crystal grains of [111] and [100] of 50% or more. Compared to 51, it was confirmed that the ⁇ edge bonding property was improved and the wire bending defect was also reduced.
  • the ratio of the total area of the crystal grains in the [111] and [100] directions in the center from the center of the wire to R / 2 according to the present invention was 60%. %, It was confirmed that the yield at the time of wire production when the wire was drawn to a diameter of 18 ⁇ could be improved as compared with Examples 42 and 50 which did not satisfy the condition. .
  • the bonding wires of Examples 42 and 44 to 49 correspond to the total surface area of [111] and [100] crystal grains in the surface region from the bonding surface to R / 3 according to the present invention. It was confirmed that the variation in the wire flow rate at the time of resin sealing can be suppressed by setting the occupying ratio to 50% or more, as compared with Examples 43, 50 and 51 which do not satisfy the condition.
  • the bonding wire according to the present invention (10) is Examples 32 to 34, the bonding wire according to the present invention (12) is Example 34, and the bonding wire according to the present invention (20) is Examples 35 to 37.
  • the bonding wires according to the present invention (21) are Examples 36 and 37.
  • the present invention (1) was satisfied, but the structure of the bonding wire in the present invention (4) was not satisfied.
  • the present invention (6) was satisfied. In this case, the structure of the bonding wire is not satisfied.
  • FIG. 2 shows an example of the EBSP measurement result at the cross-section of the gold bonding wire of Example 36, which is indicated by a crystal grain boundary when an angle difference of 15 ° or more occurs. At the center of the wire, two or more crystal grains with a crystal orientation in the longitudinal direction of the wire aligned at an angle of less than 15 ° were observed.
  • Electrolytic gold having a gold purity of about 99.995% by mass or more is used, and the total concentration of one or more elements selected from Be, Ca, La, In, Gd, Nd, Ce, Dy, Tb or Y is 0.0005. to 0. 02 wt 0/0 range or Ag, Sn, Pb, Rukingokin be contained at a total concentration of 0.003 to 0.1 wt% of the one or more elements Bareru selected from Pt or Cu, Is melted in a melting furnace, the ingot is roll-rolled, pre-heat treated in a heating furnace, wire-drawn using a die, and then heated while continuously sweeping the wire. To form a bonding wire. The final wire diameter was 20 ⁇ m.
  • Tables 8 and 9 show the area ratio of the crystal orientation of the wire or the performance in use by wire bonding.
  • Table 10 shows the manufacturing conditions. The examples satisfy the manufacturing conditions specified by the present invention, while the comparative examples include at least one of the manufacturing conditions that is out of the range specified by the present invention. Table 8
  • Ratio of crystal orientation (area ratio of [111] / [100] R) Kedge junction center Rc and outer periphery 3 ⁇ 4IRs relationship Center Rd and outer periphery 3 ⁇ 45Rf relationship Metal
  • a specific manufacturing process of the embodiment will be briefly described. First, make a lump with a diameter of 6 to 30 ⁇ . In the rolling process, grooved rolls were used, and processing was performed at a speed of 10 to 100 m / min until the wire diameter became 0.5 to L.5 mm. In the preheat treatment step, the oven was heated in an oven furnace set at 250 to 800 ° C for 0.1 to 2 hours, and allowed to cool in the atmosphere outside the furnace. In the wire drawing process, a continuous wire drawing machine that can set multiple dies and a die coated with a diamond are used. The wire drawing speed is in the range of 50 to 400 mZ s. ⁇ 50MPa.
  • the dice reduction rate of the dice used was three types of dice with a reduction rate of less than 7%, 7 to 11%, and 11 to 20%.
  • an infrared heating furnace with a 20 cm soaking zone is used, and the speed is 50 to 800 m / min in the furnace set at 250 to 700 ° C, and the heat treatment is performed while moving the wire continuously.
  • the elongation value in the tensile test was adjusted so as to be 3 to 5%.
  • Example 64, 65, and 70 to 76 in Table 10 the heating temperature Te at both ends of the heating furnace in the post heat treatment step was lower by 0.02 Tm to 0.3 Tm than the heating temperature Tm at the center. It has been adjusted.
  • Pole / edge bonding was performed using a general-purpose automatic wire bonder to connect the bonding wires.
  • a pole was formed at the tip of the wire by arc discharge, and the ball was bonded to the electrode film by thermocompression using ultrasonic waves.
  • lead frame
  • the electrode spacing was 70, 50, and 40 m, with a narrow pitch connection.
  • the bonding partner was an A1 alloy film (Al-1% Si, A1-0.5% Cu, Al_1% Si-0.5% Cu) with a thickness of about 0.8 / zm as the electrode film on the silicon substrate.
  • wiring AlO.01 ⁇ m / NiO.4 ⁇ m / CuO.4 ⁇ m
  • the above-mentioned pole part is joined on the electrode, The bump was formed by pulling the wire directly above it and breaking it. When mounting a bump and a loop on the same chip for mounting a stacked chip, first form a stump on all the electrodes, and then join the ball to the lead in the subsequent loop formation. Then, the wire was edge-bonded on the above-mentioned stud bump.
  • the wire structure was etched using a wire whose cross section was polished in the longitudinal direction, observed after SEM, and the number of crystal grains was counted.
  • the crystal orientation was measured by the EBSP method in a certain region of the sample whose cross section was polished in the same manner.
  • the area ratio of the crystal grains of [111] or [100] orientation in the entire wire cross section is determined, and the portion from the center of the radius R of the wire to RZ2 is defined as the center, and the outside is defined as the outer periphery.
  • the area ratio Rc, Rs of [11 1] / [100] in the area of the wire was calculated.
  • the area ratio Rd of [111] / [100] in the area of the core from the area from the wire center to R3 was calculated.
  • the crystal grains in which each orientation of the crystal grains had an inclination of 10 ° or less with respect to the longitudinal direction of the wire were all regarded as crystal grains in each direction.
  • the joining partner was a lead frame with Ag plating (thickness: 1 to 4 ⁇ ) on the surface or an Au plating / Ni plating Z Cu wiring on the surface.
  • the formed resin tape substrate was used.
  • the temperature of the stage on which the sample is mounted is normally 220 ° C for a lead frame, and 180 ° C for a tape substrate, which is a low temperature at which edge bonding becomes more severe. At 160 ° C.
  • As evaluation criteria ten 200-pin chips were used, and a total of 2,000 wires were connected.
  • a defect at the edge joint interrupted the continuous bonding operation even once, or the light microscope If two or more failure phenomena such as peeling were observed by observation, it is indicated by ⁇ due to insufficient edge bonding properties, no problem was observed in continuous bonding, and failure was observed in subsequent observations If you can not Indicates that the edge bondability is good and is indicated by a ⁇ mark, which is between the two. If continuous peeling is possible but one peeling is recognized, it is not usually a problem. Displayed with a mark.
  • the wire flow (resin flow) during resin encapsulation
  • bonding was performed so that the wire length was about 5 mm, the loop height was about 300 ⁇ m, and the loop shape was a trapezoid, and then a molding device was used.
  • a sample sealed with a general-purpose biphenyl-based epoxy resin was prepared.
  • the inside of this semiconductor element is X-ray projected using a soft X-ray non-destructive inspection device, the flow rate of 30 wires at the determined position is measured, and the average value is divided by the wire length ( %) Was defined as the wire flow rate after sealing.
  • the wire flow rate is less than 4%, the wire flow is good because it is indicated by ⁇ , and if it is 6% or more, wire contact etc. in a narrow pitch connection is a concern. In the case of a certain range of 4 to 6%, it was indicated by a triangle.
  • the temperature was repeatedly increased and decreased between 55 ° C and 125 ° C to accelerate the evaluation of the thermal history during actual use, and after 300 cycles of testing, the resin was removed by opening the package.
  • a tensile test (peel test) was performed near the edge joint. The peel strength of edge bonding after this heat cycle test was compared with the average value immediately after bonding. When the decrease in peel strength after the test is suppressed to less than 20%, the fatigue resistance of the wedge joint is good, which is indicated by the mark ⁇ , and the decrease in strength is more than 70%.
  • a peel test is performed to evaluate the tensile strength near the edge joint at the short span indicated by the mark because electrical connection is secured.
  • the experiment was performed.
  • the chip step is about 450 ⁇ m
  • the wire length is about lmm
  • the connection partner is the resin tape.
  • a peel test was performed on the bonded wire. If the peel strength, which is the breaking strength, was 60 ⁇ or more, it was good because it was good, and if it was less than 20mN, there was a practical problem. It was indicated by a mark, and if it was in the middle, it was judged that the level was practically acceptable and indicated by a mark.
  • Leaning interval a phenomenon in which the wire upright near the pole junction falls, the wire upright is observed from the chip horizontal direction, and the distance between the vertical line passing through the center of the pole junction and the wire upright is the maximum.
  • the wire length was 4 mm and the number of samples was 50.
  • the maximum height of the loop was investigated for two types: the usual about 220 ⁇ and the high loop of about 350 ⁇ m, which is more severe for Leeung evaluation.
  • Leaning failures were classified according to the frequency of occurrence, and three or more defects were marked with a triangle, zero if they were defective, and ⁇ in the middle.
  • the bending in the reverse step bonding was evaluated.
  • the above-described stud bump was formed on the electrode so that the pole junction was at a position lower than the edge junction, and edge bonding was performed thereon.
  • bonding was performed so that the wire upright near the pole junction was about 350 ⁇ m.
  • the loop shape stability during the bonding process was evaluated by measuring the loop height at three locations for each wire and using the standard deviation of the loop height. Narrow pitch 'mouth gong, which is more difficult to get a stable loop shape.
  • bonding was performed with a wire length of 5 mm, a loop shape of trapezoid, and a loop height of about 200 ⁇ m and about 350 ⁇ m. 50 were selected for each, and an optical microscope was used for the measurement. There were three measurement points where loop height variation was likely to occur: just above the pole, at the highest point, and at the center of the wire length.
  • the dispersion was determined to be small and good. Judgment is made based on the criterion.If the variation is small at all three places, it is determined that the loop shape is stable. The mark is marked with a triangle because it is relatively good, with a triangle when there are two places, and with an X when there are large variations in all three places.
  • the bonding wires according to the present invention are Examples 61 to 76, and the bonding wires according to the present invention (16) are Examples 61 to 63, 65 to 69, and 72 to 76. 74, the bonding wires according to the present invention (17) are Examples 61 to 67 and 70 to 73, and the bonding wires according to the present invention (18) are Examples 61 to 70 and 72; In the present invention (19) The bonding wires concerned are Examples 64, 71, 75 and 76, and the bonding wires according to the present invention (21) are Examples 61, 62, 64 to 70 and 72 to 76. Comparative Examples 11 to 16 in Table 1 are cases where the structure of the bonding wire in the present invention (15) is not satisfied.
  • the bonding wires of Examples 61 to 76 are related to the present invention. It was confirmed that when the (%) is 30% or more, the edge joining property can be improved when a current mainstream lead frame is used. Also, the formation of small balls about 1.3 times the wire diameter was good. In Examples 62 to 68, 70, 72, 75, and 76, in which the absolute value of the difference ratio of the crystal orientation is 40% or more, when the resin tape is bonded at 180 ° C. ⁇ edge bonding property is improved, and in Examples 63 to 67, 70, and 76 which are 50% or more, ⁇ edge bonding property on resin tape is better at lower temperature of 160 ° C. It was confirmed that there was. In contrast, the bonding wires of Comparative Examples 11 to 16 have sufficient edge bonding to the lead frame and resin tape because the absolute value of the difference ratio of the crystal orientations described above is less than 30%. Was not.
  • I 1 —RcZRs I X100 (%) ⁇ 30%, Rs ⁇ 1.2, and the ratio Rd at the core is in the range of 0.1 to 0.8.
  • the reverse step is The effect of reducing wire bending during bonding was also confirmed.
  • the area ratio Rt of [111] / [100] in the outermost surface from the surface to RZ5 was 1.0 or less. Therefore, the occurrence of scratches on the wire surface is reduced, and the life before the clogging is clogged is extended, thereby increasing productivity. Can be improved.
  • the gold bonding wire for a conductor device of the present invention and the method of manufacturing the same, high strength, high elasticity, wire flow suppression, leaning property of a ball upright portion, and edge bonding for realizing a narrow pitch connection are provided.
  • the joint properties and fatigue characteristics of the parts can be improved comprehensively, and it is also industrially excellent in mass production.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)

Abstract

本発明は、狭ピッチ接続を実現するための高強度・高弾性、ループ形状の安定性、ワイヤ流れ抑制、リーニング性、およびウェッジ接合部の接合性あるいは疲労特性等を総合的に改善させ、しかも工業的に量産性にも優れた、半導体装置用金ボンディングワイヤ及びその製造方法を提供するものであり、金ボンディングワイヤは、ボンディングワイヤの長手方向断面の結晶粒組織において、ワイヤ長手方向の結晶方位の内、[100]方位を有する結晶粒の面積に対する[111]方位を有する結晶粒の面積の割合が1.2以上である。

Description

半導体装置用金ボンディングワイヤおよびその製造方法
技術分野
本発明は、 半導体素子上の電極と外部リ一ドを接続するために利 用される半導体装置用金ボンディ ングワイヤ及びその製造法に関す 明
る。
背景技術 書
現在、 半導体素子上の電極と外部端子との間を接続するボンディ ングワイヤと して、 線径 20〜50 μ m程度で、 材質は高純度 4 N系 ( 純度〉 99· 99質量%) の金であるボンディ ングワイヤが主と して使 用されている。 ボンディングワイ ヤの接続技術は、 超音波併用熱圧 着方式が一般的であり、 汎用ボンディング装置や、 ワイヤをその内 部に通して接続に用いるキヤビラリ冶具等が必要である。 ワイヤ先 端をアーク入熱で加熱溶融し、 表面張力によ りポールを形成させた 後に、 150〜300°Cの範囲内で加熱した半導体素子の電極上にポール 部を圧着接合せしめ、 その後で、 直接ワイヤを外部リード側に超音 波圧着によ り ゥエッジ接合させる。 トランジスタゃ I C等の半導体装 置と して使用するためには、 前記のボンディングワイヤによるボン ディ ングの後に、 S iチップ、 ボンディ ングワイヤ、 及び S iチップが 取り付けられた部分のリードフ レーム等を保護する 目的で、 ェポキ シ樹脂で封止する。 これらの部材は、 単独の特性を高めることも必 要であるが、 周辺の部材との関係及び使用法等の総合的な性能、 信 頼性を改善することがますます重要となっている。
半導体素子の高集積化、 薄型化の傾向によ り、 金ボンディ ングヮ ィャが満足すべき特性も多様化しており、 例えば、 高密度配線及び 狭ピッチに対応するため、 金ボンディ ングワイヤの長尺化、 細線化 あるいは高ループ化、 さ らに半導体素子の薄型化を可能にすべく低 ループ化、 等が要求されている。
ボンディ ングワイヤの接合相手となる材質も変化しており、 シリ コ ン基板上の配線、 電極材料では、 従来の A1合金に加えて、 よ り高 集積化に適した Cu、 Cu合金が使用され始めている。 こ う した A1合金 、 Cu、 Cu合金等の電極部材においても、 狭ピッチ化に対応する小ボ ール接合が求められてお り 、 接合強度、 ポール変形、 高温接合信頼 性等を確保することがより重要となる。
今後とも、 半導体素子の高集積化、 高密度化等のニーズに対応す るために、 金ボンディングワイヤ接続のニーズでは、 狭ピッチ化、 細線化、 多ピン '長ワイヤ化、 高接合性等の要求が厳しくなつてい る。
例えば、 高粘性の熱硬化エポキシ樹脂が高速注入される樹脂封止 工程では、 ワイャが変形して隣接ワイャと接触することが問題とな り、 しかも、 狭ピッチ化、 長ワイヤ化、 細線化も進む中で、 樹脂封 止時のワイ 変形 (以下、 ワイヤ流れと呼ぶ) を少しでも抑えるこ とが求められている。 中でも、 狭ピッチ化のニーズは加速しており 、 現行量産レベルは 60 mピッチであるが、 50 μ πιピッチの開発も 進行しており、 さ らには、 数年前まではポール接合の限界とされて いた極狭ピッチ 45 μ mまで、 2〜 3年後の実用化が期待されている 。 さ らに、 実装技術に関するロー ドマップでは、 将来的には極々狭 ピッチ 20 μ mを実現する技術が期待され始めている。
半導体パッケージの種類の中でも、 狭ピッチ化が先行しているの は BGA (Bal l Grid Array) 、 CSP ( Chip S i ze Package) 等である。 これらの実装形態では基板、 テープが用いられており、 従来のリー ドフレーム構造に比べて、 リード間隔の縮少等の制約が少ない。 基 板、 テープを用いる場合に留意すべきことは、 ボンディ ング温度が
150〜170°Cの範囲の低温領域で接合しなくてはならないことである 。 これは、 リー ドフレームの場合に、 210〜300°Cでボンディングさ れていたのと比較しても、 数十。 Cの低温となる。 従って、 低温で狭 ピッチ接合を達成することが求められており、 低温での拡散の遅延 、 接合面積の縮小、 キヤビラリ先端の微細化等によ り、 ボール接合 、 ゥ ッジ接合ともに非常に厳しい特性、 信頼性が求められる。
こ う した要求を満足するワイャの基本特性と して、 ボンディ ング 工程におけるループ形状を高精度に制御できること、 しかも電極部 、 リー ド部への接合性も向上していること、 ボンディ ング以降の実 装工程におけるワイヤ変形を抑制できること等、 総合的な特性を満 足することが望まれる。
これまで、 ボンディ ングワイヤを高強度化する手段と して、 複数 の合金元素を添加することが主流であった。 現在主流の高純度系金 ボンディングワイヤでは、 ポール部の酸化や電気抵抗の上昇等を防 ぐために、 合金元素の添加は数 ppm〜数十 ppmに制限されており、 ル ープ制御性、 接合性等は優れているものの、 ワイヤ変形の抑制、 ポ ール形成時の熱影響部 (ネック部) の強度等は十分ではなかった。 最近、 添加量を増やして総計で 1 %程度まで添加した高濃度合金ヮ ィャが、 一部の I Cで使用され始めているが、 樹脂封止時のワイヤ変 形を改善する効果は十分ではなく、 リード側への接合性が低下する 等の問題が懸念されている。
高強度化を達成する一つの手法と して、 芯部と外周部が異なる金 属からなる複層ワイヤが提案されており、 例えば、 特開昭 56- 21354 号公報では、 Ag芯を Au被覆したワイヤについて、 特開昭 59— 155161 号公報では、 芯部を導電性金属と し表面を Auメ ツキしたワイヤ等が 、 開示されている。 これらは、 芯部と外周部で異なる金属を組み合 わせることによ り、 全ての汎用製品がその範疇に入る単一部材で構 成されているワイヤより も、 高強度化と高接合性を満足させること が期待されている。 しかしながら、 実際の半導体において複層ワイ ャを使用した実例はほとんど報告されていないのが実状である。 従って、 今後の高密度実装のニーズに適応するためにも、 ワイヤ は個別の要求特性のみを満足するのではなく、 総合的に特性を向上 する材料開発が求められる。
隣接電極間が 50 /z m以下の狭ピッチ接合に対応するためのワイヤ は、 従来から取組まれてきた課題である高強度 · 高弾性、 ループ制 御性、 接合性、 ワイヤ流れ抑制等をよ り改善しつつ、 新たな課題で あるゥヱッジ接合性、 リ一ニング性等を同時に満足することが求め られる。
狭ピッチ接続を実現するためのワイヤでは、 上記の金合金化、 金 代替の材料、 複層ワイヤ等の手法が検討されてきた。 それぞれの手 法で、 量産レベルで狭ピッチ接続を実現するための問題を以下に述 ベる。
金中への合金元素添加によ り、 固溶硬化、 析出硬化、 化合物形成 による硬化、 転位との相互作用等を利用するこ とで、 従来のワイヤ に求められた高強度化をある程度達成することができる。 しかしな がら、 単純に合金元素を添加しただけでは、 高強度化 · 高弾性率化 に限界があるだけでなく、, 樹脂封止時のワイヤ変形の抑制が困難で ある。 従来の封止技術を用いて、 ワイヤ流れ量が 5 %以上と比較的 大きい場合には、 ワイヤ変形は塑性領域が主であったため、 ワイヤ の強度増加がワイヤ流れの抑制には有効であった。 一方、 最近の樹 脂封止技術の進展等により、 ワイャ流れは弾性変形に支配されるよ うになり始めており、 従来以上に弾性率の増加が重要となる。 しか し、 金合金ワイヤの弾性率を 88MPa以上にまで増加するには、 合金 元素の固溶、 析出等の作用だけでは困難である。 また、 高強度 · 高 弾性率化することを目的に、 元素を高濃度添加すると、 ワイヤ表面 の酸化、 ボール形成時の引け巣の発生、 ポール部の接合性の低下、 電気抵抗の過剰増加等の問題が新たに発生する。
ポール接合に用いられる金ポンディングワイヤでは、 ワイャ素材 中に添加した合金化元素の固溶、 析出、 化合物形成等の利用に頼つ た、 これまでの添加元素の種類及び濃度を選定する手法では、 極狭 ピッチ接続の量産技術への対応は非常に困難である。
また、 前述した、 芯線と外周部で構成される複層ワイヤは、 芯線 と外周部で異なる特性を併せ持つ可能性がある等、 潜在的な特性は 期待されている。 しかし、 複層ワイヤの製法は複雑であるため、 ェ 程の増加、 新規設備等によ り製造コス 卜が増加すること、 均質化、 特性の安定化等の品質管理が非常に困難であること等、 量産性の問 題は解決されていない。 複層ワイヤでは、 特定の特性改善は比較的 容易であるが、 狭ピッチ接続に求められる複雑なワイヤ要求特性を 総合的に満足するまでには到っておらず、 実用化のための解決すベ き課題が残されている。
従って、 金合金化、 金代替の材料、 複層ワイヤのいずれでも、 狭 ピッチ接続の要求特性を全て満足することは困難である。 狭ピッチ 接合に対応するボンディングワイヤは、 ワイャ流れ抑制のために高 強度 · 高弾性 · 高剛性であり、 しかもループ制御性 · 接合性を向上 するという、 相反する特性を同時に満足できること、 低コス ト化に 対応できること、 電気抵抗の増加を極力抑えること、 等を総合的に 満足することが求められる。
さ らに、 40 μ mピッチ以下では、 従来は殆ど問題にされなかった 、 ボール直立部のリーニング等が新たな課題である。 多ピン . 狭ピ ツチでは、 一つの I C内の実装で、 ワイヤ長、 ループ高さが異なるヮ ィャ接続を混載することが行われている。 これは、 チップ内では同 一のループ形状が用いられていた従来の実装と異なり、 ループ制御 に関する問題が発生しやすい。 最近最も懸念されている問題は、 ポ ール接合近傍のワイャ直立部が倒れて、 隣接ワイヤの間隔が接近す ることである。 この現象はリーユングと呼ばれており、 狭ピッチ接 続の量産性を低下させる大きな要因となっている。
ポール直立部のリーユングの対策と して、 ワイヤを単純に高強度 化 · 高弾性率化したり、 反対に低強度化しても、 改善することは困 難である。 また、 ボンディ ングワイヤに関連する機械的特性で頻繁 に用いられる破断伸びを増減しても、 リーニングの低減等に、 ほと んど効果は得られない。 これは、 ポール直立部ではボール溶融時の 熱影響、 ループ形成時の変形歪み等を受けており、 ワイヤ母線その ものとは異なる特性に支配されており、 機械的特性に基づいた従来 の改善では限界が生じているためと考えられる。 リーニング対策で は、 新たな指標に基づいたワイャ材料開発に取組まなくてはならな い。
さらに、 単純に高強度化だけを優先したワイヤでは、 狭ピッチ化 等の高密度接続においてゥェッジ接合部における変形性、 接合強度 、 長期信頼性等を十分満足することは困難である。 ゥエッジ接合性 は従来の 70 μ m以上のピツチでは問題となることは少なかったが、 今後の狭ピッチ接続では、 ゥエツジ接合性を改善することがよ り重 要となる。
ゥエツジ接合性の問題を誘発する要因について、 ワイャの細線化 、 キヤビラリ'先端の微細化によ り接合面積が大幅に減少すること、 狭ピッチ接続が使用されるのは主に基板、 テープ等に接続するため 接合温度が低いこと、 等が挙げられる。 すなわち、 ゥエッジ接合性 の問題は、 従来は十分に取組まれておらず、 狭ピッチ化を実現する 新規課題と して取組まなくてはならない。
ゥエッジ接合では、 ワイャが高速で大変形を受ける複雑な挙動で あること、 接合相手に合わせた良好な接合強度が確保されること、 さらに、 ゥエッジ接合の後の狭ピッチ用の小ポールを形成する過程 で、 ワイヤの切断する形状を安定化させること等、 ボール部の変形 とも著しく異なり、 特殊な接合構造を形成している。 これまで、 こ う した現象を考慮しなくてもゥエツジ接合性が確保できたため、 ゥ ェッジ接合性を改善するためのワイャ材料因子は殆ど明らかにされ ておらず、 ゥエッジ接合性を高めたワイヤ製品等の実例は殆ど報告 されていない。 むしろ、 高強度化されたワイヤでは、 一般的に低温 でのゥヱッジ接合性が低下することがしばしば指摘されている。 例 えば、 高濃度添加等によ り ワイヤを高強度化しただけでは、 ゥエツ ジ接合性を確保するための作業マージンが低下する原因となる。 狭 ピッチ化に対応するために、 高強度細線化して、 且つ、 ゥエッジ接 合性を改善することが重要な技術課題となる。
さらにゥ ッジ接合部では、 接合性に加え、 使用時の信頼性の改 善も必要である。 シリ コンチップ、 金属フレーム、 ボンディ ングヮ ィャ、 それらを覆う封止樹脂等は熱膨張、 弾性率等が異なるため熱 歪みを発生しやすい。 リ ブロー時、 使用時の発熱、 冷却等の温度サ イタルを経る過程で、 ゥヱッジ接合部に熱歪みが集中して破断に至 ることが懸念されている。 細線化、 ゥエッジ接合の微細化等により 、 ワイヤ側からの耐熱疲労性が問題となることが懸念されており、 さらに、 最近の Pbフリー半田の使用に伴い、 リ フロー温度が高温化 することで、 熱疲労が加速される傾向にある。 ゥエッジ接合の信頼 性を改善するためのワイャ材料因子は殆ど明らかにされていない。 大変形された複雑な構造をしたゥエッジ接合部の、 耐疲労性等の使 用時の信頼性は、 これまでのワイャの要求特性であるループ制御、 封止時のワイヤ変形、 接合性等とは大きく異なるため、 従来の成分 、 濃度等の材料設計だけで対応することは困難である。
本発明は、 狭ピッチ化、 細線化、 長ワイヤ化に優れた高強度、 高 曲げ剛性を有し、 しかも接合性も向上され、 工業的に量産性にも優 れた、 半導体素子用金ボンディングワイヤ及びその製造方法を提供 することを目的とする。
本発明者等は前述した観点から、 狭ピッチ接続を実現するための 高強度 · 高弾性、 ゥエッジ接合性、 ワイヤ流れ抑制等を総合的に改 善させ、 さらに、 ボール直立部のリーニングを改善すること等を目 的に研究開発に取組んだ結果、 ワイヤの集合組織の制御が重要且つ 有効であることを初めて見出した。 発明の開示
前述した目的を達成するための本発明の要旨は次の通りである。
( 1 ) ボンディ ングワイャの長手方向断面の結晶粒組織において、 ワイヤ長手方向の結晶方位の内、 [ 100] 方位を有する結晶粒の面 積に対する [ 111] 方位を有する結晶粒の面積の割合が 1. 2以上であ ることを特徴とする半導体装置用金ボンディ ングワイヤ。
( 2 ) ボンディ ングワイヤの長手方向断面の結晶粒組織において、 ワイヤ長手方向の結晶方位の内、 [ 111] 方位を有する結晶粒の面 積比率が 55 %以上であることを特徴とする半導体装置用金ボンディ ングワイヤ。
( 3 ) ボンディ ングワイャの長手方向断面の結晶粒組織において、 ワイャの半径を Rと して、 該ワイヤの中心から R / 2までの部分を 中心部と したとき、 中心部におけるワイャ長手方向の結晶方位の内 、 [ 100] 方位を有する結晶粒の面積に対する [ 111] 方位を有する 結晶粒の面積の割合 Rcと、 ワイヤ断面全体での [100] 方位を有す る結晶粒の面積に対する [111] 方位を有する結晶粒の面積の割合 R aについて、 両者の差分比率の絶対値 I 1 一 Rc/Ra I X100 (%) が 30%未満であり、 且つ、 ワイヤ断面全体での該割合 Raが 1.2以上で あることを特徴とする半導体装置用金ボンディ ングワイヤ。
( 4 ) ボンディングワイヤの長手方向断面の結晶粒組織において、 ワイヤの半径を Rと して、 ワイヤ長手方向の結晶方位の内、 ワイヤ 半径方向にワイヤ半径 Rの 1 /10以上の幅で、 [100] 方位を有す る結晶粒の面積に対する [111] 方位を有する結晶粒の面積の割合 が 1.6以上である領域が少なく とも 1層以上存在することを特徴と する、 ( 1 ) 〜 ( 3 ) のいずれかに記載の半導体装置用金ボンディ ングワイヤ。
( 5 ) ボンディ ングワイヤの長手方向断面の結晶粒組織において、 ワイヤの半径を Rと して、 ワイヤ長手方向の結晶方位の内、 ワイヤ 半径方向にワイヤ半径 Rの 1 /10以上の幅で、 [111] 方位を有す る結晶粒の面積比率が 60%以上である領域が少なく とも 1層以上存 在することを特徴とする、 ( 1 ) 〜 ( 4 ) のいずれかに記載の半導 体装置用金ボンディングワイヤ。
( 6 ) ボンディ ングワイヤの長手方向断面の結晶粒組織において、 ワイヤの半径を Rとして、 ワイヤ長手方向の結晶方位の内、 ワイヤ 半径方向にワイヤ半径 Rの 1 /10以上、 1 Z 3未満の幅で、 [100
] 方位を有する結晶粒の面積に対する [111] 方位を有する結晶粒 の面積の割合が 0.9未満である領域が少なく とも 1層以上存在する ことを特徴とする、 ( 1 ) 〜 ( 3 ) のいずれかに記載の半導体装置 用金ボンディ ングワイヤ。
( 7 ) ボンディ ングワイャの長手方向断面の結晶粒組織において、 ワイヤの半径を Rと して、 ワイヤ長手方向の結晶方位の内、 ワイヤ 半径方向にワイヤ半径 Rの 1 Z10以上の幅で、 [100] 方位を有す る結晶粒の面積比率が 50%以上である領域が少なく とも 1層以上存 在することを特徴とする、 (1 ) 〜 (3) 又は (6) のいずれかに 記載の半導体装置用金ボンディングワイヤ。
(8) ボンディ ングワイヤの長手方向断面において、 ワイヤ長手方 向の結晶方位の内、 [111] 方位及び [100] 方位の結晶粒の面積の 合計の割合が 50%以上であることを特徴とする、 (1 ) 〜 (7) の いずれかに記載の半導体装置用金ボンディ ングワイヤ。
(9) ボンディ ングワイヤの長手方向靳面において、 ワイヤの半径 を と して、 ワイヤの中心から RZ2までの部分を中心部としたと き、 該中心部におけるワイヤ長手方向の結晶方位の内、 [111] 方 位及び [100] 方位の結晶粒の面積の合計の該中心部に占める割合 が 60%以上であることを特徴とする、 ( 1 ) 〜 (8) のいずれかに 記載の半導体装置用金ボンディングワイヤ。
(10) ボンディ ングワイャの長手方向断面の結晶粒組織において、 ワイャの半径を Rと して、 該ワイャの表面から RZ3までの深さの 部位を表層部と したとき、 表層部におけるワイヤ長手方向の結晶方 位の内、 [100] 方位を有する結晶粒の面積に対する [111] 方位を 有する結晶粒の面積の割合が 1.6以上であり、 かつ、 ワイヤ断面全 体での [100] 方位を有する結晶粒の面積に対する [111] 方位を有 する結晶粒の面積の割合が 1.2以上であることを特徴とする半導体 装置用金ボンディ ングワイヤ。
(11) ボンディ ングワイヤの長手方向断面において、 ワイヤの半径 を Rと して、 ワイヤの表面から RZ3までの部分を表面領域と した とき、 該表面領域におけるワイヤ長手方向の結晶方位の内、 [111
] 方位及び [100] 方位の結晶粒の面積の合計の該表面領域に占め る割合が 50%以上であることを特徴とする、 ( 1 ) 〜 (10) のいず れかに記載の半導体装置用金ボンディ ングワイヤ。
(12) ボンディ ングワイャの長手方向断面又は前記長手方向の垂直 方向の X線回折測定によ り求めた結晶方位において、 [100] 方位 を有する結晶粒に対する [111] 方位を有する結晶粒の体積比が 1.2 以上であることを特徴とする半導体装置用金ボンディングワイヤ。
(13) 前記ボンディ ングワイヤの線径の 5倍以上のワイャ長手方向 断面において、 線径の 70%以上の長さでワイャ長手方向の結晶方位 が 15° 以内の角度に揃った結晶粒を、 少なく とも 2個以上有する ( 1 ) 〜 (12) のいずれかに記載の半導体装置用金ボンディングワイ ャ。
(14) 前記ボンディ ングワイヤが、 Auを主成分と し、 添加成分と し て、 Y、 Ca、 Yb、 又は Euから選ばれる 1種以上の元素の総濃度 が 0.002〜0.03質量%、 La、 Tb、 Dy、 又は Ndから選ばれる 1種以上の 元素の総濃度 C2が 0.002〜0.05質量%であり、 且つそれら添加成分 の濃度関係について 0.1< C ZCsく 10の範囲である、 ( 1 ) 〜 (1 3) のいずれかに記載の半導体装置用金ボンディ ングワイヤ。
(15) ボンディングワイャの長手方向断面の結晶粒組織において、 ワイヤの半径を と して、 該ワイヤの中心から RZ 2までの部分を 中心部、 その外側を外周部としたとき、 中心部におけるワイヤ長手 方向の結晶方位の内、 [100] 方位を有する結晶粒の面積に対する
[111] 方位を有する結晶粒の面積の割合 Rcと、 外周部におけるヮ ィャ長手方向の結晶方位の内、 [100] 方位を有する結晶粒の面積 に対する [111] 方位を有する結晶粒の面積の割合 Rsについて、 両 者の差分比率の絶対値 I 1 一 RcZRs I X100 (%) が 30%以上であ ることを特徴とする半導体装置用金ボンディングワイヤ。
(16) ボンディ ングワイャの長手方向断面の結晶粒組織において、 ワイヤ長手方向の結晶方位の内、 [100] 方位を有する結晶粒の面 積に対する [111] 方位を有する結晶粒の面積の割合 Raが 1.0以上で あることを特徴とする、 (15) に記載の半導体装置用金ボンディ ン グワイヤ。
(17) ボンディ ングワイヤの長手方向断面の結晶粒組織において、 ワイャの半径を Rとして、 該ワイヤの中心から R/ 3までの部分を 芯部と したとき、 芯部におけるワイヤ長手方向の結晶方位の内、 [ 100] 方位を有する結晶粒の面積に対する [111] 方位を有する結晶 粒の面積の割合 Rdが 0.:!〜 0.8の範囲であることを特徴とする、 (15 ) 又は (16) に記載の半導体装置用金ボンディ ングワイヤ。
(18) ボンディ ングワイヤの外周部におけるワイャ長手方向の結晶 方位の内、 [100] 方位を有する結晶粒の面積に対する [111] 方位 を有する結晶粒の面積の割合 Rsが 1.2以上であることを特徴とする
、 (15) 〜 (17) のいずれかに記載の半導体装置用金ボンディ ング ワイヤ。
(19) ボンディ ングワイャの長手方向断面の結晶粒組織において、 ワイヤの半径を として、 該ワイヤの表面から RZ 5までの部分を 最表面部と したとき、 最表面部におけるワイャ長手方向の結晶方位 の内、 [100] 方位を有する結晶粒の面積に対する [111] 方位を有 する結晶粒の面積の割合 Rtが 1.0以下であることを特徴とする、 (1 5) 〜 (18) のいずれかに記載の半導体装置用金ボンディングワイ ャ。
(20) 前記結晶粒の [111] 方位及び [100] 方位が、 ボンディ ング ワイヤの長手方向に対し、 10° 以内の傾きを有する ( 1 ) 〜 (19) のいずれかに記載の半導体装置用金ボンディ ングワイヤ。
(21) 前記ボンディ ングワイヤの長手方向に垂直な断面の結晶粒数 が、 0.04〜 4個/ μ m2である ( 1 ) 〜 (20) のいずれかに記載の 半導体装置用金ボンディングワイヤ。 ( 22) 圧延加工、 前熱処理、 二次伸線加工、 後熱処理の順でそれぞ れ少なく とも 1回組み合わせた工程で、 錶造材からボンディ ングヮ ィャを製造する方法であって、 前記圧延加工における面積加工率が 95 %以上、 前記前熱処理の加熱温度 (絶対温度) が該材料の融点に 対して 20〜 70 %の温度範囲であり、 前記二次伸線加工の面積加工率 が 99. 5 %以上、 前記後熱処理の加熱温度 (絶対温度) が該材料の再 結晶温度に対して 20〜70 %の温度範囲で実施されることを特徴とす る半導体装置用金ボンディ ングワイヤの製造方法。
( 23) 圧延加工、 一次伸線加工、 前熱処理、 二次伸線加工、 後熱処 理の順でそれぞれ少なく とも 1 回組み合わせた工程で、 錶造材から ボンディ ングワイヤを製造する方法であって、 前記圧延加工、 一次 伸線加工におけるそれぞれの面積加工率が 95 %以上、 前記前熱処理 の加熱温度 (絶対温度) が該材料の融点に対して 20〜70%の温度範 囲であり、 前記二次伸線加工の面積加工率が 99. 5 %以上、 平均伸線 速度が 50〜: 1000 m /分、 伸線の槽温度が 5〜45°Cであり、 前記後熱 処理の加熱温度 (絶対温度) が該材料の再結晶温度に対して 20〜70 %の温度範囲、 掃引張力は 0. 2〜70mNの範囲で実施されることを特 徴とする半導体装置用金ボンディ ングワイヤの製造方法。
( 24) 前記伸線加工に用いる複数のダイスの内、 減面率 10 %以上の ダイスを 30 %以上使用することを特徴とする、 (22) 又は (23) に 記載の半導体装置用金ボンディ ングワイャの製造方法。
( 25) 圧延加工、 一次伸線加工、 前熱処理、 二次伸線加工、 後熱処 理の順でそれぞれ少なく とも 1 回組み合わせた工程で、 鎳造材から ボンディ ングワイヤを製造する方法であって、 前記圧延加工、 一次 伸線加工におけるそれぞれの面積加工率が 95 %以上、 前記前熱処理 の加熱温度 (絶対温度) が該材料の融点 (絶対温度) に対して 30〜 70 %の温度範囲であり、 前記二次伸線加工における面積加工率が 99 • 5 %以上、 平均伸線速度が 100〜800m /分、 ダイス前後での張力の 差が 0.:!〜 50MPaの範囲であり、 前記後熱処理の加熱温度 (絶対温度 ) が該材料の再結晶温度 (絶対温度) に対して 30〜70 %の温度範囲 であり、 一次伸線及び二次伸線でのダイス出口における引出し角度 が 30° 以下で製造されることを特徴とする半導体装置用金ボンディ ングワイャの製造方法。
( 26) 前記伸線加工に用いる複数のダイスの内、 減面率が 7 %未満 、 7〜: Ll %、 11〜20%である 3種のダイス群のそれぞれを少なく と も 10 %以上は使用することを特徴とする、 (25) に記載の半導体装 置用金ボンディングワイャの製造方法。
( 27) 前記後熱処理において、 加熱炉両端の加熱温度 Te (絶対温度 ) 、 中央部の加熱温度 Tm (絶対温度) に対して、 0. 02Τπ!〜 0. 3Tm ほど低温である温度分布を持った加熱炉を用いて、 ワイャを連続的 に掃引させて熱処理することを特徴とする、 (25) 又は (26) に記 载の半導体装置用金ボンディ ングワイヤの製造方法。 図面の簡単な説明
図 1 は、 金ボンディングワイヤ (線径 25 μ ηι ) の EBSP測定による 結晶粒界を示す図である。
図 2は、 金ボンディングワイヤ (線径 18 i m ) の EBSP測定による 結晶粒界を示す図である。 発明を実施するための最良の形態
これまで殆ど知られていなかった、 金ボンディ ングワイヤの集合 組織と狭ピッチワイヤ接合性の関係に注目し、 特定の結晶方位、 特 定の結晶方位の比率及び、 ワイャ内部での結晶方位の分布等を制御 することによ り、 高強度 · 高弾性、 ループ制御性、 接合性、 ワイヤ 流れ抑制等、 個々の特性を向上することに加え、 これら両立が困難 とされている特性群の総合的な改善、 さらに、 狭ピッチ接続に特有 の課題である、 ゥエッジ接合性、 ゥエッジ接合部の信頼性、 ボール 直立部のリ一ユングの低減、 等を達成できることを初めて見出した 以下に、 本発明の ( 1 ) 〜 ( 1 4 ) , ( 2 0 ) , ( 2 2 ) に係わ る半導体装置用金ボンディ ングワイャ及びその製造法について説明 する。
ボンディングワイヤはワイャ長手方向に延びた繊維状集合組織を 有しており、 そのワイヤ長手方向の結晶方位の内、 [ 100 ] 方位を 有する結晶粒の面積に対する [ 111 ] 方位を有する結晶粒の面積の 割合が 1. 2以上とすることで、 強度、 弾性率を高めることができる 。 例えば、 強度を 300MP a以上、 弾性率 90MPa以上を達成できること を確認した。 特に、 この集合組織の方位制御では、 弾性率の増加の 方が強度よ り も効果が大きく、 従来の元素添加に頼った材料設計で は、 このような効果を達成困難であった。
こ う した高強度 · 高弾性率化によ り、 樹脂封止時のワイャ流れを 従来材に比して 2割以上低減することが可能である。 これによ り、 Ο μ m以下の極狭ピッチに必要な線径 15 μ m以下の極細ワイャが使 用できる可能性が高まる。 また、 強度を同一に保持したまま、 線径 を 1割以上は減少できるため、 材料コス トの低減にもメ リ ッ トが大 きレ、。
結晶粒の [ 100 ] 方位よ り も [ 111 ] 方位の比率を高める組織制御 によ り高強度化、 高弾性率化を促進することができ、 従来の高濃度 の元素添加による高強度化では問題となつていたボール形成性につ いても、 良好な特性を同時に達成できる。 例えば、 ポール径 /ワイ ャ径の比率が 1 . 3〜1 . 6倍の小ボール形成でも、 真球性は良好であり 、 40μ m以下の狭ピッチ接続に有利である。 これは、 [111] 方位 だけでなく、 [100] 方位の配向性も合わせてコントロールされた ワイヤ組織が、 ゥエッジ接合後のワイヤ破断性状への影響、 またポ ール部の凝固時の組織形成にも影響を及ぼすこ と等が関与している と考えられる。
[111] 方位への配向が強度に及ぼす影響では、 引張強度に加え て、 降伏強度を増加する効果を高めることができる。 これによ り、 樹脂封止時にワイャに加わる荷重が大きい場合、 ワイャが長い場合 等でも、 ワイヤの塑性変形の開始を抑制するのに有効である。 従来 、 強度を高めるには、 ワイヤ中の合金化元素の添加量を増やすこと で、 ある程度まで対応できたが、 高濃度添加することで、 ワイヤの 電気抵抗が増加することが常に問題とされていた。 今後の ICの高周 波対応化が必須であり、 ワイヤの電気抵抗の増加は半導体機能を低 下させる原因ともなる。 それに対し、 結晶粒の [111] 方位と [100
] 方位の配向を制御したワイヤでは、 電気抵抗を増加させることな く、 強度を高めることが可能であり、 ASIC等の高機能 LSIへの適用 も含めて、 大きな利点となる。
[100] 方位を有する結晶粒の面積に対する [111] 方位を有する 結晶粒の面積の割合 (以下では、 [111] / [100] の面積割合と略 記) が 1.2以上の範囲とした理由について、 1.2未満では、 弾性率の 増加によるワイヤ流れの抑制効果が小さいためである。 好ましくは 、 この [111] / [100] の面積割合が 1.4以上であることがよ り望 ましい。 これは、 面積比が 1.4以上であればワイヤ流れの抑制効果 を高めることができるためである。 さらによ り好ましくは、 [111 ] / [100] の面積割合が 2.5以上とするこ とで、 弾性率、 曲げ剛性 の増加等によ り、 ワイャ流れ抑制効果をよ り一層高めることができ る。 また、 [111] / [100] の面積割合の上限について、 特に制限 はないが、 20未満であれば、 安定製造が比較的容易である。 これは 、 [ 100] 方位を有する結晶粒を完全に排除し、 [ 111] 方位を有す る結晶粒だけにすることを量産レベルで達成することは難しいため である。 '
比較として、 現在の汎用製品である金ボンディ ングワイャの組織 を観察したところ、 通常は [ 111] / [ 100] の面積割合が 1. 2未満 であり、 高強度化の分類に属するワイヤでも、 工業的に安定して入 手される製品レベルでは 1. 1未満であった。
本発明における結晶方位は、 ワイヤの長手方向に対する結晶方位 の角度差を 10° 以内とする。 これは、 この範囲であれば、 それぞれ の結晶方位の特性を有しており、 ボンディングワイャの諸特性に及 ぼす影響度も有効に活用できるためであり、 結晶方位の角度差が 10
° を超えると、 ワイヤ特性への影響に差違が生じることが懸念され るためである。
また、 ワイャの長手方向断面におけるワイャ長手方向の結晶方位 の内、 [ 111 ] 方位を有する結晶粒の面積比率が 55%以上であるボ ンデイングワイヤでは、 上記の高強度 · 高弾性率に加えて、 ループ 形状の直線性の向上を達成し、 狭ピッチ接続の実用性を高めること ができる。
ボンディングワイャのループ形成では、 複雑なループ軌跡により 弾性変形及び塑性変形をうまく利用することで、 規則的なループ形 状が得られる。 半導体チップに垂直方向のループ形状は、 直線部、 湾曲部、 曲折部等が組み合わされており、 一方で、 半導体チップに 水平方向のワイヤ形状では、 直線的な形状をしている。 ループ形成 では、 垂直方向での湾曲、 曲折等を得るために塑性変形させ、 且つ 、 水平方向ではできる限り直線性を保つことが望ましい。 今後の細 線化によ り、 この直線性の低下が懸念される。 従来の元素添加に賴 つた材料設計では、 これら湾曲部、 曲折部を有する複雑なループ形 状と直線性とを両立させることは困難であった。
そこで、 [ 111] 方位の結晶粒により注目 した組織制御によ り、 上述した、 垂直方向での湾曲、 曲折と、 水平方向の直線性という相 反特性を同時に満足することに有効である。 [ 111] 方位を有する 結晶粒の面積比率が 55 %以上であれば、 三角形ループ、 台形ループ 、 段差ループ等の複雑なループ形状における湾曲部、 曲折部の制御 性と、 ループの直線性とを同時に向上することができる。
よ り好ましく は、 ワイヤ長手方向の結晶方位の内、 [ 111 ] 方位 を有する結晶粒の面積比率が 55%以上であり、 [ 100] 方位を有す る結晶粒の面積に対する [ 111] 方位を有する結晶粒の面積の割合 が 1. 2以上であるボンディ ングワイヤであることが望ましい。 これ は、 [ 111 ] 方位を有する結晶粒の面積比率に加えて、 さらに [ 100 ] 方位を有する結晶粒の面積に対する [ 111 ] 方位を有する結晶粒 の面積の割合が 1. 2以上とすることで、 樹脂封止時のワイャ変形を 抑制して、 狭ピッチ接続の量産歩留まり を向上する効果をより高め ることができるためである。
さらに、 [ 100] 方位を有する結晶粒の面積比率が 3〜20 %の範 囲であることによ り、 高速でのループ制御が容易となり、 最高高さ の部位の形状パラツキが減少したり、 荷重、 超音波振動等の接合条 件の適正な範囲が広がったりすることによ り、 ボンディング時の量 産歩留まり を向上でき、 よ り望ましい。 これは、 [ 100] 方位だけ では、 ワイヤ長手の垂直方向等から外力が作用したときに、 ワイヤ 変形の制御が困難となる場合があり、 [ 100] 方位を有する結晶粒 の面積比率を 3〜20%の範囲とすることで、 ループ制御、 ワイヤ接 合時の弾性変形から塑性変形への変更をよ りスムーズにすることで 、 生産性が向上するためと考えられる。 ここで、 [ 100] 方位の面 積比率が 3 %未満であれば上記効果は小さく、 20%超となれば、 [ 111] 方位の結晶粒による高強度 · 高弾性率等の効果を抑えること が懸念されるためである。
多く の性能が要求されるボンディ ングワイヤでは、 これまで述べ た断面全体での平均的な組織制御だけで改善が難しい特性もある。 これまで困難とされていたリーニング性、 摺動性等を改善するには 、 ワイヤ斬面の中心域と表面域等に区分し、 それぞれの部位での結 晶方位制御することが有効であることを見出した。 リ一二ング性、 摺動性等を改善するための部分的な組織制御について述べる。
ボール接合近傍の直立部におけるワイャ倒れである リ一二ング性 について、 50 μ m以下の狭ピッチ'接続で問題となる場合が多い。 上 記の直線性は、 ループ全体の平均的な直線度を表しているのに比し て、 該リーニング性とは局所部の直線度に相当するものであり、 具 体的には、 隣接ワイヤ間隔が最も狭いボール接合近傍で、 しかも、 垂直方向での湾曲、 曲折等が最も激しい領域で発生する。 この部位 でのワイヤ倒れであるリーニング性を抑えることが、 狭ピッチ接続 の量産技術の重要な課題となる。 ワイヤの機械的特性である高強度 • 高弾性率、 破断伸び等の特性だけでは、 このリーニング性を改善 するこ とは困難であった。
リーニング性を改善するには、 ボール接合近傍での湾曲、 曲折等 による相当の変形歪みを受けても、 横方向への倒れを防止すること が求められており、 機械的特性に基づいた従来手法だけでは、 リー ニング性を改善することは困難である。 また、 ワイヤ断面内の平均 的な結晶方位の管理だけでも、 リ一ニング性を十分に改善すること は難しい。 それに対し、 ワイヤ断面での結晶方位の均一性を高める ことが有効であり、 特に、 ワイヤ中心域の組織制御によ り、 ポール 接合近傍の直立部のワイヤ倒れを低減する等、 リーニング性の改善 に効果があることを見出した。
すなわち、 ワイヤ長手方向の結晶方位の内、 ワイヤの半径を と して、 該ワイヤの中心から RZ 2までの部分を中心部としたとき、 [100] 方位を有する結晶粒の面積に対する [111] 方位を有する結 晶粒の面積の割合 Rcと、 ワイヤ断面全体での [100] 方位を有する 結晶粒の面積に対する [111] 方位を有する結晶粒の面積の割合 Ra について、 両者の差分比率の絶対値 I 1 _Rc/Ra I X100 (%) が 3 0%未満であり、 且つ、 ワイヤ断面全体での該割合 Raが 1.2以上であ ることで、 リーユング性を改善することが可能である。
ここで、 [111] / [100] の面積割合について、 ワイヤ断面全体 での割合 Raを 1.2以上とすることに加えて、 中心部での割合 Rcとヮ ィャ断面全体での割合 Raの差分比率の絶対値 I 1 —RcZRa I を 30% 未満に抑えて、 ワイャ断面全体での組織の均一性を高めることによ り、 チップ部にポール接合した後にワイャを四方の自由な方向に変 形させる通常のループ形成において、 直立部のワイヤ倒れを抑制し てリーユング性を改善することができる。 しかも均一性について、 特に中心部での [111] / [100] の面積割合に着目することで、 ヮ ィャ生産性、 接合性、 ループ形状の使用性能等を損なう ことなく、 リ一二ング性、 樹脂流れ性等を向上することができる。
次に、 ワイャ表面近傍の組織制御による性能向上について説明す る。
40 μ m以下の極狭ピッチを実現するために細線化されたワイヤを 量産使用するには、 キヤビラリの穴部とワイヤとの隙間が小さくな ることで摺動抵抗が高くなることを無視できなくなり、 また、 封止 樹脂の 80%以上を占めるフィラーと呼ばれる Si02の粉末が、 封止時 にワイャに与える衝撃、 それに伴う ワイャ流れの増加等も考慮する ことが必要である。 こ う した、 ワイヤとキヤビラリ との摺動性の改 善、 また、 樹脂封止時の衝撃等にも耐えてワイヤ流れを低減するた めのワイヤの高剛性等が求められる。 これまで述べた、 高強度 . 高 弾性、 ループ形状の直線性、 リーニング性等の狭ピッチワイヤボン デイ ング特性の向上に加えて、 さらに摺動性、 高剛性を改善するに は、 従来の成分設計だけでは対応困難であり、 上述したワイヤ断面 での平均的な組織抑制に加え、 さらに、 ワイヤ表層部での結晶方位 の分布を制御することが有効であることを見出した。
具体的には、 ワイヤの半径を Rとし、 該ワイヤの表面から R " 3 までの深さの部位を表層部と したとき、 表層部におけるワイヤ長手 方向の結晶方位の内、 [ 100] 方位を有する結晶粒の面積に対する
[ 111] 方位を有する結晶粒の面積の割合が 1. 6以上であり、 かつ、 ワイヤ断面全体での [ 100] 方位を有する結晶粒の面積に対する [ 1 11] 方位を有する結晶粒の面積の割合を 1. 2以上とすることで、 高 強度 · 高弾性、 ワイヤ流れの抑制、 ループ形状の制御性、 摺動性、 高剛性等を同時に満足することに有効である。
表層部での [ 100] 方位を有する結晶粒の面積に対する [ 111] 方 位を有する結晶粒の面積の割合が 1. 6以上とすることで、 キヤビラ リ との摺動抵抗を減少させて、 線径 15 μ m以下の極細線ワイヤでの ループ制御性を向上し、 ワイヤ表面のキズ発生等も抑制させて、 榭 脂封止時のフィラー衝撃等によるワイヤ表面状態も改善する。 さら に、 上記の表層部の組織制御に加えて、 ワイヤ断面全体でも [ 111 ] / [ 100] の面積割合が 1. 2以上となる組織を形成することで、 剛 性率を増加させ、 樹脂封止時のワイヤ流れを抑制する効果をさらに 高めることができる。 表層部での [ 111] / [ 100] の面積割合を 1. 6以上と したのは、 1. 6未満であれば、 上記の摺動性、 高剛性の改善 効果が小さいためである。 ここで、 中心部と表層部との境界をワイ ャ表面から R / 3で区別して結晶方位の分布を規定することで、 摺 動性、 高剛性を向上する最も高い効果が確認された。 さ らに好まし く は、 表層部での [ 111 ] / [ 100] の面積割合を 2. 5以上、 断面全 体で平均された [ 111] / [ 100] の面積割合を 1. 2以上とすること で、 搢動性とワイヤ流れの抑制を同時に向上する、 よ り高い効果を 得ることができる。
上述した多ピン · 狭ピッチ化の動向に対応するために、 ワイャ長 、 ループ高さが異なるワイャ接続を一つの I C内に混載させる場合が 増えており、 それに伴い、 ループ高さのパラツキに起因する問題が 増えている。 例えば、 ループ形状が常に安定して得られるのであれ ば、 隣接ワイヤが交互にループ高さを変えることで、 ワイヤが接触 する危険性を低減することも可能であるものの、 現状のワイャでは 、 それほど精度良くループ高さを制御することに限界がある。 ワイ ャ長が 3 mm程度までと短かった従来の実装構造では、 ループ高さは ボール部近傍の熟影響部長さに支配されているため、 比較的ループ 高さの制御が可能であった。 それに比して、 最近の多ピン狭ピッチ 接続では、 ワイヤ長が 5 mm超等長くなり、 ループ高さも広い高低範 囲で使用され始めており、 ループ高さのパラツキを低減することは 非常に重要となっている。
このループ高さのパラッキを低減するには、 ワイャの組織制御が 必要であり、 しかも、 上述した [ 111 ] 方位あるいは [ 100] 方位等 の結晶方位の制御に加えて、 単位面積当たりの結晶粒数も大きく関 与していることを見出した。 すなわち、 ワイヤの長手方向に垂直な 断面の結晶粒数が、 0. 04〜 4個/ μ m 2であり、 ワイヤ長手方向の 結晶方位の内、 断面全体での [ 111 ] / [ 100] の面積比が 1. 4以上 とすることで高強度であり、 ワイヤ長が 5 mm超の場合にもループ高 さのパラッキを低減して、 ループ制御性の良好な特性が得られるこ とを確認した。 ここで、 上記の結晶粒数の範囲の理由は、 結晶粒数 が 0.04個ノ m2未満では、 隣接する結晶粒の方向差が大きい場合 にループ形状のバラツキを誘発する原因となるためであり、 また、 4個 / μ m2超の超微細な結晶粒を、 通常のボンディ ングワイャ製造 工程でワイヤ全体に均一して実現することが困難なためである。
ボンディングワイャの集合組織について、 これまで述べたワイャ 全体及び部分的領域における結晶方位の平均的な比率に加えて、 結 晶方位がより揃った領域をワイャ内部に有するこ とで、 高強度 * 高 弾性、 ループ制御性、 ワイヤ流れ抑制等の特性をさ らに高めること ができる。
ワイヤ長手方向の結晶方位の内、 ワイヤ全体での [111] / [100 ] の面積割合が 1.2以上であり、 且つ、 ワイヤ半径方向に、 ワイヤ 半径 Rの 1 /10以上の幅で、 [111] / [100] の面積割合が 1.6以 上である領域を少なく とも 1層以上有するボンディ ングワイヤであ れば、 ループ形成されたワイヤの直線性をより向上できる。 これは 、 [111] / [100] の面積割合が 1.6以上の高い層では、 結晶方位 が揃っていることで、 高い弾性率を有し、 またワイヤ変形による転 位の増殖、 加工歪み等を低減するこ とで、 ワイヤの直線性が向上さ れるものと考えられる。 ここで、 [111] Z [100] の面積割合が 1. 6以上である層がワイヤ半径方向にワイヤ半径 Rの 1 /10以上の幅 であることで、 高い上 己効果を得ることができる。 よ り好ましくは 、 [111] / [100] の面積割合が 2以上、 及び、 層の幅がワイヤの 半径方向にワイャ半径 Rの 15%以上であれば、 より高い効果を得ら れる。 この方位が揃った層を 1層以上有することが必要であり、 2 層以上存在すればより望ましい。
同様の効果と して、 ワイャ半径方向にワイャ半径 Rの 1 Z10以上 の幅で、 [111] 方位を有する結晶粒の面積比率が 60%以上である 領域を、 少なく とも 1層以上有するボンディングワイヤであれば、 強度、 弾性率を增加させて、 直線性をよ り向上できる。 ここで、 [
111] 方位を有する結晶粒の面積比率を 60%以上とすることで、 [1 11] / [100] の面積割合が 1.6以上の場合よ り も、 弾性率を増加さ せる効果をさらに高めることが可能である。 この効果は、 従来ワイ ャでは直線性が困難とされていた線径 20μ m以下の細線を 3 以上 の長さに接続する ときでも、 直線性を向上できることが確認された また、 ワイヤ長手方向の結晶方位の内、 ヮィャ全体での [111] / [100] の面積割合が 1.2以上であり、 且つ、 ワイヤ半径方向にヮ ィャ半径 Rの 1 Z10以上、 1 3未満の幅で、 [111] / [100] の 面積割合が 0.9未満である領域を少なく とも 1層以上有するボンデ イングワイャであれば、 ループ形成時の安定性をよ り向上できる。 高速でループ形成される時、 ワイャの塑性変形はワイャ長手方向及 び垂直方向に不均一となり、 それがループ形状のパラツキを増大す る要因となっている。 [111] / [100] の面積割合が 0.9未満であ る領域では、 結晶方位が [100] に配向するこ とで、 塑性変形の不 均一性を緩和する作用によ り ループ形状を安定化させると考えら れる。 ここで、 [111] / [100] の面積割合が 0.9未満である層が ワイヤ半径方向にワイャ半径 Rの 10分の 1以上の幅で存在すること で、 高い効果を得ることができ、 一方、 該層の幅がワイヤ半径 の 1 / 3以上となると、 ループ制御が困難となることが懸念される。 この効果は、 細線だけでなく、 線径 30 μ m以上の太線でも効果を得 られる。 よ り好ましくは、 [111] / [100] の面積割合が 0.6未満 および、 層の幅がワイヤの半径方向にワイヤ半径 Rの 15%以上であ れば、 よ り高い効果を得られる。 この方位が揃った層を 1層以上有 することが必要であり、 2層以上存在すればよ り望ましい。
同様のループ制御性をよ り高めるには、 ワイヤ全体での [1111 / [ 100] の面積割合が 1. 2以上であり、 且つ、 ワイヤの半径方向に ワイヤ半径 Rの 1 / 10以上の幅で、 [ 100] 方位を有する結晶粒の 面積比率が 50 %以上である領域を、 少なく とも 1層以上有するボン デイングワイヤであれば、 ループ形状を安定化させる効果をよ り高 めることが可能である。 すなわち、 [ 100] の方向の結晶粒が増加 することで、 ループ高さのパラツキを低減し、 直線性も高めること ができる。 これによ り、 ボンディング速度の高速化にも対応でき、 今後の 1本のワイャを結線する速度が 0. 1秒以下まで高速化する場 合でも、 安定なループ制御が容易となる。
これまで述べた [ 111] / [ 100] の面積割合を中心とした組織に 加えて、 [ 111] と [ 100] の結晶粒の面積比率の合計について、 ヮ ィャ全体又は部分的にコント口ールするこ とで、 高強度 · 高弾性、 ループ制御性、 ワイヤ流れ抑制等の特性をよ り一層高めて、 狭ピッ チ接続の量産性を向上できる。
ワイャ長手方向の結晶組織において、 ワイャ長手方向の結晶方位 の内、 ワイヤ全体での [ 111] / [ 100] の面積割合が 1. 2以上であ り、 且つ、 [ 111] 方位及び [ 100] 方位の結晶粒の面積の合計の割 合 Pmが 50%以上であるボンディ ングワイヤであれば、 ゥエッジ接合 性の向上とワイヤ曲折不良の低減を両立する効果を高めることがで きる。 細線化されたボンディ ングワイヤを、 BGA基板上の AuZ Niめ つきに低温で狭ピッチ接続する場合、 ゥエツジ接合性が低下するこ とが懸念されている。 ゥエツジ接合部の強度を改善する手段として 、 基板上のプラズマク リーニング等が有効であるものの、 一方でゥ エッジ接合性が改善した結果と して、 ワイヤの塑性変形による曲折 不良が発生することが問題となる。 これまで、 ゥエッジ接合性の向 上とワイヤ曲折不良の低減が相互に関連する問題は、 従来はほとん ど知られておらず、 基板上に細線ワイャを狭ピッチ接続する際に顕 在化する問題であり、 今後の狭ピッチ接続の量産化を促進するには 改善が求められる。
これらのゥエツジ接合性とワイヤ曲折を同時に解決するには、 [
111] / [ 100] の面積割合の調整だけでは困難であり、 ワイヤ全体 での [ 111] と [ 100] の結晶粒の合計の面積割合 Pmを 50 %以上とす ることが有効であることを見出した。 [ 111 ] と [ 100] の結晶粒の 合計の面積割合 Pmを制御することの効用と して、 ゥ ッジ接合時の ワイヤの変形挙動を制御し、 メ ツキとの接合強度を高めること、 ま た、 ゥエッジ接合後にワイヤをティルカツ トする際に、 ワイヤに加 わる衝撃荷重を低減してワイャ曲折を低減すること等が考えられる 。 ここで、 [ 111] と [ 100] の結晶粒の面積割合の合計が 50%未満 であれば、 ゥエツジ接合性とワイャ曲折を改善するための適正なポ ンデイ ング条件範囲が限定される。 好ましくは、 Pmが 60%以上であ れば基板接続によ り適した 165°C以下の低温でのゥェッジ接合性を 向上する効果をより高めることができ、 さ らにより好ましく は、 70 %以上であれば、 18 m以下の細線でゥエツジ接合性の向上とワイ ャ曲折不良の低減を両立することで 40 μ m以下の狭ピッチへの適応 性をよ り高めることができる。
ワイヤ長手方向の結晶方位の内、 ワイヤ全体での [ 111] / [ 100 ] の面積割合が 1. 2以上であり、 且つ、 半径 Rのワイヤの中心から R / 2までの部分を中心部としたとき、 該中心部におけるワイヤ長 手方向の結晶方位の内、 [ 111] 方位及び [ 100] 方位の結晶粒の面 積合計の該中心部に占める割合 Pcが 60 %以上であるボンディ ングヮ ィャであれば、 直線性の向上に加え、 ワイヤ製造時の断線不良を低 減し、 また、 ワイヤ長手方向の機械的特性等のパラツキも低減する こ とで、 細線の製造歩留ま りを上昇するのに有効である。
こう した製造時の歩留まり等の調査をした結果、 ワイヤ全体の [ 111] / [ 100] の面積割合を単純に制御するだけでは困難であり、 その改善には、 ワイヤ中心から R / 2までの中心部の組織が重要で あり、 特に、 該中心部に占める [ 111] 方位及び [ 100] 方位の結晶 粒の面積合計の割合 Pcを 60 %以上とすることが有効であることを見 出した。 好ましく は、 Pcが 70%以上であれば、 機械的特性を安定化 させる効果をよ り高めることができ、 さらによ り好ましくは、 80 % 以上であれば、 断線を低減して製造時の歩留ま り を高める効果をよ り増長することができる。 こう した細線の製造歩留まりを上昇する こ とによ り、 ワイヤ製品の安定供給、 量産対応が可能となるもので 、 ワイヤ使用する側で享受できるメ リ ッ トも大きいと期待される。 ボンディングワイヤの長手方向断面において、 ワイヤ長手方向の 結晶方位の内、 ワイャ全体での [ 111 ] / [ 100] の面積割合が 1. 2 以上であり、 且つ、 半径 Rのワイヤの表面から R Z 3までの部分を 表面領域と したとき、 該表面領域におけるワイャ長手方向の結晶方 位の内、 [ 111] 方位及び [ 100] 方位の結晶粒の面積合計の該表面 領域に占める割合 Psが 50%以上であるボンディ ングワイャであれば 、 樹脂封止時のワイヤ流れ率のパラツキを抑制する効果を高められ る。
樹脂封止工程でのワイャ接触不良を低減するには、 これまで述べ たワイャ流れを減少することの他に、 ワイヤ流れ率のパラツキを低 減することも有効であることが見出された。 ここで、 ワイヤ流れ率 とは、 封止後のワイヤ変形量をワイヤ長で除算した値が一般的に用 いられる。 ワイヤ流れ率のパラツキを助長する原因と して、 金型中 での樹脂の流れ挙動の方向が一定でないことで、 ワイヤ長に加わる 外力の方向によって個々のワイヤの流れ率が変化することが考えら れる。 こ う した不規則な樹脂流れ挙動の中でワイャ流れ率を安定化 させるには、 ワイヤ全体での [ 111 ] / [ 100] の面積割合を 1. 2以 上にすることに加え、 ワイヤ表面から RZ 3までの表面領域の組織 制御を行う ことが有効であり、 中でも該表面領域の [111] 方位及 び [100] 方位の結晶粒の面積合計が該表面領域に占める割合 Psを 5 0%以上とすることが重要であることを見出した。 ここで、 Psを 50 %以上と した理由は、 Psが 50%未満であれば、 流れ率の標準偏差等 を低減する効果が小さいためである。 好ましく は、 Psが 60%以上で あれば、 ワイヤ長が 4 mm以上の長スパンでもワイヤ流れ率を安定化 させる効果を高めることができ、 さらにより好ましくは、 70%以上 であれば、 18 μ m以下の細線での上記効果を高めることで 40μ m以 下の狭ピッチでの量産性をより一層高めることができる。
[111] 方位及び [100] 方位の合計の面積割合の制御に当たり、 それ以外の結晶方位について、 特定の方位でなくても基本的には上 述した効果を得ることは可能である。 さらに、 [111] 方位及び [1 00] 方位以外の結晶方位として、 [110] 、 [112] 、 [122] 等の 方位に配向させることで、 ワイャ表面での亀裂の発生等を抑える効 果を得ることも可能である。 低ループ形成のために厳しいループ制 御を行う と、 ボール近傍で熱影響を受けたネック部において損傷を 与えることが問題となる。 ワイャの強度等の機械的特性を単純に増 減させたり、 また、 組織の側面でも、 ワイヤ全体の [111] / [100 ] の面積割合を単純に制御するだけでは、 こ う したネック損傷を低 減することは困難と考えられる。 そこで、 [111] 方位と [100] 方 位の制御に加え、 [110] 、 [112] 、 [122] 等の方位に配向させ ることで、 ネック部の損傷を抑えて低ループ化を実現することも可 能である。
また、 結晶方位の比率を求めるに際し、 観察するワイヤ長は、 ヮ ィャ長手方向に少なく とも線径以上の長さで判断することが望まし い。 よ り好ましく は、 線径の 1.5倍以上の長さで測定することで、 平均的な情報を得て、 測定の再現性を高めることができる。 また、 ワイヤ内部の局所領域での結晶方位の配向性等を調べる場合には、 観察長さを線径の 1. 5倍以上、 より好ましく は 3倍以上設けること が望ましい。
線径の 5倍以上のワイャ長手方向断面において、 線径の 70%以上 の長さでワイャ長手方向の結晶方位が 15° 以内の角度に揃った結晶 粒を、 少なく とも 2個以上有するこ とで、 強度、 弾性率を高め、 ヮ ィャの樹脂流れを低減する効果をより促進することができる。 上述 した、 ワイヤの全体あるいは局部域において、 多数の結晶粒を平均 した結晶方位及びその比率等の管理に加え、 結晶方位が揃った結晶 粒の長さを十分確保することで、 機械的特性をよ り高める作用が得 られる。
ここで、 通常の組織観察において、 角度差が 15° 程度の範囲に揃 つた領域を一つの結晶粒とみなされる。 ループ形成及び樹脂封止等 の工程で、 外力によ り ワイャが変形されるとき、 大部分の変形にお ける曲率は線径より も大きいことから、 変形を抑制するには、 結晶 方位が揃った結晶粒の長さが線径の 70%以上となり、 長手方向に繊 維状の組織を有していることが望ましいと考えられる。
次に本発明の ( 15) 〜 ( 21) のボンディ ングワイヤについて説明 する。
ボンディ ングワイャは、 ワイャ長手方向に延びた繊維状集合組織 を有しており、 そのワイャの長手方向断面の結晶粒組織に着目 し、 ワイヤの半径を と して、 該ワイヤの中心から R Z 2 までの部分を 中心部、 その外側を外周部と分類したときに、 中心部における [ 10 0] 方位を有する結晶粒の面積に対する [ 111] 方位を有する結晶粒 の面積の割合 (以下では、 [ 111] / [ 100] の面積割合と略記) を と し、 外周部における [ 111] / [ 100] の面積割合を Rsと して、 両者の差分比率の絶対値 I 1 _ Rc/Rs I X 100 ( % ) が 30 %以上で あることで、 接続が低温化、 狭ピッチ化したときのゥエッジ接合性 を向上する効果を高めることができる。 特に、 この集合組織の方位 制御では、 高強度 · 高弾性化も改善しつつ、 同時に、 ゥエッジ接合 部の変形性、 接合強度も達成することが特徴であり、 従来の元素添 加に頼った材料設計では、 このよ うな効果は達成困難であった。
これによ り、 50 μ m以下の極狭ピツチに必要な線径 20 μ m以下の 極細ワイヤを使用しても、 樹脂封止時のワイャ流れを従来材に比し て 1割以上低減するこ とができ、 さらに、 接合温度も 30°C以上下げ ても連続接合性を十分確保できるため、 樹脂基板、 テープ等を過剰 な高温に曝すこ とを防ぐこ とができ、 総合的な生産性、 信頼性を大 幅に改善することが可能となる。
結晶方位の配向の影響について、 簡単に説明する。 [ 111] 方位 への配向を増やすことで、 引張強度に加えて、 降伏強度を増加する 効果を高めることができるが、 それだけでは、 低温での狭ピッチ接 合性を確保することが困難な場合が生じる。 そこで、 [ 100] 方位 への配向も利用して、 ゥエッジ接合時のワイヤ変形、 ティル部の力 ッ ト、 アーク放電によるボール形成等も改善しょう と している。 結晶粒の [ 111] 方位と [ 100] 方位の配向を制御することは、 ヮ ィャ長が増加した場合に、 樹脂封止時のワイャの塑性変形を抑制す るのに有効作用する。 従来、 強度を高めるには、 ワイヤ中の合金化 元素の添加量を増やすことである程度まで対応できたが、 高濃度添 加することで、 ワイャの電気抵抗が増加することが常に問題とされ ていた。 今後の I Cの高周波対応化が必須であり、 ワイヤの電気抵抗 の増加は半導体機能を低下させる原因ともなる。 それに対し、 結晶 粒の [ 111] 方位と [ 100] 方位の配向を制御したワイヤでは、 電気 抵抗を増加させることなく、 強度を高めることが可能であり、 AS I C 等の高機能 LS Iへの適用も含めて、 大きな利点となる。
また、 [ 111] 方位だけでなく [ 100] 方位の配向性も合わせてコ ン ト ロールするために、 [ in] / [ 100] の面積割合に着目したヮ ィャ組織の制御は、 ゥエッジ接合性、 ループ制御、 高強度細線化等 の総合的管理することに有効である。 すなわち、 [ 111] / [ 100] の面積割合を制御するこ とで、 高強度化、 高弾性率化を促進するこ とができ、 従来の高濃度の元素添加による高強度化では問題となつ ていたポール形成性についても、 良好な特性を同時に達成できる。 例えば、 安定形成が困難とされていた、 ポール径ノワイヤ径の比率 が 1. 2〜: 1. 6倍の小ボール形成でも、 真球性は良好であり、 狭ピッチ 接続に有利である。 これは、 [ 111] 方位と [ 100] 方位の結晶粒の 制御が、 ゥエッジ接合後のワイヤ破断性状への影響、 またポール部 の凝固時の組織形成にも影響を及ぼすこと等が関与しているためと 考えられる。
こ う した、 [ 111] / [ 100] の面積割合についてワイヤ中心部と 外周部で差異を生じさせる組織制御を行う ことで、 これまでのワイ ャ材料では困難とされていた、 高強度化と高接合性という相反する 要求特性を同時に向上する効果を高めることができる。 外周部の [
111] / [ 100] の面積割合を高めることで、 高強度化、 高弾性率化 を促進して、 樹脂流れを抑制することができ、 一方で、 中心部にお ける [ 111] / [ 100] の面積割合の增加を抑えることで、 ゥ πッジ 接合時の接合強度、 ワイヤ破断形状の安定化を助長すること等が寄 与していると考えられる。 すなわち、 ワイヤの組織を均一に制御す るだけでは不十分であり、 むしろ、 ワイヤの中心部と外周部の組織 の違いを積極的に利用することが重要であることを見出した。
中心部、 外周部における [ 111] / [ 100] の面積割合である Rc、 Rsの差分比率の絶対値 I 1 一 RcZRs I X 100 ( % ) を 30 %以上の範 囲と した理由について、 30%未満では、 高強度化と高接合性の一方 をある程度満足することはできても、 両者を同時に改善することは 困難であるためである。 また、 上記差分比率の上限について特に制 限はないが、 90%未満であれば、 安定製造が比較的容易である。 好ましくは、 Rc、 Rsの差分比率が 40%以上であることがよ り望ま しい。 これは、 40%以上であれば、 基板、 テープ等の軟質材上の電 極へのゥェッジ接合性をよ り一層向上することにも有効であるため である。 よ り好ましく は、 該差分比率が 50%以上であれば、 160°C 以下の低温でのゥ ッジ接合性を向上する高い効果が得られるため 、 BGA、 CSP等、 最新の接続形態への適応性を高めることができるた めである。
上述した差分比率 ( 1 一 Rc/Rs) X100 (%) の絶対値が上記の 範囲であれば、 良好な特性が得られるが、 さらにその値の正負によ り、 一部の使用性能に若干の差異が認められる。 ( l —Rc/Rs) X 100 (%) く一 30%の場合は、 中心部の Rcが相対的に高いことから 、 極細線の低温接合にはよ り有利であり、 一方、 ( l _RcZRs) X 100 (%) >30%の場合には、 外周部の Rsが高いことから、 樹脂流 れを抑制する高い効果が得られる。
さ らに、 ワイヤの領域を区分する境界について、 ワイヤ中心から 半径 Rの 1 / 3である R/ 3までの領域を芯部、 その外側である表 面から 2 RZ 3までの領域を表層部と し、 それぞれ芯部と表層部に おける [111] / [100] の面積割合を Rd、 Rfと したとき、 それらの 差分比率の絶対値 I 1 一 Rd/Rf I X100 (%) を 30%以上とするこ とが、 よ り望ましい。 これは、 表面から 2 RZ 3を表層部、 残りの R/ 3を芯部と区分することで、 前述した外周部に相当する部位が よ り厚くなり、 ワイャ流れを抑制する効果をよ り一層高めることが できるためと考えられる。 ワイヤの長手方向断面におけるワイャ長手方向の結晶方位のうち
、 ワイヤの半径 / 2を境界に中心部と外周部に区別し、 中心部にお ける [111] / [100] の面積割合 Rcと、 外周部における [111] / [100] の面積割合 Rsとの差分比率の絶対値 I 1 _Rc/Rs I X100 ( %) が 30%以上であり、 さ らに、 ワイヤの長手方向断面の全体で平 均した [111] / [100] の面積割合 Raが 1.0以上であるボンディン グワイヤでは、 高強度化と高接合性とを同時に満足しつつ、 なかで も、 ワイヤの直線性を向上させ、 さらに、 ワイヤ流れを抑制する効 果をよ り一層高めることで、 極細線の狭ピッチ接続に対応すること ができる。
これは、 ワイヤ中心部と外周部に分けた組織制御に加えて、 ワイ ャ断面全体の結晶配向性について、 [100] 方位より も [111] 方位 の比率を高めることで、 曲げ剛性、 降伏強度を高める効果を利用し ている。
ボンディ ングワイヤのループ形成では、 複雑なループ軌跡、 ワイ ャを挟みこむクランプ開閉及び、 エア流の張力によるワイヤ繰出し の調整等の多くのプロセスの総合結果と して、 規則的なループ形状 を形成することが可能である。 従って、 ワイヤの弾性変形及び塑性 変形をコン ト ロールすることが必要である。 この複雑なループ形成 を経た後でも、 ワイヤの直線性を安定的に確保するには、 ワイヤ断 面全体で平均した [111] Z [100] の面積割合 Raを増加させて、 曲 げ剛性、 降伏強度を高めることが有効である。 さ らに、 こ う した曲 げ剛性、 降伏強度を高めることで、 封止時に樹脂が高速流動してヮ ィャに加わる荷重が大きい場合に、 ワイヤは弾性変形と塑性変形と もに抑制することで、 ワイヤ流れをよ り低減することができる。 ワイヤ断面全体で平均した [111] / [100] の面積割合 Raを 1.0 以上と した理由は、 Raが 1.0未満では曲げ剛性、 降伏強度を同時に 高める効果があまり得られないためであり、 Raが 1. 0以上であれば 、 弾性率、 曲げ剛性を増加させることで、 線径 18 μ πι以下のワイヤ を使用しても、 ワイヤの直線性を向上させ、 さ らに、 ワイヤ流れも 流れを低減し、 40 μ ηι以下の狭ピッチ接続への適用性をより一層高 められるためである。 好ましくは、 この Raが 1. 2以上であることが より望ましい。 これは、 1. 2以上であれば、 狭ピッチ接続に必要な 台形ループ、 段差ループ等の複雑なループ形状における湾曲部、 曲 折部の制御性と、 ループの直線性とを同時に向上することが確認で きたためである。
さらに、 ワイャの長手方向断面におけるワイャ長手方向の結晶方 位の内、 該ワイヤの中心から R Z 3までの部分を芯部とし、 芯部に おける [ 111] / [ 100] の面積割合 Rdが 0. 1〜0· 8の範囲であるボン デイ ングワイヤでは、 高強度化、 ゥエッジ接合性とを同時に満足し つつ、 さ らに、 ゥエッジ接合部における疲労特性を向上して信頼性 を高める効果を得ることができる。 これによ り、 20 /z m以下の細線 ワイャと微細加工キヤビラリ を使用しても、 ゥエツジ接合性を十分 確保することが可能となり、 狭ピッチ接続の量産性を高められる。 さらに、 今後期待されている Pbフリー半田を使用した場合に、 リ フ ロー温度の高温化に伴う ゥヱッジ接合部でのクラック、 破断等の不 良発生を大幅に軽減することで、 Pbフリー半田の実用化を促進して 、 環境問題にも対応できる半導体パッケージ技術に利用することが できる。
大変形された複雑な構造をしたゥエッジ接合部における、 耐疲労 性等の使用時の信頼性については、 前述したよ うに、 これまでも殆 ど報告されておらず、 信頼性を改善するためのワイヤ材料因子は殆 ど明らかにされていなかった。 信頼性を左右する挙動について、 リ フロー時、 使用時の発熱、 冷却等の温度サイクルを経る過程で、 シ リ コンチップ、 金属フ レーム、 ボンディ ングワイヤ、 封止樹脂等の 熱膨張、 弾性率が異なる部材構成であるため、 ゥ: ッジ接合部に熱 歪みが集中して破断に至ることが想定される。 大変形されたゥエツ ジ接合部でのス ト レスを緩和するためには、 この部位の疲労特性を 向上することが必要である。 そこで本発明者らは、 ゥエッジ接合部 の信頼性を向上する組織制御に初めて着目 した。
すなわち、 ワイヤ芯部における [ 111] / [ 100] の面積割合 Rdを 低減して、 [ 111] 方位より も [ 100] 方位の比率を高めることで、 ゥエッジ接合部の疲労特性を向上しつつ、 外周部における [ 111] / [ 100] の面積割合 Rsを中心部の面積割合 Rcより も 30%以上高く することで、 高強度化と高ゥエッジ接合性も十分確保して、 狭ピッ チ接合の信頼性を総合的に高めることができる。 従.来の材料設計の 延長では、 ワイヤ物性の一つである高温伸びを増加させて、 疲労特 性を高めることが少し期待できるものの、 一方で、 ワイヤ強度の低 下が避けられず、 細線のループ制御が難しく、 ワイヤ流れも増大す るために、 狭ピッチ接続に対応することは困難となる。 これに対し 、 上述した、 ワイヤ芯部での [ 100] 方位の結晶粒の分布をうまく 利用することは、 そう した弊害も殆どなく、 総合的な改善が可能と なる。 ワイヤ芯部の領域について、 ワイヤ中心から R Z 2まで中心 部よ り もさ らに深部に相当する。 中心から R / 3までの領域 (これ を芯部と呼ぶ) の [ 100] 方位の組織を活用することで、 高強度化 を損なう ことなく、 ゥエツジ接合部の信頼性を向上する効果が一層 高めることができる。
芯部における [ 111] / [ 100] の面積割合 Rdを 0. 1〜0. 8の範囲と した理由は、 Rdが 0. 1未満では、 15 /z m以下の極細線での強度を確 保することが難しくなるためであり、 また、 0. 8超であれば、 ゥェ ッジ接合部の疲労特性を高める効果が軽減するためである。 また、 前述した Rc、 Rs、 Rd、 Raのパラメータを同時に適正化させ る場合として、 中心部と外周部での面積比率 Rc、 Rsとの差分比であ る I 1 —Rc Z Rs I X 100 ( % ) が 30 %以上であり、 芯部での比率 Rd が 0. 1〜0· 8の範囲であり、 ワイヤ断面全体で平均した [ 111 ] / [ 1 00] の面積割合 Raが 1. 0以上であることで、 それぞれの組織制御に よ り期待される、 高強度化とゥエッジ接合性の向上、 曲げ剛性、 降 伏強度の増加によるワイャ流れの低減等の効果に加えて、 さらに複 合作用として、 1 mm長以下の短スパンにおけるゥヱッジ接合部近傍 の引張強度を高められることを確認した。
BGA基板又はテープを用いた狭ピッチ接続では、 一つのパッケー ジ内にワイヤの長短異なるループを形成する場合が多い。 チップ面 とゥヱッジ接合面との高低差があり、 しかもスパンが短い場合には 、 ゥエツジ接合部近傍におけるワイヤと接合面との間の挿入角度も 比較的大きいことから、 ゥ ッジ接合部あるいは試料搬送時に亀裂 が生じたり、 またプル試験を実施すると、 通常は起らないゥエッジ 接合部での破断が生じる。 そこで Rc、 Rs、 Rd、 Raのパラメータを前 述した範囲で制御することによ り、 短スパンのゥヱッジ接合におけ る作業マージンの拡大を比較容易に達成することが可能となる。
さらに、 外周部における [ 111 ] / [ 100] の面積割合 Rsが 1. 2以 上であるボンディ ングワイヤでは、 高強度化、 ゥエッジ接合性とを 同時に満足しつつ、 さらに、 リーニング性を改善できる効果を得る ことができる。 次に、 リーニング性への影響について説明する。 ボール接合近傍の直立部におけるワイヤ倒れであるリーニング性 について、 50 m以下の狭ピッチ接続で問題となる。 前述した直線 性は、 ループ全体の平均的な直線度を表しているのに比して、 該リ 一二ング性とは、 ボール接合の直上部近傍の局所域での直線度に相 当する。 具体的には、 隣接ワイヤ間隔が最も狭いボール接合近傍で 、 しかも、 垂直方向での湾曲、 曲折等が最も激しい領域に相当する 。 この部位でのワイャ倒れである リーニング性を抑えることが、 狭 ピッチ接続の量産段階での重要課題の一つとなっている。
リーニング性を改善するには、 ポール接合近傍での湾曲、 曲折等 による相当の変形歪みを受けても、 横方向への倒れを防止すること が求められる。 機械的特性に基づいた従来手法だけでは、 リーニン グ性を改善することは困難である。 また、 ワイヤ断面内の平均的な 結晶方位の管理だけでも、 リーニング性を十分に満足することは難 しい。 それに対し、 ワイヤ断面での結晶方位の分布をコン ト ロール することがリーニング性の改善に有効であることを見出した。
すなわち、 ワイヤ中心部と外周部での [ 111] / [ 100] の面積割 合 Rc、 Rsの差異を絶対値で 30 %以上生じさせ、 しかも外周部での [ 111] Z [ 100] の面積割合 Rsを 1. 2以上に高めることが、 リーニン グ性の改善に有効である。 中心部の [ 111] / [ 100] の面積割合を 相対的に低減する効果で、 ループ形成時における局所的な湾曲、 曲 折等が比較的容易となり、 さ らに、 外周部での [ 111] / [ 100] の 面積割合を高めることでポール直上部の倒れを防止する効果等が作 用して、 リーユング性が改善すると考えられる。 またポール直上部 は、 ボール溶融時の熱影響によ り再結晶が起こ り、 一般に強度が最 も低下している領域である。 この部位の改質にも、 ワイヤ母線の外 周部における [ 111] / [ 100] の面積割合を高めて、 熱影響による 強度低下を軽減させることも、 リーニング性の向上を助長する要因 の一つと考えられる。
ここで、 外周部における [ 111] / [ 100] の面積割合 Rsを 1. 2以 上の範囲と した理由は、 Rsが 1. 2未満では、 リーニング性を改善す る十分な効果を得ることが難しいためである。 好ましく は、 この Rs が 1. 5以上であることがよ り望ましい。 これは、 狭ピッチ接続でル ープ高さを高く したときにリ一二ング問題の発生頻度が多くなる問 題に対し、 Rsを 1. 5以上にすることで、 ループ高さが 300 μ mを超す 高ループでもリ一ニング性を向上する効果を十分得ることができる ためである。
また、 ワイヤ中心部と外周部での [ 111 ] / [ 100] の面積割合 Rc 、 Rsの差分比率の絶対値を 30 %以上生じさせ、 しかも外周部での [ 111 ] / [ 100 ] の面積割合 Rsを 1. 2以上に高め、 さらに、 R Z 3 よ り内部に相当する芯部での比率 Rdを 0.:!〜 0. 8の範囲とすることによ り、 これまで対応が困難とされていた、 逆段差ボンディ ング時のヮ ィャ曲がりを低減することができ、 積層チップ接続の量産実用を促 進することも可能である。
逆段差ボンディングでは、 ゥェッジ接合部がポール接合部より も 高い位置にあり、 通常のボンディングと比較して、 ポール接合近傍 のワイヤ直立部の長さが数倍長く、 塑性変形の部位も異なる特殊な 構造であり、 ワイヤの曲がり、 倒れ等の不良発生頻度が高いことが 問題であった。 不良の原因は、 上述したリーユングと類似している 。 そこで、 ワイヤの内部近傍、 外周部、 表層域近傍で、 上述した、
[ 100 ] 方位と [ 111 ] 方位の関係を満足するよ うに組織制御するこ とで、 ワイヤの曲がり、 倒れ等を低減し、 逆段差ボンディングの生 産性も向上することができる。
細線による狭ピッチ接続では、 キヤビラリ内壁でワイヤが削れる ことで、 ワイヤ表面に傷が生じたり、 キヤビラ リ 内部の詰ま り不良 が発生しやすくなる。 ワイヤの最表面の領域における組織制御によ り、 これを改善することができることを見出した。
すなわち、 ボンディ ングワイャの長手方向断面の結晶粒組織にお いて、 ワイヤの半径を Rと して、 該ワイヤの表面から R / 5までの 部分を最表面部と したとき、 最表面部におけるワイャ長手方向の結 晶方位の内、 [ 111] / [ 100] の面積割合 Rtが 1· 0以下であること によ り、 ワイヤ表面の傷や削れを低減したり、 あるいは、 キヤビラ リの詰まり不良を抑えて、 キヤビラリの連続使用回数を延ばすこと ができる。
ここで、 ワイヤ表面から R / 5までの最表面部における [ 111] / [ 100] の面積割合 Rtを 1. 0以下の範囲と した理由は、 キヤビラリ 内壁とワイヤ表面との摩擦、 摺動性等を支配するのは主としてワイ ャ表面から R / 5までの領域であるためであり、 また、 その領域の Rtが 1. 0超では、 摩擦、 摺動性等が悪化することで、 ワイヤ表面の 傷やキヤビラリ詰まり を改善する十分な効果を得ることが難しいた めである。 好ましくは、 Rtが 0. 8以下の範囲であることがよ り望ま しい。 これは、 狭ピッチ接続で多用される可能性のある、 キヤビラ リの穴径とワイヤ径との寸法差が 4 μ πι以下となる場合に、 上記の ワイヤ表面傷や、 キヤビラ リ詰まり等の不良発生頻度が上昇するの に対し、 Rtを 0. 8以下の範囲とすることで、 こ う した傷発生、 キヤ ビラリ詰まり等を改善するよ り高い効果を得ることができるためで ある。
本発明における結晶方位は、 ワイヤの長手方向に対する結晶方位 の角度差が 10° 以内のものを含むことが好ましい。 通常、 ある方位 の結晶方位に着目 しても、 個々の結晶はある程度の角度差を有して おり、 また、 サンプルの準備、 結晶方位の測定法等の実験法によつ ても若干の角度差が生じる。 ここで、 角度差の範囲が 10° 以内であ れば、 それぞれの結晶方位の特性を有しており、 ボンディングワイ ャの諸特性に及ぼす影響度も有効に利用できるためであり、 結晶方 位の角度差が 10° を超えると、 ワイヤ特性への影響に差異が生じる ことが懸念されるためである。
多ピン ' 狭ピッチ化の動向に対応するために、 ワイヤ長、 ループ 高さが異なるワイャ接続を一つの IC内に混載させる場合が増えてお り、 それに伴い、 ループ高さのパラツキに起因する問題が増えてい る。 例えば、 ループ形状が常に安定して得られるのであれば、 隣接 ワイヤが交互にループ高さを変えることで、 ワイヤが接触する危険 性を低減することも可能であるものの、 現状のワイヤでは、 精度良 くループ高さを制御することに限界がある。 ワイャ長が 3 程度ま でで短かった従来の実装構造では、 ループ高さはポール部近傍の熱 影響部長さに支配されているため、 比較的ループ高さの制御が可能 であった。 それに比して、 最近の多ピン狭ピッチ接続では、 ワイヤ 長が 5 mm超等長くなり、 ループ高さも広い高低範囲での使用が求め られており、 ループ高さのばらつきを低減することは非常に重要と なっている。
このループ高さのばらつきを低減するには、 ワイャの組織制御が 必要であり、 しかも、 上述した [111] 方位あるいは [100] 方位等 の結晶方位の制御に加えて、 単位面積当りの結晶粒数も大きく関与 していることを見出した。 すなわち、 ワイヤ中心部と外周部での [
111] / [100] の面積割合 Rc Rsの差異を絶対値で 30%以上生じさ せ、 しかもワイヤの長手方向に垂直な断面の結晶粒数が、 0.04 4 個 Z/ m2とすることで、 高強度であり、 ワイヤ長が 5 mm超の場合 にもループ高さのばらつきを低減して、 ループ制御性の良好な特性 が得られることを確認した。 ここで上記の結晶粒数の範囲の理由は 、 結晶粒数が 0.04個 Z μ m2未満では、 隣接する結晶粒の方向差が 大きい場合にループ形状のばらつきを誘発する原因となるためであ り、 また 4個/ / z m2超の超微細な結晶粒を、 通常のボンディ ング ワイャ製造工程でワイャ全体に均一して実現することが困難なため である。
以上、 本発明の ( 1 ) (21) のボンディングワイヤについて説 明したが、 ボンディングワイヤの集合組織に関して、 これまで知ら れておらず、 報告例も見られなかった。 種々の金属における集合組 織は、 圧延材、 引抜細線等で知られているものの、 金属の加工法、 成分と集合組織の関係や、 集合組織と部材使用性能との関係に関し ては、 統一的な見解は得られていない。 集合組織を測定する従来法 では、 X線回折、 TEMによる電子線回折等が用いられていたが、 ボ ンデイ ングワイヤのよ うに、 25 μ m径程度の微細線で、 比較的軟質 の金属線における集合組織の測定は困難であった。
解析技術の進歩は目覚ましく、 測定エリアを微小に絞ることがで きる微小領域 X線、 最近開発された後方電子散乱図形 (Electron B ack Scat ter ing Pat t ern, 以降 EBSP) 法等は、 微細試料の集合組織 の測定に非常に有効な測定手段である。 なかでも、 EBSP測定により 、 ボンディングワイヤのような細線でも、 その研磨断面の集合組織 を精度良く、 しかも比較的容易に測定できるよ うになった。 例えば 、 図 1は、 線径 25 μ mの金ボンディ ングワイヤにおける、 EBSP測定 の一例を示しており、 結晶方位が正確に測定できていた。 このよう な最新の解析技術を利用することで初めて、 ボンディ ングワイヤの 微細組織に関して、 一つ一つの微細結晶粒の結晶方位、 断面全体で の結晶方位の分布等を、 高精度に再現良く測定できることを確認し た。 ただし、 単純にワイヤの表面あるいは研磨断面について EBSP測 定又は X線測定を実施しても、 正確な情報が得られるとは限らない 。 試料作製、 装置操作等、 多くの実験条件を適正化することではじ めて精度の高い方位解析が可能となることを留意しておく必要があ る。
また、 EBSP測定では、 個別の結晶粒の方位を観察し、 その結晶粒 の面積を求めることが可能であるが、 X線回折を用いた場合には、 それぞれの結晶方位の X線強度をもとに、 結晶方位の体積比率を求 めることができる。 従って、 ボンディ ングワイヤの長手方向断面又 は長手方向に垂直な断面の X線回折測定によ り求めた結晶方位にお いて、 [ 100] 方位を有する結晶粒に対する [ 111] 方位を有する結 晶粒の体積比率が 1. 2以上であることによ り、 強度、 弾性率を高め ることができ、 樹脂封止時のワイヤ流れを低減することが可能であ る。 また、 それ以外の本発明に関する [ 111] 方位あるいは [ 100] 方位を有する結晶粒の面積割合の関係についても、 それぞれの X線 回折法によ り求められた結晶方位の体積比率の関係で、 同様の表記 ができることを確認した。
また、 X線回折を用いた場合には、 X線の強度が面積を反映する 特性として得られる。 すなわち、 前述した、 [ 111 ] 方位あるいは
[ 100] 方位を有する結晶粒の面積に関する比率は、 それぞれの結 晶方位の X線強度の比で表すことも可能である。
従って、 ボンディ ングワイャの長手方向で測定した X線強度にお てい、 [ 100] 方位を有する結晶粒の X線強度に対する [ 111] 方位 を有する結晶粒の X線強度の割合が 1. 2以上であることにより、 強 度、 弾性率を高めることができ、 樹脂封止時のワイヤ流れを低減す ることが可能である。 また、 それ以外の本発明に関する [ 111] 方 位あるいは [ 100] 方位を有する結晶粒の面積比の関係についても 、 それぞれの結晶方位の X線強度の比で表現することもできる。 次に、 本発明の ( 1 ) 〜 ( 14) , ( 20) , ( 21 ) のボンディング ワイヤの製造方法 (22) 〜 (24) について説明する。
結晶方位を制御する手段は、 製造技術と合金化成分とに大別され 、 それぞれについて、 下記に説明する。
原料素材からボンディ ングワイャを製造する工程において、 圧延 加工、 前熱処理、 二次伸線加工、 後熱処理の順でそれぞれ少なく と も 1回組み合わせた工程で、 铸造材からボンディ ングワイヤを製造 する方法であって、 前記圧延加工における面積加工率が 95 %以上、 ' 前記前熱処理の加熱温度 (絶対温度) が該材料の融点 (絶対温度) に対して 20〜 70 %の温度範囲であり、 前記二次伸線加工の面積加工 率が 99. 5%以上、 前記後熱処理の加熱温度 (絶対温度) が該材料の 再結晶温度 (絶対温度) に対して 20〜70%の温度範囲で実施される ことが望ましい。 この方法により、 ワイヤ長手方向での [ 111] 方 位及び [ 100] 方位の結晶粒を調整することが可能となる。
ここでの圧延加工について、 丸型溝ロールあるいは角型溝ロール を用いた圧延、 スエージング圧延等を使用することができ、 また一 部には大型ダイス伸線等も含めることも可能である。 圧延の総加工 度とは、 圧延前、 圧延後のワイヤの平均直径をそれぞれ Df、 Dgとす ると、 { 1 - ( Dg/ Df) 2 } X 100 ( % ) で表すことができる。 次に 、 伸線加工では、 主に伸線用ダイスを用い、 伸線機は複数のダイス で一度に伸線することができる装置を用い、 伸線前、 伸線終了後の ヮィャの平均半径をそれぞれ Rf、 Rgとすると、 { 1 — (Rg/Rf) 2
} x ioo ( % ) で表すことができる。 ダイスの内壁は、 超硬金属又 はダイヤモンド加工を施されているものが、 安定性等に優れており 、 よ り望ましい。 熱処理方法は、 ワイヤを巻き取った状態で加熱ォ ーブン内に設置し、 一括して加熱する方式と、 一定の長さの加熱炉 内でワイヤを連続的に移動させながら加熱する連続熱処理方式等が 利用できる。
圧延加工の加工度、 伸線加工の加工度、 熱処理の加熱温度につい て、 上記条件を 3者同時に満足させることで、 [ 111] 方位及び [ 1 00] 方位の配向性を高めることが容易であり、 どれか一つの条件で も満足しない場合には、 組織の制御が困難となる。 例えば、 各条件 の理由と して、 圧延加工の総加工度が 95%未満、 又は伸線加工の総 加工度が 99. 5 %未満の場合には、 加工集合組織の成長が不'充分とな り、 その後の加熱で回復 · 再結晶も一部に生じさせた最終の集合組 織において、 [ 111] / [ 100] の面積割合を高めることが困難であ る。 また、 熱処理の加熱温度 (絶対温度) が原料素材の融点に対し て 20%未満の低温であれば、 その後の伸線工程において [ 111 ] 及 び [ 100] の結晶方位を揃えることが難しいためであり、 一方、 70 %超の高温であれば、 最終線径まで伸線しても [ 111] 以外の方位 が占める割合が高くなるため、 [ 111] / [ 100] の面積割合を 1. 2 以上に保つことが困難となるためである。
また、 後熱処理の加熱温度が原料素材の再結晶温度に対して 20〜 70%の温度範囲と した理由は、 [ 111] の結晶が揃わないことに加 え、 再結晶温度の 20%未満の低温では、 加工歪みの残留によるワイ ャ曲がり等の問題が生じるためであり、 一方、 70%超の高温では、 ワイャ表面の酸化が顕著となり、 ゥエツジ接合性が低下するためで ある。 ここで、 前熱処理温度の基準と して融点を用いたのは、 融点 との関連性が強いためであり、 それに対し、 後熱処理で再結晶温度 を用いたのは、 伸線加工度が異なる素材で最終段階の組織を同一に するには、 後熱処理温度も調整すべきものであり、 そう した加工度 の影響が間接的に再結晶温度に反映されているため、 再結晶温度を 基準に温度範囲を決定することで方位制御がよ り容易となるためで ある。 再結晶温度の決定についてはいくつかの手法があるが、 例え ば、 温度と破断伸びとの関係を示した、 破断伸びが急激に増加する 温度近傍を、 再結晶温度と して使用することができる。
加熱法を前熱処理と後熱処理の 2段階に分けることは、 [ 111] 及び [ 100] の結晶方位の配向を揃えることに有効に作用する。 前 熱処理では、 圧延によ りできた無秩序な結晶配向に一定の方向性を 持たせる役割があり、 その後の伸線加工によ り得られる加工集合組 織の方向性も発展させることができ、 さ らに後熱処理により、 一部 の回復 · 再結晶を起こさせて、 [ 111 ] 方位と [ 100] 方位の結晶粒 を同時に制御することができる。
さ らに、 本発明の組織制御のためには、 圧延加工、 一次伸線加工
、 前熱処理、 二次伸線加工、 後熱処理の順でそれぞれ少なく とも 1 回組み合わせた工程で、 铸造材からボンディングワイャを製造する 方法であって、 前記圧延加工における面積加工率が 95 %以上、 前記 前熱処理の加熱温度 (絶対温度) が該材料の融点 (絶対温度) に対 して 20〜 70 %の温度範囲であり、 前記二次伸線加工の面積加工率が 99. 5 %以上、 平均伸線速度が 50〜: 1000 m /分、 伸線の槽温度が 5〜 45°Cであり、 前記後熱処理の加熱温度 (絶対温度) が該材料の再結 晶温度 (絶対温度) に対して 20〜70 %の温度範囲、 掃引張力は 0. 2 〜70mNの範囲で実施されることがよ り望ましい。 この方法によ り、 ワイヤ長手方向での [ 111] 方位と [ 100] 方位の結晶粒を同時に制 御し、 さらに断面内での方位の分布を制御することも可能となる。
ワイヤ断面内での結晶方位の分布を制御することで、 加工率、 熱 処理温度の管理だけでは難しいため、 伸線速度、 伸線温度、 熱処理 時の掃引張力等を制御することが有効である。 具体的には、 前記の 加工率、 熱処理温度の範囲内で、 さ らに平均伸線速度を 50〜; LOOO m /分、 伸線の槽温度を 5〜45°C、 後熱処理の掃引張力を 0. 2〜70mN の範囲で制御することにより、 断面全体での結晶方位の均一性を高 めたり、 表層部の組織の方位の配向性を調整することがより容易と なる。 こ う した加工率、 熱処理温度、 伸線速度、 伸線温度、 掃引張 力等を適正な範囲で調整することによ り、 ワイャ断面全体で組織分 布について、 局所的でなく、 ワイヤの長手方向の長距離範囲で高精 度に制御することが可能となる。 従って、 これらのパラメータ条件 を単独に規定することは困難であるものの、 幾つかの条件について 説明する。 平均伸線速度を 50〜; lOOOm Z分と した理由は、 50m Z分未満であ れば、 長手方向でのパラツキが発生したり、 量産性が低下すること 、 lOOOm Z分超であれば、 伸線時の発熱等による動的再結晶等も懸 念され、 結晶方位の均一性を維持することが困難である。 伸線の槽 温度が 5 °C未満であれば、 ワイャ表面の冷却が発生することが懸念 される。 一方、 槽温度が 45°C超であれば、 ワイヤの最表面域で回復 が進行して、 組織のパラツキを誘発したり、 また、 作業者への負担 も増えることで、 作業ミスを誘発することが懸念される。 後熱処理 の掃引張力が 0. 2mN未満であれば、 炉内をワイャが移動する際にヮ ィャがばたつく ことで、 熱処理状態にむらが発生したり、 70mN超で あれば細線での線径変動等が懸念されるためである。
組織制御性をより高める観点からは、 圧延加工の総加工度が 95 % 以上、 前記伸線加工の総加工度が 99. 5 %以上、 前熱処理の加熱温度 (絶対温度) が原料素材の融点に対して 30〜70 %の温度範囲であり 、 後熱処理の加熱温度が原料素材の再結晶温度に対して 30〜70 %の 温度範囲で実施されることがよ り望ましい。 この方法によ り、 [ 11 1] 方位と [ 100] 方位の集積度をより高めるこ とができる。
さ らに、 組織制御の観点からは、 圧延加工、 前熱処理、 伸線加工 、 後熱処理の工程の.後に、 微調伸線加工工程の追加、 あるいは微調 伸線加工、 第 3次熱処理の工程を追加することも望ましい。 微調伸 線加工を追加する理由は、 ワイヤ表面近傍の結晶粒の微細化、 転位 の局所増加等により高強度化を図ることができるためである。 微調 伸線加工、 第 3次熱処理の工程をセッ トで追加する理由は、 上記の 表面改質による高強度化の効果を利用しつつ、 さらに、 ワイヤ内の 外周部における [ 111] 方位及び [ 100] 方位を有する結晶粒を中心 部よ り も促進することによ り、 摺動性、 ワイヤ流れ等の制御性をよ り高めることができるためである。 さ らに好ましくは、 伸線加工に用いる複数のダイスの内、 減面率
10%以上のダイスを 30 %以上使用することにより、 断面全体での結 晶方位の均一性を高めることで、 [ 111] / [ 100] の面積割合につ いても中心部とその外周部での相違を低減することがよ り容易とな る。 これは、 ボンディングワイヤの伸線に従来用いられているダイ スの減面率は、 通常 6 %以下であるのに対し、 減面率を 10%以上と することによ り、 ワイヤの表層部だけでなく内部にまで均一に加工 する効果が高まるためと考えられる。 減面率が 10%以上のダイスが 、 伸線に使用されるダイス全部の 30%以上であることにより、 量産 レベルの高速伸線においても、 組織制御がよ り可能となる。
また、 伸線加工に用いる複数のダイスの内、 減面率 10%以上のダ ィスを 30 %以上使用することによる組織制御では、 上記の断面全体 での結晶方位の均一性を高めるだけでなく、 さ らに、 前述した [ 11 1] / [ 100] の面積割合を高めることにも有効に作用する。 こ う し た伸線によ り製造したワイヤでは、 高強度 , 高弾性率によるワイヤ 流れの抑制、 ループ形状の直線性の向上、 ポール直立部のリーニン グの低減等を達成し、 狭ピッチ接続の実用性を高めることができる ワイャ内部での数種類の結晶方位の分布、 結晶粒径等を制御する には、 ダイス個々の減面率に加えて、 ダイス順番、 ダイスへのワイ ャ揷入角、 伸線時の張力等を適正化することも有効である。 例えば 、 ワイヤがダイスに揷入するときの角度を一定に保ったり、 伸線時 の張力を調整したりすることによ り、 ワイャ断面全体で組織の均一 化あるいは表層部の方位制御等を、 局所的ではなく、 ワイヤの長手 方向の長距離範囲 (数十〜数百万 m ) で制御された均質なボンディ ングワイヤを作製することが容易となる。 例えば、 ダイス順番では 、 最終線径に近い段階に用いるダイスに、 上記の減面率 10%以上の ダイスを適用したり、 あるいは伸線速度を 50〜400m/secの範囲で 線径が細くなる速度を若干遅く したりすること等で、 上述したワイ ャ中心部あるいは表層部での組織を管理することが可能となる。 主と して製造法による組織制御に加えて、 ワイャ中の元素添加も 有効に活用することで、 最近の狭ピッチの課題である リ一二ング性 についても、 さ らなる向上が図れる。
現在のワイャ素材の主流である Auを主成分と し、 添加成分として 、 Y、 Ca、 Yb、 又は Euから選ばれる 1種以上の元素の総濃度 力 SO • 002〜0.03質量%、 La、 Tb、 Dy、 又は Ndから選ばれる 1種以上の元 素の総濃度 C2が 0.002〜0.05質量%であり、 且つそれら添加成分の 濃度関係について 0.1 < C / C s < 10の範囲で含有させた金合金ポ ンデイ ングワイヤとすることで、 [111] 方位の結晶粒の形成を助 長することに加えて、 中でも リ一ユング特性をより一層高めること ができる。 上述したように、 ワイャ製造法によ り リ一ユング特性も 改善できるものの、 さらに、 上記成分元素の添加によ り、 ポール部 近傍の熱影響部における組織を制御して、 リーユング特性をよ り さ らに改善することができる。 ここで、 が 0.002質量%未満、 ある いは C 2が 0.002質量%未満であれば、 組織制御の効果が小さいため であり、 一方、 。1が0.03質量%超、 あるいは C2が 0.05質量%超で あれば、 A1合金パッ ド上のポール接合部の強度が低下するためであ る。 0.1< C i / Cs < 10の範囲であれば、 2種の元素群の相乗効果 が期待でき、 [111] 方位の集積度を制御することが比較的容易と なり、 ループ安定性、 接合性等の使用性能を総合的に改善しやすく なるためである。
さらに好ましくは、 上記 2種の元素群の濃度関係を (h C / C 2く 6の範囲と したワイヤ素材に、 上記の製造方法を組み合わせる ことで、 結晶方位を制御する効果がよ り促進され、 [111] 及び [1 00] の結晶方位の配向を本発明の範囲で設定することがより容易と なる。
次に本発明の (15) 〜 (21 ) のボンディングワイヤの製造方法 ( 25) 〜 (27) について説明する。
結晶方位を制御する手段は、 製造技術と合金化成分とに大別され 、 それぞれについて、 下記に説明する。
本発明の金ボンディ ングワイヤの組織制御のためには、 圧延加工 、 一次伸線加工、 前熱処理、 二次伸線加工、 後熱処理の順でそれぞ れ少なく とも 1回組み合わせた工程で、 铸造材からボンディ ングヮ ィャを製造する方法であって、 前記圧延加工、 一次伸線加工におけ るそれぞれ面積加工率が 95 %以上、 前記前熱処理の加熱温度 (絶対 温度) が該材料の融点 (絶対温度) に対して 30〜70%の温度範囲で あり、 前記二次伸線加工における面積加工率が 99. 5 %以上、 平均伸 線速度が 100〜800m /分、 ダイス前後での張力の差が 0. l〜50MPaの 範囲であり、 前記後熱処理の加熱温度 (絶対温度) が該材料の再結 晶温度 (絶対温度) に対して 30〜70%の温度範囲であり、 一次伸線 及び二次伸線でのダイス出口における引出し角度が 30° 以下で製造 されるものである。 こ う した条件の範囲内で選定することによ り、 本発明で規定したワイヤ長手方向での [ 111] 方位及び [ 100] 方位 の結晶粒に調整することが可能となる。
ここでの圧延加工について、 丸型溝ロールあるいは角型溝ロール を用いた圧延、 スエージング圧延等を使用することができ、 また一 部には大型ダイス伸線等も含めることも可能である。 圧延加工にお ける面積加工率とは、 圧延前、 圧延後のワイヤの平均直径をそれぞ れ Df、 Dgとすると、 { 1 一 ( Dg/ Df) 2 } X 100 ( % ) で表すことが できる。 次に、 伸線加工では、 主に伸線用ダイスを用い、 伸線機は 複数のダイスで一度に伸線することができる装置を用い、 伸線前、 伸線終了後のワイヤの平均半径をそれぞれ Rf、 Rgとすると、 { 1一 (Rg/Rf) 2 } X 100 ( % ) で面積加工率を表すことができる。 ダイ スの内壁は、 超硬金属又はダイヤモン ド加工を施されているものが 、 安定性等に優れており、 よ り望ましい。 熱処理方法は、 ワイヤを 卷き取った状態で加熱オーブン内に設置し、 一括して加熱する方式 と、 一定の長さの加熱炉内でワイヤを連続的に移動させながら加熱 する連続熱処理方式等が利用できる。
圧延加工の面積加工率、 伸線加工の面積加工率、 熱処理の加熱温 度について、 上記条件を適正化させることが必要となる。 各条件の 理由と して、 圧延加工、 一次伸線加工における面積加工率が 95 %未 満、 又は二次伸線加工の面積加工率が 99. 5 %未満の場合には、 加工 集合組織の成長が不充分となり、 その後の加熱で回復 · 再結晶も一 部に生じさせた最終の集合組織において、 [ 111] / [ 100] の面積 割合を調整することが困難である。 また、 熱処理の加熱温度が原料 素材の融点に対して 30%未満の低温であれば、 その後の伸線工程に おいて [ 111 ] 及び [ 100] の結晶方位を揃えることが難しいためで あり、 一方、 70%超の高温であれば、 最終線径まで伸線しても [ 11 1] 以外の方位が占める割合が高くなるため、 [ 111] / [ 100] の 面積割合を制御することが難しいためである。
平均伸線速度を 100〜800 m /分とした理由は、 100m /分未満で あれば、 長手方向でのばらつきが発生したり、 量産性が低下するこ と、 800m /分超であれば、 伸線時の発熱等による動的再結晶等も 懸念され、 結晶方位の均一性を維持することが困難である。 ダイス 前後での張力の差が 0. l〜50MPaと した理由は、 ダイス前後での張力 差の制御によ り ワイャ表面近傍での加工歪みを制御する効果を利用 しており、 0. IMPa未満であれば、 ワイヤ長手方向での組織のパラッ キが発生し易く、 50MPa超では細線での断線が問題となるためであ る。 また、 一次伸線 · 二次伸線でのダイス出口における引出し角度 が 30° 以下であれば、 ワイヤ長手方向の垂直断面での加工歪みを局 所的に管理することによ り、 ワイャ内部と外周部での組織を制御す ることが容易となる。
ワイヤの中心近傍と表層近傍における [ 111] / [ 100] の面積割 合等に差異を促進するには、 基本的に上記条件範囲をベースに、 加 ェと回復 · 再結晶の組合せを積極的に管理することが必要となる。 例えば、 圧延加工、 一次伸線加工、 二次伸線加工において中心近傍 と表層近傍での加工度、 加工歪みに変化を与える方法、 また、 前熱 処理、 後熱処理等の加熱時において回復 · 再結晶をワイャ表面から の深さ方向で変化させるような方法が有効である。 また両者を組み 合わせれば、 ロール圧延、 ダイス伸線加工の工程で、 ワイヤの表層 近傍では内部よ り も加工歪みの導入を助長し、 一方で加工速度の増 加による動的再結晶を利用して、 表層部の加工歪みの緩和を促すこ とができる。 また、 熱処理時の温度、 移動速度、 張力等の設定を変 えてワイャの深さ方向に温度変化を生じさせることも可能である。 集合組織は、 加工と回復 · 再結晶の相乗作用に左右される。 こ う し た加工条件と熱処理条件の兼ね合いをうまく利用することで、 ワイ ャの内部方向での [ 111 ] / [ 100] の面積割合を変化させることが できる。
さらに、 太径から徐々に細くする過程で、 条件設定は必ずしも同 一ではなく、 線径によ り、 掃引角度等に条件を変化させることで、 中心近傍と表層近傍での結晶方位の分布に差異を生じることを促進 できる。 ダイス加工の減面率、 伸線速度、 熱処理温度等は、 変更、 管理が比較的容易であり、 その効果も得られやすい。 なかでも、 伸 線加工に用いる複数のダイスの内、 減面率が 7 %未満、 7〜: 11 %、 11〜20%である 3種のダイス群のそれぞれを少なく とも 10 %以上を 使用することで、 中心近傍と表層近傍での結晶方位を個別に制御す ることが比較的容易となる。 上記 3種のダイス群のダイス数、 順番 等の組み合わせを変更することにより、 本発明に規定したワイャ組 織の範囲内で、 結晶方位の比率を微調整することが可能である。
また、 加熱炉の両端の加熱温度 Te (絶対温度) 力 S、 中央部の加熱 温度 Tm (絶対温度) に対して、 0. 02Τπ!〜 0. 3Tmほど低温である温度 分布を持った加熱炉を用いて、 ワイヤを連続的に掃引させて熱処理 することで、 中心近傍と表層近傍での再結晶挙動に変化を与え、 ヮ ィャ深さ方向に結晶方位を制御することも可能である。 また、 一定 部にのみガス流を発生させている加熱炉を用い、 その炉内でワイヤ を連続的に掃引させて熱処理することでも、 ワイャ表層近傍での結 晶方位を制御することも可能である。
ワイヤ材料について、 Auを主成分とするボンディングワイヤであ れば、 比較的容易に本発明に係わる組織を得ることができる。 好ま しく は、 ワイヤ製造工程での作業性、 使用時のポール形成時の酸化 等を考慮すると、 Auを主成分とし、 添加成分と して、 Be、 Ca、 La、 I n、 Gd、 Nd、 Ce、 Dy、 Tb又は Yから選ばれる 1種以上の元素の総濃 度 C 3が 0, 0005〜0. 02質量%、 あるいは Ag、 Sn、 Pd、 Pt又は Cu力、ら 選ばれる 1種以上の元素の総濃度 C 4が 0. 003〜0. 1質量%でぁるこ とが望ましい。 さ らに好ましくは、 上記元素群の総濃度 C 3が 0. 005 〜0. 015質量%であれば、 本発明の組織を構成することがより容易 となり、 量産性の管理等が簡便となる等の理由から、 よ り望ましい
実施例 .
実施例 I
以下、 本発明の ( 1 ) 〜 (14) , ( 20) , ( 21 ) のボンディ ング ワイヤおよびその製造方法 (22) 〜 (24) を実施例にもとずいて説 明する。
金純度が約 99. 995質量%以上の電解金を用い、 必要な含有成分を 添加させ、 表 1〜 5に示す化学成分の金合金を溶解炉で溶解铸造し 、 その铸塊をロール圧延し、 加熱炉中で前熱処理を行い、 さ らにダ ィスを用いて伸線加工を行い、 連続的にワイヤを掃引しながら加熱 する後熱処理を施して、 ボンディ ングワイヤを作製した。 最終線径 は主に 20 μ m以下と した。
具体的な製造工程を述べる。 まずは、 直径 6〜30mmの銪塊を作製 する。 圧延工程では、 薄型ロールを使用し、 線径が 0. 5〜1. 5mmとな るまで、 30〜200 m /分の速度で加工した。 前熱処理工程では、 ォ ーブン加熱炉を用い、 250〜800°Cに設定された炉中に 0. 1〜 2時間 保持して加熱し、 炉外の大気中で放冷した。 伸線工程では、 ダイス を複数個セッ トできる連続伸線装置と、 ダイヤモン ドコーティング されたダイスを用い、 伸線速度は 80〜400 m /秒の範囲、 伸線の槽 温度を 20〜35°Cで行った。 ダイ スの内壁の清浄化を'目的に、 使用前 に超音波洗浄を施しておいた。 使用したダイスの減面率は、 低減面 である 5〜 8 %、 高減面である 12〜15 %の 2種類に分類され、 該高 減面ダイスの個数が全体の 35〜80 %を占める。 後熱処理工程では、 20cmの均熱帯を持つ赤外加熱炉を用い、 250〜700°Cに設定された炉 中を、 速度は 50〜800 m /分、 掃引張力は 2〜60mNの範囲でワイヤ を連続的に移動させながら熱処理を施し、 引張試験の伸び値が 3〜 5 %になるよ うに調整した。 表 2記載の各実施例の具体的製造方法 は表 3に示すとおりである。
ボンディ ングワイヤの接続には、 汎用の自動ワイヤポンダー装置 を使用して、 ポール/ゥエッジ接合を行った。 ポール接合では、 ヮ ィャ先端にアーク放電によりボール部を形成し、 そのボール部を電 極膜に超音波併用の熱圧着によ り接合した。 また、 リードフ レーム 又は BGA基板上のリー ド部に、 ワイヤ他端部をゥエッジ接合した。 今後のニーズである狭ピッチ接続への適用性を調べるため、 電極間 隔が 50 /Z mの狭ピッチ接続を行った。
接合相手は、 シリ コ ン基板上の電極膜の材料である、 厚さ約 0.8 μ πιの A1合金膜 (Al— 1 %Si、 Al— 0.5%Cuゝ A1- 1 %Si-0.5%Cu ) 、 あるいは Cu配線 (AuO.01 μ mZNiO.4μ mZCuO.4 μ m) を使用 した。 一方の、 ゥエッジ接合の相手には、 表面に Agめっき (厚さ : 1〜 4 μ πι) が施されたリー ドフ レーム、 又は表面に Auめっき/ Ni めつき/ Cu配線が形成されているガラエポ樹脂基板を使用した。
ワイヤの代表的な機械的特性である強度、 弾性率は、 引張試験に よ り測定した。 試料長は 10mm、 試料数は 5本と し、 その平均値を用 いた。
ワイャ組織について、 長手方向に断面研磨したワイャを用いて、 エッチングを行った後に SEMで観察して結晶粒数を教えた。 また、 同様の断面研磨した試料のある領域において、 EBSP法により結晶方 位を測定した。 ワイヤ断面の全体での [111] 方位又は [100] 方位 の結晶粒の面積比率を求め、 また、 ワイヤの半径 Rの中心から RZ 2までの部分を中心部、 ワイヤ表面から R/ 3までの深さの部位を 表層部と したとき、 該ワイヤの長手方向断面において、 中心部と表 層部おける [111] 方位の結晶粒の面積比率をそれぞれ求めた。
ボンディングされたループの直線性を評価するため、 ワイヤ間隔 (スパン) が 6 mmとなるよ うボンディ ングされた 100本のワイヤを 用いて、 投影機によ り上方から観察した。 ポール側とゥエッジ側の 接合部を結ぶ直線に対し、 ワイヤが最も離れている部位のずれを曲 がり量と して測定した。 その曲がり量の平均が、 線径の 1本分未満 であれば良好であると判断し◎印で表示し、 2本分以上であれば不 良であるため△印、 その中間であれば、 通常は問題とならないため 〇印で表示した。
ボンディ ング工程でのループ形状安定性 (ループ制御性) につい ては、 ワイヤ毎に 3箇所のループ高さを測定し、 そのループ高さの 標準偏差によ り評価した。 試料数は 50本、 測定には光学顕微鏡を使 用した。 測定個所には、 ループ高さのパラツキが発生しやすい部位 として、 ボール直上部、 最高到達部、 ワイヤ長の中心部の 3箇所と した。 このループ高さの標準偏差がワイヤ径の 1 / 2以上であれば 、 パラツキが大きいと判断し、 1 Z 2未満であればパラツキは小さ く良好であると判断した。 その基準をもとに判断し、 3箇所ともバ ラツキが小さい場合には、 ループ形状が安定していると判断し、 ◎ 印で表示し、 パラツキが大きい個所が 1個所である場合には、 比較 的良好であるため〇印、 2箇所の場合には△印、 3箇所ともパラッ キが大きい場合には X印で表示した。 ワイヤ長は、 BGA等で使用頻 度が増加している 4 mm長 (形状 1 ) と、 安定なループ形状を得るの がよ り困難であるロングスパンと して 6 mm長 (形状 2 ) のそれぞれ で評価した。
狭ピッチ接続では、 異なるループ高さを同一チップ内で結線する 場合が増えており、 直線性の確保、 ループ形状のパラツキを抑える ことが問題となる。 ループ形状安定性の更なる厳しい評価と して、 高低ループ評価を行った。 ループ最高高さ力 S lOO m以下の低ルー プと、 300 μ m以上の高ループを各 50本ずつボンディ ングを行った 。 それらループ高さの異なる 2種それぞれの直線性を測定した。 2 種類のループともに曲がり量の平均が、 線径の 1本分未満であれば 良好であると判断し◎印で表示し、 1種類でも曲がり量が 1本分以 上であれば通常は問題とならないため〇印、 2種類のループとも曲 がり量が 1本分以上であれば改善が必要であるため△印、 1種類で も曲がり量が 2本分以上であれば不良であるため X印で表示した。 また、 上記のループ高さの異なる 2種類について、 ループ形状安 定性 (ループ制御性) を評価するため、 最高到達部、 ワイヤ長の中 心部の 2箇所でループ高さを測定し、 ループ高さの標準偏差がワイ ャ径の 1 Z 2以上であれば、 パラツキが大きいと判断した。 2種の ループ高さで各 2箇所測定した計 4箇所におけるループ高さの標準 偏差のうち、 4箇所ともパラツキが小さい場合には、 ループ形状が 安定していると判断し◎印で表示し、 パラツキが大きい個所が 1箇 所である場合には、 比較的良好であるため〇印、 2箇所以上でパラ ツキが大きい場合には△印で表示した。
ゥエッジ接合性の評価には、 接合相手は、 表面に Auめっき/ Niめ つき Z Cu配線が形成されている樹脂基板を使用した。 試料が搭載さ れるステージの温度は、 ゥエッジ接合性がよ り厳しくなる低温の 17 5°Cで行った。 評価基準と して、 200ピンのチップを 10個使用し、 合 計 2000本のワイャを接続し、 ゥヱッジ接合部での不良によ り連続ポ ンデイ ング動作が一度でも中断したり、 光顕観察によ り剥離等の不 良現象が 2本以上認められた場合には、 ゥエツジ接合性が不十分で あるため△印で示し、 連続ボンディ ングで問題もなく、 その後の観 察でも不良が認められない場合には、 ゥ ッジ接合性は良好である と判断し、 ◎印で示し、 両者の中間となる、 連続ボンディングは可 能でも剥離が 1本認められた場合には、 通常は問題とならないこと から〇印で示した。
上記のゥェッジ接合条件で樹脂基板上にボンディ ングした後に、 ワイヤの曲折不良の発生も調べた。 ワイャが局所的に塑性変形して 曲折する現象は、 全体的に変形する通常のワイャ曲がり不良とは区 別することが可能である。 3 mmスパンで、 2000本のワイヤを接続し 、 この曲折不良の数が 0本であれば非常に良好であると判断して◎ 印で示し、 2本であれば実用上は問題はないと判断して〇印で示し 、 2〜 4本の範囲であれば若干の改善が必要であるため△印で示し た。
最近懸念されている問題である、 ポール接合近傍のワイヤ直立部 が倒れる現象であるリーニングについては、 チップ水平方向からヮ ィャ直立部を観察し、 ボール接合部の中心を通る垂線とワイヤ直立 部との間隔が最大であるときの間隔で評価した。 ワイヤ長は 4 mm、 試料数は 30本と した。 その間隔がワイヤ径より も小さい場合にはリ 一二ングは良好、 大きい場合には直立部が傾斜しているためリー二 ングは不良であると判断した。 リ一ニングの不良発生頻度により分 類し、 不良が 3本以上の場合には△印、 ◦本の場合には◎印、 その 中間では〇印で表示した。
ボンディングワイヤの搢動性については、 業界でも評価法が統一 されていない。 今回は、 キヤビラリ内でワイヤを一定の速度及び角 度で移動させ、 そのときの引抜き強度を測定し、 また、 その試験し たワイャの表面状態を SEMで観察した。 この引抜き強度が小さく、 ワイャ表面にキズが見られない場合には、 摺動性は良好であると判 断して◎印、 また、 引抜き強度が大きいもの又はワイヤ表面のキズ 等が少しでも認められた場合には〇印で表示した。
樹脂封止時のワイヤ流れ (樹脂流れ) の測定に関しては、 ワイヤ のスパンが約 4 mmとなるようボンディ ングした半導体素子が搭載さ れたリー ドフレームを、 モールディング装置を用いてエポキシ樹脂 で封止した後に、 軟 X線非破壊検査装置を用いて樹脂封止した半導 体素子内部を X線投影し、 ワイャ流れが最大の部分の流れ量を 30本 測定し、 その平均値をワイヤのスパン長さで除算した値 (百分率) を封止後のワイャ流れと定義した。
封止後のワイヤ流れのパラツキについて、 上記で求めたワイヤ流 れの標準偏差が 0· 8%以内であればワイャ流れの安定性は良いと判 断して◎印、 0. 8〜 2 %の範囲であれば実用上は問題ないとして〇 印、 2 %以上であれば実用上の問題が懸念されるため△印で示した ワイヤ製造時の歩留まりの評価条件について、 線径 18 μ mまで伸 線した際、 1 kgの铸塊当たりの断線回数が 0. 5回 / kg未満であり、 さらに 30本の破断強度の標準偏差が 4 . 9 mN未満に抑制されている 場合には、 良好な生産性を確保できるため◎印、 上記の断線回数又 は破断強度のパラツキのどちらか一方の条件でも満足できない場合 には〇印、 1 kgの铸塊当たりの断線回数が 0. 5回 Z kg以上であり、 3 0本の破断強度の標準偏差が 4. 9mN以上である場合には、 量産性を更 に改善する必要が生じるため△印で示した。
表 1 には、 ワイャ組織とボンディ ング使用性能の関係について示 す。 表 2、 3には、 Auを主成分とするボンディ ングワイヤの添加成 分及び製造方法とワイヤ組織との関係を示す。 それぞれで、 本発明 に係わるボンディ ングワイヤについての評価結果を実施例とし、 比 較として、 本構成から外れる場合を比較例と した。
表 1 において、 本発明 ( 1 ) に係わるボンディングワイヤは実施 例 1〜15であり、 本発明 ( 2 ) に係わるボンディ ングワイヤは実施 例 1〜 6、 9、 10、 12〜: 15であり、 本発明 ( 3 ) に係わるボンディ ングワイヤは実施例 1 〜 8、 12〜15であり、 本発明 (10) に係わる ボンディングワイヤは実施例 3〜 6、 8、 9、 11、 12、 15であり、 本発明 ( 21 ) に係わるボンディ ングワイヤは実施例 1 〜: L2である。 表 1の比較例は、 本発明の ( 1 ) におけるボンディ ングワイヤの組 織構成を満足しない場合である。
表 2、 3には、 Auを主成分とするボンディ ングワイヤの添加元素 、 製造法、 組織等を示す。 実施例 16〜31は本発明 (22) 〜 (24) に 記載のいずれかを満足する製造方法によ り作製されたワイヤであり
、 本発明 ( 1 ) におけるボンディ ングワイヤの組織構成を満足する 。 その内訳では、 実施例 16〜27は本発明 (14) の成分構成とする Au 合金ボンディ ングワイヤであり、 実施例 28〜31は本発明 (14) の成 分構成は満足しないものの、 本発明に関する製造法を利用している 場合である。 一方の比較例 5〜 9は、 本発明 (22) 〜 (24) 記載の 製造方法を満足しておらず、 本発明 ( 1 ) におけるボンディ ングヮ ィャの組織構成を満足しない場合である。
表 4、 5において、 本発明 ( 4 ) に係わるボンディングワイヤは 実施例 32〜34であり 本発明 ( 5 ) に係わるボンディングワイヤは 実施例 34、 35であり 本発明 ( 6 ) に係わるボンディ ングワイヤは 実施例 35〜37であり 本発明 ( 7 ) に係わるボンディ ングワイヤは 実施例 36、 37であり 本発明 ( 13) に係わるボンディ ングワイヤは 実施例 32、 34、 36、 37である。
表 6、 7において、 本発明 ( 8 ) に係わるボンディングワイヤは 実施例 42〜49であり、 本発明 ( 9 ) に係わるボンディングワイヤは 実施例 43〜49、 51であり、 本発明 (11) に係わるボンディングワイ ャは実施例 42、 44〜49である。
表 1
結晶方位の比率 ワイヤ 電極 引張 弾性 直謝生 ループ制御性 リ-ニン 性 ワイヤ 摺 ワイヤ全体 表層部 中心部と 素材 線径 部材 強度 率 形状 1 形状 2 流れ性 動 断面平均の
[111]/ [111] [111]/ 性
[111]/ [100]
[100] の害 11合% [100] ( μιη) (MPa) (GPa) (6mm¾) mm長)
の差分 (6匪; ft) (%) の面積比 の面積比 (mm)
1 1:2 53 1.4 0.20 0.05 Au 25 Al-Si 320 90 ◎ ◎ ® ◎ 3.8 o
2 1.4 55 1.3 0.15 0.08 Au 20 326 90 ◎ ◎ ◎ ◎ 3.4 〇
3 2.0 55 2.1 0.10 0.1 Au 18 Al-Si-Cu 330 91 ◎ ◎ ◎ ◎ 3.3 ◎
4 2.4 68 2.7 0.10 0.1 Au合金 4 20 Al-Cu 342 92 ◎ ◎ ◎ ◎ 2.5 ◎
5 5.2 80 5.5 0.08 0.2 Au合金 5 20 372 95 ◎ ◎ ◎ ◎ 2.4 ◎
6 10.0 85 10.2 0.05 1 Au合金 4 20 Al-Si-Cu 378 102 ◎ ◎ ◎ ◎ 2.2 ◎
7 1.4 47 1.5 0.10 0.5 Au合 6 20 Cu 311 91 〇 ◎ O ◎ 3.6 〇 施 8 2.1 40 2.2 0.15 0.1 Au 20 Al-Cu 317 92 〇 ◎ 〇 ◎ 3.2 ◎ 例 9 1.5 55 2 0.35 1 Au合金 20 321 92 ◎ 〇 ◎ 〇 3.7 ◎
10 1.8 60 1.5 0.35 3 Au合金 2 20 Al-Si 352 93 ◎ ◎ © O 3.2 〇
11 2.0 48 2.4 0.36 0.1 t Au合金 3 20 〃 341 96 O ◎ 〇 〇 3.0
12 1.5 47 1.2 0.34 0.1 Au 20 Al-Si 332 92 O ◎ 〇 O 3.7 〇
13 1.8 60 2 0.20 0.02 Au合金 1 20 343 92 ◎ ◎ 〇 ◎ 3.2 ◎
14 1.5 55 1.4 0.10 0.02 Au 20 Cu 327 92 ◎ ◎ 〇 ◎ 3.5 〇
15 3.5 65 3.8 0.15 5 Au合金 2 20 Al-Si-Cu 354 96 ◎ ◎ 〇 ◎ 2.7 ◎
1 1.1 40 1.2 0.15 0.05 Au 20 Al-Si 253· 73 Δ △ X △ 5.4 〇 比
2 1.1 52 1.3 0.10 0.08 Au 20 〃 272 78 Δ △ X Δ 5.1 o
3 1.0 30 1.1 0.10 0.1 Au 20 Al-Si-Cu 256 76 Δ
例 △ X △ 5.7 〇
4 0.9 40 0.8 0.15 0.05 Au 20 Al-Cu 235 72 Δ △ X △ 6.3 〇
表 2
ワイヤ成分 (質量0 /o)
C 1 小計 C 2 小計 SUMl/ Au 素材
Y Ca Yb Eu (SUMl) La Tb Dy - Nd (SUM2) SUM2 名称
16 0.001 0.001 0.002 0. 001 0.001 0.002 1.0 残
17 0.002 0. 001 0.003 0.002 0.002 0.004 0.8 残
18 0.001 0.002 0.003 0.002 0.002 0.002 0.006 0.5 残 Au合金 1
19 0.003 0.004 0.003 0.01 0.005 0.005 0.010 1.0 残 Au合金 2
20 0.005 0.005 0.01 0.002 0.002 0.004 2.5 残
21 0.005 0.01 0.015 0. 01 0.01 0.020 0.8 残
22 0.005 0.01 0. 015 0.01 0.01 0. 020 0.8 残 実
23 0.005 0. 01 0.015 0.01 0. 01 0.020 0.8 残 Au合金 3 施
24 0.005 0.01 0.015 0.01 0.01 0.020 0.8 残 例
25 0. 005 0.005 0.005 0.005 0. 02 0.01 0.005 0.005 0.005 0.025 0. 8 残 Au合金 4
26 0.001 0.001 0.001 0.003 0. 01 0.01 0.020 0.2 残 Au合金 5
27 0.01 0. 006 0.01 0.026 0.001 0.001 0.001 0.003 8.7 残 Au合金 6
28 0.0005 0. 0005 0.001 0.001 0.001 0.001 0.003 0.3 残
29 0. 001 0.001 0.001 0.003 0.0005 0.0005 0. 001 3. 0 残
30 0.0005 0.001 0.0015 0.008 0.01 0.01 0.028 0.05 残
31 0. 08 0. 1 0.08 0.26 0.008 0.008 0. 006 0.022 11. 8 残
5 0.0005 0.0005 0.001 0.0005 0.0005 0. 0005 0. 0015 0.7 残 比 6 0.005 0.01 0.015 0.01 0.01 0.020 0. 8 残 較 7 0.005 0.01 0.015 0.01 0.01 0.020 0.8 残 例 8 0.005 0. 01 0.015 0.01 0. 01 0.020 0. 8 残
9 0. 005 0.01 0.015 0.01 0.01 0.020 0.8 残
表 3
製造方法 結晶方位の比率 中心部と断面 結晶 圧延 融点に対する 伸線 伸線 伸線槽の 高減面 再結晶に对する ワイヤ全体 表層部 平均の [111] 粒数 加工 前維理温度 加工 度 温度 ダイス 後 i^oa温度の [111]/ [100] [111] [111]/ [100] / [100]の差分 度 (%) の相対比 度 (%) (°C) 比率 (%) 相対比 (%) の面積比 の割合 (%) の面積比 値) (個/ μπΐ2 )
16 98 35 99.5' 200 25 40 45 1.2 52 1.4 0.10 0.05
17 99 50 99.5 200 25 40 45 1.5 55 1.6 0.15 0.1
18 99.9 40 99.5 100 25 60 35 1.5 55 2 0.35 1
19 99 40 99.5 200 25 40 45 1.8 55 1.8 0.35 3
20 98 70 99.5 300 25 40 75 1.5 55 1.4 0.05 0.9
21 98 50 99.5 500 8 34 45 4.0 70 4.5 0.20 0.5
22 98 50 100 300 20 40 70 1.4 55 1.5 0.15 0.02
23 98 40 99.8 200 30 50 38 1.9 48 2.4 0.36 0.1 施
24 98 35 99.9 200 43 40 75 1.5 62 1.7 0.20 3 例
25 99 60 99.5 100 25 40 45 2.5 68 2.7 0.10 0.1
26 99.5 50 99.95 400 25 40 35 5.2 80 5.5 0.08 0.2
27 98 55 99.5 300 20 40 48 1.4 47 1.5 0.10 0.5
28 98 40 99 70 25 5 35 1.8 60 1.7 0.15 0.7
29 98 50 99.5 600 23 40 50 2.5 55 2.7 0.15 5
30 98 60 99.5 200 25 10 45 1.5 55 1.8 0.34 0.1
31 98 55 99.5 200 25 10 60 1.4 55 1.2 0.20 0.05
5 80 一 97 100 25 20 70 1.1 40 1.2 0.05 0.05 比 6 99 10 97 40 25 20 52 1.1 32 1.4 0.35 2 較 7 98 50 99 1200 2 10 60 1.0 38 1.1 0.15 0.03 例 8 98 90 90 300 25 15 83 0.9 40 0.8 0.20 0.05
9 98 50 99.5 200 25 10 85 0.9 45 1 0.20 0.05
施例実
結晶方位の比率 結晶 ワイヤ 中心部と断面 [111]/ [100]の比率が 粒数 素材 線径 ワイヤ全体 表層
平均の [111]/ 異なる層 A 左記層 Aの 左記層 Aの
[111]/ [100] [111] [111]/ [100] [100]の差分 [111]/ [100] 雜に対する [111]の割合 [100]の割合 (個 m2 ) ( μ πι) の面積比 の割合(%) の面積比 (絶対値) 比率 該層幅の割合
32 1.2 45 1.4 0.20 1.68 0.3 42% 25% 0. 1 Au 18
33 1.4 42 1.3 0. 15 1.97 0.2 63% 32% 0.2 Au合金 2 18 no 34 2.0 60 2. 1 0. 10 8.00 0.3 80% 10% 0. 1 Au合金 3 15
35 1.3 40 2.7 0. 10 0.86 0.3 30% 35% 0.2 Au 20
36 1.4 50 5.5 0.08 0.48 0.2 25% 52% 0.2 Au合金 2 18
37 1.4 52 10.2 0.05 0.29 0.2 20% 70% 0.3 Au合金 4 15
38 1.3 38 1.2 0.34 1.33 0. 15 40% 30% 0. 1 Au 18
39 1.4 50 2 0.20 0.95 0.2 38% 40% 0.2 Au合金 1 18
40 1.3 55 1.4 0. 10 3.75 0.05 75% 20% 0.3 Au合金 1 18
41 1.4 48 3.8 0. 15 0.75 0.05 30% 40% 0.5 Au 18
表 5
籠部材 引張強度 弾性率 纖性 ループ制御性 高低ループ評価 リ-ニンク"性 ワイヤ
(ループ高 100、 300um) 流れ性 形状 1 形状 2 ループ
鶴性
(MPa) (GPa) 匪長) (4mm長) (6mm-¾) 制御性 (%)
32 Al-Si 320 95 ◎ ◎ ◎ 〇 Δ ◎ 2. 8 o
33 〃 326 95 ◎ ◎ ◎ ◎ Δ ◎ 3.3 〇
34 Al-Si-Cu 330 105 ◎ ◎ ◎ ◎ Δ ◎ 2.5 〇
35 Al-Si 342 92 ◎ ◎ ◎ Δ 〇 ◎ 3.7 〇
36 320 95
施 ◎ ◎ ◎ Δ ◎ ◎ 2.8 〇
37 Al-Si-Cu 378 102
例 ◎ ◎ ◎ Δ ◎ ◎ 2.8 〇
38 Al-Si 332 92 ◎ ◎ ◎ △ Δ ◎ 3.7 〇
39 // 343 92 ◎ ◎ ◎ Δ Δ ◎ 3.4 〇
40 Cu 327 92 ◎ ◎ ◎ Δ Δ ◎ 3.5 o
41 Al-Si-Cu 354 96 ◎ ◎ ◎ Δ Δ ◎ 3.6 〇
表 6
結晶方位の比率 結晶
[111]と [100]方位の合計の面積
[111]'/ [100]の比率が 粒数 割合 (%) ワイヤ全体 表層部 中心部と断面
異なる層 A 左記層 A 左記層 A 平均の [111]
ワイヤ 中心部 表面領域 [111] の [111] の [100] (個/ )
[111]/ [100] [111]/ [100] / [100]の差分 [111]/ [100] ^圣に対する
全体で (R/2)で (R/3)で の割合 の割合 の割合
の面積比 の面積比 (綱直) 比率 該層幅の割合
の の iiiPc の fitPs (%)
42 52% 53% 52% 1. 5 48 2 0. 15 一 - 一 - 0. 1
43 52% 65% 47% 1.8 45 1.8 0. 15 ヽ 2. 17 0. 13 65% 30% 0. 1
44 62% 63% 62% 1.2 52 1.4 0.20 1.68 0. 15 42% 25% 0. 05
45 67% 72% 67% 1.4 55 1.3 0. 15 2. 03 0. 22 65% 32% 0.08
46 71% 85% 65% 1.8 68 5.5 0. 08 0.48 0. 2 25% 52% 1
47 73% 64% 74% 2.4 62 2.7 0. 10 - ― - - 0. 1 例
48 81% 68% 85% 4.8 57 4.8 0. 10 - 一 - - 0.2
49 91% 95% 90% 5.2 80 5.5 0. 08 - - 一 - 0.2
50 44% 45% 43% 2.1 40 2.2 0. 15 1.68 0. 13 42% 25% 0. 1
51 46% 62% 40% 2. 1 40 2.2 0. 15 - - - - 0. 1
表 7
ワイヤ 電極 引張 弾性率 直繊 ループ制御性 ゥェッジ ワイヤ リ- ノ 性 ワイヤ ワイヤ 摺動性 ワイヤ 素材 線径 部材 強度 形状 1 形状 2 接合性 曲折 流れ性 流れの 製造時の
(MPa) (GPa) (6 長) (%) パラツキ 歩留まり
42 Au 18 Al-Cu 317 92 〇 ◎ 〇 ◎ ◎ ◎ 3. 2 ◎ 〇 〇
43 Au 18 Al-Cu 317 92 〇 ◎ 〇 ◎ ◎ ◎ 3.2 〇 ◎ ◎
44 Au合金 2 20 Al-Si 320 90 〇 ◎ ◎ ◎ ◎ 3.8 ◎ ◎ ◎
45 Au合金 3 18 326 90 ◎ ◎ ◎ ◎ ◎ ◎ 3.4 ◎ ◎ ◎
46 Au合金 1 18 321 92
施 ◎ 〇 ◎ ◎ ◎ 〇 3.7 〇 ◎
47 Au合金 4 18 Al-Cu 342 92
例 ◎ ◎ ◎ ◎ ◎ ◎ 2.5 ◎ o ©
48 Au合金 5 18 358 93 ◎ ◎ ◎ ◎ ◎ ◎ 2.4 ◎ 〇 ◎
49 Au合金 5 15 370 95 ◎ ◎ ◎ © ◎ ◎ 2.7 ◎ 〇 ©
50 Au 20 Al-Cu 317 92 〇 ◎ 〇 〇 〇 ◎ 3. 2 〇 〇
51 Au 18 Al-Cu 317 92 〇 ◎ 〇 〇 〇 ◎ 3.2 o 〇 ◎
実施例 1〜15のボンディングワイヤは、 本発明に係わる、 [111 ] / [100] の面積割合が 1· 2以上であることにより、 強度は 300MPa 以上、 弾性率は 90MPa以上の高強度 · 高弾性率であり、 ワイヤ流れ を 4.0%未満に低減されている。 中でも、 面積割合が 1.4〜2.5の範 囲である実施例 2, 3では、 ワイヤ流れが 3.5%未満に低減され、 , さらに面積割合が 2.5以上である実施例 4〜 6では、 ワイャ流れが 2 .5%未満までよ り改善されていることが確認された。 それに対し、 比較例 1〜 4のボンディ ングワイヤは、 [111] / [100] の面積割 合が 1.2未満であることによ り、 強度は 270MPa以下、 弾性率は 80MPa 未満であり、 結果と して、 ワイヤ流れは 5 %以上の高い値であった 実施例 1〜 6 , 9, 10等のボンディングワイヤでは、 本発明 ( 2 ) に係わる [111] 方位を有する結晶粒の面積比率が 55%以上を満 足しており、 高強度 · 高弾性率に加えて、 ループ形状の直線性の向 上、 低温ゥエッジ接合性の改善等が確認された。 比較として、 本発 明 ( 2 ) の組織構成を満足しない実施例 7, 8, 11, 12あるいは比 較例 1〜 4等では、 こ う した改善効果は認められなかった。
実施例 1〜 8, 13〜: 15等のボンディ ングワイヤでは、 本発明 ( 3 ) に係わる、 ワイヤ中心部での [111] / [100] の面積割合 Rcと、 断面全体の平均で [111] / [100] の面積割合 Raの差分比率の絶対 値 I 1一 RcZRa I X100 (%) が 30%未満であり、 且つ、 ワイヤ断 面全体での該割合 Raが 1.2以上となる組織を確認しており、 ポンデ ィング性能に関しては、 ボール直立部のリ一ニング性を改善してい ることが確認された。 比較と して、 本発明 ( 3 ) の組織構成を満足 しない実施例 9〜: 12あるいは比較例 1〜 4では、 こ う した改善効果 は認められなかった。
実施例 3〜 6, 8, 9, 11, 12等のボンディ ングワイヤでは、 本 発明 ( 4 ) に係わる、 ワイヤ表層部における [ 111 ] / [ 100 ] の面 積割合が 1. 6以上であり、 且つ、 ワイヤ断面全体での [ 111] / [ 10 0] の面積割合が 1. 2以上となる組織を確認しており、 ボンディ ング 性能に関しては、 搢動性が向上されて、 ループ制御性が容易となり 、 キヤビラリ詰まり、 ワイヤ表面キズ等を低減されることも観察さ れた。 比較と して、 本発明 ( 4 ) の組織構成を満足しない実施例 1 , 2, 7, 10, 12あるいは比較例 1〜 4では、 こ う した改善効果は 認められなかった。
ループ制御性について、 本発明に係わる実施例 1〜26のボンディ ングワイヤでは、 スパンが 4 mmの場合には、 安定したループ形状が 得られているのに対し、 比較例 1〜4では、 ループ形状のバラツキ が大きかった。 一方、 スパンが 6 mmのロングスパンの場合で比較す ると、 例えば、 実施例 1〜 12では、 結晶粒数が 0. 04〜 4個 Z μ m 2 であることで、 口ングスパンでも安定したループ形状が得られてお り、 ループ制御性に優れていることが確認された。
成分及び製造方法が組織に及ぼす影響についてみると、 Au合金の ポンデ 'イ ングワイヤに関する表 2では、 実施例 16〜31は、 本発明 ( 22) 〜 (24) に記載のいずれかの製造条件を満足するこ とで、 所望 する組織である、 [ 111 ] / [ 100] の面積割合が 1 · 2以上であるこ とを達成していた。 その中で比較すると、 本発明 (14) の成分構成 とする実施例 16〜27と、 本発明 (14) の成分構成は満足しない実施 例 28〜31では、 組織あるいは使用性能等に一部差が認められた。 例 えば、 実施例 25〜27の成分構成であるボンディ ングワイャの使用性 能に相当する実施例 4〜 7では、 リ一二ング性によ り優れた改善が 見られたに対し、 実施例 18, 19, 23の成分構成であるボンディング ワイヤの使用性能を示した、 表 1の実施例 9〜11では、 そう した改 善は認められなかった。 また、 比較例 5〜 9では、 本発明に係わる 製造条件も満足しない場合であり、 [111] / [100] の面積割合は 1.2未満であった。
実施例 32〜34のボンディングワイヤは、 本発明に係わる、 [111 ] / [100] の面積割合が 1.6以上である層がワイヤ半径方向の RZ 10以上の幅で存在することによ り、 その条件を満足しない実施例 35 〜41と比較して、 ループ最高高さが 100μ m以下の低ループ、 300 μ m以上の高ループにおいて、 直線性は良好であった。 中でも、 実施 例 33, 34では、 上記層内の [111] の面積割合が比率が 60%以上で あることで、 直線性がさらに向上されていた。
実施例 35〜37のボンディングワイヤは、 本発明に係わる、 [111 ] / [100] の面積割合が 0.9未満である層がワイヤ半径方向の R/ 10以上 RZ 3未満の幅で存在することによ り、 その条件を満足しな い実施例 32〜34, 38〜41と比較して、 ループ最高高さが 100 μ m以 下の低ループ、 300 μ m以上の高ループにおいて、 ループ形状安定 性は良好であった。 中でも、 実施例 36, 37では、 上記層内の [100 ] の面積割合が比率が 50%以上であることで、 ループ形状安定性が さらに向上されていた。
実施例 42〜49のボンディングワイヤは、 本発明に係わる、 [111 ] と [100] の結晶粒の合計の面積割合を 50%以上とすることによ り、 その条件を満足しない実施例 50, 51と比較して、 ゥエッジ接合 性を向上し、 またワイヤ曲折不良も低減されていることが確認され た。
実施例 43〜49, 51のボンディ ングワイヤは、 本発明に係わる、 ヮ ィャ中心から R/ 2までの中心部に占める [111] および [100] 方 位の結晶粒の面積合計の割合を 60%以上とすることによ り、 その条 件を満足しない実施例 42, 50と比較して、 線径 18 πιまで伸線した ときのワイヤ製造時の歩留ま り を向上できることが確認された。 実施例 42, 44〜49のボンディ ングワイヤは、 本発明に係わる、 ヮ ィャ表面から R / 3までの表面領域における [ 111] 方位及び [ 100 ] 方位の結晶粒の面積合計の該表面領域に占める割合を 50%以上と することによ り、 その条件を満足しない実施例 43, 50, 51と比較し て、 樹脂封止時のワイャ流れ率のバラツキを抑制できることが確認 された。
また、 一部の試料において、 [ 111] 方位及び [ 100] 方位以外に 観察される主な結晶方位に着目 したところ、 実施例 42, 44では [ 11 2] の方位が多く、 実施例 43では [ 110] 、 [ 122] 等の方位が多い ことを確認しており、 スパン 4 111111の長尺でループ高さ150 // 111以下 の低ループを安定して形成できることを確認した。
本発明 (10) に係わるボンディ ングワイヤは実施例 32〜34であり 、 本発明 (12) に係わるボンディ ングワイヤは実施例 34であり、 本 発明 (20) に係わるボンディングワイヤは実施例 35〜37であり、 本 発明 (21) に係わるボンディ ングワイヤは実施例 36, 37である。 実 施例 38, 40は、 本発明 ( 1 ) を満足するものの、 本発明 ( 4 ) にお けるボンディ ングワイヤの組織構成を満足しない場合であり、 実施 例 39, 41は、 本発明 ( 6 ) におけるボンディングワイヤの組織構成 を満足しない場合である。
実施例 32, 34, 36, 37では、 線径の 70%以上の長さでワイヤ長手 方向の結晶方位が 15° 以内の角度に揃った結晶粒を 2個以上有して いることが確認されており、 実施例 33, 35, 38〜42と比較して、 樹 脂流れ性が 3 %未満の低い値に抑えられていた。 図 2には、 実施例 36の金ボンディ ングワイヤの断面部において、 EBSP測定結果の一例 を示しており、 15° 以上の角度差が生じる場合に結晶粒界で表示し た。 ワイヤの中心部にはワイヤ長手方向の結晶方位が 15° 以内の角 度に揃った結晶粒が 2個以上観察された。 高強度化するには、 合金元素の添加量を増やす必要があり、 それ が素材の電気抵抗を増加させる原因となる。 Auを主成分とするワイ ャについて、 実施例 1〜: L9では何れも、 純金に対する電気抵抗の増 加は 10%以下に抑えられ、 しかも 300〜400MPaの高強度を達成して いる。 これに対し、 従来の成分に頼ったワイヤでは、 300MPa以上の 高強度を得るために、 高濃度 (> 1質量%) の元素添加が必要であ り、 例えば , Pd, Pt等の元素を 1質量%以上添加すると、 電気抵 抗が純金に対して 30%以上増加することを回避するのは困難であつ た。 実施例 Π
以下、 本発明の ( 15) 〜 ( 21 ) のボンディ ングワイヤおよびその 製造方法 (25) 〜 (27) を実施例にもとずいて説明する。
金純度が約 99. 995質量%以上の電解金を用い、 Be , Ca, La, In, Gd, Nd, Ce, Dy, Tb又は Yから選ばれる 1種以上の元素の総濃度が 0. 0005〜0. 02質量0 /0の範囲、 あるいは Ag, Sn, Pb, Pt又は Cuから選 ばれる 1種以上の元素の総濃度が 0. 003〜0. 1質量%の範囲で含有す る金合金を溶解炉で溶解錶造し、 その铸塊をロール圧延し、 加熱炉 中で前熱処理を行い、 さらにダイスを用いて伸線加工を行い、 連続 的にワイャを掃引しながら加熱する後熱処理を施して、 ボンディ ン グワイヤを作製した。 最終線径は 20 μ mと した。
表 8, 9に、 ワイヤの結晶方位の面積比率、 あるいはワイヤボン ディ ングによる使用性能について表示する。
表 10に製造条件を示す。 実施例では、 本発明で規定する製造条件 を満足しており、 一方、 比較例では、 製造条件の少なく とも一つは 本発明で規定する範囲から外れる条件が含まれる。 表 8
結晶方位の比率 ([111]/[100]の面積比 R) クエッジ接合性 中心 Rcと外周 ¾IRsの関係 中心 Rdと外周 ¾5Rfの関係 金属
ワイヤ全体 最表面部 結晶粒数 線径 棚旨テープ上 (雜 / 2を境界) (雜 / 3を境界) 電極部材 フレ-ム
(R/5)の (個 /iim2 ) ( μτη)
中心部 外周部 [111]/ [100] 芯部 (R/3)で
11-Rc/Rs 1 11-Rd/Rf 1 面積 JtRt 220°C 180°C 160°C
( Rc の Rs の面積比 Ra の面積匪
61 36% 0.84 1.32 1.20 0.74 40% 1.2 0.1 20 Al-Si ◎ 〇 ◎
62 45% 0.66 1.20 1.07 0.56 47% 1.2 0.08 20 〃 ◎ ◎ 〇
63 62% 0.50 1.30 1.10 0.40 57% 1.3 0.03 20 Al-Si-Cu ◎ ◎ ©
64 64% 0.40 1.10 0.93 0.30 57% 0.9 0.06 20 ◎ ◎
65 83% 0.25 1.50 1.19 0.15 57% 1.2 0.1 20 Al-Cu ◎ ◎ ® 実 66 75% 0.40 1.60 1.30 0.35 80% 1.2 0.05 20 〃 ◎ ◎ ◎
67 90% 0.30 3.00 2.33 0.20 92% 2.0 0.1 20 ◎ ◎ ◎
68 44% 0.85 1.52 1.35 0.80 25% 1.2 1 20 Al-Si-Cu
施 ◎ ◎ 〇
69 31% 0.90 1.30 1.20 0.85 20% 1.3 0.5 20 Cu ◎ O 〇
70 75% 0.30 1.22 0.99 0.20 35% 1.2 1.5 20 Al-Si ◎ ◎ ◎
71 34% 0.67 1.02 0.93 0.57 34% 0.7 4.3 20
例 ◎ 〇 〇
72 43% 0.70 1.22 1.09 0.60 40% 1.2 0.1 20 Al-Cu ◎ ◎ 〇
73 31% 0.80 1.16 1.07 0.70 35% 1.2 1 20 ◎ 〇 〇
74 37% 1.3 0.95 1.04 1.20 36% 1.1 0.1 20 Al-Si © 〇 〇
75 41% 1.2 0.85 0.94 1.10 42% 0.7 0.4 20 ◎ ◎ 〇
76 75% 1.4 0.80 0.95 1.30 70% 0.5 4.2 20 Al-Si ◎ © ◎
11 18% 0.90 1.10 1.05 0.80 25% 1.1 0.1 20 Al-Si Δ Δ Δ 比
12 27% 0.88 1.20 1.12 0.78 5% 1.3 0.2 20 11 Δ Δ Δ
13 27% 1.10 1.50 1.40 1.00 30% 1.3 0.03 20 Al-Si-Cu Δ Δ Δ 較
14 11% 0.80 0.90- 0.88 0.70 15% 1.1 0.1 20 Al-Si △ Δ Δ
15 22% 1.10 0.90 0.95 1.00 25% 0.7 1 20
例 △ Δ △
16 15% 1.50 1.30 1.35 1.40 118% 1.2 2 20 Al-Cu Δ Δ △
表 9
M—ル 樹脂封止 ル-フ。の リニンク、'性 逆段差 狭ピツチ用 ル-,形状の (線径の 高温リフロ- 熱サイクル 短;^ンの ワイヤ表面の
時のワイヤ
1.4 麵生
倍)の ル-フ。高 ル-フ。高 ホ"ンテ"インク" キヤビラリの 安定性 特性 s¾験 ピ -ル特性 傷、 削れ
真球性 流れ率 (0 長 200 / m ύδθ μιη の曲がり (ommfe)
61 ◎ ◎ ◎ ◎ ◎ ◎ ◎ 〇 ◎ 〇 〇 ◎
62 ◎ ◎ 〇 ◎ ◎ ◎ ◎ 〇 ◎ 〇 〇 ◎
63 ◎ ◎ 〇 ◎ ◎ ◎ ◎ 〇 ◎ 〇 〇 〇
64 ◎ 〇 〇 ◎ ◎ 〇 ◎ 〇 ◎ ◎ ◎ ◎
65 ◎ ◎ 〇 ◎ ◎ ◎ ◎ ◎ ◎ 〇 〇 ◎ 実 66 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ 〇 ο ◎
67 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ 〇 〇 ◎
68
施 ◎ ◎ ◎ 〇 o 〇 ◎ ◎ 〇 〇 〇 ◎
69 ◎ ◎ ◎ 〇 〇 O ◎ 〇 〇 〇 〇 ◎
70 ◎ 〇 〇 ◎ ◎ 〇 ◎ 〇 ◎ 〇 〇 ◎
71 〇
例 ◎ 〇 o ◎ ◎ 〇 〇 〇 ◎ ◎ 〇
72 ◎ ◎ 〇 ◎ ◎ ◎ ◎ 〇 ◎ 〇 〇 ◎
73 ◎ ◎ 〇 ◎ ◎ ◎ 〇 〇 〇 〇 〇 ◎
74 ◎ ◎ 〇 〇 〇 o 〇 〇 〇 Ο 〇 ◎
75 ◎ o 〇 〇 〇 o 〇 ο 〇 ◎ ◎ ◎
76 ◎ 〇 o 〇 〇 〇 〇 〇 0 ◎ ◎ o
11 Δ 〇 Δ Δ Δ 〇 Δ Δ Δ 〇 比 △ △
12 Δ 〇 Δ Δ △ 〇 △ Δ Δ Δ 〇
13 △ 〇 〇 Δ Δ Δ Δ Δ Δ △ △ Δ
14 Δ Δ Δ Δ Δ o Δ Δ Δ Δ Δ 〇
15 Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 例
16 Δ 〇 〇 Δ Δ Δ Δ Δ Δ Δ Δ Δ
表 10
製造方法
圧延 融点に対する 一次伸線 二次伸線 ダイス前後 引き出し ダイス減面率 再結晶に る 伸繊度
加工度 前熱処理温度 加工度 加工度 での張力差 角度 <7% 7 -11% 11~20% 後熱処理温度の
(m/分)
(%) の相対比 (%) (%) (MPa) C ) 比率 比率 比率 相対比
61 98 50 95 99.8 200 1〜5 20 40 40 20 50
62 99 50 98 99.5 300 1-10 15 30 50 20 45
63 99.9 55 99 99.7 250 2~20 25 20 50 30 60
64 99 65 99.5 99.5 200 0.1〜2 20 35 40 25 45
65 98 40 99.9 99.99 300 1〜5 20 60 20 20 50 実 66 99 35 98.5 99.9 400 1〜5 20 45 40 15 45
67 98 50 99.8 99.995 300 0.5〜5 20 40 40 20 55
68 98 45 99.8 99.8 300 1〜5 25 40 40 15 45 施
69 99 50 99.9 99.9 250 1〜10 20 40 40 20 65
70 99 50 99.99 99.9 300 5~15 20 35 50 15 45
71 99 60 99 99.95 400 1〜5 20 40 40 20 40 例
72 98 50 99.5 99.5 300 2-20 20 50 30 20 48
73 99.5 45 98.8 99 150 1~5 20 40 30 30 45
74 98 65 99 99.5 600 5-45 5 50 35 15 35
75 99 65 99.8 99.5 650 3〜20 20 65 25 10 30
76 98 70 99.5 99.5 700 2-35 20 70 15 15 35
11 80 ― 90 97 100 0.5〜1 20 80 20 0 80 比 12 99 10 97 97 80 3~20 45 50 50 0 50 較 13 98 50 93 99 200 0.08~10 60 75 5 20 60 例 14 98 90 99 90 300 8〜65 20 5 75 20 40
15 98 50 93 99.5 1200 0.03〜1 20 40 40 20 25
実施例の具体的な製造工程を簡単に説明する。 まずは、 直径 6〜 30ππηの铸塊を作製する。 圧延工程では、 溝型ロールを使用し、 線径 が 0.5〜: L.5mmとなるまで、 10〜 100m /分の速度で加工した。 前熱 処理工程では、 オーブン加熱炉を用い、 250〜800°Cに設定された炉 中に 0.1〜 2時間保持して加熱し、 炉外の大気中で放冷した。 伸線 工程では、 ダイスを複数個セッ トできる連続伸線装置と、 ダイヤモ ンドコーティ ングされたダイスを用い、 伸線速度は 50〜400mZ s の範囲、 ダイス前後での張力の差が 0.:!〜 50MPaの範囲とした。 使用 したダイスの減面率は、 減面率が 7 %未満、 7〜11%、 11〜20%で ある 3種のダイス群を使用した。 後熱処理工程では、 20cmの均熱帯 を持つ赤外加熱炉を用い、 250〜700°Cに設定された炉中を、 速度は 50〜800m/分で、 ワイヤを連続的に移動させながら熱処理を施し 、 引張試験の伸び値が 3〜 5 %になるよ うに調整した。
また、 表 10の実施例 64, 65, 70〜76では、 後熱処理工程における 加熱炉両端の加熱温度 Teが、 中央部の加熱温度 Tmに対して、 0.02Tm 〜 0.3Tmほど低温であるよ うに調整してある。
ボンディングワイヤの接続には、 汎用の自動ワイヤボンダ一装置 を使用して、 ポール/ゥエッジ接合を行った。 ボール接合では、 ヮ ィャ先端にアーク放電によりポール部を形^し、 そのボール部を電 極膜に超音波併用の熱圧着により接合した。 また、 リー ドフレーム
(Cu合金) 又は CSPテープ基板上のリー ド部に、 ワイヤ他端部をゥ エッジ接合.した。 電極間隔は 70, 50, 40 mの狭ピッチ接続を行つ た。
接合相手は、 シリ コン基板上の電極膜と して、 厚さ約 0.8/z mの A 1合金膜 (Al— 1 %Si、 A1— 0.5%Cu、 Al _ 1 % Si— 0.5% Cu) 、 あ るいは 配線 (AuO.01 ^ m/NiO.4μ m/CuO.4 μ m) を用いた。 スタツ ドバンプの作製には、 上記のポール部を電極上に接合し、 その直上にワイヤを引き上げて破断させることで、 バンプを形成し た。 積層チップ実装のために、 同一チップにスタツ ドバンプとルー プ形成を混載させる場合には、 まずは全ての電極上にスタッ ドパン プを形成し、 その後に行うループ形成では、 ボール部をリード部に 接合し、 ワイャを前述したスタッ ドバンプ上にゥヱッジ接合した。
ワイャ組織について、 長手方向に断面研磨したワイャを用いて、 エッチングを行った後に SEMで観察して結晶粒数を数えた。 また、 同様の断面研磨した試料のある領域において、 EBSP法により結晶方 位を測定した。 ワイヤ断面の全体での [ 111] 又は [ 100] 方位の結 晶粒の面積比率を求め、 ワイヤの半径 Rの中心から R Z 2までの部 分を中心部、 その外側を外周部と し、 それぞれの領域における [ 11 1] / [ 100] の面積割合 Rc, Rsを求めた、 また、 ワイヤ中心から R 3までの領域を芯部の領域における [ 111 ] / [ 100] の面積割合 Rdを求めた。 なお、 結晶方位の測定において、 結晶粒の各方位がヮ ィャの長手方向に対して 10° 以内の傾きを有するものを、 全て各方 位の結晶粒と した。
ゥエッジ接合性の評価には、 接合相手は、 表面に Agメ ツキ (厚さ : 1〜 4 μ πι ) が施されたリー ドフレーム、 又は表面に Auメ ツキ/ Niメ ッキ Z Cu配線が形成されている樹脂テープ基板を使用した。 試 料が搭載されるステ ジの温度は、 リー ドフレームの場合は通常の 220°Cを選定し、 テープ基板の場合には、 通常の 180°Cと、 ゥエッジ 接合性がよ り厳しくなる低温の 160°Cで行った。 評価基準と して、 2 00ピンのチップを 10個使用し、 合計 2000本のワイヤを接続し、 ゥェ ッジ接合部での不良によ り連続ボンディ ング動作が一度でも中断し たり、 光顕観察によ り剥離等の不良現象が 2本以上認められた場合 には、 ゥエッジ接合性が不十分であるため△印で示し、 連続ボンデ イ ングで問題もなく、 その後の観察でも不良が認められない場合に は、 ゥヱッジ接合性は良好であると判断し、 ◎印で示し、 両者の中 間となる、 連続ボンディングは可能でも剥離が 1本認められた場合 には、 通常は問題とならないことから、 〇印で表示した。
また、 ゥエツジ接合性等も影響を及ぼすボール形成性について、 上記のテ一プ基板への 160°Cの低温接合を実施して、 線径の 1. 4倍の 小ポール 10本を SEMで観察した。 ボール形状が真球で良好な場合に は◎印、 偏平なポールが 1本でも観察されたら△印、 その中間で、 真球性は良好であるがポール部がワイヤ中心からずれることによる 偏芯が 2本以上観察された場合には〇印で表示した。
樹脂封止時のワイヤ流れ (樹脂流れ) の測定に関しては、 ワイヤ 長が約 5 mm、 ループ高さが約 300 μ m、 ループ形状は台形となるよ うボンディングし、 その後、 モールディ ング装置を用いて汎用ビフ ェニール系エポキシ樹脂で封止を行った試料を作製した。 この半導 体素子の内部を軟 X線非破壊検査装置を用いて X線投影し、 決まつ た位置のワイャ流れ量を 30本測定し、 その平均値をワイャ長さで除 算した値 (百分率) を封止後のワイヤ流れ率と定義した。 このワイ ャ流れ率が、 4 %未満であればワイャ流れは良好であるため◎印で 示し、 6 %以上であれば狭ピツチ接続でのワイャ接触等が懸念され るため△印、 その中間である 4〜 6 %の範囲の場合は〇印で表示し た。
ボンディ ングされたループの直線性を評価するため、 ワイヤ長 ( スパン) が 6 mmとなるようボンディングされた 100本のワイヤを用 いて、 投影機によ り上方から観察した。 ポール側とゥエッジ側の接 合部を結ぶ直線に対し、 ワイヤが最も離れている部位のずれを曲が り量と して測定した。 その曲がり量の平均が、 線径の 1本分未満で あれば良好であると判断し◎印で表示し、 2本分以上であれば不良 であるため△印、 その中間であれば、 汎用ワイヤよ りは良好であり 、 通常は問題とならないため〇印で表示した。
ゥエッジ接合部の信頼性を評価するため、 高温リ フロー試験、 熱 サイクル試験を実施した。 試料は、 上述した、 200ピンの 合金の リー ドフレーム上にワイヤボンディ ングを行った後に、 汎用ビフエ ニール系エポキシ樹脂で封止した試料を用いた。 試料数は 2チップ の計 400ピンで調べた。 リ フロー試験は、 Pbフリー対応を想定し、 従来の Sn— Pb共晶系よ りも高温である 280°Cでリ フローを実施し、 その後に電気特性を測定した。 導通が得られないものが 1本でも発 生すれば△印、 電気的特性に問題が生じていない場合は◎印、 その 中間である、 全ピンで導通はえられるが、 電気抵抗が高いピンが 2 本以上発生している場合には、 より過酷な接合信頼性が懸念される ため〇印で表示した。
熱サイクル試験では、 実使用時の熱履歴を加速評価する目的で、 一 55°Cと 125°Cの間で温度の昇降を繰り返し、 300サイクルの試験後 に、 開封作業によ り樹脂を削除し、 ゥエッジ接合部の近傍での引張 り試験 (ピール試験) を実施した。 この熱サイクル試験後のゥエツ ジ接合のピール強度を、 ボンディング直後の平均値と比較した。 試 験後のピール強度の減少が 2割以下に抑えられている場合には、 ゥ ェッジ接合部の耐疲労特性は良好であるため◎印で示し、 強度の減 少が、 7割超である場合には不良発生が懸念されるため△印で、 そ の中間では、 電気的接続は確保されていることから〇印で表示した 短スパンでのゥエツジ接合部近傍の引張強度を評価するピール試 験を実施した。 チップ段差は 450 μ m程度、 ワイヤ長は約 l mm、 接 合相手は前記樹脂テープである。 ボンディングされたワイヤでピー ル試験を行い、 その破断強度であるピール強度が 60πιΝ以上であれば 良好であるため◎印で示し、 20mN未満であれば実用上問題となるた め△印で示し、 その中間であれば、 実用上は問題のないレベルであ ると判断して〇印で示した。
ポール接合近傍のワイャ直立部が倒れる現象である リーニングに ついては、 チップ水平方向からワイヤ直立部を観察し、 ポール接合 部の中心を通る垂線とワイヤ直立部との間隔が最大であるときの間 隔 (リーニング間隔) で評価した。 ワイヤ長は 4 mm、 試料数は 50本 とした。 ループの最高高さは、 通常の約 220 μ πιと、 リーユング評 価にはより厳しい高ループである約 350 μ mの 2種類で調べた。 上 記のリーニング間隔がワイヤ径ょ り も小さい場合にはリーニングは 良好、 大きい場合には直立部が傾斜しているためリ一二ングは不良 であると判断した。 リーニングの不良発生頻度によ り分類し、 不良 が 3本以上の場合には△印、 0本の場合には◎印、 その中間では〇 印で表示した。
積層チップ接続への適応性について、 逆段差ボンディ ング時のヮ ィャ曲がり を評価した。 ポール接合部がゥヱッジ接合部より も低い 位置となるよう、 上述した、 電極上にスタッ ドバンプを形成し、 そ の上にゥエッジ接合を行った。 高さ 450 μ mの高段差チップを用い 、 ポール接合近傍のワイャ直立部が 350 μ m程度となるようポンデ イ ングを行った。 ボンディングされたワイヤ 200本を上方から観察 して、 直立部の最大倒れ量が線径の 4倍以上のものが 1本でもあれ ば不良と判断して△印で示し、 全てのワイヤの最大曲がり量が線径 の 2倍より小さい場合には良好であると判断して◎印で表し、 その 中間である場合には、 屈曲は少し発生している ものの、 一般的な使 用では問題にならないと判断して〇印で示した。
ワイヤ表面の傷発生では、 100本のループを形成し、 SEMで観察し て、 ワイヤ表面に傷が認められない場合には◎印で示し、 長さが 10 μ m以上の傷が 1個でも認められる場合には△印で示し、 その中間 では、 傷発生の問題がないと して、 〇印で示した。 また、 キヤビラ リ詰まりでは、 連続ボンディングに支障をきたしたり、 ループ形状 が乱れる等、 キヤビラリの詰まりに関連する不良が発生するまでの ボンディ ング回数で比較し、 10万回未満ではキヤビラリ寿命が短く 生産性が悪いと判断して△印で示し、 50万回以上では生産性が良好 であると判断して◎印で示し、 その中間では、 通常の使用では問題 ないとして〇印で示した。
ボンディング工程でのループ形状安定性については、 ワイヤ毎に 3箇所のループ高さを測定し、 そのループ高さの標準偏差により評 価した。 安定なループ形状を得るのがよ り困難である狭ピッチ ' 口 ングスノ、。ンへの実用性を評価するため、 ワイヤ長は 5 mm長、 ループ 形状は台形、 ループ高さは約 200 μ mと約 350 μ mの 2種類でボンデ イングを行った。 それぞれ 50本ずつ選定し、 測定には光学顕微鏡を 使用した。 測定個所には、 ループ高さのパラツキが発生しやすい部 位と して、 ポール直上部、 最高到達部、 ワイヤ長の中心部の 3箇所 と した。 このループ高さの標準偏差がワイヤ径の 1 Z 2以下であれ ば、 パラツキが大きいと判断し、 1 Z 2未満であればパラツキは小 さく良好であると判断した。 その基準をもとに判断し、 3箇所とも パラツキが小さい場合には、 ループ形状が安定していると判断し、 ◎印で表示し、 パラツキが大きい個所が 1箇所である場合には、 比 較的良好であるため〇印、 2箇所の場合には△印、 3箇所ともパラ ツキが大きい場合には X印で表示した。
表 8 , 9 , 10で、 本発明 (15) に係わるボンディングワイヤは実 施例 61〜76であり、 本発明 ( 16) に係わるボンディ ングワイヤは実 施例 61〜63, 65〜69, 72〜74であり、 本発明 (17) に係わるボンデ イ ングワイヤは実施例 61〜67, 70〜73であり、 本発明 (18) に、係わ るボンディ ングワイヤは実施例 61〜70, 72であり、 本発明 (19) に 係わるボンディ ングワイヤは実施例 64, 71 , 75, 76であり、 本発明 ( 21) に係わるボンディングワイヤは実施例 61, 62, 64〜70, 72〜 76である。 表 1の比較例 11〜16は、 本発明 (15) におけるボンディ ングワイヤの組織構成を満足しない場合である。
実施例 61〜76のボンディ ングワイヤは、 本発明に係わる、 中心部 、 外周部それぞれの結晶方位に関する [ 111] / [ 100] の面積割合 Rc, Rsの差分比率の絶対値 I 1 一 RcZRs I X 100 ( % ) が 30 %以上 であることによ り、 現在主流のリー ドフレームを用いた場合のゥェ ッジ接合性を向上できることが確認された。 また、 線径の 1. 3倍程 度の小ボールの形成性も良好であった。 また、 上記の結晶方位の差 分比率の絶対値が 40%以上である実施例 62〜68, 70, 72, 75, 76で は、 樹脂テ一プ上に 180°Cでボンディ ングされるときのゥエッジ接 合性が改善されており、 さ らに、 50 %以上である実施例 63〜67, 70 , 76では、 よ り低温 160°Cで樹脂テープ上へのゥエッジ接合性も良 好であることが確認された。 それに対し、 比較例 11〜 16のボンディ ングワイャは、 上記の結晶方位の差分比率の絶対値が割合が 30%未 満であることによ り、 リードフ レーム、 樹脂テープ上へのゥエッジ 接合性は十分ではなかった。
本発明 (16) に係わる実施例 61〜63, 65〜69, 72〜74のボンディ ングワイヤでは、 中心部と外周部における [ 111 ] / [ 100] の面積 割合 Rc, Rsとの差分比率 I 1—Rc/Rs I X 100 ( % ) を 30%以上、 ワイヤ断面全体で平均した [ 111] / [ 100] の面積割合 Raを 1. 0以 上であるため、 高接合性とワイヤ流れの抑制を同時に満足すること が確認されたが、 比較例 11〜16では、 こ う した改善効果は認められ なかった。 また、 実施例 61 , 66〜69では、 ワイヤ断面全体で平均し た上記値 Raを 1. 2以上とすることで、 口ングスパンでのループの直 線性も向上することができた。
8; 本発明 (17) に係わる実施例 61〜67, 70〜73のボンディングワイ ャでは、 中心部と外周部での該面積比率 Rc, Rsとの差分比である I 1 -Rc/Rs I X100 (%) が 30%以上であり、 ワイヤ中心から RZ 3まで芯部での該面積比率 Rdが 0.1〜0.8の範囲であることにより、 高いゥエッジ接合性、 ワイヤ流れの抑制を満足しつつ、 さ らに、 ゥ ェッジ接合性における疲労特性に関連する高温リ フロ一試験、 熱サ ィクル試験においても良好な信頼性が得られることを確認した。 な かでも、 実施例 61〜63, 65〜67, 72, 73では、 上記特性である、 中 心部と外周部での差分比、 芯部での面積比率 Rdに加えて、 ワイヤ断 面全体で平均した [111] / [100] の面積割合 Raを 1.0以上とする こ とで、 短スパンにおけるゥヱッジ接合部近傍のピール強度も十分 高いことが確認された。
本発明 (18) に係わる実施例 61〜70, 72のボンディ ングワイヤで は、 中心部と外周部での該面積比率 Rc, Rsとの差分比である I 1 - Rc/Rs I X100 (%) が 30%以上であり、 外周部での該面積比率 Rs が 1.2以上であることにより、 ゥエッジ接合性を満足し、 さらに、 ループ高さが 200 μ mにおけるリ一ニング性も改善できることが確 認された。 なかでも、 該 Rsが 1.5以上である実施例 65〜 68のボンデ イ ングワイヤでは、 ループ高さが 350 μ mの高い場合でも、 良好な リーニング性が得られることが確認された。 また、 I 1 —RcZRs I X100 (%) ≥30%、 Rs≥ 1.2であり、 さらに芯部での比率 Rdが 0.1 〜0.8の範囲である、 実施例 61〜67, 70, 72では、 逆段差ボンディ ング時のワイャ曲がりを低減する効果も確認された。
本発明 (19) に係わる実施例 64, 71, 75, 76のボンディ ングワイ ャでは、 表面から RZ 5までの最表面部における [111] / [100] の面積割合 Rtが 1.0以下であることによ り、 ワイャ表面の傷発生を 低減したり、 キヤビラリが詰まるまでの寿命を延ばして、 生産性を 向上することができる。
本発明 (21 ) に係わる実施例 61, 62, 64〜70, 72〜76のボンディ ングワイヤでは、 中心部と外周部での該面積比率 Rc, Rsとの差分比 である I 1 — Rc Z Rs I X 100 ( % ) が 30 %以上であり、 結晶粒数が 0 . 04〜 4個/ μ m 2の範囲であることにより、 ワイャ長が 5 mmでのノレ ープ高さのばらつきを低減し、 安定なループ形状を得られる制御性 の良好な特性が得られることが確認された。 産業上の利用可能性
以上、 本発明の導体装置用金ボンディングワイャ及びその製造方 法によれば、 狭ピッチ接続を実現するための高強度 , 高弾性、 ワイ ャ流れ抑制、 ボール直立部のリーニング性、 およびゥヱッジ接合部 の接合性あるいは疲労特性等が総合的に改善でき、 しかも工業的に 量産性にも優れている。

Claims

1 . ボンディングワイャの長手方向断面の結晶粒組織において、 ワイヤ長手方向の結晶方位の内、 [ 100] 方位を有する結晶粒の面 積に対する [ 111] 方位を有す 結晶粒の面積の割合が 1. 2以上であ ることを特徴とする半導体装置用金ボンディングワイヤ。
ー卩青
2 . ボンディングワイャの長手方向断面の結晶粒組織において、 ワイヤ長手方向の結晶方位の内、 [ 111] 方位を有する結晶粒の面 積比率が 55%以上であることを特の徴とする半導体装置用金ボンディ ングワイヤ。
3 . ボンディングワイャの長手方向断面囲の結晶粒組織において、 ワイャの半径を Rとして、 該ワイヤの中心から R Z 2までの部分を 中心部としたとき、 中心部におけるワイャ長手方向の結晶方位の内 、 [ 100] 方位を有する結晶粒の面積に対する [ 111] 方位を有する 結晶粒の面積の割合 Rcと、 ワイヤ断面全体での [ 100] 方位を有す る結晶粒の面積に対する [ 111] 方位を有する結晶粒の面積の割合 R aについて、 両者の差分比率の絶対値 I 1 一 RcZRa I X 100 ( % ) が 30%未満であり、 且つ、 ワイヤ断面全体での該割合 Raが 1. 2以上で あることを特徴とする半導体装置用金ボンディ ングワイヤ。
4 . ボンディングワイヤの長手方向断面の結晶粒組織において、 ワイヤ半径を Rと して、 ワイヤ長手方向の結晶方位の内、 ワイヤ半 径方向にワイヤ半径 Rの 1 Z 10以上の幅で、 [ 100] 方位を有する 結晶粒の面積に対する [ 111] 方位を有する結晶粒の面積の割合が 1 . 6以上である領域が少なく とも 1層以上存在することを特徴とする 、 請求項 1 〜 3のいずれかに記載の半導体装置用金ボンディングヮ ィャ。
5 . ボンディングワイャの長手方向断面の結晶粒組織において、 ワイヤ半径を Rと して、 ワイヤ長手方向の結晶方位の内、 ワイヤ半 径方向にワイヤ半径 Rの 1 Z10以上の幅で、 [111] 方位を有する 結晶粒の面積比率が 60%以上である領域が少なく とも 1層以上存在 することを特徴とする、 請求項 1〜 4のいずれかに記載の半導体装 置用金ボンディ ングワイヤ。
6. ボンディ ングワイャの長手方向断面の結晶粒組織において、 ワイヤ半径を Rと して、 ワイヤ長手方向の結晶方位の内、 ワイヤ半 径方向にワイヤ半径 Rの 1 /10以上、 1 / 3未満の幅で、 [100] 方位を有する結晶粒の面積に対する [111] 方位を有する結晶粒の 面積の割合が 0.9未満である領域が少なく とも 1層以上存在するこ とを特徴とする、 請求項 1〜 3のいずれかに記載の半導体装置用金 ボンディングワイヤ。
7. ボンディングワイャの長手方向断面の結晶粒組織において、 ワイヤ半径を Rと して、 ワイヤ長手方向の結晶方位の内、 ワイヤ半 径方向にワイヤ半径 Rの 1 /10以上の幅において、 [100] 方位を 有する結晶粒の面積比率が 50%以上である領域が少なく とも 1層以 上存在することを特徴とする、 請求項 1 〜 3又は 6のいずれかに記 載の半導体装置用金ボンディングワイヤ。
8. ボンディングワイヤの長手方向断面において、 ワイヤ長手方 向の結晶方位の内、 [111] 方位及び [100] 方位の結晶粒の面積の 合計の割合が 50%以上であることを特徴とする、 請求項 1〜 7のい ずれかに記載の半導体装置用金ボンディ ングワイヤ。
9. ボンディングワイヤの長手方向断面において、 ワイヤの半径 を Rとして、 ワイヤの中心から R / 2までの部分を中心部と したと き、 該中心部におけるワイヤ長手方向の結晶方位の内、 [111] 方 位及び [100] 方位の結晶粒の面積の合計の該中心部に占める割合 が 60%以上であることを特徴とする、 請求項 1 〜 8のいずれかに記 載の半導体装置用金ボンディ ングワイヤ。
10. ボンディングワイャの長手方向断面の結晶粒組織において、 ワイヤの半径を Rと して、 該ワイヤの表面から: R Z 3までの深さの 部位を表層部としたとき、 表層部におけるワイヤ長手方向の結晶方 位の内、 [ 100] 方位を有する結晶粒の面積に対する [ 111] 方位を 有する結晶粒の面積の割合が 1. 6以上であり、 かつ、 ワイヤ断面全 体での [ 100] 方位を有する結晶粒の面積に対する [ 111] 方位を有 する結晶粒の面積の割合が 1. 2以上であることを特徴とする半導体 装置用金ボンディングワイヤ。
11. ボンディ ングワイヤの長手方向断面において、 ワイヤの半径 を Rとして、 ワイヤの表面から R / 3までの部分を表面領域と した とき、 該表面領域におけるワイヤ長手方向の結晶方位の内、 [ 111 ] 方位及び [ 100 ] 方位の結晶粒の面積の合計の該表面領域に占め る割合が 50%以上であることを特徴とする、 請求項 1〜: 10のいずれ かに記載の半導体装置用金ボンディ ングワイヤ。
12. ボンディングワイャの長手方向断面又は前記長手方向の垂直 方向の X線回折測定によ り求めた結晶方位において、 [ 100] 方位 を有する結晶粒に対する [ 111] 方位を有する結晶粒の体積比が 1. 2 以上であることを特徴とする半導体装置用金ボンディ ングワイヤ。
13. 前記ボンディ ングワイャの線径の 5倍以上のワイャ長手方向 断面において、 線径の 70%以上の長さでワイャ長手方向の結晶方位 が 15° 以内の角度に揃った結晶粒を、 少なく とも 2個以上有する請 求項 1〜12のいずれかに記載の半導体装置用金ボンディ ングワイヤ
14. 前記ボンディングワイヤが、 Auを主成分と し、 添加成分と し て、 Y , Ca, Yb、 又は Euから選ばれる 1種以上の元素の総濃度じェ が 0. 002〜0. 03質量%、 La, Tb, Dy、 又は Ndから選ばれる 1種以上 の元素の総濃度 C2が 0.002〜0·05質量0/。であり、 且つそれら添加成 分の濃度関係について 0.1< Ci/ Csく 10の範囲である、 請求項 1 〜 13のいずれかに記載の半導体装置用金ボンディングワイヤ。
15. ボンディ ングワイヤの長手方向断面の結晶粒組織において、 ワイャの半径を Rと して、 該ワイヤの中心から R/ 2までの部分を 中心部、 その外側を外周部としたとき、 中心部におけるワイヤ長手 方向の結晶方位の内、 [100] 方位を有する結晶粒の面積に対する
[111] 方位を有する結晶粒の面積の割合 Rcと、 外周部におけるヮ ィャ長手方向の結晶方位の内、 [100] 方位を有する結晶粒の面積 に対する [111] 方位を有する結晶粒の面積の割合 Rsについて、 両 者の差分比率の絶対値 i 1 一 RcZRs I X100 (%) が 30%以上であ ることを特徴とする半導体装置用金ボンディ ングワイヤ。
16. ボンディ ングワイャの長手方向断面の結晶粒組織において、 ワイヤ長手方向の結晶方位の内、 [100] 方位を有する結晶粒の面 積に対する [111] 方位を有する結晶粒の面積の割合 Raが 1.0以上で あることを特徴とする、 請求項 15に記載の半導体装置用金ボンディ ングワイヤ。
17. ボンディ ングワイヤの長手方向断面の結晶粒組織において、 ワイヤの半径を と して、 該ワイヤの中心から RZ 3までの部分を 芯部としたとき、 芯部におけるワイヤ長手方向の結晶方位の内、 [ 100] 方位を有する結晶粒の面積に対する [111] 方位を有する結晶 粒の面積の割合 Rdが 0.:!〜 0.8の範囲であることを特徴とする、 請求 項 15又は 16に記載の半導体装置用金ボンディングワイヤ。
18. ボンディ ングワイヤの外周部におけるワイヤ長手方向の結晶 方位の内、 [100] 方位を有する結晶粒の面積に対する [111] 方位 を有する結晶粒の面積の割合 Rsが 1.2以上であることを特徴とする 、 請求項 15〜17のいずれかに記載の半導体装置用金ボンディ ングヮ ィャ。
19. ボンディングワイャの長手方向断面の結晶粒組織において、 ワイヤの半径を と して、 該ワイヤの表面から R / 5までの部分を 最表面部と したとき、 最表面部におけるワイヤ長手方向の結晶方位 の内、 [ 100] 方位を有する結晶粒の面積に対する [ 111] 方位を有 する結晶粒の面積の割合 Rtが 1. 0以下であることを特徴とする、 請 求項 15~ 18のいずれかに記載の半導体装置用金ボンディ ングワイヤ
20. 前記結晶粒の [ 111] 方位及び [ 100] 方位が、 ボンディ ング ワイヤの長手方向に対し、 10° 以内の傾きを有する請求項 1〜: L9の いずれかに記載の半導体装置用金ボンデイングワイヤ。
21. 前記ボンディングワイャの長手方向に垂直な断面の結晶粒数 が、 0. 04〜 4個 Ζ μ πι 2である請求項 1 〜20のいずれかに記載の半 導体装置用金ボンディングワイヤ。
22. 圧延加工、 前熱処理、 二次伸線加工、 後熱処理の順でそれぞ れ少なく とも 1回組み合わせた工程で、 铸造材からボンディ ングヮ ィャを製造する方法であって、 前記圧延加工における面積加工率が 95%以上、 前記前熱処理の加熱温度 (絶対温度) が該材料の融点に 対して 20〜70 %の温度範囲であり、 前記二次伸線加工の面積加工率 が 99. 5%以上、 前記後熱処理の加熱温度 (絶対温度) が該材料の再 結晶温度に対して 20〜70 %の温度範囲で実施されることを特徴とす る半導体装置用金ボンディ ングワイャの製造方法。
23. 圧延加工、 一次伸線加工、 前熱処理、 二次伸線加工、 後熱処 理の順でそれぞれ少なく とも 1回組み合わせた工程で、 铸造材から ボンディ ングワイヤを製造する方法であって、 前記圧延加工、 一次 伸線加工におけるそれぞれの面積加工率が 95 %以上、 前記前熱処理 の加熱温度 (絶対温度) が該材料の融点に対して 20〜70%の温度範 囲であり、 前記二次伸線加工の面積加工率が 99. 5 %以上、 平均伸線 速度が 50〜: 1000 m /分、 伸線の槽温度が 5〜45°Cであり、 前記後熱 処理の加熱温度 (絶対温度) が該材料の再結晶温度に対して 20〜70 %の温度範囲、 掃引張力は 0. 2〜70mNの範囲で実施されるこ とを特 徴とする半導体装置用金ボンディ ングワイヤの製造方法。
24. 前記伸線加工に用いる複数のダイスの内、 減面率 10 %以上の ダイスを 30 %以上使用することを特徴とする、 請求項 22又は 23に記 載の半導体装置用金ボンディングワイヤの製造方法。
25. 圧延加工、 一次伸線加工、 前熱処理、 二次伸線加工、 後熱処 理の順でそれぞれ少なく とも 1回組み合わせた工程で、 鎳造材から ボンディングワイヤを製造する方法であって、 前記圧延加工、 一次 伸線加工におけるそれぞれの面積加工率が 95 %以上、 前記前熱処理 の加熱温度 (絶対温度) が該材料の融点 (絶対温度) に対して 30〜 70 %の温度範囲であり、 前記二次伸線加工における面積加工率が 99 . 5 %以上、 平均伸線速度が 100〜800 m /分、 ダイス前後での張力の 差が 0.:!〜 50MPaの範囲であり、 前記後熱処理の加熱温度 (絶対温度 ) が該材料の再結晶温度 (絶対温度) に対して 30〜70 %の温度範囲 であり、 一次伸線及び二次伸線でのダイス出口における引出し角度 が 30° 以下で製造されることを特徴とする半導体装置用金ボンディ ングワイヤの製造方法。
26. 前記伸線加工に用いる複数のダイスの内、 減面率が 7 %未満 、 7〜11 %、 11〜20 %である 3種のダイス群のそれぞれを少なく と も 10 %以上は使用することを特徴とする、 請求項 25に記載の半導体 装置用金ボンディングワイャの製造方法。
27. 前記後熱処理において、 加熱炉両端の加熱温度 Te (絶対温度 ) 力 中央部の加熱温度 Tm (絶対温度) に対して、 0. 02Tm〜0. 3Tm ほど低温である温度分布を持った加熱炉を用いて、 ワイヤを連続的 に掃引させて熱処理することを特徴とする、 請求項 25又は 26に記載 の半導体装置用金ボンディ ングワイヤの製造方法。
PCT/JP2003/012740 2002-04-05 2003-10-03 半導体装置用金ボンディングワイヤおよびその製造方法 WO2004049425A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/502,676 US7390370B2 (en) 2002-04-05 2003-10-03 Gold bonding wires for semiconductor devices and method of producing the wires

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002343766 2002-11-27
JP2002-343766 2002-11-27
JP2003-26065 2003-02-03
JP2003026065A JP4141854B2 (ja) 2002-04-05 2003-02-03 半導体装置用金ボンディングワイヤおよびその製造法

Publications (1)

Publication Number Publication Date
WO2004049425A1 true WO2004049425A1 (ja) 2004-06-10

Family

ID=32396274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012740 WO2004049425A1 (ja) 2002-04-05 2003-10-03 半導体装置用金ボンディングワイヤおよびその製造方法

Country Status (1)

Country Link
WO (1) WO2004049425A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948948A (ja) * 1982-08-14 1984-03-21 デメトロン・ゲゼルシヤフト・フユ−ル・エレクトロニク−ヴエルクシユトツフエ・ミツト・ベシユレンクテル・ハフツング 半導体構造素子中の半導体結晶と接続部位とをボンデイングするための金又は金合金線材
JP2002319597A (ja) * 2001-02-19 2002-10-31 Sumitomo Metal Mining Co Ltd ボンディングワイヤ及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948948A (ja) * 1982-08-14 1984-03-21 デメトロン・ゲゼルシヤフト・フユ−ル・エレクトロニク−ヴエルクシユトツフエ・ミツト・ベシユレンクテル・ハフツング 半導体構造素子中の半導体結晶と接続部位とをボンデイングするための金又は金合金線材
JP2002319597A (ja) * 2001-02-19 2002-10-31 Sumitomo Metal Mining Co Ltd ボンディングワイヤ及びその製造方法

Similar Documents

Publication Publication Date Title
JP4554724B2 (ja) 半導体装置用ボンディングワイヤ
US7820913B2 (en) Bonding wire for semiconductor device
TWI763878B (zh) 半導體裝置用接合線
CN105023902B (zh) 半导体用接合线
JP4886899B2 (ja) 半導体用ボンディングワイヤ
EP2960931B1 (en) Copper bond wire
JP5349382B2 (ja) 半導体用のボール接合用ボンディングワイヤ
JP5073759B2 (ja) 半導体装置用ボンディングワイヤ
JP5572121B2 (ja) ボンディングワイヤの接合構造
JP4691533B2 (ja) 半導体装置用銅合金ボンディングワイヤ
WO2012043727A1 (ja) 複層銅ボンディングワイヤの接合構造
TWI621720B (zh) Bonding wire for semiconductor device
JP4904252B2 (ja) 半導体装置用ボンディングワイヤ
JP2011146754A5 (ja)
JP4705078B2 (ja) 半導体装置用銅合金ボンディングワイヤ
TWI237334B (en) A gold bonding wire for a semiconductor device and a method for producing the same
JP4141854B2 (ja) 半導体装置用金ボンディングワイヤおよびその製造法
JP2005268771A (ja) 半導体装置用金ボンディングワイヤ及びその接続方法
JP3697227B2 (ja) 半導体装置用金ボンディングワイヤ及びその製造方法
JP4195495B1 (ja) ボールボンディング用金合金線
WO2004049425A1 (ja) 半導体装置用金ボンディングワイヤおよびその製造方法
JP2005294874A (ja) ワイヤをウェッジ接合した半導体装置及び金合金ボンディングワイヤ
JPH07335686A (ja) ボンディング用金合金細線
JP3445616B2 (ja) 半導体素子用金合金細線
JP2003133362A (ja) 半導体装置及び半導体装置用ボンディングワイヤ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

WWE Wipo information: entry into national phase

Ref document number: 10502676

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038A03581

Country of ref document: CN